WorldWideScience

Sample records for consol synthetic gas process

  1. Process for producing synthetic ammonia gas. Verfahren zur Erzeugung von Ammoniak-Synthesegas

    Energy Technology Data Exchange (ETDEWEB)

    Meckel, J F; Messerschmidt, D; Wagener, D

    1984-01-12

    The invention refers to a process for producing synthetic ammonia gas from gases containing hydrocarbons, which is reformed catalytically and autothermally with a synthesis gas containing oxygen and then subjected to conversion to synthesis gas containing carbon dioxide and hydrogen. In order to simplify the plant required for such a process, the invention provides that part of the gas main flow is subjected to a multistage alternating pressure absorption plant (PSA plant) in a bypass of the gas main flow and the separated hydrogen is returned to the remaining gas main flow, in order to set the required H/sub 2/N/sub 2/ ratio and that the fission gas is subject to carbon dioxide washing and methanizing after conversion. This process therefore does not need a pipe splitting furnace and enrichment of the air with oxygen.

  2. Selection of input devices and controls for modern process control consoles

    International Nuclear Information System (INIS)

    Hasenfuss, O.; Zimmermann, R.

    1975-06-01

    In modern process control consoles man-machine communication is realized more and more by computer driven CRT displays, the most efficient communication system today. This paper describes the most important input devices and controls for such control consoles. A certain number of facts are given, which should be considered during the selection. The aptitude of the described devices for special tasks is discussed and recommendations are given for carrying out a selection. (orig.) [de

  3. Consolation in the aftermath of robberies resembles post-aggression consolation in chimpanzees

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz; Liebst, Lasse Suonperä; Bernasco, Wim

    2017-01-01

    Post-aggression consolation is assumed to occur in humans as well as in chimpanzees. While consolation following peer aggression has been observed in children, systematic evidence of consolation in human adults is rare. We used surveillance camera footage of the immediate aftermath of nonfatal...... to be consoled. Furthermore, we show that high levels of threat during the robbery increased the likelihood of receiving consolation afterwards. These patterns resemble post-aggression consolation in chimpanzees and suggest that emotions of empathic concern are involved in consolation across humans...... and chimpanzees....

  4. Slurry growth and gas retention in synthetic Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-09-01

    This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N 2 , N 2 O, and H 2 . Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles

  5. Adsorption of hydrogen sulfide gas on several synthetic zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, T; Ise, Y; Boki, K; Tanada, S

    1974-07-01

    Ten kinds of synthetic zeolites were tested to determine the most suitable adsorbent for H/sub 2/S gas removal by a dry process. Specific surface area with argon gas and H/sub 2/S gas, surface pH, and thermodynamic data of adsorbents were measured. The amounts of H/sub 2/S gas adsorbed on synthetic zeolite adsorbents were affected in terms of the pore sizes of the adsorbents rather than the surface pH and the thermodynamic factors. The adsorbents No. 3, No. 7, and No. 8 showed higher adsorption of H/sub 2/S than the other adsorbents and were the most suitable for practical purposes.

  6. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  7. Master Console System Monitoring and Control Development

    Science.gov (United States)

    Brooks, Russell A.

    2013-01-01

    The Master Console internship during the spring of 2013 involved the development of firing room displays at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I developed a system health and status display for use by Master Console Operators (MCO) to monitor and verify the integrity of the servers, gateways, network switches, and firewalls used in the firing room.

  8. Consolation in the aftermath of robberies resembles post-aggression consolation in chimpanzees

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz; Liebst, Lasse Suonperä; Bernasco, Wim

    2017-01-01

    Post-aggression consolation is assumed to occur in humans as well as in chimpanzees. While consolation following peer aggression has been observed in children, systematic evidence of consolation in human adults is rare. We used surveillance camera footage of the immediate aftermath of nonfatal...

  9. Synthetic gas production from dry black liquor gasification process using direct causticization with CO2 capture

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Highlights: ► We study synthetic gas production from dry black liquor gasification system. ► Direct causticization eliminates energy intensive lime kiln reducing biomass use. ► Results show large SNG production potential at significant energy efficiency (58%). ► Substantial CO 2 capture potential plus CO 2 reductions from natural gas replacement. ► Significant transport fuel replacement especially in Sweden and Europe. -- Abstract: Synthetic natural gas (SNG) production from dry black liquor gasification (DBLG) system is an attractive option to reduce CO 2 emissions replacing natural gas. This article evaluates the energy conversion performance of SNG production from oxygen blown circulating fluidized bed (CFB) black liquor gasification process with direct causticization by investigating system integration with a reference pulp mill producing 1000 air dried tonnes (ADt) of pulp per day. The direct causticization process eliminates use of energy intensive lime kiln that is a main component required in the conventional black liquor recovery cycle with the recovery boiler. The paper has estimated SNG production potential, the process energy ratio of black liquor (BL) conversion to SNG, and quantified the potential CO 2 abatement. Based on reference pulp mill capacity, the results indicate a large potential of SNG production (about 162 MW) from black liquor but at a cost of additional biomass import (36.7 MW) to compensate the total energy deficit. The process shows cold gas energy efficiency of about 58% considering black liquor and biomass import as major energy inputs. About 700 ktonnes per year of CO 2 abatement i.e. both possible CO 2 capture and CO 2 offset from bio-fuel use replacing natural gas, is estimated. Moreover, the SNG production offers a significant fuel replacement in transport sector especially in countries with large pulp and paper industry e.g. in Sweden, about 72% of motor gasoline and 40% of total motor fuel could be replaced.

  10. Master Console System Monitoring and Control Development

    Science.gov (United States)

    Brooks, Russell A.

    2013-01-01

    The Master Console internship during the summer of 2013 involved the development of firing room displays and support applications at the John F. Kennedy Space Center (KSC). This position was with the Master Console Product Group (MCPG) on the Launch Control System (LCS) project. This project is responsible for the System Monitoring and Control (SMC) and Record and Retrieval (R&R) of launch operations data. The Master Console is responsible for: loading the correct software into each of the remaining consoles in the firing room, connecting the proper data paths to and from the launch vehicle and all ground support equipment, and initializing the entire firing room system to begin processing. During my internship, I created control scripts using the Application Control Language (ACL) to analyze the health and status of Kennedy Ground Control System (KGCS) programmable logic controllers (PLCs). This application provides a system health and status display I created with summarized data for use by Master Console Operators (MCO) to monitor and verify the integrity of KGCS subsystems.

  11. Comparing the da Vinci si single console and dual console in teaching novice surgeons suturing techniques.

    Science.gov (United States)

    Crusco, Salvatore; Jackson, Tiffany; Advincula, Arnold

    2014-01-01

    Robot-assisted laparoscopic surgery is often taught with the surgical mentor at the surgeon console and the trainee at the patient's bedside. The da Vinci dual console (Intuitive Surgical, Sunnyvale, California) allows a surgical mentor to teach with both the mentor and the trainee working at a surgeon console simultaneously. The purpose of this study is to evaluate the effectiveness of the dual console versus the single console for teaching medical students robotic tasks. Forty novice medical students were randomized to either the da Vinci single-console or dual-console group and were taught 4 knot-tying techniques by a surgical mentor. The students were timed while performing the tasks. No statistically significant differences in mean task times were observed between the single- and dual-console groups: interrupted stitch with a 2-handed knot (300 seconds for single vs 294 seconds for dual, P=.59), interrupted stitch with a 1-handed knot (198 seconds for single vs 212 seconds for dual, P=.88), figure-of-8 stitch with a 2-handed knot (261 seconds for single vs 219 seconds for dual, P=.20), and figure-of-8 stitch with a 1-handed knot (200 seconds for single vs 199 seconds for dual, P=.53). No significant difference was observed in performance time when teaching knot-tying techniques to medical students using the da Vinci dual console compared with the single console. More research needs to be performed on the utility of the da Vinci dual console in surgical training.

  12. New operator's console recorder

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    This article described a software module that automatically records images being shown on multiple HMI or SCADA operator's displays. Videos used for monitoring activities at industrial plants can be combined with the operator console videos and data from a process historian. This enables engineers, analysts or investigators to see what is occurring in the plant, what the operator is seeing on the HMI screen, and all relevant real-time data from an event. In the case of a leak at a pumping station, investigators could watch plant video taken at a remote site showing fuel oil creeping across the floor, real-time data being acquired from pumps, valves and the receiving tank while the leak is occurring. The video shows the operator's HMI screen as well as the alarm screen that signifies the leak detection. The Longwatch Operator's Console Recorder and Video Historian are used together to acquire data about actual plant plant management because they show everything that happens during an event. The Console Recorder automatically retrieves and replays operator displays by clicking on a time-based alarm or system message. Play back of video feed is a valuable tool for training and analysis purposes, and can help mitigate insurance and regulatory issues by eliminating uncertainty and conjecture. 1 fig.

  13. Some technical subjects on production of hydrocarbon fuel from synthetic gas

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takashi

    1987-06-20

    Since fuel oil meeting the requirements of current petroleum products can be produced by SASOL F-T synthetic process, the manufacturing process of hydrocarbon fuel oil from the coal-derived synthesis gas, downstream processes are being successively investigated. Mobile M-gasoline, MTG, process which produces gasoline from the natural gas-derived synthesis gas through methanol went into commercial operation in New Zealand in 1986. Although the gasoline suffices the quality of commercial gasoline by both fixed bed and fluidized bed systems, the price and service life of catalyst and control of by-product durene must be improved. Any STG processes have not been completed yet and the yield and quality of gasoline are inferior to those of gasoline produced by the MTG process. Applying two-stage process, the STG process will be more economically effective.(21 refs, 4 figs, 10 tabs)

  14. Final Stage Development of Reactor Console Simulator

    International Nuclear Information System (INIS)

    Mohamad Idris Taib; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Nurfarhana Ayuni Joha

    2013-01-01

    The Reactor Console Simulator PUSPATI TRIGA Reactor was developed since end of 2011 and now in the final stage of development. It is will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behavior and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of human system interface (HSI) is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate and estimated reactor console parameters. The capabilities in user interface, reactor physics and thermal-hydraulics can be expanded and explored to simulation as well as modeling for New Reactor Console, Research Reactor and Nuclear Power Plant. (author)

  15. Estimating the energy use of high definition games consoles

    International Nuclear Information System (INIS)

    Webb, A.; Mayers, K.; France, C.; Koomey, J.

    2013-01-01

    As the energy use of games consoles has risen, due to increased ownership and use and improved performance and functionality, various governments have shown an interest in ways to improve their energy efficiency. Estimates of console energy use vary widely between 32 and 500 kWh/year. Most such estimates are unreliable as they are based on incorrect assumptions and unrepresentative data. To address the shortcomings of existing estimates of console energy use, this study collates, normalises and analyses available data for power consumption and usage. The results show that the average energy use of high definition games consoles (sold between 2005 and 2011 inclusive) can be estimated at 102 kWh/year, and 64 kWh/year for new console models on sale in early 2012. The calculations herein provide representative estimates of console energy use during this period, including a breakdown of the relative contribution of different usage modes. These results could be used as a baseline to evaluate the potential energy savings from efficiency improvements in games consoles, and also to assess the potential effectiveness of any proposed energy efficiency standards. Use of accurate data will help ensure the implementation of the most effective efficiency policies and standards. - Highlights: • Estimates of games console energy use vary significantly. • New energy use estimates calculated for high definition games consoles. • Consoles currently on sale use 37% less energy than earlier models. • Gaming accounts for over 50% of console energy use. • Further research regarding console usage is needed, particularly inactive time

  16. Mobile console at PS the MCR

    CERN Multimedia

    1982-01-01

    A mobile console was designed and constructed which can call upon all the applications programs available at the Main Control Room (Annual Report 1982 p. 96, Fig. 7). Daniele Dumollard sits at the console.

  17. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  18. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  19. Crust growth and gas retention in synthetic Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-03-01

    The focus of the work described here is to examine the principal contributing factors leading to slurry growth and gas retention within waste from a particular high-level waste tanks on the Hanford Site. Laboratory studies of aged synthetic waste have shown that the waste retains gases in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) added to the waste matrix. The mechanism for bubble attachment is related to the hydrophobic surface produced by the organic complexant. The formation of a stable gas bubble/solid interaction is believed to be responsible for crust flotation and gas retention in the synthetic waste used here

  20. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  1. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.

    Science.gov (United States)

    Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi

    2017-01-01

    Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.

  2. Modern operator's consoles for accelerator control at Fermilab

    International Nuclear Information System (INIS)

    Lucas, P.; Cahill, K.; Peters, R.; Smedinghoff, J.

    1991-01-01

    Since the construction of the Tevatron the Fermilab accelerator complex has been controlled from operator's consoles based on PDP-11 computers and interaction with display hardware via Camac. In addition the Linac has been controllable from microprocessor-based local consoles. The new generation of console devices is based on VAXstation computers, networked by Ethernet and Token Ring, and utilizing the X-windows protocol. Under X the physical display (server) can be driven by any network node, and need not be part of the console computer (client). This allows great flexibility in configuring display devices - with X-terminals, Unix workstations, and Macintoshes all having been utilized. Over half of the 800 application programs on the system have been demonstrated to work properly in the new environment. The modern version of a Linac local console runs in a Macintosh. These are networked via Token Ring to Linac local control stations. They provide color graphics and a hard copy capability which was previously lacking

  3. Keeping the Game Alive: Evaluating Strategies for the Preservation of Console Video Games

    Directory of Open Access Journals (Sweden)

    Mark Guttenbrunner

    2010-07-01

    Full Text Available Interactive fiction and video games are part of our cultural heritage. As original systems cease to work because of hardware and media failures, methods to preserve obsolete video games for future generations have to be developed. The public interest in early video games is high, as exhibitions, regular magazines on the topic and newspaper articles demonstrate. Moreover, games considered to be classic are rereleased for new generations of gaming hardware. However, with the rapid development of new computer systems, the way games look and are played changes constantly. When trying to preserve console video games one faces problems of classified development documentation, legal aspects and extracting the contents from original media like cartridges with special hardware. Furthermore, special controllers and non-digital items are used to extend the gaming experience making it difficult to preserve the look and feel of console video games.This paper discusses strategies for the digital preservation of console video games. After a short overview of console video game systems, there follows an introduction to digital preservation and related work in common strategies for digital preservation and preserving interactive art. Then different preservation strategies are described with a specific focus on emulation. Finally a case study on console video game preservation is shown which uses the Planets preservation planning approach for evaluating preservation strategies in a documented decision-making process. Experiments are carried out to compare different emulators as well as other approaches, first for a single console video game system, then for different console systems of the same era and finally for systems of all eras. Comparison and discussion of results show that, while emulation works very well in principle for early console video games, various problems exist for the general use as a digital preservation alternative. We show what future work

  4. Where can I find consolation? A theoretical analysis of the meaning of consolation as experienced by job in the Book of Job in the Hebrew Bible.

    Science.gov (United States)

    Roxberg, Åsa; Brunt, David; Rask, Mikael; da Silva, António Barbosa

    2013-03-01

    The aim of the study was to explore the meaning of consolation as experienced by Job in the Book of Job and as presented in literature and how consolation relates to suffering and care. The study's theoretical design applied Ricoeur's view on phenomenology and hermeneutics. The resulting themes were as follows: consolation that is present, that originates in confrontation, that keeps suffering at a distance, that does not alleviate suffering, that originates in experience from giving comfort, and that facilitates a change of perspective. The authentic and caring consolation accepts the sufferer's incomprehensible "otherness" but however provides no answers about how to console.

  5. Lending Video Game Consoles in an Academic Library

    Science.gov (United States)

    Buller, Ryan

    2017-01-01

    This paper will outline the process and discussions undertaken at the University of Denver's University Libraries to implement a lending service providing video game consoles. Faculty and staff at the University Libraries decided to pursue the new lending service, though not a traditional library offering, to support the needs of a video game…

  6. Database Tool for Master Console Operators

    Science.gov (United States)

    Ferrell, Sean

    2018-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires highly trained and knowledgeable personnel. Master Console Operators (MCO) are currently working on familiarizing themselves with any possible scenario that they may encounter. An intern was recruited to help assist them with creating a tool to use for the process.

  7. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  8. Probing of brain states in real-time: Introducing the ConSole environment

    Directory of Open Access Journals (Sweden)

    Thomas eHartmann

    2011-03-01

    Full Text Available Recent years have seen huge advancements in the methods available and used in neuroscience employing EEG or MEG. However, the standard approach is to average a large number of trials for experimentally defined conditions in order to reduce intertrial-variability, i.e. treating it as a source of "noise". Yet it is now more and more accepted that trial-to-trial fluctuations bear functional significance, reflecting fluctuations of "brain states" that predispose perception and action. Such effects are often revealed in a pre-stimulus period, when comparing response variability to an invariant stimulus. However such offline analyses are disadvantageous as they are correlational by drawing conclusions in a posthoc-manner and stimulus presentation is random with respect to the feature of interest. A more direct test is to trigger stimulus presentation when the relevant feature is present. The current paper introduces ConSole (CONstance System for OnLine Eeg, a software package capable of analyzing ongoing EEG / MEG in real-time and presenting auditory and visual stimuli via internal routines. Stimulation via external devices (e.g. TMS or third-party software (e.g. Psyscope X is possible by sending TTL-triggers. With ConSole it is thus possible to target the stimulation at specific brain-states. In contrast to many available applications, ConSole is open-source. Its modular design enhances the power of the software as it can be easily adapted to new challenges and writing new experiments is an easy task. ConSole is already pre-equipped with modules performing standard signal processing steps. The software is also independent from the EEG / MEG system, as long as a driver can be written (currently 2 EEG systems are supported. Besides a general introduction, we present benchmark data regarding performance and validity of the calculations used, as well as three example applications of ConSole in different settings. ConSole can be downloaded at: http://console-kn.sf.net.

  9. Beam diagnostic system for SSC on HIRFL central console

    International Nuclear Information System (INIS)

    Zhang Guixu; Wang Zhen; Huang Tuanhua

    1998-01-01

    The SSC ion beam diagnostic system on the console of HIRFL in institute of modern physics is presented. The information between console and diagnostic system can be transferred via DECnet communication. The central computer for HIRFL console is VAX-8350, the working computer of diagnostic system is changed from IBM PC/XT to COMPAQ 486, and the operating program is rewritten from FORTRAN to C. In order to communicate information, DECnet TTT function is put into both programs on the VAX and PC

  10. Spies and Bloggers: New Synthetic Biology Tools to Understand Microbial Processes in Soils and Sediments

    Science.gov (United States)

    Masiello, C. A.; Silberg, J. J.; Cheng, H. Y.; Del Valle, I.; Fulk, E. M.; Gao, X.; Bennett, G. N.

    2017-12-01

    Microbes can be programmed through synthetic biology to report on their behavior, informing researchers when their environment has triggered changes in their gene expression (e.g. in response to shifts in O2 or H2O), or when they have participated in a specific step of an elemental cycle (e.g. denitrification). This use of synthetic biology has the potential to significantly improve our understanding of microbes' roles in elemental and water cycling, because it allows reporting on the environment from the perspective of a microbe, matching the measurement scale exactly to the scale that a microbe experiences. However, synthetic microbes have not yet seen wide use in soil and sediment laboratory experiments because synthetic organisms typically report by fluorescing, making their signals difficult to detect outside the petri dish. We are developing a new suite of microbial programs that report instead by releasing easily-detected gases, allowing the real-time, noninvasive monitoring of behaviors in sediments and soils. Microbial biosensors can, in theory, be programmed to detect dynamic processes that contribute to a wide range of geobiological processes, including C cycling (biofilm production, methanogenesis, and synthesis of extracellular enzymes that degrade organic matter), N cycling (expression of enzymes that underlie different steps of the N cycle) and potentially S cycling. We will provide an overview of the potential uses of gas-reporting biosensors in soil and sediment lab experiments, and will report the development of the systematics of these sensors. Successful development of gas biosensors for laboratory use will require addressing issues including: engineering the intensity and selectivity of microbial gas production to maximize the signal to noise ratio; normalizing the gas reporter signal to cell population size, managing gas diffusion effects on signal shape; and developing multiple gases that can be used in parallel.

  11. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    International Nuclear Information System (INIS)

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-01-01

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary

  12. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  13. Bonobos respond to distress in others: consolation across the age spectrum.

    Directory of Open Access Journals (Sweden)

    Zanna Clay

    Full Text Available How animals respond to conflict provides key insights into the evolution of socio-cognitive and emotional capacities. Evidence from apes has shown that, after social conflicts, bystanders approach victims of aggression to offer stress-alleviating contact behavior, a phenomenon known as consolation. This other-orientated behavior depends on sensitivity to the other's emotional state, whereby the consoler acts to ameliorate the other's situation. We examined post-conflict interactions in bonobos (Pan paniscus to identify the determinants of consolation and reconciliation. Thirty-six semi-free bonobos of all ages were observed at the Lola ya Bonobo Sanctuary, DR Congo, using standardized Post-conflict/Matched Control methods. Across age and sex classes, bonobos consoled victims and reconciled after conflicts using a suite of affiliative and socio-sexual behaviors including embracing, touching, and mounting. Juveniles were more likely to console than adults, challenging the assumption that comfort-giving rests on advanced cognitive mechanisms that emerge only with age. Mother-reared individuals were more likely to console than orphans, highlighting the role of rearing in emotional development. Consistent with previous studies, bystanders were more likely to console relatives or closely bonded partners. Effects of kinship, affiliation and rearing were similarly indicated in patterns of reconciliation. Nearby bystanders were significantly more likely to contact victims than more distal ones, and consolation was more likely in non-food contexts than during feeding. The results did not provide convincing evidence that bystander contacts served for self-protection or as substitutes for reconciliation. Overall, results indicate that a suite of social, developmental and contextual factors underlie consolation and reconciliation in bonobos and that a sensitivity to the emotions of others and the ability to provide appropriate consolatory behaviors emerges

  14. Bonobos respond to distress in others: consolation across the age spectrum.

    Science.gov (United States)

    Clay, Zanna; de Waal, Frans B M

    2013-01-01

    How animals respond to conflict provides key insights into the evolution of socio-cognitive and emotional capacities. Evidence from apes has shown that, after social conflicts, bystanders approach victims of aggression to offer stress-alleviating contact behavior, a phenomenon known as consolation. This other-orientated behavior depends on sensitivity to the other's emotional state, whereby the consoler acts to ameliorate the other's situation. We examined post-conflict interactions in bonobos (Pan paniscus) to identify the determinants of consolation and reconciliation. Thirty-six semi-free bonobos of all ages were observed at the Lola ya Bonobo Sanctuary, DR Congo, using standardized Post-conflict/Matched Control methods. Across age and sex classes, bonobos consoled victims and reconciled after conflicts using a suite of affiliative and socio-sexual behaviors including embracing, touching, and mounting. Juveniles were more likely to console than adults, challenging the assumption that comfort-giving rests on advanced cognitive mechanisms that emerge only with age. Mother-reared individuals were more likely to console than orphans, highlighting the role of rearing in emotional development. Consistent with previous studies, bystanders were more likely to console relatives or closely bonded partners. Effects of kinship, affiliation and rearing were similarly indicated in patterns of reconciliation. Nearby bystanders were significantly more likely to contact victims than more distal ones, and consolation was more likely in non-food contexts than during feeding. The results did not provide convincing evidence that bystander contacts served for self-protection or as substitutes for reconciliation. Overall, results indicate that a suite of social, developmental and contextual factors underlie consolation and reconciliation in bonobos and that a sensitivity to the emotions of others and the ability to provide appropriate consolatory behaviors emerges early in development.

  15. China's precarious synthetic natural gas demonstration

    International Nuclear Information System (INIS)

    Yang, Chi-Jen

    2015-01-01

    In 2013, China's national government abandoned its previous cautious policy and started to promote large-scale deployment of coal-based synthetic natural gas (SNG). Coal-based SNG is both carbon-intensive and very water-intensive. Driven by a smog crisis and the recession of coal industry, China's 2013 policy change is major setback in its long-term efforts in carbon mitigation and water conservation. The government of China made the policy change before the commercial commencement of China's first SNG demonstration plant. Since the commencement of China's SNG demonstration plant, many problems have started to appear. In this article, I discuss the nature of demonstration project and explain the danger in starting a crash program without evaluating the demonstration comprehensively and transparently. - Highlights: • China is promoting large-scale commercialization of synthetic natural gas (SNG) plants. • The push for commercialization started before the startup of its first SNG demonstration. • A crash SNG program is both financially risky and environmental detrimental. • China should reconsider its SNG policy and adopt a more cautious approach

  16. Distributed radiation protection console system

    International Nuclear Information System (INIS)

    Chhokra, R.S.; Deshpande, V.K.; Mishra, H.; Rajeev, K.P.; Thakur, Bipla B.; Munj, Niket

    2004-01-01

    host computer can receive and process the data from all the DRPCs to form an alternative or additional Central Radiation Protection Console. The DRPC is essentially a small Computerized Data Acquisition System(CDAS) built around a panel PC. The panel PC serves as the host while an I/O system comprising a processor and I/O modules serves as the slave data acquisition system. The panel is a LCD Video monitor, which serves as the Graphical User Interface. The application software is developed on a Visual Basic 6.0 and MS Windows platform. The DRPC also includes a relay based alarm annunciation system, which provides redundancy to ensure availability of alarm status in the event of non-availability of the CDAS. (author)

  17. Reactor console replacement at Washington State University

    International Nuclear Information System (INIS)

    Lovas, Thomas A.

    1978-01-01

    A replacement reactor console was installed in 1977 at the W.S.U. 1 MW TRIGA-fueled reactor as the final step in an instrumentation upgrade program. The program was begun circa 1972 with the design, construction and installation of various systems and equipment. Major instruments were installed in the existing console and tested in the course of reactor operation. The culmination of the program was the installation of a cubicle designed and constructed to house the updated instrumentation. (author)

  18. Trend of computer-based console for nuclear power plants

    International Nuclear Information System (INIS)

    Wajima, Tsunetaka; Serizawa, Michiya

    1975-01-01

    The amount of informations to be watched by the operators in the central operation room increased with the increase of the capacity of nuclear power generation plants, and the necessity of computer-based consoles, in which the informations are compiled and the rationalization of the interface between the operators and the plants is intended by introducing CRT displays and process computers, became to be recognized. The integrated monitoring and controlling system is explained briefly by taking Dungeness B Nuclear Power Station in Britain as a typical example. This power station comprises two AGRs, and these two plants can be controlled in one central control room, each by one man. Three computers including stand-by one are installed. Each computer has the core memory of 16 K words (24 bits/word), and 4 magnetic drums of 256 K words are installed as the external memory. The peripheral equipments are 12 CRT displays, 6 typewriters, high speed tape reader and tape punch for each plant. The display and record of plant data, the analysis, display and record of alarms, the control of plants including reactors, and post incident record are assigned to the computers. In Hitachi Ltd. in Japan, the introduction of color CRTs, the developments of operating consoles, new data-accessing method, and the consoles for maintenance management are in progress. (Kako, I.)

  19. The competitiveness of synthetic natural gas as a propellant in the Swedish fuel market

    International Nuclear Information System (INIS)

    Mohseni, Farzad; Görling, Martin; Alvfors, Per

    2013-01-01

    The road transport sector today is almost exclusively dependent on fossil fuels. Consequently, it will need to face a radical change if it aims to switch from a fossil-based system to a renewable-based system. Even though there are many promising technologies under development, they must also be economically viable to be implemented. This paper studies the economic feasibility of synthesizing natural gas through methanation of carbon dioxide and hydrogen from water electrolysis. It is shown that the main influences for profitability are electricity prices, synthetic natural gas (SNG) selling prices and that the by-products from the process are sold. The base scenario generates a 16% annual return on investment assuming that SNG can be sold at the same price as petrol. A general number based on set conditions was that the SNG must be sold at a price about 2.6 times higher per kWh than when bought in form of electricity. The sensitivity analysis indicates that the running costs weigh more heavily than the yearly investment cost and off-peak production can therefore still be economically profitable with only a moderate reduction of electricity price. The calculations and prices are based on Swedish prerequisites but are applicable to other countries and regions. - Highlights: ► The production cost for synthetic natural gas corresponds to the current biogas price. ► High return on capital if the synthetic natural gas could be sold for the same price as petrol. ► Production can cost-effectively be run off-peak hence electricity is the major cost. ► This study is based on Swedish prerequisites but is applicable on other regions.

  20. Surgical bedside master console for neurosurgical robotic system.

    Science.gov (United States)

    Arata, Jumpei; Kenmotsu, Hajime; Takagi, Motoki; Hori, Tatsuya; Miyagi, Takahiro; Fujimoto, Hideo; Kajita, Yasukazu; Hayashi, Yuichiro; Chinzei, Kiyoyuki; Hashizume, Makoto

    2013-01-01

    We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.

  1. Motion sickness and postural sway in console video games.

    Science.gov (United States)

    Stoffregen, Thomas A; Faugloire, Elise; Yoshida, Ken; Flanagan, Moira B; Merhi, Omar

    2008-04-01

    We tested the hypotheses that (a) participants might develop motion sickness while playing "off-the-shelf" console video games and (b) postural motion would differ between sick and well participants, prior to the onset of motion sickness. There have been many anecdotal reports of motion sickness among people who play console video games (e.g., Xbox, PlayStation). Participants (40 undergraduate students) played a game continuously for up to 50 min while standing or sitting. We varied the distance to the display screen (and, consequently, the visual angle of the display). Across conditions, the incidence of motion sickness ranged from 42% to 56%; incidence did not differ across conditions. During game play, head and torso motion differed between sick and well participants prior to the onset of subjective symptoms of motion sickness. The results indicate that console video games carry a significant risk of motion sickness. Potential applications of this research include changes in the design of console video games and recommendations for how such systems should be used.

  2. Study of a Piezo-Thermo-Elastic Materials Console

    Directory of Open Access Journals (Sweden)

    hamza madjid berrabah

    2015-09-01

    Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.

  3. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  4. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  5. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  6. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  7. Play, Create, Share? Console Gaming, Player Production and Agency

    Directory of Open Access Journals (Sweden)

    Olli Sotamaa

    2010-07-01

    Full Text Available Digital games have been frequently used to illustrate the new organisational frameworks that are based on persuading users to carry out tasks and assignments not traditionally associated with them. However coined, ‘user-innovation’ (von Hippel, 2005, ‘crowdsourcing’ (Howe, 2008 or ‘pro-am revolution’ (Leadbeater and Miller, 2004, contemporary examples of this phenomena always include digital games. A closer look at the recent open innovation manifestos reveals that the oft-cited examples come almost entirely from PC games while console games remain mostly non-existent in these texts. It is clear that PC and console games differ both in use and in the cultures they create (Taylor, 2007. Equally, the technological and economic backgrounds of the market sectors have their differences (Kerr, 2006.The concept of LittleBigPlanet, a console game inherently dependent on player production, challenges the neat binary of some much cited arguments about tethered appliances. The first set of research questions rises from this observation. What are the technical and economic constraints and affordances the console as a platform uses to position the productive activities of players? How do these differ from the forms of player production typical of PC gaming (see Sotamaa, 2007a; and Sotamaa, 2007b?

  8. Two-stage hydroprocessing of synthetic crude gas oil

    Energy Technology Data Exchange (ETDEWEB)

    Mahay, A.; Chmielowiec, J.; Fisher, I.P.; Monnier, J. (Petro-Canada Products, Missisauga, ON (Canada). Research and Development Centre)

    1992-02-01

    The hydrocracking of synthetic crude gas oils (SGO), which are commercially produced from Canadian oil sands, is strongly inhibited by nitrogen-containing species. To alleviate the pronounced effect of these nitrogenous compounds, SGO was hydrotreated at severe conditions prior to hydrocracking to reduce its N content from 1665 to about 390 ppm (by weight). Hydrocracking was then performed using a commercial nickel-tungsten catalyst supported on silica-alumina. Two-stage hydroprocessing of SGO was assessed in terms of product yields and quality. As expected, higher gas oil conversion were achieved mostly from an increase in naphtha yield. The middle distillate product quality was also clearly improved as the diesel fuel cetane number increased by 13%. Diesel engine tests indicated that particulate emissions in exhaust gases were lowered by 20%. Finally, pseudo first-order kinetic equations were derived for the overall conversion of the major gas oil components. 17 refs., 2 figs., 8 tabs.

  9. C-TIC Console Operator's User Manual

    Science.gov (United States)

    1996-07-01

    The C-TIC Console Operator's User Manual is designed to assist the operator at : the Corridor Transportation Information Center with the navigation and use of : the application programs in the C-TIC. This document will concentrate solely on : the ext...

  10. vVICTORIA Console Development: Design and Fabrication of VICTORIA Console Emulations

    Science.gov (United States)

    2011-07-01

    successful set-up and readiness to conduct experimentation on facets of new Combat System concept development including equipment capabilities, system...émulateurs, faits de bois, de plastiques et de métaux légers, ont été fabriqués selon les données matérielles et les spécifications des consoles actuelles...mise sur pied du laboratoire d’évaluation de la capacité vVictoria et assureront que celui-ci est prêt pour les essais de nouveaux concepts de système

  11. An operator-console system of the photon factory injector LINAC

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Abe, Isamu; Furukawa, Kazuro; Kamikubota, Norihiko

    1990-01-01

    It is sometimes difficult to unify accelerator control systems constructed in different ways. This problem arose in unifying the control systems of the injector linac and the storage ring making up the Photon Factory of the National Laboratory for High Energy Physics. One easy approach is to unify only the operator consoles; the unified console is connected to both separate control systems using gateways. The operator-console system of the Photon Factory injector linac has been designed and constructed using this approach. It consists of several workstations interconnected via a local-area network, a gateway to the old linac control network and a CATV system for the real-time display of the accelerator status. In this way the linac will be controlled from the control center of the Photon Factory storage ring. (orig.)

  12. The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2016-10-01

    Full Text Available This article presents a summary of the main findings from a collaborative research project between Aalto University in Finland and partner universities. A comparative process synthesis, modelling and thermal assessment was conducted for the production of Bio-synthetic natural gas (SNG and hydrogen from supercritical water refining of a lipid extracted algae feedstock integrated with onsite heat and power generation. The developed reactor models for product gas composition, yield and thermal demand were validated and showed conformity with reported experimental results, and the balance of plant units were designed based on established technologies or state-of-the-art pilot operations. The poly-generative cases illustrated the thermo-chemical constraints and design trade-offs presented by key process parameters such as plant organic throughput, supercritical water refining temperature, nature of desirable coproducts, downstream indirect production and heat recovery scenarios. The evaluated cases favoring hydrogen production at 5 wt. % solid content and 600 °C conversion temperature allowed higher gross syngas and CHP production. However, mainly due to the higher utility demands the net syngas production remained lower compared to the cases favoring BioSNG production. The latter case, at 450 °C reactor temperature, 18 wt. % solid content and presence of downstream indirect production recorded 66.5%, 66.2% and 57.2% energetic, fuel-equivalent and exergetic efficiencies respectively.

  13. Synthetic fuel production using Texas lignite and a very high temperature reactor for process heat

    International Nuclear Information System (INIS)

    Ross, M.A.; Klein, D.E.

