WorldWideScience

Sample records for consolidated incineration facility

  1. Consolidated incineration facility technical support

    International Nuclear Information System (INIS)

    Burns, D.; Looper, M.G.

    1993-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. Key components of this technical support program include recently completed waste burn tests at both EPA's Incineration Research Facility and at Energy and Environmental Research Corporation's Solid Waste Incineration Test Facility. The main objectives for these tests were determining the fate of heavy metals, measuring organics destruction and removal efficiencies, and quantifying incinerator offgas particulate loading and size distribution as a function of waste feed characteristics and incineration conditions. In addition to these waste burning tests, the SRTC has recently completed installations of the Offgas Components Test Facility (OCTF), a 1/10 scale CIF offgas system pilot plant. This pilot facility will be used to demonstrate system operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. Technical support programs of this type are needed to resolve technical issues related with treatment and disposal of combustible hazardous, mixed, and low-level radioactive waste. Implementation of this program will minimize facility start-up problems and help insure compliance with all facility performance requirements

  2. The Savannah River Plant Consolidated Incineration Facility

    International Nuclear Information System (INIS)

    Weber, D.A.

    1987-01-01

    A full scale incinerator is proposed for construction at the Savannah River Plant (SRP) beginning in August 1989 for detoxifiction and volume reduction of liquid and solid low-level radioactive, mixed and RCRA hazardous waste. Wastes to be burned include drummed liquids, sludges and solids, liquid process wastes, and low-level boxed job control waste. The facility will consist of a rotary kiln primary combustion chamber followed by a tangentially fired cylindrical secondary combustion chamber (SCC) and be designed to process up to 12 tons per day of solid and liquid waste. Solid waste packaged in combustible containers will be fed to the rotary kiln incinerator using a ram feed system and liquid wastes will be introduced to the rotary kiln through a burner nozzle. Liquid waste will also be fed through a high intensity vortex burner in the SCC. Combustion gases will exit the SCC and be cooled to saturation in a spray quench. Particulate and acid gas are removed in a free jet scrubber. The off-gas will then pass through a cyclone separator, mist eliminator, reheater high efficiency particulate air (HEPA) filtration and induced draft blowers before release to the atmosphere. Incinerator ash and scrubber blowdown will be immobilized in a cement matrix and disposed of in an onsite RCRA permitted facility. The Consolidated Incineration Facility (CIF) will provide detoxification and volume reduction for up to 560,000 CUFT/yr of solid waste and up to 35,700 CUFT/yr of liquid waste. Up to 50,500 CUFT/yr of cement stabilized ash and blowdown will beproduced for an average overall volume reduction fator of 22:1. 3 figs., 2 tabs

  3. Consolidated Incineration Facility waste burn test. Final report

    International Nuclear Information System (INIS)

    Burns, D.B.

    1995-01-01

    The Savannah River Technology Center (SRTC) is Providing technical support for start-up and operation of the Consolidated Incineration Facility. This support program includes a series of pilot incineration tests performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (MF) using surrogate CIF mixed wastes. The objectives for this test program included measuring incinerator offgas particulate loading and size distributions as a function of several operating variables, characterizing kiln bottom ash and offgas particulates, determining heavy metal partition between the kiln bottom ash and incinerator stack gas, and measuring kiln organics emissions (particularly polychlorinated dioxins and furans). These tests were designed to investigate the effect of the following operating parameters: Incineration Temperature; Waste Feed Rate; Waste Density; Kiln Solids Residence Time; and Waste Composition. Tests were conducted at three kiln operating temperatures. Three solid waste simulants were burned, two waste mixtures (paper, plastic, latex, and PVC) with one containing spiked toxic organic and metal compounds, and one waste type containing only paper. Secondary Combustion Chamber (SCC) offgases were sampled for particulate loading and size distribution, organic compounds, polychlorinated dibenzo[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, and combustion products. Kiln bottom ash and offgas particulates were characterized to determine the principal elements and compounds comprising these secondary wastes

  4. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  5. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    International Nuclear Information System (INIS)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown

  6. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    2000-01-01

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials

  7. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  8. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  9. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  10. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  11. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  12. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  13. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  14. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  15. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  16. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  17. Incineration

    International Nuclear Information System (INIS)

    Holmes, R.G.G.

    1988-01-01

    One of the methods of destroying organics in radwaste is incineration. This presentation will summarise some of the advantages and problems associated with incineration and will illustrate some of these points by discussing progress in an options study into methods of treating plutonium contaminated material waste, being carried out by British Nuclear Fuels plc. The wastes amenable for treatment, fall into two categories, low-level wastes and intermediate-level wastes. (author)

  18. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  19. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility

    DEFF Research Database (Denmark)

    Couto, Nazare; Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2014-01-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Ind...... with low maintenance and using "waste heating" from an incineration facility....

  20. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  1. Waste incineration and immobilization for nuclear facilities. Status report, October 1977--March 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Burkhardt, S.C.; Ledford, J.A.; Williams, P.M.

    1979-01-01

    Fluidized bed incineration and processes for immobilization of wastes generated at nuclear facilities are undergoing development. After minor piping modifications to eliminate dust collecting points, a pilot plant fluidized bed incinerator run of 225 continuous hours was successfully completed in a demonstration of component reliability. Vitrification of incinerator ash and other wastes is now being accomplished using a pilot scale unit developed as a continuous flow process

  2. DEMOLITION OF HANFORD'S 232-Z WASTE INCINERATION FACILITY

    International Nuclear Information System (INIS)

    LLOYD, E.R.

    2006-01-01

    The 232-Z Plutonium Incinerator Facility was a small, highly alpha-contaminated, building situated between three active buildings located in an operating nuclear complex. Approximately 500 personnel worked within 250 meters (800 ft) of the structure and expectations were that the project would neither impact plant operations nor result in any restrictions when demolition was complete. Precision demolition and tight controls best describe the project. The team used standard open-air demolition techniques to take the facility to slab-on-grade. Several techniques were key to controlling contamination and confining it to the demolition area: spraying fixatives before demolition began; using misting systems, frequently applying fixatives, and using a methodical demolition sequence and debris load-out process. Detailed air modeling was done before demolition to determine necessary facility source-term levels, establish radiological boundaries, and confirm the adequacy of the proposed demolition approach. By only removing the major source term in equipment, HEPA filters, gloveboxes, and the like, and leaving fixed contamination on the walls, ceilings and floors, the project showed considerable savings and reduced worker hazards and exposure. The ability to perform this demolition safely and without the spread of contamination provides confidence that similar operations can be performed successfully. By removing the major source terms, fixing the remaining contamination in the building, and using controlled demolition and contamination control techniques, similar structures can be demolished cost effectively and safely

  3. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  4. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case

    International Nuclear Information System (INIS)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-01-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N 2 O emission factors from MSW incineration plants, and calculate the N 2 O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N 2 O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N 2 O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N 2 O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N 2 O emissions from MSW incineration comprised 19% of the total N 2 O emissions.

  5. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case.

    Science.gov (United States)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-01

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N(2)O emission factors from MSW incineration plants, and calculate the N(2)O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N(2)O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N(2)O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153g-N(2)O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N(2)O emissions from MSW incineration comprised 19% of the total N(2)O emissions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. Beta-gamma contaminated solid waste incinerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, H.E.

    1979-10-01

    This technical data summary outlines a reference process to provide a 2-stage, 400 lb/hour incinerator to reduce the storage volume of combustible process waste contaminated with low-level beta-gamma emitters in response to DOE Manual 0511. This waste, amounting to more than 200,000 ft/sup 3/ per year, is presently buried in trenches in the burial ground. The anticipated storage volume reduction from incineration will be a factor of 20. The incinerator will also dispose of 150,000 gallons of degraded solvent from the chemical separations areas and 5000 gallons per year of miscellaneous nonradioactive solvents which are presently being drummed for storage.

  7. Waste incineration and immobilization for nuclear facilities, April--September 1977

    International Nuclear Information System (INIS)

    Johnson, A.J.; Fong, L.Q.

    1978-01-01

    Fluidized bed incineration and waste immobilization processes are being developed to process the types of waste expected from nuclear facilities. An air classification system has been developed to separate tramp metal from shredded combustible solid waste prior to the waste being fed to a fluidized-bed pilot-plant incinerator. Used organic ion exchange resin with up to 55 percent water has been effectively burned in the fluidized bed incinerator. Various methods of feeding waste into the incinerator were investigated as alternatives to the present compression screw; an extrusion ram was found to suffer extensive damage from hard particles in tested waste. A bench-scale continuous waste immobilization process has been operated and has produced glass from incinerator residue and other types of waste materials

  8. Waste incineration and immobilization for nuclear facilities. Status report, April-September 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Williams, P.M.; Burkhardt, S.C.; Ledford, J.A.; Gallagher, K.Y.

    1980-01-01

    The fluidized bed incinerator and waste immobilization processes are being developed to process various liquid and solid wastes that are generated by a nuclear facility. The versatility of the incinerator liquid waste handling system has been enhanced by recent changes made in the pumping and related piping system. Tributyl phosphate-solvent incineration has been evaluated thoroughly using the pilot plant fluidized bed incinerator. Vitrified glass pellets were made to determine operating parameters of a resistance-heated reactor and to produce samples for testing. Procedures were developed for testing the product pellets. A simplified start-up procedure was devised as development continued on a second type of reactor, the Joule-heated melter

  9. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  10. Idaho National Engineering Laboratory Consolidated Transportation Facility. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0822, addressing environmental impacts that could result from siting, construction, and operation of a consolidated transportation facility at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The DOE proposes to construct and operate a new transportation facility at the Central Facilities Area (CFA) at the INEL. The proposed facility would replace outdated facilities and consolidate in one location operations that are conducted at six different locations at the CFA. The proposed facility would be used for vehicle and equipment maintenance and repair, administrative support, bus parking, and bus driver accommodation. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, the preparation of an environmental impact statement (EIS) is not required and the Department is issuing this finding of no significant impact.

  11. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  12. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.

    1984-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  13. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.; Associated Technologies, Inc., Charlotte, NC)

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor. 4 figs

  14. Environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities - State-of-the-art. State-of-the-art of environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities. Synthesis

    International Nuclear Information System (INIS)

    Chassagnac, T.; Cornet, C.; Mathieu, L.

    2005-10-01

    Since the beginning of the 70's, the growing concern from the public opinion and the scientific community for the waste incineration issue made people aware of a number of difficulties of the process and the potential risks linked to it. For example checking the good functioning conditions of the facilities has been made compulsory through the continuous emission monitoring of a number of parameters. The ministerial decree from the 20 September 2002 brings something new: the monitoring of the impact of the facilities on its nearby environment. This monitoring comes in addition to the existing continuous monitoring of some gaseous compounds of the incineration process, and widens the scale of the monitoring to the environment of the incineration facilities. But there is no further information in the ministerial decree about the methods available to match this requirement. Incineration facilities' managers have to face a close deadline (28 December 2005) and have to make the optimal choice of a technique matching these requirements but also the needs of their facilities. The aim of this study is to help incineration facilities' managers thanks to an overview as large as possible of the different techniques available. Managers will have to take into account the characteristics of the methods and their adequacy with the local contexts of their sites. This document is meant to be a support for dealing with this issue. (authors)

  15. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    International Nuclear Information System (INIS)

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  16. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  17. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  18. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  19. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  20. Criticality calculations and criticality monitoring studies of the slagging pyrolysis incinerator facility

    International Nuclear Information System (INIS)

    Close, D.A.; Booth, T.E.; Caldwell, J.T.

    1981-01-01

    It was determined that the criticality hazard associated with the Slagging Pyrolysis Incinerator (SPI) Facility would be minimal if a three-level criticality-hazard prevention program were implemented. The first strategy consists of screening all incoming wastes for fissile content. The second prevention level is provided by introducing a small concentration of a neutron-absorbing compound, such as B 2 O 3 , into the input waste stream. The third prevention level is provided by direct criticality-hazard monitoring using sensitive neutron detectors in all regions of the facility where a significant hazard has been identified - principally the drying, pyrolysis, and slag regions. The facility could be shut down rapidly for cleanout if the measurements indicate an unsafe condition is developing. The criticality safety provided by the product of these three independent measures should reduce the hazard to a negligible level

  1. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility.

    Science.gov (United States)

    Couto, Nazaré; Fritt-Rasmussen, Janne; Jensen, Pernille E; Højrup, Mads; Rodrigo, Ana P; Ribeiro, Alexandra B

    2014-05-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the "self-purification" capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using "waste heating" from an incineration facility.

  2. US Army facility for the consolidation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables

  3. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    Science.gov (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  4. Consolidating parenting skills in children’s facilities

    Directory of Open Access Journals (Sweden)

    Ivana Dokoupilová

    2016-12-01

    Full Text Available The content of this paper is a report on activities in children’s facilities and their ability to influence parenting skills in terms of institutional childcare at an early age. Children’s facilities (infant homes, children’s homes and children’s centres provide comprehensive care for children and parents in cases where, for various reasons, a child’s all-round development is disrupted or their life is in danger. The main purpose of these facilities is to provide adequate childcare as well as to support families when restoring basic functions. On the basis of a survey conducted in children’s facilities, the most frequent difficulties in exercising parenting skills are identified, and subsequently, information on the extent to which children’s facilities contribute to the development of parenting skills and help in the rehabilitation of a family is outlined.

  5. Air pollutant emissions and their control with the focus on waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Wandschneider + Gutjahr, Hamburg (Germany)

    2017-07-01

    This text and practical handbook thoroughly presents the control of air pollutant emissions from combustion processes focusing on waste incinerators. Special characteristics are emphasised and the differences to emission control from combustion processes with other fuels are explained. The author illustrates the origin and effects of air pollutants from incineration processes, the mechanics of their appearance in the incineration process, primary and secondary measures for their reduction, processes of measuring the emissions as well as the methods of disposing the residues. In particular, the pros and cons of procedural steps and their appropriate combination under various conditions are emphasised. Moreover, the book contains information and analyses of the emissions situation, the consumption of operating materials and of backlog quantities as well as of the cost structure of waste incinerators with regard to their applied control system. Furthermore, the author explicates the contemporary legal, scientific and technological developments and their influence on air pollutant emission control. An evaluation of the status quo of air pollutant control at waste incinerators in Germany, practical examples about possible combinations and typical performance data complete the content. Accordingly, this book is a guideline for planing a reasonable overall concept of an air pollutant control that takes the location and the segregation tasks into consideration.

  6. Analysis of operating costs a Low-Level Mixed Waste Incineration Facility

    International Nuclear Information System (INIS)

    Loghry, S.L.; Salmon, R.; Hermes, W.H.

    1995-01-01

    By definition, mixed wastes contain both chemically hazardous and radioactive components. These components make the treatment and disposal of mixed wastes expensive and highly complex issues because the different regulations which pertain to the two classes of contaminants frequently conflict. One method to dispose of low-level mixed wastes (LLMWs) is by incineration, which volatizes and destroys the organic (and other) hazardous contaminants and also greatly reduces the waste volume. The US Department of Energy currently incinerates liquid LLMW in its Toxic Substances Control Act (TSCA) Incinerator, located at the K-25 Site in Oak Ridge, Tennessee. This incinerator has been fully permitted since 1991 and to date has treated approximately 7 x 10 6 kg of liquid LLMW. This paper presents an analysis of the budgeted operating costs by category (e.g., maintenance, plant operations, sampling and analysis, and utilities) for fiscal year 1994 based on actual operating experience (i.e., a ''bottoms-up'' budget). These costs provide benchmarking guidelines which could be used in comparing incinerator operating costs with those of other technologies designed to dispose of liquid LLMW. A discussion of the current upgrade status and future activities are included in this paper. Capital costs are not addressed

  7. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities--update. Final rule.

    Science.gov (United States)

    2002-08-04

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2004. Annual updates to the PPS rates are required by section 1888(e) of the Social Security Act (the Act), as amended by the Medicare, Medicaid, and SCHIP Balanced Budget Refinement Act of 1999 (BBRA), and the Medicare, Medicaid, and SCHIP Benefits Improvement and Protection Act of 2000 (BIPA), relating to Medicare payments and consolidated billing for SNFs.

  8. Incineration facility for combustible solid and liquid radioactive wastes in IPEN-CNEN - Sao Paulo

    International Nuclear Information System (INIS)

    Krutman, I.; Grosche Filho, C.E.; Chandra, U.; Suarez, A.A.

    1987-01-01

    A system for incinerating the combustible solid and liquid radioactive wastes was developed in order to achieve higher mass and volume reduction of the wastes generated at IPEN-CNEN/SP or received from other institutions. The radioactive wastes for incineration are: animal carcasses, ion-exchange resins, contaminated lubricant oils, cellulosic materials, plastics, etc. The optimization of the process was achieved by considering the following factors: selection of better construction and insulating material; dimensions; modular design of combustion chambers to increase burning capacity in future; applicability for various types of wastes; choise of gas cleaning system. The off-gas system utilizes dry treatment. The operation is designed to function with a negative pressure. (Author) [pt

  9. Environmental risk assessment for start-up of a new consolidated maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Heubach, J.G.; Wise, J.A.

    1992-10-01

    This paper summarizes a case study of a risk assessment for a consolidated maintenance facility (CMF). An interdisciplinary team was formed to identify and evaluate showstopper'' risks which could delay or prevent ontime, safe, and economical operation of a CMF and to recommend ways to mitigate the risks. The risk assessment was constrained by time, information, incomplete plans and facilities, and a concomitant major transition in manufacturing process, organization, and technology. Working within these constraints, the team integrated convergent findings into estimates of high, medium, and low risks based on the subjective likelihood of occurrence and predicted consequences of potential hazard events. The team also made risk-reduction recommendations for facility detail design and production start-up. The findings and recommendations reported in this study focus on risks related to environmental design and workstation ergonomics. Findings from the risk assessment effort should aid other constrained risk assessments and applied research on similar facilities.

  10. Choice of noxious facilities: case of a solid waste incinerator versus a sanitary landfill in Malaysia.

    Science.gov (United States)

    Othman, Jamal; Khee, Pek Chuen

    2014-05-01

    A choice experiment analysis was conducted to estimate the preference for specific waste disposal technologies in Malaysia. The study found that there were no significant differences between the choice of a sanitary landfill or an incinerator. What matters is whether any disposal technology would lead to obvious social benefits. A waste disposal plan which is well linked or integrated with the community will ensure its acceptance. Local authorities will be challenged to identify solid waste disposal sites that are technically appropriate and also socially desirable.

  11. CSER 94-013: Classification and access to PFP 232-Z Incinerator Facility and limits on characterization and disassembly activities in 232-Z burning hood

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.M.

    1995-01-12

    This CSER justifies the Limited Control Facility designation for the closed Burning Hood in the PFP 232-Z Incinerator Facility. If the Burning Hood is opened to characterize the plutonium distribution and geometric integrity of the internals or for disassembly of the internals, then the more rigorous Fissionable Material Facility classification is required. Two sets of requirements apply for personnel access, criticality firefighting category for water use, and fissile material movement for the two states of the Burning Hood. The parameters used in the criticality analysis are listed to establish the limits under which this CSER is valid. Determination that the Burning Hood fissile material, moderation, or internal arrangements are outside these limits requires reevaluation of these parameter values and activities at the 232-Z Incinerator Facility. When the Burning Hood is open, water entry is to be prevented by two physical barriers for each water source.

  12. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Oji, L.N.

    1997-01-01

    Under the Tritium Facility Modernization ampersand Consolidation (TFM ampersand C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM ampersand C Project also provides for a new replacement R ampersand D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H

  13. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  14. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    International Nuclear Information System (INIS)

    2011-01-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  15. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  16. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities--HCFA. Interim final rule with comment period.

    Science.gov (United States)

    1998-05-12

    This interim final rule implements provisions in section 4432 of the Balanced Budget Act of 1997 related to Medicare payment for skilled nursing facility services. These include the implementation of a Medicare prospective payment system for skilled nursing facilities, consolidated billing, and a number of related changes. The prospective payment system described in this rule replaces the retrospective reasonable cost-based system currently utilized by Medicare for payment of skilled nursing facility services under Part A of the program.

  17. Solidification/stabilization of fly and bottom ash from medical waste incineration facility.

    Science.gov (United States)

    Anastasiadou, Kalliopi; Christopoulos, Konstantinos; Mousios, Epameinontas; Gidarakos, Evangelos

    2012-03-15

    In the present work, the stabilization/solidification of fly and bottom ash generated from incinerated hospital waste was studied. The objectives of the solidification/stabilization treatment were therefore to reduce the leachability of the heavy metals present in these materials so as to permit their disposal in a sanitary landfill requiring only a lower degree of environmental protection. Another objective of the applied treatment was to increase the mechanical characteristics of the bottom ash using different amounts of Ordinary Portland Cement (OPC) as a binder. The solidified matrix showed that the cement is able to immobilize the heavy metals found in fly and bottom ash. The TCLP leachates of the untreated fly ash contain high concentrations of Zn (13.2 mg/l) and Pb (5.21 mg/l), and lesser amounts of Cr, Fe, Ni, Cu, Cd and Ba. Cement-based solidification exhibited a compressive strength of 0.55-16.12 MPa. The strength decreased as the percentage of cement loading was reduced; the compressive strength was 2.52-12.7 MPa for 60% cement mixed with 40% fly ash and 6.62-16.12 MPa for a mixture of 60% cement and 40% bottom ash. The compressive strength reduced to 0.55-1.30 MPa when 30% cement was mixed with 70% fly ash, and to 0.90-7.95 MPa when 30% cement was mixed with 70% bottom ash, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  19. Development and use of consolidated criteria for evaluation of emergency preparedness plans for DOE facilities

    International Nuclear Information System (INIS)

    Lerner, K.; Kier, P.H.; Baldwin, T.E.

    1995-01-01

    Emergency preparedness at US Department of Energy (DOE) facilities is promoted by development and quality control of response plans. To promote quality control efforts, DOE has developed a review document that consolidates requirements and guidance pertaining to emergency response planning from various DOE and regulatory sources. The Criteria for Evaluation of Operational Emergency Plans (herein referred to as the Criteria document) has been constructed and arranged to maximize ease of use in reviewing DOE response plans. Although developed as a review instrument, the document also serves as a de facto guide for plan development, and could potentially be useful outside the scope of its original intended DOE clientele. As regulatory and DOE requirements are revised and added in the future, the document will be updated to stay current

  20. Volume reduction by the incineration of the combustible radioactive solid samples from radioisotope usage at the utilization facility. Estimation of the distribution of low energy β-emitter using the imaging plate

    International Nuclear Information System (INIS)

    Yumoto, Yasuhiro; Hanafusa, Tadashi; Nagamatsu, Tomohiro; Okada, Shigeru

    1999-01-01

    We want to establish a system of volume reduction by the incineration of the combustible radioactive solid wastes from radioisotope usage at the utilization facility. We have been performing experiments using an experimental incineration system to examine the distribution of radionuclides during incineration and to collect basic data. To reproduce the realistic conditions of incineration of low-level radioactive wastes in an experimental system, we adopted new incineration methods in this study. Low level radioactive samples (LLRS) were set up in a mesh container of stainless steel and incinerated at high temperature (over 800 degC) generated by two sets of high calorie gas burners. Low energy β-emitters 35 S, 45 Ca, 33 P, and a high energy β-emitter 32 P were used for the experiment. Their translocation percentages in exhaust air and dust were estimated using the Imaging Plate. Distribution of radionuclides during the incineration was similar to that estimated by conventional methods by our study or to that reported in incineration of liquid scintillation cocktail waste. We concluded that the use of the Imaging Plates is a simple and reliable method for estimation of the distribution of low energy β-emitters in incineration gas and ash. (author)

  1. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    Science.gov (United States)

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  3. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  4. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  5. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  6. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  7. SUPERFUND TREATABILITY CLEARINGHOUSE: BDAT INCINERATION OF CERCLA SARMS AT THE JOHN ZINK COMPANY TEST FACILITY (FINAL PROJECT REPORT)

    Science.gov (United States)

    This report presents the results of a treatability study of rotary kiln incineration of a synthetic "Superfund soil" bearing a wide range of chemical contaminants typically occurring at Superfund sites. This surrogate soil is referred to as a synthetic analytical reference ...

  8. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  9. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  10. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities; correction--HCFA. Correction of interim final rule with comment period.

    Science.gov (United States)

    1998-10-05

    This document corrects technical errors that appeared in the interim final rule with comment period published in the Federal Register on May 12, 1998 entitled "Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing Facilities."

  11. Process modeling study of the CIF incinerator

    International Nuclear Information System (INIS)

    Hang, T.

    1995-01-01

    The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment

  12. Separation of CO2 in a Solid Waste Management Incineration Facility Using Activated Carbon Derived from Pine Sawdust

    Directory of Open Access Journals (Sweden)

    Inés Durán

    2017-06-01

    Full Text Available The selective separation of CO2 from gas mixtures representative of flue gas generated in waste incineration systems is studied on two activated carbons obtained from pine sawdust and compared to a commercial activated carbon. Dynamic adsorption experiments were conducted in a fixed-bed adsorption column using a binary mixture (N2/CO2 with a composition representative of incineration streams at temperatures from 30 to 70 °C. The adsorption behavior of humid mixtures (N2/CO2/H2O was also evaluated in order to assess the influence of water vapor in CO2 adsorption at different relative humidity in the feed gas: 22% and 60%. Moreover, CO2 adsorption was studied in less favorable conditions, i.e., departing from a bed initially saturated with H2O. In addition, the effect of CO2 on H2O adsorption was examined. Experimental results showed that the CO2 adsorption capacity can be reduced significantly by the adsorption of H2O (up to 60% at high relative humidity conditions. On the other hand, the breakthrough tests over the adsorbent initially saturated with water vapor indicated that H2O is little affected by CO2 adsorption. The experimental results pointed out the biomass based carbons as best candidates for CO2 separation under incineration flue gas conditions.

  13. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  14. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    Science.gov (United States)

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  15. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2006. Final rule.

    Science.gov (United States)

    2005-08-04

    In this final rule we update the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2006. Annual updates to the PPS rates are required by section 1888(e) of the Social Security Act (the Act), as amended by the Medicare, Medicaid, and SCHIP Balanced Budget Refinement Act of 1999 (BBRA), the Medicare, Medicaid, and SCHIP Benefits Improvement and Protection Act of 2000 (BIPA), and the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA), relating to Medicare payments and consolidated billing for SNFs. This final rule also responds to public comments submitted on the proposed rule published on May 19, 2005 (70 FR 29070), and promulgates provisions set forth in that proposed rule, along with several additional technical revisions to the regulations.

  16. Operation of a 1/10 scale mixed water incinerator air pollution control system

    International Nuclear Information System (INIS)

    Burns, D.B.; Wong, A.; Walker, W.