    1982-01-01

    Two approaches for synthetic fuel production from coal are studied using Texas lignite as the feedstock. First, the gasification and liquefaction of coal are accomplished using Lurgi gasifiers and Fischer-Tropsch synthesis. A 50 000 barrel/day facility, consuming 13.7 million tonne/yr (15.1 million ton/yr) of lignite, is considered. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. The nuclear-assisted approach resulted in a 35% reduction in coal consumption. In addition, process steam consumption was reduced by one-half and the oxygen plants were eliminated in the nuclear assisted process. Both approaches resulted in a synthetic oil price higher than the March 1980 imported price of $29.65 per barrel: $36.15 for the lignite-only process and $35.16 for the nuclear-assisted process. No tax advantage was assumed for either process and the utility financing method was used for both economic calculations

  14. Software for physical start-up console

    International Nuclear Information System (INIS)

    Arbet, L.; Suchy, R.

    1991-01-01

    The physical start-up console comprises an PC AT-based control unit equipped with an 80386 processor, and information input/output units. The basic functions to be fulfilled by the control unit software include data acquisition related to the following parameters: neutron physics properties of the reactor core (neutron fluxes recorded by ionization chambers and reactivity recorded by a digital reactimeter), positions of the reactor core control elements (by the digital position meter) and reactor core control measurements, and technological quantities requisite for evaluating physical start-up tests. The measured and calculated data are shown on the control unit display. The setup of the data acquisition system and of user programs is dealt with, and characteristics of the user processes are briefly described. (Z.S.)

  15. Electricity consumption and energy savings potential of video game consoles in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hittinger, E.; Mullins, K.A.; Azevedo, I.L. [Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2012-11-15

    Total energy consumption of video game consoles has grown rapidly in the past few decades due to rapid increases in market penetration, power consumption of the devices, and increasing usage driven by new capabilities. Unfortunately, studies investigating the energy impacts of these devices have been limited and potential responses, such as ENERGY STAR requirements, have been difficult to define and implement. We estimate that the total electricity consumption of video game consoles in the US was around 11 TWh in 2007 and 16 TWh in 2010 (approximately 1 % of US residential electricity consumption), an increase of almost 50 % in 3 years. However, any estimate of total game console energy consumption is highly uncertain, and we have determined that the key uncertainty is the unknown consumer behavior with regards to powering down the system after use. Even under this uncertainty, we demonstrate that the most effective energy-saving modification is incorporation of a default auto power down feature, which could reduce electricity consumption of game consoles by 75 % (10 TWh reduction of electricity in 2010), saving consumers over USD 1 billion annually in electricity bills. We conclude that using an auto power down feature for game consoles is at least as effective for reducing energy consumption as implementing a strict set of energy efficiency improvements for the devices, is much easier to implement given the nature of the video game console industry, and could be applied retroactively to currently deployed consoles through firmware updates.

  16. Console Game-Based Pedagogy: A Study of Primary and Secondary Classroom Learning through Console Video Games

    Science.gov (United States)

    Groff, Jennifer S.; Howells, Cathrin; Cranmer, Sue

    2012-01-01

    The main focus of this research project was to identify the educational benefits of console game-based learning in primary and secondary schools. The project also sought to understand how the benefits of educational gaming could transfer to other settings. For this purpose, research was carried out in classrooms in Scotland to explore learning…

  17. Adsorption of hydrogen gas and redox processes in clays.

    Science.gov (United States)

    Didier, Mathilde; Leone, Laura; Greneche, Jean-Marc; Giffaut, Eric; Charlet, Laurent

    2012-03-20

    In order to assess the adsorption properties of hydrogen gas and reactivity of adsorbed hydrogen, we measured H(2)(g) adsorption on Na synthetic montmorillonite-type clays and Callovo-Oxfordian (COx) clayrock using gas chromatography. Synthetic montmorillonites with increasing structural Fe(III) substitution (0 wt %, 3.2 wt %, and 6.4 wt % Fe) were used. Fe in the synthetic montmorillonites is principally present as structural Fe(III) ions. We studied the concomitant reduction of structural Fe(III) in the clays using (57)Fe Mössbauer spectrometry. The COx, which mainly contains smectite/illite and calcite minerals, is also studied together with the pure clay fraction of this clayrock. Experiments were performed with dry clay samples which were reacted with hydrogen gas at 90 and 120 °C for 30 to 45 days at a hydrogen partial pressure close to 0.45 bar. Results indicate that up to 0.11 wt % of hydrogen is adsorbed on the clays at 90 °C under 0.45 bar of relative pressure. (57)Fe Mössbauer spectrometry shows that up to 6% of the total structural Fe(III) initially present in these synthetic clays is reduced upon adsorption of hydrogen gas. No reduction is observed with the COx sample in the present experimental conditions.

  18. Pyrolysis-gas chromatography-mass spectrometry of isolated, synthetic and degraded lignins

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; De Leeuw, J.W.

    1984-01-01

    Curie-point pyrolysis-gas chromatography-mass spectrometry was applied to study the chemical structure of sound and fungus degraded, industrial and synthetic lignins. Pyrolysis products reflected in some detail the structural units present in the lignin polymer. Thus, sound spruce lignin yielded trans-isoeugenol coniferaldehyde and trans-coniferyl alcohol as major pyrolysis products. Biodegraded lignin yielded oxidized units, including vanillin, acetoguaiacone, methyl vanillate, propioguaiacone, vanilloyl methyl ketone and vanillic acid as major products. Kraft lignin also showed evidence of oxidation, although not as much as the biodegraded lignin. Major products from this industrial lignin were guaiacol, methylguaiacol, vinylguaiacol and homovanillic acid. Results indicated that synthetic lignin duplicates fairly well the structure of natural lignin. However, coniferylaldehyde and trans-coniferyl alcohol were the dominant products only from the synthetic lignin, indicating the presence of large amounts of coniferyl alcohol and coniferylaldehyde end groups. 21 references.

  19. Consolation through music : A survey study

    NARCIS (Netherlands)

    Hanser, W.E.; ter Bogt, T.F.M.; van den Tol, A.J.M.; Mark, R.E.; Vingerhoets, A.J.J.M.

    2016-01-01

    Even though music is widely used as a source of solace, the question as to how and why music offers consolation remains largely unexplored. The aims of the present study are as follows: (a) to compare listening to music versus other self-soothing behaviors, (b) to explore when music is used as a

  20. Use of Game Console for Rehabilitation of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Levent Özgönenel

    2016-08-01

    Full Text Available Background: Parkinson’s disease (PD predisposes to falls due to postural instability and decreased coordination. Postural and coordination exercises could ameliorate the incoordination and decrease falls. Aims: In this study, we explored the efficiency of a game console as an adjunct to an exercise program in treating incoordination in patients with PD. Study Design: Case-control study. Methods: In this single-blind, prospective clinical trial, rehabilitation with the Xbox (Microsoft; Washington, USA game console was used as an adjunct to a standard rehabilitation program. Thirty-three patients with PD at stages 1-3 were enrolled in the study. All patients received the threetimes weekly exercise program and electrotherapy to back and hip extensors for 5 weeks. Study patients played catch the ball and obstacle games on the Xbox in addition to the standard exercise program. Patients were evaluated based on the scores from the Timed Up-and-Go Test, the Berg Balance Scale (BBS, and the Unified Parkinson’s Disease Rating Scale-II (UPDRS-II. Post-treatment scores were compared between groups. Results: Thirty-three patients were enrolled in the study (15 in the game-console group, and 18 controls. Patients in both groups had improvements in all scores. The end-oftreatment scores were significantly better in the study group compared to the control group in all parameters: UPDRS (10±5 versus 16±6, p=0.002, BBS (53±4 versus 47±8, p=0.004, and TUG (11±4 seconds versus 20±8 seconds, p<0.001. Conclusion: Game-exercise with a game-console was noted to be a significant adjunct to the rehabilitation program in patients with PD in this study.

  1. Desain Pabrik Synthetic Gas (Syngas dari Gasifikasi Batu Bara Kualitas Rendah sebagai Pasokan Gas PT Pupuk Sriwidjaja

    Directory of Open Access Journals (Sweden)

    Toto Iswanto

    2015-12-01

    Full Text Available Menurut data dari Kementrian Energi dan Sumber Daya Mineral (ESDM tahun 2013, cadangan gas bumi Indonesia saat ini sebesar 170 TSCF dan akan habis dalam kurun waktu 59 tahun, dengan estimasi tidak ada peningkatan atau penurunan produksi. Di lain pihak, industri-industri kimia di Indonesia, semisal industri pupuk, sangat mengandalkan pasokan gas alam sebagai bahan baku pupuk maupun sumber energi. Permasalahan utama yang dihadapi industri pupuk dewasa ini adalah kurangnya pasokan gas alam untuk proses produksi. Di PT Pupuk Sriwidjaja misalnya, kebutuhan gas alam rata-rata untuk proses produksi amonia dan urea mencapai 225 MMSCFD. Namun, pasokan gas dari Pertamina selalu kurang dari jumlah tersebut. Karena selalu berulang, maka hal ini akan mengganggu kinerja PT Pupuk Sriwidjaja sebagai garda terdepan pertahanan pangan nasional bersama petani. Salah satu jenis sumber daya alam yang potensial mengganti dan atau mensubtitusi pemakaian gas alam adalah Synthetic Gas (Syngas. Syngas merupakan gas campuran yang komponen utamanya adalah gas karbon monoksida (CO dan hidrogen (H2 yang dapat digunakan sebagai bahan bakar dan juga dapat digunakan sebagai bahan baku dalam proses pembuatan zat kimia baru seperti metana, amonia, dan urea. Syngas dapat diperoleh dari proses gasifikasi batu bara dimana batu bara diubah dari bentuk padat menjadi gas. Batu bara yang merupakan bahan baku pembuatan syngas jumlahnya sangat melimpah di Indonesia. Menurut data dari Kementrian ESDM tahun 2011, total sumber daya batu bara di Indonesia diperkirakan 119,4 miliar ton, dimana 48%-nya terletak di Sumatera Selatan dan 70% deposit batu bara di Sumatera Selatan tersebut adalah batu bara muda berkualitas rendah. Deposit batu bara terbesar di Sumatera Selatan terletak di Kab. Muara Enim yang letaknya tidak terlalu jauh dengan PT Pupuk Sriwidjaja. Ditambah lagi dengan adanya PT Bukit Asam sebagai produsen terbesar batu bara di Kab. Muara Enim tentu akan mempermudah pasokan batu bara

  2. ANALISA TEKNIS DAN EKONOMIS PENGEMBANGAN INDUSTRI PENDUKUNG KONSOL KAPAL (SHIP CONSOLE DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Anisa Prasetyo

    2017-01-01

    Full Text Available Industri konsol kapal di Indonesia masih perlu dikembangkan untuk mendukung peningkatan jumlah komponen lokal dalam industri perkapalan. Melihat besarnya peluang dan pasar industri konsol kapal di Indonesia, maka dilakukan penelitian tugas akhir analisa teknis dan ekonomis pengembangan industri pendukung konsol kapal (ship console di Indonesia. Konsol kapal yang dimaksud adalah bridge control console, engine control console, cargo control console, water ballast control console, bridge wing control console. Tujuan dari tugas akhir ini adalah melakukan analisa teknis meliputi pemilihan lokasi, proses produksi, pemeriksaan hasil produksi, penentuan kapasitas produksi, peralatan dan mesin yang digunakan dalam proses pembuatannya, serta pembuatan layout dari pabrik dengan luas bangunan 2728 m² dan luas tanah 3886 m² berada pada Desa Karangploso, Kec. Benjeng, Kab. Gresik, Jawa Timur. Analisa ekonomis meliputi analisa kondisi pasar di Indonesia untuk permintaan konsol kapal dalam lima tahun yang akan datang. Biaya investasi pembangunan industri ini kira-kira sebesar Rp 14.186.000.000,00 yang berupa biaya pembelian tanah, pembangunan, pembelian peralatan dan mesin. Selanjutnya dilakukan perhitungan biaya operasional dan pemasukan perusahaan agar dapat melakukan analisa kelayakan investasi dengan menggunakan metode Break Event Point, Net Present Value, dan Internal Rate of Return yang hasilnya digunakan untuk menentukan kelayakan pengembangan dari industri konsol kapal di Indonesia. Berdasarkan analisa yang telah dilakukan Break Event Point terjadi pada 6 tahun 8 bulan dengan keuntungan kira-kira sebesar Rp 1.507.000.000,00. Nilai Net Present Value kira-kira sebesar Rp 4,408,000,000.00. Nilai Internal Rate of Return sebesar 11.38% lebih besar dari bunga bank yang telah ditetapkan yaitu 10.25%. Hal tersebut dikarenakan besarnya potensi pasar di Indonesia dan sedikitnya jumlah kompetitor pada industri konsol kapal.    

  3. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2013-01-01

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O 2 blown system than air blown system. ► SNG production is higher in O 2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO 2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  4. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  5. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  6. Identification of novel synthetic organic compounds with supersonic gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fialkov, Alexander B; Amirav, Aviv

    2004-11-26

    Several novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS. The Supersonic GC-MS enabled the analysis of thermally labile compounds that usually degrade in the GC injector, column and/or ion source. Due to the high carrier gas flow rate at the injector liner and column these compounds eluted without degradation at significantly lower elution temperatures and the use of fly-through EI ion source eliminated any sample degradation at the ion source. The cold EI feature of providing trustworthy enhanced molecular ion (M+), complemented by its optional further confirmation with cluster CI was highly valued by the synthetic organic chemists that were served by the Supersonic GC-MS. Furthermore, the provision of extended mass spectral structural, isomer and isotope information combined with short (a few minutes) GC-MS analysis times also proved beneficial for the analysis of unknown synthetic organic compounds. As a result, the synthetic organic chemists were provided with both qualitative and quantitative data on the composition of their synthetic mixture, and could better follow the path of their synthetic chemistry. Ten cases of such analyses are demonstrated in figures and discussed.

  7. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  8. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  9. Measurement of gas permeability through geo-synthetic clay liners; Mesure de la permeabilite au gaz a travers des geosynthetiques bentonitiques

    Energy Technology Data Exchange (ETDEWEB)

    Bouazza, A.; Vangpaisal, T. [Monash University, Melbourne, Victoria (Australia)

    2000-07-01

    While much research has been performed to investigate the ability of GCLs to limit flow through minimization of the saturated hydraulic conductivity, very little is known about their capabilities to control gas flux and therefore reducing gas migration into the atmosphere or the areas surrounding landfills. The aim of this study was to assess gas flow through GCLs with a simple and reliable testing procedure. A gas permeameter was developed to study gas flow through partially saturated geo-synthetic clay liners (GCLs). Measurements of the differential pressure across the GCL sample at varying flow rates were used to calculate gas permeability at different moisture contents. For the range of water content studied (65% < {omega} < 128%) a decrease of around 4 orders of magnitude in the GCL permeability has been observed. This suggests that the GCL degree of hydration during the design life of a waste containment facility is an important issue to address in the design process of a lining or cover system using a GCL. (authors)

  10. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  11. Co-Evolution of Mobile Language Learning: Going Global with Games Consoles in Higher Education

    Science.gov (United States)

    Hemmi, Akiko; Narumi-Munro, Fumiko; Alexander, Wilma; Parker, Helen; Yamauchi, Yoko

    2014-01-01

    Game consoles have been adopted as a learning platform in school education. However, there is a scarcity of studies examining the utility of games consoles with built-in WiFi as affordable learning platforms in universities. This paper contributes to knowledge about the capacity of the Nintendo DSi to create new learning spaces mediated and…

  12. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  13. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  14. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  15. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  16. Development of synthetic gasoline production process

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T; Fujita, H; Yamada, K; Suzuki, T; Tsuchida, Y

    1986-01-01

    As oil deposits are limited, it is very important to develop techniques for manufacturing petroleum alternatives as substitute energy sources to brighten the outlook for the future. The Research Association for Petroleum Alternatives Development (RAPAD) in Japan is engaged in the research and development of production techniques for light hydrocarbon oils such as gasoline, kerosene, and light oil from synthesis gas (CO, H/sub 2/) obtained from the raw materials of natural gas, coal, etc. Regarding the MTG process of synthesizing gasoline via methanol from synthesis gas and the STG process of directly synthesizing gasoline from synthesis gas, Cosmo Oil Co., Ltd. and Mitsubishi Heavy Industries, Ltd., members of RAPAD, have sought jointly to develop catalysts and processes. As a result of this co-operation, the authors have recently succeeded in developing a new catalyst with a long life span capable of providing a high yield and high selectivity. Additionally, the authors are currently on the verge of putting into effect a unique two-step STG process of synthesizing high octane gasoline via dimethyl ether, referred to as the AMSTG process.

  17. Mentoring console improves collaboration and teaching in surgical robotics.

    Science.gov (United States)

    Hanly, Eric J; Miller, Brian E; Kumar, Rajesh; Hasser, Christopher J; Coste-Maniere, Eve; Talamini, Mark A; Aurora, Alexander A; Schenkman, Noah S; Marohn, Michael R

    2006-10-01

    One of the most significant limitations of surgical robots has been their inability to allow multiple surgeons and surgeons-in-training to engage in collaborative control of robotic surgical instruments. We report the initial experience with a novel two-headed da Vinci surgical robot that has two collaborative modes: the "swap" mode allows two surgeons to simultaneously operate and actively swap control of the robot's four arms, and the "nudge" mode allows them to share control of two of the robot's arms. The utility of the mentoring console operating in its two collaborative modes was evaluated through a combination of dry laboratory exercises and animal laboratory surgery. The results from surgeon-resident collaborative performance of complex three-handed surgical tasks were compared to results from single-surgeon and single-resident performance. Statistical significance was determined using Student's t-test. Collaborative surgeon-resident swap control reduced the time to completion of complex three-handed surgical tasks by 25% compared to single-surgeon operation of a four-armed da Vinci (P nudge mode was particularly useful for guiding a resident's hands during crucially precise steps of an operation (such as proper placement of stitches). The da Vinci mentoring console greatly facilitates surgeon collaboration during robotic surgery and improves the performance of complex surgical tasks. The mentoring console has the potential to improve resident participation in surgical robotics cases, enhance resident education in surgical training programs engaged in surgical robotics, and improve patient safety during robotic surgery.

  18. Evaluating games console electricity use : technologies and policy options to improve energy efficiency.

    OpenAIRE

    Webb, Amanda E.

    2016-01-01

    Energy efficiency regulations and standards are increasingly being used as an approach to reduce the impact of appliances on climate change. Each new generation of games consoles is significantly different to the last and their cumulative electricity use has risen due to improved performance and functionality and increasing sales. As a result, consoles have been identified in the EU, US and Australia as a product group with the potential for significant electricity savings. However, there is ...

  19. Gas processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1991-01-01

    State of electric discharge is detected based on a gas pressure in a sealed container and a discharging current flowing between both of electrodes. When electric arc discharges occur, introduction of gases to be processed is stopped and a voltage applied to both of the electrodes is interrupted. Then, when the gas pressure in the sealed container is lowered to a predetermined value, a power source voltage is applied again to both of the electrodes to recover glow discharges, and the introduction of the gas to be processed is started. With such steps, even if electric arc discharges occur, they are eliminated automatically and, accordingly, normal glow discharges can be recovered, to prevent failures of the device due to electric arc discharges. The glow discharges are recovered automatically without stopping the operation of the gas processing device, and gas injection and solidification processing can be conducted continuously and stably. (T.M.)

  20. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  1. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones.

    Science.gov (United States)

    Carnes, Stephanie; O'Brien, Stacey; Szewczak, Angelica; Tremeau-Cayel, Lauriane; Rowe, Walter F; McCord, Bruce; Lurie, Ira S

    2017-09-01

    A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. You can't take it with you? Effects of handheld portable media consoles on physiological and psychological responses to video game and movie content.

    Science.gov (United States)

    Ivory, James D; Magee, Robert G

    2009-06-01

    Portable media consoles are becoming extremely popular devices for viewing a number of different types of media content, both for entertainment and for educational purposes. Given the increasingly heavy use of portable consoles as an alternative to traditional television-style monitors, it is important to investigate how physiological and psychological effects of portable consoles may differ from those of television-based consoles, because such differences in physiological and psychological responses may precipitate differences in the delivered content's effectiveness. Because portable consoles are popular as a delivery system for multiple types of media content, such as movies and video games, it is also important to investigate whether differences between the effects of portable and television-based consoles are consistent across multiple types of media. This article reports a 2 x 2 (console: portable or television-based x medium: video game or movie) mixed factorial design experiment with physiological arousal and self-reported flow experience as dependent variables, designed to explore whether console type affects media experiences and whether these effects are consistent across different media. Results indicate that portable media consoles evoke lower levels of physiological arousal and flow experience and that this effect is consistent for both video games and movies. These findings suggest that even though portable media consoles are often convenient compared to television-based consoles, the convenience may come at a cost in terms of the user experience.

  3. FFTF gas processing systems

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1977-01-01

    The design and operation of the two radioactive gas processing systems at the Fast Flux Test Facility (FFTF) exemplifies the concept that will be used in the first generation of Liquid Metal Fast Breeder Reactors (LMFBR's). The two systems, the Radioactive Argon Processing System (RAPS) and the Cell Atmosphere Processing System (CAPS), process the argon and nitrogen used in the FFTF for cover gas on liquid metal systems and as inert atmospheres in steel lined cells housing sodium equipment. The RAPS specifically processes the argon cover gas from the reactor coolant system, providing for decontamination and eventual reuse. The CAPS processes radioactive gasses from inerted cells and other liquid metal cover gas systems, providing for decontamination and ultimate discharge to the atmosphere. The cryogenic processing of waste gas by both systems is described

  4. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  5. 9-J N AGBO-BOOK REVIEW-EXISTENCE AND CONSOLATION-FT ...

    African Journals Online (AJOL)

    JONATHAN

    Every culture and people have made attempts to address this question, since ... morality, life, relativism, death, immortality, comparative philosophy, et cetera . ... concept of humanity on the ground of the necessity of consolation, we speak of.

  6. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    Science.gov (United States)

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Development of a remote control console for the HHIRF 25-MV tandem accelerator

    International Nuclear Information System (INIS)

    Hasanul Basher, A.M.

    1991-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. It has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 and a communication software package. Hardware configuration has been established, a communication software program that reads the pages from the shared memory has been developed. In this paper, we present the implementation strategy, works completed, existing and new page format, future action plans, explanation of pages and use of related global variables, a sample session, and flowcharts

  8. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is

  9. Modified Brokk Demolition Machine with Remote Operator Console. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The Low-Cost D and D System modifies a commercially available BROKK demolition system for remote viewing and long tether remote operation that provides a portable facility camera pod and interfaces with the Compact Remote Operator Console (TMS Tech ID 2180) to extend the applicability of the BROKK system to projects that require removal of the operator from the work area due to exposure to radiological, chemical, or industrial hazards. The modified BROKK has been integrated with the Compact Remote Operator Console to provide a true remotely operated low-cost D and D system applicable to a wide range of small D and D demolition tasks across the DOE complex

  10. Simulation, integration, and economic analysis of gas-to-liquid processes

    International Nuclear Information System (INIS)

    Bao, Buping; El-Halwagi, Mahmoud M.; Elbashir, Nimir O.

    2010-01-01

    Gas-to-liquid (GTL) involves the chemical conversion of natural gas into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid transportation fuels. Such technology can also be used to convert other abundant natural resources such as coal and biomass to fuels and value added chemicals (referred to as coal-to-liquid (CTL) and biomass-to-liquid (BTL)). A leading GTL technology is the Fischer-Tropsch (FT) process. The objective of this work is to provide a techno-economic analysis of the GTL process and to identify optimization and integration opportunities for cost saving and reduction of energy usage while accounting for the environmental impact. First, a base-case flowsheet is synthesized to include the key processing steps of the plant. Then, a computer-aided process simulation is carried out to determine the key mass and energy flows, performance criteria, and equipment specifications. Next, energy and mass integration studies are performed to address the following items: (a) heating and cooling utilities, (b) combined heat and power (process cogeneration), (c) management of process water, (c) optimization of tail gas allocation, and (d) recovery of catalyst-supporting hydrocarbon solvents. Finally, these integration studies are conducted and the results are documented in terms of conserving energy and mass resources as well as providing economic impact. Finally, an economic analysis is undertaken to determine the plant capacity needed to achieve the break-even point and to estimate the return on investment for the base-case study. (author)

  11. Principle of human system interface (HSI) design for new reactor console of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Idris Taib; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Mohd Sabri Minhat; Izhar Abu Hussin

    2013-01-01

    Full-text: This paper will describe the principle of human system interface design for new reactor console in control room at TRIGA reactor facility. In order to support these human system interface challenges in digital reactor console. Software-based instrumentation and control (I and C) system for new reactor console could lead to new human machine integration. The proposed of Human System Interface (HSI) which included the large display panels which shows reactor status, compact and computer-based workstations for monitoring, control and protection function. The proposed Human System Interface (HIS) has been evaluated using various human factor engineering. It can be concluded that the Human System Interface (HIS) is designed as to address the safety related computer controlled system. (author)

  12. The advanced main control console for next japanese PWR plants

    International Nuclear Information System (INIS)

    Tsuchiya, A.; Ito, K.; Yokoyama, M.

    2001-01-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  13. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  14. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  15. Automatic generation of computer programs servicing TFTR console displays

    International Nuclear Information System (INIS)

    Eisenberg, H.

    1983-01-01

    A number of alternatives were considered in providing programs to support the several hundred displays required for control and monitoring of TFTR equipment. Since similar functions were performed, an automated method of creating programs was suggested. The complexity of a single program servicing as many as thirty consoles mitigated against that approach. Similarly, creation of a syntactic language while elegant, was deemed to be too time consuming, and had the disadvantage of requiring a working knowledge of the language on a programming level. It was elected to pursue a method of generating an individual program to service a particular display. A feasibility study was conducted and the Control and Monitor Display Generator system (CMDG) was developed. A Control and Monitor Display Service Program (CMDS) provides a means of performing monitor and control functions for devices associated with TFTR subsystems, as well as other user functions, via TFTR Control Consoles. This paper discusses the specific capabilities provided by CMDS in a usage context, as well as the mechanics of implementation

  16. Exploiting the X-Window environment to expand the number, reach, and usefulness of Fermilab accelerator control consoles

    International Nuclear Information System (INIS)

    Cahill, K.; Smedinghoff, J.

    1992-01-01

    The Fermilab accelerator operator workstation of choice is now the Digital VAX station running VMS and X-Window software. This new platform provides an easy to learn programming environment while support routines are expanding in number and power. The X-Window environment is exploited to provide remote consoles to users across long haul networks and to support multiple consoles on a single workstation. The integration of imaging systems, local datalogging, commercial and Physics community's software, and development facilities on the operator workstation adds functionality to the system. The locally engineered knob/pointer/keyboard interface solves the multiple keyboard and mouse problems of a multi-screen console. This paper will address these issues of Fermilab's accelerator operator workstations. (author)

  17. Remarks on forensically interesting Sony Playstation 3 console features

    Science.gov (United States)

    Daugs, Gunnar; Kröger, Knut; Creutzburg, Reiner

    2012-02-01

    This paper deals with forensically interesting features of the Sony Playstation 3 game console. The construction and the internal structure are analyzed more precisely. Interesting forensic features of the operating system and the file system are presented. Differences between a PS3 with and without jailbreak are introduced and possible forensic attempts when using an installed Linux are discussed.

  18. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Experiment Plan of High Temperature Steam and Carbon dioxide Co-electrolysis for Synthetic Gas Production

    International Nuclear Information System (INIS)

    Yoon, Duk-Joo; Ko, Jae-Hwa

    2008-01-01

    Currently, Solid oxide fuel cells (SOFC) come into the spotlight in the middle of the energy technologies of the future for highly effective conversion of fossil fuels into electricity without carbon dioxide emission. The SOFC is a reversible cell. By applying electrical power to the cell, which is solid oxide electrolysis cell (SOEC), it is possible to produce synthetic gas (syngas) from high temperature steam and carbon dioxide. The produced syngas (hydrogen and carbon monoxide) can be used for synthetic fuels. This SOEC technology can use high temperature from VHTRs for high efficiency. This paper describes KEPRI's experiment plan of high temperature steam and carbon co-electrolysis for syngas production using SOEC technology

  20. Evaluation of ecological impacts of synthetic natural gas from wood used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Remo; Dones, Roberto [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2007-06-15

    A promising option to substitute fossil energy carriers by renewables is the production of synthetic natural gas (SNG) from wood, as this results in a flexible energy carrier usable via existing infrastructure in gas boilers or passenger cars. The comprehensive life cycle-based ecological impact of SNG is investigated and compared with standard fuels delivering the same service (natural gas, fuel oil, petrol/diesel, and wood chips). Life cycle impact assessment methodologies and external costs from airborne emissions provide measures of overall damage. The results indicate that the SNG system has the best ecological performance if the consumption of fossil resources is strongly weighted. Otherwise natural gas performs best, as its supply chain is energy-efficient and its use produces relatively low emissions. Wood systems are by far the best in terms of greenhouse gas emissions (GHG), where SNG emits about twice as much as the wood chips system. The main negative aspects of the SNG system are NO{sub x} and particulate emissions and the relatively low total energy conversion efficiency resulting from the additional processing to transform wood to gas. Direct wood combustion has a better ecological score when highly efficient particulate filters are installed. SNG performs better than oil derivatives with all the evaluation methods used. External costs for SNG are the lowest as long as GHG are valued high. SNG should preferably be used in cars, as the reduction of overall ecological impacts and external costs when substituting oil-based fuels is larger for current cars than for heating systems. (author)

  1. A single step methane conversion into synthetic fuels using microplasma reactor

    NARCIS (Netherlands)

    Nozaki, Tomohiro; Agiral, A.; Gardeniers, Johannes G.E.; Yuzawa, Shuhei; Okazaki, Ken

    2011-01-01

    Direct conversion of natural gas into synthetic fuels such as methanol attracts keen attention because direct process can reduce capital and operating costs of high temperature, energy intensive, multi-step processes. We report a direct and selective synthesis of organic oxygenates such as methanol,

  2. Control console for the X-ray room

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A.

    1998-01-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  3. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  4. Re-envisioning the operator consoles for Dhruva control room

    International Nuclear Information System (INIS)

    Gaur, S.; Sridharan, P.; Nair, P.M.; Diwakar, M.P.; Gohel, N.; Pithawa, C.K.

    2012-01-01

    Control Room design is undergoing rapid changes with the progressive adoption of computerization and Automation. Advances in man-machine interfaces have further accelerated this trend. This paper presents the design and main features of Operator consoles (OC) for Dhruva control room developed using new technologies. The OCs have been designed so as not to burden the operator with information overload but to help him quickly assess the situation and timely take appropriate steps. The consoles provide minimalistic yet intuitive interfaces, context sensitive navigation, display of important information and progressive disclosure of situation based information. The use of animations, 3D graphics, and real time trends with the benefit of hardware acceleration to provide a resolution independent rich user experience. The use of XAML, an XML based Mark-up Language for User Interface definition and C for application logic resulted in complete separation of visual design, content, and logic. This also resulted in a workflow where separate teams could work on the UI and the logic of an application. The introduction of Model View View-Model has led to more testable and maintainable software. (author)

  5. Synthetic CO, H2 and H I surveys of the second galactic quadrant, and the properties of molecular gas

    Science.gov (United States)

    Duarte-Cabral, A.; Acreman, D. M.; Dobbs, C. L.; Mottram, J. C.; Gibson, S. J.; Brunt, C. M.; Douglas, K. A.

    2015-03-01

    We present CO, H2, H I and HISA (H I self-absorption) distributions from a set of simulations of grand design spirals including stellar feedback, self-gravity, heating and cooling. We replicate the emission of the second galactic quadrant by placing the observer inside the modelled galaxies and post-process the simulations using a radiative transfer code, so as to create synthetic observations. We compare the synthetic data cubes to observations of the second quadrant of the Milky Way to test the ability of the current models to reproduce the basic chemistry of the Galactic interstellar medium (ISM), as well as to test how sensitive such galaxy models are to different recipes of chemistry and/or feedback. We find that models which include feedback and self-gravity can reproduce the production of CO with respect to H2 as observed in our Galaxy, as well as the distribution of the material perpendicular to the Galactic plane. While changes in the chemistry/feedback recipes do not have a huge impact on the statistical properties of the chemistry in the simulated galaxies, we find that the inclusion of both feedback and self-gravity are crucial ingredients, as our test without feedback failed to reproduce all of the observables. Finally, even though the transition from H2 to CO seems to be robust, we find that all models seem to underproduce molecular gas, and have a lower molecular to atomic gas fraction than is observed. Nevertheless, our fiducial model with feedback and self-gravity has shown to be robust in reproducing the statistical properties of the basic molecular gas components of the ISM in our Galaxy.

  6. Use of an electron penetration cathode ray tube in a colour display console

    International Nuclear Information System (INIS)

    Nickles, Pierre

    1972-01-01

    The objective of this research thesis is to study the possibility to obtain a colour image which can be used in cathode ray tube display console. The author describes a cathode ray tube, presents different methods to obtain a colour image (mask tube, electron penetration tube, and intensity change tube), discusses the choice of a cathode ray tube type, and describes its use in a display console. In the next part, the author addresses some theoretical aspects of corrections to be made for spot deflection, spot focussing, and spot brightness. A first version of a mock-up is presented, and experimental results are presented and discussed. A second version is then presented

  7. Completion of Launch Director Console Project and Other Support Work

    Science.gov (United States)

    Steinrock, Joshua G.

    2018-01-01

    There were four projects that I was a part of working on during the spring semester of 2018. This included the completion of the Launch Director Console (LDC) project and the completion and submission of a Concept of Operations (ConOps) document for the Record and Playback System (RPS) at the Launch Control Center (LCC), as well as supporting the implementation of a unit in RPS known as the CDP (Communication Data Processor). Also included was my support and mentorship of a High School robotics team that is sponsored by Kennedy Space Center. The LDC project is an innovative workstation to be used by the launch director for the future Space Launch System program. I worked on the fabrication and assembly of the final console. The ConOps on RPS is a technical document for which I produced supporting information and notes. All of this was done in the support of the IT Project Management Office (IT-F). The CDP is a subsystem that will eventually be installed in and operated by RPS.

  8. Assessment of very high-temperature reactors in process applications. Appendix III. Engineering evaluation of process heat applications for very-high temperature reactors

    International Nuclear Information System (INIS)

    Wiggins, D.S.; Williams, J.J.

    1977-04-01

    An engineering and economic evaluation is made of coal conversion processes that can be coupled to a very high-temperature nuclear reactor heat source. The basic system developed by General Atomic/Stone and Webster (GA/S and W) is similar to the H-coal process developed by Hydrocarbon Research, Inc., but is modified to accommodate a nuclear heat source and to produce synthetic natural gas (SNG), synthesis gas, and hydrogen in addition to synthetic crude liquids. The synthetic crude liquid production is analyzed by using the GA/S and W process coupled to either a nuclear- or fossil-heat source. Four other processes are included for comparison: (1) the Lurgi process for production of SNG, (2) the Koppers-Totzek process for production of either hydrogen or synthesis gas, (3) the Hygas process for production of SNG, and (4) the Westinghouse thermal-chemical water splitting process for production of hydrogen. The production of methanol and iron ore reduction are evaluated as two potential applications of synthesis gas from either the GA/S and W or Koppers-Totzek processes. The results indicate that the product costs for each of the gasification and liquefaction processes did not differ significantly, with the exception that the unproven Hygas process was cheaper and the Westinghouse process considerably more expensive than the others

  9. Processes for coating or sealing electronic components with synthetic varnishes

    International Nuclear Information System (INIS)

    Farrugia, M.; Allard, M.

    1981-01-01

    A method of coating or sealing electrical or electronic components with a synthetic resin composition is described which consists of moving each component along a fixed path through a coating station at which at least one surface of the component receives a coating of synthetic resin and then moving each component through a beam of ionising radiation (ultra-violet or beta radiation) for a sufficient time to induce polymerisation of the resin. Suitable resin compositions for the process are listed. (U.K.)

  10. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. An evaluation of Substitute natural gas production from different coal gasification processes based on modeling

    International Nuclear Information System (INIS)

    Karellas, S.; Panopoulos, K.D.; Panousis, G.; Rigas, A.; Karl, J.; Kakaras, E.

    2012-01-01

    Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO 2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO 2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO 2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared. -- Highlights: ► The production of SNG from coal is examined. ► The components of the process were simulated for integrated autothermal or allothermal coal gasification to SNG. ► The energetic and exergetic evaluation of the two processes is presented.

  12. A mobile console for local access to accelerator control systems.

    CERN Multimedia

    1981-01-01

    Microprocessors were installed as auxiliary crate controllers (ACCs) in the CAMAC interface of control systems for various accelerators. The same ACC was also at the hearth of a stand-alone system in the form of a mobile console. This was also used for local access to the control systems for tests and development work (Annual Report 1981, p. 80, Fig. 10).

  13. Gas-to-liquids : who cares?

    International Nuclear Information System (INIS)

    Yakobson, D.L.

    1999-01-01

    An overview of gas-to-liquids (GTL) technology was presented along with its capital costs, economics and market niche. GTL technology is a process developed by Fischer-Tropsch in the 1920s, in which carbonaceous feedstock is catalytically converted into synthetic oil. The feedstock can be natural gas, coal, or refinery bottoms, bitumen, Orimulsion TM or biomass. The process involves the making of a gaseous mixture of hydrogen and carbon monoxide and then feeding that mixture into a reactor containing a catalyst. The last step involves the processing of the synthetic oil into fractions for sale. The issue of whether GTL will compete with refinery production or supplement it was also raised. The potential for GTL projects in North America were reviewed. The five companies which have matured GTL technologies are Exxon, Rentech, Sasol, Shell and Syntroleum

  14. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  15. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  16. Cultural adaptation to Brazilian Portuguese of the Face, Legs, Activity, Cry, Consolability revised (FLACCr scale of pain assessment

    Directory of Open Access Journals (Sweden)

    Edna Aparecida Bussotti

    2015-08-01

    Full Text Available AbstractObjective: to perform the translation into Brazilian Portuguese and cultural adaptation of the Face, Legs, Activity, Cry, Consolability revised (FLACCr scale, with children under 18 years old, affected by cerebral palsy, presenting or not cognitive impairment and unable to report their pain.Method: methodological development study of translation into Portuguese and cultural adaptation of the FLACCr. After approval by the ethics committee, the process aimed at translation and back-translation, evaluation of translation and back-translation using the Delphi technique and assessment of cultural equivalence. The process included the five categories of the scale and the four application instructions, considering levels of agreement equal to or greater than 80%.Results: it was necessary three rounds of the Delphi technique to achieve consensus among experts. The agreement achieved for the five categories was: Face 95.5%, Legs 90%, Activity 94.4%, Cry 94.4% and Consolability 99.4%. The four instructions achieved the following consensus levels: 1st 99.1%, 2nd 99.2%, 3rd 99.1% and 4th 98.3%.Conclusion: the method enabled the translation and cultural adaptation of the FLACCr. This is a study able to expand the knowledge of Brazilian professionals on pain assessment in children with CP

  17. [Efficacy of interventions with video games consoles in stroke patients: a systematic review].

    Science.gov (United States)

    Ortiz-Huerta, J H; Perez-de-Heredia-Torres, M; Guijo-Blanco, V; Santamaria-Vazquez, M

    2018-01-16

    In recent years video games and games consoles have been developed that are potentially useful in rehabilitation, which has led to studies conducted to evaluate the degree of efficacy of these treatments for people following a stroke. To analyse the literature available related to the effectiveness of applying video games consoles in the functional recovery of the upper extremities in subjects who have survived a stroke. A review of the literature was conducted in the CINHAL, Medline, PEDro, PsycArticles, PsycInfo, Science Direct, Scopus and Web of Science databases, using the query terms 'video game', 'stroke', 'hemiplegia', 'upper extremity' and 'hemiparesis'. After applying the eligibility criteria (clinical trials published between 2007 and 2017, whose participants were adults who had suffered a stroke with involvement of the upper extremity and who used video games), the scientific quality of the selected studies was rated by means of the PEDro scale. Eleven valid clinical trials were obtained for the systematic review. The studies that were selected, all of which were quantitative, presented different data and the inferential results indicated different levels of significance between control and experimental groups (82%) or between the different types of treatment (18%). The use of video games consoles is a useful complement for the conventional rehabilitation of the upper extremities of persons who have survived a stroke, since it increases rehabilitation time and enhances the recovery of motor functioning. Nevertheless, homogeneous intervention protocols need to be implemented in order to standardise the intervention.

  18. Overview and forensic investigation approaches of the gaming console Sony PlayStation Portable

    Science.gov (United States)

    Schön, Stephan; Schön, Ralph; Kröger, Knut; Creutzburg, Reiner

    2013-03-01

    This paper addresses the forensically interesting features of the Sony PlayStation Portable game console. The construction and the internal structure are analyzed precisely and interesting forensic features of the operating system and the file system are presented.

  19. Accommodative load from handheld game consoles in kindergarten children.

    Science.gov (United States)

    Sakata, T; Miyao, M; Ishigaki, H; Shiraiwa, Y; Ishihara, S; Furuta, M; Kondo, T; Toyoshima, H

    2001-07-01

    We analyzed and compared the visual accommodation of kindergarten children who were gazing fixedly at images from three different sources: Nintendo Game Boy DMG-01(TM) (non-backlit type game console: NBGC), NEC PC EnginePI-TG6(TM) (color backlit-type game console: CBGC) and a cartoon drawing (drawing). Subjects for the experiment were 13 4- to 5-year-old kindergarten children. The contrast ratios were, in the order, 1.1 (NBGC), 3.1 (drawing), and 3.4 (CBGC). These values show that the contrast of the NBGC screen was considerably lower than the others. The mean accommodative power increased when looking at all three types of image: a drawing (1.75±0.52 D; mean±S.D.), CBGC (1.82±0.61 D), and NBGC (2.26±0.50 D). Compared with the other 2 targets, NBGC required stronger accommodation, indicating that the legibility of the NBGC was poor. Repeated measures ANOVA was used for the values of accommodation for each type of target. There were significant differences among the 3 targets (p<0.01). Significant differences were seen between NBGC and drawings (p<0.01) and NBGC and CBGC (p<0.05) using paired Scheffe test, but not between CBGC and drawings. This supports the finding that the legibility of NBGC is low due to dark and low contrast screens with poor resolution.

  20. Local system for control by console-mobile crane for russian depository of fissionable materials

    International Nuclear Information System (INIS)

    Troshchenko, V.G.; Kapustin, V.N.; Zinina, N.V.; Derbyshev, S.A.

    2005-01-01

    Description of crane of console-mobile type used for transportation of fissionable materials in depository with local control system is represented. Local control system realizes program control in real time [ru

  1. On the Development of a Web-Based M-Learning System for Dual Screen Handheld Game Consoles

    Directory of Open Access Journals (Sweden)

    Hend S. Al-Khalifa

    2011-04-01

    Full Text Available This paper presents our experience on the design and development of an M-Learning web-based system for the Nintendo DSi game console. The paper starts by addressing the difficulties that emerged from the lack of resources on design guidelines for dual screen devices also the absence of adequate techniques and methods to support the design decisions. Then it explains how we overcame these challenges by adopting a design decision suitable for the screen requirements of the Nintendo DSi console. Finally, we present the components of our M-Learning system and the results of a preliminary usability evaluation.

  2. The design of the m-health service application using a Nintendo DS game console.

    Science.gov (United States)

    Lee, Sangjoon; Kim, Jungkuk; Lee, Myoungho

    2011-03-01

    In this article, we developed an m-health monitoring system using a Nintendo DS game console to demonstrate its utility. The proposed system consists of a biosignal acquisition device, wireless sensor network, base-station for signal reception from the sensor network and signal conversion according to Internet protocol, personal computer display program, and the Nintendo DS game console. The system collects three-channel electrocardiogram (ECG) signals for cardiac abnormality detection and three-axis accelerometer signals for fall detection of a person. The collected signals are then transmitted to the base-station through the wireless sensor network, where they are transformed according to the transmission control protocol/Internet protocol (TCP/IP) and sent to the destination IP through Internet network. To test the developed system, the collected signals were displayed on a computer located in different building through wired Internet network and also simultaneously displayed on the Nintendo DS game console connected to Internet network wirelessly. The system was able to collect and transmit signals for more than 24 h without any interruptions or malfunctions, showing the possibility of integrating healthcare monitoring functions into a small handheld-type electronic device developed for different purposes without significant complications. It is expected that the system can be used in an ambulance, nursing home, or general hospital where efficient patient monitoring from long distance is necessary.

  3. The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Russell, Joanna; Singer, Brian W; Perry, Justin J; Bacon, Anne

    2011-05-01

    A collection of more than 70 synthetic organic pigments were analysed using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We report on the analysis of diketo-pyrrolo-pyrrole, isoindolinone and perylene pigments which are classes not previously reported as being analysed by this technique. We also report on a number of azo pigments (2-naphthol, naphthol AS, arylide, diarylide, benzimidazolone and disazo condensation pigments) and phthalocyanine pigments, the Py-GC-MS analysis of which has not been previously reported. The members of each class were found to fragment in a consistent way and the pyrolysis products are reported. The technique was successfully applied to the analysis of paints used by the artist Francis Bacon (1909-1992), to simultaneously identify synthetic organic pigments and synthetic binding media in two samples of paint taken from Bacon's studio and micro-samples taken from three of his paintings and one painting attributed to him.

  4. Flue Gas Desulphurization Processes

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Halhouli, K.A.; Abu-Ashur, B.M.

    1999-01-01

    Flue gas desulphurization process are discussed. These processes can be grouped into non-regenerable systems and regenerable systems. The non-regenerable systems produce a product which is either disposed of as waste or sold as a by-product e.g. lime/limestone process. While in the regenerable systems, e.g. Wellman-Lord process, the SO 2 is regenerated from the sorbent(sodium sulphite), which is returned to absorb more SO 2 . Also a newer technology for flue gas desulphurization is discussed. The Ispra process uses bromine as oxidant, producing HBr, from which bromine is regenerated by electrolysis. The only by-products of this process are sulphuric acid and hydrogen, which are both valuable products, and no waste products are produced. Suggested modifications on the process are made based on experimental investigations to improve the efficiency of the process and to reduce its costs

  5. New directions in gas processing

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Papers presented at the Insight conference held on January 30, 1996 in Calgary, Alberta, were contained in this volume. The conference was devoted to a discussion of new directions in the gas processing business, the changing business environment, new processing technologies, and means by which current facilities agreements can be adapted to the new commercial reality. High operating costs which have resulted in the downsizing and restructuring of the industry, and partnering with a third party in the gathering and processing operations, with apparently beneficial result both to plant owners, as well to third party processors, received the most attention. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement, which defines the obligations of third parties, was the center of discussion. Regulatory changes and the industry's response to the changes was also on the agenda. Refs., tabs., figs

  6. On-line optimal control improves gas processing

    International Nuclear Information System (INIS)

    Berkowitz, P.N.; Papadopoulos, M.N.

    1992-01-01

    This paper reports that the authors' companies jointly funded the first phase of a gas processing liquids optimization project that has the specific purposes to: Improve the return of processing natural gas liquids, Develop sets of control algorithms, Make available a low-cost solution suitable for small to medium-sized gas processing plants, Test and demonstrate the feasibility of line control. The ARCO Willard CO 2 gas recovery processing plant was chosen as the initial test site to demonstrate the application of multivariable on-line optimal control. One objective of this project is to support an R ampersand D effort to provide a standardized solution to the various types of gas processing plants in the U.S. Processes involved in these gas plants include cryogenic separations, demethanization, lean oil absorption, fractionation and gas treating. Next, the proposed solutions had to be simple yet comprehensive enough to allow an operator to maintain product specifications while operating over a wide range of gas input flow and composition. This had to be a supervisors system that remained on-line more than 95% of the time, and achieved reduced plant operating variability and improved variable cost control. It took more than a year to study various gas processes and to develop a control approach before a real application was finally exercised. An initial process for C 2 and CO 2 recoveries was chosen

  7. 77 FR 40082 - Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof...

    Science.gov (United States)

    2012-07-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-745] Certain Gaming and Entertainment... gaming and entertainment consoles, related software, and components thereof by reason of infringement of... finally concluded that an industry exists within the United States that practices the '896, '094, '571...

  8. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy)

    2012-07-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important

  9. A preliminary user-friendly, digital console for the control room parameters supervision in old-generation Nuclear Plants

    International Nuclear Information System (INIS)

    Memmi, F.; Falconi, L.; Cappelli, M.; Palomba, M.; Santoro, E.; Bove, R.; Sepielli, M.

    2012-01-01

    Improvements in the awareness of a system status is an essential requirement to achieve safety in every kind of plant. In particular, in the case of Nuclear Power Plants (NPPs), a progress is crucial to enhance the Human Machine Interface (HMI) in order to optimize monitoring and analyzing processes of NPP operational states. Firstly, as old-fashioned plants are concerned, an upgrading of the whole console instrumentation is desirable in order to replace an analog visualization with a full-digital system. In this work, we present a novel instrument able to interface the control console of a nuclear reactor, developed by using CompactRio, a National Instruments embedded architecture and its dedicated programming language. This real-time industrial controller composed by a real-time processor and FPGA modules has been programmed to visualize the parameters coming from the reactor, and to storage and reproduce significant conditions anytime. This choice has been made on the basis of the FPGA properties: high reliability, determinism, true parallelism and re-configurability, achieved by a simple programming method, based on LabVIEW real-time environment. The system architecture exploits the FPGA capabilities of implementing custom timing and triggering, hardware-based analysis and co-processing, and highest performance control algorithms. Data stored during the supervisory phase can be reproduced by loading data from a measurement file, re-enacting worthwhile operations or conditions. The system has been thought to be used in three different modes, namely Log File Mode, Supervisory Mode and Simulation Mode. The proposed system can be considered as a first step to develop a more complete Decision Support System (DSS): indeed this work is part of a wider project that includes the elaboration of intelligent agents and meta-theory approaches. A synoptic has been created to monitor every kind of action on the plant through an intuitive sight. Furthermore, another important

  10. Gas exploitation and gas conversion; Gassutnyttelse og gasskonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Laading, Gjert

    1998-07-01

    This presentation deals with some of the challenges and possibilities connected with ''stranded'' gas. These are offshore gas reserves, especially associated gas, that is not connected with the market and that cannot be piped onshore, and where reinjection is not profitable, and where flaring off is not an option. There is increasing interest all over the world to find economical and environmentally friendly solutions to this problem. A good solution will render such fields economically developable and will to a high degree increase the total volume of the world's exploitable gas reserves. Since synthesis gas is a dominating cost element in most chemical conversion processes for gas, the synthesis gases are discussed in some detail. There is also a discussion of the conversion of the gas to Methanol, Synthetic oil (Syncrude and Synfuels) and to DME (Di-methyl-ether). Two methods for gas transport from the field are discussed; LNG on floating production storage and off loading (FPSO), and Gas hydrates. Principles, limitations and conditions for placing those processes on a FPSO. Finally, the presentation discusses the most important economic factors related to the exploitation of offshore gas, and suggests some possibilities for future development.11 figs.

  11. Tunable signal processing in synthetic MAP kinase cascades.

    Science.gov (United States)

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. 78 FR 32690 - Certain Gaming and Entertainment Consoles, Related Software, and Components Thereof; Notice of...

    Science.gov (United States)

    2013-05-31

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-752] Certain Gaming and Entertainment... importation of certain gaming and entertainment consoles, related software, and components thereof by reason... violation of [[Page 32691

  13. Power-to-Gas: storing surplus electrical energy. A design study

    NARCIS (Netherlands)

    Buchholz, O.S.; van der Ham, Aloysius G.J.; Veneman, Rens; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.

    2014-01-01

    In this work a conceptual design of a Power-to-Gas (PtG) process for storing electrical energy in form of synthetic natural gas (SNG) of gas grid quality H is presented. The combination with a conventional lignite fired power plant (LPP) was investigated for possible improvement of its economic

  14. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  15. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    OpenAIRE

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    1992-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuo...

  16. Prolonging the Magic: The Political Economy of the 7th Generation Console Game

    NARCIS (Netherlands)

    Nieborg, D.B.

    2014-01-01

    This paper draws on critical political economic theory to discuss the implications of the dominant mode of production and circulation of "Triple-A" or blockbuster console games. It is argued that the seventh generation Triple-A game is a highly standardized cultural commodity giving way to two

  17. Radioactive gas processing device

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki; Okazaki, Akira; Kumagaya, Koji.

    1982-01-01

    Purpose: To simplify the structure of a gas processing system which has hitherto been much complicated by the recyclic use of molecular sieve regeneration gas, by enabling to release the regeneration gas to outside in a once-through manner. Constitution: The system comprises a cooler for receiving and cooling gases to be processed containing radioactive rare gases, moisture-removing pipelines each connected in parallel to the exit of the cooler and having switching valves and a moisture removing column disposed between the valves and a charcoal absorber in communication with the moisture removing pipelines. Pipelines for flowing regeneration heating gases are separately connected to the moisture removing columns, and molecular sieve is charged in the moisture removing column by the amount depending on the types of the radioactive rare gases. (Aizawa, K.)

  18. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The Livermore Security Console system

    International Nuclear Information System (INIS)

    Smart, J.A.

    1987-01-01

    The Console system contains multiple, redundant workstations that enable operator to monitor alarms, assess incidents, and dispatch field personnel. Each workstation is heavily computerized and incorporates automatic video switching and recording, integrated radio and telephone communications, and an advanced high-resolution map and incident-display system. Operation of the workstation is closely integrated with the map display system, allowing an operators to readily pan and zoom. Objects of security interest are overlaid on the map using color. Access to alarm sensor information, entry-control device status, and the closed-circuit television system is obtained by zooming into an area and selecting the appropriate icons or symbols on the maps. Control menus are overlaid on the map. Several large databases have been closely integrated with the map display system, providing access to information such as telephone numbers and building or room occupants. An expert system is currently being integrated with the map display system. Object state changes are interpreted by a rule-based inference engine. Incidents are overlaid on the map

  20. Working under the PJVA gas processing agreement

    International Nuclear Information System (INIS)

    Collins, S.

    1996-01-01

    The trend in the natural gas industry is towards custom processing. New gas reserves tend to be smaller and in tighter reservoirs than in the past. This has resulted in plants having processing and transportation capacity available to be leased to third parties. Major plant operators and owners are finding themselves in the business of custom processing in a more focused way. Operators recognize that the dilution of operating costs can result in significant benefits to the plant owners as well as the third party processor. The relationship between the gas processor and the gas producer as they relate to the Petroleum Joint Venture Association (PJVA) Gas Processing Agreement were discussed. Details of the standard agreement that clearly defines the responsibilities of the third party producer and the processor were explained. In addition to outlining obligations of the parties, it also provides a framework for fee negotiation. It was concluded that third party processing can lower facility operating costs, extend facility life, and keep Canadian gas more competitive in holding its own in North American gas markets

  1. CONSOL`s perspective on CCT deployment

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Statnick, R.M. [CONSOL Inc., Library, PA (United States)

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, through programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.

  2. Effect of high-pressure food processing on the physical properties of synthetic and biopolymer films.

    Science.gov (United States)

    Galotto, M J; Ulloa, P A; Guarda, A; Gavara, R; Miltz, J

    2009-08-01

    The effect of high-pressure processing on 2 plastic food packaging films, a biopolymer (PLASiOx/PLA) and a synthetic polymer (PET-AlOx), was studied. Samples in direct contact with olive oil, as a fatty food simulant, and distilled water, as an aqueous simulant, were subjected to a pressure of 500MPa for 15 min at 50 degrees C. The mechanical, thermal, and gas barrier properties of both films were evaluated after the high-pressure processing (HPP) and compared to control samples that have not undergone this treatment. Significant changes in all properties were observed in both films after the HPP treatment and in contact with the food simulants. In both films an induced crystallization was noticed. In the PLASiOx/PLA film the changes were larger when in contact with water that probably acted as a plasticizer. In the PET-AlOx film the changes in properties were attributed to the formation of pinholes and cracks during the HPP treatment. In this film, most of the properties changed more in the presence of oil as the food simulant.

  3. Gas processing industrial hygiene needs

    International Nuclear Information System (INIS)

    D'Orsie, S.M.

    1992-01-01

    Handling of gases and natural gas liquids provides many opportunities for workers to be exposed to adverse chemical and physical agents. A brief overview of common hazards found in the processing of gas and natural gas liquids is presented in this paper. Suggestions on how an employer can obtain assistance in evaluating his workplace are also presented.presented

  4. Effect of synthetic iron colloids on the microbiological NH(4)(+) removal process during groundwater purification.

    Science.gov (United States)

    Wolthoorn, Anke; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2004-04-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater that is used to make drinking water potable. In a groundwater system with pH>7 subsurface aeration results in non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove iron in situ, the formation of non-mobile iron precipitate, which facilitates the metal's removal, is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of ammonium (NH(4)(+)) in the purification station. Mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process. Therefore, the objective of this study was to assess whether synthetic iron colloids could improve the NH(4)(+) removal process. The effect of synthetic iron colloids on the NH(4)(+) removal process was studied using an artificial purification set-up on a laboratory scale. Columns that purified groundwater with or without added synthetic iron colloids were set up in duplicate. The results showed that the NH(4)(+) removal was significantly ( alpha = 0.05 ) increased in columns treated with the synthetic iron colloids. Cumulative after 4 months about 10% more NH(4)(+) was nitrified in the columns that was treated with the groundwater containing synthetic iron colloids. The results support the hypothesis that mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process.

  5. Analysis of rationality of coal-based synthetic natural gas (SNG) production in China

    International Nuclear Information System (INIS)

    Li, Hengchong; Yang, Siyu; Zhang, Jun; Kraslawski, Andrzej; Qian, Yu

    2014-01-01

    To alleviate the problem of the insufficient reserves of natural gas in China, coal-based synthetic natural gas (SNG) is considered to be a promising option as a source of clean energy, especially for urban use. However, recent study showed that SNG will not accomplish the task of simultaneous energy conservation and CO 2 reduction. In this paper, life cycle costing is made for SNG use in three main applications in residential sector: heating, household use, and public transport. Comparisons are conducted between SNG and coal, natural gas, liquefied petroleum gas (LPG), diesel, and methanol. The results show that SNG is a competitive option only for household use. The use of SNG for heating boilers or city buses is not as cost-effective as expected. The biggest shortcoming of SNG is the large amount of pollutants generated in the production stage. At the moment, the use of SNG is promoted by the government. However, as shown in this paper, one can expect a transfer of pollution from the urban areas to the regions where SNG is produced. Therefore, it is suggested that well-balanced set of environmental damage-compensating policies should be introduced to compensate the environmental losses in the SNG-producing regions. - Highlights: • Life cycle costing was applied on the coal-based SNG. • The SNG was compared with conventional fuels of three residential applications. • The SNG is not so cost-effective except of household use. • Ecological compensation policy is useful to deal with the transfer of pollutions

  6. Heavy crude oil and synthetic crude market outlook

    International Nuclear Information System (INIS)

    Crandall, G.R.

    1997-01-01

    This presentation included an outline of the international heavy crude supply and demand versus Canadian heavy crude supply and disposition, and pricing outlook for synthetic crudes. Differences among crude oils such as light sweet, light sour, heavy and bitumen were described and illustrated with respect to their gravity, API, percentage of sulphur, metals and nitrogen. Internationally, heavy and sour crude supplies are forecast to increase significantly over the next four years. Discoveries of light sour crude in offshore Gulf of Mexico will provide a major new source of sour crude to U.S. Gulf Coast refineries. Venezuela's supplies of heavy and sour crude are also expected to increase over the next few years. Mexico and Canada have plans to increase their heavy crude production. All of the crudes will be aimed at the U.S. Gulf Coast and Midwest markets. Pentanes and condensates are also expected to increase based on the growing Canadian natural gas production. Diluent demand will also grow to match Canadian heavy crude/bitumen production. U.S. midwest refiners are proposing expansions to allow them to process more Canadian heavy crude oil. At present, only a few refineries are equipped to process significant amounts of synthetic crude. It was suggested that to absorb available heavy and synthetic production, increased penetration into both Canadian and U.S. markets will be required. Some refineries may have to be modified to process heavy and synthetic oil supplies. Heavy oil and synthetic producers may need to develop relationships with refiners such as joint ventures and term supply agreements to secure markets. 2 tabs., 12 figs

  7. EBR-II fuel handling console digital upgrade

    International Nuclear Information System (INIS)

    Peters, G.G.; Wiege, D.D.; Christensen, L.J.

    1995-01-01

    The main fuel handling console and control system at the Experimental Breeder Reactor II (EBR-II) are being upgraded to a computerized system using high-end workstations for the operator interface and a programmable logic controller (PLC) for the control system. Two-dimensional (2D) and three-dimensional (3D) computer graphics will be provided for the operator which will show the relative position of under-sodium fuel handling equipment. This equipment is operated remotely with no means of directly viewing the transfer. This paper describes various aspects of the modification including reasons for the upgrade, capabilities the new system provides over the old control system, philosophies and rationale behind the new design, testing and simulation work, diagnostic features, and the advanced graphics techniques used to display information to the operator

  8. Air quality, health, and climate implications of China's synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  9. Synthetic natural gas in California: When and why. [from coal

    Science.gov (United States)

    Wood, W. B.

    1978-01-01

    A coal gasification plant planned for northwestern New Mexico to produce 250 MMCFD of pipeline quality gas (SNG) using the German Lurgi process is discussed. The SNG will be commingled with natural gas in existing pipelines for delivery to southern California and the Midwest. Cost of the plant is figured at more than $1.4 billion in January 1978 dollars with a current inflation rate of $255,000 for each day of delay. Plant start-up is now scheduled for 1984.

  10. Gas storage and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro.

    1988-01-01

    Purpose: To improve the gas solidification processing performance in a gas storing and processing device for solidifying treatment of radioactive gaseous wastes (krypton 85) by ion injection method. Constitution: The device according to the present invention is constituted by disposing a coil connected with a magnetic field power source to the outer circumference of an outer cathode vessel, so that axial magnetic fields are formed to the inside of the outer cathode vessel. With such a device, thermoelectrons released from the thermocathode downwardly collide against gaseous radioactive wastes at high probability while moving spirally by the magnetic fields. The thus formed gas ions are solidified by sputtering in the cathode in the vessel. (Horiuchi, T.)

  11. Ecological impacts of Synthetic Natural Gas from wood (SNG) used in current heating and car systems

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.; Dones, R.

    2007-07-01

    This illustrated poster illustrates how synthetic natural gas (SNG) from wood is a promising option to partially substitute fossil energy carriers. The comprehensive life cycle-based ecological impact of SNG is compared with that of natural gas, fuel oil, petrol/diesel, and wood chips that deliver the same services. The methods used for comparison, including Eco-indicator '99 perspectives, Eco-scarcity '97 (UBP), IPCC (2001), and external costs are discussed. The results indicate best ecological performance of the SNG system if consumption of fossil resources is strongly weighted. The performance of natural gas and wood-based systems are also discussed. The main negative aspects of the SNG system are discussed, as is the better ecological score of wood when highly-efficient particulate matter filters are installed. SNG is quoted as performing better than oil derivatives. External costs for SNG are examined. The authors recommend that SNG should preferably be used in cars, since the reduction of overall ecological impact and external costs when substituting oil-based fuels is higher for cars than for heating systems.

  12. Testing the feasibility and safety of the Nintendo Wii gaming console in orthopedic rehabilitation: a pilot randomized controlled study.

    Science.gov (United States)

    Ficklscherer, Andreas; Stapf, Jonas; Meissner, Kay Michael; Niethammer, Thomas; Lahner, Matthias; Wagenhäuser, Markus; Müller, Peter E; Pietschmann, Matthias F

    2016-12-01

    The Nintendo Wii game console is already used as an additional training device for e.g. neurological wards. Still there are limited data available regarding orthopedic rehabilitation. The authors' objective was to examine whether the Nintendo Wii is an appropriate and safe tool in rehabilitation after orthopedic knee surgery. A prospective, randomized, controlled study comparing standard physiotherapy vs. standard physiotherapy plus game console training (Wii group) in patients having anterior cruciate ligament (ACL) repair or knee arthroplasty was conducted. The subjects of the Wii group ( n = 17; mean age: 54 ±19 years) performed simple knee exercises daily under the supervision of a physiotherapist in addition to the normal rehabilitation program. The patients of the control group ( n = 13; 52 ±18 years) were treated with physiotherapy only. The participants of both groups completed a questionnaire including the International Knee Documentation Committee (IKDC) score, the Modified Cincinnati Rating System and the Tegner Lysholm Knee Score prior to the operation, before discharge from hospital and four weeks after treatment. There was no significant difference in the score results between the Wii and the control group ( p > 0.05). We demonstrated that physiotherapy using the Nintendo Wii gaming console after ACL reconstruction and knee arthroplasty does not negatively influence outcome. Because training with the Wii device was highly accepted by patients, we see an opportunity whereby additional training with a gaming console for a longer period of time could lead to even better results, regarding the training motivation and the outcome after orthopedic surgery.

  13. Process for the manufacture of a gas largely free of inert gases for synthesis. Verfahren zur Herstellung eines weitgehend inertfreien Gases zur Synthese

    Energy Technology Data Exchange (ETDEWEB)

    Eisenlohr, K H; Gaensslen, H; Kriebel, M; Tanz, H

    1983-11-10

    In a process for producing a gas largely free of inert gases for the synthesis of alcohols, particularly methanol, and of hydrocarbons from coal or heavy hydrocarbons by gasification under pressure with oxygen and steam, the crude gas is cooled, the impurities are removed by washing with methanol and the methanol is removed from the cold pure gas by molecular sieves. The pure gas is then cooled further by evaporation and methane is distilled from the liquid part while simultaneously obtaining the synthetic gas consisting of hydrogen and carbon monoxide which is largely free of methane. The methane is wholly or partly compressed and then split into carbon monoxide and hydrogen using steam and oxygen. The split gas is fed back and mixed with the synthesis gas or the partly cleaned crude gas. The synthesis gas heated to the ambient temperature, freed of impurities and free of methane is compressed to the required synthesis pressure.

  14. Fiscal 1999 research report. Survey on development trends of natural gas conversion technologies into liquefied fuel in Russia; 1999 nendo Roshia ni okeru tennen gas no ekitai nenryoka gijutsu no kaihtsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Russia having world-largest natural gas resources is promoting the forefront basic research on liquefaction technology of natural gas, in particular, Fischer-Tropsch (FT) synthetic process positively. For 3 years from fiscal 1998, this project surveys the trend of R and D on catalytic technology for liquefaction of natural gas in Russia, and fabricates the prototype FT catalyst effective for liquefaction of natural gas at a Russian research institute to evaluate its practical applicability experimentally. In fiscal 1999, based on the research result in fiscal 1998, the project carried out continuous survey on the research activity of research institutes in Russia, the research trend of liquefaction technology and the concrete results of contract researches on catalyst, and summarized the evaluation result of research results. In addition, continuous world-wide document survey on FT synthetic process was made to confirm R and D trends based on the trend of liquefaction research projects in the world, and to collect basic information on catalytic reactors for FT synthetic process by document survey. (NEDO)

  15. Gas storing and processing device

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Takano, Yosoko.

    1988-01-01

    Purpose: To increase the gas injection processing performance and obtain stable accumulation layers by increasing the thickness of the accumulation layers of amorphous alloy. Constitution: The gas storing processing device comprises a cylindrical vessel constituting an outer cathode for introducing gases to be processed, an inner cathode in which transition metal material and rare earth metal material as a sputtering target disposed in the vessel are combined by way of insulating material, an anode cover disposed to the upper portion of the vessel and an anode bottom disposed at the bottom thereof. It is adapted such that DC high voltage sources are connected respectively to the outer and the inner cathodes and sputtering voltage can be applied, removed and controlled independently to the transition metal and the rare earth metal of the inner cathode. This enables to control the composition ratio of the accumulation layers of amorphous alloy formed to the surface of the outer cathode, thereby enabling operation related with the gas injection ratio. (Sekiya, K.)

  16. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  17. Heavy gas oils as feedstock for petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  18. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  19. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  20. 78 FR 33051 - Notification of Proposed Production Activity, The Gas Company, LLC dba Hawai'i Gas, Subzone 9F...

    Science.gov (United States)

    2013-06-03

    ... May 22, 2013. The subzone currently has authority to produce synthetic natural gas, carbon dioxide... FTZ procedures could exempt Hawai'i Gas from customs duty payments on the foreign status components... during customs entry procedures that apply to synthetic natural gas, carbon dioxide, hydrogen...

  1. Gas-processing profit margin series begins in OGJ

    International Nuclear Information System (INIS)

    Kovacs, K.J.

    1991-01-01

    This paper reports on the bases and methods employed by the WK (Wright, Killen and Co, Houston) profit-margin indicator for U.S. gas-processing plants. Additionally, this article reviews the historical profitability of the gas-processing industry and key factors affecting these trends. Texas was selected as the most representative for the industry, reflecting the wide spectrum of gas-processing plants. The profit performance of Texas' gas plants is of special significance because of the large number of plants and high volume of NGL production in the region

  2. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  3. Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO₂ Capture from Post-Combustion Flue Gases

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiaoguo

    2015-09-30

    A novel Gas Pressurized Stripping (GPS) post-combustion carbon capture (PCC) process has been developed by Carbon Capture Scientific, LLC, CONSOL Energy Inc., Nexant Inc., and Western Kentucky University in this bench-scale project. The GPS-based process presents a unique approach that uses a gas pressurized technology for CO₂ stripping at an elevated pressure to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over the MEA process. To meet project goals and objectives, a combination of experimental work, process simulation, and technical and economic analysis studies were applied. The project conducted individual unit lab-scale tests for major process components, including a first absorption column, a GPS column, a second absorption column, and a flasher. Computer simulations were carried out to study the GPS column behavior under different operating conditions, to optimize the column design and operation, and to optimize the GPS process for an existing and a new power plant. The vapor-liquid equilibrium data under high loading and high temperature for the selected amines were also measured. The thermal and oxidative stability of the selected solvents were also tested experimentally and presented. A bench-scale column-based unit capable of achieving at least 90% CO₂ capture from a nominal 500 SLPM coal-derived flue gas slipstream was designed and built. This integrated, continuous, skid-mounted GPS system was tested using real flue gas from a coal-fired boiler at the National Carbon Capture Center (NCCC). The technical challenges of the GPS technology in stability, corrosion, and foaming of selected solvents, and environmental, health and

  4. The production of synthetic material gas (SNG) from pit coal by a combined auto-allothermic steam gasification

    International Nuclear Information System (INIS)

    Buch, A.