    1996-01-01

    The Consolidated Incineration Facility (CIF) at the Savannah River Site is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. The technologies selected for use in the CIF air pollution control system (APCS) were based on reviews of existing commercial and DOE incinerators, on-site air pollution control experience, and recommendations from contracted consultants. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, known as the Offgas Components Test Facility (OCTF) was constructed and has been in operation since late 1994. Its current mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Due to the nature of the wastes to be incinerated at the CIF, High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas stream before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber

  17. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities--update. Health Care Financing Administration (HCFA), HHS. Notice.

    Science.gov (United States)

    1999-07-30

    This notice sets forth the updates required in section 1888(e) of the Social Security Act (the Act), as added by section 4432 of the Balanced Budget Act of 1997, related to Medicare payments and consolidated billing for skilled nursing facilities.

  18. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities. Department of Health and Human Services (HHS), Health Care Financing Administration (HCFA). Final rule.

    Science.gov (United States)

    1999-07-30

    This final rule responds to comments submitted by the public on our May 12, 1998 interim final rule, that implemented provisions in section 4432 of the Balanced Budget Act of 1997 regarding Medicare payment for skilled nursing facility services. This legislation established a prospective payment system, a consolidated billing provision, and a number of related changes.

  19. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities; extension of comment period--HCFA. Notice of extension of comment period for interim final rule.

    Science.gov (United States)

    1998-07-13

    This document extends the comment period for an interim final rule with comment period that was published in the Federal Register on May 12, 1998 (63 FR 26252). That interim final rule implements provisions in section 4432 of the Balanced Budget Act of 1997 related to Medicare payment for skilled nursing facility services. Those include the implementation of a Medicare prospective payment system for skilled nursing facilities, consolidated billing, and a number of related changes. The comment period is extended for 60 days.

  20. Incinerators, Hazardous Waste, To identify and locate abandoned oil production facilities and apparatus which pose a potential threat for creating an oil spill through either natural or accidental causes., Published in 1998, 1:24000 (1in=2000ft) scale, Louisiana State University (LSU).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Incinerators, Hazardous Waste dataset current as of 1998. To identify and locate abandoned oil production facilities and apparatus which pose a potential threat for...

  1. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  2. Final Environmental Assessment: Consolidated Dining Facility at Joint Base McGuire-Dix-Lakehurst, New Jersey

    Science.gov (United States)

    2013-05-01

    stabilization/revegetation techniques during and after the construction phase. Appropriate BMPs would be required per the NPDES permit (discussed in...and storm water management techniques . During construction the demand on existing utilities services to support construction of the facility would be...RD>dmd Fo1t Dix Rood Seasonal F"""’ T-: Daily F acror T )-pe: .~e f acter’ T\\’’De: Growth Factor Tn>e: 2 Urban adler R.oach\\•a:ys 2 Uri>an

  3. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  4. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  5. Maintenance and contamination control for a waste-handling/spent-fuel consolidation facility

    International Nuclear Information System (INIS)

    Reynolds, R.K.

    1984-01-01

    The basic design aims for this proposed high-level waste-handling facility for a repository are (1) minimizing maintenance and contamination, and (2) ensuring that these minimums can be achieved readily and assuredly. For maintenance control, the design solution includes redundance of the equipment, its components, and the hot cell line; two methods of maintenance (both contact and remote) for all in-cell equipment; machine simplification and versatility; and location of as many vulnerable components outside the cell as is feasible. For contamination control, the proposed design includes separating the inlet ports and cells for both bare fuel assemblies and canistered high-level waste, and cleaning the bare spent fuel before disassembly

  6. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  7. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  8. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  9. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  10. Performance evaluation of non-incineration treatment facilities for disinfection of medical infectious and sharps wastes in educational hospitals of Shahid Beheshti University of Medical Sciences in 2013

    Directory of Open Access Journals (Sweden)

    Anooshiravan Mohseni Band-pay

    2015-06-01

    Full Text Available Background: In 2007, a rule prohibiting the use of incinerators was ratified by the Iranian Islamic Parliament. Based on this rule, the Ministry of Health emphasized the sterilization of infectious waste at its production source by means of non-incineration equipment and methods. This research examined the performance of non-incineration technologies in treating medical infectious and sharps wastes at educational hospitals affiliated with Shahid Beheshti University of Medical Sciences. Methods: This cross-sectional descriptive study was conducted in 12 educational hospitals of Shahid Beheshti University of Medical Sciences. First, a questionnaire was designed and its validity approved. Then the required data was gathered during visits to participating hospitals. Finally, the collected data were analyzed using Microsoft Excel and SPSS version 16. Results: Findings showed that the daily production of infectious and sharps wastes in the studied hospitals generally equaled 3387 kg. All hospitals were equipped with non-incineration systems; however, only 83.3% of them were active. Some infectious waste was disposed of along with urban wastes without being sterilized. Monthly biological assessments of treatment equipment were implemented for only 41.7% of the equipment. Conclusion: The failures of the non-incineration systems demand that appropriate investigations be conducted prior to the purchase of these devices. Monthly biological assessments are essential to ensure the accuracy of the systems’ performance in hospitals.

  11. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  12. Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Fiotakis, Konstantinos; Gotsis, George

    2008-06-01

    Medical waste from hospitals and other healthcare institutions has become an imperative environmental and public safety problem. Medical waste in Greece has become one of the most urgent environmental problems, because there are 14,000 tons produced annually, of which only a small proportion is incinerated. In the prefecture of Attica there is only one modern municipal medical waste incinerator (started 2004) burning selected infectious hospital waste (5-6 tons day(-1)). Fly and bottom residues (ashes) are collected and stored temporarily in barrels. High values of metal leachability prohibit the landfilling of these ashes, as imposed by EU directives. In the present study we determined quantitatively the heavy metals and other elements in the fly and bottom ashes of the medical waste incinerator, by inductively coupled plasma emission spectrometry (ICP) and by energy dispersive X-ray analysis (EDAX). Heavy metals, which are very toxic, such as Pb, Cd, Ni, Cr, Cu and Zn were found in high concentrations in both fly and bottom ashes. Metal leachability of fly and bottom ashes by water and kerosene was measured by ICP and the results showed that toxic metals in both ashes, such as Pb, Cr, Cd, Cu and Zn, have high leaching values. These values indicate that metals can become soluble and mobile if ash is deposited in landfills, thus restricting their burial according to EU regulations. Analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in fly and bottom ashes showed that their concentrations were very low. This is the first known study in Greece and the results showed that incineration of medical waste can be very effective in minimizing the most hazardous and infectious health-care waste. The presence of toxic metals with high leachability values remains an important draw back of incineration of medical waste and various methods of treating these residues to diminish leaching are been considered at present to overcome this serious technical

  13. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  14. The solid waste contaminated incineration technique used incinerator

    International Nuclear Information System (INIS)

    Sukosrono; Prayitno; Isman, M. T.

    1996-01-01

    The research of the incinerator radioactive waste used incinerator has been done. The aim of the experiment is to determine the number of the organic liquid waste which added on the incineration of the solid radioactive waste. The research was done by incinerate waste in the incinerator prototype which was designed for capacity 2500 gram, and the investigated variables are capacity of the incinerator, specific of the waste, and the method of the incineration. Simulated waste was used in the experiment, the waste specific which was used in the experiment was the mixture between liquid organic waste (TBPK-10%) with solid waste was coming from rice paper, tissue, carton. Two way method were investigated in the experiment, were direct incineration and indirect incineration. The direct incineration was done by incineration solid waste and organic liquid waste in the incinerator together. The indirect incineration was done by incineration of solid waste which have been used to absorb organic liquid waste. The result showed that either direct or indirect incineration independent to the incineration result. The best result have taken place on the 2250 gram capacity of the incinerator, ratio liquid organic waste to solid waste 1% - 20%. In the condition will be found reduction of volume = 43.90 - 35.91 and reduction of the waste = 13.85% - 12.15% and the ash which was resulted from incineration colored white silver with contain a little color black. (author)

  15. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities--update. Health Care Financing Administration (HCFA), HHS. Final rule.

    Science.gov (United States)

    2000-07-31

    This final rule sets forth updates to the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year 2001. Annual updates to the PPS rates are required by section 1888(e) of the Social Security Act, as amended by the Medicare, Medicaid and State Child Health Insurance Program Balanced Budget Refinement Act of 1999, related to Medicare payments and consolidated billing for SNFs. In addition, this rule sets forth certain conforming revisions to the regulations that are necessary in order to implement amendments made to the Act by section 103 of the Medicare, Medicaid and State Child Health Insurance Program Balanced Budget Refinement Act of 1999.

  16. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities; reopening of comment period--HCFA. Notice of reopening of comment period for interim final rule.

    Science.gov (United States)

    1998-11-27

    We published an interim final rule with comment period in the Federal Register on May 12, 1998 (63 FR 26252). That interim final rule implements provisions in section 4432 of the Balanced Budget Act of 1997 related to Medicare payment for skilled nursing facility services. Those include the implementation of a Medicare prospective payment system for skilled nursing facilities, consolidated billing, and a number of related changes. A document published on July 13, 1998 extended the comment period for the May 12, 1998 interim final rule until September 11, 1998. This document reopens and extends the comment period for an additional 30 days after the date of publication of this notice. The document also clarifies the explanation of the Federal rates.

  17. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  18. Evaluation of Heavy Metals Contamination at CFAD Dundurn Resulting from Small-Arms Ammunition Incineration

    National Research Council Canada - National Science Library

    Thiboutot, S

    2001-01-01

    .... The safety concerns associated with these pollutants are so serious that the United Kingdom requires stringent environmental licensing of ammunition incineration facilities, and several US states...

  19. Permitting a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Ambrose, M.L.

    1987-01-01

    In recent years, changes in the laws and regulations have produced an increased emphasis on proper solid waste disposal. Experience with various types of industrial wastes has shown that a large segment of these materials should not go to a landfill. If these wastes are prohibited from landfills, an effective alternative is incineration. The Department of Energy (DOE) has seen the need to build an incinerator at the Oak Ridge Gaseous Diffusion Plant to treat wastes that are generated at the DOE-Oak Ridge Operations facilities, many of which are contaminated with low levels of radioactivity. An extensive effort has been put forth to bring this project to reality. Several permits from the Environmental Protection Agency and the Tennessee Department of Health and Environment are required before the facility can operate. These permits include: (1) Resource Conservation and Recovery Act Part B Permit, (2) Toxic Substances Control Act Permit, (3) National Pollutant Discharge Elimination System Permit, (4) Tennessee State Air Permit, and (5) National Emission Standard for Hazardous Air Pollutants Approval Letter. The permitting process has been very long and involved and has taken nearly three years to complete. Currently, plans are to have the facility fully operational by January 1988

  20. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  1. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  2. Bringing the Pieces Together – Placing Core Facilities at the Core of Universities and Institutions: Lessons from Mergers, Acquisitions and Consolidations

    Science.gov (United States)

    Mundoma, Claudius

    2013-01-01

    As organizations expand and grow, the core facilities have become more dispersed disconnected. This is happening at a time when collaborations within the organization is a driver to increased productivity. Stakeholders are looking at the best way to bring the pieces together. It is inevitable that core facilities at universities and research institutes have to be integrated in order to streamline services and facilitate ease of collaboration. The path to integration often goes through consolidation, merging and shedding of redundant services. Managing this process requires a delicate coordination of two critical factors: the human (lab managers) factor and the physical assets factor. Traditionally more emphasis has been placed on reorganizing the physical assets without paying enough attention to the professionals who have been managing the assets for years, if not decades. The presentation focuses on how a systems approach can be used to effect a smooth core facility integration process. Managing the human element requires strengthening existing channels of communication and if necessary, creating new ones throughout the organization to break cultural and structural barriers. Managing the physical assets requires a complete asset audit and this requires direct input from the administration as well as the facility managers. Organizations can harness the power of IT to create asset visibility. Successfully managing the physical assets and the human assets increases productivity and efficiency within the organization.

  3. Study allowing a decision-making from the activity calculation of a iodine 131 source detected in a dump at the incineration facility

    International Nuclear Information System (INIS)

    Houy, J.C.; Laugle, S.

    2000-01-01

    This study is divided in six parts: the first one details the determination of the different threshold in order to make the decision; the second part is the description of the gantry placed at the incineration factory; the third part is devoted to the gantry calibration by detector; the fourth part concerns the theoretical determination of the rates ratio in function of the source position in the truck; the fifth part makes the concordance between the theoretical calculations and the practice measures; the sixth part expresses the source activity and position determination in the truck with the decision-making. To conclude, the alarm threshold adjustment of the Rennes incineration factory is set to twice the background noise without taking into account of the source position in the domestic wastes truck. The alarm setting off can be carried out for a low activity source situated close to the truck wall and conversely, do not detect a MBq source situated in the middle of the truck. This alarm should be set off from a calculation program, taking into account the detectors report, in order to estimate the activity and the position of the source in the truck and to determine the decision making for the management of these wastes. (N.C.)

  4. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  5. Radwaste incineration at CRNL

    International Nuclear Information System (INIS)

    Beamer, N.V.

    A Waste Treatment Centre (WTC) is being constructed at CRNL to develop and demonstrate processes to convert reactor wastes to a form suitable for disposal. Combustible wastes can be reduced in volume to a stable ash by incineration. A prototype starved-air incinerator in the WTC is currently being commissioned on inactive waste. Overall performance to date is good. Satisfactory control of main process flows and temperatures has been achieved. Checking of system response to process failures has begun. So far, problems with a similar incinerator during initial operation at Ontario Hydro have not been encountered

  6. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  7. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  8. Radiological assessment of a mixed-waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, N.E.; Evans, T.M.; Mulholland, J.A.; Coward, H.M. [Georgia Inst. of Technology, Atlanta, GA (United States); Burge, D.A. [Westinghouse Savannah River Site, Aikens, SC (United States)

    1996-12-31

    The Consolidated Incineration Facility (CIF) scheduled for operation in the near future will incinerate hazardous, radio- active, and mixed wastes generated on the Savannah River site (SRS). Doses that might result from estimated CIF radionuclide air emissions have been computed for four hypothetical individuals: (1) An on-site worker (350 m north of the CIF) who is exposed by inhalation and immersion in the contaminant plume as well as irradiation by radionuclides deposited on the ground. (2) A subsistence farmer who lives at the nearest site boundary from the CIF (11 770 m NNW of the CIF) and is exposed by the inhalation, immersion, ground surface irradiation, and soil and food ingestion. The farmer consumes food at maximum consumption rates for the SRS region and grows most of his own food. The remainder of this food is obtained from within the assessment area. (3) A subsistence fisher residing at the same location as the subsistence farmer is exposed via the consumption of fish from a pond at his residence, homegrown food consumption, ingestion of soil, and air immersion and inhalation. The fish pond is contaminated by the deposition of radionuclides from the plume. He consumes food at maximum consumption rates. (4) The average individual has average food consumption rates for the SRS region. A fraction of his food is grown in the assessment area, and the remainder is imported. The average individual dose was computed out to distances of 80 500 m from the CIF. The individual is also exposed by air immersion, ground-surface irradiation, soil ingestion, and inhalation.

  9. Radiological assessment of a mixed-waste incinerator

    International Nuclear Information System (INIS)

    Hertel, N.E.; Evans, T.M.; Mulholland, J.A.; Coward, H.M.; Burge, D.A.

    1996-01-01

    The Consolidated Incineration Facility (CIF) scheduled for operation in the near future will incinerate hazardous, radio- active, and mixed wastes generated on the Savannah River site (SRS). Doses that might result from estimated CIF radionuclide air emissions have been computed for four hypothetical individuals: (1) An on-site worker (350 m north of the CIF) who is exposed by inhalation and immersion in the contaminant plume as well as irradiation by radionuclides deposited on the ground. (2) A subsistence farmer who lives at the nearest site boundary from the CIF (11 770 m NNW of the CIF) and is exposed by the inhalation, immersion, ground surface irradiation, and soil and food ingestion. The farmer consumes food at maximum consumption rates for the SRS region and grows most of his own food. The remainder of this food is obtained from within the assessment area. (3) A subsistence fisher residing at the same location as the subsistence farmer is exposed via the consumption of fish from a pond at his residence, homegrown food consumption, ingestion of soil, and air immersion and inhalation. The fish pond is contaminated by the deposition of radionuclides from the plume. He consumes food at maximum consumption rates. (4) The average individual has average food consumption rates for the SRS region. A fraction of his food is grown in the assessment area, and the remainder is imported. The average individual dose was computed out to distances of 80 500 m from the CIF. The individual is also exposed by air immersion, ground-surface irradiation, soil ingestion, and inhalation

  10. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2015. Final rule.

    Science.gov (United States)

    2014-08-05

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2015. In addition, it adopts the most recent Office of Management and Budget (OMB) statistical area delineations to identify a facility's urban or rural status for the purpose of determining which set of rate tables will apply to the facility, and to determine the SNF PPS wage index including a 1-year transition with a blended wage index for all providers for FY 2015. This final rule also contains a revision to policies related to the Change of Therapy (COT) Other Medicare Required Assessment (OMRA). This final rule includes a discussion of a provision related to the Affordable Care Act involving Civil Money Penalties. Finally, this final rule discusses the SNF therapy payment research currently underway within CMS, observed trends related to therapy utilization among SNF providers, and the agency's commitment to accelerating health information exchange in SNFs.

  11. Assessing potential health effects from municipal sludge incinerators: screening methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  12. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h -1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  13. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  14. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2009. Final rule.

    Science.gov (United States)

    2008-08-08

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2009. It also discusses our ongoing analysis of nursing home staff time measurement data collected in the Staff Time and Resource Intensity Verification (STRIVE) project. Finally, this final rule makes technical corrections in the regulations text with respect to Medicare bad debt payments to SNFs and the reference to the definition of urban and rural as applied to SNFs.

  15. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2008. Final rule.

    Science.gov (United States)

    2007-08-03

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2008. In addition, this final rule revises and rebases the SNF market basket, and modifies the threshold for the adjustment to account for market basket forecast error. This final rule also responds to public comments submitted on the proposed rule and makes a technical correction in the regulations text.

  16. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2014. Final rule.

    Science.gov (United States)

    2013-08-06

    This final rule updates the payment rates used under the prospective payment system for skilled nursing facilities (SNFs) for fiscal year (FY) 2014. In addition, it revises and rebases the SNF market basket, revises and updates the labor related share, and makes certain technical and conforming revisions in the regulations text. This final rule also includes a policy for reporting the SNF market basket forecast error in certain limited circumstances and adds a new item to the Minimum Data Set (MDS), Version 3.0 for reporting the number of distinct therapy days. Finally, this final rule adopts a change to the diagnosis code used to determine which residents will receive the AIDS add-on payment, effective for services provided on or after the October 1, 2014 implementation date for conversion to ICD-10-CM.

  17. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2012. Final rule.

    Science.gov (United States)

    2011-08-08

    This final rule updates the payment rates used under the prospective payment system for skilled nursing facilities (SNFs) for fiscal year 2012. In addition, it recalibrates the case-mix indexes so that they more accurately reflect parity in expenditures between RUG-IV and the previous case-mix classification system. It also includes a discussion of a Non-Therapy Ancillary component currently under development within CMS. In addition, this final rule discusses the impact of certain provisions of the Affordable Care Act, and reduces the SNF market basket percentage by the multi-factor productivity adjustment. This rule also implements certain changes relating to the payment of group therapy services and implements new resident assessment policies. Finally, this rule announces that the proposed provisions regarding the ownership disclosure requirements set forth in section 6101 of the Affordable Care Act will be finalized at a later date.

  18. Conceptual design report for alpha waste incinerator

    International Nuclear Information System (INIS)

    1979-04-01

    The Alpha Waste Incinerator, a new facility in the SRP H-Area, will process transuranic or alpha-contaminated combustible solid wastes. It will seal the radioactive ash and scrubbing salt residues in cans for interim storage in drums on site burial ground pads. This report includes objectives, project estimate, schedule, standards and criteria, excluded costs, safety evaluation, energy consumption, environmental assessment, and key drawings

  19. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  20. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Feldman, E.M.; Fisher, M.W.

    1987-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM programs, e.g., Prototypical Consolidation Demonstration Program (PCDP). The program is being conducted at the Idaho National Engineering Laboratory (INEL) by the INEL Operating Contractor EG and G Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment is used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SFSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation is accomplished by individual, horizontal rod pulling. A computerized semiautomatic control system with operator involvement is utilized to conduct consolidation operations. During consolidation operations, data is taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software was completed in September of 1986. Following installation in the hot cell, consolidation operations begins in May 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  1. Dry rod consolidation technology development

    International Nuclear Information System (INIS)

    Rasmussen, T.L.; Schoonen, D.H.; Fisher, M.W.

    1986-01-01

    The Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is funding a Program to consolidate commercial spent fuel for testing in dry storage casks and to develop technology that will be fed into other OCRWM Programs, e.g., Prototypical Consolidation Demonstration Program. The Program is being conducted at the Idaho National Engineering Laboratory (INEL) by the Operating Contractor, EGandG Idaho, Inc. Hardware and software have been designed and fabricated for installation in a hot cell adjacent to the Test Area North (TAN) Hot Shop Facility. This equipment will be used to perform dry consolidation of commercial spent fuel from the Virginia Power (VP) Cooperative Agreement Spent Fuel Storage Cask (SPSC) Demonstration Program and assemblies that had previously been stored at the Engine Maintenance and Disassembly (EMAD) facility in Nevada. Consolidation will be accomplished by individual, horizontal rod pulling. A computerized semi-automatic control system with operator involvement will be utilized to conduct consolidation operations. Special features have been incorporated in the design to allow crud collection and measurement of rod pulling forces. During consolidation operations, data will be taken to characterize this technology. Still photo, video tape, and other documentation will be generated to make developed information available to interested parties. Cold checkout of the hardware and software will complete in September of 1986. Following installation in the hot cell, consolidation operations will begin in January 1987. Resulting consolidated fuel will be utilized in the VP Cooperative Agreement SFSC Program

  2. Effects on ambient air caused by emissions from the Clean Harbors incinerator and underground water treatment facility in Mercier : evaluation by atmospheric dispersion modeling; Effets sur l'air ambiant des emissions de l'incinerateur Clean Harbors et de l'Unite de traitement des eaux souterraines (UTES) a Mercier : evaluation par modelisation de la dispersion atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, G.; Walsh, P.; Brault, M.P.; Couture, Y.; Briere, J.F. [Quebec Ministere du Developpement durable, de l' Environnement et des Parcs, Quebec, PQ (Canada). Direction du suivi de l' etat de l' environnement; Guay, F.; Longpre, L. [Quebec Ministere du Developpement durable, de l' Environnement et des Parcs, Quebec, PQ (Canada). Direction regionale de l' analyse et de l' expertise de l' Estrie de la Monteregie; Lemire, R.; Busque, D. [Quebec Ministere du Developpement durable, de l' Environnement et des Parcs, Quebec, PQ (Canada). Service de l' information sur le milieu atmospherique

    2010-09-15

    Clean Harbors is a leading provider of high-tech, high-temperature destruction of hazardous and industrial waste. The Quebec Ministry of Sustainable Development, Environment and Parks created an atmospheric dispersion model to determine the impact of the Clean Harbors incinerator and underground water treatment facility on air quality in Mercier, Quebec. This document described the dispersion model and its inputs, including emissions of polychlorinated dibenzodioxin, dibenzofurans, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, fine particulates, mercury, lead and arsenic. The effects of these emissions on air quality were evaluated by considering meteorological data, source characteristics, topography and land use zoning. The modeling study showed that emissions from the incinerator were well below criteria levels and do not cause significant deterioration in air quality. However, higher than allowable limits of polyvinyl chloride and benzene emissions were found 700 m from the underground water treatment facility. Nearby residential areas were not affected. 21 refs., 9 tabs., 10 figs., 1 appendix.

  3. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  4. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  5. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  6. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  7. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  8. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  9. NATIONAL INCINERATOR TESTING AND EVALUATION PROGRAM: THE ENVIRONMENTAL CHARACTERIZATION OF REFUSE-DERIVED FUEL (RDF) COMBUSTION TECHNOLOGY - MID-CONNECTICUT FACILITY,

    Science.gov (United States)

    The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...

  10. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  11. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  12. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  13. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  14. Industry consolidation

    OpenAIRE

    Coimbra, Diogo

    2017-01-01

    The following case study is intended to describe the evolution of the American cable industry and the corporate actions pursued by its operators and sponsors since 1990’s. Charter Communications and Time Warner Cable, respectively the fourth- and second-largest cable operators, have been chosen to represent the industry trend of horizontal consolidation. On May 23, 2015, both firms agreed to merge forming New Charter, along with parallel Charter’s acquisition of Bright House Networks. Even th...

  15. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  16. Radiation safety for incineration of radioactive waste contaminated by cesium

    International Nuclear Information System (INIS)

    Veryuzhs'kij, Yu.V.; Gryin'ko, O.M.; Tokarevs'kij, V.V.

    2016-01-01

    Problems in the treatment of radioactive waste contaminated by cesium nuclides are considered in the paper. Chornobyl experience in the management of contaminated soil and contaminated forests is analyzed in relation to the accident at Fukushima-1. The minimization of release of cesium aerosols into atmosphere is very important. Radiation influence of inhaling atmosphere aerosols polluted by cesium has damage effect for humans. The research focuses on the treatment of forests contaminated by big volumes of cesium. One of the most important technologies is a pyro-gasification incineration with chemical reactions of cesium paying attention to gas purification problems. Requirements for process, physical and chemical properties of treatment of radioactive waste based on the dry pyro-gasification incineration facilities are considered in the paper together with the discussion of details related to incineration facilities. General similarities and discrepancies in the environmental pollution caused by the accidents at Chornobyl NPP and Fukushima-1 NPP in Japan are analyzed

  17. Conceptual Design for Consolidation TCAP

    International Nuclear Information System (INIS)

    Klein, J.E.

    1999-01-01

    Two alternate Thermal Cycling Absorption Process (TCAP) designs have been developed for the Tritium Facility Modernization and Consolidation (TFM and C) Project. The alternate designs were developed to improve upon the existing Replacement Tritium Facility (RTF) TCAP design and to eliminate the use of building distributed hot and cold nitrogen system.A brief description of TCAP theory and modeling is presented, followed by an overview of the design criteria for the Isotope Separation System (ISS). Both designs are described in detail, along with a generic description of the complete TCAP system. A design is recommend for the Consolidation Project, and a development plan for both designs is proposed

  18. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  19. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  20. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

  1. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  2. Consolidated financial statements

    OpenAIRE

    Blaha, Miroslav

    2010-01-01

    This work provides basic information about consolidation and consolidated financial statements. In the beginning there are definisions of the members of the group under discussion and their relationship. Hereafter concepts of consolidation, accounting methods and methods of consolidation are discussed. It also compares approach of different accounting systems to consolidation.

  3. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  4. A comparative assessment of waste incinerators in the UK

    International Nuclear Information System (INIS)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-01-01

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  5. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  6. Disposal of waste or excess high explosives. Final report. [Incineration

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The ''Disposal of Waste or Excess High Explosives'' project began January 1971. Various methods of disposal were investigated with the conclusion that incineration, at major ERDA facilities, would be the most feasible and safest method with the least cost and development time required. Two independent incinerator concepts were investigated: a rotary type for continuous processing and an enclosed pit type for batch processing. Both concepts are feasible; however, it is recommended that further investigations would be required to render them acceptable. It is felt that a larger effort would be required in the case of the rotary incinerator. The project was terminated (December 1976) prior to completion as a result of a grant of authority by the Texas Air Control Board allowing the ERDA Pantex Plant to continue indefinitely outdoor burning of explosives.

  7. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-01-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  8. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Operation of a pilot incinerator for solid waste

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.

    1979-01-01

    A laboratory-scale incinerator (0.5 kg waste/hr) was built and operated for more than 18 months as part of a program to adapt and confirm technology for incineration of Savannah River Plant solid wastes, which are contaminated with about 0.3 Ci/kg of alpha-emitting transuranium (TRU) nuclides (Slide 1). About 4000 packages of simulated nonradioactive wastes were burned, including HEPA (high-efficiency particulate air) filters, resins, and other types of solid combustible waste from plutonium finishing operations. Throughputs of more than 3 kg/hr for periods up to 4 hours were demonstrated. The incinerator was oerated at temperatures above 750 0 C for more than 7700 hours during a period of 12 months, for an overall availability of 88%. The incinerator was shut down three times during the year: once to replace the primary combustion chamber electrical heater, and twice to replace oxidized electrical connectors to the secondary chamber heaters. Practical experience with this pilot facility provided the design basis for the full-size (5 kg waste/hr) nonradioactive test incinerator, which began operation in March 1979

  10. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  11. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  12. Medicare program; prospective payment system and consolidated billing for skilled nursing facilities for FY 2010; minimum data set, version 3.0 for skilled nursing facilities and Medicaid nursing facilities. Final rule.

    Science.gov (United States)

    2009-08-11

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs), for fiscal year (FY) 2010. In addition, it recalibrates the case-mix indexes so that they more accurately reflect parity in expenditures related to the implementation of case-mix refinements in January 2006. It also discusses the results of our ongoing analysis of nursing home staff time measurement data collected in the Staff Time and Resource Intensity Verification project, as well as a new Resource Utilization Groups, version 4 case-mix classification model for FY 2011 that will use the updated Minimum Data Set 3.0 resident assessment for case-mix classification. In addition, this final rule discusses the public comments that we have received on these and other issues, including a possible requirement for the quarterly reporting of nursing home staffing data, as well as on applying the quality monitoring mechanism in place for all other SNF PPS facilities to rural swing-bed hospitals. Finally, this final rule revises the regulations to incorporate certain technical corrections.

  13. Design and operation of a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Becker, G.W. Jr.; Makohon, P.A.

    1981-01-01

    A full-scale test incinerator has been built at the Savannah River Laboratory to provide a design basis for a radioactive facility that will burn low-level beta-gamma contaminated waste. The processing steps include waste feed loading, incineration, ash residue packaging, and off-gas cleanup. Both solid and liquid waste will be incinerated during the test program. The components of the solid waste are cellulose, latex, polyethylene, and PVC; the solvent is composed of n-paraffin and TBP. A research program will confirm the feasibility of the design and determine the operating parameters

  14. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.

    1987-01-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  15. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment of methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e. facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium. (Refs. 5).

  16. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  17. Incineration as a radioactive waste volume reduction process for CEA nuclear centers

    International Nuclear Information System (INIS)

    Atabek, R.; Chaudon, L.

    1994-01-01

    Incineration processes represent a promising solution for waste volume reduction, and will be increasingly used in the future. The features and performance specifications of low-level waste incinerators with capacities ranging from 10 to 20 kg - h -1 at the Fontenay-aux-Roses, Grenoble and Cadarache nuclear centers in France are briefly reviewed. More extensive knowledge of low-level wastes produced in facilities operated by the Commissariat a l'Energie Atomique (CEA) has allowed us to assess the volume reduction obtained by processing combustible waste in existing incinerators. Research and development work is in progress to improve management procedures for higher-level waste and to build facilities capable of incinerating α - contaminated waste. (authors). 6 refs., 5 figs., 1 tab

  18. A feasibility study of adaptive plasma-assisted incineration

    Science.gov (United States)

    Filion, Julie

    Rising awareness in the need for environmental protection has brought into question the adequacy of conventional hazardous waste treatment operations. Regulatory standards are increasingly strict, and there is growing concern over the safety of incineration facilities. This research project examines the technoeconomic potential of thermal plasma technology in this context. Adaptive Plasma-Assisted Incineration (APAI) is a novel concept for secondary gas treatment in hazardous waste incineration. As an energy source for waste destruction, a thermal plasma can provide conditions far higher in temperature and in reactivity than those obtained using a combustion flame. Thus, the plasma is more effective at destroying hazardous materials, albeit at a higher cost. APAI features a thermal plasma afterburner with continual on-line optical monitoring of the gas product and feedback optimization of the plasma conditions. This approach allows complete destruction of persistent organic compounds and cost-effective response to feed load variations. The process supplements conventional incineration techniques with the effectiveness and flexibility of thermal plasma treatment. The main objectives are to reduce the risk of harmful emissions during hazardous waste incineration and to facilitate compliance with new environmental regulations. In this project, the technical feasibility of APAI was demonstrated experimentally using a laboratory-scale plasma afterburner model. The work focused on the development of a spectroscopic monitoring procedure and on the application of optimization techniques for cost-effective operation of the model system. The techno-economic potential and limitations of APAI were addressed in a conceptual study. Preliminary designs and cost estimates were developed for specific applications. The costs of plasma-assisted and conventional methods were compared for contaminated soil remediation (by incineration and desorption) and for organic liquid waste

  19. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    International Nuclear Information System (INIS)

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-01-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative 'incineration' was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material

  20. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  1. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  2. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    Science.gov (United States)

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  3. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  4. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  5. Incineration experience at Oconee Nuclear Station

    International Nuclear Information System (INIS)

    Terrell, M.S.

    1986-01-01

    The Radwaste Facility at Oconee Nuclear Station contains a Fluidized Bed Dryer/Incinerator System which will be used to process contaminated trash (DAW), oil, powdex resin, and chemical cleaning waste. This system was designed by Aerojet Energy Conversion Company. The ash and salts resulting from this process will be solidified using the Stock Equipment Company Polymer Solidification System. The purpose of this paper is to discuss the results of start-up and pre-operational testing of these systems, describe the mass balance program the authors will be using to meet the requirements of 10CFR61, and to discuss the sampling of the ash and salts that will be produced as a result of the process. Additionally, tests which are designed to verify the mass balance for the Aeroject System, are discussed

  6. Experimental study of the energy efficiency of an incinerator for medical waste

    International Nuclear Information System (INIS)

    Bujak, J.

    2009-01-01

    The aim of this paper is to explore the flux of usable energy and the coefficient of energy efficiency of an incinerator for medical waste combustion. The incineration facility incorporates a heat recovery system. The installation consists of a loading unit, a combustion chamber, a thermoreactor chamber, and a recovery boiler. The analysis was carried out in the Oncological Hospital in Bydgoszcz (Poland). The primary fuel was comprised of medical waste, with natural gas used as a secondary fuel. The study shows that one can obtain about 660-800 kW of usable energy from 100 kg of medical waste. This amount corresponds to 1000-1200 kg of saturated steam, assuming that the incinerator operates at a heat load above φ > 65%. The average heat flux in additional fuel used for incinerating 100 kg of waste was 415 kW. The coefficient of energy efficiency was set within the range of 47% and 62% depending on the incinerator load. The tests revealed that the flux of usable energy and the coefficient of energy efficiency depend on the incinerator load. In the investigated range of the heat load, this dependence is significant. When the heat load of the incinerator increases, the flux of usable energy and the coefficient of energy efficiency also increase.

  7. Incineration of organic solar cells

    NARCIS (Netherlands)

    Søndergaard, Roar R.; Zimmermann, Yannick Serge; Espinosa, Nieves; Lenz, Markus; Krebs, Frederik

    2016-01-01

    Recovery of silver from the electrodes of roll-to-roll processed organic solar cells after incineration has been performed quantitatively by extraction with nitric acid. This procedure is more than 10 times faster than previous reports and the amount of acid needed for the extraction is reduced

  8. Plutonium waste incineration using pyrohydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  9. Plutonium waste incineration using pyrohydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  10. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  11. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  12. Health physics aspects of incineration of low level radioactive solvent at the Savannah River Plant

    International Nuclear Information System (INIS)

    Strain, C.D.

    1987-01-01

    This document contains the lecture notes and illustrations used in a presentation at the 1987 Health Physics Society Annual Meeting in Salt Lake City, Utah. Included is a description of the radioactive waste disposal facilities at the Savannah River Plant, South Carolina, and of the current use of this facility in incinerating thousands of gallons of radioactive waste. 12 figs

  13. Incineration of municipal and assimilated wastes in France: assessment of latest energy and material recovery performances.

    Science.gov (United States)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-31

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2,900,000 MWh of electricity, of which 2,200,000 MWh were sold to Electricité de France (EDF) and 9,100,000 MWh of heat, of which 7,200,000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance.

  14. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China.

    Science.gov (United States)

    Liu, Yong; Sun, Chenjunyan; Xia, Bo; Cui, Caiyun; Coffey, Vaughan

    2018-02-20

    As one of the most popular methods for the treatment of municipal solid waste (MSW), waste-to-energy (WTE) incineration offers effective solutions to deal with the MSW surge and globe energy issues. Nevertheless, the construction of WTE facilities faces considerable and strong opposition from local communities due to the perceived potential risks. The present study aims to understand whether, and how, community engagement improves local residents' public acceptance towards waste-to-energy (WTE) incineration facilities using a questionnaire survey conducted with nearby residents of two selected WTE incineration plants located in Zhejiang province, China. The results of data analysis using Structural Equation Modeling (SEM) reveal that firstly, a lower level of public acceptance exists among local residents of over the age of 35, of lower education levels, living within 3 km from the WTE Plant and from WTE incineration Plants which are under construction. Secondly, the public trust of local government and other authorities was positively associated with the public acceptance of the WTE incineration project, both directly and indirectly based on perceived risk. Thirdly, community engagement can effectively enhance public trust in local government and other authorities related to the WTE incineration project. The findings contribute to the literature on MSW treatment policy-making and potentially hazardous facility siting, by exploring the determinants of public acceptance towards WTE incineration projects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 1 discusses the following topics: the background of the project; test program description; summary of tests and test results; problem evaluation; functional requirements confirmation; recommendations; and completed test documentation for tests performed in Phase 3

  16. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 9 discusses the following topics: Integrated System Normal Operations Test Results and Analysis Report; Integrated System Off-Normal Operations Test Results and Analysis Report; and Integrated System Maintenance Operations Test Results and Analysis Report

  17. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 2 discusses the following topics: Fuel Rod Extraction System Test Results and Analysis Reports and Clamping Table Test Results and Analysis Reports

  18. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  19. 40 years of experience in incineration of radioactive waste in Belgium

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Deckers, J.; Luycx, P.; Detilleux, M.; Beguin, Ph.

    2001-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities; several R and D projects were realised in this specific field and different facilities were erected and operated. An experimental furnace ''Evence Coppee'' was built in 1960 for treatment of LLW produced by the Belgian Research Centre (SCK/CEN). Regularly this furnace has been modified, improved and equipped with additional installations to obtain better combustion conditions and a more efficient gas cleaning system. Based on the 35 years experience gained by the operation of the ''Evence Coppee'', a completely new industrial incineration installation has been designed in the nineties and commissioned in May 1995, in the frame of the erection of the Belgian Centralised Treatment/Conditioning Facility CILVA. At the end of 1998, the new furnace has burnt 455 tons of solid waste and 246 tons of liquid waste. Besides the conventional incineration process, a High Temperature Slagging Incinerator (HTSI) has been developed, constructed and operated for 10 years in the past. This installation was the combination of an incinerator and a melter producing melted granulated material instead of ashes, and provided experience in the incineration of hazardous waste, such as chlorinated organic compounds and waste with PCB content. The paper presents ''the Belgian Experience'' accumulated year after year with the design and the operation of the above mentioned facilities and demonstrates how the needs required today for a modern installation are met. The paper covers the following aspects; design particularities and description of the systems, operational results for different solid waste categories (bulk waste, precompacted waste, ion exchange resins) and for different liquid waste categories (organic, aqueous, oil), required pretreatment of the waste, ashes conditioning

  20. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  1. Simultaneous consolidation and creep

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1997-01-01

    Materials that exhibit creep under constant effective stress typically also show rate dependent behavior. The creep deformations and the rate sensitive behavior is very important when engineering and geological problems with large time scales are considered. When stress induced compaction (consol...... (consolidation) is retarded by slow drainage of excess pore pressure it is expected that consolidation and creep occur simultaneously. A constitutive model adressing the problems of rate sensitive behavior and simultaneous consolidation and creep is presented....

  2. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  3. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  4. Health-care waste incineration and related dangers to public health: case study of the two teaching and referral hospitals in Kenya.

    Science.gov (United States)

    Njagi, Nkonge A; Oloo, Mayabi A; Kithinji, J; Kithinji, Magambo J

    2012-12-01

    There are practically no low cost, environmentally friendly options in practice whether incineration, autoclaving, chemical treatment or microwaving (World Health Organisation in Health-care waste management training at national level, [2006] for treatment of health-care waste. In Kenya, incineration is the most popular treatment option for hazardous health-care waste from health-care facilities. It is the choice practiced at both Kenyatta National Hospital, Nairobi and Moi Teaching and Referral Hospital, Eldoret. A study was done on the possible public health risks posed by incineration of the segregated hazardous health-care waste in one of the incinerators in each of the two hospitals. Gaseous emissions were sampled and analyzed for specific gases the equipment was designed and the incinerators Combustion efficiency (CE) established. Combustion temperatures were also recorded. A flue gas analyzer (Model-Testos-350 XL) was used to sample flue gases in an incinerator under study at Kenyatta National Hospital--Nairobi and Moi Teaching and Referral Hospital--Eldoret to assess their incineration efficiency. Flue emissions were sampled when the incinerators were fully operational. However the flue gases sampled in the study, by use of the integrated pump were, oxygen, carbon monoxide, nitrogen dioxide, nitrous oxide, sulphur dioxide and No(x). The incinerator at KNH operated at a mean stack temperature of 746 °C and achieved a CE of 48.1 %. The incinerator at MTRH operated at a mean stack temperature of 811 °C and attained a CE of 60.8 %. The two health-care waste incinerators achieved CE below the specified minimum National limit of 99 %. At the detected stack temperatures, there was a possibility that other than the emissions identified, it was possible that the two incinerators tested released dioxins, furans and antineoplastic (cytotoxic drugs) fumes should the drugs be subjected to incineration in the two units.

  5. A chemical basis for the partitioning of radionuclides in incinerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.

    1994-09-01

    For waste containing small amounts of radioactivity, rad waste (RW), or mixed waste (MW) containing both radioactive and chemically hazardous components, incineration is a logical management candidate because of inherent safety, waste volume reduction, and low costs. Successful operation requires that the facility is properly designed and operated to protect workers and to limit releases of hazardous materials. The large decrease in waste volume achieved by incineration also results in a higher concentration of most of the radionuclides and non radioactive heavy metals in the ash products. These concentrations impact subsequent treatment and disposal. The various constituents (chemical elements) are not equal in concentration in the various incinerator feed materials, nor are they equal in their contribution to health risks on subsequent handling, or accidental release. Thus, for management of the wastes it is important to be able to predict how the nuclides partition between the primary combustion residue which may be an ash or a fused slag, the fine particulates or fly ash that is trapped in the burner off-gas by several different techniques, and the airborne fraction that escapes to the atmosphere. The objective of this report is to provide an estimate of how different elements of concern may behave in the chemical environment of the incinerator. The study briefly examines published incinerator operation data, then considers the properties of the elements of concern, and employs thermodynamic calculations, to help predict the fate of these RW and MW constituents. Many types and configurations of incinerators have been designed and tested.

  6. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density incineration plants have poor performance for heat production because there are few facilities near them to provide demand for the energy. This is the result of redundant capacity, and is reflected in the heat production performance. Given these results, we discussed future challenges to creating energy demand around incineration plants where there is presently none. We also examined the challenges involved in increasing heat supply beyond the present situation. © The Author(s) 2015.

  7. Design of multifunctional floating waste incineration plant. Umi ni ukabu takinogata yojo seisokojo wo koan

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, T. (Shimizu Corp., Tokyo (Japan))

    1991-11-01

    A multifunctional floating waste incineration plant (aqua- amusement land: AAL) with combined health and leisure facilities is designed which can be built in much less time than the conventional plant and can be freely enlarged. The concepts for the AAL are the docking of water park and marine facilities to the floating waste incineration plant high degree reutilization of space materials and energy solving problems of high cost of land and traffic jam at the incineration plant due to environmental problem high price of land and overpopulation of cities. At the facility several waste disposal plant units are integrated various leisure facilities ocean culture facilities etc. are provided in two stages of upper and lower floors and exhaust heat generated by waste incineration is utilized effectively as the power source heat source etc. The feature of the AAL are solving land shortage problem shortening the term of works no necessity for submarine ground improvement flexibility of locational conditions high efficient use of exhaust heat flexibility of throughput performance possibility of marine transportation of wastes etc. 8 refs.

  8. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D ampersand D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D ampersand D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS

  9. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  10. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  11. Low-level waste incineration at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gillins, R.L.; Davis, J.N.; Maughan, R.Y.; Logan, J.A.

    1985-01-01

    A facility for the incineration of low-level beta/gamma contaminated combustible waste has been constructed at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL). The incineration facility was established to: (1) reduce the volume of currently generated contaminated combustible waste being disposed at the INEL's radioactive waste disposal site and thereby prolong the site's useful life; and (2) develop waste processing technology by providing a facility where full-size processes and equipment can be demonstrated and proven during production-scale operations. Cold systems testing has been completed, and contaminated operations began in September of 1984. Currently the facility is processing waste packaged in 2 x 2 x 2 ft cardboard boxes and measuring <10mR/h at contact. 3 figs

  12. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  13. Process control in municipal solid waste incinerators: survey and assessment.

    Science.gov (United States)

    El Asri, R; Baxter, D

    2004-06-01

    As there is only rare and scattered published information about the process control in industrial incineration facilities for municipal solid waste (MSW), a survey of the literature has been supplemented by a number of waste incineration site visits in Belgium and The Netherlands, in order to make a realistic assessment of the current status of technology in the area. Owing to the commercial character, and therefore, the confidentiality restrictions imposed by plant builders and many of the operators, much of the information collected has either to be presented in a generalized manner, and in any case anonymously. The survey was focused on four major issues: process control strategy, process control systems, monitors used for process control and finally the correlation between the 850 degrees C/2 s rule in the European waste incineration directive and integrated process control. The process control strategies range from reaching good and stable emissions at the stack to stabilizing and maximizing the energy output from the process. The main indicator to be monitored, in cases in which the focus is controlling emissions, is the oxygen content in the stack. Keeping the oxygen concentration in a determined range (usually between 8 and 12 vol.%) ensures stable and tolerated concentrations of the gaseous emissions. In the case for which stabilization of energy production is the principal aim, the main controlled parameter is the steam temperature and flow-rate, which is usually related to the fuel energetic input. A lot of other parameters are used as alarm criteria, the most common of which is the carbon monoxide concentration. The process control systems used most commonly feature partially automated classical proportional integral derivative (PID) controllers. New and innovative process control systems, such as fuzzy-logic control systems, are still unknown to most plant managers while their performance is reported to be unsatisfactory in plants in which such systems

  14. Thermally induced transformations of iron oxide stabilised APC residues from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Koch, C.B.

    2001-01-01

    Air pollution control (APC) facilities at waste incinerator plants produce large quantities of solid residues rich in salts and heavy metals. Heavy metals are readily released to water from the residues and it has, therefore, been found suitable to apply a rapid co-precipitation/adsorption process...

  15. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  16. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    During a 10-year period (1980-1989), at least 43 cases of self-incineration with lethal outcome took place in Denmark. The incidence seems to be increasing: 11 cases took place in the first 5 years and 32 cases in the last 5 years. An even sex ratio as found (male:female = 23:20). The median age...... was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...

  17. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  18. Radioactive-waste incineration at Purdue University

    International Nuclear Information System (INIS)

    1982-11-01

    A study conducted at Purdue University to evaluate the feasibility of using a small (45 kg/h), inexpensive (less than $10K) incinerator for incinerating low-level radioactive waste is described. An oil-fired, dual-chamber pathological waste incinerator was installed on a 12.7-cm-thick concrete floor in a metal quonset building. A standard EPA Method 5 sampling train was used to obtain stack samples. Also, stack gas velocity was measured with a type 5 pitot tube; stack temperature was measured with a thermocouple and pyrometer. The incinerator was tested for emissions from incineration of laboratory animal carcasses, liquid scintillation fluid, and trash. Emissions measured were particulates, SO/sub x/, NO/sub x/, Cl, CO, CO 2 , H 2 O, and unburned hydrocarbons in the particulate fraction. Three analyses were then averaged to arrive at the final determinations. Results of the study demonstrated the feasibility and cost-effectiveness of incinerating radioactive animal carcasses and liquid scintillation fluids, since emissions from those waste types were within EPA and State of Indiana limits. However, emissions from burning of trash exceeded State of Indiana limits. Therefore, incineration of trash alone, particularly if it contains glass or significant amounts of plastic, is not a recommended use of the tested equipment

  19. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  20. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  1. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  2. Incineration of spent ion exchange resins in a triphasic mixture at Belgoprocess

    International Nuclear Information System (INIS)

    Deckers, J.; Luycx, P.

    2003-01-01

    Up to 1998, spent ion exchange resins have been fed to the incinerator in combination with various other solid combustible wastes at Belgoprocess. However, thanks to sustained efforts to reduce radioactive waste production in all nuclear facilities in Belgium, the annual production of solid combustible waste is now much too small to allow this practice to be continued. Since the incinerator at Belgoprocess is not capable of treating spent ion exchange resins as such, it was decided to adopt the use of foam as a carrier to feed the resins to the incinerator. The mixture is a pseudohomogeneous charged foam, ensuring easy handling and allowing incineration in the existing furance, while a number of additives may be included, such as oil to increase the calorific value of the mixture and accelerate combustion. The first incineration campaign of spent ion exchange resins in a triphasic foam mixture, in conjunction with other liquid and solid combustible wastes, will be started in January 2000. The foam, comprising 70% by weight of resins, 29% by weight of water and 1% by weight of surfactant will be pulverized in the incinerator through an injection lance, at a feed rate of 40 to 100 kg/h. The incinerator and associated off-gas treatment system can be operated at standard conditions. Belgoprocess is the subsidiary of the Belgian national agency for the management of radioactive waste, known by its Dutch and French acronyms, NIRAS and ONDRAF respectively. The company ensures the treatment, conditioning and interim storage of nearly all radioactive waste produced in Belgium. (orig.)

  3. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    International Nuclear Information System (INIS)

    Funari, Valerio; Meisel, Thomas; Braga, Roberto

    2016-01-01

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and 187 Os/ 188 Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of 187 Os/ 188 Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m 2 /a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m 2 /a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  4. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...... suicide in remote areas of the countryside. Most were found dead at the scene, and the cause of death was usually heat exposure. Only a minority had a lethal carboxy-hemoglobin (CO-Hb) concentration. It is concluded that close cooperation between police, fire experts, and the forensic pathologist...

  5. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  6. Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau

    DEFF Research Database (Denmark)

    Song, Qingbin; Wang, Zhishi; Li, Jinhui

    2018-01-01

    (MSW) incineration, and coal-dominated mode which is directly imported from China mainland. On the basis of first-hand data from two power plants and one MSW incineration facility, this study performed a Life Cycle Assessment (LCA) process for three kinds of local electricity generation (heavy oil......The electricity generation processes represent a large contribution to the potential greenhouse gases (GHG) emissions. Macau, a Special Administrative Region of China, is not of exception. Macau has multiple electricity generation modes, including heavy oil, natural gas, and municipal solid waste......, natural gas, and MSW incineration) to estimate the greenhouse gas (GHG) emissions under the operating practices used from 2010 to 2014. Results indicate that the mean GHG emissions of electricity production from heavy oil, natural gas, and MSW incineration were 0.71, 0.42, 0.95kg CO2 eq per k...

  7. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  8. Effluent testing for the Oak Ridge mixed waste incinerator: Emissions test for August 27, 1990

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1990-12-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals

  9. Pilot-scale incineration of comtaminated soils from the drake chemical superfund site. Final report

    International Nuclear Information System (INIS)

    King, C.; Lee, J.W.; Waterland, L.R.

    1993-03-01

    A series of pilot-scale incineration tests were performed at the U.S. Environmental Protection Agency's (EPA's) Incineration Research Facility to evaluate the potential of incineration as an option to treat contaminated soils from the Drake Chemical Superfund site in Lock Haven, Pennsylvania. The soils at the Drake site are reported to be contaminated to varying degrees with various organic constituents and several hazardous constituent trace metals. The purpose of the test program was to evaluate the incinerability of selected site soils in terms of the destruction of contaminant organic constituents and the fate of contaminant trace metals. All tests were conducted in the rotary kiln incineration system at the IRF. Test results show that greater than 99.995 percent principal organic hazardous constituent (POHC) destruction and removal efficiencies (DRE) can be achieved at kiln exit gas temperatures of nominally 816 C (1,500 F) and 538 C (1,000 F). Complete soil decontamination of semivolatile organics was achieved; however, kiln ash levels of three volatile organic constituents remained comparable to soil levels

  10. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...... of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted....

  11. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  12. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  13. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  14. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    Science.gov (United States)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  16. Prototypical Rod Consolidation Demonstration Project

    International Nuclear Information System (INIS)

    1993-05-01

    The objective of Phase 3 of the Prototypical Rod consolidation Demonstration Project (PRCDP) was to procure, fabricate, assemble, and test the Prototypical Rod consolidation System as described in the NUS Phase 2 Final Design Report. This effort required providing the materials, components, and fabricated parts which makes up all of the system equipment. In addition, it included the assembly, installation, and setup of this equipment at the Cold Test Facility. During the Phase 3 effort the system was tested on a component, subsystem, and system level. This volume 1, discusses the PRCDP Phase 3 Test Program that was conducted by the HALLIBURTON NUS Environmental Corporation under contract AC07-86ID12651 with the United States Department of Energy. This document, Volume 1, Book 5 discusses the following topics: Lower Cutting System Test Results and Analysis Report; NFBC Loading System Test Results and Analysis Report; Robotic Bridge Transporter Test Results and Analysis Report; RM-10A Remotec Manipulator Test Results and Analysis Report; and Manipulator Transporter Test Results and Analysis Report

  17. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  18. 78 FR 61202 - Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing...