    1975-01-01

    The steam gasification of pit coal requires temperatures which cannot yet be reached with the present state of HTGR technology for material technical reasons. The use of nuclear heat thus remains limited to some fields of application outside the gasifier, which are specified. The production costs of synthetic natural gas from autothermal gasification on the one hand, and from combined auto-allothermal gasification on the other hand are calculated considering the heat price of pit coal and of the selling price of electrical energy and are compared. (GG/LH) [de

  5. A fast autofocus algorithm for synthetic aperture radar processing

    DEFF Research Database (Denmark)

    Dall, Jørgen

    1992-01-01

    High-resolution synthetic aperture radar (SAR) imaging requires the motion of the radar platform to be known very accurately. Otherwise, phase errors are induced in the processing of the raw SAR data, and bad focusing results. In particular, a constant error in the measured along-track velocity o...... of magnitude lower than that of other algorithms providing comparable accuracies is presented. The algorithm has been tested on data from the Danish Airborne SAR, and the performance is compared with that of the traditional map drift algorithm...

  6. Radioactive gas waste processing device

    International Nuclear Information System (INIS)

    Soma, Koichi.

    1996-01-01

    The present invention concerns a radioactive gas waste processing device which extracts exhaust gases from a turbine condensator in a BWR type reactor and releases them after decaying radioactivity thereof during temporary storage. The turbine condensator is connected with an extracting ejector, a preheater, a recombiner for converting hydrogen gas into steams, an off gas condensator for removing water content, a flow rate control valve, a dehumidifier, a hold up device for removing radiation contaminated materials, a vacuum pump for sucking radiation decayed-off gases, a circulation water tank for final purification and an exhaustion cylinder by way of connection pipelines in this order. An exhaust gas circulation pipeline is disposed to circulate exhaust gases from an exhaust gas exit pipeline of the recycling water tank to an exhaust gas exit pipeline of the exhaust gas condensator, and a pressure control valve is disposed to the exhaust gas circulation pipeline. This enable to perform a system test for the dehumidification device under a test condition approximate to the load of the dehumidification device under actual operation state, and stabilize both of system flow rate and pressure. (T.M.)

  7. Assessment of Robotic Console Skills (ARCS): construct validity of a novel global rating scale for technical skills in robotically assisted surgery.

    Science.gov (United States)

    Liu, May; Purohit, Shreya; Mazanetz, Joshua; Allen, Whitney; Kreaden, Usha S; Curet, Myriam

    2018-01-01

    Skill assessment during robotically assisted surgery remains challenging. While the popularity of the Global Evaluative Assessment of Robotics Skills (GEARS) has grown, its lack of discrimination between independent console skills limits its usefulness. The purpose of this study was to evaluate construct validity and interrater reliability of a novel assessment designed to overcome this limitation. We created the Assessment of Robotic Console Skills (ARCS), a global rating scale with six console skill domains. Fifteen volunteers who were console surgeons for 0 ("novice"), 1-100 ("intermediate"), or >100 ("experienced") robotically assisted procedures performed three standardized tasks. Three blinded raters scored the task videos using ARCS, with a 5-point Likert scale for each skill domain. Scores were analyzed for evidence of construct validity and interrater reliability. Group demographics were indistinguishable except for the number of robotically assisted procedures performed (p = 0.001). The mean scores of experienced subjects exceeded those of novices in dexterity (3.8 > 1.4, p  1.8, p  2.2, p  1.9, p = 0.001), and force sensitivity (4.3 > 2.6, p  1.4, p = 0.002), field of view (2.8 > 1.8, p = 0.021), instrument visualization (3.2 > 2.2, p = 0.045), manipulator workspace (3.1 > 1.9, p = 0.004), and force sensitivity (3.7 > 2.6, p = 0.033). The mean scores of experienced subjects exceeded those of intermediates in dexterity (3.8 > 2.8, p = 0.003), field of view (4.1 > 2.8, p  3.2, p = 0.044). Rater agreement in each domain demonstrated statistically significant concordance (p skills plateau faster than others. Therefore, ARCS may be more useful than GEARS to evaluate distinct console skills. Future studies will examine why some domains did not adequately differentiate between subjects and applications for intraoperative use.

  8. Development of high purity CO gas recovery system for BOF gas by modified PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Sakuraya, Toshikazu; Fujii, Tetsuya; Yaji, Motoyasu; Matsuki, Takao; Matsui, Shigeo; Hayashi, Shigeki

    1985-01-01

    COPISA process (where two processes for separating CO-adsorptive gases and desorbing desorption-difficult gas are added to conventional PSA gas separation process) is outlined. In two units of PSA, CO/sub 2/ gas is adsorbed and separated in first PSA unit. The gas excluding CO/sub 2/ is fed to second PSA unit, where CO is adsorbed and separated from N/sub 2/ and H/sub 2/, and then desorbed and recovered under reduced pressure. For optimizing the process, a pilot plant was operated for about 1000 hrs. in a half year. The results confirm possibility of simplifying pre-treatment of coal gas. CO-PSA pressure swing pattern suitable for elimination of Co-adsorptive N/sub 2/ is established. Recovery of CO gas is enhanced. Optimization of gas flow pattern between adsorption towers required for reduction in operating cost is performed. (7 figs, 1 tab, 8 refs)

  9. Great gas plants : these five natural gas processing facilities demonstrate decades of top-flight technology

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-07-15

    The natural gas purification and pipeline sector is a major economic driver in Canada. Gas processing facilities are growing in number, and several large gas projects are being planned for future construction in the western provinces. This article outlined 5 gas plants in order to illustrate the sector's history and breadth in Canada. The Shell Jumping Pound gas complex was constructed in 1951 after a sulfur-rich gas discovery near Calgary in 1944. The Empress Straddle plant was built in 1971 in southeastern Alberta and is one of the largest single industrial consumers of electrical power in the province. The Fort Nelson gas processing plant is North America's largest sour gas processing facility. The Shell Caroline complex was built 1993. The Sable offshore energy project is located on the coast of Nova Scotia to handle gas produced from the Thebaud wells. A consortium is now considering the development of new gas fields in the Sable area. 5 figs.

  10. Gassmaks. Study of requirement for national focus on research for increased value-added industrial process of natural gas. Final report; Gassmaks. Utredning av behov for nasjonal satsing paa forskning for oekt verdiskaping fra naturgass gjennom industriell foredling. Endelig rapport

    Energy Technology Data Exchange (ETDEWEB)

    2006-08-15

    Final report concludes the importance of establishing the Research and Development program called 'Gassmaks'. The target of this program is increased value added to the natural gas loop. Strengthened know-how, industrial development and international competition force shall contribute to higher value added to community through industrial refining of natural gas. Gassmaks will by research based foundation exploit Norwegian natural gas resources environmental friendly. Highly prioritised are converting and use of natural gas to plastic raw materials, synthesis gas, synthetical fuel, energy processes, carbon materials, metallurgical processes and nutrients as proteins and fat. (AG). 28 refs., 3 figs., 3 tabs

  11. 75 FR 80843 - In the Matter of Certain Gaming and Entertainment Consoles, Related Software, and Components...

    Science.gov (United States)

    2010-12-23

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-752] In the Matter of Certain Gaming and... the sale within the United States after importation of certain gaming and entertainment consoles...,094 (``the `094 patent''). The complaint further alleges that an industry in the United States exists...

  12. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.

    Science.gov (United States)

    Volonté, Francesco; Buchs, Nicolas C; Pugin, François; Spaltenstein, Joël; Schiltz, Boris; Jung, Minoa; Hagen, Monika; Ratib, Osman; Morel, Philippe

    2013-09-01

    Computerized management of medical information and 3D imaging has become the norm in everyday medical practice. Surgeons exploit these emerging technologies and bring information previously confined to the radiology rooms into the operating theatre. The paper reports the authors' experience with integrated stereoscopic 3D-rendered images in the da Vinci surgeon console. Volume-rendered images were obtained from a standard computed tomography dataset using the OsiriX DICOM workstation. A custom OsiriX plugin was created that permitted the 3D-rendered images to be displayed in the da Vinci surgeon console and to appear stereoscopic. These rendered images were displayed in the robotic console using the TilePro multi-input display. The upper part of the screen shows the real endoscopic surgical field and the bottom shows the stereoscopic 3D-rendered images. These are controlled by a 3D joystick installed on the console, and are updated in real time. Five patients underwent a robotic augmented reality-enhanced procedure. The surgeon was able to switch between the classical endoscopic view and a combined virtual view during the procedure. Subjectively, the addition of the rendered images was considered to be an undeniable help during the dissection phase. With the rapid evolution of robotics, computer-aided surgery is receiving increasing interest. This paper details the authors' experience with 3D-rendered images projected inside the surgical console. The use of this intra-operative mixed reality technology is considered very useful by the surgeon. It has been shown that the usefulness of this technique is a step toward computer-aided surgery that will progress very quickly over the next few years. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Air quality, health, and climate implications of China’s synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.

    2017-01-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993

  14. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  15. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  16. Non-equilibrium plasma reactor for natrual gas processing

    International Nuclear Information System (INIS)

    Shair, F.H.; Ravimohan, A.L.

    1974-01-01

    A non-equilibrium plasma reactor for natural gas processing into ethane and ethylene comprising means of producing a non-equilibrium chemical plasma wherein selective conversion of the methane in natural gas to desired products of ethane and ethylene at a pre-determined ethane/ethylene ratio in the chemical process may be intimately controlled and optimized at a high electrical power efficiency rate by mixing with a recycling gas inert to the chemical process such as argon, helium, or hydrogen, reducing the residence time of the methane in the chemical plasma, selecting the gas pressure in the chemical plasma from a wide range of pressures, and utilizing pulsed electrical discharge producing the chemical plasma. (author)

  17. Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils

    Science.gov (United States)

    Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...

  18. Introduction to gas lasers with emphasis on selective excitation processes

    CERN Document Server

    Willett, Colin S

    1974-01-01

    Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

  19. Opportunities in the United States' gas processing industry

    International Nuclear Information System (INIS)

    Meyer, H.S.; Leppin, D.

    1997-01-01

    To keep up with the increasing amount of natural gas that will be required by the market and with the decreasing quality of the gas at the well-head, the gas processing industry must look to new technologies to stay competitive. The Gas Research Institute (GR); is managing a research, development, design and deployment program that is projected to save the industry US dollar 230 million/year in operating and capital costs from gas processing related activities in NGL extraction and recovery, dehydration, acid gas removal/sulfur recovery, and nitrogen rejection. Three technologies are addressed here. Multivariable Control (MVC) technology for predictive process control and optimization is installed or in design at fourteen facilities treating a combined total of over 30x10 9 normal cubic meter per year (BN m 3 /y) [1.1x10 12 standard cubic feet per year (Tcf/y)]. Simple pay backs are typically under 6 months. A new acid gas removal process based on n-formyl morpholine (NFM) is being field tested that offers 40-50% savings in operating costs and 15-30% savings in capital costs relative to a commercially available physical solvent. The GRI-MemCalc TM Computer Program for Membrane Separations and the GRI-Scavenger CalcBase TM Computer Program for Scavenging Technologies are screening tools that engineers can use to determine the best practice for treating their gas. (au) 19 refs

  20. “You’re not alone” : Music as a source of consolation among adolescents and young adults

    NARCIS (Netherlands)

    ter Bogt, T.F.M.|info:eu-repo/dai/nl/071628274; Vieno, Alessio; Doornwaard, S.M.|info:eu-repo/dai/nl/353722618; Pastore, Massimiliano; van den Eijnden, R.J.J.M.|info:eu-repo/dai/nl/17399394X

    2017-01-01

    This study aimed at determining whether adolescents and young adults use music as an agent of consolation when dealing with daily sorrow and stress. We furthermore tested whether three aspects of music listening, i.e., the music itself, its lyrics, and experiences of closeness to artists and fans,

  1. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  2. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements with Modified Blackbody Fitting

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E.

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; -13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ 2 values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.

  3. Gas processing in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L.

    1995-02-01

    This article is a brief overview of code requirements in the nuclear air cleaning arena. NRC standards, which employ the various ASME codes, are noted. It is also noted that DOE facilities do not fall under the purview of the NRC and that DOE facilities (especially fuel cycle facilities) typically have broader gas processing activities than for power reactors. The typical differences between DOE facilities` and power reactor facilities` gas processing needs are listed, as are DOE facility components not covered by the ASME AG-1 code.

  4. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  5. Managing RTP Console Upgrading Project: Best Practice for Nuclear Malaysia as TSO in Supporting NPP Development

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Syahirah Abdul Rahman; Izhar Abu Hussin

    2011-01-01

    Human Resource Development (HRD) is required for Nuclear Power Programme (NPP). To be a Technical Support Organisation (TSO) for NPP, Nuclear Malaysia should be ready to take the responsibility in supporting Nuclear Regulatory Agency (NRA) and NPP Operators. In nurturing Nuclear Malaysia as TSO, the prime important and focus of HRD for the NPP is the reactor engineering technology. Nuclear Malaysia gives various phases of supports needed to build NPP such as during siting, design, planning, licensing, construction, commissioning, operation and maintenance in its own way and capability. The current Nuclear Malaysia unique approach is the TRIGA PUSPATI reactor (RTP) upgrading project. Research reactor plays an important role in Research and Developpement organization as a nuclear facility to assist the development of NPP. Therefore, upgrading the research reactor is needed to build the skills and gain knowledge of workers to work safely. After 29 years of operation, the RTP system is facing aging problems due to many components in the reactor are outdated. Therefore, immediate action should be carried out to mitigate the aging factor of the reactor to prevent the worsening of the aging problem, and to prevent untoward incident from happening. Action should also cover short and long term planning to prevent current situation from recurring. Currently, RTP is upgrading its console from analog to digital system. One of the achievements in this console upgrading project is the development and implementation of project management. This paper comprises the overview on the RTP console upgrading project, the project management and how this project can lead Nuclear Malaysia to be a good TSO for the development of NPP. (author)

  6. Process gas generator feeding internal combustion piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Iwantscheff, G; Kostka, H; Henkel, H J

    1978-10-26

    The invention relates to a process gas generator feeding gaseous fuel to internal combustion piston engines. The cylinder linings of the internal combustion engine are enclosed by the catalytic reaction chamber of the process gas generator which contains perforated sintered nozzle bricks as carriers of the catalysts needed for the conversion. The reaction chamber is surrounded by the exhaust gas chamber around which a tube coil is ound which feeds the fuel charge to the reaction chamber after evaporation and mixing with exhaust gas and air. The fuel which may be used for this purpose, e.g., is low-octane gasoline or diesel fuel. In the reaction chamber the fuel is catalytically converted at temperatures above 200/sup 0/C, e.g., into low-molecular paraffins, carbon monoxide and hydrogen. Operation of the internal combustion engine with a process gas generator greatly reduces the pollutant content of the exhaust gases.

  7. Gas reactor international cooperative program. HTR-synfuel application assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    This study assesses the technical, environmental and economic factors affecting the application of the High Temperature Gas-Cooled Thermal Reactor (HTR) to: synthetic fuel production; and displacement of fossil fuels in other industrial and chemical processes. Synthetic fuel application considered include coal gasification, direct coal liquefaction, oil shale processing, and the upgrading of syncrude to motor fuel. A wide range of other industrial heat applications was also considered, with emphasis on the use of the closed-loop thermochemical energy pipeline to supply heat to dispersed industrial users. In this application syngas (H/sub 2/ +CO/sub 2/) is produced at the central station HTR by steam reforming and the gas is piped to individual methanators where typically 1000/sup 0/F steam is generated at the industrial user sites. The products of methanation (CH/sub 4/ + H/sub 2/O) are piped back to the reformer at the central station HTR.

  8. Gas reactor international cooperative program. HTR-synfuel application assessment

    International Nuclear Information System (INIS)

    1979-09-01

    This study assesses the technical, environmental and economic factors affecting the application of the High Temperature Gas-Cooled Thermal Reactor (HTR) to: synthetic fuel production; and displacement of fossil fuels in other industrial and chemical processes. Synthetic fuel application considered include coal gasification, direct coal liquefaction, oil shale processing, and the upgrading of syncrude to motor fuel. A wide range of other industrial heat applications was also considered, with emphasis on the use of the closed-loop thermochemical energy pipeline to supply heat to dispersed industrial users. In this application syngas (H 2 +CO 2 ) is produced at the central station HTR by steam reforming and the gas is piped to individual methanators where typically 1000 0 F steam is generated at the industrial user sites. The products of methanation (CH 4 + H 2 O) are piped back to the reformer at the central station HTR

  9. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  10. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  11. Analysis of an innovative process for landfill gas quality improvement

    International Nuclear Information System (INIS)

    Lombardi, L.; Carnevale, E.A.

    2016-01-01

    Low methane content landfill gas is not suitable for feeding engines and is generally flared. This type of landfill gas may be enriched by removing the inert carbon dioxide. An innovative process, based on the carbon dioxide captured by means of accelerated carbonation of bottom ash was proposed and studied for the above purpose. The process was investigated at a laboratory scale, simulating different landfill gas compositions. The enrichment process is able to decrease the carbon dioxide concentration from 70 to 80% in volume to 60% in volume, requiring about 36 kg of bottom ash per Nm"3 of landfill gas. Using this result it was estimated that an industrial scale plant, processing 100–1000 Nm"3/h of low methane content landfill gas requires about 28,760–2,87,600 t of bottom ash for a one year operation. The specific cost of the studied enrichment process was evaluated as well and ranges from 0.052 to 0.241 Euro per Nm"3 of entering landfill gas. The energy balance showed that about 4–6% of the energy entered with the landfill gas is required for carrying out the enrichment, while the use of the enriched landfill gas in the engine producing electricity allows for negative carbon dioxide emission. - Highlights: • The process uses a waste stream as material to capture CO_2. • The process uses a simple gas/solid fixed bed contact reactor at ambient conditions. • The process captures the CO_2 to enrich low-CH4 landfill gas. • The specific cost ranges from 0.052 to 0.241 Euro per Nm"3 of entering landfill gas. • The process consumes about 4–6% of the entering energy and acts as CO_2 sink.

  12. New technological developments in gas processing

    International Nuclear Information System (INIS)

    Draper, R.C.

    1996-01-01

    The changes that the natural gas industry has undergone over the last few years was discussed. Low natural gas prices forced companies to react to their high reserves replacements costs. They were forced to downsize and undergo major restructuring because they were losing money due to high operating costs; the future for natural gas prices looked pessimistic. The changes have led to a new kind of business practice, namely 'partnering with third party processor', mid-stream companies known as aggregators, to build and operate facilities as part of a move towards cost effective improvements for gas producers. Besides reducing capital and operating costs, the producer under this arrangements can dedicate his capital to finding new gas which is the basis of growth. Recent technological changes in the gas processing industry were also touched upon. These included enhanced technologies such as increased liquid hydrocarbon recovery, segregation of C3+ and C5+, installation of gas separation membrane systems, small sulphur plants, acid gas injection and selective or mixed solvents. Details of some of these technologies were described. 2 refs., 2 figs

  13. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  14. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Rehakova, Maria; Fortunova, Lubica; Bastl, Zdenek; Nagyova, Stanislava; Dolinska, Silvia; Jorik, Vladimir; Jona, Eugen

    2011-01-01

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py) x ZSM5, Cu-CT and Cu-(py) x CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py) x zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods.

  15. Treatment of Synthetic Wastewater Containing Reactive Red 198 by Electrocoagulation Process

    OpenAIRE

    N.M Mahmoodi; A Ameri; M Gholami; A Jonidi jafari; A Dalvand

    2011-01-01

    "nBackground and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater; thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater co...

  16. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  17. Contracting out gas processing : the pros and cons

    International Nuclear Information System (INIS)

    Stout, D.L.

    1999-01-01

    The impact of competition within the energy industry on the midstream infrastructure was discussed. It was demonstrated that it is no longer necessary to own all or a portion of a processing facility to be a successful exploration company. It is now possible for midstream operators to manage the transmission business, the gas storage sector and the gas processing segment of the industry. Contract options and issues that should be addressed by natural gas producers in determining risks involved in contracting out were summarized. Changes in the industry has greatly expanded the options and opportunities for companies, both upstream and midstream. The industry has been contracting out gas processing for many years. However, the entry into the business of the specialized midstream player should further enhance the producer's options. The ultimate goal for the producer should be to benefit from lower costs, long term offerings, and a reduced need to invest potential exploration capital into non-core processing facilities

  18. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  19. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    OpenAIRE

    Kurevija, Tomislav; Kukulj, Nenad; Rajković, Damir

    2007-01-01

    Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned...

  20. CCL: console command language, RSX11M V4. 0, V7. OC tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Downward, J. G.

    1981-01-01

    The normal user interface to an RSX11M operating system is via MCR (Monitor Console Routine). If terminal input is not specifically requested by a task, all data or commands typed in at a user's terminal, are sent by the terminal driver to MCR for decoding. The MCR task (and its child ...SYS) decode user commands (ACT, ABORT,RUN, DEV, ETC.). Tasks installed with special names of the form ...XYZ are treated as an external MCR command. Hence if a user types, XYZ COMMANDLINE, the commandline in its entirety (or at least up to 79 characters) is sent as input to the task ...XYZ. This is the conventional way of supplying most system commands and controlling the operation of the RSX11M utility program. The limitations of this method are: (1) each task must be installed to get MCR command lines; (2) each installed task uses valuable POOL space; (3) only privileged users can INSTALL and REMOVE tasks; and (4) non-privileged users are restricted to RUNning non-installed tasks. To solve this problem, a user tailorable Console Command Language (CCL) has been implemented which allows each user to have a private task control language to pass command lines to tasks that are not installed in th system as external MCR commands.

  1. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations

    Science.gov (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor

    2017-10-01

    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  2. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  3. Gas processing at DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, J.

    1995-02-01

    The term {open_quotes}Gas Processing{close_quotes} has many possible meanings and understandings. In this paper, and panel, we will be using it to generally mean the treatment of gas by methods other than those common to HVAC and Nuclear Air Treatment. This is only a working guideline not a rigorous definition. Whether a rigorous definition is desirable, or even possible is a question for some other forum. Here we will be discussing the practical aspects of what {open_quotes}Gas Processing{close_quotes} includes and how existing Codes, Standards and industry experience can, and should, apply to DOE and NRC Licensed facilities. A major impediment to use of the best engineering and technology in many nuclear facilities is the administrative mandate that only systems and equipment that meet specified {open_quotes}nuclear{close_quotes} documents are permissible. This paper will highlight some of the limitations created by this approach.

  4. Sulfur oxides and nitrogen oxides gas treating process

    International Nuclear Information System (INIS)

    Forbes, J. T.

    1985-01-01

    A process is disclosed for treating particle-containing gas streams by removing particles and gaseous atmospheric pollutants. Parallel passage contactors are utilized to remove the gaseous pollutants. The minimum required gas flow rate for effective operation of these contactors is maintained by recycling a variable amount of low temperature gas which has been passed through a particle removal zone. The recycled gas is reheated by heat exchange against a portion of the treated gas

  5. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  6. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  7. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    Science.gov (United States)

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Device 2F112 (F-14A WST (Weapon System Trainers)) Instructor Console Review.

    Science.gov (United States)

    1983-12-01

    irdividuals adequately trained in the use of a particular trainer. ’S G. L. RICARD Scientific Officer 9., - 5 * NAVTRAEQUIPCEN 81-M-1121-1 TABLE OF...through verbal comunication with the instructors at the console. Several problems exist in the use of the flyout mismatch page. a. The automatic display...Washington, DC 20350 Washington, DC 20301 Chief of Naval Operations Commanding Officer OP-596C Air Force Office of Scientific Washington, DC 20350

  9. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  10. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  11. Methanation process utilizing split cold gas recycle

    Science.gov (United States)

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  12. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    Robert S. Cherry; Richard A. Wood

    2006-01-01

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  13. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    Science.gov (United States)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  14. Tax issues in structuring gas process arrangements

    International Nuclear Information System (INIS)

    Iverach, R.J.

    1999-01-01

    The current status of various tax issues regarding ownership, operation and financing of gas processing facilities in Canada was discussed. Frequently, energy companies are not taxed because of their large pools of un-depreciated capital cost and other resource related accounts. In addition, their time horizons for taxability are being extended in line with the expansion of their businesses. However, other investors are fully taxable, hence they wish to shelter their income through the use of tax efficient investment arrangements. This paper provides a detailed description of the tax treatment of gas processing facilities, tax implications of various structures between the producer and the investor such as lease, processing fee arrangements etc., and use of 'Canadian Renewable and Conservation Expense' (CRCE) for cogeneration projects within processing plants. All these need to be considered before completing a financing transaction involving a gas processing facility, since the manner in which the transaction is completed will determine the advantages and benefits from an income tax perspective. The accounting and legal aspects must be similarly scrutinized to ensure that the intended results for all parties are achieved. 8 figs

  15. Cooling process in separation devices of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Sugimoto, K

    1975-06-11

    To prevent entry of impurities into purified gases and to detect leaks of heat exchanger in a separation and recovering device of krypton gas by means of liquefaction and distillation, an intermediate refrigerant having the same or slightly higher boiling point than that of gas to be cooled is used between the gas to be cooled (process gas) and refrigerant (nitrogen), and the pressure of the gas to be cooled is controlled to have a pressure higher than the intermediate refrigerant to cool the gas to be cooled.

  16. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  17. Method of optimization of the natural gas refining process

    Energy Technology Data Exchange (ETDEWEB)

    Sadykh-Zade, E.S.; Bagirov, A.A.; Mardakhayev, I.M.; Razamat, M.S.; Tagiyev, V.G.

    1980-01-01

    The SATUM (automatic control system of technical operations) system introduced at the Shatlyk field should assure good quality of gas refining. In order to optimize the natural gas refining processes and experimental-analytical method is used in compiling the mathematical descriptions. The program, compiled in Fortran language, in addition to parameters of optimal conditions gives information on the yield of concentrate and water, concentration and consumption of DEG, composition and characteristics of the gas and condensate. The algorithm for calculating optimum engineering conditions of gas refining is proposed to be used in ''advice'' mode, and also for monitoring progress of the gas refining process.

  18. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    Science.gov (United States)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (hydrocarbon recovery processes.

  19. METHODS FOR ORGANIZATION OF WORKING PROCESS FOR GAS-DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2017-01-01

    Full Text Available Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the means to reduce air pollution caused by toxic substances and meet growing environmental standards and regulations. In this regard, an analysis of methods for organization of working process for a gas-diesel engine has been conducted in the paper. The paper describes parameters that influence on the nature of gas diesel process, it contains graphics of specific total heat consumption according to ignition portion of diesel fuel and dependence of gas-diesel indices on advance angle for igni-tion portion injection of the diesel fuel. A modern fuel system of gas-diesel engine ГД-243 has been demonstrated in the pa- per. The gas-diesel engine has better environmental characteristics than engines running on diesel fuel or gasoline. According to the European Natural & bio Gas Vehicle Association a significant reduction in emissions is reached at a 50%-substitution level of diesel fuel by gas fuel (methane and in such a case there is a tendency towards even significant emission decrease. In order to ensure widespread application of gaseous fuel as fuel for gas-diesel process it is necessary to develop a new wor- king process, to improve fuel equipment, to enhance injection strategy and fuel supply control. A method for organization of working process for multi-fuel engine has been proposed on the basis of the performed analysis. An application has been submitted for a patent.

  20. FY 1999 report on the results of the R and D of the substituting gas system and the substituting process of the etching gas used in the electronic device production process; 1999 nendo denshi device seizo process de shiyosuru etching gas no daitai gas system oyobi daitai process no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As to the dry etching process and the wiring process where PFC gas and electric power are required most in the electronic device production process, an investigational study was conducted with the aim of PFC saving and energy saving, and the FY 1999 results were summed up. In the study, high efficiency etching process analysis equipment was developed, and three kinds of PFC gas quantitative analysis method were comparatively studied. Relating to the substitution of global environmental warming gas, it was found that C{sub x}F{sub y} type gas was effective which includes no oxygen, has a lot of carbon element numbers, and has double unsaturated bond. Further, in the study of the technology of PFC decomposition by plasma, it was indicated that PFC of 98.7% at maximum in exhaust gas could be removed on ideal conditions. In the dry etching technology by non-PFC gas of the organic insulating film, it was found out that NH{sub 3} base gas is more excellent in both shape and speed of etching than the existing O{sub 2} base one. As to the future wiring technology, new concepts of the optical wiring inside chip, etc. were proposed. (NEDO)

  1. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  2. Usability of the remote console for virtual reality telerehabilitation: formative evaluation.

    Science.gov (United States)

    Lewis, Jeffrey A; Deutsch, Judith E; Burdea, Grigore

    2006-04-01

    The Remote Console (ReCon) is a telerehabilitation application that allows therapists to remotely communicate with patients while monitoring and controlling their virtual rehabilitation exercises. It provides therapists visual feedback of patients' movements, their exercise simulations replicated in real time and with tools to conduct training without a face-to-face session. The Recon underwent a formative evaluation (a type of usability engineering methodology) used to refine its design. Five physical therapists from different practice settings acted as representative users. During the evaluation, these users made errors related to manipulation and finding and understanding controls. Technical issues with the server and audio communication were identified. These findings were used to fine-tune the ReCon system.

  3. Heat-reactivatable adsorbent gas fractionator and process

    International Nuclear Information System (INIS)

    Verrando, M.G.

    1982-01-01

    A process and apparatus are provided for removing a first polar gas from a mixture thereof with a second gas. The gas mixture is passed through a sorbent bed having a preferential affinity for the first polar gas and the first polar gas is sorbed thereon so as to produce a gaseous effluent which has a concentration of first polar gas therein below a predetermined maximum. Then the polar gas sorbed on the sorbent bed is removed therefrom by application of microwave energy, at a temperature at which the sorbent is transparent to such energy, while passing a purge flow of gas in contact with the bed to flush out desorbed first polar gas from the bed. The bed is allowed to cool to a relatively efficient temperature for adsorption. The gas mixture is then again passed in contact with the bed. If two beds are used, one bed can be desorbed while the other is on-stream thereby maintaining a substantially continuous flow of effluent gas. The apparatus of the invention provides a sorbent bed assembly having a microwave energy generator positioned to direct such energy into the sorbent bed for desorption of first polar gas from the bed

  4. Leveraging Game Consoles for the Delivery of TBI Rehabilitation

    Science.gov (United States)

    Super, Taryn; Mastaglio, Thomas; Shen, Yuzhong; Walker, Robert

    2011-01-01

    Military personnel are at a greater risk for traumatic brain injury (TBI) than the civilian population. In addition, the increase in exposure to explosives, i.e. , improvised explosive devices, in the Afghanistan and Iraq wars, along with more effective body armor, has resulted in far more surviving casualties suffering from TBI than in previous wars. This effort presents the results of a feasibility study and early prototype of a brain injury rehabilitation delivery system (BIRDS). BIRDS is designed to provide medical personnel treating TBI with a capability to prescribe game activities for patients to execute using a commercially available game console, either in a clinical setting or in their homes. These therapeutic activities will contribute to recovery or remediation of the patients' cognitive dysfunctions. Solutions such as this that provide new applications for existing platforms have significant potential to address the growing incidence of TBI today.

  5. Experiment in Onboard Synthetic Aperture Radar Data Processing

    Science.gov (United States)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  6. An assessment of processes for the manufacture of synthetic aggregates from colliery spoil

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, P J; Gartner, E M

    1980-09-01

    Following the laboratory development of a process for the manufacture of synthetic aggregates from colliery spoil for use in structural concrete, a technical and economic assessment of possible processing routes is reported. Rotary kilns, multi-hearth furnaces, sinter-strands, shaft kilns and fluidised bed furnaces are considered and capital and running costs for the various processes are estimated. It is concluded that the initial capital costs of plant are the main barrier to successful exploitation. The cost of fuel for sintering is over-shadowed by the costs of capital investment and electric power, so efforts to reduce fuel consumption are unlikely to make a process economic in themselves.

  7. Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development

    Science.gov (United States)

    Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.

    2016-12-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.

  8. Application of the reliability theory on the analysis of the effects of sbwr' main control console maintenance

    International Nuclear Information System (INIS)

    Widagdo, S.

    1997-01-01

    Maintenance activities on the main control console, which is a primary element of the man-machine interface system, are a source of concern. this concern has been arisen since the main control function is the central part to observe and control the reactor operation. the paper will discuss a study of the effects of main control console maintenance activity upon the operability of SBWR. the first step is learning the SBWR main control room design in order to know its monitoring and controlling capability and then makes an assumption of maintenance requirement followed by an evaluation of the effects of the maintenance activity. it is assumed that 2 years or equivalent to 17.520 hours are the reference time for one cycle operation of SBWR. the aim is to identify any adverse effects and eliminate or minimize them through design improvements. the evaluation method used here is the reability theory R(t) = e sup-λt. Based on the result of the evaluation can be concluded that there are no negative effects of maintenance activity upon the operability of the SBWR

  9. Hydrothermal Gasification Of Synthetic Liquefied Wood To Methane

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M.H.; De Boni, E.; Vogel, F.

    2005-03-01

    Biomass can be effectively converted to synthetic natural gas (SNG) in a hydrothermal environment. Lower temperatures favor the production of methane rather than hydrogen. At around 420 C, catalysts are needed to ensure reasonable rates of reaction. They are tested in a new rig in terms of activity, selectivity and stability. Gold-plated surfaces ensure no interference from the stainless steel. Experiments were carried out using different feeds, such as ethanol and synthetic liquefied wood. (author)

  10. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  11. The willingness to pay of parties to traffic accidents for loss of productivity and consolation compensation.

    Science.gov (United States)

    Jou, Rong-Chang; Chen, Tzu-Ying

    2015-12-01

    In this study, willingness to pay (WTP) for loss of productivity and consolation compensation by parties to traffic accidents is investigated using the Tobit model. In addition, WTP is compared to compensation determined by Taiwanese courts. The modelling results showed that variables such as education, average individual monthly income, traffic accident history, past experience of severe traffic accident injuries, the number of working days lost due to a traffic accident, past experience of accepting compensation for traffic accident-caused productivity loss and past experience of accepting consolation compensation caused by traffic accidents have a positive impact on WTP. In addition, average WTP for these two accident costs were obtained. We found that parties to traffic accidents were willing to pay more than 90% of the compensation determined by the court in the scenario of minor and moderate injuries. Parties were willing to pay approximately 80% of the compensation determined by the court for severe injuries, disability and fatality. Therefore, related agencies can use our study findings as the basis for determining the compensation that parties should pay for productivity losses caused by traffic accidents of different types. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  13. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  14. Gas phase decontamination of gaseous diffusion process equipment

    International Nuclear Information System (INIS)

    Bundy, R.D.; Munday, E.B.; Simmons, D.W.; Neiswander, D.W.

    1994-01-01

    D ampersand D of the process facilities at the gaseous diffusion plants (GDPs) will be an enormous task. The EBASCO estimate places the cost of D ampersand D of the GDP at the K-25 Site at approximately $7.5 billion. Of this sum, nearly $4 billion is associated with the construction and operation of decontamination facilities and the dismantlement and transport of contaminated process equipment to these facilities. In situ long-term low-temperature (LTLT) gas phase decontamination is being developed and demonstrated at the K-25 site as a technology that has the potential to substantially lower these costs while reducing criticality and safeguards concerns and worker exposure to hazardous and radioactive materials. The objective of gas phase decontamination is to employ a gaseous reagent to fluorinate nonvolatile uranium deposits to form volatile LJF6, which can be recovered by chemical trapping or freezing. The LTLT process permits the decontamination of the inside of gas-tight GDP process equipment at room temperature by substituting a long exposure to subatmospheric C1F for higher reaction rates at higher temperatures. This paper outlines the concept for applying LTLT gas phase decontamination, reports encouraging laboratory experiments, and presents the status of the design of a prototype mobile system. Plans for demonstrating the LTLT process on full-size gaseous diffusion equipment are also outlined briefly

  15. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  16. Exercise intensity levels in children with cerebral palsy while playing with an active video game console.

    Science.gov (United States)

    Robert, Maxime; Ballaz, Laurent; Hart, Raphael; Lemay, Martin

    2013-08-01

    Children with cerebral palsy (CP) are prone to secondary complications related to physical inactivity and poor cardiorespiratory capacity. This problem could be greatly attenuated through the use of video games that incorporate physical activity for 2 reasons: Video games already represent an important component of leisure time in younger people, and such games can lead to a high level of exercise intensity in people who are healthy. The study objective was to evaluate exercise intensity in children with spastic diplegic CP and children who were typically developing while playing with an active video game console. This was a cross-sectional study. Ten children (7-12 years old) with spastic diplegic CP (Gross Motor Function Classification System level I or II) and 10 children who were age matched and typically developing were evaluated in a movement analysis laboratory. Four games were played with the active video game console (jogging, bicycling, snowboarding, and skiing) for 40 minutes. Heart rate was recorded during the entire playing period with a heart rate belt monitor. Exercise intensity was defined as the percentage of heart rate reserve (HRR). In addition, lower extremity motion analysis was carried out during the final minute of the playing period for the jogging and bicycling games. No difference between groups was observed for any variables. A main effect of games was observed for the amount of time spent at an intensity greater than 40% of HRR. Specifically, more than 50% of the playing time for the jogging game and more than 30% of the playing time for the bicycling game were spent at an intensity greater than 40% of HRR. In addition, the jogging game produced a larger range of motion than the bicycling game. A limitation of this study was the relatively small and heterogeneous sample. For all 4 games, similar exercise intensity levels were observed for children who were typically developing and children with CP, suggesting that children with CP could

  17. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.

    Science.gov (United States)

    De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio

    2018-05-01

    A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Workstations as consoles for the CERN-PS complex, setting-up the environment

    International Nuclear Information System (INIS)

    Antonsanti, P.; Arruat, M.; Bouche, J.M.; Cons, L.; Deloose, Y.; Di Maio, F.

    1992-01-01

    Within the framework of the rejuvenation project of the CERN control systems, commercial workstations have to replace existing home-designed operator consoles. RISC-based workstations with UNIX, X-window TM and OSF/Motif TM have been introduced for the control of the PS complex. The first versions of general functionalities like synoptic display, program selection and control panels have been implemented and the first large scale application has been realized. This paper describes the different components of the workstation environment for the implementation of the applications. The focus is on the set of tools which have been used, developed or integrated, and on how we plan to make them evolve. (author)

  19. A study of the thermal activation of synthetic zeolites (molecular sieve) for gas-solid chromatography

    International Nuclear Information System (INIS)

    Walker, J.A.J.

    1978-10-01

    The thermal activation of synthetic zeolites from two sources has been investigated with reference to the adsorption chromatography of inorganic gases. It was found that the heats of adsorption for oxygen and carbon monoxide increased with activation temperatures. Limits of detection for oxygen in argon and conversely argon in oxygen were determined as well as the chromatographic stability of the activated zeolite. The practical implications and importance of the results are discussed and the application to the analysis of fast reactor blanket gas is mentioned. An explanation is proposed for the adsorption behaviour of these activated materials, based on an electrostatic mechanism, and this has suggested a reason for the separation characteristics of oxygen and argon on polar zeolites. Further work is identified including the investigation of energy states of the oxygen molecule adsorbed on activated zeolite by means of ultra-violet photoelectron spectroscopy. (author)

  20. A study of the thermal activation of synthetic zeolites (molecular sieve) for gas-solid chromatography

    International Nuclear Information System (INIS)

    Walker, J.A.J.

    1978-10-01

    The thermal activation of synthetic zeolites from two sources has been investigated with reference to the adsorption chromatography of inorganic gases. It was found that the heats of adsorption for oxygen and carbon monoxide increased with activation temperature. Limits of detection for oxygen in argon and conversely argon in oxygen were determined as well as the chromatographic stability of the activated zeolite. The practical implications and importance of the results are discussed and the application to the analysis of fast reactor blanket gas is mentioned. An explanation is proposed for the adsorption behaviour of these activated materials, based on an electrostatic mechanism, and this has suggested a reason for the separation characteristics of oxygen and argon on polar zeolites. Further work is identified including the investigation of energy states of the oxygen molecule adsorbed on activated zeolite by means of ultra-violet photoelectron spectroscopy. (author)

  1. Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries

    International Nuclear Information System (INIS)

    Choi, Won Chang; Byun, Dongjin; Lee, Joong Kee; Cho, Byung won

    2004-01-01

    Four kinds of synthetic graphite coated with silver and nickel for the anodes of lithium secondary batteries were prepared by a gas suspension spray coating method. The electrode coated with silver showed higher charge-discharge capacities due to a Ag-Li alloy, but rate capability decreased at higher charge-discharge rate. This result can be explained by the formation of an artificial Ag oxidation film with higher impedance, this lowered the rate capability at high charge-discharge rate due to its low electrical conductivity. Rate capability is improved, however, by coating nickel and silver together on the surface of synthetic graphite. The nickel which is inactive with oxidation reaction plays an important role as a conducting agent which enhanced the conductivity of the electrode

  2. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.

    Science.gov (United States)

    Musmarra, D; Karatza, D; Lancia, A; Prisciandaro, M; Mazziotti di Celso, G

    2016-07-01

    An activated carbon commercially available named HGR, produced by Calgon-Carbon Group, was used to adsorbe metallic mercury. The work is part of a wider research activity by the same group focused on the removal of metallic and divalent mercury from combustion flue gas. With respect to previously published papers, this one is aimed at studying in depth thermodynamic equilibria of metallic mercury adsorption onto a commercial activated carbon. The innovativeness lies in the wider operative conditions explored (temperature and mercury concentrations) and in the evaluation of kinetic and thermodynamic data for a commercially available adsorbing material. In detail, experimental runs were carried out on a laboratory-scale plant, in which Hg° vapors were supplied in a nitrogen gas stream at different temperature and mercury concentration. The gas phase was flowed through a fixed bed of adsorbent material. Adsorbate loading curves for different Hg° concentrations together with adsorption isotherms were achieved as a function of temperature (120, 150, 200°C) and Hg° concentrations (1.0-7.0 mg/m(3)). Experimental runs demonstrated satisfying results of the adsorption process, while Langmuir parameters were evaluated with gas-solid equilibrium data. Especially, they confirmed that adsorption capacity is a favored process in case of lower temperature and they showed that the adsorption heat was -20 kJ/mol. Furthermore, a numerical integration of differential equations that model the adsorption process was proposed. Scanning electron microscopy (SEM) investigation was an useful tool to investigate about fresh and saturated carbon areas. The comparison between them allowed identification of surface sites where mercury is adsorbed; these spots correspond to carbon areas where sulfur concentration is greater. Mercury compounds can cause severe harm to human health and to the ecosystem. There are a lot of sources that emit mercury species to the atmosphere; the main ones are

  3. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    Science.gov (United States)

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  4. Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen

    A novel gas separation technique based on gas hydrate formation (solid precipitation) is investigated by means of thermodynamic modeling and experimental investigations. This process has previously been proposed for application in post-combustion carbon dioxide capture from power station flue gases...... formation may be performed at pressures of approximately 20 MPa and temperatures below 280 K. Thermodynamic promoters are needed, to reduce the pressure requirement of the process, thereby making it competitive to existing capture technologies. A literature study is presented focusing mainly...... on thermodynamic gas hydrate promotion by hydrate formers stabilising the classical gas clathrate hydrate structures (sI, sII and sH) at low to moderate pressures. Much literature is available on this subject. Both experimental and theoretical studies presented in the literature have pointed out cyclopentane...

  5. Gas treatment processes for keeping the environment of nuclear plants free from gas-borne activity

    International Nuclear Information System (INIS)

    Schiller, H.

    1977-01-01

    The separation processes in gas treatment steps for the decontamination of circuit or offgas streams are described and their practicability is evaluated. Examples of the effectiveness of gas separation plants for keeping the environment within and without nuclear plants free from harmful gas-borne activity are presented. (orig.) [de

  6. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  7. Process for generating substitute natural gas. Verfahren zur Erzeugung von Erdgasersatzgas

    Energy Technology Data Exchange (ETDEWEB)

    Messerschmidt, D

    1984-09-13

    The invention deals with a process for the production of a substitute for natural gas from coal gas or other feed gases containing hydrogen and methane. For a simpler and economically more efficient process it is suggested to separate the feed gas, purified or unpurified, by selection of the molar sieve in a PSA plant so that the sweep gas of the PSA plant can reach the quality of a substitute gas. (orig.).

  8. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  9. Treatment of gas from an in situ conversion process

    Science.gov (United States)

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  10. System evaluation of offshore platforms with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; de Oliveira Júnior, Silvio

    2018-01-01

    Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore for liqu......Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore...... improvements are discussed based on an energy and exergy analysis. Compared to a standard platform where gas is directly injected into the reservoir, the total power consumption increases by up to 50%, and the exergy destruction within the processing plant doubles when a liquefaction system is installed....... It is therefore essential to conduct a careful analysis of the trade-off between the capital costs and operating revenues for such options....

  11. Synthetic Rock Analogue for Permeability Studies of Rock Salt with Mudstone

    Directory of Open Access Journals (Sweden)

    Hongwu Yin

    2017-09-01

    Full Text Available Knowledge about the permeability of surrounding rock (salt rock and mudstone interlayer is an important topic, which acts as a key parameter to characterize the tightness of gas storage. The goal of experiments that test the permeability of gas storage facilities in rock salt is to develop a synthetic analogue to use as a permeability model. To address the permeability of a mudstone/salt layered and mixed rock mass in Jintan, Jiangsu Province, synthetic mixed and layered specimens using the mudstone and the salt were fabricated for permeability testing. Because of the gas “slippage effect”, test results are corrected by the Klinkenberg method, and the permeability of specimens is obtained by regression fitting. The results show that the permeability of synthetic pure rock salt is 6.9 × 10−20 m2, and its porosity is 3.8%. The permeability of synthetic mudstone rock is 2.97 × 10−18 m2, with a porosity 17.8%. These results are close to those obtained from intact natural specimens. We also find that with the same mudstone content, the permeability of mixed specimens is about 40% higher than for the layered specimens, and with an increase in the mudstone content, the Klinkenberg permeability increases for both types of specimens. The permeability and mudstone content have a strong exponential relationship. When the mudstone content is below 40%, the permeability increases only slightly with mudstone content, whereas above this threshold, the permeability increases rapidly with mudstone content. The results of the study are of use in the assessment of the tightness of natural gas storage facilities in mudstone-rich rock salt formations in China.

  12. The Integration Of Process Heat Applications To High Temperature Gas Reactors

    International Nuclear Information System (INIS)

    McKellar, Michael G.

    2011-01-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  13. MHD power generation for the synthetic-fuels industry

    International Nuclear Information System (INIS)

    Jones, M.S. Jr.

    1982-01-01

    The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD

  14. Application of gamma-ray densitometry in developing primary upgrading processes

    International Nuclear Information System (INIS)

    Liu, D.D.S.; Patmore, D.J.

    1990-01-01

    Gamma-ray densitometry has been applied in developing processes for upgrading heavy oils, refinery residua, tar sand bitumen and coal into synthetic crudes. These processes normally operate at high temperatures and pressures, thus non-invasive monitors are highly desirable. Examples of applications at CANMET are given for the following three areas: gas-liquid and gas-liquid-solid multiphase flow hydrodynamic studies, monitoring of ash concentration and measurement of thermal expansion coefficient of liquids. (author)

  15. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  16. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  17. Floating natural gas processing plants. Technical ideal or feasible technology

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H

    1977-04-01

    Realizability of floating natural gas processing plants is decisively influenced by the economy of the system. Illustrated by the example of the natural gas product LPG (liquefied petroleum gas), a model cost calculation is carried out. It is demonstrated that the increase in the price level during the 1973/1974 energy crisis is an important factor for the realiability in terms of economy of such complicated technical systems. Another aspect which the model calculation revealed is that the economy of floating natural gas processing plants and storage systems can only be estimated in connection with other system components.

  18. Natural gas and renewable methane for powertrains future strategies for a climate-neutral mobility

    CERN Document Server

    2016-01-01

    This book focuses on natural gas and synthetic methane as contemporary and future energy sources. Following a historical overview, physical and chemical properties, occurrence, extraction, transportation and storage of natural gas are discussed. Sustainable production of natural gas and methane as well as production and storage of synthetic methane are scrutinized next. A substantial part of the book addresses construction of vehicles for natural and synthetic methane as well as large engines for industrial and maritime use. The last chapters present some perspectives on further uses of renewable liquid fuels as well as natural gas for industrial engines and gas power plants.

  19. Climate consoles: Pieces in the puzzle of climate change adaptation

    Directory of Open Access Journals (Sweden)

    Dominique Bachelet

    2017-12-01

    Full Text Available Conservation Biology Institute (CBI has been developing web applications to centralize and serve credible and usable information that allows natural resource managers, as well as the general public, to better understand the challenges posed by on-going environmental change. In particular CBI has designed a series of climate consoles that provide natural resource managers the most recent 5th Climate Model Intercomparison Program (CMIP5 climate projections, landscape intactness, and soil sensitivity for a series of reporting units over the western United States. The publically available web sites were refined based on feedback from a variety of users. In this paper, we describe each of the tools developed as open-source applications and provide details of their infrastructure in the hope they can be used and possibly modified by a wider audience. They were designed to be used as stepping-stones towards planning effective climate change adaptation strategies.

  20. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  1. Gabriela Mistral's «Sonnets to Ruth»: The Consolation of Passion

    Directory of Open Access Journals (Sweden)

    Howard M. Fraser

    1978-08-01

    Full Text Available As for many poets, the sonnet form presented the opportunity to Gabriela Mistral to perfect her poetic technique. This study examines in detail the Nobel Laureate's trio of sonnets commemorating the biblical matriarch Ruth. Mistral's treatment of the themes of alienation, self- sacrifice, and the search for human dignity features the contrasts of suffering and consolation which are present in the biblical narrative. But, alongside the thematic purposes which the pleasure/pain duality serves, Mistral exploits this opposition for technical and structural reasons. She uses the feelings of love and pain as an organizational device in her treatment of time, characters and diction. The discipline with which she handled traditional metres, in this case the sonnet, reveals that Mistral was a capable and mature poet at an early age.

  2. Multi-platform subsystem for controlling acquisition, visualization and data organization of an NMR Digital Spectrometer: ToRM Console; Subsistema multiplataforma para controle de aquisicao, visualizacao e organizacao de dados do Espectrometro Digital de RM: ToRM Console

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danilo M.D.D. da; Pizetta, Daniel C.; Freire, Guilherme M.; Coelho, Felipe B.; Lourenco, Gustavo V.; Correa, Rodrigo R.M.; Martins, Mateus J.; Vidoto, Edson L.G.; Tannus, Alberto, E-mail: danilomendes@usp.br, E-mail: danilomendesdias@gmail.com [Universidade de Sao Paulo (CIERMag/USP), Sao Carlos, SP (Brazil). Int. de Fisica. Centro de Imagens e Espectroscopia ' in vivo' por Ressonancia Magnetica

    2013-08-15

    In this work, we present the recent results from the development of the CIERMag NMR Digital Spectrometer - a subsystem for controlling acquisition, visualization and data organization. Some aspects of the architecture and features will be shown, including a demonstration with CPMG method for transversal relaxation time (T{sub 2}) measurement using the system. With these achievements, ToRM Console is now being prepared to be an MRI scanner in a near future (author)

  3. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  4. Uranium enrichment in Europe by the gas centrifuge process

    International Nuclear Information System (INIS)

    Severin, D.J.E.

    1975-01-01

    To begin with, this lesson gives an outline of the expected energy demand of the Western World and the concentration of the European companies participating in uranium enrichment by the gas centrifuge method. Next, a) the principles of the gas centrifuge method are outlined, b) its advantages over other industrial processes are stressed, and c) the characteristic data of complete plants are given. The existing German, Dutch, and British pilot plants are mentioned as examples for the perfected state of the process. The Capenhurst (UK) and Almedo (NL) demonstration plants, each with a capacity of 200 t SW/a, will have been extended to 2 x 1.000 t SW/a by 1982. Finally, economic data of the gas centrifuge process are given. The term 'separative work' is explained in an annex. (GG) [de

  5. Overview of gas processing fee practices in Canada

    International Nuclear Information System (INIS)

    Swenson, R.W.

    1999-01-01

    The negotiation of gas processing fees from the perspective of the natural gas producer are summarized. Some of the topics discussed are: evaluation of fee proposals, capital cost estimates, pipeline capital fees, compressor capital fees, plant capital fees, upper and lower limits on fees, (JP-90 and JP-95), negotiation options, operating costs, production allocation, and processing agreements. Several case studies involving one or more of these items were reviewed by way of illustration. The importance of documentation of all agreements, changes to agreements, commitments, etc., was stressed

  6. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    1980-01-01

    A method is specified for the operation of a gaseous diffusion cascade wherein electrically driven compressors circulate a process gas through a plurality of serially connected gaseous diffusion stages to establish first and second countercurrently flowing cascade streams of process gas, one of the streams being at a relatively low pressure and enriched in a component of the process gas and the other being at a higher pressure and depleted in the same, and wherein automatic control systems maintain the stage process gas pressures by positioning process gas flow control valve openings at values which are functions of the difference between reference-signal inputs to the systems, and signal inputs proportional to the process gas pressures in the gaseous diffusion stages associated with the systems, the cascade process gas inventory being altered, while the cascade is operating, by simultaneously directing into separate process-gas freezing zones a plurality of substreams derived from one of the first and second streams at different points along the lengths thereof to solidify approximately equal weights of process gas in the zone while reducing the reference-signal inputs to maintain the positions of the control valves substantially unchanged despite the removal of process gas inventory via the substreams. (author)

  7. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  8. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  9. Portable spectrometer monitors inert gas shield in welding process

    Science.gov (United States)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  10. Process Investigation of Tube Expansion by Gas Detonation

    OpenAIRE

    Bach, F.-W.; Beerwald, C.; Brosius, A.; Gershteyn, G.; Hermes, M.; Kleiner, M.; Olivier, H.; Weber, M.

    2006-01-01

    The present paper deals with the expansion of tubes by direct application of gas detonation waves, i.e. the gas is both pressure medium and energy source. After an introduction to gas detonation forming, measurements of the motion process and the internal pressures are presented. Results of free expansion and of forming into a die are thoroughly studied and compared to the results of quasi-static burst tests and hydroforming. Using pure aluminum Al99.5 and a medium strength alloy AlMgSi1, ...

  11. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants

    International Nuclear Information System (INIS)

    Zolfaghari, Mohabbat; Pirouzfar, Vahid; Sakhaeinia, Hossein

    2017-01-01

    Today in the worldwide quest for production and economic preference, only industries will survive that have proper solutions for waste disposal and environmental pollution. In industrial applications, a blow down network of gases is used in order to control system pressure and safety instruments. At the end of this network, the excess gases are burnt in the flare tower, which have severe consequences on the environment. Different methods have been proposed and several alternatives have been introduced for reduction and recovery of flaring gases. In this paper, three methods including gas to liquid (GTL), gas turbines generation (GTG) and gas to ethylene (GTE) are introduced and compared with the best method from economic point of view being identified. For this purpose, a natural gas sample is taken from Asalloyeh Refinery Plant and the process has been simulated using Aspen HYSYS. Meanwhile, estimation of the capital and operating costs and evaluation of the processes involved were made using Aspen Capital Cost Estimator. According to the results obtained, production of the electric power from flaring gases is one of the most economical methods. GTG method, with an annual profit of about 480e+006 $, has a greater ROR percent. - Highlights: • Three methods including GTL, GTG and GTE are developed for flare gas recovery. • The processes has been simulated using Aspen HYSYS. • Estimation of the capital and operating costs of the processes were made. • According to the results obtained, GTG is one of the most economical methods. • GTE method has the highest annual benefit, it has the lowest ROR percent.

  12. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  13. Differentiation of wood-derived vanillin from synthetic vanillin in distillates using gas chromatography/combustion/isotope ratio mass spectrometry for δ13 C analysis.

    Science.gov (United States)

    van Leeuwen, Katryna A; Prenzler, Paul D; Ryan, Danielle; Paolini, Mauro; Camin, Federica

    2018-02-28

    Typical storage in oak barrels releases in distillates different degradation products such as vanillin, which play an important role in flavour and aroma. The addition of vanillin, as well as other aroma compounds, of different origin is prohibited by European laws. As vanillin samples from different sources have different δ 13 C values, the δ 13 C value could be used to determine whether the vanillin is authentic (lignin-derived), or if it has been added from another source (e.g. synthetic). The δ 13 C values for vanillin derived from different sources, including natural, synthetic and tannins, were measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), after diethyl ether addition and/or ethanol dilution. A method for analysing vanillin in distillates after dichloromethane extraction was developed. Tests were undertaken to prove the reliability, reproducibility and accuracy of the method with standards and samples. Distillate samples were run to measure the δ 13 C values of vanillin and to compare them with values for other sources of vanillin. δ 13 C values were determined for: natural vanillin extracts (-21.0 to -19.3‰, 16 samples); vanillin ex-lignin (-28.2‰, 1 sample); and synthetic vanillin (-32.6 to -29.3‰, 7 samples). Seventeen tannin samples were found to have δ 13 C values of -29.5 to -26.7‰, which were significantly different (p distillates (-28.9 to -25.7‰) were mainly in the tannin range, although one spirit (-32.5‰) was found to contain synthetic vanillin. The results show that synthetic vanillin added to a distillate could be differentiated from vanillin derived from oak barrels by their respective δ 13 C values. The GC/C/IRMS method could be a useful tool in the determination of adulteration of distillates. Copyright © 2017 John Wiley & Sons, Ltd.

  14. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-01-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(sup SM) (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H(sub 2)S present. The experiments showed that hexane oxidation is suppressed when H(sub 2)S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H(sub 2)S oxidation conditions, and more importantly, does not change

  15. Synthetic spider silk sustainability verification by techno-economic and life cycle analysis

    Science.gov (United States)

    Edlund, Alan

    Major ampullate spider silk represents a promising biomaterial with diverse commercial potential ranging from textiles to medical devices due to the excellent physical and thermal properties from the protein structure. Recent advancements in synthetic biology have facilitated the development of recombinant spider silk proteins from Escherichia coli (E. coli), alfalfa, and goats. This study specifically investigates the economic feasibility and environmental impact of synthetic spider silk manufacturing. Pilot scale data was used to validate an engineering process model that includes all of the required sub-processing steps for synthetic fiber manufacture: production, harvesting, purification, drying, and spinning. Modeling was constructed modularly to support assessment of alternative protein production methods (alfalfa and goats) as well as alternative down-stream processing technologies. The techno-economic analysis indicates a minimum sale price from pioneer and optimized E. coli plants at 761 kg-1 and 23 kg-1 with greenhouse gas emissions of 572 kg CO2-eq. kg-1 and 55 kg CO2-eq. kg-1, respectively. Spider silk sale price estimates from goat pioneer and optimized results are 730 kg-1 and 54 kg-1, respectively, with pioneer and optimized alfalfa plants are 207 kg-1 and 9.22 kg-1 respectively. Elevated costs and emissions from the pioneer plant can be directly tied to the high material consumption and low protein yield. Decreased production costs associated with the optimized plants include improved protein yield, process optimization, and an Nth plant assumption. Discussion focuses on the commercial potential of spider silk, the production performance requirements for commercialization, and impact of alternative technologies on the sustainability of the system.

  16. Physical and chemical characterization of synthetic calcined sludge

    International Nuclear Information System (INIS)

    Slates, R.V.; Mosley, W.C. Jr.; Tiffany, B.; Stone, J.A.

    1982-03-01

    Calcined synthetic sludge was chemically characterized in support of engineering studies to design a processing plant to solidify highly radioactive waste at the Savannah River Plant. An analytical technique is described which provides quantitative data by mass spectrometric analysis of gases evolved during thermogravimetric analysis without measurements of gas flow rates or mass spectrometer sensitivities. Scanning electron microprobe analysis, Mossbauer spectroscopy, and several other common analytical methods were also used. Calcined sludge consists primarily of amorphous particles of hydrous oxides with iron, manganese, nickel, and calcium distributed fairly uniformly throughout the powder. Iron, manganese, nickel, and calcium exist in forms that are highly insoluble in water, but aluminum, sulfate, nitrate, and sodium exhibit relative water solubilities that increase in the given order from 60% to 94%. Evolved gas analysis in a helium atmosphere showed that calcined sludge is completely dehydrated by heating to 400 0 C, carbon dioxide is evolved between 100 to 700 0 C with maximum evolution at 500 0 C, and oxygen is evolved between 400 and 1000 0 C. Evolved gas analyses are also reported for uncalcined sludge. A spinel-type oxide similar to NiFe 2 O 4 was detected by x-ray diffraction analysis at very low-level in calcined sludge

  17. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  18. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Energy Technology Data Exchange (ETDEWEB)

    Szilágyi, Petra Ágota, E-mail: p.a.szilagyi@greenwich.ac.uk [Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham (United Kingdom); Serra-Crespo, Pablo [Department of Radiation Science and Technology, Delft University of Technology, Delft (Netherlands); Gascon, Jorge [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Geerlings, Hans [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Shell Technology Centre, Amsterdam (Netherlands); Dam, Bernard [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands)

    2016-03-29

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  19. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    International Nuclear Information System (INIS)

    Szilágyi, Petra Ágota; Serra-Crespo, Pablo; Gascon, Jorge; Geerlings, Hans; Dam, Bernard

    2016-01-01

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  20. Mixing process of a binary gas in a density stratified layer

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-09-01

    This study is to investigate the effect of natural convection on the mixing process by molecular diffusion in a vertical stratified layer of a binary fluid. There are many experimental and analytical studies on natural convection in the vertical fluid layer. However, there are few studies on natural convection with molecular diffusion in the vertical stratified layer of a binary gas. Experimental study has been performed on the combined phenomena of molecular diffusion and natural convection in a binary gas system to investigate the mixing process of the binary gas in a vertical slot consisting of one side heated and the other side cooled. The range of Rayleigh number based on the slot width was about 0 < Ra{sub d} < 7.5 x 10{sup 4}. The density change of the gas mixture and the temperature distribution in the slot was obtained and the mixing process when the heavier gas ingress into the vertical slot filled with the lighter gas from the bottom side of the slot was discussed. The experimental results showed that the mixing process due to molecular diffusion was affected significantly by the natural convection induced by the slightly temperature difference between both vertical walls even if a density difference by the binary gas is larger than that by the temperature difference. (author). 81 refs.

  1. 18 CFR 157.212 - Synthetic and liquefied natural gas facilities.

    Science.gov (United States)

    2010-04-01

    ... natural gas facilities. 157.212 Section 157.212 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  2. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  3. Green gas (SNG) in the Dutch energy infrastructure

    International Nuclear Information System (INIS)

    Boerrigter, H.

    2006-04-01

    The presentation on the title subject comprises Motivation for Green Gas; Potential and application; Green Gas and SNG implementation; Biomass availability and import; Economy of SNG production; and the SNG development trajectory. SNG stands for Synthetic Natural Gas

  4. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    Science.gov (United States)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might

  5. Optimal design issues of a gas-to-liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, Ahmad

    2012-07-01

    Interests in Fischer-Tropsch (FT) synthesis is increasing rapidly due to the recent improvements of the technology, clean-burning fuels (low sulphur, low aromatics) derived from the FT process and the realization that the process can be used to monetize stranded natural gas resources. The economy of GTL plants depends very much on the natural gas price and there is a strong incentive to reduce the investment cost and in addition there is a need to improve energy efficiency and carbon efficiency. A model is constructed based on the available information in open literature. This model is used to simulate the GTL process with UNISIM DESIGN process simulator. In the FT reactor with cobalt based catalyst, Co2 is inert and will accumulate in the system. Five placements of Co2 removal unit in the GTL process are evaluated from an economical point of view. For each alternative, the process is optimized with respect to steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to syngas and FT units, reactor volume, and Co2 recovery. The results show that carbon and energy efficiencies and the annual net cash flow of the process with or without Co2 removal unit are not significantly different and there is not much to gain by removing Co2 from the process. It is optimal to recycle about 97 % of the light ends to the process (mainly to the FT unit) to obtain higher conversion of CO and H2 in the reactor. Different syngas configurations in a gas-to-liquid (GTL) plant are studied including auto-thermal reformer (ATR), combined reformer, and series arrangement of Gas Heated Reformer (GHR) and ATR. The Fischer-Tropsch (FT) reactor is based on cobalt catalyst and the degrees of freedom are; steam to carbon ratio, purge ratio of light ends, amount of tail gas recycled to synthesis gas (syngas) and Fischer-Tropsch (FT) synthesis units, and reactor volume. The production rate of liquid hydrocarbons is maximized for each syngas configuration. Installing a steam

  6. Finite Element Modeling of Adsorption Processes for Gas Separation and Purification

    International Nuclear Information System (INIS)

    Humble, Paul H.; Williams, Richard M.; Hayes, James C.

    2009-01-01

    Pacific Northwest National Laboratory (PNNL) has expertise in the design and fabrication of automated radioxenon collection systems for nuclear explosion monitoring. In developing new systems there is an ever present need to reduce size, power consumption and complexity. Most of these systems have used adsorption based techniques for gas collection and/or concentration and purification. These processes include pressure swing adsorption, vacuum swing adsorption, temperature swing adsorption, gas chromatography and hybrid processes that combine elements of these techniques. To better understand these processes, and help with the development of improved hardware, a finite element software package (COMSOL Multiphysics) has been used to develop complex models of these adsorption based operations. The partial differential equations used include a mass balance for each gas species and adsorbed species along with a convection conduction energy balance equation. These equations in conjunction with multicomponent temperature dependent isotherm models are capable of simulating separation processes ranging from complex multibed PSA processes, and multicomponent temperature programmed gas chromatography, to simple two component temperature swing adsorption. These numerical simulations have been a valuable tool for assessing the capability of proposed processes and optimizing hardware and process parameters.

  7. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  8. Potential of the technology gas to liquids -GTL in Colombia

    International Nuclear Information System (INIS)

    Perez Angulo, Julio Cesar; Cabarcas Simancas, Manuel E; Archila Castro, Jesus; Tobias, Yamil Yubran

    2005-01-01

    Natural gas has a great potential because of the large reserves that currently exist at a worldwide level and because it is a cleaner source of energy than petroleum, but having the disadvantage of requiring high costs for its transportation. For this reason many alternatives have loomed for the development of reserves. Among these is the conversion of natural gas into synthetic ultra-clean fuels, called GTL, or gas-to-liquids. Through this process, Fischer-Tropsch for the production of diesel, naphtha and specialized products, which are used not only to effectively utilize natural gas reserves, but also, to cover at the need of more environmentally friendly fuels. This article will shed light on GTL technologies, presenting on a first instance an analysis of the different stages of the Fischer-Tropsch process, then the current status of this technology, afterwards the costs of investment and the necessary conditions for a project of this kind to be carried out and finally, and analysis of the applicability or projection for this technology in Colombia. Based on recent studies, it has been observed that is technology has surpassed its demonstrations stage and it is now at a maximum point of interest where companies like Sasol (the largest worldwide company in the area of synthetic carbon-based fuels), Chevron Texaco, Syntroleum, Exxon Mobil, Conoco Phillips, BP Rentech and shell. These companies have performed successful studies for the applicability of the Fischer-Tropsch technology at a large scale, and they will begin to build a number of large plants within the next few years, principally motivated by the low costs of gas and high prices of crude oil

  9. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: the Role of Defects

    Directory of Open Access Journals (Sweden)

    Petra Agota Szilagyi

    2016-03-01

    Full Text Available Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. Its vehicular application however will only be widespread if safe and high-capacity methane stores are developed. In this work report an over 33% increase in methane uptake on a post-synthetically modified metal-organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  10. The replacement of touch-terminal consoles of the CERN antiproton accumulator complex (AAC) by office PC's as well as X-windows based workstations

    International Nuclear Information System (INIS)

    Chohan, V.; Deloose, I.; Shering, G.

    1992-01-01

    With aging hardware and expensive maintenance and replacement possibilities, it was decided to upgrade the AAC touch terminal consoles with modern hardware. With significant amount of operational application software developed with touch terminals over 10 years, the philosophy adopted was to attempt a total emulation of these console functions of touch actions, graphics display as well as simple keyboard terminal entry onto the front-end computer controlling the AAC. The PC based emulation by mouse and multiple windows under MS-DOS and later, under the Windows 3 environment was realized relatively quickly; the next stage was therefore to do the same on the Unix platform using software based on X-windows. The communications channel was established using the TCP/IP socket library. This paper reviews this work up to the operational implementation for routine control room usage for both these solutions. (author)

  11. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  12. WAG (water-alternating-gas) process design: an update review

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, M.K. [University of Engineering and Technology, Lahore (Pakistan). Dept. of Petroleum and Gas Engineering], e-mail: mkzahoor@uet.edu.pk; Derahman, M.N.; Yunan, M.H. [Universiti Teknologi Malaysia, Johor (Malaysia). Dept. of Petroleum Engineering

    2011-04-15

    The design and implementation of water-alternating-gas (WAG) process in an improved and cost-effective way are still under process. Due to the complexities involved in implementing the process and the lack of information regarding fluid and reservoir properties, the water-alternating-gas process has not yet been as successful as initially expected. This situation can be overcome by better understanding the fluid distribution and flow behavior within the reservoir. The ultimate purpose can be achieved with improved knowledge on wettability and its influence on fluid distribution, capillary pressure, relative permeability, and other design parameters. This paper gives an insight on the WAG process design and the recently developed correlations which are helpful in incorporating the effects of wettability variations on fluid dynamics within the reservoir. (author)

  13. Design and implementation of the control system for the new console of TRIGA-3-Salazar Reactor

    International Nuclear Information System (INIS)

    Gonzalez M, J.L.

    1994-01-01

    TRIGA-3-Salazar Reactor was set in operation in 1968 and the aging of its components has cause the increasing in the maintenance. In the presence of this, it becomes necessary to replace the reactor console using new technologies, considering the incorporation of a personal computer. The aim of this work is the design and construction of the equipment interfaces as well as the digital computer program for the automation and control of the TRIGA-3-Salazar Reactor by means of a personal computer. (Author)

  14. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  15. Gas Migration Processes through the Gas Hydrate Stability Zone at Four-Way Closure Ridge Offshore SW Taiwan

    Science.gov (United States)

    Kunath, P.; Chi, W. C.; Berndt, C.; Liu, C. S.