    Science.gov (United States)

    2013-10-03

    ... Billing for Skilled Nursing Facilities for FY 2014; Correction AGENCY: Centers for Medicare & Medicaid...; Prospective Payment System and Consolidated Billing for Skilled Nursing Facilities for FY 2014.'' DATES: These...

  19. Alternatives to incineration. Technical area status report

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E. [BDM Federal, Inc., Albuquerque, NM (United States); McFee, J.; Devarakonda, M. [International Technology Corp., Albuquerque, NM (United States); Nenninger, L.L.; Fadullon, F.S. [Science Applications International Corp., Gaithersburg, MD (United States); Donaldson, T.L. [Oak Ridge National Lab., TN (United States); Dickerson, K. [Oak Ridge National Lab., TN (United States)]|[Rocky Flats Environmental Technology Site, Golden, CO (United States)

    1995-04-01

    Recently, the DOE`s Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO{sub x}, SO{sub x}, and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers.

  20. Alternatives to incineration. Technical area status report

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; McFee, J.; Devarakonda, M.; Nenninger, L.L.; Fadullon, F.S.; Donaldson, T.L.; Dickerson, K.

    1995-04-01

    Recently, the DOE's Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO x , SO x , and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers

  1. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  2. 75 FR 55801 - Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing...

    Science.gov (United States)

    2010-09-14

    ... 0938-AP87 Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing... Payment System and Consolidated Billing for Skilled Nursing Facilities for FY 2011.'' DATES: Effective... illustrate the skilled nursing facility (SNF) prospective payment system (PPS) payment rate computations for...

  3. Caution, contention, and consolidation.

    Science.gov (United States)

    Dorr, Robert F

    2005-07-01

    The Washington Watch column provides an overview of NASA's cautious approach to the launch of Space Shuttle Discovery STS-114, contention between the Air Force and administration about production of the F/A-22 Raptor aircraft, and consolidation among U.S. airline companies.

  4. Consolidating Financial Statements.

    Science.gov (United States)

    Wood, Marcia R.

    This publication is designed to be a desktop reference and assist financial officers in both public and independent institutions of higher education in the preparation of consolidated financial statements. Chapter 1 covers generally accepted accounting principles and other accounting literature, and summarizes reporting rules of the Financial…

  5. Consolidating BPR with CALS

    DEFF Research Database (Denmark)

    Larsen, Michael Holm; Leinsdorff, Torben; Madsen, Claus

    1999-01-01

    the efficiency of the concept. However, limited directions are provided.This article suggests that Continuous Acquisition and Lifecycle Support (CALS) is a viable concept to complement and thus consolidate BPR. This is based on two hypotheses stating that CALS provides guidelines for applying IT to increase...

  6. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...

  7. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    Science.gov (United States)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  8. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks.

    Science.gov (United States)

    Bunsan, Sond; Chen, Wei-Yea; Chen, Ho-Wen; Chuang, Yen Hsun; Grisdanurak, Nurak

    2013-07-01

    Incineration is considered as an efficient approach in dealing with the increasing demand for municipal and industrial solid waste treatment, especially in areas without sufficient land resources. Facing the concern of health risk, the toxic pollutants emitted from incinerators have attracted much attention from environmentalists, even though this technology is capable of reducing solid waste volume and demand for landfill areas, together with plenty of energy generation. To reduce the negative impacts of toxic chemicals emitted from incinerators, various monitoring and control plans are made not only for use in facilities performance evaluation but also better control of operation for stable effluent quality. How to screen out the key variables from massive observed and control variables for modeling the dioxin emission has become an important issue in incinerator operation and pollution prevention. For these reasons, this study used 4-year monitoring data of an incinerator in Taiwan as a case study, and developed a prediction model based on an artificial neural network (ANN) to forecast the dioxin emission. By doing this, a simplified monitoring strategy for incinerators with regarding to dioxin emission control can be achieved. The result indicated that the prediction model based on a back-propagation neural network is a promising method to deal with complex and non-linear data with the help of statistics in screening out the useful variables for modeling. The suitable architecture of an ANN for using in the dioxin prediction consists of 5 input factors, 3 basic layers with 8 hidden nodes. The R(2) was found to equal 0.99 in both the training and testing steps. In addition, sensitivity analysis can identify the most significant variables for the dioxin emission. From the obtained results, the frequency of activated carbon injection showed as the factor of highest relative importance for the dioxin emission. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  10. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Statement on the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1984-01-01

    Oak Ridge National Laboratory has chosen the following objectives for future reprocessing plant design: reduced radiation exposure to workers; minimal environmental impact; improved plant operation and maintenance; improved accountability; no plutonium diversion; and reduced overall capital and operating cost. These objectives lead to a plant with totally remote operation. The Breeder Reactor Engineering Test (BRET) has been designed to perform a key role in demonstrating advanced reprocessing technology. It has been scheduled to be available to reprocess spent fuel from the Fast Flux Test Facility. The principal features of the Consolidated Fuel Reprocessing Program and of the BRET facility are appropriate for all reactor types

  12. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  13. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  14. Nonlinear Finite Strain Consolidation Analysis with Secondary Consolidation Behavior

    Directory of Open Access Journals (Sweden)

    Jieqing Huang

    2014-01-01

    Full Text Available This paper aims to analyze nonlinear finite strain consolidation with secondary consolidation behavior. On the basis of some assumptions about the secondary consolidation behavior, the continuity equation of pore water in Gibson’s consolidation theory is modified. Taking the nonlinear compressibility and nonlinear permeability of soils into consideration, the governing equation for finite strain consolidation analysis is derived. Based on the experimental data of Hangzhou soft clay samples, the new governing equation is solved with the finite element method. Afterwards, the calculation results of this new method and other two methods are compared. It can be found that Gibson’s method may underestimate the excess pore water pressure during primary consolidation. The new method which takes the secondary consolidation behavior, the nonlinear compressibility, and nonlinear permeability of soils into consideration can precisely estimate the settlement rate and the final settlement of Hangzhou soft clay sample.

  15. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  17. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  18. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  19. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  20. COST IMPACT OF ROD CONSOLIDATION ON THE VIABILITY ASSESSMENT DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    D. Lancaster

    1999-03-29

    The cost impact to the Civilian Radioactive Waste Management System of using rod consolidation is evaluated. Previous work has demonstrated that the fuel rods of two assemblies can be packed into a canister that can fit into the same size space as that used to store a single assembly. The remaining fuel assembly hardware can be compacted into the same size canisters with a ratio of 1 hardware canister per each 6 to 12 assemblies. Transportation casks of the same size as currently available can load twice the number of assemblies by placing the compacted assemblies in the slots currently designed for a single assembly. Waste packages similarly could contain twice the number of assemblies; however, thermal constraints would require considering either a low burnup or cooling. The analysis evaluates the impact of rod consolidation on CRWMS costs for consolidation at prior to transportation and for consolidation at the Monitored Geological Repository surface facility. For this study, no design changes were made to either the transport casks or waste packages. Waste package designs used for the Viability Assessment design were employed but derated to make the thermal limits. A logistics analysis of the waste was performed to determine the number of each waste package with each loading. A review of past rod consolidation experience found cost estimates which range from $10/kgU to $32/kgU. $30/kgU was assumed for rod consolidation costs prior to transportation. Transportation cost savings are about $17/kgU and waste package cost savings are about $21/kgU. The net saving to the system is approximately $500 million if the consolidation is performed prior to transportation. If consolidation were performed at the repository surface facilities, it would cost approximately $15/kgU. No transportation savings would be realized. The net savings for consolidation at the repository site would be about $400 million dollars.

  1. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  2. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  3. The Louisiana State University waste-to-energy incinerator

    International Nuclear Information System (INIS)

    1994-01-01

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building

  4. The Louisiana State University waste-to-energy incinerator

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-26

    This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.

  5. EIA for a waste incinerator in Denmark

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2017-01-01

    A planned new waste incinerator will be located in an area which is at risk of flooding – a risk that will increase under climate change. During public hear- ings as part of the project’s EIA, inclusion of climate risks was requested. This led to mitigation measures which will decrease the risk...

  6. Nitrous Oxide Emissions from Waste Incineration

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Martinec, J.

    2006-01-01

    Roč. 60, č. 1 (2006), s. 78-90 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * waste * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

  7. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  8. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  9. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  10. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  11. Consolidation and Disclosure of SPE

    OpenAIRE

    中野, 貴之

    2011-01-01

    The purpose of this study is to discuss what kinds of information are demanded by the users of financial statements and what kinds of problems plague the companies using SPE (special purpose equity), while considering the actual situations of the consolidation and disclosure of SPE in Japan. At present, there is the trend of consolidating a broad range of SPE in Japan, etc., but some users of financial statements point out that it became difficult to understand consolidated financial stat...

  12. Consolidated Copayment Processing Center (CCPC)

    Data.gov (United States)

    Department of Veterans Affairs — The Consolidated Copayment Processing Center (CCPC) database contains Veteran patient contact and billing information in order to support the printing and mailing of...

  13. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  14. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  15. Consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Kuban, D.P.; Noakes, M.W.; Bradley, E.C.

    1987-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller or master, and the control system. The ASM is a remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program of (CFRP). This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, and reliability. It uses an all-gear force transmission system. The master arms were designed as a kinematic replica of ASM and use cable force transmission. Special digital control algorithms were developed to improve the system performance. The system is presently operational and undergoing evaluation. Preliminary testing has been completed and is reported. The system is now undergoing commercialization by transferring the technology to the private sector

  16. Consolidating Social Media Strategies

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Munar, Ana Maria; Larson, Mia

    2014-01-01

    This study revisits and integrates the insights of recent studies on emergent social media strategies deployed by destination and event management organisations. In a comparative analysis Munar (2012) identified four generic approaches pursued by national tourism boards in the Nordic region, while...... Gyimóthy & Larson (2014) portrayed three digital value co-creation strategies deployed by festival social media. Both frameworks provided novel analytical typologies which identified a series of categories (mimetic, analytic, immersion, advertising and insourcing, crowdsourcing and community consolidation......). This paper discusses the complementary nature of these conceptual proposals and advances an integrated conceptual framework of social media strategies. Based on the empirical findings of a case study that revisits evolving digital and social media strategies of European DMOs this paper maps the dynamics...

  17. Ohio incinerator given the go-ahead

    International Nuclear Information System (INIS)

    Kemezis, P.

    1992-01-01

    A federal judge has denied a request for an injunction against the startup of the long-stalled Waste Technologies Industries (WTI) commercial hazardous waste incinerator in East Liverpool, OH. The $140-million plant, owned by a US subsidiary of Swiss engineering group Von Roll Ltd. (Zuerich), will go through a startup stage and a seven-day trial burn during the next two months, according to WTI. In testimony in federal court in Huntington, WV, WTI had said it was losing $115,000/day in fixed costs because of the plant's startup delay. The company also said that long-term contracts with Chemical Waste Management (CWM; Oak Brook, IL), Du Pont (Wilmington, DE), and BASF Corp. (Parsippany, NJ) to use plant services could be jeopardized by the delay. WTI is believed to have 10-year service contracts with the three companies and also will use CWM to dispose of the ash from the incinerator

  18. Exercising control over memory consolidation

    OpenAIRE

    Robertson, Edwin M.; Takacs, Adam

    2017-01-01

    Exercise can improve human cognition. A mechanistic connection between exercise and cognition has been revealed in several recent studies. Exercise increases cortical excitability and this in turn leads to enhanced memory consolidation. Together these studies dovetail with our growing understanding of memory consolidation and how it is regulated through changes in motor cortical excitability.

  19. Fluorination of incinerator ash by hydrofluorination or ammonium bifluoride fusion for plutonium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.D.; Gray, J.H.; Kent, S.J.; Apgar, S.A.

    1989-01-01

    Incinerator ash containing small quantities of plutonium has been accumulating across the defense complex for many years. Although the total Pu inventory is small, the ash is a nondiscardable residue which presents storage and accountability difficulties. The work discussed here is the result of a joint exploratory effort between members of Savannah River Laboratory and Los Alamos National Laboratory to compare two proposed pyrochemical pretreatments of incinerator ash prior to aqueous processing. These experiments attempted to determine the relative effectiveness of hydrofluorination and ammonium bifluoride fusion as head-end operations for a two step aqueous recovery method. The two pretreatments are being considered as possible second generation enhancements for the New Special Recovery Facility nearing operation at Savannah River Plant. Experimental results and potential engineering concerns are discussed. 3 figs.

  20. Enhancing biomethanogenic treatment of fresh incineration leachate using single chambered microbial electrolysis cells.

    Science.gov (United States)

    Gao, Yan; Sun, Dezhi; Dang, Yan; Lei, Yuqing; Ji, Jiayang; Lv, Tingwei; Bian, Rui; Xiao, Zhihui; Yan, Liangming; Holmes, Dawn E

    2017-05-01

    Methanogenic treatment of municipal solid waste (MSW) incineration leachate can be hindered by high concentrations of refractory organic matter and humification of compounds in the leachate. In an attempt to overcome some of these impediments, microbial electrolysis cells (MECs) were incorporated into anaerobic digesters (ADMECs). COD removal efficiencies and methane production were 8.7% and 44.3% higher in ADMECs than in controls, and ADMEC reactors recovered more readily from souring caused by high organic loading rates. The degradation rate of large macromolecules was substantially higher (96% vs 81%) in ADMEC than control effluent, suggesting that MECs stimulated degradation of refractory organic matter and reduced humification. Exoelectrogenic bacteria and microorganisms known to form syntrophic partnerships were enriched in ADMECs. These results show that ADMECs were more effective at treatment of MSW incineration leachate, and should be taken into consideration when designing future treatment facilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Los Alamos Controlled Air Incinerator for hazardous chemical and mixed radioactive wastes

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Koenig, R.A.; Warner, C.L.

    1986-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is currently the only radioactive waste incineration facility in the US permitted to treat polychlorinated biphenyls (PCBs). The CAI was developed in the mid-1970's as a demonstration system for volume reduction of transuranic (TRU) contaminated combustible solid wastes. It has since undergone additions and modifications to accommodate hazardous chemical wastes in response to a need within the Department of Energy (DOE) to treat mixed radioactive/chemical wastes. An overview of these additions which include a liquid feed system, a high intensity liquid injection burner, and an activated carbon adsorption unit is presented here. Also included is a discussion of the procedures required for Toxic Substances Control Act (TSCA) and Resource Conservation and Recovery Act (RCRA) permitting of the CAI

  2. Controlled-air incineration studies at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.; Thompson, T.K.; Warner, C.L.

    1978-01-01

    An overview of the LASL controlled-air incineration (CAI) program is provided through a description of the process, a summary of component selection and system design criteria, a statement of project status, and discussion of experimental and process improvement study plans. The results of the program will be used to formulate the design criteria and operating parameters for a production model controlled-air transuranic (TRU) waste incineration system and govern the construction and operation of a facility for this purpose. The objective of the LASL CAI project is to develop and demonstrate an effective, safe, and reliable process for volume reduction and chemical stabilization of TRU solid wastes using proven technology whenever possible. The benefits of this process will be realized in reduced handling and storage hazards potentials, lower packaging, transportation, and storage expenses, less storage space requirements, and fewer monitoring needs

  3. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  4. Planning of waste incinerators and refuse-derived fuel power plants; Planung von Abfallverbrennungsanlagen und Ersatzbrennstoffkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Versteyl, A.; Thome-Kozmiensky, K.J. (eds.)

    2007-07-01

    combined heat and power generation (L. Birnbaum); (17) European standards in jurisdiction and standardization for the differentiation between utilization and removal (O. Konzak); (18) Prognosis of immissions at incineration plants - does it justify to the changing requirements? (N. Suritsch); (19) Assessment of industrial power plants within a production plant according to the law of immission protection (M. Rebentisch); (20) A human toxicological evaluation of waste disposal facilities - a contribution to the promotion of acceptance? (T. Eikmann, S. Eikmann); (21) Approval management for thermal waste disposal plants from the view of the project supporting institute (A. Versteyl); (22) Approval management in official licensing procedures (R. Bolwerk); (23) Authority experts - privatization of the approval management at authorities (S. Wehrens); (24) Incineration is an indepensible component of an ecologically orientated waste management - acceptance of waste incineration plants (K.J. Thome-Kozmiensky); (25) Acceptance of waste disposal plants - what is this, and how can this reached? (A. Versteyl); (26) The waste incineration today - a technology, which still is pursued sceptically by the persons concerned (P. Gebhardt); (27) Minimising risks of liability at plant operation - legal fundamentals and outlook on a law according to environmental damage.

  5. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  6. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  7. [Fuel Rod Consolidation Project]: The estimated total life cycle cost for the 30-year operation of prototypical consolidation demonstration equipment: Volume 4, Phase 2

    International Nuclear Information System (INIS)

    1987-01-01

    The Total Life Cycle Costs have been developed for the construction, operation and decommissioning of a single line of hot-cell-enclosed production consolidation equipment operating on spent fuel at the rate of 750 MTU/year for 30 years. The cost estimate is for a single production line that is part of an overall facility at either a Monitored Retrievable Storage or a Repository facility. This overall facility would include other capabilities and possibly other consolidation lines. However, no costs were included in the cost estimate for other portions of the plant, except that staff costs include an overhead charge that reflects the overhead support services in an overall facility

  8. Geotechnical engineering properties of incinerator ash mixes.

    Science.gov (United States)

    Muhunthan, B; Taha, R; Said, J

    2004-08-01

    The incineration of solid waste produces large quantities of bottom and fly ash. Landfilling has been the primary mode of disposal of these waste materials. Shortage in landfill space and the high cost of treatment have, however, prompted the search for alternative uses of these waste materials. This study presents an experimental program that was conducted to determine the engineering properties of incinerator ash mixes for use as construction materials. Incinerator ash mixes were tested as received and around optimum compacted conditions. Compaction curves, shear strength, and permeability values of fly ash, bottom ash, and their various blends were investigated. Bottom ash tends to achieve maximum dry density at much lower water content than does fly ash. The mixes displayed a change in their cohesion and friction angle values when one of the two mix components was altered or as a result of the addition of water. The permeability of bottom ash is quite comparable to that of sand. The permeability of fly ash lies in the range of those values obtained for silts and clays. A 100% bottom ash compacted at the optimum water content has a lower density value and yields a higher friction angle and cohesion values than most construction fills. This would encourage the use of bottom ash as a fill or embankment material because free drainage of water will prevent the buildup of pore water pressures.

  9. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  10. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  11. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  12. Emission and speciation of mercury from waste incinerators with mass distribution investigations

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Jung, Seung Jae; Bhatta, Dhruba

    2010-01-01

    In this paper mercury emission and removal characteristics in municipal wastes incinerators (MWIs), hazardous waste incinerators (HWIs) and hospital medical and infectious waste incinerators (HMIWIs) with mercury mass distribution within the system are presented. Mercury speciation in flue gas at inlet and outlet of each air pollution control devices (APCDs) were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by U.S. EPA method 7470A and 7471A, respectively. Cold vapor atomic absorption spectroscopy was used for analysis. On an average, Hg emission concentrations in flue gas from MWIs ranged 173.9 to 15.3 μg Sm -3 at inlet and 10.5 to 3.8 μg Sm -3 at outlet of APCDs respectively. Mercury removal efficiency ranged 50 to 95% in MWIs, 7.2 to 59.9% in HWIs as co-beneficial results of APCDs for removing other air pollutants like particulate matter, dioxin and acidic gases. In general, mercury in incineration facilities was mainly distributed in fly ash followed by flue gas and bottom ash. In MWIs 94.4 to 74% of Hg were distributed in fly ash. In HWIs with dry type APCDs, Hg removal was less and 70.6% of mercury was distributed in flue gas. The variation of Hg concentration, speciation and finally the distribution in the tested facilities was related to the non-uniform distribution of Hg in waste combined with variation in waste composition (especially Cl, S content), operating parameters, flue gas components, fly ash properties, operating conditions, APCDs configuration. Long term data incorporating more number of tests are required to better understand mercury behavior in such sources and to apply effective control measures. (author)

  13. Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing Facilities for FY 2017, SNF Value-Based Purchasing Program, SNF Quality Reporting Program, and SNF Payment Models Research. Final rule.

    Science.gov (United States)

    2016-08-05

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2017. In addition, it specifies a potentially preventable readmission measure for the Skilled Nursing Facility Value-Based Purchasing Program (SNF VBP), and implements requirements for that program, including performance standards, a scoring methodology, and a review and correction process for performance information to be made public, aimed at implementing value-based purchasing for SNFs. Additionally, this final rule includes additional polices and measures in the Skilled Nursing Facility Quality Reporting Program (SNF QRP). This final rule also responds to comments on the SNF Payment Models Research (PMR) project.

  14. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  15. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  16. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 78 FR 40015 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2013-07-03

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants; District of Columbia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units AGENCY: Environmental... negative declaration for hospital/medical/infectious waste incinerator (HMIWI) units within the District of...

  18. 77 FR 3389 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2012-01-24

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants, State of West Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision... final action to approve a revision to the West Virginia hospital/medical/infectious waste incinerator...

  19. 77 FR 3422 - Approval and Promulgation of State Air Quality Plans for Designated Facilities and Pollutants...

    Science.gov (United States)

    2012-01-24

    ... Promulgation of State Air Quality Plans for Designated Facilities and Pollutants; State of West Virginia; Control of Emissions From Existing Hospital/Medical/Infectious Waste Incinerator Units, Plan Revision... revision to the West Virginia hospital/medical/infectious waste incinerator (HMIWI) Section 111(d)/ 129...

  20. Comparison between mobile VR services and central VR service facility for dry active waste

    International Nuclear Information System (INIS)

    Dam, A.S.; Bradley, M.J.

    1985-01-01

    Low-level radioactive dry wastes can be volume reduced using either mobile or central facilities with super-compactors, or incinerators, or both. This paper compares the technical, operational and economic factors for mobile versus central facilities. Analyses indicated that customer costs, in addition to the service vendors' fee, are a significant factor in the evaluation of mobile services. The most attractive option is a central facility offering both incineration and super-compaction

  1. 40 CFR 164.32 - Consolidation.

    Science.gov (United States)

    2010-07-01

    ... GOVERNING HEARINGS, UNDER THE FEDERAL INSECTICIDE, FUNGICIDE, AND RODENTICIDE ACT, ARISING FROM REFUSALS TO... (Other Than Expedited Hearings) Appearances, Intervention, and Consolidation § 164.32 Consolidation. The...

  2. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  4. Consolidating NASA's Arc Jets

    Science.gov (United States)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  5. Consolidated Human Activities Database (CHAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Consolidated Human Activity Database (CHAD) contains data obtained from human activity studies that were collected at city, state, and national levels. CHAD is...

  6. CONSOLIDATED FINANCIAL STATEMENTS UNDER IFRS

    OpenAIRE

    Tănase Alin-Eliodor; Calotă Traian-Ovidiu

    2013-01-01

    This article is focuses on accounting consolidation techniques and the preparation of consolidation worksheets for the components of financial statements (statement of comprehensive income, statement of changes in equity, and financial position). The presented group includes parent company, two subsidiaries (only one fully controlled by the parent company) and a jointly controlled entity. The financial statements are presented under the following standards IFRS 3 Business Combination, IAS 27 ...

  7. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  8. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    International Nuclear Information System (INIS)

    Wade, J.F.; Williams, P.M.

    1995-01-01

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550 degrees C and 650 degrees C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s

  9. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  10. Radioactivity partitioning in incinerators for miscellaneous low-level wastes

    International Nuclear Information System (INIS)

    Kyle, S.; Bellinger, E.

    1988-03-01

    Her Majesty's Inspectorate of Pollution (HMIP) authorises the use of hospital, university and Local Authority incinerators for the disposal of solid radioactive wastes. At present these authorisations are calculated on ''worst case'' assumptions, this report aims to review the experimental data on radioactivity partitioning in these incinerators, in order to improve the accuracy of HMIP predictions. The types of radionuclides used in medicine were presented and it is noted there is no literature on the composition of university waste. The different types of incinerators are detailed, with diagrams. Major differences in design are apparent, particularly the offgas cleaning equipment in nuclear incinerators which hinders comparisons with institutional incinerators. A comprehensive literature review revealed 17 references on institutional radioactive waste incineration, 11 of these contained data sets. The partitioning experiments were described and show a wide range of methodology from incinerating guinea pigs to filter papers. In general, only ash composition data were presented, with no details of emissions or plating out in the incinerator. Thus the data sets were incomplete, often with a poor degree of accuracy. The data sets contained information on 40 elements; those were compared and general trends were apparent such as the absence of H-3, C-14 and I-125 in the ash in contrast to the high retention of Sc-46. Large differences between data sets were noted for P-32, Sr-85 and Sn-113 and within one experiment for S-35. (author)

  11. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20.2004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed...

  12. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  13. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  14. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  15. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  16. ATUE: the end of the incinerator

    International Nuclear Information System (INIS)

    Lilbonne, P.

    1997-01-01

    The CEA's ATUE incinerator is used to burn low-level contaminated solvents and oils since 1981, in order to transform them into chemically stable ashes, thus leading to an important volume reduction: it is composed of an horizontal burner and a vertical gas cooling chamber. Combustion temperature is 900 C; ashes are collected and blocked into cement, with a new special process (PICC). 5 m 3 of liquid produces 350 kg of a solid and stable mixture. This equipment is due to be closed in December 1997, and will then be dismantled

  17. Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing Facilities (SNFs) for FY 2016, SNF Value-Based Purchasing Program, SNF Quality Reporting Program, and Staffing Data Collection. Final Rule.

    Science.gov (United States)

    2015-08-04

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2016. In addition, it specifies a SNF all-cause all-condition hospital readmission measure, as well as adopts that measure for a new SNF Value-Based Purchasing (VBP) Program, and includes a discussion of SNF VBP Program policies we are considering for future rulemaking to promote higher quality and more efficient health care for Medicare beneficiaries. Additionally, this final rule will implement a new quality reporting program for SNFs as specified in the Improving Medicare Post-Acute Care Transformation Act of 2014 (IMPACT Act). It also amends the requirements that a long-term care (LTC) facility must meet to qualify to participate as a skilled nursing facility (SNF) in the Medicare program, or a nursing facility (NF) in the Medicaid program, by establishing requirements that implement the provision in the Affordable Care Act regarding the submission of staffing information based on payroll data.

  18. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  19. Thermal analysis of an enriched flame incinerator for aqueous residues

    Energy Technology Data Exchange (ETDEWEB)

    Lacava, Pedro Teixeira; Pimenta, Amilcar Porto [Divisao de Engenharia Aeronautica, Instituto Tecnologico de Aeronautica, Pca. Mal. Eduardo Gomes, 50, Vila das Acacias, 12228-900, Sao Jose dos Campos, SP (Brazil); Carvalho, Joao A. [Departamento de Energia, Campus de Guaratingueta, Universidade Estadual Paulista, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410, Guaratingueta, SP (Brazil); Ferreira, Marco Aurelio [Laboratorio Associado de Combustao e Propulsao, Instituto Nacional de Pesquisas Espaciais, Rod. Presidente Dutra, km 40, 12630-000, Cachoeira Paulista, SP (Brazil)

    2006-03-01

    The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air. If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50% of O{sub 2} in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase. (author)

  20. Licensing requirements for backfit incinerators at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Dodge, R.L.; Edwards, C.W.; Wilson, B.

    1984-01-01

    This paper, and the project it reports on, examines the licensing requirements for backfit incinerators at operating power plants. Analysis was made of incinerating low-level dry radioactive waste in a backfit incinerator at an existing power plant. The operation of the incinerator has been studied from viewpoints of operator safety, consequence of system failures including worst case scenarios, and radiological impact for normal and upset conditions. Analysis showed that releases under all normal operating or upset conditions are an extremely small fraction of the applicable limits. Nuclear Regulatory Commission review concluded that the document produced as a result of this project was useful as a design guide and of value in licensing backfit incinerators. 1 table

  1. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...... energy recovery and to local conditions, e.g. substitution of electricity and heat in the area. Focusing on the incineration process, Milan incinerator performs better than Aarhus, since its upstream impacts (related to the production of chemicals used in flue gas cleaning) are more than compensated...

  2. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  3. 77 FR 45721 - Consolidated Audit Trail

    Science.gov (United States)

    2012-08-01

    ... 242 Consolidated Audit Trail; Final Rule #0;#0;Federal Register / Vol. 77, No. 148 / Wednesday, August... 242 [Release No. 34-67457; File No. S7-11-10] RIN 3235-AK51 Consolidated Audit Trail AGENCY... maintain a consolidated order tracking system, or consolidated audit trail, with respect to the trading of...

  4. 75 FR 32555 - Consolidated Audit Trail

    Science.gov (United States)

    2010-06-08

    ... Part II Securities and Exchange Commission 17 CFR Part 242 Consolidated Audit Trail; Proposed Rule... 3235-AK51 Consolidated Audit Trail AGENCY: Securities and Exchange Commission. ACTION: Proposed rule... a consolidated order tracking system, or consolidated audit trail, with respect to the trading of...

  5. Nonnuclear Consolidation Environmental Assessment

    International Nuclear Information System (INIS)

    1993-06-01

    The Department of Energy (DOE) is developing a proposal, known as Complex 21, to reconfigure the Nation's Nuclear Weapons Complex (Complex). The complex is a set of interrelated facilities that design, manufacture, test, and maintain this country's nuclear weapons. The Complex also produces and/or recycles the nuclear materials used in building weapons and stores nuclear materials for future use. DOE also dismantles the weapons retired from the stockpile. In addition, DOE conducts surveillance and maintenance activities to ensure the reliability and safety of the stockpiled weapons throughout their operational life

  6. Controlled air incinerator for radioactive waste. Volume II. Engineering design references manual

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-11-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  7. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  8. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities

  9. Controlled air incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    International Nuclear Information System (INIS)

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-11-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings specifications, calculations, and costs. It aids duplication of the process at other facilities

  10. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  11. Mobile incineration services at Commonwealth Edison's nuclear stations

    International Nuclear Information System (INIS)

    Smith, K.R.

    1985-01-01

    As the costs for low-level waste disposal escalate, and as the January 1, 1986 date draws nearer, utilities throughout the United States are formulating and implementing plans to reduce the volumes of the low-level radioactive waste being generated at their nuclear power stations. Techniques being used to accomplish this goal range from sorting of dry active waste to complete volume reduction systems, like the Aerojet VR Systems being installed at Commonwealth Edison's Byron and Braidwood Stations. In between these extremes are partial solutions to the problem, including compaction, shredding and compaction, super-compaction, resin dewatering, liquid drying, and now, mobile incineration. In June, 1983, Commonwealth Edison Company (CECO) of Chicago, Illinois, contracted Aerojet Energy Conversion Company (AECC) of Sacramento, California, to supply mobile VR services to the Dresden, La Salle, Quad Cities, and Zion Nuclear Stations. Per the contract, AECC is responsible for the design, fabrication, delivery, operation, and maintenance of a Mobile Volume Reduction System (MVRS) capable of processing combustible dry active waste and contaminated oil generated at these Com-Ed facilities. Initial commercial operation of the MVRS is planned for the Dresden Nuclear Power Station in May, 1985. This paper is intended to summarize some of the key elements resulting from the design, fabrication, and testing of the MVRS. In addition, it is intended to identify the tasks a potential user of the MVRS service must complete in order to receive permission from the Nuclear Regulatory Commission to operate the MVRS at their site

  12. RTE - Consolidated financial statements 2016

    International Nuclear Information System (INIS)

    2017-01-01

    RTE's 2016 revenue stands at 4 446 million euro with a net income of 403 million euro. RTE continued its sustained investment programme with 1 519 million euro of investments aimed to reinforce electrical power supply security, develop cross-border capacities, accelerate digital transformation, and adapt the network to contribute to the success of energy transition. In 2016, favourable weather conditions were not sufficient to fully offset lower interconnection revenues resulting from narrowing electricity-price differentials with neighbouring countries and the strengthening of the tariff reduction policy for electricity-intensive customers. Effects of tariff reduction will be offset over the next financial years in accordance with the law on energy transition for green growth. In light of these factors, RTE's 2016 revenue of 4 446 million euro was down slightly compared to 2015 (-3%). 2016 net income of 403 million euro was up 6% compared to 2014 (379 million euro). 2015 net income (215 million euro) was exceptionally low due to the effect of the European Commission's decision dated 22 July 2015 regarding the tax treatment of provisions created between 1986 and 1997 for the renewal of the General Transmission Network ('RAG') facilities. 2016 net income was the result of good operating expense management and sustained revenue performance. 1 519 million euro of investments were made in 2016, 8% more than in 2015. As part of its industrial project launched in 2016, RTE strengthened its policy of adapting the network to the challenges of the energy transition and reoriented some investments in order to accelerate the implementation of digital technologies, with a view to ultimately having the top electrical and digital network in Europe. The level of investments in 2016 led to a slight increase in net debt (+3% for a net debt of 8 539 million euro at the end of 2016), which remains consistent with the maintenance of the company

  13. Memory consolidation in sleep disorders.

    Science.gov (United States)

    Cellini, Nicola

    2017-10-01

    In recent years sleep-related memory consolidation has become a central topic in the sleep research field. Several studies have shown that in healthy individuals sleep promotes memory consolidation. Notwithstanding this, the consequences of sleep disorders on offline memory consolidation remain poorly investigated. Research studies indicate that patients with insomnia, obstructive sleep apnea, and narcolepsy often exhibit sleep-related impairment in the consolidation of declarative and procedural information. On the other hand, patients with parasomnias, such as sleep-walking, night terrors and rapid eye movement (REM) behavior disorder, do not present any memory impairment. These studies suggest that only sleep disorders characterized by increased post-learning arousal and disrupted sleep architecture seem to be associated with offline memory consolidation issues. Such impairments, arising already in childhood, may potentially affect the development and maintenance of an individual's cognitive abilities, reducing their quality of life and increasing the risk of accidents. However, promising findings suggest that successfully treating sleep symptoms can result in the restoration of memory functions and marked reduction of direct and indirect societal costs of sleep disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  15. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  16. Municipal Solid Waste Incineration For Accra Brewery Limited (Ghana)

    OpenAIRE

    Akoore, Alfred Akelibilna

    2016-01-01

    Waste incineration is a common practice of waste management tool in most developed countries, for the purpose of converting mass and volumes of waste into a very useful energy content. The aim of this study was to compare the costs benefits of waste incineration for Accra Brewery boiler plant and to investigate also the availability of waste and it´s compositions in Accra, as well as to determine the feasibility of using this waste as a source of fuel to the waste incineration plant. T...

  17. Development of an incineration system for radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1989-01-01

    NUKEM GmbH (W. Germany) has developed and built some plants for treatment of radioactive waste. In cooperation with Karlsruhe Nuclear Research Center and on the basis of non-nuclear incineration plants, NUKEM has designed and built a new incineration plant for low level radioactive solid waste. The main features of the plant are improvement of the waste handling during feeding, very low particulate load downstream the incinerator and simple flue-gas cleaning system. This process is suitable for treatment of waste generated above all in nuclear power plants. (author)

  18. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  19. Incineration system for solid and liquid radioactive wastes

    International Nuclear Information System (INIS)

    Krutman, J.K.Z.; Grosche Filho, C.E.; Alfonso, S.A.

    1986-01-01

    An incineration system that allows the burning of solid and liquid radioactive wastes transforming them to highly insoluble ashes, and volumetric reduction from 30 to 50 times, depending on the incinerated waste. The global factor of activity retention contained in the waste is the order of 99%. The proposed incineration system allows the total combustion of radioactive waste and the generated gases during the burning. The formation of gaseous secondary wastes is minimum and any liquid waste is formed, reducing the costs of installation and operation. (M.C.K.) [pt

  20. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.

    Science.gov (United States)

    Karagiannidis, A; Kontogianni, St; Logothetis, D

    2013-02-01

    The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. Crown Copyright © 2012. Published by Elsevier Ltd

  1. Dreaming and offline memory consolidation.

    Science.gov (United States)

    Wamsley, Erin J

    2014-03-01

    Converging evidence suggests that dreaming is influenced by the consolidation of memory during sleep. Following encoding, recently formed memory traces are gradually stabilized and reorganized into a more permanent form of long-term storage. Sleep provides an optimal neurophysiological state to facilitate this process, allowing memory networks to be repeatedly reactivated in the absence of new sensory input. The process of memory reactivation and consolidation in the sleeping brain appears to influence conscious experience during sleep, contributing to dream content recalled on awakening. This article outlines several lines of evidence in support of this hypothesis, and responds to some common objections.

  2. Dioxin emissions by the municipal solid waste incinerators: is it a risk for the public health?; Emision de dioxinas por las incineradoras de R. S. U.: Un riesgo para la salud publica?

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, J. L. [Universidad Rovira i Virgili. Reus. Tarragona (Spain)

    1999-11-01

    Environmental contamination from particulate and gaseous emissions containing heavy metals, polychlorinated dibenzo-p-dioxin (PCDDs) and polychlorinated dibenzofurans (PCDFs), as well as other compounds from municipal solid waste incinerators (MSWI) is an issue of great concern. Recently, the controversy surrounding MSWI has intensified in our country. The key question for government agencies, public official, and public opinion is whether MSW incineration is an acceptable waste management option. Since a point-of view of public health, much concern and debate has arisen about human exposure to PCDD/Fs emitted from these facilities. The present paper provides an up-to-date perspective on MSW incineration as a source of human exposure to PCDD/Fs by comparing background PCDD/F concentrations with incinerator-emitted PCDD/F levels. It is concluded that PCDD/F exposure from MSWI would not reach percentage of 1% on total daily intake of PCDD/Fs. (Author) 18 refs.

  3. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  4. The Collision of Athletics & Consolidation

    Science.gov (United States)

    Graves, Bill

    2010-01-01

    For decades, people questioned the sense of having two school districts, each with its own superintendent, central office and high school, operating in the same small town of The Dalles on the banks of the Columbia River in north-central Oregon. But election campaigns to consolidate repeatedly failed because each community had strong emotional…

  5. 78 FR 47935 - Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing...

    Science.gov (United States)

    2013-08-06

    ... Benchmark Input-Output (I-O) tables for the nursing home industry aged forward using price changes... System and Consolidated Billing for Skilled Nursing Facilities for FY 2014; Rules #0;#0;Federal Register... Nursing Facilities for FY 2014 AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Final...

  6. An incineration technology for low level radioactive solid waste

    International Nuclear Information System (INIS)

    Suyari, Mamoru; Nakanishi, Ryota; Noura, Tsuyoshi; Fujitomi, Masashi; Ano, Shintaroh

    2003-01-01

    Low-level radioactive solid waste, mainly consisting of rag paper and cloth, is usually incinerated. However, polymeric waste, including rubber and polyvinyl chloride plastic, is securely stored in view of safe treatment. Kobe Steel has developed a new kind of incinerator which can be used for polymeric waste. It has the following characteristics: (a) A controlled air type furnace with a unique grate design (b) In order to control dioxin emissions, the furnace wall is refractory-lined to maintain furnace temperatures at 900degC or higher (c) Secondary combustion air is injected into the furnace to mix with gas from the primary combustion zone. In this paper, the following non-radioactive test results using an actual incinerator, (feed rate: 130 kg/hr.) are presented: (1) Polymeric waste, including rubber, polyethylene and polyvinyl chloride plastic, was incinerated under stable operation; (2) Design specifications including treatment capacity, emission limits were satisfactorily achieved. (author)

  7. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  8. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  9. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations...

  10. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  11. Nuclear weapons complex. Weaknesses in DOE's nonnuclear consolidation plan

    International Nuclear Information System (INIS)

    Wells, James E. Jr.; Fenzel, William F.; Schulze, John R.; Gaffigan, Mark E.

    1992-11-01

    Nuclear weapons contain a wide variety of nonnuclear components - items that are not made from nuclear materials. These components comprise the majority of parts in nuclear weapons, including the ones needed to guide weapons to their targets, initiate the nuclear explosion, increase the weapons' explosive yield, and ensure the weapons' safety and security. DOE has three facilities, the Kansas City Plant in Missouri, the Mound Plant in Ohio, and the Pinellas Plant in Florida, that are dedicated primarily to nonnuclear activities and have unique manufacturing responsibilities. Some additional nonnuclear manufacturing activities are performed at the Rocky Flats Plant in Colorado, the Y-12 Plant in Tennessee, and the Pantex Plant in Texas. Descriptions of each plant and the activities they conduct are contained in appendix I of this report. In 1991, DOE began planning to reconfigure the nuclear weapons complex into one that is smaller, less diverse, and less expensive to operate. More specifically, DOE issued a reconfiguration study in January 1991 that set forth a detailed framework for making the complex smaller and more efficient. The study will lead to a complex-wide Programmatic Environmental Impact Statement (PEIS) on how best to reconfigure the complex. This statement is planned to be completed in late 1993. As part of the effort to analyze the reconfiguration, DOE's Assistant Secretary for Defense Programs directed the Albuquerque Operations Office in April 1991 to develop a nonnuclear consolidation plan to serve as input to the PEIS. There are a number of weaknesses in DOE's NCP. First, because the NCP's scope was limited to examining single-site consolidation alternatives, the decision to select Kansas City as the preferred option was made without analyzing other nonnuclear options. These options included down sizing and modernizing all facilities in place or maximizing consolidation by eliminating all nonnuclear sites and relocating their functions to a

  12. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    International Nuclear Information System (INIS)

    De Feo, Giovanni; Williams, Ian D.

    2013-01-01

    Highlights: • Opinions and knowledge of young people in Italy about waste were studied. • Historic opposition to construction of waste facilities is difficult to overcome. • Awareness of waste management develops with knowledge of environmental issues. • Many stakeholders’ views are needed when siting a new waste management facility. • Respondents’ opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders – technicians, politicians

  13. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  14. Corrosion Problems in Incinerators and Biomass-Fuel-Fired Boilers

    Directory of Open Access Journals (Sweden)

    Deepa Mudgal

    2014-01-01

    Full Text Available Incinerators are widely used to burn the municipal waste, biowaste, wood, straw, and biomedical waste. Combustion of these types of waste results in generation of chlorides of sodium and potassium which may attack the metallic part of the incinerator. In biofuel-fired boilers, similar type of highly corrosive environment is present. Attempt has been made to review the corrosion problems and their solutions as per the available literature.

  15. Corrosion Problems in Incinerators and Biomass-Fuel-Fired Boilers

    OpenAIRE

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2014-01-01

    Incinerators are widely used to burn the municipal waste, biowaste, wood, straw, and biomedical waste. Combustion of these types of waste results in generation of chlorides of sodium and potassium which may attack the metallic part of the incinerator. In biofuel-fired boilers, similar type of highly corrosive environment is present. Attempt has been made to review the corrosion problems and their solutions as per the available literature.

  16. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  17. Design considerations for incineration of transuranic-contaminated solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.

    1977-01-01

    The Los Alamos Scientific Laboratory has established a development program to evaluate alternate production-level (100-200 lb/hr throughput) volume reduction processes for transuranic-contaminated solid waste. The first process selected for installation and study is based on controlled-air incineration. Design considerations leading to selection of feed preparation, incineration, residue removal, and off-gas cleanup components and their respective radioactive containment provisions will be presented

  18. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  19. Consolidated results 2000. Forecasts 2001; Resultats consolides 2000. Perspectives 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document presents an economic analysis of the Group Gaz De France consolidated results for the year 2000. The main topics are the evolution of the energy market, the great economic growth for the five businesses of the Group (exploration-production, trade, transport, distribution and services), financial results affected by the supply costs increase, the position reinforcement among the gas leaders in Europe and the highlights of 2000. (A.L.B.)

  20. The starting up of a pilot plant for radioactive incinerator ash conditioning - results of two embedding campaigns

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Naud, G.M.

    1990-01-01

    A new pilot plant called 'PICC' designed for radioactive incinerator ash conditioning, by embedding in several matrices, was launched at the Nuclear Research Centre in Cadarache - France - in the middle of 1988. This polyvalent facility can work with the three following embedding products = cement, thermosetting epoxide resin and an epoxide-cement compound. The capacity per day of the plant is two 100 or 200 I drums of solidified ash form. Two embedding campaigns have been carried out on inactive ashes: the first is a cementation campaign, done on phosphated ash coming from incineration of spent tributylphosphate. The second is a polymer cement campaign done on simulated alpha ash coming from technological wastes. Description of the PICC and data on these two campaigns are given

  1. Consolidation of Sensorimotor Learning during Sleep

    Science.gov (United States)

    Brawn, Timothy P.; Fenn, Kimberly M.; Nusbaum, Howard C.; Margoliash, Daniel

    2008-01-01

    Consolidation of nondeclarative memory is widely believed to benefit from sleep. However, evidence is mainly limited to tasks involving rote learning of the same stimulus or behavior, and recent findings have questioned the extent of sleep-dependent consolidation. We demonstrate consolidation during sleep for a multimodal sensorimotor skill that…

  2. Local Identity in Times of Jurisdictional Consolidation

    DEFF Research Database (Denmark)

    Hansen, Sune Welling; Kjær, Ulrik

    2014-01-01

    Reforming the public sector has become increasingly popular. Some of the reforms have been jurisdictional consolidations of subnational authorities such as regions and municipalities. One question which remains unanswered is whether such consolidations affect citizens’ local identity? We take...... of jurisdictional consolidations on citizens’ affective attachment....

  3. Deposited sediment settlement and consolidation mechanisms

    OpenAIRE

    Shuai-jie Guo; Fu-hai Zhang; Xu-guo Song; Bao-tian Wang

    2015-01-01

    In order to study deposited sediment settlement and consolidation mechanisms, sediment settlement experiments were conducted using a settlement column. Based on the experimental results, sediment settlement stage definition, excessive pore pressure (EPP) dissipation, and consolidation constitutive equations are discussed. Three stages, including the free settlement, hindered settlement, and self-weight consolidation settlement stages, are defined. The results of this study show that sediment ...

  4. 34 CFR 685.220 - Consolidation.

    Science.gov (United States)

    2010-07-01

    ... the time the borrower applies for a Direct Consolidation Loan, the borrower either— (A) Has an... time the borrower applies for the Direct Consolidation Loan, the borrower is— (A) In the grace period... Program loan for which the borrower is in an in-school period at the time of consolidation. The repayment...

  5. 40 CFR 35.509 - Consolidated grants.

    Science.gov (United States)

    2010-07-01

    ... Consolidated grants. Any applicant eligible to receive funds from more than one environmental program may... consolidated budget must identify each environmental program to be included, the amount of each program's funds... consolidated grants must account for grant funds in accordance with the funds' environmental program sources...

  6. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland.

    Science.gov (United States)

    Harris, Eliza; Zeyer, Kerstin; Kegel, Rainer; Müller, Beat; Emmenegger, Lukas; Mohn, Joachim

    2015-01-01

    Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010-August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3 ± 4.0g N2O tonne(-1) waste (wet) (hereafter abbreviated as t(-1)) (0.4 ± 0.4 g N2O GJ(-1)), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6g N2O t(-1); 4.5 ± 0.9g N2O GJ(-1)). These emission factors, which are much lower than the value of 120g N2O t(-1) (10.4g N2O GJ(-1)) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of (14)N(15)NO relative to (15)N(14)NO - was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17-19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6g CH4 t(-1) (0.2 ± 0.5g CH4 GJ(-1)), which is expected due to high incinerator temperatures and efficient combustion. Copyright © 2014 Elsevier Ltd

  7. Problematic Incinerator Ash: A Case Study of Finding a Successful Treatment Approach

    International Nuclear Information System (INIS)

    Gering, K. L.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) produces incinerator flyash and bottom ash as a consequence of burning low-level radioactive waste materials at the Waste Experimental Reduction Facility (WERF). The incineration process greatly reduces original waste volumes but concentrates the metals that are present, such as toxic metals (most notably cadmium, lead, and antimony) and nuisance metals (e.g., zinc). Anion species also become predominant in flyash produced by INEEL incineration, where chloride and sulfate are at concentrations that can approach 15-20 wt% each. In addition, treatment of the WERF flyash is further complicated by a significant fraction of ignitables composed of carbon soot and various hydrocarbon species that have been measured in some cases at 30% net by Loss-on-Ignition tests. Bottom ash produced at the WERF site is generally much less toxic, if not nontoxic, as compared to the flyash. Due to the complex composition of the flyash material, stabilization attempts at the INEEL have been only partly successful, causing the effectiveness and viability of treatment methods to be revisited. Breakthroughs in flyash stabilization came in 1998 when more complete characterization data gave us further insight into the chemical and physical nature of the flyash. These breakthroughs were also facilitated by the use of a computer model for electrolytes that allowed us to simulate stabilization options prior to started laboratory studies. This paper summarizes efforts at the INEEL, spanning the past three years, that have focused on stabilizing flyash. A brief history of INEEL treatability studies is given, showing that the degree of effective flyash stabilization was proportional to the amount of meaningful characterization data that was available. Various binders have been used in these treatability studies, including Portland cement type I/II, Portland cement type V, JGC Super Cement (blast furnace slag cement), a Fluid Tech

  8. Common consolidated corporate tax base: grouping and consolidation

    Directory of Open Access Journals (Sweden)

    Danuše Nerudová

    2012-01-01

    Full Text Available After the ten years of work and discussion of the proposal the European Commission has published the proposal of CCCTB directive on 16th March, 2011. This proposal can be considered as unique, for the European Commission is suggesting totally new system of corporate taxation. The aim of the paper is to research the rules for consolidation and grouping suggested in the proposal of CCCTB directive, to identify the possible conflict situations and to suggest the possible solution. The focuses on the provisions regarding the conditions for consolidation and grouping, comprised in chapter IX, Art. 54–60. In that area has been identified, that even though the provisions seem to be clear, their practical application can in some situations lead to double interpretation, mainly with respect to the fact that individual member states are responsible for the implementation of the directive and also national tax administrators and national courts are going to interpret the provisions of the directive. Therefore even though the fact that suggested system is unique and addresses a lot of problems which are facing companies running business on the internal market, the provisions regarding the consolidation rules and rules for group formatting may still lead not to unified interpretation. In that respect, some of the rules should be more specific in order to ensure unified interpretation.

  9. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    International Nuclear Information System (INIS)

    Coroneos, A.C.; Taylor, P.A.; Arnold, W.D. Jr.; Bostick, D.A.; Perona, J.J.

    1994-12-01

    The purpose of this report is to document the results of bench-scale testing completed to remove 137 Cs and 90 Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing

  10. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    Science.gov (United States)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  11. Ready, set,...quit exclamation point A review of the controlled-air incinerator

    International Nuclear Information System (INIS)

    Reader, G.E.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Controlled-Air Incinerator (CAI) has had a long and productive past as a research and development tool. It now appears that use of the CAI to treat LANL legacy and other wastes under the Federal Facilities Compliance Act is no longer viable due to numerous programmatic problems. This paper will review the history of the CAI. Various aspects associated with the CAI and how those aspects resulted in the loss of this Department of Energy asset as a viable waste treatment option will also be discussed. Included are past missions and tests-CAI capabilities, emissions, and permits; Federal Facility Compliance Act and associated Agreement; National Environmental Policy Act coverage; cost; budget impacts; public perception; the U.S. Environmental Protection Agency Combustion Strategy; Independent Technical Review open-quotes Redclose quotes Team review; waste treatment alternative technologies; the New Mexico Environment Department; and future options and issues

  12. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Consolidated Edison Company of New York, Inc

    International Nuclear Information System (INIS)

    Raebiger, R.F.; King, R.D.; Friess, R.A.

    1992-01-01

    This paper reports that in 1989 Consolidated Edison Company of New York which initiated a comprehensive tank cleaning and inspection program of their petroleum distillate storage facilities. The program was initiated by the issuance of new regulations of the New York State Department of Environmental Conservation. A total of 10 storage tanks were cleaned, inspected and detailed engineering reports prepared for each storage tank. A total of 28 distillate storage facilities will be inspected over a three year period of time. The tanks ranged in size from 18,000 to 2,701,00 gallons and contained either No. 2 Fuel Oil or Kerosene. The project included waste disposal, tank cleaning, inspection, engineering evaluations and the design of tank repairs. Of the 10 tanks inspected, three of the tanks required extensive repairs including the design and installation of a new bottom shell course and partial floor replacement for one of the tanks. The project was completed on schedule and within the budget allocated. The ten tank project was evaluated upon its completion and recommendations regarding tank operations and maintenance were provided to minimize maintenance problems for the future

  14. AD status and consolidation plans

    CERN Document Server

    Eriksson, T; Arnaudon, L; Belochitskii, P; Bojtar, L; Calviani, M; Caspers, F; Federmann, S; Jørgensen, L; Louwerse, R; Oliveira, C; Tranquille, G

    2013-01-01

    The CERN Antiproton Decelerator (AD) has now completed its 12th year of supplying low-energy antiproton beams for the successful physics program. Most of the machine’s key components are in operation since more than 25 years and prompted by the approval of the ELENA project, a substantial consolidation program is now being launched to ensure continued reliable operation. Over the course of the next few years a progressive renovation of the AD-Target area and the AD-ring with all the associated systems will take place. Status and performance of the AD are presented along with an overview of planned and ongoing consolidation activities with emphasis on stochastic and electron beam cooling.

  15. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada.