    2016-12-01

    We have used 3D P-Cable seismic data from Four-Way-Closure Ridge, a NW-SE trending anticlinal ridge within the lower slope domain of accretionary wedge, to investigate the geological constraints influencing the fluid migration pattern in the shallow marine sediments. In the seismic data, fluid migration feature manifests itself as high reflection layers of dipping strata, which originate underneath a bottom simulating reflector (BSR) and extend towards the seafloor. Shoaling of the BSR near fluid migration pathways indicates a focused fluid flux, perturbing the temperature field. Furthermore, seafloor video footage confirmed the presence of recent methane seepage above seismically imaged fluid migration pathways. We plan to test two hypotheses for the occurrence of these fluid migration pathways: 1) the extensional regime under the anticlinal ridge crest caused the initiation of localized fault zones, acting as fluid conduits in the gas hydrate stability zone (GHSZ). 2) sediment deformation induced by focused fluid flow and massive growth and dissolution of gas hydrate, similar to processes controlling the evolution of pockmarks on the Nigerian continental margin. We suggest that these processes may be responsible for the formation of a massive hydrate core in the crest of the anticline, as inferred from other geophysical datasets. Triggering process for fluid migration cannot be clearly defined. However, the existence of blind thrust faults may help to advect deep-seated fluids. This may be augmented by biogenic production of shallow gas underneath the ridge, where the excess of gas enables the coexistence of gas, water, and gas hydrate within the GHSZ. Fluid migration structures may exists because of the buoyancy of gas-bearing fluids. This study shows a potential model on how gas-bearing fluids migrate upward towards structural highs, which might occur in other anticlinal structures around the world. Keywords: P-Cable, gas-hydrate, fluid flow, fault-related fold

  16. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  17. Review on biofuel oil and gas production processes from microalgae

    International Nuclear Information System (INIS)

    Amin, Sarmidi

    2009-01-01

    Microalgae, as biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuel oil and gas. This paper presents a brief review on the main conversion processes of microalgae becoming energy. Since microalgae have high water content, not all biomass energy conversion processes can be applied. By using thermochemical processes, oil and gas can be produced, and by using biochemical processes, ethanol and biodiesel can be produced. The properties of the microalgae product are almost similar to those of offish and vegetable oils, and therefore, it can be considered as a substitute of fossil oil.

  18. A Century of Synthetic Fertilizer: 1909-2009

    OpenAIRE

    Paull, John

    2009-01-01

    This year marks a centenary of the synthetic fertilizer industry. German chemists, Fritz Haber and Carl Bosch, in 1909 demonstrated their industrial process for the manufacture of ammonia. The achievement won them accolades including Nobel Prizes. The output of their Haber-Bosch process can be used for either peace or war, agriculture or munitions, and the rapid adoption by Germany of this industrial process is credited with prolonging WW1. Most of the synthetic nitrogenous fertilizer of the...

  19. Implementing process safety management in gas processing operations

    International Nuclear Information System (INIS)

    Rodman, D.L.

    1992-01-01

    The Occupational Safety and Health Administration (OSHA) standard entitled Process Safety Management of Highly Hazardous Chemicals; Explosives and Blasting Agents was finalized February 24, 1992. The purpose of the standard is to prevent or minimize consequences of catastrophic releases of toxic, flammable, or explosive chemicals. OSHA believes that its rule will accomplish this goal by requiring a comprehensive management program that integrates technologies, procedures, and management practices. Gas Processors Association (GPA) member companies are significantly impacted by this major standard, the requirements of which are extensive and complex. The purpose of this paper is to review the requirements of the standard and to discuss the elements to consider in developing and implementing a viable long term Process Safety Management Program

  20. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  1. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  2. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. 30 CFR 206.181 - How do I establish processing costs for dual accounting purposes when I do not process the gas?

    Science.gov (United States)

    2010-07-01

    ... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...

  4. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell...

  5. Process for hardening synthetic resins by ionizing radiation

    International Nuclear Information System (INIS)

    Hesse, W.; Ritz, J.

    1975-01-01

    Synthetic resins containing hydroxy groups and polymerizable carbon-carbon bonds are reacted with diketenes to yield aceto ester derivatives, which when reacted with metal compounds to form chelates, and mixed with copolymerizable monomers, are capable of being hardened by unusually low radiation doses to form coatings and articles with superior properties. (E.C.B.)

  6. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2015-12-01

    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  7. Shell launches its Claus off-gas desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Groenendaal, W; van Meurs, H C.A.

    1972-01-01

    The Shell Flue Gas Desulfurization (SFGD) Process was developed for removal of sulfur oxides from flue gases originating from oil-fired boilers or furnaces. It can also be used to remove sulfur dioxide from Claus sulfur recovery tail gases if they are combined with boiler/furnace flue gases. For Claus tail gas only, the Shell Claus off-gas desulfurization process was developed. Claus unit operation and desulfurization by low temperature Claus processes and conversion/concentration processes are discussed. The new Shell process consists of a conversion/concentration process involving a reduction section and an amine absorption section. In the reduction section, all sulfur compounds and free sulfur are completely reduced to hydrogen sulfide with hydrogen, or hydrogen plus carbon monoxide, over a cobalt/molybdenum-on-alumina catalyst at a temperature of about 300/sup 0/C. Extensive bench scale studies on the reduction system have been carried out. A life test of more than 4000 hr showed a stable activity of the reduction catalyst, which means that in commercial units, very long catalyst lives can be expected. The commercial feasibility of the reduction section was further demonstrated in the Godorf refinery of Deutsche Shell AG. More than 80 absorption units using alkanolamine (AIDP) solutions have been installed. Bench scale studies of the ADIP absorption units were compared to commercial experience.The total capital investment of the new Shell process is 0.7, 2.0, and 3.2 $ times 10 to the 6th power for 100, 500, and 1000 tons of sulfur/sd capacity Claus units, respectively. The total operating costs for these units are, respectively, 610, 1930 and 3310 $/stream day. The capital investment corresponds to about 75% of the capital investment of the preceding Claus unit.

  8. Organic synthetic dye degradation by modified pinhole discharge

    Czech Academy of Sciences Publication Activity Database

    Božic' Lončaric', A.; Koprivanac, N.; Šunka, Pavel; Člupek, Martin; Babický, Václav

    2004-01-01

    Roč. 54, suppl.C (2004), C958-C963 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/02/1026 Keywords : organic synthetic Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  9. A novel process for small-scale pipeline natural gas liquefaction

    International Nuclear Information System (INIS)

    He, T.B.; Ju, Y.L.

    2014-01-01

    Highlights: • A novel process was proposed to liquefy natural gas by utilizing the pressure exergy. • The process is zero energy consumption. • The maximum liquefaction rate of the process is 12.61%. • The maximum exergy utilization rate is 0.1961. • The economic analysis showed that the payback period of the process is quit short. - Abstract: A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period

  10. FORTRAN text correction with the CDC-1604-A console typewriter during reading a punched card program

    International Nuclear Information System (INIS)

    Kotorobaj, F.; Ruzhichka, Ya.; Stolyarskij, Yu.V.

    1977-01-01

    The paper describes FORTRAN text correction with the CDC 1604-A console typewriter during reading a punched card program. This method gives one more possibility of FORTRAN program correction during program's input to the CDC 1604-A computer. This essentially reduced the time necessary for punched card correction with other methods. Possibility of inputting desired number of punched cards one after another allows one writing small FORTRAN programs to computer core storage with simultaneous punching of the cards. The correction program has been written to the CDC 1604 COOP monitor

  11. Control console for the X-ray room; Consola de control para la sala de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Garcia H, J.M.; Aguilar B, M.A.; Torres B, M.A

    1998-07-01

    It is presented the design and construction of Control console for the X-ray room of Metrology Center for ionizing radiations at National Institute of Nuclear Research (ININ). This system controls the positioning of 6 different filters for an X-ray beam. Also it controls a shutter which blockades the beam during periods established by user, these periods can be fixed from hours until tenth of second. The shutter opening periods, as well as the X-ray beam filter are establish and monitoring from a Personal computer outside of room. (Author)

  12. Gas retorts: gas manufacture, process for distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J

    1874-05-23

    In apparatus for distilling shale, coal, etc. for making oil and gas, tubular retorts are supported horizontally in a chamber by plates from a brick setting and are heated partly by jets of gas from a pipe supplied through a cock from a gas holder, and partly by the waste gases from a furnace, which heats gas retorts placed in a chamber, air being supplied beneath the grate by a fan.

  13. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kračun, Stjepan K.; Rydahl, Maja G.

    2014-01-01

    Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is lim...... and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons....

  14. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2004-05-01

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference

  15. Development of energy-efficient processes for natural gas liquids recovery

    International Nuclear Information System (INIS)

    Yoon, Sekwang; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2017-01-01

    A new NGL (natural gas liquids) recovery process configuration is proposed which can offer improved energy efficiency and hydrocarbon recovery. The new process configuration is an evolution of the conventional turboexpander processes with the introduction of a split stream transferring part of the feed to the demethanizer column. In this way additional heat recovery is possible which improves the energy efficiency of the process. To evaluate the new process configuration a number of different NGL recovery process configurations are optimized and compared using a process simulator linked interactively with external optimization methods. Process integration methodology is applied as part of the optimization to improve energy recovery during the optimization. Analysis of the new process configuration compared with conventional turbo-expander process designs demonstrates the benefits of the new process configuration. - Highlights: • Development of a new energy-efficient natural gas liquids recovery process. • Improving energy recovery with application of process integration techniques. • Considering multiple different structural changes lead to considerable energy savings.

  16. The control consoles for the CERN 400 GeV proton synchrotron

    CERN Document Server

    Beck, F; Shering, G

    1977-01-01

    The European Organization for Nuclear Research (CERN) provides research facilities for investigation into the physics of high energy particles for physicists from 11 European member states and visitors from several continents. To this end it constructs and operates large accelerators, and of these is a 400 GeV proton synchrotron, which is built in a circular tunnel cut into the bedrock, the majority of the equipment being housed in a number of buildings scattered over the surface of the site. Data are gathered in local units, multiplexed into a CAMAC interface, collected into local computers, and sent down high-speed data links to the control centre. Data-collection rates vary from leisurely status changes to megahertz transfer rates on the data links. All links are connected to a message-transfer system in the control centre, as are connections from various central computers giving library, graphics and alarm facilities. The three computers driving the three control consoles are similarly attached to the mes...

  17. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas fermenta......In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...... to highest VFA concentration was pure CO (100%) regardless of microbial composition of the inoculum and media composition. The addition of acetate had a negative impact on the VFA formation which was depending on the initial gas composition in head space....

  18. 45th IGE (Institute of Gas Engineers) Autumn Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Riley, T; De Winton, C

    1980-01-01

    Topics discussed at the 45th Institute of Gas Engineers Autumn Meeting (London, 1979) are outlined, including safety standards and recommendations for gas transmission and distribution systems, gas characteristics and utilization, heat transfer research, gas receiver stresses, the potential of hydrogen as an energy fuel, gas appliances and controls, pipe failure, refactories in gasifiers, synthetic natural gas, coal conversion techniques, and technological innovations.

  19. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gaming across different consoles: exploring the influence of control scheme on game-player enjoyment.

    Science.gov (United States)

    Limperos, Anthony M; Schmierbach, Michael G; Kegerise, Andrew D; Dardis, Frank E

    2011-06-01

    Many studies have investigated how different technological features impact the experience of playing video games, yet few have focused on how control schemes may affect the play experience. This research employed a between-subjects design to explore the relationship between the type of console played (Nintendo Wii, Playstation 2) and feelings of flow and enjoyment during the game-play experience. Results indicated that participants reported greater feelings of control and enjoyment with a traditional control scheme (Playstation 2) than with the more technologically advanced control scheme (Nintendo Wii). Further mediation analysis showed that enjoyment was driven by the sense of control that participants experienced and not simply by whether they won the game. Theoretical and practical implications are discussed.

  1. Gas stripping and recirculation process in heavy water separation plant

    International Nuclear Information System (INIS)

    Nazzer, D.B.; Thayer, V.R.

    1976-01-01

    Hydrogen sulfide is stripped from hot effluent, in a heavy water separation plant of the dual temperature isotope separation type, by taking liquid effluent from the hot tower before passage through the humidifier, passing the liquid through one or more throttle devices to flash-off the H 2 S gas content, and feeding the gas into an absorption tower containing incoming feed water, for recycling of the gas through the process

  2. Gas prices and price process

    International Nuclear Information System (INIS)

    Groenewegen, G.G.

    1992-01-01

    On a conference (Gas for Europe in the 1990's) during the Gasexpo '91 the author held a speech of which the Dutch text is presented here. Attention is paid to the current European pricing methods (prices based on the costs of buying, transporting and distributing the natural gas and prices based on the market value, which is deducted from the prices of alternative fuels), and the transparency of the prices (lack of information on the way the prices are determined). Also attention is paid to the market signal transparency and gas-gas competition, which means a more or less free market of gas distribution. The risks of gas-to-gas competition for a long term price stability, investment policies and security of supply are discussed. Opposition against the Third Party Access (TPA), which is the program to implement gas-to-gas competition, is caused by the fear of natural gas companies for lower gas prices and lower profits. Finally attention is paid to government regulation and the activities of the European Commission (EC) in this matter. 1 fig., 6 ills., 1 tab

  3. 1991 worldwide refining and gas processing directory

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book ia an authority for immediate information on the industry. You can use it to find new business, analyze market trends, and to stay in touch with existing contacts while making new ones. The possibilities for business applications are numerous. Arranged by country, all listings in the directory include address, phone, fax and telex numbers, a description of the company's activities, names of key personnel and their titles, corporate headquarters, branch offices and plant sites. This newly revised edition lists more than 2000 companies and nearly 3000 branch offices and plant locations. This east-to-use reference also includes several of the most vital and informative surveys of the industry, including the U.S. Refining Survey, the Worldwide Construction Survey in Refining, Sulfur, Gas Processing and Related Fuels, the Worldwide Refining and Gas Processing Survey, the Worldwide Catalyst Report, and the U.S. and Canadian Lube and Wax Capacities Report from the National Petroleum Refiner's Association

  4. Process for water-gas generation from degassed combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1906-05-23

    A process for water-gas generation in a continuous operation from degassed combustibles in the lower part of a vertical exterior-heated retort, whose middle part can serve to degas the combustibles, is described. It is characterized in that the water vapor employed is obtained by vaporizing water in the upper part of the retort by means of the waste heat from the heating gases, which had effected the coking of the combustibles before the water-gas recovery or after the latter.

  5. Study of sorption processes of copper on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Ometakova, J.; Rajec, P.; Caplovicova, M.

    2012-01-01

    The sorption of copper on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite sample prepared by a wet precipitation process was of high crystallinity with Ca/P ratio of 1.688. The sorption of copper on hydroxyapatite was pH independent ranging from 4 to 6 as a result of buffering properties of hydroxyapatite. The adsorption of copper was rapid and the percentage of Cu sorption was >98% during the first 15-30 min of the contact time. The experimental data for sorption of copper have been interpreted in the term of Langmuir isotherm. The sorption of Cu 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Zn 2+ , Fe 2+ and Pb 2+ towards Cu 2+ sorption was stronger than that of Co 2+ , Ni 2+ and Ca 2+ ions. The ability of the bivalent cations to depress the sorption of copper on hydroxyapatite was in the following order Pb 2+ > Fe 2+ > Zn 2+ > Co 2+ ∼ Ni 2+ . (author)

  6. Techno-economic assessment of FT unit for synthetic diesel production in existing stand-alone biomass gasification plant using process simulation tool

    DEFF Research Database (Denmark)

    Hunpinyo, Piyapong; Narataruksa, Phavanee; Tungkamani, Sabaithip

    2014-01-01

    For alternative thermo-chemical conversion process route via gasification, biomass can be gasified to produce syngas (mainly CO and H2). On more applications of utilization, syngas can be used to synthesize fuels through the catalytic process option for producing synthetic liquid fuels...... such as Fischer-Tropsch (FT) diesel. The embedding of the FT plant into the stand-alone based on power mode plants for production of a synthetic fuel is a promising practice, which requires an extensive adaptation of conventional techniques to the special chemical needs found in a gasified biomass. Because...... there are currently no plans to engage the FT process in Thailand, the authors have targeted that this work focus on improving the FT configurations in existing biomass gasification facilities (10 MWth). A process simulation model for calculating extended unit operations in a demonstrative context is designed...

  7. Development program for the high-temperature nuclear process heat system

    International Nuclear Information System (INIS)

    Jiacoletti, R.J.

    1975-09-01

    A comprehensive development program plan for a high-temperature nuclear process heat system with a very high temperature gas-cooled reactor heat source is presented. The system would provide an interim substitute for fossil-fired sources and ultimately the vehicle for the production of substitute and synthetic fuels to replace petroleum and natural gas. The dwindling domestic reserves of petroleum and natural gas dictate major increases in the utilization of coal and nuclear sources to meet the national energy demand. The nuclear process heat system has significant potential in a unique combination of the two sources that is environmentally and economically attractive and technically sound: the production of synthetic fuels from coal. In the longer term, it could be the key component in hydrogen production from water processes that offer a substitute fuel and chemical feedstock free of dependence on fossil-fuel reserves. The proposed development program is threefold: a process studies program, a demonstration plant program, and a supportive research and development program. Optional development scenarios are presented and evaluated, and a selection is proposed and qualified. The interdependence of the three major program elements is examined, but particular emphasis is placed on the supportive research and development activities. A detailed description of proposed activities in the supportive research and development program with tentative costs and schedules is presented as an appendix with an assessment of current status and planning

  8. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  9. Evaluation of concepts for controlling exhaust emissions from minimally processed petroleum and synthetic fuels

    Science.gov (United States)

    Russell, P. L.; Beal, G. W.; Sederquist, R. A.; Shultz, D.

    1981-01-01

    Rich-lean combustor concepts designed to enhance rich combustion chemistry and increase combustor flexibility for NO(x) reduction with minimally processed fuels are examined. Processes such as rich product recirculation in the rich chamber, rich-lean annihilation, and graduated air addition or staged rich combustion to release bound nitrogen in steps of reduced equivalence ratio are discussed. Variations to the baseline rapid quench section are considered, and the effect of residence time in the rich zone is investigated. The feasibility of using uncooled non-metallic materials for the rich zone combustion construction is also addressed. The preliminary results indicate that rich primary zone staged combustion provides environmentally acceptable operation with residual and/or synthetic coal-derived liquid fuels

  10. Partial oxidation process for producing a stream of hot purified gas

    Science.gov (United States)

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  11. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2011-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absorption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  12. Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention

    National Research Council Canada - National Science Library

    Itti, L; Dhavale, N; Pighin, F

    2003-01-01

    .... The system is successful at autonomously saccading towards and tracking salient targets in a variety of video clips, including synthetic stimuli, real outdoors scenes and gaming console outputs...

  13. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.-C.

    1981-01-01

    A method is described for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. The method involves a sequence of adsorption and desorption steps which are specified. Particular reference is made to the separation of xenon and krypton from the off-gas stream, and to the use of silver-exchanged mordenite as the adsorbent. (U.K.)

  14. Insights from Synthetic Star-forming Regions. I. Reliable Mock Observations from SPH Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P.; Biscani, Francesco [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties that trace star formation. Testing and calibrating observational measurements requires synthetic observations that are as realistic as possible. In this part of the series (Paper I), we explore different techniques for mapping the distributions of densities and temperatures from the particle-based simulations onto a Voronoi mesh suitable for radiative transfer and consequently explore their accuracy. We further test different ways to set up the radiative transfer in order to produce realistic synthetic observations. We give a detailed description of all methods and ultimately recommend techniques. We have found that the flux around 20 μ m is strongly overestimated when blindly coupling the dust radiative transfer temperature with the hydrodynamical gas temperature. We find that when instead assuming a constant background dust temperature in addition to the radiative transfer heating, the recovered flux is consistent with actual observations. We present around 5800 realistic synthetic observations for Spitzer and Herschel bands, at different evolutionary time-steps, distances, and orientations. In the upcoming papers of this series (Papers II, III, and IV), we will test and calibrate measurements of the star formation rate, gas mass, and the star formation efficiency using our realistic synthetic observations.

  15. Essentials of water systems design in the oil, gas, and chemical processing industries

    CERN Document Server

    Bahadori, Alireza; Boyd, Bill

    2013-01-01

    Essentials of Water Systems Design in the Oil, Gas and Chemical Processing Industries provides valuable insight for decision makers by outlining key technical considerations and requirements of four critical systems in industrial processing plants—water treatment systems, raw water and plant water systems, cooling water distribution and return systems, and fire water distribution and storage facilities. The authors identify the key technical issues and minimum requirements related to the process design and selection of various water supply systems used in the oil, gas, and chemical processing industries. This book is an ideal, multidisciplinary work for mechanical engineers, environmental scientists, and oil and gas process engineers.

  16. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  17. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  18. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  19. A New Processing Method Combined with BP Neural Network for Francis Turbine Synthetic Characteristic Curve Research

    Directory of Open Access Journals (Sweden)

    Junyi Li

    2017-01-01

    Full Text Available A BP (backpropagation neural network method is employed to solve the problems existing in the synthetic characteristic curve processing of hydroturbine at present that most studies are only concerned with data in the high efficiency and large guide vane opening area, which can hardly meet the research requirements of transition process especially in large fluctuation situation. The principle of the proposed method is to convert the nonlinear characteristics of turbine to torque and flow characteristics, which can be used for real-time simulation directly based on neural network. Results show that obtained sample data can be extended successfully to cover working areas wider under different operation conditions. Another major contribution of this paper is the resampling technique proposed in the paper to overcome the limitation to sample period simulation. In addition, a detailed analysis for improvements of iteration convergence of the pressure loop is proposed, leading to a better iterative convergence during the head pressure calculation. Actual applications verify that methods proposed in this paper have better simulation results which are closer to the field and provide a new perspective for hydroturbine synthetic characteristic curve fitting and modeling.

  20. Emergency gas processing device

    International Nuclear Information System (INIS)

    Taruishi, Yoshiaki; Sasaki, Susumu.

    1984-01-01

    Purpose: To enable the reduction of radioactive substances released out of reactor buildings irrespective of the aging change in the buildings. Constitution: There are provided an exhaust gas flow channel for cleaning contaminated airs within a reactor building by way of a series of filters and exhausting the cleaned airs by means of exhaust fans to the outside and a gas recycling flow channel having a cooler in connection with the exhaust gas flow channel at a position downstream of the exhaust fans for returning the cleaned airs in the exhaust gas flow channel to the inside of the reactor buildings. The pressure difference between the outside and the inside of the reactor buildings is made constant by controlling the air flow channel within the gas recycling flow channel by a flow control valve. The airs cleaned by the series of the filters are recycled to the inside of the buildings to decrease the radioactive substance within the buildings. (Horiuchi, T.)

  1. Heterogeneous reduction of nitric oxide on synthetic coal chars

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Model compounds, with a controlled heteroatoms content and well-defined functionalities, were used to study the release of nitrogen compounds from char combustion. In the present work, the mechanisms involved in NO-char heterogeneous reduction were studied with a synthetic coal (SC) char as carbon source. Another synthetic char (SN) without any nitrogen in its composition was also employed in these studies. Temperature programmed reduction (TPR) tests with a gas mixture of 400 ppm NO in argon and with isotopically labelled nitric oxide, {sup 15}NO (500 ppm {sup 15}NO in argon), were carried out. The gases produced were quantitatively determined by means of MS and FTIR analysers. Under the conditions of this work the main products of the NO-C reaction were found to be N{sub 2} and CO{sub 2}. The main path of reaction involves the formation of surface nitrogen compounds that afterwards react with nitrogen from the reactive gas to form N{sub 2}. It was observed that fuel-N also participates in the overall heterogeneous reduction reaction, although to a lesser extent.

  2. Removal of mercury from coal-combustion flue gas using regenerable sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C S; Albiston, J; Broderick, T E; Stewart, R M

    1999-07-01

    The US EPA estimates that coal-fired power plants constitute the largest anthropogenic source of mercury emissions in the US. The Agency has contemplated emission regulations for power plants, but the large gas-flow rates and low mercury concentrations involved have made current treatment options prohibitively expensive. ADA Technologies, Inc. (Englewood, Colorado), in conjunction with the US DOE, is developing regenerable sorbents for the removal and recovery of mercury from flue gas. These sorbents are based on the ability of noble metals to amalgamate mercury at typical flue-gas temperatures and release mercury at higher temperatures. The process allows for recovery of mercury with minimal volumes of secondary wastes and no impact on fly ash quality. In 1997 and 1998, ADA tested a 20-cfm sorbent unit at CONSOL Inc.'s coal-combustion test facility in Library, PA. Results from the 1997 tests indicated that the sorbent can remove elemental and oxidized mercury and can be regenerated without loss of capacity. Design changes were implemented in 1998 to enhance the thermal efficiency of the process and to recover the mercury in a stable form. Testing during autumn, 1998 demonstrated 60% to 90% removal efficiency of mercury from a variety of different coals. However, contradictory removal results were obtained at the end of the test period. Subsequent laboratory analyses indicated that the sorbent had lost over half its capacity for mercury due to a decrease in available sites for mercury sorption. The presence of sulfur compounds on the sorbent suggests that thermal cycling may have condensed acid gases on the sorbent leading to deterioration of the active sorption sites. The regeneration time/temperature profile has been altered to minimize this potential in the upcoming power plant tests.

  3. A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

    1998-08-01

    Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

  4. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-01-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  5. Process Investigation for Conversion of MSW into Liquid Fuel

    International Nuclear Information System (INIS)

    Javed, M.T.; Jafri, U.A.; Chugtai, I.R.

    2010-01-01

    An investigation was conducted on pyrolysis technology to convert the municipal solid waste into liquid fuel. The investigation includes the development of the experimental setup for this process and its future prospects in Pakistan. A pyrolysis process is under consideration for many years for the production of synthetic fuel oils from organic solid waste. The system comprises of pyrolysis reactor, condenser for condensable gas, gas holder (for non- condensable gas). The feedstock used in the pyrolysis reactor is the municipal solid waste (includes kitchen waste, papers etc) in fine mesh size i.e. 2.5 - 3.0 mm. The residue obtained were mainly tar (pyrolytic oil), pyrogas (non - condensable gases) and ash, which shows that process has a potential for the treatment of the municipal solid waste and is a good technology for resource recover. (author)

  6. Fission gas bubble identification using MATLAB's image processing toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R. [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); Keiser, D.; Miller, B.; Madden, J.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-08-15

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. This study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding proved to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods. - Highlights: •Automated image processing can aid in the fuel qualification process. •Routines are developed to characterize fission gas bubbles in irradiated U–Mo fuel. •Frequency domain filtration effectively eliminates FIB curtaining artifacts. •Adaptive thresholding proved to be the most accurate segmentation method. •The techniques established are ready to be applied to large scale data extraction testing.

  7. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  8. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  9. Validity of the Korean Version of the Face, Legs, Activity, Cry, and Consolability Scale for Assessment of Pain in Dementia Patients.

    Science.gov (United States)

    Moon, Yeonsil; Kim, Yoon Sook; Lee, Jongmin; Han, Seol Heui

    2017-11-01

    Pain is often associated with a more rapid progression of cognitive and functional decline, and behavioral disturbance in dementia. Therefore, it is essential to accurately assesses pain for proper intervention in patients with dementia. The Face, Legs, Activity, Cry, and Consolability (FLACC) scale is an excellent behaviour scale which includes most of the domains that are recommended by the American Geriatrics Society to evaluate when assessing pain in patients with dementia. The purpose of this study was to develop the Korean version of the FLACC (K-FLACC) and to verify its reliability and validity in assessing pain of elderly patients with dementia. We developed the K-FLACC to consist of the five domains (face, legs, activity, cry, and consolability) with scores of 0, 1, and 2 for each domain and a total score ranging from 0 to 10 as in the original FLACC. Eighty-eight patients with dementia who visited Konkuk University Medical Center were evaluated. The K-FLACC revealed good validity as compared to the Numeric Rating Scale (NRS; r = 0.617, P dementia in Korea. © 2017 The Korean Academy of Medical Sciences.

  10. Flue Gas Cleaning With Alternative Processes and Reaction Media

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Huang, Jun; Riisager, Anders

    2007-01-01

    Alternative methods to the traditional industrial NOX and SOXflue gas cleaning processes working at lower temperatures and/orleading to useful products are desired. In this work we presentour latest results regarding the use of molten ionic media inelectrocatalytic membrane separation, ionic liquid...... reversibleabsorption and supported ionic liquid deNOX catalysis. Furtherdevelopment of the methods will hopefully make them suitable forinstallation in different positions in the flue gas duct ascompared to the industrial methods available today....

  11. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  12. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  13. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.

    Science.gov (United States)

    Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M H

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  15. Energy supply: No gas from coal

    Energy Technology Data Exchange (ETDEWEB)

    Kempkens, W

    1983-03-01

    In the last twelve years the share of natural gas in the total consumption of primary energy has increased twelve-fold and now amounts to 16 per cent. One-third of this is produced in West Germany. Although world deposits will last well into the next century, attempts are already being made to perfect techniques for obtaining gas from coal. However, the cubic metre price of synthetic gas is still anything but competitive.

  16. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    International Nuclear Information System (INIS)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-01-01

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry

  17. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    Energy Technology Data Exchange (ETDEWEB)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Ondra, Peter; Válka, Ivo [Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146 (Czech Republic); Ševčík, Juraj [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Chrastina, Jan [Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146 (Czech Republic); Maier, Vítězslav, E-mail: vitezslav.maier@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic)

    2015-05-18

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  18. Developing an equitable fee structure for gas processing services: JP-90 and beyond

    International Nuclear Information System (INIS)

    Kingsbury, J.D.; Moller, I.

    1996-01-01

    The Joint Industry Gas Processing Fee Task Force Report, JP-90, was designed to promote negotiation of gas processing fees that are based on principles of equity and fairness for both natural gas producers and processors. Another purpose of the JP-90 was to develop an effective dispute resolution process for use in those cases where negotiations have failed. At its inception, JP-90 was the only guideline for unregulated fee practices in the oil and gas sector in North America. Today PJVA-95, the revised version of JP-90, is in its final draft. It addresses the changing focus of the gas processing business, and changing regulatory roles in Alberta and British Columbia. A number of other fee mechanisms also have been described, such as the jumping pound formula, fixed fees, fees based on price, wellhead purchases, and others. These mechanisms developed over time to allow the processor and the producer to share the price risk. The changing role of regulatory agencies in fee dispute resolution was also discussed briefly

  19. High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis

    International Nuclear Information System (INIS)

    1980-08-01

    This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers

  20. Gas recovery process

    International Nuclear Information System (INIS)

    Schmidt, W.B.; Lewis, W.W.; Edmiston, A.; Klauser, G.

    1980-01-01

    In order to decontaminate a gas stream containing radioactive krypton, a preliminary step of removing oxygen and oxides of nitrogen by catalytic reaction with hydrogen is performed. The gas stream is then passed serially through a drier, a carbon dioxide adsorber and a xenon adsorber to remove sequentially water, CO 2 and xenon therefrom. The gas exiting the xenon adsorber is passed to a krypton recovery plant wherein krypton is concentrated to a first level in a primary distillation column by contact with a reflux liquid in a packed section of the column. The liquid and vapour collecting at the bottom of the column is passed to a separator in which the liquid is separated from the vapour. The liquid is partially evaporated in a vessel to increase concentration thereof and is brought to a concentration of approximately 90 mole % or greater in a second distillation column thereby enabling efficient storage of a radioactive krypton product. (author)

  1. Natural gas processing optimization in Espirito Santo plant; Sistema de otimizacao aplicado ao processamento de gas natural no Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Carlos Henrique de Oliveira; Costa, Fernando Lourenco Pinho da; Mazzini, Filipe Ferreira; Campos, Flavia Schittine [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Oliveira, Fabricio Carlos; Hamacher, Silvio [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work introduces the MODEP system, which was developed by PETROBRAS in association with PUC-Rio. The system objective is to support the gas processing and flow planning for the Espirito Santo PETROBRAS. The MODEP core is a non linear optimization model that allows the user to optimize the production of gas as well as to optimize the net present value. In addition, the system offers to the user a comprehensive asset of the gas network since its production fields until the products selling points. The development of this system was motivated by the sharp increase of the Espirito Santo gas production capacity as well as the increase in the number of its processing units. (author)

  2. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    Science.gov (United States)

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bubble retention in synthetic sludge: Testing of alternative gas retention apparatus

    International Nuclear Information System (INIS)

    Rassat, S.D.; Gauglitz, P.A.

    1995-07-01

    Several of the underground storage tanks currently used to store waste at Hanford have been placed on the Flammable Gas Watch List, because the waste is either known or suspected to generate, store, and episodically release flammable gases. The objective of this experimental study is to develop a method to measure gas bubble retention in simulated tank waste and in diluted simulant. The method and apparatus should (1) allow for reasonably rapid experiments, (2) minimize sample disturbance, and (3) provide realistic bubble nucleation and growth. The scope of this experimental study is to build an apparatus for measuring gas retention in simulated waste and to design the apparatus to be compatible with future testing on actual waste. The approach employed for creating bubbles in sludge involves dissolving a soluble gas into the supernatant liquid at an elevated pressure, recirculating the liquid containing the dissolved gas through the sludge, then reducing the pressure to allow bubbles to nucleate and grow. Results have been obtained for ammonia as the soluble gas and SY1-SIM-91A, a chemically representative simulated tank waste. In addition, proof-of-principle experiments were conducted with both ammonia and CO 2 as soluble gases and sludge composed of 90-micron glass beads. Results are described

  4. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  5. The Flakt-Hydro process: flue gas desulfurization by use of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Xia, W.Z. [ABB China Limited, Shanghai (China)

    1999-07-01

    ABB's seawater scrubbing process (the Flakt-Hydro process) for flue gas desulfurization has recently triggered interest among power producers because of its simple operating principle and high reliability. The process uses seawater to absorb and neutralize sulfur dioxide in flue gases. The absorbed gas is oxidized and returned to the ocean in the form it originated in the first place, namely as dissolved sulfate salts. The process uses the seawater downstream of the power plant condensers. This paper gives an introduction to the basic principle of the process and presents some of the recent power plant applications, namely at the Paiton Private Power Project; Phase 1 (2 x 670 MWe) in Indonesia and at the Shenzhen West Power Plant, Unit 2 (300 MWe) in China.

  6. Producing hydrogen from coke-oven gas: the Solmer project. [PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, G; Vidal, J

    1984-05-01

    After presenting the energy situation at the Solmer plant, where coke-oven gas is produced to excess, the authors examine the technical and economic possibilities of utilizing this gas for hydrogen extraction. They describe a project (based on the PSA process) for producing some 65 t/d of hydrogen and present the technical features of the scheme. An evaluation of the energy and financial costs of producing the hydrogen confirms the competitive status of the process.

  7. [Treatment approaches for synthetic drug addiction].

    Science.gov (United States)

    Kobayashi, Ohji

    2015-09-01

    In Japan, synthetic drugs have emerged since late 2000s, and cases of emergency visits and fatal traffic accidents due to acute intoxication have rapidly increased. The synthetic drugs gained popularity mainly because they were cheap and thought to be "legal". The Japanese government restricted not only production and distribution, but also its possession and use in April 2014. As the synthetic drug dependent patients have better social profiles compared to methamphetamine abusers, this legal sanction may have triggered the decrease in the number of synthetic drug dependent patient visits observed at Kanagawa Psychiatric Center since July 2014. Treatment of the synthetic drug dependent patients should begin with empathic inquiry into the motives and positive psychological effects of the drug use. In the maintenance phase, training patients to trust others and express their hidden negative emotions through verbal communications is essential. The recovery is a process of understanding the relationship between psychological isolation and drug abuse, and gaining trust in others to cope with negative emotions that the patients inevitably would face in their subsequent lives.

  8. Use of polymers in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Stanislav, J.F.

    Water-soluble polymers are used extensively in various stages of gas and oil production operations, typical examples being enhanced oil recovery, water production control, and well drilling. A variety of polymetric materials, both naturally occurring and synthetic ones, are currently used; guar and cellulose derivatives, xanthan gum, polysaccharides, polyacrylamides and others. In this work, only the application of polymeric materials to enhanced recovery processes is discussed.