    Science.gov (United States)

    Baxter, Jamie; Ho, Yvonne; Rollins, Yvonne; Maclaren, Virginia

    2016-04-01

    Despite progress in residential waste diversion, residual waste - that fraction which cannot be recycled or composted - must continue to be managed by municipalities. Zero waste and environmental groups worry that waste-to-energy (WtE) incinerators discourage diversion, while both incineration and landfill have been stigmatized in the popular consciousness such that WtE incinerators in particular are being cancelled more often than they are approved. We conducted a mail-back survey of 217 residents in Toronto, Durham and Peel, Ontario, to understand attitudes toward diversion, levels of support for WtE incineration and WtE landfill (landfill gas recovery) facilities, and predictors of facility support. Contrary to experiences elsewhere, diversion seems threatened by WtE when measured as attitudes with 18%, and 14% agreeing that they would be less inclined to divert recyclable/compostable materials if they knew materials went to a WtE landfill or incinerator. When forced to choose between four options landfill or incineration with and without energy recovery, WtE incineration is most preferred (65%) and landfill without WtE is the least preferred option (61%). However, measurement has a large influence on public opinion results in the sense that support for WtE incineration drops to 43% when asked as a "vote in favor" question and to only 36% when measured as a 4-item index of support. When the indexes of support for landfill and WtE incineration are modeled, the prominence of odor in the landfill model distinguishes it from the WtE incinerator model which is dominated more by community and concern about health effects. Implications for policy are discussed, particularly mandatory diversion targets to accompany WtE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Eliza, E-mail: eliza.harris@empa.ch [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Zeyer, Kerstin [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Kegel, Rainer; Müller, Beat [FOEN, Federal Office for the Environment, Air Pollution Control and Chemicals, CH-3003 Berne (Switzerland); Emmenegger, Lukas; Mohn, Joachim [Empa, Laboratory for Air Pollution and Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2015-01-15

    Highlights: • N{sub 2}O emissions from waste incineration with SNCR NO{sub x} removal are 51.5 ± 10.6 g t{sup −1}. • This is significantly lower than the reported Swiss emission factor of 120 g t{sup −1} (FOEN, 2013). • N{sub 2}O contributes <0.3% and ≈2.5% of GHG emissions from SCR and SNCR plants. • Measured isotopic SP of 17.7‰ is likely characteristic for N{sub 2}O emissions from SNCR. • CH{sub 4} emitted by waste incineration is negligible, contributing <0.01% to total GHGs. - Abstract: Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N{sub 2}O and CH{sub 4} were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NO{sub x} removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NO{sub x} removal. N{sub 2}O emissions from incineration plants with NO{sub x} removal through selective catalytic reduction were 4.3 ± 4.0 g N{sub 2}O tonne{sup −1} waste (wet) (hereafter abbreviated as t{sup −1}) (0.4 ± 0.4 g N{sub 2}O GJ{sup −1}), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6 g N{sub 2}O t{sup −1}; 4.5 ± 0.9 g N{sub 2}O GJ{sup −1}). These emission factors, which are much lower than the value of 120 g N{sub 2}O t{sup −1} (10.4 g N{sub 2}O GJ{sup −1}) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N{sub 2}O emitted from the two

  17. Land owner's opinion on the administrative land consolidation procedures in the selected land consolidation areas

    OpenAIRE

    Dvornik, Boštjan

    2012-01-01

    In the diploma thesis, the opinion of the land owners on the procedures of administrative land consolidation has been researched. The review of the legal framework for land consolidation in Slovenia is followed by a practical part, which includes the time schedules of implementation of land consolidation procedures for the study areas: the land consolidation area of Bakovci, Krog, Motvarjevci, Dolenja vas and Nemška vas. An important emphasis is on the analysis of land consolidation implement...

  18. Diabetes and consolidation of fractures

    Directory of Open Access Journals (Sweden)

    T O Yalochkina

    2013-06-01

    Full Text Available One of the complications of diabetes in humans is inadequate bone formation resulting in osteopenia and slow consolidation of fractures. The basis of these pathological processes is a disruption of the regeneration of bone tissue in insulin deficiency and hyperglycemia, the mechanisms of which are highlighted in this mini-review. The published data indicate the need for careful monitoring of blood glucose levels and adequate replacement therapy for the prevention of skeletal complications of diabetes.

  19. Consolidation of renders and plasters

    Czech Academy of Sciences Publication Activity Database

    van Hees, R.; Veiga, R.; Slížková, Zuzana

    2017-01-01

    Roč. 50, č. 1 (2017), s. 50-65 ISSN 1359-5997 R&D Projects: GA MŠk(CZ) LO1219 Keywords : consolidants * plasters * requirements * selection * assessment Subject RIV: AL - Art, Architecture, Cultural Heritage OBOR OECD: Materials engineering Impact factor: 2.607, year: 2016 http://link.springer.com/article/10.1617/s11527-016-0894-5

  20. Work organization for splice consolidation

    CERN Document Server

    Bertinelli, F

    2011-01-01

    The Splices Task Force has worked in 2010 to prepare the necessary interventions for 7 TeV operation. The design solution for consolidating the main interconnection splices is well advanced. The required activities to implement it are described, highlighting working assumptions, missing resources and schedule considerations. Progress has also been made in assessing other splices, 6 kA praying hands and corrector circuits: results and ongoing work are presented, highlighting priorities for the remaining work.

  1. Consolidated results 2000. Forecasts 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents an economic analysis of the Group Gaz De France consolidated results for the year 2000. The main topics are the evolution of the energy market, the great economic growth for the five businesses of the Group (exploration-production, trade, transport, distribution and services), financial results affected by the supply costs increase, the position reinforcement among the gas leaders in Europe and the highlights of 2000. (A.L.B.)

  2. Field Evaluation of MERCEM Mercury Emission Analyzer System at the Oak Ridge TSCA Incinerator East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    The authors reached the following conclusions: (1) The two-month evaluation of the MERCEM total mercury monitor from Perkin Elmer provided a useful venue in determining the feasibility of using a CEM to measure total mercury in a saturated flue gas. (2) The MERCEM exhibited potential at a mixed waste incinerator to meet requirements proposed in PS12 under conditions of operation with liquid feeds only at stack mercury concentrations in the range of proposed MACT standards. (3) Performance of the MERCEM under conditions of incinerating solid and liquid wastes simultaneously was less reliable than while feeding liquid feeds only for the operating conditions and configuration of the host facility. (4) The permeation tube calibration method used in this test relied on the CEM internal volumetric and time constants to relate back to a concentration, whereas a compressed gas cylinder concentration is totally independent of the analyzer mass flowmeter and flowrates. (5) Mercury concentration in the compressed gas cylinders was fairly stable over a 5-month period. (6) The reliability of available reference materials was not fully demonstrated without further evaluation of their incorporation into routine operating procedures performed by facility personnel. (7) The degree of mercury control occurring in the TSCA Incinerator off-gas cleaning system could not be quantified from the data collected in this study. (8) It was possible to conduct the demonstration at a facility incinerating radioactively contaminated wastes and to release the equipment for later unrestricted use elsewhere. (9) Experience gained by this testing answered additional site-specific and general questions regarding the operation and maintenance of CEMs and their use in compliance monitoring of total mercury emissions from hazardous waste incinerators.

  3. FEATURES OF CONSOLIDATED FINANCIAL STATEMENTS: FOREIGN EXPERIENCE

    Directory of Open Access Journals (Sweden)

    S. V. KUCHER

    2016-12-01

    Full Text Available The article researches the features of preparation and submission of the consolidated financial statements of the world countries of different systems of accounting standardization in order to identify the areas of accounting improvement for the process of consolidation of financial reporting indicators. The main problems of consolidated financial statements preparation by business entities in Ukraine are determined. The author determines the theoretical and practical problems of consolidation of financial statements of organizational and methodical character. The comparative analysis of the features of standardization process of financial statements consolidation in the world countries is carried out. The main differences in the requirements for the formation of consolidated financial statements indicators of such countries as the French Republic, the Federal Republic of Germany, the Republic of Belarus and the People’s Republic of China are outlined. The main directions of scientific researches on the improvement of accounting and analytical support for the preparation of consolidated financial statements are formed.

  4. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  5. Hazardous waste incineration in context with carbon dioxide.

    Science.gov (United States)

    Reinhardt, Tim; Richers, Ulf; Suchomel, Horst

    2008-02-01

    The Kyoto Protocol of 1997 demands an emission reduction of climate-affecting gases in various industrial sectors. In this context CO2 is one of the relevant gases and waste management is one of the relevant sectors. Referring to the situation in Europe, waste incineration is one of the major sources of CO2 in the waste management sector. The Kyoto Protocol, however, only covers CO2-emissions originating from fossil fuels, whereas the incineration of renewable materials, e.g. wood, is considered to be climate-neutral since it does not make any net contribution to the CO2 inventory of the atmosphere. Unlike the situation with municipal waste, there is little if any information on the CO2-emissions caused by the incineration of hazardous waste in specialized plants, and the renewable fraction in these materials. The present paper focuses on this gap of knowledge. Taking the full-scale hazardous waste incineration plant in Biebesheim, Germany, as an example, a carbon balance was set up for the whole-plant taking into account all other material flows. Afterwards the determination of the proportion of renewable materials in the hazardous waste incinerated by means of the radiocarbon method (14C) is reported. On the basis of the results, optimization potentials are discussed.

  6. A sustainability analysis of an incineration project in Serbia.

    Science.gov (United States)

    Mikic, Miljan; Naunovic, Zorana

    2013-11-01

    The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.

  7. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  8. A COMPARISON: ORGANIC EMISSIONS FROM HAZARDOUS WASTE INCINERATORS VERSUS THE 1990 TOXICS RELEASE INVENTORY AIR RELEASES.

    Science.gov (United States)

    Incineration is often the preferred technology for disposing of hazardous waste, and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition `to hazardous waste' incineration HWI). One of the reasons cited for...

  9. Analysis of chromium volatility in the DWTF incinerator and in the molten salt processor

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.

    1992-01-01

    Thermodynamic methods have been applied to calculate the volatility of chromium both in atmospheres and in milligrams per cubic meter (stp) of offgas for the decontamination and waste treatment facility (DWTF) incinerator and the Rockwell molten salt processor. The known chromium species which have relatively high stabilities under oxidizing conditions and which contain elements found in either the DWTF incinerator or the molten salt processor are CrO 2 (OH) 2 (g), CrO 2 OH(g), CrO 3 (g), CrO 2 Cl 2 (g), and CrOF(g) and CrO 2 F 2 (g). This study demonstrates that these species as well as others such as CrO(OH) 2 (g), CrOOH(g), CrO(OH) 3 (g), CrO 2 Cl(g), CrOC1 2 (g), CrOCl(g), CrOC1 3 (g), CrOC1 4 (g), and CrO 2 F(g) can all be important species which contribute to the overall volatility of chromium in waste oxidation processes

  10. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    OpenAIRE

    k. louhab; H. Assas

    2006-01-01

    The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result sho...

  11. Centralized consolidation/recycling center

    International Nuclear Information System (INIS)

    St. Georges, L.T.; Poor, A.D.

    1995-05-01

    There are approximately 175 separate locations on the Hanford Site where dangerous waste is accumulated in hundreds of containers according to compatibility. Materials that are designated as waste could be kept from entering the waste stream by establishing collection points for these materials and wastes and then transporting them to a centralized consolidation/recycling center (hereinafter referred to as the consolidation center). Once there the materials would be prepared for offsite recycling. This document discusses the removal of batteries, partially full aerosol cans, and DOP light ballasts from the traditional waste management approach, which eliminates 89 satellite accumulation areas from the Hanford Site (43 for batteries, 33 for aerosols, and 13 for DOP ballasts). Eliminating these 89 satellite accumulation areas would reduce by hundreds the total number of containers shipped offsite as hazardous waste (due to the increase in containers when the wastes that are accumulated are segregated according to compatibility for final shipment). This new approach is in line with the U.S. Environmental Protection Agency's (EPA) draft Universal Waste Rules for these open-quotes nuisanceclose quotes and common waste streams. Additionally, future reviews of other types of wastes that can be handled in this less restrictive and more cost-effective manner will occur as part of daily operations at the consolidation center. The Hanford Site has been identified as a laboratory for reinventing government by the Secretary of the U.S. Department of Energy (DOE), Hazel O'Leary, and as a demonstration zone where open-quotes innovative ideas, processes and technologies can be created, tested and demonstrated.close quotes Additionally, DOE, EPA, and the Washington State Department of Ecology (Ecology) have agreed to cut Hanford cleanup costs by $1 billion over a 5-year period

  12. Vitrification of bottom ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Xiao, Y; Oorsprong, M; Yang, Y; Voncken, J H L

    2008-01-01

    During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.

  13. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  14. Progress on radioactive waste slurry incineration with oxygen and steam

    International Nuclear Information System (INIS)

    Hoshino, M.; Hayashi, M.; Oda, I.; Nonaka, N.; Kuwayama, K.; Shigeta, T.

    1988-01-01

    The radioactive waste (radwaste) slurry generated from the nuclear power plant operation, such as spent ion-exchange resins (powdered, bead), fire-retardant oils including phosphate ester and concentrated laundry (by the wet method) liquid waste, has been stored in an untreated condition on the plant site. Recently, since the Condensate Filter Demineralizer (CFD) has been applied in advanced BWR plants, the discharged volume of untreated spent powered resin slurry has been increasing steadily. TEE and NCE have been developing an effective new volume reduction system to treat this radwaste slurry based on an innovative incineration concept. The new system is called the IOS process, the feature of which is incineration with oxygen and steam admixture instead of conventional air. The IOS process, which consists mainly of high heat load incineration with slurry atomization, and combustion gas cooling and condensation by the wet method, has several advantages which are summarized in this paper

  15. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of sewage sludge incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  16. The Use of Microwave Incineration to Process Biological Wastes

    Science.gov (United States)

    Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Alan (Technical Monitor)

    1994-01-01

    The handling and disposal of solid waste matter that has biological or biohazardous components is a difficult issue for hospitals, research laboratories, and industry. NASA faces the same challenge as it is developing regenerative systems that will process waste materials into materials that can be used to sustain humans living in space for extended durations. Plants provide critical functions in such a regenerative life support scheme in that they photosynthesize carbon dioxide and water into glucose and oxygen. The edible portions of the plant provide a food source for the crew. Inedible portions can be processed into materials that are more recyclable. The Advanced Life Support Division at NASA Ames Research Center has been evaluating a microwave incinerator that will oxidize inedible plant matter into carbon dioxide and water. The commercially available microwave incinerator is produced by Matsushita Electronic Instruments Corporation of Japan. Microwave incineration is a technology that is simple, safe, and compact enough for home use. It also has potential applications for institutions that produce biological or biohazardous waste. The incinerator produces a sterile ash that has only 13% of the mass of the original waste. The authors have run several sets of tests with the incinerator to establish its viability in processing biological material. One goal of the tests is to show that the incinerator does not generate toxic compounds as a byproduct of the combustion process. This paper will describe the results of the tests, including analyses of the resulting ash and exhaust gases. The significance of the results and their implications on commercial applications of the technology will also be discussed.

  17. Osmotic consolidation of suspensions and gels

    International Nuclear Information System (INIS)

    Miller, K.T.; Zukoski, C.F.

    1994-01-01

    An osmotic method for the consolidation of suspensions of ceramic particles is demonstrated. Concentrated solutions of poly(ethylene oxide) are separated from a suspension of ceramic particles by a semipermeable membrane, creating a gradient in solvent chemical potential. Solvent passes from the suspension into the polymer solution, lowering its free energy and consolidating the suspension. Dispersions of stable 8-nm hydrous zirconia particles were consolidated to over 47% by volume. Suspensions of α-alumina in three states of aggregation (dispersed, weakly flocculated, and strongly flocculated) were consolidated to densities greater than or equal to those produced in conventional pressure filtration. Moreover, the as-consolidated alumina bodies were partially drained of fluid during the osmotic consolidation process, producing cohesive partially dried bodies with improved handling characteristics

  18. Radioactive waste incineration studies at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.

    1980-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A controlled-air incinerator, based upon commercially available equipment and technology, was modified for radioactive service and was successfully tested and demonstrated with contaminated waste. Demonstration of the production-scale unit was completed in May 1980 with the incineration of 272 kg of waste with an average TRU content of about 20 nCi/g. Weight and volume reduction factors for the demonstration run were 40:1 and 120:1, respectively

  19. Incineration of tyres, radioactive and photographic industry waste

    International Nuclear Information System (INIS)

    Carpentier, S.

    1977-01-01

    In the list every day longer of 'industrial' wastes, there is a special place for combustible waste usually presenting a solution for their elimination, i. e. incineration with or without calory recovery. Three categories are well-known as they concern the general public. The overall data of the problem are first considered, then three incineration plants in three different fields are described: motor-car tyres, nuclear industry, photographic industry. In the last field, well-conducted recovery processes may result in surprising results as to the damping of the plant cost, which finally is both pleasant and useful [fr

  20. Experiences with waste incineration for energy production in Denmark

    DEFF Research Database (Denmark)

    Kirkeby, Janus; Grohnheit, Poul Erik; Møller Andersen, Frits

    The Bioenergy Department in SENER have requested assistance with planning for the deployment of bioenergy (Biomass, biogas and waste incineration) in Mexico and information on Danish experiences with developing policy initiatives promoting bioenergy. This introduction to the Danish experiences...... with waste incineration for energy production use is compiled as preparation for SENER’s potential visit to Denmark in 2014. This report was prepared 19 June, 2014 by COWI DTU System Analysis to Danish Energy Agency (DEA) as part of a frame contract agreement....

  1. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  2. Genesis and Development of Consolidated Financial Statements

    OpenAIRE

    Kostyantyn Bezverkhiy

    2015-01-01

    In the context of economy globalization it is the mission of consolidated financial statements to meet demands of users for financial information about activities of a company group as one company. The article is devoted to study of genesis and development of consolidated financial statements of companies. Historical prerequisites of genesis of consolidated financial statements are shown as well as factors which conduced to their spreading. The approaches are elucidated to preparation of cons...

  3. Deposited sediment settlement and consolidation mechanisms

    Directory of Open Access Journals (Sweden)

    Shuai-jie Guo

    2015-10-01

    Full Text Available In order to study deposited sediment settlement and consolidation mechanisms, sediment settlement experiments were conducted using a settlement column. Based on the experimental results, sediment settlement stage definition, excessive pore pressure (EPP dissipation, and consolidation constitutive equations are discussed. Three stages, including the free settlement, hindered settlement, and self-weight consolidation settlement stages, are defined. The results of this study show that sediment settlement is mainly affected by the initial sediment concentration and initial settlement height, and the interface settlement rate is attenuated linearly with time on bilogarithmic scales during the hindered settlement and self-weight consolidation settlement stages. Moreover, the deposited sediment layer in the self-weight consolidation settlement stage experiences large strains, and the settlement amount in this stage is about 32% to 59% of the initial height of deposited sediment. EPP is nonlinearly distributed in the settlement direction, and consolidation settlement is faster than EPP dissipation in the self-weight consolidation settlement stage. Consolidation constitutive equations for the hydraulic conductivity and effective stress, applicable to large-strain consolidation calculation, were also determined and fitted in the power function form.

  4. Deposited sediment settlement and consolidation mechanisms

    Directory of Open Access Journals (Sweden)

    Shuai-jie Guo

    2015-10-01

    Full Text Available In order to study deposited sediment settlement and consolidation mechanisms, sediment settlement experiments were conducted using a settlement column. Based on the experimental results, sediment settlement stage definition, excessive pore pressure (EPP dissipation, and consolidation constitutive equations are discussed. Three stages, including the free settlement, hindered settlement, and self-weight consolidation settlement stages, are defined. The results of this study show that sediment settlement is mainly affected by the initial sediment concentration and initial settlement height, and the interface settlement rate is linearly attenuated with time on bilogarithmic scales during the hindered settlement and self-weight consolidation settlement stages. Moreover, the deposited sediment layer in the self-weight consolidation settlement stage experiences large strains, and the settlement amount in this stage is about 32% to 59% of the initial height of deposited sediment. EPP is nonlinearly distributed in the settlement direction, and consolidation settlement is faster than EPP dissipation in the self-weight consolidation settlement stage. Consolidation constitutive equations for the hydraulic conductivity and effective stress, applicable to large-strain consolidation calculation, were also determined and fitted in the power function form.

  5. Leaching from municipal solid waste incineration residues

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.

    2008-02-15

    Leaching of pollutants from Municipal Solid Waste Incineration (MSWI) residues has been investigated combining a range of laboratory leaching experiments with geochemical modeling. Special attention was paid to assessing the applicability of laboratory data for subsequent modeling with respect to presumed full-scale conditions; both sample pretreatment and actual influence of leaching conditions on the results of laboratory experiments were considered. It was shown that sample pretreatment may have large impact on leaching test data. In particular, a significant fraction of Pb was shown mobile during the washing of residues with water. In addition, drying of residues (i.e. slow oxidation) prior to leaching experiments increased the leaching of Cr significantly. Significant differences regarding the leaching behavior of individual elements with respect to (non)equilibrium conditions in column percolation experiments were observed in the study. As a result, three groups of elements were identified based on the predominant leaching control and the influence of (non)equilibrium on the results of the laboratory column experiments: I. Predominantly availability-controlled elements (e.g. Na, K, Cl) II. Solubility-controlled elements (e.g. Ca, S, Si, Al, Ba, and Zn) III. Complexation-controlled elements (e.g. Cu and Ni) With respect to the above groups it was suggested that results of laboratory column experiments can, with consideration, be used to estimate full-scale leaching of elements from Group I and II. However, in order to avoid large underestimations in the assessment of leaching from Group III, it is imperative to describe the time-dependent transport of dissolved organic carbon (DOC) in the tested system or to minimize the physical non-equilibrium during laboratory experiments (e.g. bigger column, slower flow velocity). Forward geochemical modeling was applied to simulate long-term release of elements from a MSWI air-pollution-control residue. Leaching of a

  6. Fluidized bed incineration system for U.S. Department of Energy Defense Waste, July--December 1977

    International Nuclear Information System (INIS)

    Anderson, D.L.; Meyer, F.G.; Feng, P.K.

    1978-01-01

    A fluidized-bed incineration facility has been designed for installation at the Rocky Flats Plant to develop and demonstrate the process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hr of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot scale unit and represents a scale-up factor of nine. Building modifications are complete and equipment installation has begun

  7. Fluidized bed incineration system for U.S. Department of Energy Defense Waste, January--June 1978

    International Nuclear Information System (INIS)

    Anderson, D.L.; Bell, B.A.; Feng, P.K.; Meyer, F.G.

    1978-12-01

    A fluidized bed incineration facility has been designed for installation at the Rocky Flats Plant to develop and demonstrate the process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hour of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot scale unit and represents a scale-up factor of nine. Equipment installation was completed on April 30, 1978. Equipment checkout and startup is in progress

  8. Fluidized bed incineration system for U.S. Department of Energy defense waste. Status report, July--December 1976

    International Nuclear Information System (INIS)

    Richey, L.L.; Faccini, P.T.; Feng, P.K.

    1978-01-01

    A fluidized-bed incineration facility has been designed for installation at the Rocky Flats Plant. The purpose is to develop and demonstrate the process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hr of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot scale unit and represents a scale-up factor of nine. Title II engineering is complete and construction work has begun

  9. Waste wood incineration: long-lasting, environment-friendly and CO2-neutral

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The economic aspects of energy production from waste wood are evaluated. Heating systems based on the incineration of wood have been considerably improved recently. Several aspects of the incineration of waste wood are reviewed: the implications with regard to the greenhouse effect, the calorific value of wood, the incineration process, and the cost price calculation of energy production by waste wood incineration. In conclusion is stated that energy production by waste wood incineration is a valuable economic alternative for heat production by oil products, especially in view of the current anti-pollution taxes in Belgium. (A.S.)

  10. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  11. 20 CFR 702.345 - Formal hearings; consolidated issues; consolidated cases.

    Science.gov (United States)

    2010-04-01

    ...; consolidated cases. (a) When one or more additional issues are raised by the administrative law judge pursuant... Administrative Law Judge may consolidate such cases for hearing. ...; consolidated cases. 702.345 Section 702.345 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT...

  12. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  13. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  14. Heavy Metal Concentrations around a Hospital Incinerator and a ...

    African Journals Online (AJOL)

    Studies to determine the concentrations of heavy metals in the surrounding soils and bottom ash of a hospital incinerator and a municipal dumpsite were carried out in Ibadan City, South-West Nigeria from November 2010 to January 2011. Samples were analyzed for Pb, Fe, Cu, Zn, Cr and Ni using Flame Atomic Absorption ...

  15. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    This paper would firstly examine solid waste management currently experienced in Malaysia with special concentration given to waste incineration. Its function and benefits entailed from this system shall then be identified. This paper attempts to emphasize this notion within the Islamic perspective, stressing on the needs to ...

  16. Design, construction and test operation of a thermal incinerator for ...

    African Journals Online (AJOL)

    Montfort type intermittent incinerator for combusting medical wastes were the waste types, fuel, chimney size, and flue gas residence time. The design analysis was based on flue gas flow rate of 0.13 m3/s, maximum primary chamber ...

  17. Development of gas boy medical incinerator as a substitute for ...

    African Journals Online (AJOL)

    The stench that emanates from the burial of placentas, limbs etc especially after rainfall, are unbearable and awful within most hospital environments. A solution has been found in the engineering of all-in-one medical gas boy incinerator with quick rise in temperature and even distribution of heat, with drying and firing cycles ...

  18. The impact of incinerators on human health and environment.

    Science.gov (United States)

    Sharma, Raman; Sharma, Meenakshi; Sharma, Ratika; Sharma, Vivek

    2013-01-01

    Of the total wastes generated by health-care organizations, 10%-25% are biomedical wastes, which are hazardous to humans and the environment and requires specific treatment and management. For decades, incineration was the method of choice for the treatment of such infectious wastes. Incinerator releases a wide variety of pollutants depending on the composition of the waste, which leads to health deterioration and environmental degradation. The significant pollutants emitted are particulate matter, metals, acid gases, oxides of nitrogen, and sulfur, aside from the release of innumerable substances of unknown toxicity. This process of waste incineration poses a significant threat to public health and the environment. The major impact on health is the higher incidence of cancer and respiratory symptoms; other potential effects are congenital abnormalities, hormonal defects, and increase in sex ratio. The effect on the environmental is in the form of global warming, acidification, photochemical ozone or smog formation, eutrophication, and human and animal toxicity. Thus, there is a need to skip to newer, widely accepted, economical, and environment-friendly technologies. The use of hydroclaves and plasma pyrolysis for the incineration of biomedical wastes leads to lesser environmental degradation, negligible health impacts, safe handling of treated wastes, lesser running and maintenance costs, more effective reduction of microorganisms, and safer disposal.

  19. Strategy for nuclear wastes incineration in hybrid reactors

    International Nuclear Information System (INIS)

    Lelievre, F.

    1998-01-01

    The transmutation of nuclear wastes in accelerator-driven nuclear reactors offers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  20. Effectiveness of incinerators in the management of medical wastes ...

    African Journals Online (AJOL)

    Introduction and Objectives Medical waste incinerators release into the air a host of pollutants that have serious adverse consequences on public health and the environment. This study aimed at determining ... Questionnaires, researcher observation and laboratory investigations of ash samples were used in data collection.

  1. Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids

    Science.gov (United States)

    Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...

  2. the development of new generation of solid waste refuse incinerators

    African Journals Online (AJOL)

    MATERIALS AND METHODS. These new generation of solid waste refuse incinerators are designed in the round with various locally manufactured special bricks for maximum stability and with minimal use of angle irons except for the doors since they are susceptible to rusting. The four fire boxes apart from allowing the ...

  3. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  4. EXPERIMENTAL INVESTIGATION OF CRITICAL FUNDAMENTAL ISSUES IN HAZARDOUS WASTE INCINERATION

    Science.gov (United States)

    The report gives results of a laboratory-scale program investigating several fundamental issues involved in hazardous waste incineration. The key experiment for each study was the measurement of waste destruction behavior in a sub-scale turbulent spray flame. (1) Atomization Qual...

  5. Danish Emission Inventory for Waste Incineration and Other Waste

    DEFF Research Database (Denmark)

    Hjelgaard, Katja

    2013-01-01

    This report contains detailed methodological issues, activity data, emission factors, uncertainties and references for waste incineration without energy recovery and other waste source categories of the Danish emission inventories 2013. The emissions are calculated for the years 1980-2011 according...

  6. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  7. Design and Fabrication of a Domestic Incinerator *1OMOREGIE, MJ ...

    African Journals Online (AJOL)

    ADOWIE PERE

    JASEM https://dx.doi.org/10.4314/jasem.v21i5.27. Keywords: Incinerator, wastes, combustion, scrubber, lagging, conductivity ... Combustion Process: Waste material is burnt in the combustion chamber using a proportionate air/ ... pipe, r1= internal radius of the pipe, r2 = external radius of the pipe; Rf = thermal resistance of ...

  8. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...

  9. Forensic considerations when dealing with incinerated human dental remains.

    Science.gov (United States)

    Reesu, Gowri Vijay; Augustine, Jeyaseelan; Urs, Aadithya B

    2015-01-01

    Establishing the human dental identification process relies upon sufficient post-mortem data being recovered to allow for a meaningful comparison with ante-mortem records of the deceased person. Teeth are the most indestructible components of the human body and are structurally unique in their composition. They possess the highest resistance to most environmental effects like fire, desiccation, decomposition and prolonged immersion. In most natural as well as man-made disasters, teeth may provide the only means of positive identification of an otherwise unrecognizable body. It is imperative that dental evidence should not be destroyed through erroneous handling until appropriate radiographs, photographs, or impressions can be fabricated. Proper methods of physical stabilization of incinerated human dental remains should be followed. The maintenance of integrity of extremely fragile structures is crucial to the successful confirmation of identity. In such situations, the forensic dentist must stabilise these teeth before the fragile remains are transported to the mortuary to ensure preservation of possibly vital identification evidence. Thus, while dealing with any incinerated dental remains, a systematic approach must be followed through each stage of evaluation of incinerated dental remains to prevent the loss of potential dental evidence. This paper presents a composite review of various studies on incinerated human dental remains and discusses their impact on the process of human identification and suggests a step by step approach. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Possibilities for gas turbine and waste incinerator integration

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Jellema, P.; Hirs, Gerard

    1999-01-01

    The aggressive nature of the flue gases in municipal waste incinerators does not allow the temperature of steam in the boiler to rise above 400°C. An increase in steam temperature can be achieved by external superheating in a heat recovery steam generator positioned behind a gas turbine, so that

  11. 26 CFR 1.1502-3 - Consolidated tax credits.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 12 2010-04-01 2010-04-01 false Consolidated tax credits. 1.1502-3 Section 1... (CONTINUED) INCOME TAXES Consolidated Tax Liability § 1.1502-3 Consolidated tax credits. (a) Determination of...) Consolidated limitation based on amount of tax. (i) Notwithstanding the amount of the consolidated credit...

  12. 7 CFR 283.16 - Consolidation of issues.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Consolidation of issues. 283.16 Section 283.16... Claims of $50,000 or More § 283.16 Consolidation of issues. Similar issues involved in appeals by two or...) Disposition of consolidated issues. If the ALJ orders consolidation, the issues consolidated will be...

  13. Incinerators and health. guide for the behavior to have during a local demand of sanitary investigations around a domestic refuse incinerator; Incinerateurs et sante. Guide pour la conduite a tenir lors d'une demande locale d'investigations sanitaires autour d'un incinerateur d'ordures menageres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    11,4 million tons of municipal solid and assimilated waste were incinerated in France in 2000. The 123 incinerators compliant with the Order in Council of January 25, 1991 have undergone significant modifications in the last years, and the incineration techniques used are of great concern to the public. The backfitting to new regulations and the many research works have answered some of the rightful questions of the population on health risks caused by waste incineration. However, many doubts remain and there has been many requests by the local population for epidemiological investigations to be conducted on this issue. The objectives of this document, requested by the Health General Directorate and presented as 'actions to be taken', are to inform the decentralized services of the government and regional epidemiology units of the health problems caused by waste incineration facilities and to help them grasp on a local level the situation met around these facilities. Therefore, this paper provides some scientific arguments to justify the need (or not) for setting up some specific studies as part of an informed public health management. This document is divided in three parts. The first part describes the actions to be taken at the local level. The methodological framework is based on: i) an analysis of the local situation; ii) finding a new definition in terms of public health to the one or more questions raised, and the usefulness to set up one or more health investigations; iii) the relevance of a specific type of study which would allow to answer these questions; and iv) the feasibility of this type of study. The second part briefly describes the various types of health studies and their use as a decision-making tool on waste-incineration facilities. These results stem mainly from the analysis of studies already put forward and carried out in past local situations. The third part points out what is currently found in today's literature on

  14. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 24 CFR 92.608 - Consolidated plan.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Consolidated plan. 92.608 Section 92.608 Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development HOME INVESTMENT PARTNERSHIPS PROGRAM American Dream Downpayment Initiative § 92.608 Consolidated...

  16. 20 CFR 410.646 - Consolidated issues.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Consolidated issues. 410.646 Section 410.646..., Finality of Decisions, and Representation of Parties § 410.646 Consolidated issues. When one or more additional issues are raised by the Administrative Law Judge pursuant to § 410.637, such issues may, in the...

  17. Consolidating Research on Alternative Livelihoods to Tobacco ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Consolidating Research on Alternative Livelihoods to Tobacco Farming ... Researchers will consolidate the lessons learned to date on the health, environmental and social impacts of tobacco farming; the economic condition of tobacco farmers; ... Nutrition, health policy, and ethics in the age of public-private partnerships.

  18. 49 CFR 209.13 - Consolidation.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Consolidation. 209.13 Section 209.13..., DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY ENFORCEMENT PROCEDURES General § 209.13 Consolidation. At the time a matter is set for hearing under subpart B, C, or D of this part, the Chief Counsel may...

  19. 40 CFR 35.109 - Consolidated grants.

    Science.gov (United States)

    2010-07-01

    ... grants. (a) Any applicant eligible to receive funds from more than one environmental program may submit... consolidated budget must identify each environmental program to be included, the amount of each program's funds... consolidated grants must account for grant funds in accordance with the funds' environmental program sources...

  20. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  1. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  2. System of the incineration for the liquid scintillation garbage

    International Nuclear Information System (INIS)

    Naba, Katsumi

    1981-12-01

    In Japan from 1980 the incineration of the used scintillation liquid has been permitted according to the safety guide regulation of Japan Scientific Technology Agency. This incineration method would disperse the radioactivity in local site and destroy the chemicals at the same time. This system are consist of three parts. (1) Filtration and pH. adjustment of liquid garbage. (2) Bubbling vaporization in closed cycle. The temperature of the solution inside vessel is kept from 65 0 C to 85 0 C and the solution is bubbled with nealy 4 0 C circulated air. After the end of distillation, water layer is separated from the organic chemical layer and put it down the drain according to the regulation. (3) The residue is mixed with only the distilled organic chemicals according to the next classification, thereafter incineration is carried out. (a) For under the radioactive concentration of 1 x 10 -3 μCi/ml, the mixed scintillation liquid are burned up in specially designed incinerator. (b) For over the level of 1 x 10 -3 μCi/ml, only the distilled organic chemicals are burned up and the residue will be sent to the Waste Disposal Site. (c) For under the water content of 5% these liquid garbage can be directly are burned up without distillation The residue seemed to be suitable for the combustion of the dried carcased animals as the auxiliary fuels. This incinerator will be able to use as room heater or water heater for the bath without radioactive contamination inside of install room. (author)

  3. SOME APECTS REGARDING THE CONSOLIDATED FINANCIAL STATEMENTS

    Directory of Open Access Journals (Sweden)

    Szora Tamas Atila

    2012-12-01

    Full Text Available The study is divided into four parts: in the introduction are presented the theoretical aspects of the consolidated financial statements and the consolidation methods. During the second part are shown the structure rates calculated prior and after the consolidation, and in the third are calculated the financial rates of return and the effective tax rates of fixed assets. The conclusion of this study presents that although the consolidated entity is not a tax, it presents the group effort without the internal flows between entities within the group. In terms of the world scientific research typology used by the authors, it refers to descriptive research, explanatory research and applied research. In terms of the novelties, brought by this study, it is specifically determined, based on the actual database, the evolution of structure indicators, indicators of balance, the financial profitability indicators of corporate companies prior to and after consolidation.

  4. Control of Bank Consolidated Financial Statements Quality

    Directory of Open Access Journals (Sweden)

    Margarita S. Ambarchyan

    2013-01-01

    Full Text Available The author presents the multiple linear regression model of bank consolidated financial statements quality. The article considers six characteristics that can be used to estimate the level of bank consolidated financial statements quality. The multiple linear regression model was developed, using the results of point-based system of consolidated financial statements of thirty European bank and financial groups on the basis of the developed characteristics. The author offers to use the characteristic significance factor in the process of consolidated financial statements appraisal by points. The constructed regression model is checked on accuracy and statistical significance. The model can be used by internal auditors and financial analytics as an instrument for bank and non-bank consolidated financial statements quality control

  5. Investigation of water accumulation in an offgas test facility HEPA housing

    International Nuclear Information System (INIS)

    Speed, D.L.; Burns, D.B.; Van Pelt, W.B.; Burns, H.H.

    1997-01-01

    The Consolidated Incineration Facility, at the Department of Energy's Savannah River Site, is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. During CIF's pretrial burn campaigns in 1995, an appreciable amount of water was recovered from the HEPA housings. Questions were immediately raised as to the source of the water, and the degree of wetness of the filters during operation. There are two primary issues involved: Water could reduce the life expectancy and performance of the HEPA filters, housing, and associated ducting, and wet HEPAs also present radiological concerns for personnel during filter change-out. A similar phenomenon was noted at the Offgas Components Test Facility (OCTF), a 1/10 scale pilot of CIF's air pollution control system. Tests at OCTF indicated the water's most likely origin to be vapor condensing out from the flue gas stream due to excessive air in-leakage at housing door seals, ducting flanges, and actual holes in the ducting. The rate of accumulation bears no statistical correlation to such process parameters as steam flow, reheater outlet temperature and offgas velocity in the duct. Test results also indicated that the HEPA filter media is moistened by the initial process flow while the facility is being brought on line. However, even when the HEPA filters were manually drenched prior to startup, they became completely dry within four hours of the time steam was introduced to the reheater. Finally, no demonstrable relationship was found between the degree of filter media wetness and filter dP

  6. Consolidated Quarterly Report: Number of potential release sites subject to corrective action

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Cochran, John R.

    2017-04-01

    This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent. The 12 sites in the corrective action process are listed in Table I-1.

  7. 75 FR 51158 - BDB Company-Acquisition Exemption-Consolidated Rail Corporation

    Science.gov (United States)

    2010-08-18

    ... Highway 76).\\2\\ The purpose of the acquisition is to develop a common carrier truck-rail transfer facility \\3\\ and associated rail common carrier service. \\1\\ BDB seeks Board approval now for the acquisition...--Acquisition Exemption--Consolidated Rail Corporation BDB Company (BDB), a noncarrier, has filed a verified...

  8. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  9. Self-consolidating concrete homogeneity

    Directory of Open Access Journals (Sweden)

    Jarque, J. C.

    2007-08-01

    Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores

  10. Behavior of cesium in municipal solid waste incineration

    International Nuclear Information System (INIS)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-01-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily 134 Cs and 137 Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added 133 Cs (stable nuclide) or 134 Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, 133 Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. 134 Cs behaved in a similar fashion as 133 Cs. We found through TG–DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. - Highlights: • Behaviors of Cs on the incineration of the model waste were investigated. • More Cs was moved to fly ash with increasing of equivalence ratio and temperature. • Chemical forms of Cs in the fly ash

  11. Evaluation consolidated under Financial Group Banca Transilvania

    Directory of Open Access Journals (Sweden)

    Chebac Neculina

    2009-06-01

    Full Text Available One of the components of prudence measures adopted by the competentauthorities with the regulation and supervision of financial markets at national andEuropean level is mandatory consolidation of accounts. Romania as member of theEuropean Union it harmonized national regulations with the European consolidation ofaccounts of companies. For the banks have been issued by the appropriate rules by theregulators authority, concerned by National Bank of Romania. In accordance withnational regulations, companies are required to prepare annual consolidated financialstatements may make such situations according to the regulations or accounting inaccordance with Directive VII of the European Economic Community, underInternational Financial Reporting Standards.

  12. The Mixed Waste Management Facility. Preliminary design review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  13. The Mixed Waste Management Facility. Preliminary design review

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones

  14. PCDD/F contamination on surface soil in the vicinity of a hazardous waste incinerator: is it possible a different trend?

    Science.gov (United States)

    Korucu, Mahmut Kemal

    2017-01-01

    This study is the first to investigate the contamination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) on surface soils in the vicinity of the first hazardous waste incinerator of Turkey. In the study, 24 soil samples were taken from a 1625-m-radius circle whose center is the stack of the incinerator. This process was repeated 1 year later. Since the acquired average PCDD/F concentrations of the two sampling campaigns (0.05 and 0.02 ng WHO-toxic equivalent (TEQ)/kg) were meaningfully low compared to the related literatures, a new sampling campaign was carried out to control this inconsistency, but this time in a foreign laboratory (0.56 ng WHO-TEQ/kg). In the same period, eight gas samples were taken from the stack under different operational conditions of the facility. According to the evaluations of the findings, the geographical-meteorological data of the study area and the specific operational conditions of the facility corroborate the concentrations of the first and the second soil samplings rather than the third one. The major underlying reason for the inconsistency of the soil concentrations may be the fact that the data analysis procedures used by the laboratories are different. The author suggests a hypothesis which argues that the soils in the vicinity of a hazardous waste incinerator may have significantly lower concentration levels than in related literatures.

  15. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1986-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  16. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1985-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  17. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  18. Description of the Seibersdorf incineration plant for low level waste

    International Nuclear Information System (INIS)

    Chalupa, G.; Petschnik, G.

    1986-09-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput amounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, cooling column and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, Iodine- and Tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. (Author)

  19. Fluidized bed incineration of a slurry waste from caprolactam production

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; D' Amore, M.; Donsi, G.; Massimilla, L.

    1980-08-01

    Caprolactam tails are a slurry waste produced in the SNIA process for the synthesis of caprolactam. They contain about 65% water, 25% ash and 10% combustible matter. The ashes are low melting, due to the presence of sodium compounds. The incineration of this waste is carried out at temperatures below 600/sup 0/C in beds of silica sand, using a laboratory scale apparatus with a 40 mm ID fluidization column. Variables investigated include sand particle size, slurry flow rate, bed temperature, bed height. The concentrations of CO/sub 2/ and CO are determined continuously in the flue gases. Bed solids are sampled periodically to determine the carbon content. Results of experiments show that the low temperature incineration on a bed of inert solids is a useful technique for the disposal of caprolactam tails. 8 refs.

  20. Destruction of nuclear graphite using closed chamber incineration

    International Nuclear Information System (INIS)

    Senor, D.J.; Hollenberg, G.W.; Morgan, W.C.; Marianowski, L.G.

    1994-01-01

    Closed chamber incineration (CCI) is a novel technique by which irradiated nuclear graphite may be destroyed without the risk of radioactive cation release into the environment. The process utilizes an enclosed combustion chamber coupled with molten carbonate fuel cells (MCFCs). The transport of cations is intrinsically suppressed by the MCFCs, such that only the combustion gases are conducted through for release to the environment. An example CCI design was developed which had as its goal the destruction of graphite fuel elements from the Fort St. Vrain reactor (FSVR). By employing CCI, the volume of high level waste from the FSVR will be reduced by approximately 87 percent. Additionally, the incineration process will convert the SiC coating on the FSVR fuel particles to SiO 2 , thus creating a form potentially suitable for direct incorporation in a vitrification process stream. The design is compact, efficient, and makes use of currently available technology

  1. Particulate collection in a low level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Leith, D.; First, M.W.

    1976-01-01

    As designed, sintered stainless steel filters will clean the gas from the secondary cyclone at a low level radioactive waste incinerator. Using bench scale apparatus, asbestos floats and diatomaceous earth were evaluated as filter aids to prevent clogging of the sintered metal interstices and to decrease filter penetration. Both precoats prevented irreversible pressure drop increase, and decreased cold DOP penetration from 80% to less than 1%. To collect the same quantity of fly ash, less diatomaceous earth was needed than asbestos floats. A back-up study evaluated a moving bed of sodium carbonate pellets in lieu of the sintered metal filters. Since identical sodium carbonate pellets are used to neutralize hydrogen chloride in the incinerator, their use in a moving bed has the advantages of trouble free disposal and cost free replacement. Co, counter, and cross-current beds were studied and gave fly ash penetrations less than 0.1% at moderate pressure drop

  2. MINT Incineration and Renewable Energy Centre - experience and challenge

    International Nuclear Information System (INIS)

    Mohamad Puad Abu

    2005-01-01

    MIREC is the acronym for MINT Incineration and Renewable Energy Centre which was established in the year 2000 to carry out research and provide services on matters related to incineration technology and renewable energy. Throughout this period, many challenges and experiences has been faced by MIREC. Three research contracts with the value of nearly RM 1 million have been signed. Four laboratory scale burners have been designed and fabricated. Three mathematical models have been developed. Three programs on enhancement image have been published. Three papers have been published in the international journal. In order to achieve all these, many obstacles were faced by MIREC. This paper will discuss on the experiences and challenges that could be shared together with MINT staff. (Author)

  3. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  4. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  5. A municipal waste incineration plant with waste transportation by railway; Une usine de valorisation thermique des dechets urbains avec liaison ferroviaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The new incineration plant for municipal waste of the city of Lausanne, Switzerland features quite specific aspects. It is designed to yearly process 160,000 t of municipal refuse from 145 municipalities. 60 MW of heat produced in the two 40 MW ovens are fed into the Lausanne district heating network and the remaining 20 MW are used for power generation. The electricity produced corresponds to the consumption of 18,000 households. To avoid pollution in the plant neighbourhood, the major part of the waste reaches the plant through a 3.8 km tunnel, the transportation facility being an underground train. At the supply end of the tunnel, which is located in an industrial area, containers full of waste are readily transferred from the collecting lorries to the railway wagons. This transfer is done without any crane. The incineration plant as well as ventilation and lighting in the building are highly integrated and automatically controlled.

  6. A Community Organizing Case Study: An Analysis of Cap-It's Strategy to Prevent the Location of a Toxic Waste Incinerator in Their Community.

    Science.gov (United States)

    Jacobs, J

    1992-01-01

    With the great proliferation of chemical manufacturing in the past half-century, the dilemma of dealing with the waste produced has become an increasing problem facing communities. One method that is gaining increased acceptance by both government and industry is incineration. Many citizens have formed groups to protest these facilities because of their concerns about health risks, especially exposure to carcinogens. This case study profiles one such group, CAP-IT, a collection of middle-class residents living in a small working-class town and their successful battle to prevent the siting of a hazardous waste incinerator. CAP-IT's strategy will be critiqued using methods advanced by Lee Staples, Nicholas Freudenburg and Kurt Lewin to demonstrate the power of community organizing activities.

  7. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Consolidated Audit And Compliance System (CACS)

    Data.gov (United States)

    US Agency for International Development — Consolidated Audit and Compliance System: is an audit findings management and reporting system. CACS is an implementation of the Agency Secure Image and Storage...

  9. Rate type isotach compaction of consolidated sandstone

    NARCIS (Netherlands)

    Waal, J.A. de; Thienen-Visser, K. van; Pruiksma, J.P.

    2015-01-01

    Laboratory experiments on samples from a consolidated sandstone reservoir are presented that demonstrate rate type compaction behaviour similar to that observed on unconsolidated sands and soils. Such rate type behaviour can have large consequences for reservoir compaction, surface subsidence and

  10. Special Consolidated Checklists for Toxicity Characteristics Revisions

    Science.gov (United States)

    This checklist consolidates the changes to the Federal code addressed by the Toxicity Characteristic (TC) Rule [55 FR 11798; March 29, 1990; Revision Checklist 74] and subsequent revisions which have occurred through December 31, 2002.

  11. Acute Exercise and Motor Memory Consolidation

    DEFF Research Database (Denmark)

    Thomas, Richard

    implications for different settings, including rehabilitation, schools and sports, it is currently unclear to what extent the parameters within exercise itself differentially affect the consolidation process of motor skill learning. The aim of this thesis was, therefore, to investigate the variables...... of exercise intensity, timing and type on the consolidation of visuomotor skill learning, to obtain further understanding of the behavioral effects and underlying mechanisms. Study I focused on the role of exercise intensity and included a low (EX45: 45% Wmax) and high (EX90: 90% Wmax) intensity aerobic......-acquisition level and CON. There were no between-group differences 1 day for the exercise groups. Exercise type did not differentially affect the consolidation and retention of the visuomotor skill learning. Conclusions: Acute exercise modulates the consolidation of newly acquired motor skills in humans...

  12. Skilled Nursing Facility (SNF) MEDPAR Limited Data Set (LDS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MedPAR consolidates Inpatient Hospital or Skilled Nursing Facility (SNF) claims data from the National Claims History (NCH) files into stay level records. The...

  13. Review of organic nitrile incineration at the Toxic Substances Control Act Incinerator

    International Nuclear Information System (INIS)

    1997-10-01

    Lockheed Martin Energy Systems, Inc. (LMES) operates the East Tennessee Technology Park (ETTP), formerly called the Oak Ridge K-25 Site, where uranium was enriched under contract with the US Department of Energy (DOE). Currently, ETTP missions include environmental management, waste management (WM), and the development of new technologies. As part of its WM mission, ETTP operates the TSCA (Toxic Substances Control Act) Incinerator (TSCAI) for treatment of hazardous waste and polychlorinated biphenyls (PCBs) contaminated with low-level radioactivity. Beginning in the autumn of 1995, employees from diverse ETTP buildings and departments reported experiencing headaches, fatigue, depression, muscle aches, sleeplessness, and muscle tremors. These symptoms were judged by a physician in the ETTP Health Services Department to be consistent with chronic exposures to hydrogen cyanide (HCN). The National Institute for Occupational Safety and Health (NIOSH) was called in to perform a health hazard evaluation to ascertain whether the employees' illnesses were in fact caused by occupational exposure to HCN. The NIOSH evaluation found no patterns for employees' reported symptoms with respect to work location or department. NIOSH also conducted a comprehensive air sampling study, which did not detect airborne cyanides at the ETTP. Employees, however, expressed concerns that the burning of nitrile-bearing wastes at the TSCAI might have produced HCN as a combustion product. Therefore, LMES and DOE established a multidisciplinary team (TSCAI Technical Review Team) to make a more detailed review of the possibility that combustion of nitrile-bearing wastes at the TSCAI might have either released nitriles or created HCN as a product of incomplete combustion (PIC)

  14. Healthcare mergers and acquisitions: strategies for consolidation.

    Science.gov (United States)

    Zuckerman, Alan M

    2011-01-01

    The passage of federal healthcare reform legislation, in combination with other factors, makes it likely that the next few years will be a major period of consolidation for healthcare organizations. This article examines the seven key forces reshaping healthcare delivery--from insurance industry consolidation to cost inflation to the increasing gap between financially strong and struggling providers--and provides advice for organizations on both sides of an acquisition.

  15. Consolidating Air Force Maintenance Occupational Specialties

    Science.gov (United States)

    2016-01-01

    these questions, the impact of AFS consolidation on active duty KC-135 maintenance personnel at MacDill, McConnell , and Fairchild Air Force Bases...readiness? The analysis presented here considers the impact of AFS consolidation on active-duty KC- 135 maintenance personnel at MacDill, McConnell ... Concept for Air Force Maintenance: Conclusions from Analysis of C-130, F-16, and KC-135 Fleets, Santa Monica, Calif.: RAND Corporation, MG-919-AF, 2010

  16. Shipment consolidation by terminals and vehicles

    OpenAIRE

    González-Ramírez, Rosa G.; Askin, Ronald G.; Smith, Neale R.; Villalobos, René

    2009-01-01

    This project designs and implements a new module in a logistics analysis tool called”Logistika” that was developed by some graduate students in ASU. Initially, Logistikaonly had available a “Plant location module”, but this work makes an extension toinclude a new module that is called “Shipments Consolidation module”. The objectiveof the module is to determine the best distribution strategy for products manufacturedin Mexico to customers located in US. The tool explores two consolidation stra...

  17. Saskatchewan Energy Holdings Ltd. consolidated financial statements

    International Nuclear Information System (INIS)

    1991-01-01

    The consolidated financial statements of Saskatchewan Energy Holdings Ltd. (formerly Saskatchewan Energy Corporation) as of December 31, 1990, and the consolidated statements of earnings and retained earnings and changes in cash position for the year are presented. Data include an inventory of supplies, natural gas in storage, property, plant and equipment. Financial statements are also presented for the year ending December 31, 1989, with comparative figures for the seven months ending December 31, 1988

  18. Deferoxamine expedites consolidation during mandibular distraction osteogenesis.

    Science.gov (United States)

    Donneys, Alexis; Deshpande, Sagar S; Tchanque-Fossuo, Catherine N; Johnson, Kelsey L; Blough, Jordan T; Perosky, Joseph E; Kozloff, Kenneth M; Felice, Peter A; Nelson, Noah S; Farberg, Aaron S; Levi, Benjamin; Buchman, Steven R

    2013-08-01

    A limitation of mandibular distraction osteogenesis (DO) is the length of time required for consolidation. This drawback subjects patients to possible pin-site infections, as well as a prolonged return to activities of normal daily living. Developing innovative techniques to abridge consolidation periods could be immensely effective in preventing these problematic morbidities. Deferoxamine (DFO) is an angiogenic activator that triggers the HIF-1α pathway through localized iron depletion. We previously established the effectiveness of DFO in enhancing regenerate vascularity at a full consolidation period (28 days) in a murine mandibular DO model. To investigate whether this augmentation in vascularity would function to accelerate consolidation, we progressively shortened consolidation periods prior to μCT imaging and biomechanical testing (BMT). Three time points (14d, 21d and 28d) were selected and six groups of Sprague-Dawley rats (n = 60) were equally divided into control (C) and experimental (E) groups for each time period. Each group underwent external fixator placement, mandibular osteotomy, and a 5.1 mm distraction. During distraction, the experimental groups were treated with DFO injections into the regenerate gap. After consolidation, mandibles were imaged and tension tested to failure. ANOVA was conducted between groups, and p consolidation the experimental group demonstrated significant increases in bone volume fraction (BVF), bone mineral density (BMD) and ultimate load (UL) in comparison to non-treated controls. The benefit of treatment was further substantiated by a striking 100% increase in the number of bony unions at this early time-period (C:4/10 vs. E:8/10). Furthermore, metrics of BVF, BMD, Yield and UL at 14 days with treatment demonstrated comparable metrics to those of the fully consolidated 28d control group. Based on these findings, we contend that augmentation of vascular density through localized DFO injection delivers an efficient means

  19. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    Science.gov (United States)

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The use of incinerated pig head in dental identification simulation.