  9. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    International Nuclear Information System (INIS)

    Sofronia, Ancuta M.; Baies, Radu; Anghel, Elena M.; Marinescu, Cornelia A.; Tanasescu, Speranta

    2014-01-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m 2 /g by calcination. • Raman spectra indicate the presence of B-type CO 3 group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample

  10. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Sofronia, Ancuta M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Baies, Radu [National Research Institute for Electrochemistry and Condensed Matter, 300224 Timisoara (Romania); Anghel, Elena M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Marinescu, Cornelia A., E-mail: alcorina@chimfiz.icf.ro [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Tanasescu, Speranta [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania)

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m{sup 2}/g by calcination. • Raman spectra indicate the presence of B-type CO{sub 3} group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample.

  11. Government Support for Synthetic Pipeline Gas Uncertain and Needs Attention.

    Science.gov (United States)

    1982-05-14

    coal gas. Tear Sheetii RECOMMENDATIONS GAO recommends that the Secretary of Energy - --establish a plan to guide future support of high-Btu coal...recognizes that there are basic dif- ferences expected from large and small scale research projects, GAO believes that the report recognizes these...transportation, including the pipeline system. In its price-setting, or ratemaking function, it represents the interests of gas customers, sometimes

  12. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  13. Detection of Synthetic Testosterone Use by Novel Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS)

    Science.gov (United States)

    Tobias, Herbert J.; Zhang, Ying; Auchus, Richard J.; Brenna, J. Thomas

    2011-01-01

    We report the first demonstration of Comprehensive Two-dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry (GC×GCC-IRMS) for the analysis of urinary steroids to detect illicit synthetic testosterone use, of interest in sport doping. GC coupled to IRMS (GCC-IRMS) is currently used to measure the carbon isotope ratios (CIR, δ13C) of urinary steroids in anti-doping efforts; however, extensive cleanup of urine extracts is required prior to analysis to enable baseline separation of target steroids. With its greater separation capabilities, GC×GC has the potential to reduce sample preparation requirements and enable CIR analysis of minimally processed urine extracts. Challenges addressed include on-line reactors with minimized dimensions to retain narrow peaks shapes, baseline separation of peaks in some cases, and reconstruction of isotopic information from sliced steroid chromatographic peaks. Difficulties remaining include long-term robustness of on-line reactors and urine matrix effects that preclude baseline separation and isotopic analysis of low concentration and trace components. In this work, steroids were extracted, acetylated, and analyzed using a refined, home-built GC×GCC-IRMS system. 11-hydroxy-androsterone (11OHA) and 11-ketoetiocolanolone (11KE) were chosen as endogenous reference compounds (ERC) because of their satisfactory signal intensity, and their CIR was compared to target compounds (TC) androsterone (A) and etiocholanolone (E). Separately, a GC×GC-qMS system was used to measure testosterone (T)/EpiT concentration ratios. Urinary extracts of urine pooled from professional athletes, and urine from one individual that received testosterone gel (T-gel) and one individual that received testosterone injections (T-shot) were analyzed. The average precisions of δ13C and Δδ13C measurements were SD(δ13C) approximately ± 1‰ (n=11). The T-shot sample resulted in a positive for T use with a T/EpiT ratio of > 9 and CIR

  14. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Nasir, H.; Ahsan, M. [National Univ. of Science and Technology, Islamabad (Pakistan). Dept. of Chemical Engineering

    2014-06-15

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  15. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    International Nuclear Information System (INIS)

    Hussain, A.; Nasir, H.; Ahsan, M.

    2014-01-01

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  16. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  17. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Dyer, R.H.; Fowler, A.H.; Vanstrum, P.R.

    1977-01-01

    The invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas inventory of an electrically powered gaseous diffusion cascade in order to accommodate scheduled changes in the electrical power available for cascade operation. In the preferred form of the invention, the cascade is readied for a decrease in electrical input by simultaneously withdrawing substreams of the cascade B stream into respective process-gas-freezing and storage zones while decreasing the datum-pressure inputs to the positioning systems for the cascade control valves in proportion to the weight of process gas so removed. Consequently, the control valve positions are substantially unchanged by the reduction in invention, and there is minimal disturbance of the cascade isotopic gradient. The cascade is readied for restoration of the power cut by simultaneously evaporating the solids in the freezing zones to regenerate the process gas substreams and introducing them to the cascade A stream while increasing the aforementioned datum pressure inputs in proportion to the weight of process gas so returned. In the preferred form of the system for accomplishing these operations, heat exchangers are provided for freezing, storing, and evaporating the various substreams. Preferably, the heat exchangers are connected to use existing cascade auxiliary systems as a heat sink. A common control is employed to adjust and coordinate the necessary process gas transfers and datum pressure adjustments

  18. Evaluation and analysis method for natural gas hydrate storage and transportation processes

    International Nuclear Information System (INIS)

    Hao Wenfeng; Wang Jinqu; Fan Shuanshi; Hao Wenbin

    2008-01-01

    An evaluation and analysis method is presented to investigate an approach to scale-up a hydration reactor and to solve some economic problems by looking at the natural gas hydrate storage and transportation process as a whole. Experiments with the methane hydration process are used to evaluate the whole natural gas hydrate storage and transportation process. The specific contents and conclusions are as follows: first, batch stirring effects and load coefficients are studied in a semi-continuous stirred-tank reactor. Results indicate that batch stirring and appropriate load coefficients are effective in improving hydrate storage capacity. In the experiments, appropriate values for stirring velocity, stirring time and load coefficient were found to be 320 rpm, 30 min and 0.289, respectively. Second, throughput and energy consumption of the reactor for producing methane hydrates are calculated by mass and energy balance. Results show that throughput of this is 1.06 kg/d, with a product containing 12.4% methane gas. Energy consumption is 0.19 kJ, while methane hydrates containing 1 kJ heat are produced. Third, an energy consumption evaluation parameter is introduced to provide a single energy consumption evaluation rule for different hydration reactors. Parameter analyses indicate that process simplicity or process integration can decrease energy consumption. If experimental gas comes from a small-scale natural gas field and the energy consumption is 0.02 kJ when methane hydrates containing 1 kJ heat are produced, then the decrease is 87.9%. Moreover, the energy consumption evaluation parameter used as an economic criterion is converted into a process evaluation parameter. Analyses indicate that the process evaluation parameter is relevant to technology level and resource consumption for a system, which can make it applicable to economic analysis and venture forecasting for optimal capital utilization

  19. Gasoline and other transportation fuels from natural gas in Canada

    International Nuclear Information System (INIS)

    Symons, E.A.; Miller, A.I.

    1981-03-01

    Ways in which natural gas might displace cude oil as a source of fuels for the Canadian transportation market are reviewed. Three approaches are possible: (1) direct use as compressed natural gas; (2)conversion of natural gas to methanol; and (3) further conversion of methanol to synthetic gasoline. (author)

  20. The world economy: Its impact on the gas processing industry

    International Nuclear Information System (INIS)

    Teleki, A.

    1994-01-01

    Gas processors are in the business of extracting C 2-7 hydrocarbons from natural gas streams and converting them to commercial grade gas liquids, valued at or slightly below oil product prices. If the margin of oil prices over gas prices is higher, the gas processing business is more profitable. An approximate index of profitability is the ratio of the price of a bbl of oil divided by the price of a million Btu of gas (the oil-gas ratio). Since the mid-1980s, by which time both the oil and gas markets had been largely deregulated, the oil-gas ratio fluctuated in the 10-12 range then peaked to over 15 in 1990-91. The recent fall in oil prices has driven the ratio to historically low levels of 6-7, which leads to gas processors curtailing ethane recovery. Various aspects of the world economy and the growth of oil consumption are discussed to forecast their effect on gas processors. It is expected that oil demand should grow at least 4% annually over 1994-98, due to factors including world economic growth and low energy prices. Oil prices are forecast to bottom out in late 1995 and rise thereafter to the mid-20 dollar range by the end of the 1990s. A close supply-demand balance could send short-term prices much higher. Some widening of the gas-oil ratio should occur, providing room for domestic natural gas prices to rise, but with a lag. 8 figs

  1. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  3. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remote locations. The present work investigates the possibility of integrating liquefaction processes on such facilities, considering two mixed-refrigerant and two expansion-based processes suitable for offshore applications. Two FPSO configurations are considered...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  4. Recent natural gas mergers/alliances and their impact on processing

    International Nuclear Information System (INIS)

    Kovacs, K.; Schwenker, C.

    1997-01-01

    Recent mergers and acquisitions have dramatically changed the competitive landscape for companies in the oil, gas and energy services businesses. One measure of this change is the number of publicly traded oil and gas producers in the US. Prior to 1991 the Oil and Gas Journal listed 400 publicly traded producers. This list shrank in 1991 to 300, and as of 1996, the list is now down to 200 in their annual survey. The purpose of this paper is to: briefly review some of the underlying factors or events that have shaped or driven the rush to consolidate; discuss how these changes have impacted gas processing; finally, make some observations on the types of consolidations and opportunities that could occur in the future

  5. Method of processing radioactive gas

    International Nuclear Information System (INIS)

    Saito, Masayuki.

    1978-01-01

    Purpose: To reduce the quantity of radioactive gas discharged at the time of starting a nuclear power plant. Method: After the stoppage of a nuclear power plant air containing a radioactive gas is extracted from a main condenser by operating an air extractor. The air is sent into a gaseous waste disposal device, and then introduced into the activated carbon adsorptive tower of a rare gas holdup device where xenon and krypton are trapped. Thereafter, the air passes through pipelines and returned to the main condenser. In this manner, the radioactive gas contained in air within the main condenser is removed during the stoppage of the operation of the nuclear power plant. After the plant has been started, when it enters the normal operation, a flow control valve is closed and another valve is opened, and a purified gas exhausted from the rare gas holdup device is discharged into the atmosphere through an exhaust cylinder. (Aizawa, K.)

  6. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode.

    Science.gov (United States)

    Shen, Shijian; Nie, Xin; Zhang, Xinggan

    2018-02-03

    Gaofen-3 (GF-3) is China' first C-band multi-polarization synthetic aperture radar (SAR) satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP) and PFA (Polar Format Algorithm) imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  7. Research on Synthetic Aperture Radar Processing for the Spaceborne Sliding Spotlight Mode

    Directory of Open Access Journals (Sweden)

    Shijian Shen

    2018-02-01

    Full Text Available Gaofen-3 (GF-3 is China’ first C-band multi-polarization synthetic aperture radar (SAR satellite, which also provides the sliding spotlight mode for the first time. Sliding-spotlight mode is a novel mode to realize imaging with not only high resolution, but also wide swath. Several key technologies for sliding spotlight mode in spaceborne SAR with high resolution are investigated in this paper, mainly including the imaging parameters, the methods of velocity estimation and ambiguity elimination, and the imaging algorithms. Based on the chosen Convolution BackProjection (CBP and PFA (Polar Format Algorithm imaging algorithms, a fast implementation method of CBP and a modified PFA method suitable for sliding spotlight mode are proposed, and the processing flows are derived in detail. Finally, the algorithms are validated by simulations and measured data.

  8. The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides)

    International Nuclear Information System (INIS)

    Eichler, B.

    1996-01-01

    Thermochemical relationships are derived describing the gas adsorption chromatographic transport of carrier-free radionuclides. Especially, complex adsorption processes such as dissociative, associative and substitutive adsorption are dealt with. The comparison of experimental with calculated data allows the determination of the type of adsorption reaction, which is the basis of the respective gas chromatographic process. The behaviour of carrier-free radionuclides of elements Pu, Ce, Ru, Co and Cr in thermochromatographic experiments with chlorinating carrier gases can be described as dissociative adsorption of chlorides in higher oxidation states. The gas adsorption chromatographic transport of Zr with oxygen and chlorine containing carrier gas is shown to be a substitutive adsorption process. The consequences of superimposed chemical reactions on the interpretation of results and the conception of gas adsorption chromatographic experiments with carrier-free radionuclides in isothermal columns and in temperature gradient tubes is discussed. (orig.)

  9. Hysec Process: production of high-purity hydrogen from coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S

    1984-01-01

    An account is given of the development of the Hysec Process by the Kansai Netsukagaku and Mitsubishi Kakoki companies. The process is outlined and its special features noted. The initial development aim was to obtain high-purity hydrogen from coke oven gas by means of PSA. To achieve this, ways had to be found for removing the impurities in the coke oven gas and the trace amounts of oxygen which are found in the product hydrogen. The resulting hydrogen is 99.9999% pure. 3 references.

  10. Experimental substantiation of combined methods for designing processes for the commercial preparation of gas at gas condensate fields

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, G R; Karlinskii, E D; Posypkina, T V

    1977-04-01

    An analysis is made of the possibility of using two analytical methods for studying vapor--liquid equilibrium of hydrocarbon mixtures that are used in designing the separation of natural gas and the stabilization of condensate--the Chao and Sider method, which uses computations by equilibrium constants. A combined computational method is proposed for describing a unified process of natural gas separation and condensate stabilization. The method of preparing the original data for the computation of the separation and stabilization processes can be significantly simplified. 10 references, 1 table.

  11. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  12. Process for the gas extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, D B

    1976-05-20

    The object of the invention is a process for the hydroextraction of coal is treated with water and carbon monoxide at a temperature in the region of 300 - 380/sup 0/C. After treatment is completed, the gases are separated from the treated gas; the treated coal is then extracted with an extraction medium during the gas phase at a temperature of at least 400/sup 0/C, the remainder is separated from the gas phase and the coal extract is obtained from the extraction medium. Hydrogenation is preferably carried out at a temperature in the region of 320 - 370/sup 0/C and at a pressure of 200 - 400 at. The time required for treatment with carbon monoxide and water is 1/4 - 2 hours, and in special cases 3/4 - 1 1/2 hours. The coal material itself is nutty slack, of which more than 95% of the coal particles pass through a 1.5 mm mesh sieve. After the hydrogenation the extraction is carried out at a temperature in the region of 400 - 450/sup 0/C. The patent claims relate to the types of extraction media used.

  13. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  14. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    Science.gov (United States)

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  15. Fusion as a source of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Steinberg, M.

    1981-01-01

    In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000 0 C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions

  16. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  17. Landfill gas (LFG) processing via adsorption and alkanolamine absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Ankur; Park, Jin-Won; Song, Ho-Jun; Park, Jong-Jin [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea); Maken, Sanjeev [Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal-131 039, Haryana (India)

    2010-06-15

    Landfill gas (LFG) was upgraded to pure methane using the adsorption and absorption processes. Different toxic compounds like aromatics and chlorinated compounds were removed using granular activated carbon. The activated carbon adsorbed toxic trace components in the following order: carbon tetrachloride > toluene > chloroform > xylene > ethylbenzene > benzene > trichloroethylene {approx} tetrachloroethylene. After removing all trace components, the gas was fed to absorption apparatus for the removal of carbon dioxide (CO{sub 2}). Two alkanolamines, monoethanol amine (MEA) and diethanol amine (DEA) were used for the removal of CO{sub 2} from LFG. The maximum CO{sub 2} loading is obtained for 30 wt.% MEA which is around 2.9 mol L{sup -} {sup 1} of absorbent solution whereas for same concentration of DEA it is around 1.66 mol L {sup -} {sup 1} of solution. 30 wt% MEA displayed a higher absorption rate of around 6.64 x 10{sup -} {sup 5} mol L{sup -} {sup 1} min{sup -} {sup 1}. DEA displayed a higher desorption rate and a better cyclic capacity as compared to MEA. Methane obtained from this process can be further used in the natural gas network for city. (author)

  18. Metrological aspects to quality control for natural gas analyses

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Claudia Cipriano; Borges, Cleber Nogueira; Cunha, Valnei S. [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Augusto, Marco Ignazio [Companhia Estadual de Gas do Rio de Janeiro (CEG), RJ (Brazil)

    2008-07-01

    The Product's Quality and Services are fundamental topics in the globalized commercial relationship inclusive concern the measurements in natural gas. Considerable investments were necessary for industry especially about the quality control in the commercialized gas with an inclusion of the natural gas in Brazilian energetic resources The Brazilian Regulatory Agency, ANP - Agencia Nacional de Petroleo, Gas Natural e Biocombustiveis - created the Resolution ANP no.16. This Resolution defines the natural gas specification, either national or international source, for commercialization in Brazil and list the tolerance concentration for some components. Between of this components are the inert compounds like the CO{sub 2} and N{sub 2}. The presence of this compounds reduce the calorific power, apart from increase the resistance concern the detonation in the case of vehicular application, and occasion the reduction in the methane concentration in the gas. Controls charts can be useful to verify if the process are or not under Statistical Control. The process can be considerate under statistical control if the measurements have it values between in lower and upper limits stated previously The controls charts can be approach several characteristics in each subgroup: means, standard deviations, amplitude or proportion of defects. The charts are draws for a specific characteristic and to detect some deviate in the process under specific environment conditions. The CEG - Companhia de Distribuicao de Gas do Rio de Janeiro and the DQUIM - Chemical Metrology Division has an agreement for technical cooperation in research and development of gas natural composition Concern the importance of the natural gas in the Nation development, as well as the question approaching the custody transference, the objective of this work is demonstrate the control quality of the natural gas composition between the CEG laboratory and the DQUIM laboratory aiming the quality increase of the

  19. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2005-12-22

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

  20. Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaeid Lokhandwala

    2005-12-15

    The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is now working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

  1. The process of adaptation and evolution in irradiated synthetic populations of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Dislers, V.J.; Rasals, I.D.

    1975-01-01

    Irradiation of synthetic populations of A. thaliana caused an intense process of directed natural selection. As a result, six to eight generations after irradiation, the arithmetic mean of a number of parameters (plant height, stem length, number of internodes) exceeded the arithmetic average for plants in a non-irradiated population. The process of directed selection proceeded more intensely after the plants were irradiated repeatedly than after a single irradiation. The intensity of directed selection when the plants were irradiated with a 10 4 rad dose of fast neutrons was definitely greater than for a dose of 10 3 rad. An intermediate intensity of selection was observed when the plants were irradiated with a 3x10 4 rad dose of gamma radiation. When the plants were subjected to single and repeated 10 4 rad doses of fast neutron radiation, the arithmetic mean of certain features of the best component of the initial population (Enkheim) was exceeded in M 8 and R 6 . (author)

  2. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  3. Effective energy management by combining gas turbine cycles and forward osmosis desalination process

    International Nuclear Information System (INIS)

    Park, Min Young; Shin, Serin; Kim, Eung Soo

    2015-01-01

    Highlights: • Innovative gas turbine system and FO integrated system was proposed. • The feasibility of the integrated system was analyzed thermodynamically. • GOR of the FO–gas turbine system is 17% higher than those of MED and MSF. • Waste heat utilization of the suggested system is 85.7%. • Water production capacity of the suggested system is 3.5 times higher than the MSF–gas turbine system. - Abstract: In the recent years, attempts to improve the thermal efficiency of the gas turbine cycles have been made. In order to enhance the energy management of the gas turbine cycle, a new integration concept has been proposed; integration of gas turbine cycle and forward osmosis desalination process. The combination of the gas turbine cycle and the forward osmosis (FO) desalination process basically implies the coupling of the waste heat from the gas turbine cycle to the draw solute recovery system in the FO process which is the most energy consuming part of the whole FO process. By doing this, a strong system that is capable of producing water and electricity with very little waste heat can be achieved. The feasibility of this newly proposed system was analyzed using UNISIM program and the OLI property package. For the analysis, the thermolytic draw solutes which has been suggested by other research groups have been selected and studied. Sensitivity analysis was conducted on the integration system in order to understand and identify the key parameters of the integrated system. And the integrated system was further evaluated by comparing the gain output ratio (GOR) values with the conventional desalination technologies such as multi stage flash (MSF) and multi effect distillation (MED). The suggested integrated system was calculated to have a GOR of 14.8, while the MSF and MED when integrated to the gas turbine cycle showed GOR value of 12. It should also be noted that the energy utilization of the suggested integrated system is significantly higher by 27

  4. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...

  5. Process for catalytic flue gas denoxing

    International Nuclear Information System (INIS)

    Woldhuis, A.; Goudriaan, F.; Groeneveld, M.; Samson, R.

    1991-01-01

    With the increasing concern for the environment, stringency of legislation and industry's awareness of its own environmental responsibility, the demand for the reduction of emission levels of nitrogen oxides is becoming increasingly urgent. This paper reports that Shell has developed a low temperature catalytic deNOx system for deep removal of nitrogen oxides, which includes a low-pressure-drop reactor. This process is able to achieve over 90% removal of nitrogen oxides and therefore can be expected to meet legislation requirements for the coming years. The development of a low-temperature catalyst makes it possible to operate at temperatures as low as 120 degrees C, compared to 300-400 degrees C for the conventional honeycomb and plate-type catalysts. This allows an add-on construction, which is most often a more economical solution than the retrofits in the hot section required with conventional deNOx catalysts. The Lateral Flow Reactor (LFR), which is used for dust-free flue gas applications, and the Parallel Passage Reactor (PPR) for dust-containing flue gas applications, have been developed to work with pressure drops below 10 mbar

  6. Downstream gas processing opportunities arising from the 1990's quest for a quality environment

    International Nuclear Information System (INIS)

    Geren, P.M.

    1992-01-01

    Over the last several years the former wart on your favorite daughter's nose (gas liquids processing) has become a most cherished body part, to paraphrase 1991 remarks of a U.S. gas processing leader. The dramatic recent spreads between liquids prices and the cost of feedstock natural gas have provided spectacular performance for processors. However, market prices for liquids will probably track petroleum. One day soon natural gas's inherent value will rise to parity with petroleum on a heating value basis. As petroleum demands will probably be flat in the foreseeable term, and natural gas prices will rise, something must be done to preserve gas processors' margins. Radical change in the formulation of U.S. gasoline presents many opportunities for gas processor to diversify into synthesis of upgraded derivatives of natural gas and liquids, which derivatives have high value-added characteristics. Issues relating to the selection of derivatives, the required technology, and capital project considerations are discussed in this paper

  7. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  8. Experimental study on the adsorptive-distillation for dehydration of ethanol-water mixture using natural and synthetic zeolites

    Science.gov (United States)

    Megawati, Wicaksono, D.; Abdullah, M. S.

    2017-03-01

    This research studied adsorptive-distillation (AD) for dehydration of ethanol-water mixture using natural and synthetic zeolites as adsorbent for ethanol purification. Especially, the effect of purification time is recorded and studied to evaluate performance of designed AD equipment. This AD was performed in a batch condition using boiling flask covered with heating mantle and it was maintained at 78°C temperature and 1 atm pressure. The initial ethanol volume was 300 mL with 93.8% v/v concentration. The synthetic zeolite type used was zeolite 3A. The flowed vapour was condensed using water as a cooling medium. Every 5 minutes of time duration the samples were collected until the vapour could not be condensed in that condition and then be analyzed its concentration using Gas-Chromatography. Experiment shows that the designed AD equipment could increase ethanol concentration at first 5 minutes with highest ethanol concentration achieved using synthetic zeolite (97.47% v/v). However, ethanol concentration from AD process using natural zeolite only reached 96.5% v/v. Thus, synthetic zeolite as adsorbent could pass azeotropic point, but natural zeolite fail. The ratio of adsorbed water per adsorbent for natural and synthetic zeolites are about 0.023 and 0.056 gwater/gads, respectively, at 50 minutes of time. Finally, synthetic zeolite (at 55 minutes the value of C/C0 is about 0.85 and the average outlet water concentration is 4.70 mole/L) as adsorbent for AD of ethanol water is better than natural zeolite (at 55 minutes the value of C/C0 is about 0.63 and the average outlet water concentration is 6.43 mole/L).

  9. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  10. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    Science.gov (United States)

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  11. Improving the technology of purification of gas emissions petrochemical industries

    OpenAIRE

    USMANOVA R.R.; ZAIKOV G.E.

    2014-01-01

    The technology of cleaning of gas emissions flares in the production of synthetic rubber. Developed dynamic scrubber for scrubbing gas emissions. Complex studies served as the basis for the design of an air purification system of industrial premises. Purification of gas emissions before combustion in flares has significantly reduced air pollution by toxic substances.

  12. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Ceramic membranes for gas processing in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. [University of Queensland, Brisbane, Qld. (Australia)

    2010-07-01

    Pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H{sub 2}, enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H{sub 2} from the syngas stream at high temperatures. They also allow CO{sub 2} to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO{sub 2} storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.

  14. Radiological considerations of the reactor cover gas processing system at the FFTF

    International Nuclear Information System (INIS)

    Prevo, P.R.

    1987-01-01

    Radiological and environmental protection experience associated with the reactor cover gas processing system at the Fast Flux Test Facility (FFTF) has been excellent. Personnel radiation exposures received from operating and maintaining the reactor cover gas processing system have been very low, the system has remained free of radioactive particulate contamination through the first seven operating cycles (cesium contamination was detected at the end of Cycle 8A), and releases of radioactivity to the environment have been very low, well below environmental standards. This report discusses these three aspects of fast reactor cover gas purification over the first eight operating cycles of the FFTF (a duration of a little more than four years, from April 1982 through July 1986). (author)

  15. Mixing console design for telematic applications in live performance and remote recording

    Science.gov (United States)

    Samson, David J.

    The development of a telematic mixing console addresses audio engineers' need for a fully integrated system architecture that improves efficiency and control for applications such as distributed performance and remote recording. Current systems used in state of the art telematic performance rely on software-based interconnections with complex routing schemes that offer minimal flexibility or control over key parameters needed to achieve a professional workflow. The lack of hardware-based control in the current model limits the full potential of both the engineer and the system. The new architecture provides a full-featured platform that, alongside customary features, integrates (1) surround panning capability for motorized, binaural manikin heads, as well as all sources in the included auralization module, (2) self-labelling channel strips, responsive to change at all remote sites, (3) onboard roundtrip latency monitoring, (4) synchronized remote audio recording and monitoring, and (5) flexible routing. These features combined with robust parameter automation and precise analog control will raise the standard for telematic systems as well as advance the development of networked audio systems for both research and professional audio markets.

  16. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  17. Controlling the surface termination of NdGaO3 (110): the role of the gas atmosphere.

    Science.gov (United States)

    Cavallaro, Andrea; Harrington, George F; Skinner, Stephen J; Kilner, John A

    2014-07-07

    In this work the effect of gas atmosphere on the surface termination reconstruction of single crystal NdGaO3 (110) (NGO) during thermal annealing was analyzed. Using Low Energy Ion Scattering (LEIS) it has been possible to study the chemical composition of the first atomic layer of treated NGO single crystal samples. NGO has been analyzed both as-received and after a specific thermal treatment at 1000 °C under different gas fluxes (argon, nitrogen, static air, synthetic air, nitrogen plus 5% hydrogen and wet synthetic air respectively). Thermal annealing of perovskite single crystals, as already reported in the literature, is used to obtain a fully A-cation surface termination. Nevertheless the effect of the gas-atmosphere on this process has not been previously reported. By the use of sequential low energy Ar(+) sputtering combined with the primary ion LEIS analysis, the reconstruction of the outermost atomic layers has allowed the clarification of the mechanism of NGO neodymium surface enrichment. It is proposed that the gallium at the surface is submitted to a reduction/evaporation mechanism caused by low oxygen partial pressure and/or high water pressure in the vector gas. Below the first surface atomic layers of an as-received NGO single-crystal a gallium-rich phase has also been observed.

  18. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  19. Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2003-01-01

    Full Text Available This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.

  20. Measuring gas temperature during spin-exchange optical pumping process

    Science.gov (United States)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  1. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  2. The role of the MHTGR in coal gasification processes

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1988-01-01

    The nation will likely become more and more dependent on natural gas and while this will stimulate new exploration and increased production, the time will surely come when global depletion of this resource will require the use of synthetic natural gas (SNG) to support the established nationwide infrastructure. The U.S. is estimated to have coal reserves nearing 500 billion tons that are mineable on an economic base. The Modular High Temperature Gas-Cooled Reactor (MHTGR) steam cycle plant can play an important role in the process of producing SNG from coal to supplement natural gas supplies. Coal-to-gas plants need heat (predominantly steam) and electricity for operation. This energy can be supplied by combustion of coal (autothermal process), but this results in a loss of more than 40% of the coal energy input. From the resource conservation standpoint, using an MHTGR heat source is attractive since much of the valuable fossil raw material can be substituted by clean nuclear energy. Also, air pollution is lowered drastically. This paper highlights how a near-term steam cycle MHTGR plant, based on proven technology and operating in a cogeneration mode, could be coupled with existing coal gasification processes to meet the projected increase in gas consumption in an environmentally acceptable manner

  3. Hydrogen enriched gas production in a multi-stage downdraft gasification process

    International Nuclear Information System (INIS)

    Dutta, A.; Jarungthammachote, S.

    2009-01-01

    To achieve hydrogen enriched and low-tar producer gas, multi-stage air-blown and air-steam gasification were studied in this research. Results showed that the tar content from multi-stage air-blown and air-steam gasification was lower compared to the average value of that from downdraft gasification. It was also seen that an air-steam gasification process could potentially increase the hydrogen concentration in the producer gas in the expense of carbon monoxide; however, the summation of hydrogen and carbon monoxide in the producer gas was increased. (author)

  4. Analysis of Off Gas From Disintegration Process of Graphite Matrix by Electrochemical Method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    Using electrochemical method with salt solutions as electrolyte, some gaseous substances (off gas) would be generated during the disintegration of graphite from high-temperature gas-cooled reactor fuel elements. The off gas is determined to be composed of H 2 , O 2 , N 2 , CO 2 and NO x by gas chromatography. Only about 1.5% graphite matrix is oxidized to CO 2 . Compared to the direct burning-graphite method, less off gas,especially CO 2 , is generated in the disintegration process of graphite by electrochemical method and the treatment of off gas becomes much easier. (authors)

  5. Investigation of Gas Holdup in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  6. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    Science.gov (United States)

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.

  7. Method for treating a nuclear process off-gas stream

    International Nuclear Information System (INIS)

    Pence, D.T.; Chou, C.C.

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO /SUB x/ , hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140 0 to -160 0 C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140 0 to -160 0 C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton

  8. Method for treating a nuclear process off-gas stream

    Science.gov (United States)

    Pence, Dallas T.; Chou, Chun-Chao

    1984-01-01

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  9. Z662-96: oil and gas pipeline systems; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ko, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-12-31

    This Standard is part of the pipeline systems and materials segment of the Canadian Standards Association (CSA)`s Transportation program. It covers the design, construction, operation and maintenance of oil and gas industry pipeline systems that carry (1) liquid hydrocarbons, including crude oil, multiphase fluids, condensate, liquid petroleum products, natural gas liquids, and liquefied petroleum gas, (2) oilfield water, (3) oilfield steam, (4) carbon dioxide used in oilfield enhanced recovery schemes, or (5) natural gas, manufactured gas, or synthetic gas. tabs. figs.

  10. Methods for Organization of Working Process for Gas-Diesel Engine

    OpenAIRE

    Вершина, Г. А.; Быстренков, О. С.

    2017-01-01

    Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the me...

  11. Process for preparing a normal lighting and heating gas etc

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J

    1910-12-11

    A process for preparing a normal lighting and heating gas from Australian bituminous shale by distillation and decomposition in the presence of water vapor is characterized by the fact that the gasification is suitably undertaken with gradual filling of a retort and with simultaneous introduction of water vapor at a temperature not exceeding 1,000/sup 0/ C. The resulting amount of gas is heated in the same or a second heated retort with freshly supplied vapor.

  12. The current investment climate for midstream gas processing assets

    International Nuclear Information System (INIS)

    Brouwer, R.J.

    1999-01-01

    Topics discussed in this paper dealing with the current investment climate for midstream gas processing assets include: (1) strategic reasons to retain or divest midstream assets, (2) available options for midstream asset divestment, (3) midstream market fundamentals, and (4) financial performance of midstream companies. There are some 700 gas plants in Alberta at present, of which about 20 per cent are owned by midstream companies . About one half of the plants are smaller than 12.5 MMCFD which represent inefficient use of resources; a clear indication that there are substantial opportunities for consolidation. 1 tab., 4 figs

  13. Study of sorption processes of strontium on the synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Rajec, P.

    2011-01-01

    The sorption of strontium on synthetic hydroxyapatite was investigated using batch method and radiotracer technique. The hydroxyapatite samples were prepared by a wet precipitation process followed by calcination of calcium phosphate that precipitated from aqueous solution. Also, commercial hydroxyapatites were used. The sorption of strontium on hydroxyapatite depended on the method of preparation and it was pH independent ranging from 4 to 9 as a result of buffering properties of hydroxyapatite. The distribution coefficient K d was significantly decreased with increasing concentration of Sr 2+ and Ca 2+ ions in solution with concentration above 1 x 10 -3 mol dm -3 . The percentage strontium sorption for commercial and by wet method prepared hydroxyapatite was in the range of 83-96%, while calcined hydroxyapatite was ranging from 10 to 30%. The experimental data for sorption of strontium have been interpreted in the term of Langmuir isotherm. The sorption of Sr 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite. Although calcined hydroxyapatite is successfully used as biomaterial for hard tissues repair, it is not used for the treatment of liquid wastes. (author)

  14. Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction?

    International Nuclear Information System (INIS)

    Ding, Yanjun; Han, Weijian; Chai, Qinhu; Yang, Shuhong; Shen, Wei

    2013-01-01

    Considering natural gas (NG) to be the most promising low-carbon option for the energy industry, large state owned companies in China have established numerous coal-based synthetic natural gas (SNG) projects. The objective of this paper is to use a system approach to evaluate coal-derived SNG in terms of life-cycle energy efficiency and CO 2 emissions. This project examined main applications of the SNG and developed a model that can be used for evaluating energy efficiency and CO 2 emissions of various fuel pathway systems. The model development started with the GREET model, and added the SNG module and an end-use equipment module. The database was constructed with Chinese data. The analyses show when the SNG are used for cooking, power generation, steam production for heating and industry, life-cycle energies are 20–108% higher than all competitive pathways, with a similar rate of increase in life-cycle CO 2 emissions. When a compressed natural gas (CNG) car uses the SNG, life-cycle CO 2 emission will increase by 150–190% compared to the baseline gasoline car and by 140–210% compared to an electric car powered by electricity from coal-fired power plants. The life-cycle CO 2 emission of SNG-powered city bus will be 220–270% higher than that of traditional diesel city bus. The gap between SNG-powered buses and new hybrid diesel buses will be even larger—life-cycle CO 2 emission of the former being around 4 times of that of the latter. It is concluded that the SNG will not accomplish the tasks of both energy conservation and CO 2 reduction. - Highlights: ► We evaluated life-cycle energy efficiency and CO 2 emissions of coal-derived SNG. ► We used GREET model and added a coal-based SNG and an end-use modules. ► The database was constructed with Chinese domestic data. ► Life-cycle energies and CO 2 emissions of coal-based SNG are 20–100% higher. ► Coal-based SNG is not a solution to both energy conservation and CO 2 reduction

  15. Fiscal 2000 achievement report on the investigation of alternative gas system and process technologies for dry etching in electronic device manufacturing; 2000 nendo denshi device seizo process de shiyosuru etching gas no daitai gas system oyobi daitai process no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are made to develop technologies for saving PFC (perfluoro-compound) and conserving energy in semiconductor manufacturing processes, in particular, in the layer insulation film (SiO{sub 2}) dry etching process. Activities are conducted in the five fields of (1) research and development of technologies for reducing the amount of etching gas consumption, (2) development of a dry etching technology using alternative gas, (3) development of a dry etching technology using a low dielectric constant layer insulation film, (4) research and development of novel wiring structures and a method for fabricating the same, and (5) re-entrusted studies. Conducted in field (5) are studies of novel alternative gas - solid sources to substitute PFC, theory design technologies for low dielectric constant organic macromolecules, low dielectric constant material film fabrication by CVD (chemical vapor deposition), and technology for optical wiring inside chips. In field (2), studies are conducted of low GWP (global warming potential) alternative PFC gas aided etching and decomposition prevention technologies for reduction in PFC emissions, and it is made clear that C{sub 4}F{sub 6} performs excellently as an etchant. (NEDO)

  16. Process for removal of hydrogen halides or halogens from incinerator gas

    Science.gov (United States)

    Huang, H.S.; Sather, N.F.

    1987-08-21

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  17. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  18. Evaluation of process costs for small-scale nitrogen removal from natural gas. Topical report, January 1989-December 1989

    International Nuclear Information System (INIS)

    Echterhoff, L.W.; Pathak, V.K.

    1991-08-01

    The report establishes the cost of producing pipeline quality gas on a small scale from high nitrogen subquality natural gas. Three processing technologies are evaluated: cryogenic, Nitrotec Engineering Inc.'s pressure swing adsorption (PSA), and lean oil absorption. Comparison of the established costs shows that the cryogenic process exhibits the lowest total plant investment for nitrogen feed contents up to about 22%, above which the PSA process exhibits the lowest investment cost. The lean oil process exhibits the highest total plant investment at the 25% nitrogen feed studied. Opposite to the total plant investment for the cryogenic process, the total plant investment for the PSA process decreases with increasing nitrogen content primarily due to increasing product gas compression requirements. The cryogenic process exhibits the lowest gas processing costs for the nitrogen content range under study. However, the difference between the gas processing costs for the PSA and cryogenic processes narrows as the nitrogen content approaches 15-25%. The lean oil gas processing cost is very high compared to both the cryogenic and PSA processes. The report verifies that nitrogen removal from natural gas is expensive, especially for small-scale applications, and several avenues are identified for improving the cryogenic and PSA technologies

  19. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  20. From bricolage to BioBricks™: Synthetic biology and rational design.

    Science.gov (United States)

    Lewens, Tim

    2013-12-01

    Synthetic biology is often described as a project that applies rational design methods to the organic world. Although humans have influenced organic lineages in many ways, it is nonetheless reasonable to place synthetic biology towards one end of a continuum between purely 'blind' processes of organic modification at one extreme, and wholly rational, design-led processes at the other. An example from evolutionary electronics illustrates some of the constraints imposed by the rational design methodology itself. These constraints reinforce the limitations of the synthetic biology ideal, limitations that are often freely acknowledged by synthetic biology's own practitioners. The synthetic biology methodology reflects a series of constraints imposed on finite human designers who wish, as far as is practicable, to communicate with each other and to intervene in nature in reasonably targeted and well-understood ways. This is better understood as indicative of an underlying awareness of human limitations, rather than as expressive of an objectionable impulse to mastery over nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  2. Carbohydrate Nanotechnology: Hierarchical Assemblies and Information Processing with Oligosaccharide-Synthetic Lectin Host-Guest Systems

    Science.gov (United States)

    2013-08-05

    Carbohydrates were explored as targets for synthetic receptors, in nanopatterning, and for directing the movement of nanoswimmers. A synthetic...dimensional movement of rods with translational and rotational diffusion coefficients and Dr respectively, neglecting the difference in...consistent with the previous theories. In the absence of flipping (f = 0), the diffusivity reduces to that of Brownian motion in circles. Neither of

  3. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  4. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  5. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  6. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    International Nuclear Information System (INIS)

    Nelson, Lee

    2009-01-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processes in several common industrial areas: (1) Producing electricity via a traditional power cycle; (2) Producing hydrogen; (3) Producing ammonia and ammonia-derived products, such as fertilizer; (4) Producing gasoline and diesel from natural gas or coal; (5) Producing substitute natural gas from coal; and (6) Steam-assisted gravity drainage (extracting oil from tar sands).

  7. A review of thermo-chemical conversion of biomass into biofuels-focusing on gas cleaning and up-grading process steps

    OpenAIRE

    Brandin, Jan; Hulteberg, Christian; Kusar, Henrik

    2017-01-01

    It is not easy to replace fossil-based fuels in the transport sector, however, an appealing solution is to use biomass and waste for the production of renewable alternatives. Thermochemical conversion of biomass for production of synthetic transport fuels by the use of gasification is a promising way to meet these goals. One of the key challenges in using gasification systems with biomass and waste as feedstock is the upgrading of the raw gas produced in the gasifier. These materials replacin...

  8. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  9. Challenges and opportunities in synthetic biology for chemical engineers.

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.

  10. Hydrogenation of carbon dioxide towards synthetic natural gas. A route to effective future energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, M. [Hochschule Lausitz, Cottbus (Germany); Armbruster, U.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis

    2012-07-01

    Ni- and Ru-based catalysts are best suited for the so-called Sabatier reaction, i.e., the hydrogenation of CO{sub 2} to synthetic natural gas (SNG). Besides using commercial materials, catalyst syntheses (5 wt% Ru or Ni) were carried out by incipient wetness impregnation of four carriers (TiO{sub 2}, SiO{sub 2}, ZrO{sub 2} and {gamma}-Al{sub 2}O{sub 3}). Some pre-tests revealed that catalysts supported on TiO{sub 2} and SiO{sub 2} mostly produced CO, and therefore, they were not studied in detail. The catalyst tests were carried out in a continuously operated tube reactor at 623-723 K and 1-20 bar. Ru/ZrO{sub 2} and Ni/{gamma}-Al{sub 2}O{sub 3} revealed best catalytic performance at ambient pressure. Methane selectivities of 99.9% at 81.2% CO{sub 2} conversion for Ru/ZrO{sub 2} (623 K) and of 98.9% at 73.8% CO{sub 2} conversion for Ni/{gamma}-Al{sub 2}O{sub 3} (673 K) were obtained. The conversion increased significantly with raising reaction pressure above 10 bar to reach more than 93% for the Ni-containing catalyst and more than 96% for the Zr catalysts. Methane as the target product was formed with a selectivity of 100%. In addition, the catalysts were characterized by various solid-state techniques such as BET, TPR, ICP-OES, XRD, XPS and TEM. (orig.)

  11. THE INTERNATIONALIZATION OF SMES. A SYNTHETIC ANALYSIS OF THE DECISIONAL FACTORS AND PROCESS

    Directory of Open Access Journals (Sweden)

    Livia Oltean

    2013-06-01

    Full Text Available Having an increased complexity, the internationalization process of small and medium- sized enterprises (SMEs becomes, in the context of globalization and of the freedom of circulation of goods, services, and capital, a decisive factor of both the evolution of the company and the economic force distribution report on the market. The evolution of the world economic system opened a wide action field for small and medium sized companies, who had to adapt to new rules. The internationalization of SMEs is no longer an option, but it becomes a condition of their existence. A high importance in this process belongs to the way decisions are made, both regarding the target market and the entry option, the way entry barriers are overcome and the promotional techniques in this extended business environment. A synthetic analysis of the decisional factors and process is needed in order to fully and correctly understand the internationalization strategies adopted by SMEs. This paper is built around three major objectives, with the scope of determining the SMEs’ internationalization decisions, as well s the impediments met in the process. The paper contributes to the literature in the field of the internationalization of SMEs through the analysis and interpretation of the results acquired during the study regarding their behavior towards the activity expansion on international markets.

  12. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  13. Application of a new MR Microscope using an Independent Console System (MRMICS) for biological tissues in vitro

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Anno, Izumi; Itai, Yuji; Haishi, Tomoyuki; Adachi, Naotaka; Kose, Katsumi

    1999-01-01

    We studied microscopic MR images of the normal appendix in vitro using a new MR microscope system: MR Microscope using an Independent Console System (MRMICS). The MRMICS was placed in the clinical MR room, and the probe box was fixed on the bed of the 1.5 T clinical MR machine. T1-, T2-, and proton density-weighted images were obtained using spin echo sequences with an in-plane pixel size of 100 x 100 μm. Zonal structures of the appendix were clearly demonstrated with different contrast by different sequences. Therefore, the MRMICS is a useful add-on system for investigating microscopic MR images of biological tissues in vitro. (author)

  14. Application of a new MR Microscope using an Independent Console System (MRMICS) for biological tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi; Anno, Izumi; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Haishi, Tomoyuki; Adachi, Naotaka; Kose, Katsumi

    1999-02-01

    We studied microscopic MR images of the normal appendix in vitro using a new MR microscope system: MR Microscope using an Independent Console System (MRMICS). The MRMICS was placed in the clinical MR room, and the probe box was fixed on the bed of the 1.5 T clinical MR machine. T1-, T2-, and proton density-weighted images were obtained using spin echo sequences with an in-plane pixel size of 100 x 100 {mu}m. Zonal structures of the appendix were clearly demonstrated with different contrast by different sequences. Therefore, the MRMICS is a useful add-on system for investigating microscopic MR images of biological tissues in vitro. (author)

  15. Production process of the synthetics fuels: technological trajectory analysis; Processos de producao de combustiveis sinteticos: analise das trajetorias tecnologicas

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Fabricio B. [Financiadora de Estudos e Projectos (FINEP), Rio de Janeiro, RJ (Brazil)]. E-mail: fbrollo@finep.gov.br; Bomtempo, Jose Vitor [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica]. E-mail: vitor@eq.ufrj.br; Almeida, Edmar Luiz F. de

    2003-07-01

    This paper describes the evolution of the technological trajectories on synthetic fuels. What has influenced on the development of the first production process during the Second World War was analyzed, as well as, the causes of the first technological trajectory ending. It also shows the reasons of returning of the Fischer-Tropsch process to the petroleum companies' and technology licensors' R and D programs. At last, the consequences of the new technological trajectory and its differences regarding to the previous one were analyzed. (author)

  16. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  17. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Pilot-scale tests for EB flue gas treatment process in Japan

    International Nuclear Information System (INIS)

    Sato, S.; Tokunaga, O.; Namba, H.

    1994-01-01

    A review of electron beam applications for flue gas treatment in Japan has been done. Several pilot plants are being performed for commercial use of electron beams process for cleaning of flue gas from low-sulfur coal burning boiler, a municipal waste incinerator and for removal of NO x from a ventilation exhaust of a highway tunnel. Outlines of three pilot-scale tests are introduced. 9 refs, 4 figs

  19. EQUATIONS FOR GAS RELEASING PROCESS FROM PRESSURIZED VESSELS IN ODH EVALUATION

    International Nuclear Information System (INIS)

    JIA, L.X.; WANG, L.

    2001-01-01

    IN THE EVALUATION OF ODH, THE CALCULATION OF THE SPILL RATE FROM THE PRESSURIZED VESSEL IS THE CENTRAL TASK. THE ACCURACY OF THE ENGINEERING ESTIMATION BECOMES ONE OF THE SAFETY DESIGN ISSUES. THIS PAPER SUMMARIZES THE EQUATIONS FOR THE OXYGEN CONCENTRATION CALCULATION IN DIFFERENT CASES, AND DISCUSSES THE EQUATIONS FOR THE GAS RELEASE PROCESS CALCULATION BOTH FOR THE HIGH-PRESSURE GAS TANK AND THE LOW-TEMPERATURE LIQUID CONTAINER

  20. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  1. Treatment of exhaust gas from the semiconductor manufacturing process. 3; Handotai seizo sochi kara no hai gas shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, A. [Ebara Research Co. Ltd., Kanagawa (Japan); Mori, Y.; Osato, M.; Tsujimura, M. [Ebara Corp., Tokyo (Japan)

    1995-10-20

    Demand has been building up for an individual dry type scrubber for treating exhaust gas from the semiconductor manufacturing process. Some factors for the wide acceptance of such a scrubber would be the capability for complete treatment, easy maintenance and safety features, etc. Practical gas analysis and optimum scrubbing techniques would have to be applied, as well as effective monitoring, alarm, and fail-safe techniques. The overall exhaust gas line, i.e. the line connecting the scrubber system and the upstream process, including that extending to pump system, has to be fully considered for enabling effective scrubbing performance. Such factors, which have until now not been given any priority, would have to be fully studied for the development of a practical, individual dry type scrubber. Cooperation on this matter from the semiconductor manufacturing industry would also be essential. 6 refs., 3 figs., 5 tabs.

  2. Tritium labelling of PACAP-38 using a synthetic diiodinated precursor peptide

    DEFF Research Database (Denmark)

    Pedersen, Martin Holst Friborg; Baun, Michael

    2012-01-01

    In the interest of developing efficient methods for tritium labelling peptides, we here demonstrate the successful labelling of PACAP-38 (pituitary adenylate cyclase-activating polypeptide), a 38-mer peptide, using a synthetic diiodinated PACAP-38 precursor. In this example, we employ standard hy...... hydrogenation chemistry with the use of a heterogeneous palladium catalyst and carrier-free tritium gas on a tritium manifold system....

  3. Process for purification of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, S Z; Letitschevskij, V I; Maergojz, I I; Michailov, L A; Puschkarev, L I

    1977-06-23

    The process relates to the purification of gas mixtures of N, H, and Ar, or N and H, or N and O which contain CO, CO/sub 2/ and water vapour. Single-stage adsorption occurs under standard pressure at temperatures from -40 to +4/sup 0/C up to the point of CO penetration through the zeolite layer. Zeolite is of type A or X combined with Ca, Na, Ag, Cd, Co, Ni, Mn or a natural zeolite of the type klinoptilolite. Regeneration is achieved at constant temperature and pressure of 1-5x10/sup -1/ Torr or by heating to 120-600/sup 0/C.

  4. Challenges and opportunities in synthetic biology for chemical engineers

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  5. Efficiency of ozone production by pulsed positive corona discharge in synthetic air

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Člupek, Martin

    2002-01-01

    Roč. 35, č. 11 (2002), s. 1171-1175 ISSN 0022-3727 R&D Projects: GA AV ČR IAA1043102; GA ČR GA202/99/1298 Institutional research plan: CEZ:AV0Z2043910 Keywords : corona, synthetic air Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.366, year: 2002

  6. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lukes, Petr; Locke, Bruce R [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida (United States)

    2005-11-21

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH{center_dot} radicals produced by the liquid phase discharge directly in water and OH{center_dot} radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH{center_dot} radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH{center_dot} radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon.

  7. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor

    International Nuclear Information System (INIS)

    Lukes, Petr; Locke, Bruce R

    2005-01-01

    Oxidation processes induced in water by pulsed electrical discharges generated simultaneously in the gas phase in close proximity to the water surface and directly in the liquid were investigated in a hybrid series gas-liquid electrical discharge reactor. The mechanism of phenol degradation was studied through its dependence on the gas phase and liquid phase compositions using pure argon and oxygen atmospheres above the liquid and different initial pH values in the aqueous solution. Phenol degradation was significantly enhanced in the hybrid-series reactor compared with the phenol removal by the single-liquid phase discharge reactor. Under an argon atmosphere the mechanism of phenol degradation was mainly caused by the electrophilic attack of OH· radicals produced by the liquid phase discharge directly in water and OH· radicals produced by the gas phase discharge at the gas-liquid interface. Under an oxygen atmosphere the formation of gaseous ozone dominated over the formation of OH· radicals, and the contribution of the gas phase discharge in this case was determined mainly by the dissolution of gaseous ozone into the water and its subsequent interaction with phenol. At high pH phenol was degraded, in addition to the direct attack by ozone, also through indirect reactions of OH· radicals formed via a peroxone process by the decomposition of dissolved ozone by hydrogen peroxide produced by the liquid phase discharge. Such a mechanism was proved by the detection of cis,cis-muconic acid and pH-dependent degradation of phenol, which resulted in significantly higher removal of phenol from alkaline solution observed under oxygen atmosphere than in argon

  8. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    Science.gov (United States)

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  9. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    Science.gov (United States)

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  10. Selection platforms for directed evolution in synthetic biology.

    Science.gov (United States)

    Tizei, Pedro A G; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B

    2016-08-15

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. © 2016 The Author(s).

  11. Study protocol of a randomized clinical trial evaluating the effectiveness of a primary care intervention using the Nintendo™ Wii console to improve balance and decrease falls in the elderly.

    Science.gov (United States)

    Montero-Alía, Pilar; Muñoz-Ortiz, Laura; Jiménez-González, Mercè; Benedicto-Pañell, Carla; Altimir-Losada, Salvador; López-Colomer, Yolanda; Prat-Rovira, Josep; Amargant-Rubio, Joan Francesc; Jastes, Sheila Mendes; Moreno-Buitrago, Ana; Rodríguez-Pérez, M Carmen; Teixidó-Vargas, Cristina; Albarrán-Sánchez, José Luís; Candel-Gil, Anna; Serra-Serra, Domènec; Martí-Cervantes, Juan José; Sánchez-Pérez, Carlos Andrés; Sañudo-Blanco, Lidia; Dolader-Olivé, Sònia; Torán-Monserrat, Pere

    2016-01-12

    Balance alteration is a risk factor for falls in elderly individuals that has physical, psychological and economic consequences. The objectives of this study are to evaluate the usefulness of an intervention utilizing the Nintendo™ Wii console in order to improve balance, thereby decreasing both the fear of falling as well as the number of falls, and to evaluate the correlation between balance as determined by the console and the value obtained in the Tinetti tests and the one foot stationary test. This is a controlled, randomized clinical trial of individual assignment, carried out on patients over 70 years in age, from five primary care centers in the city of Mataró (Barcelona). 380 patients were necessary for the intervention group that carried out the balance board exercises in 2 sessions per week for a 3 month period, and 380 patients in the control group who carried out their usual habits. Balance was evaluated using the Tinetti test, the one foot stationary test and with the console, at the start of the study, at the end of the intervention (3 months) and one year later. Quarterly telephone follow-up was also conducted to keep track of falls and their consequences. The study aimed to connect the community with a technology that may be an easy and fun way to assist the elderly in improving their balance without the need to leave home or join rehabilitation groups, offering greater comfort for this population and decreasing healthcare costs since there is no need for specialized personnel. Current Control Trial NCT02570178.

  12. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, B.A.

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  13. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  14. Design and analysis of liquefaction process for offshore associated gas resources

    International Nuclear Information System (INIS)

    Li, Q.Y.; Ju, Y.L.

    2010-01-01

    Liquefaction is the key section on floating platform. Some experts and designers selected mixed refrigerant process for floating platform, while some recommended expander cycle. However, few of them compared the two types of processes systemically before making a choice. In this paper, the liquefaction processes of propane pre-cooled mixed refrigerant cycle (C 3 /MRC), mixed refrigerant cycle (MRC) and nitrogen expander cycle (N 2 expander) for the special offshore associated gases in South China Sea have been designed and studied. These processes have been analyzed and compared systematically considering the main factors including the performance parameters, economic performance, layout, sensitivity to motion, suitability to different gas resources, safety and operability, accounting for the features of the floating production, storage and offloading unit for liquefied natural gas (LNG-FPSO) in marine environment. The results indicated that N 2 expander has higher energy consumption and poorer economic performance, while it has much more advantages than C 3 /MRC and MRC for offshore application because it is simpler and more compact and thus requiring less deck area, less sensitive to LNG-FPSO motion, has better suitability for other gas resources, has higher safety and is easier to operate. Therefore, N 2 expander is the most suitable offshore liquefaction process. In addition, the exergy analysis is conducted for N 2 expander and the results indicate that the compression equipments and after coolers, expanders and LNG heat exchangers are the main contribution to the total exergy losses. The measures to decrease the losses for these equipments are then discussed.

  15. The role of process intensification in cutting greenhouse gas emissions

    International Nuclear Information System (INIS)

    Reay, David

    2008-01-01

    Between 1900 and 1955 the average rate of global energy use rose from about 1 TW to 2 TW. Between 1955 and 1999 energy use rose from 2 TW to about 12 TW, and to 2006 a further 16% growth in primary energy use was recorded world-wide. There are recommendations by the UK Royal Commission on Environmental Pollution, subsequently supported by others in the UK, that we need to reduce CO 2 emissions by over 50% in order to stabilise their impact on global warming (CO 2 being the principal gas believed to be contributing to this phenomenon). One way in which we can address this is by judicious use of process intensification technology. Process intensification may be defined as: 'Any engineering development that leads to a substantially smaller, cleaner, safer and more energy-efficient technology.' It is most often characterised by a huge reduction in plant volume - orders of magnitude - but its contribution to reducing greenhouse gas emissions may also be significant. Potential energy savings due to investment in process intensification were studied by several UK organisations in the mid 1990s, to assist the UK Government in formulating a strategy on intensification. It is relevant to the themes of the PRES 07 Conference that process integration features in these analyses. Overall plant intensification in the UK was identified as having a technical potential of 40 PJ/year (about 1 million tonnes of oil equivalent/annum). The total potential energy savings due to investment in process intensification in a range of process unit operations were predicted to be over 74 PJ/year (1 PJ = 10 15 J). Projections for The Netherlands suggest that savings of 50-100 PJ/year should be achieved across chemicals and food processing by 2050. Substantial benefits to industry in the USA are highlighted by US Department of Energy studies. This paper relates by discussion and example process intensification to the main themes of the PRES 07 Conference, including process integration. It also

  16. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  17. Development and validation process of the advanced main control board for next Japanese PWR plants

    International Nuclear Information System (INIS)

    Tani, M.; Ito, K.; Yokoyama, M.; Imase, M.; Okamoto, H.

    2000-01-01

    The purpose of main control room improvement is to reduce operator workload and potential human errors by offering a better working environment where operators can maximize their abilities. Japanese pressurized water reactor (PWR) utilities and Mitsubishi group have developed a touch -screen-based main control console (i.e. advanced main control room) the next generation PWRs to further improve the plant operability using a state of the art electronics technology. The advanced main control room consists of an operator console, a supervisor console and large display panels. The functional specifications were evaluated by utility operators using a prototype main control console connected to a plant simulator. (author)

  18. Removal of lead from the industrial and synthetic Cu-Pb-Fe alloy with argon barbotage

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2012-01-01

    Full Text Available Results of research on removal of lead from synthetic and industrial Cu-Pb-Fe alloy with argon barbotage are presented. For examinations was taken a synthetic alloy and industrial alloy coming “Glogow II” Copperworks. As basic research equipment was used a pipe resistance furnace enabling heating of samples up to 1 473 K. Examinations were made in 2 test series. The 1 series was performed on the synthetic alloy, while in 2 series was used an industrial alloy. All series were conducted at 1 473 K and with gas fl ow 5,55•10-6, 6,94•10-6, 8,33•10-6, 9,72•10-6 m3•s-1.

  19. Greenhouse gas emissions from nitrogen fertilizer use in China

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Li, Yunju; Su, Yufang; Tennigkeit, Timm; Wilkes, Andreas; Xu, Jianchu

    2010-01-01

    The use of synthetic nitrogen (N) fertilizers is an important driver of energy use and greenhouse gas (GHG) emissions in China. This paper develops a GHG emission factor for synthetic N fertilizer application in China. Using this emission factor, we estimate the scale of GHG emissions from synthetic nitrogen fertilizer use in Chinese agriculture and explore the potential for GHG emission reductions from efficiency improvements in N fertilizer production and use. The paper concludes with a discussion on costs and financing for a large-scale fertilizer efficiency improvement program in China, and how a GHG mitigation framework might contribute to program design.

  20. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  1. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process.

    Science.gov (United States)

    Fukahori, S; Fujiwara, T; Ito, R; Funamizu, N

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic urine, however, almost all sulfonamide antibiotic was also incorporated, which is unfavorable from a safety aspect if the methylene urea is to be used as fertilizer. Conversely, RAOC could remove sulfonamide antibiotic without consuming urea. It was also confirmed that the methylene urea could be synthesized from synthetic urine treated by RAOC. Thus, we concluded that RAOC should be inserted prior to the nitrogen recovery process for effective treatment of urine and safe use of methylene urea as fertilizer.

  2. Gas turbine with two circuits and intermediate fuel conversion process

    International Nuclear Information System (INIS)

    Bachl, H.

    1978-01-01

    The combination of a fuel conversion process with a thermal process saves coolant and subsequent separation plant, in order to achieve the greatest possible use of the mechanical or electrical energy. The waste heat of a thermal circuit is taken to an endothermal chemical fuel conversion process arranged before a second circuit. The heat remaining after removal of the heat required for the chemical process is taken to a second thermal circuit. The reaction products of the chemical process which condense out during expansion in the second thermal process are selectively separated from the remaining gas mixture in the individual turbine stages. (HGOE) [de

  3. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  4. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  5. Recombining processes in a cooling plasma by mixing of initially heated gas

    International Nuclear Information System (INIS)

    Furukane, Utaro; Sato, Kuninori; Takiyama, Ken; Oda, Toshiatsu.

    1992-03-01

    A numerical investigation of recombining process in a high temperature plasma in a quasi-steady state is made in a gas contact cooling, in which the initial temperature effect of contact gas heated up by the hot plasma is considered as well as the gas cooling due to the surrounding neutral particles freely coming into the plasma. The calculation has shown that the electron temperature relaxes in accord with experimental results and that the occurrence of recombining region and the inverted populations almost agree with the experimental ones. (author)

  6. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  7. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  8. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2014-01-01

    A thermodynamic study of a novel gas hydrate based CO2 capture process is presented.•Model predicts this process unsuitable for CO2 capture from power station flue gases. A thermodynamic modelling study of both fluid phase behaviour and hydrate phase behaviour is presented for the quaternary system...... of water, tetrahydrofuran, carbon dioxide and nitrogen. The applied model incorporates the Cubic-Plus-Association (CPA) equation of state for the fluid phase description and the van der Waals-Platteeuw hydrate model for the solid (hydrate) phase. Six binary pairs are studied for their fluid phase behaviour...... accurate descriptions of both fluid- and hydrate phase equilibria in the studied system and its subsystems. The developed model is applied to simulate two simplified, gas hydrate-based processes for post-combustion carbon dioxide capture from power station flue gases. The first process, an unpromoted...

  9. Optical methods to study the gas exchange processes in large diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S.; Hattar, C. [Wartsila Diesel International Oy, Vaasa (Finland); Hernberg, R.; Vattulainen, J. [Tampere Univ. of Technology, Tampere (Finland). Plasma Technology Lab.

    1996-12-01

    To be able to study the gas exchange processes in realistic conditions for a single cylinder of a large production-line-type diesel engine, a fast optical absorption spectroscopic method was developed. With this method line-of-sight UV-absorption of SO{sub 2} contained in the exhaust gas was measured as a function of time in the exhaust port area in a continuously fired medium speed diesel engine type Waertsilae 6L20. SO{sub 2} formed during the combustion from the fuel contained sulphur was used as a tracer to study the gas exchange as a function of time in the exhaust channel. In this case of a 4-stroke diesel engine by assuming a known concentration of SO{sub 2} in the exhaust gas after exhaust valve opening and before inlet and exhaust valve overlap period, the measured optical absorption was used to determine the gas density and further the instantaneous exhaust gas temperature during the exhaust cycle. (author)

  10. Accurate thermodynamic characterization of a synthetic coal mine methane mixture

    International Nuclear Information System (INIS)

    Hernández-Gómez, R.; Tuma, D.; Villamañán, M.A.; Mondéjar, M.E.; Chamorro, C.R.

    2014-01-01

    Highlights: • Accurate density data of a 10 components synthetic coal mine methane mixture are presented. • Experimental data are compared with the densities calculated from the GERG-2008 equation of state. • Relative deviations in density were within a 0.2% band at temperatures above 275 K. • Densities at 250 K as well as at 275 K and pressures above 10 MPa showed higher deviations. -- Abstract: In the last few years, coal mine methane (CMM) has gained significance as a potential non-conventional gas fuel. The progressive depletion of common fossil fuels reserves and, on the other hand, the positive estimates of CMM resources as a by-product of mining promote this fuel gas as a promising alternative fuel. The increasing importance of its exploitation makes it necessary to check the capability of the present-day models and equations of state for natural gas to predict the thermophysical properties of gases with a considerably different composition, like CMM. In this work, accurate density measurements of a synthetic CMM mixture are reported in the temperature range from (250 to 400) K and pressures up to 15 MPa, as part of the research project EMRP ENG01 of the European Metrology Research Program for the characterization of non-conventional energy gases. Experimental data were compared with the densities calculated with the GERG-2008 equation of state. Relative deviations between experimental and estimated densities were within a 0.2% band at temperatures above 275 K, while data at 250 K as well as at 275 K and pressures above 10 MPa showed higher deviations

  11. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  12. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  13. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  14. Novel design of LNG (liquefied natural gas) reliquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S., E-mail: s.baek@kaist.ac.kr [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Hwang, G.; Lee, C. [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jeong, S., E-mail: skjeong@kaist.ac.kr [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Choi, D. [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ship/Plant System R and D Team, Daewoo Shipbuilding and Marine Engineering Co., Ltd., 1, Ajoo, Koje, Kyungnam 656-714 (Korea, Republic of)

    2011-08-15

    Highlights: {yields} We performed experiments with LN2 to mock up the new LNG reliquefaction process. {yields} Subcooled liquid goes to heat exchanger, heater, and phase separator. {yields} Reliquefaction occurs when vapor enters heat exchanger and verified by experiments. {yields} Reliquefaction ratio increases when subcooling degree or system pressure increases. - Abstract: This paper presents an investigation of novel LNG reliquefaction process where the cold exergy of subcooled LNG is utilized to recondense the vaporized light component of LNG after it is separated from the heavier component in a phase separator. The regeneration of cold exergy is especially effective as well as important in thermodynamic sense when a cryogenic process is involved. To verify the proposed idea, we performed an experimental study by facilitating liquid nitrogen apparatus to mock up the LNG reliquefaction process. Subcooled liquid nitrogen is produced for a commercial transportation container with a house-made atmospheric liquid nitrogen heat exchanger and then, having subooled degree of up to 19 K, it simulates the behavior of subcooled LNG in the lab-scale reliquefaction experiment. Recondensation of the vaporized gas is possible by using the cold exergy of subcooled liquid in a properly fabricated heat exchanger. Effect of heat exchanger performance factor and degree of subcooling on recondensation portion has been discussed in this paper. It is concluded that utilizing pressurized subcooled liquid that is obtained by liquid pump can surely reduce the pumping power of the vaporized natural gas and save the overall energy expenditure in LNG reliquefaction process.

  15. Novel design of LNG (liquefied natural gas) reliquefaction process

    International Nuclear Information System (INIS)

    Baek, S.; Hwang, G.; Lee, C.; Jeong, S.; Choi, D.

    2011-01-01

    Highlights: → We performed experiments with LN2 to mock up the new LNG reliquefaction process. → Subcooled liquid goes to heat exchanger, heater, and phase separator. → Reliquefaction occurs when vapor enters heat exchanger and verified by experiments. → Reliquefaction ratio increases when subcooling degree or system pressure increases. - Abstract: This paper presents an investigation of novel LNG reliquefaction process where the cold exergy of subcooled LNG is utilized to recondense the vaporized light component of LNG after it is separated from the heavier component in a phase separator. The regeneration of cold exergy is especially effective as well as important in thermodynamic sense when a cryogenic process is involved. To verify the proposed idea, we performed an experimental study by facilitating liquid nitrogen apparatus to mock up the LNG reliquefaction process. Subcooled liquid nitrogen is produced for a commercial transportation container with a house-made atmospheric liquid nitrogen heat exchanger and then, having subooled degree of up to 19 K, it simulates the behavior of subcooled LNG in the lab-scale reliquefaction experiment. Recondensation of the vaporized gas is possible by using the cold exergy of subcooled liquid in a properly fabricated heat exchanger. Effect of heat exchanger performance factor and degree of subcooling on recondensation portion has been discussed in this paper. It is concluded that utilizing pressurized subcooled liquid that is obtained by liquid pump can surely reduce the pumping power of the vaporized natural gas and save the overall energy expenditure in LNG reliquefaction process.

  16. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state

  17. Novel studies of molecular orientation in synthetic polymeric membranes for gas separation

    International Nuclear Information System (INIS)

    Ismail, Ahmad Fauzi

    1998-01-01

    The main objective of this investigation was to produce a super-selective asymmetric membrane for gas separation. To achieve this, molecular orientation induced by rheological conditions during membrane fabrication was investigated and related to the gas separation performance of flat sheet and hollow fiber membranes. Infrared dichroism, a spectroscopic technique, was developed in the first phase of the research to directly measure molecular orientation in flat sheet membranes. The degree of molecular orientation was found to increase with increasing shear during fabrication which enhanced both pressure-normalised flux and selectivity of the coated membranes. The rheology of polymer solutions and the mechanism of molecular orientation have been treated in detail for membrane production. This is a novel approach since previous fundamental work has focused on the phase inversion process. The current study showed that rheological conditions during membrane fabrication have the utmost importance in enhancing membrane selectivity. The effects of molecular orientation at greater shear, as experienced by hollow fiber membranes during extrusion through the spinneret channel, were investigated in the second phase of this research. In order to produce a good quality fiber, a unique tube-in-orifice spinneret and a modified hollow fiber spinning rig were designed and fabricated. Thus the combined effects of reduced water activity in the bore coagulant during hollow fiber spinning and rheologically induced molecular orientation were investigated. The selectivity of the coated high shear hollow fiber membranes was heightened and even surpassed the recognised intrinsic selectivity of the polymer. Pressure-normalised flux also increased with increasing shear rate. In the third phase of this research phase inversion conditions were further optimised to give a superior skin layer and thus provide an even better platform for the advantageous effects of molecular orientation. These

  18. Preliminary study of synthesis gas production from water electrolysis, using the ELECTROFUEL® concept

    International Nuclear Information System (INIS)

    Guerra, L.; Gomes, J.; Puna, J.; Rodrigues, J.

    2015-01-01

    This paper describes preliminary work on the generation of synthesis gas from water electrolysis using graphite electrodes without the separation of the generated gases. This is an innovative process, that has no similar work been done earlier. Preliminary tests allowed to establish correlations between the applied current to the electrolyser and flow rate and composition of the generated syngas, as well as a characterisation of generated carbon nanoparticles. The obtained syngas can further be used to produce synthetic liquid fuels, for example, methane, methanol or DME (dimethyl ether) in a catalytic reactor, in further stages of a present ongoing project, using the ELECTROFUEL ® concept. The main competitive advantage of this project lies in the built-in of an innovative technology product, from RE (renewable energy) power in remote locations, for example, islands, villages in mountains as an alternative for energy storage for mobility constraints. - Highlights: • Generation of synthesis gas from water electrolysis without separation of gases. • Obtained syngas: 7.7% CO; 10.3% O 2 and 2.0% CO 2 . • Syngas can further be used to produce synthetic liquid fuels

  19. SYNTHETIC EDUCATIONAL ENVIRONMENT – A FOOTPACE TO NEW EDUCATION

    Directory of Open Access Journals (Sweden)

    Olga P. Pinchuk

    2017-09-01

    Full Text Available The article studies the problems of introducing a synthetic learning environment in the practice of education. The modern views on the essence of the learning environment and its new forms based on information and communication technologies are analyzed. Particular attention is paid to a range of issues that are united in the English-language publications as a "synthetic environment", which is considered in two aspects – artificial environment and synthetic as is formed due to the synthesis of the real physical world and the results of simulation and modeling. There are considered issues of trends in usage of game-based learning and modeling as cognitive technologies, as well as of social networks as a synthetic environment of social development. Conclusions are drawn: synthetic learning environment becomes an independent subject of learning through the expansion of its content and didactic power, transformation of the individual as a recipient of knowledge into the synthesizing element of the educational process in the metaverse.

  20. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.