    Science.gov (United States)

    Berketa, John; James, Helen; Langlois, Neil; Richards, Lindsay

    2015-12-01

    The aim of this exercise was to simulate a disaster victim identification scenario to allow training in documentation of postmortem incinerated remains and reconciliation of dental data. Varying number of restorations were placed in ten pig heads. The teeth and restorations were charted, with the restorations radiographed and documented, creating an ante-mortem data set. The following day the heads were cremated. Following cooling and recording they were transported for a post-mortem examination by trained specialist odontologists who were not involved in the initial antemortem phase. Recordings included the charting of teeth, restorations, lost teeth, and radiographs to simulate a post-mortem examination. A reconciliation of postmortem to antemortem information was attempted. There was an unacceptable amount of error in the postmortem examination of the heads. The errors related mainly to avulsed teeth and incorrect opinion of which charted surfaces the restorations were placed upon. Also noted were a considerable number of root fractures occurring beneath the crestal bone. This observation does not mimic the evidence observed in human incinerated teeth where the crowns tend to fracture off the roots at the dentin-enamel junction. The use of incinerated pig (Sus Scrofa) heads is not an ideal model for forensic odontology training in disaster victim identification. Differences in both anatomy and behavior following exposure to heat were shown to hamper documentation and subsequent comparison to antemortem data.

  1. Seminoe-Kortes transmission line/substation consolidation project, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The existing switchyards at Western Area Power Administration's (WESTERN) Seminoe and Kortes facilities, located approximately 40 miles northeast of Rawlines, Carbon County, Wyoming, were constructed in 1939 and 1951, respectively. The circuit breakers at these facilities are beyond or approaching their service life and need to be replaced. In addition, the switchyards have poor access for maintenance and replacement of equipment, and their locations create potential for oil spills into the North Platte River. WESTERN is proposing to consolidate the switchyard facilities into one new substation to provide easier access, restore proper levels of system reliability, and decrease the potential for oil contamination of the river. This environmental assessment (EA) was prepared to evaluate the impacts of the proposed Seminoe-Kortes Consolidation Project. 57 refs., 12 figs., 8 tabs.

  2. BWR consolidation system final design report

    International Nuclear Information System (INIS)

    Garner, G.L.; Kelly, M.J.; Larsen, W.R.

    1993-05-01

    Because of delays in the opening of a permanent geologic repository to accept spent fuel from nuclear reactor plants, several utilities are seeking additional off-site storage to avert premature shutdown. Fuel rod consolidation is a proven, viable option for pressurized water reactor (PWR) plants, but until now, no consolidation system addressed boiling water reactor (BWR) spent-fuel assemblies.The purpose of this project, jointly funded by the Empire State Electric Energy Research Company (ESEERCO) and the Electric Power Research Institute (EPRI), is to develop a system for consolidating BWR spent fuel assemblies. This design will provide more efficient storage in reactor spent-fuel pools. The design goal is a 2:1 consolidation of the fuel rods and a minimum 10:1 compaction of the non-fuel bearing components. in addition, the consolidation system must be operationally compatible with BWR reactor plants and be economically viable with other forms of supplementary on-site storage. The work began in Lynchburg, Virginia on May 6, 1991 and concluded on September 30, 1992 with the delivery of the final report. The design achieves all of the project goals. Furthermore, consolidation of BWR spent-fuel assemblies is feasible, compatible with reactor plant operations and potentially the lowest cost option for a utility seeking to add oil-site storage capacity

  3. Serial practice impairs motor skill consolidation.

    Science.gov (United States)

    Neville, Kristin-Marie; Trempe, Maxime

    2017-09-01

    Recent reports have revealed that motor skill learning is impaired if two skills are practiced one after the other, that is before the first skill has had the time to become consolidated. This suggests that motor skills should be practiced in isolation from one another to minimize interference. At the moment, little is known about the effect of practice schedules high in contextual interference on motor skill consolidation. In Experiment 1, we investigated whether a serial practice schedule impairs motor skill consolidation. Participants had to learn two distinct sequences of finger movements (A and B) under either a blocked practice schedule or a serial practice schedule before being retested the following day. A control group also practiced Sequence A only. Our results revealed that a blocked practice schedule led to no interference between the sequences, whereas a serial practice schedule impaired the consolidation of Sequence B. In Experiment 2, we investigated the origin of the interference caused by a serial practice schedule by replacing the physical practice of Sequence A with either the observation of a model performing Sequence A or by asking participants to produce random finger movements. Our results revealed that both tasks interfered with the consolidation of Sequence B. Thus, we suggest that a serial practice schedule impairs motor skill consolidation through a conflict in the brain networks involved in the acquisition of the cognitive representation of the sequence and its execution.

  4. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  5. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  6. Dampak Pengolahan Limbah Padat Medis pada Petugas Incinerator di RSUP H. Adam Malik Tahun 2014

    OpenAIRE

    Darwin

    2016-01-01

    Adam Malik Central General Hospital causes some complaints from the incinerator operators such as wounded by spuit needles, wounded by broken glasses, and difficult to breathe because they inhale incinerator smoke or gas in the medical solid waste. Therefore, job safety and health in the hospital, especially in managing medical solid waste should be done. The research was qualitative which was aimed to analyze the effect of K3 (Job safety and health) n incinerator operators at H. Adam ...

  7. UK: Technical data for waste incineration background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...... and output of emissions to the environment caused by the incineration. The work has been performed as part of the EUREKA project EUROENVIRON 1296: LCAGAPS, sponsored by the Danish Agency for Industry and Trade. This report presents a compilation of technical data on waste incineration that serve...... as background for a model of incineration processes to be used in the inventory analysis of LCA....

  8. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of co...... political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China.......The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits...

  9. Operational testing of an electrically fired Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Holmes, H.; Charlesworth, D.L.

    1987-01-01

    Combustible 238 Pu waste is generated from normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. An electrically fired, two-stage incineration process is being developed to use incineration to process and recovery plutonium from the waste. A prototype incinerator is being tested to assess its capability to be remotely operated and maintained. Technical development is focusing on continuous feeding, vacuum control, remote operability and mechanical integrity of the system, ash burnout, and life of the belt in the primary incinerator chamber. 6 figs., 5 tabs

  10. Design of municipal solid waste incinerator for use in semi-arid regions

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2012-08-01

    Full Text Available The paper treats the design of a municipal solid waste incinerator suited to the semiarid regions with northern Nigeria and Niger Republic in West Africa as the study area. Proximate and ultimate analyses results from the solid waste were used as basis for calculations, using standard formulas and correlations. The calorific value of the solid waste samples in the study area is not high enough to sustain an incineration process and it ranges from 5.024 MJ/kg to 5.867 MJ/kg. For these types of low calorific value fuels, the parallel flow concept was found to be the appropriate type of incinerator. The solid waste to be fed in the incinerator needs to be mixed with 50% of supplementary fuel in the form of readily available bagasse to make it up to the required lower calorific value. Major characteristics of the designed municipal solid waste incinerator were: total volume of incinerator chamber: 82.5 m3, length of the incinerator bed: 11m; width of the incinerator bed: 3m and height of the incinerator chamber: 2.5 m, while the suitable adiabatic flame temperature was found to be 1,587 K.

  11. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    International Nuclear Information System (INIS)

    Naba, K.; Nakazato, K.; Kataoka, K.

    1993-01-01

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well

  12. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  13. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  14. Mathematical modelling of MSW incineration on a travelling bed.

    Science.gov (United States)

    Yang, Y B; Goh, Y R; Zakaria, R; Nasserzadeh, V; Swithenbank, J

    2002-01-01

    The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modelling and understanding of the incineration process. In this paper, governing equations for mass, momentum and heat transfer for both solid and gaseous phases in a moving bed in a solid-waste incineration furnace are described and relevant sub-models are presented. The burning rates of volatile hydrocarbons in the moving bed of solids are limited not only by the reaction kinetics but also the mixing of the volatile fuels with the under-fire air. The mixing rate is averaged across a computation cell and correlated to a number of parameters including local void fraction of the bed, gas velocity and a length scale comparable to the particle size in the bed. A correlation equation is also included to calculate the mixing in the freeboard area immediately next to the bed surface. A small-scale fixed bed waste incinerator was built and test runs were made in which total mass loss from the bed, temperature and gas composition at different locations along the bed height were measured. A 2-D bed-modelling program (FLIC) was developed which incorporates the various sub-process models and solves the governing equations for both gases and solids. Thermal and chemical processes are mainly confined within a layer about 5-9 times in thickness of the averaged particle size in the burning bed. For a large part of the burning process, the total mass loss rate was constant until the solid waste was totally dried out and a period of highly rising CO emission followed. The maximum bed temperature was around 1200 K. The whole burning process ended within 60 min. Big fluctuations in species concentration were observed due to channelling and subsequent 'catastrophic' changes in the local bed conditions. Reasonably good agreement between modelling and measurements has been achieved. Yet the modelling work is complicated by the channelling phenomenon in the bed. Numerical simulations

  15. 7 CFR 1735.19 - Mergers and consolidations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Mergers and consolidations. 1735.19 Section 1735.19... Basic Policies § 1735.19 Mergers and consolidations. RUS does not make loans for the sole purpose of merging or consolidating telephone organizations. After a merger or consolidation, RUS will consider...

  16. Teaching Consolidations Accounting: An Approach to Easing the Challenge

    Science.gov (United States)

    Murphy, Elizabeth A.; McCarthy, Mark A.

    2010-01-01

    Teaching and learning accounting for consolidations is a challenging endeavor. Students not only need to understand the conceptual underpinnings of the accounting requirements for consolidations, but also must master the complex accounting needed to prepare consolidated financial statements. To add to the challenge, the consolidation process is…

  17. 7 CFR 766.107 - Consolidation and rescheduling.

    Science.gov (United States)

    2010-01-01

    ... on any of the original notes being consolidated and rescheduled. (3) At the time of consolidation and... interest on the loan at the time of consolidation and rescheduling. (2) The Agency adds protective advances for the payment of real estate taxes to the principal balance at the time of consolidation and...

  18. FACSIM/MRS-1: Cask receiving and consolidation performance assessment

    International Nuclear Information System (INIS)

    Lotz, T.L.; Shay, M.R.

    1987-06-01

    A simulation analysis was completed to assess the performance of the shipping cask receiving and spent-fuel handling, consolidation and canistering operations of the Monitored Retrievable Storage (MRS) facility. One purpose of this evaluation was to estimate the limits of MRS operational capabilities and factors leading to those limitations. The model used to obtain the performance assessment, FACSIM/MRS-1, is one of two components of the FACSIM model developed by PNL's simulation effort for the nuclear waste-handling facility. FACSIM/MRS-1 provides the user with information about lag-storage requirements, machine use, cask queues, welder queues, and cask process and cask turnaround times. The model can help determine the effect that the following activities have on operating efficiency: (1) receiving multiple cask shipments, when rail-cask or truck-cask shipments arrive at the facility in groups of two or more, and (2) operating the facility five days per week, three shifts per day or seven days per week, three shifts per day for any conditions. In addition, sensitivity to equipment failure frequency and the time needed for equipment repair can be studied. Information on the above operating characteristics may be obtained for any spent-fuel rate, any split of shipments between truck and rail transport, or any split of boiling water reactor/pressurized water reactor fuel

  19. Plasma-thermal processing and incineration of wastes in a shaft incinerator with a combustible filtering material

    Science.gov (United States)

    Kalitko, V. A.; Mossé, A. L.

    2000-09-01

    The authors report the basic technological principles and the special features of a method of combined plasma-thermal processing and incineration of harmful wastes in a shaft incinerator under a layer of the charge of such a well-filtering and well-combustible material as wood sawdust, which absorbs up to 99% of the aerosols of waste gases by fixing and concentrating them in the ash. A calculated-analytical estimate of the filtration properties of wood sawdust is obtained as a function of its dispersity, the thickness of the charge layer, and the filtration rate of the waste gases. Determination is made of the optimum design relations and the parameters of charging of a filtering material under different conditions of processing of wastes, including moistening and impregnation of wood sawdust by an aqueous solution of sorbents to absorb harmful metals. The calculated results are compared and demonstrate consistency with the data on the filtration properties of wood sawdust in other technologies, including thermal processing of radioactive wastes in a similar shaft incinerator.

  20. Conditioning of alpha and beta-gamma ashes of incinerator, obtained by radioactive wastes incinerating and encapsulation in several matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.

    1993-01-01

    In this final report, the work carried out, and the results, obtained on the ash incinerator conditioning study, by means of encapsulation in several matrices, are presented. Three encapsulation matrices were checked: - a ternary cement, containing OPC, blast furnace slag and flying ash, - a two component epoxide system, - an epoxide-cement compound matrix. Three ash categories were employed: - real alpha ash, coming from plutonium bearing wastes, - ash, from inactive combustible waste, obtained by treatment in an incinerator prototype, - ash coming from inactive waste incineration plant. Using three different matrices, the encapsulated form properties were determined: at the laboratory scale, the encapsulating formulation was established, and physico mechanical data were obtained, - on active encapsulated forms, containing a calculated amount of 238 Pu, a radiolysis study was performed in order to measure the composition and volume of the radiolytic gas flow, - at the industrial scale, a pilot plant operating the polyvalent encapsulating process, was designed and put into service. Bench-scale experiments were done, on alpha ash embedded forms using the modified sulphur cement matrix as embedding agent. 4 refs., 30 figs., 27 tabs

  1. Environmental Restoration Operations: Consolidated Quarterly Report January -March 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the January, February, and March 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III. This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent.

  2. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  3. The consolidation of annual accounts in the Swiss Federal Government

    OpenAIRE

    Vollenweider, Petra

    2011-01-01

    Financial reporting in the public sector is influenced by the private sector accounting standards. The Swiss Federal Government has recently started to prepare consolidated financial statements. The purpose of this study is to describe how the Swiss Federal Government is doing its consolidated financial statements. Theoretically there are different consolidation theories and methods. The choice of consolidation method can explain which consolidation theory is used when the financial statement...

  4. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 1

    International Nuclear Information System (INIS)

    1987-01-01

    This design report describes the NUS final design of the Prototype Spent Nuclear Fuel Rod Consolidation System. This summary presents the approach and the subsequent sections describe, in detail, the final design. Detailed data, drawings, and the design Basis Accident Report are provided in Volumes II thru V. The design as presented, represents one cell of a multicell facility for the dry consolidation of any type of PWR and BWR fuel used in the United States LWR industry that will exceed 1% of the fuel inventory at the year 2000. The system contains the automatically-controlled equipment required to consolidate 750MT (heavy metal)/year, at 75% availability. The equipment is designed as replaceable components using state-of-the-art tchnology. The control system utilizes the most advanced commercially available equipment on the market today. Two state-of-the-art advanced servo manipulators are provided for system maintenance. In general the equipment is designed utilizing fabricated and commercial components. For example, the main drive systems use commercially available roller screws. These rollers screws have 60,000 hours of operation in nuclear power plants and have been used extensively in other applications. The motors selected represent the most advanced designed servo motors on the market today for the precision control of machinery. In areas where precise positioning was not required, less expensive TRW Globe motors were selected. These are small compact motors with a long history of operations in radiation environments. The Robotic Bridge Transporters are modified versions of existing bridge cranes for remote automatic operations. Other equipment such as the welder for fuel canister closure operations is a commercially available product with an operating history applicable to this process. In general, this approach was followed throughout the design of all the equipment and will enable the system to be developed without costly development programs

  5. Neural representations for newly learned words are modulated by overnight consolidation, reading skill, and age.

    Science.gov (United States)

    Landi, Nicole; Malins, Jeffrey G; Frost, Stephen J; Magnuson, James S; Molfese, Peter; Ryherd, Kayleigh; Rueckl, Jay G; Mencl, William E; Pugh, Kenneth R

    2018-03-01

    Word learning depends not only on efficient online binding of phonological, orthographic and lexical information, but also on consolidation of new word representations into permanent lexical memory. Work on word learning under a variety of contexts indicates that reading and language skill impact facility of word learning in both print and speech. In addition, recent research finds that individuals with language impairments show deficits in both initial word form learning and in maintaining newly learned representations over time, implicating mechanisms associated with maintenance that may be driven by deficits in overnight consolidation. Although several recent studies have explored the neural bases of overnight consolidation of newly learned words, no extant work has examined individual differences in overnight consolidation at the neural level. The current study addresses this gap in the literature by investigating how individual differences in reading and language skills modulate patterns of neural activation associated with newly learned words following a period of overnight consolidation. Specifically, a community sample of adolescents and young adults with significant variability in reading and oral language (vocabulary) ability were trained on two spoken artificial lexicons, one in the evening on the day before fMRI scanning and one in the morning just prior to scanning. Comparisons of activation between words that were trained and consolidated vs. those that were trained but not consolidated revealed increased cortical activation in a number of language associated and memory associated regions. In addition, individual differences in age, reading skill and vocabulary modulated learning rate in our artificial lexicon learning task and the size of the cortical consolidation effect in the precuneus/posterior cingulate, such that older readers and more skilled readers had larger cortical consolidation effects in this learning-critical region. These findings

  6. Cleavages in Serbia and consolidation of democracy

    Directory of Open Access Journals (Sweden)

    Antonić Slobodan

    2007-01-01

    Full Text Available The article discusses the sociological obstacles for consolidation in Serbia after 2000. The author claim that the reason for slow consolidation lies squarely with the type of political cleavages that continue to dominate Serbian politics. Throughout Eastern Europe, symbolic conflicts relatively quickly gave way to distributional conflicts during the 1990s. Distributional conflicts typically result in compromise, which is why they are regarded as favorable to consolidation of democracy. Other type of dominant cleavages is ideological and symbolical. Ideological cleavages divide the body politics to those who were loyal to the previous regime and to those who support the current reformists, and symbolical cleavages are identity-based. The inability to remove the symbolical issues from the political agenda in seven years is what undermines the weak foundation for democracy in Serbia today. Due to the resistance of symbolical and ideological cleavages (patriots/- Europeans, old regime forces/reformers etc. rather than socio-economic cleavages, author defines the party system of Serbia as deeply polarized with the existence of anti-system parties. Deep polarization and the existence of the anti system parties is what undermines consolidation of democracy. The author shows that the existence of anti-system parties is precisely the reason why Serbia cannot get out of the spirit of electoral authoritarianism and why electoral democracy keeps failing to consolidate.

  7. A Comparison of Organic Emissions from Hazardous Waste Incinerators Versus the 1990 Toxics Release Inventory Air Releases

    Science.gov (United States)

    Incineration is often the preferred technology for disposing of hazardous waste and remediating Superfund sites. The effective implementation of this technology is frequently impeded by strong public opposition to hazardous waste incineration (HWI). One of the reasons cited for t...

  8. Possible additional exposure to dioxin and dioxin-like compounds from waste incineration. Biomonitoring using human milk and animal samples

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, C.; M. Fatima Reis; J. Pereira Miguel [Inst. of Preventive Medicine, Univ. of Lisbon (Portugal); Murk, A. [Wageningen Univ., Dept. of Toxicology (Netherlands)

    2004-09-15

    In the ambit of an Environmental Health Survey Program relative to a MSW facility, which has been operating near to Lisbon since 1999 a biomonitoring study using human breast milk has been performed. Specific aims of this study were: (1) determine whether living in the vicinity of the incinerator increases dioxin maternal body burden and accordingly perinatal (intra-uterus and lactacional) exposure; (2) to investigate the possibility of increased human exposure to dioxins and dioxin-like compounds via locally produced food items from animal origin. Therefore, levels of dioxins and dioxin-like compounds have been determined in human milk samples collected in the vicinity of the incinerator and in a control area, for comparison. From the same areas, cow and sheep milk and eggs from free-range chickens have also been collected to get an indication of possible local additional exposure to air-borne dioxins via the food chain. Analyses of TCDD-equivalents (TEQs) were mainly performed with a reporter gene assay for dioxin-like activity, the DR-CALUX bioassay (Dioxin Responsive Chemical Activated LUciferase gene eXpression).To determine congeners profile, some human milk samples have also been analysed for PCDD/Fs and relevant dioxin-like PCBs, by using high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS). Both the Ethics Committees of the Faculty of Medicine, University of Lisbon, and of the Maternity Dr. Alfredo da Costa have approved the study protocol.

  9. Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum.

    Science.gov (United States)

    Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger

    2016-12-01

    In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Technical data for waste incineration - background for modelling of product-specific emissions in a life cycle assessment context

    DEFF Research Database (Denmark)

    Erichsen, Hanne; Hauschild, Michael Zwicky

    with the disposal of a product through waste incineration. Based on knowledge of the material composition of the product and the technology applied in the waste incineration plant, the model estimates input of energy and auxiliary materials required for the incineration of the product and generation of energy...... and output of emissions to the environment caused by the incineration. The work has been performed as part of the EUREKA project EUROENVIRON 1296: LCAGAPS, sponsored by the Danish Agency for Industry and Trade....

  11. Investigations of stone consolidants by neutron imaging

    Science.gov (United States)

    Hameed, F.; Schillinger, B.; Rohatsch, A.; Zawisky, M.; Rauch, H.

    2009-06-01

    The chemical preservation and structural reintegration of natural stones applied in historical buildings is carried out by the use of different stone strengtheners. As these agents contain hydrogen, they offer good properties for neutron imaging. The main interest in the restoration process is the development of a suitable stone consolidant. In cooperation with the St. Stephans Cathedral and the geologists at Vienna University of Technology, we are investigating the penetration depth and distribution of different stone consolidants. These studies are being carried out with different stone samples, mostly porous natural building stones, limestones and sandstones. The two strengtheners used in this study are ethyl silicate ester (Wacker OH100) and dissolved polymethylmetacrylate (PMMA, Paraloid B72). Neutron radiography and neutron tomography can be used successfully to visualize the distribution of consolidants both in two and three dimensions.

  12. New alloys for high temperature applications in incineration plants

    International Nuclear Information System (INIS)

    Martinz, H.P.; Koeck, W.

    1993-01-01

    The hot components of incineration plants exposed to temperatures between 800 and 1,200 C like boilers, grates, thermocouple sheaths and nozzles suffer from severe joint slag and hot gas attack. Considering corrosion resistance only, ceramic materials show excellent performance under these conditions. But because of the ceramics' brittleness metallic materials exhibit an overall advantage although being corroded faster. Within the class of suitable metals PM-ODS (oxide dispersion strengthened)-superalloys based on iron or nickel and PM-Cr-base-alloys are among the most promising ones. This can be derived from various laboratory and field tests which were performed up to now. Laboratory oxidation tests indicate that these new alloys can be used at temperatures up to 1,300 C in hot air. High temperature erosion tests with quartz particles show that PM 2,000 (Fe 19,5Cr5,5Al0,5Ti0,5Y 2 O 3 ) and Ducropur (99.7% Cr) have almost the same resistance against particle impact as alumina or zirconia at 900 C. The corresponding laboratory and field tests under typical joint slag and hot gas conditions at temperatures up to 1,200 C show good results for PM 2,000 and already lead to the actual application of boiler components. Extensive testing has been performed in the field of municipal waste incineration. Depending on temperature, slag and hot gas composition selected grades of the PM-ODS and Cr-base-alloy-group give satisfactory results in the field tests. In the pulp industry black liquor, an alkaline solution with high concentrations of organic waste, is incinerated for the recovery of caustic soda. Flame sprayed coatings of Ducrolloy Cr50Ni give a sixfold increase of the lifetime of the burner nozzles compared to unprotected stainless steel

  13. Emission of greenhouse gases from controlled incineration of cattle manure.

    Science.gov (United States)

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  14. Recovery and distribution of incinerated aluminum packaging waste.

    Science.gov (United States)

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Long term plant biomonitoring in the vicinity of waste incinerators in The Netherlands

    NARCIS (Netherlands)

    Dijk, van C.J.; Doorn, van W.; Alfen, van A.J.

    2015-01-01

    Since the mid-nineties new waste incineration plants have come into operation in the Netherlands. Burning of waste can result in the emission of potentially toxic compounds. Although the incineration plants must comply with strict conditions concerning emission control, public concern on the

  16. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Characterization of deposits and their influence on corrosion in waste incineration plants in Denmark

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2001-01-01

    A program has been initiated in Denmark to investigate the aggressive environment in various waste incineration plants. The results described are the preliminary results from one waste incineration plant. Deposits and corrosion products have been removed from various locations in the boiler...

  18. Flaring versus thermal incineration of waste gases in the oil and gas industry

    International Nuclear Information System (INIS)

    Smolarski, G.M.

    1999-01-01

    The efficient combustion of waste gases at oil processing plants, battery or well sites is discussed. Several problem situations are examined, field test results are reviewed, and custom design systems are explained including modifications to systems to conserve fuel. It is shown that combustion of waste gases in fuel efficient thermal incinerators is a practical means of disposal, particularly for sour or toxic gas of low heating value. These gases contain noxious compounds that may cause odours or adverse health effects. Results of a field tests of a portable in-situ incinerator show that compared to flaring (to oxide waste gas), incineration is a more efficient form of waste management. Emission tests also prove the superior performance of incineration. The feasibility of incinerating oil storage tank vapours was also demonstrated. Tests were also conducted with a fuel-efficient Glycol Still Off-Gas Incinerator which was developed to control toxic waste emissions. Glycol dehydration removes water vapour from natural gas. The key compounds that are removed by glycol are aromatic hydrocarbons or BTEX compounds (benzene, toluene, ethylbenzene and xylene), and sulphur compounds. The main design considerations for any incinerator are temperature, turbulence and residence time. An incinerator exit temperature of 760 degrees C is generally needed to reduce sulphur compounds. 2 refs., 8 tabs., 7 figs

  19. GIS analysis in the siting of incinerators as a panacea for solid waste ...

    African Journals Online (AJOL)

    Solid waste represents a key issue that threatens environmental quality in Kaduna metropolis. One of the most viable options to treat such an issue is to incinerate the collected solid waste, which can reduce the cost of solid waste disposal as well as pollution and generate electricity. Despite the significance of incineration, ...

  20. Memory consolidation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Daniel O Kellett

    2010-07-01

    Full Text Available Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABAA agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage.