WorldWideScience

Sample records for connexin26 reveals active

  1. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones.

    Science.gov (United States)

    Grümmer, R; Chwalisz, K; Mulholland, J; Traub, O; Winterhager, E

    1994-12-01

    A distinct spatial and temporal pattern of connexin26 and connexin43 (cx26 and cx43) expression was observed in the rat endometrium in response to embryo implantation; however, connexin expression was suppressed during the preimplantation period. Pseudopregnant rats did not show connexin mRNA, while artificial decidualization induced by a scratch led to a strong expression of cx26 and cx43 in the endometrium of these animals. In order to examine the regulatory effects of ovarian steroid hormones on connexin expression, ovariectomized rats were treated with progesterone (P) and/or estradiol-17 beta (E2). Untreated, ovariectomized animals expressed mRNA for cx43, but not for cx26. Endometrial expression of mRNA for both connexins was strongly enhanced by E2 treatment; immunolabeling revealed protein for cx26 in the uterine luminal epithelial cells and for cx43 in the uterine stromal cells. P treatment, either alone or in combination with E2, suppressed expression of connexin mRNA. P suppression in the presence of E2 was reversible when P was withdrawn. When administered on Days 0-2 of pregnancy, the antiprogestin onapristone inhibited the effect of P and gave rise to strong expression of both connexin transcripts. These results demonstrate that expression of cx26 and cx43 in the rat uterine endometrium is differentially regulated by E2 and P during early pregnancy.

  2. Mechanism for modulation of gating of connexin26-containing channels by taurine

    Science.gov (United States)

    Kieken, Fabien; Tao, Liang; Sorgen, Paul L.; Harris, Andrew L.

    2011-01-01

    The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28–amino acid “tag” to the carboxyl-terminal domain (CT) of Cx26 (Cx26T) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26Tc) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26Tc/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32T and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function. PMID:21844220

  3. Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel

    Science.gov (United States)

    Alizadeh, Hadi; Davoodi, Jamal; Zeilinger, Carsten; Rafii-Tabar, Hashem

    2018-01-01

    Connexin hemichannels mediate cytoplasm and extracellular milieu communication by exchanging a variety of cytoplasmic molecules and ions. These hemichannels can be regulated by external stimuli such as mechanical stress, applied voltage, pH and temperature changes. Although there are many studies on structures and functions of connexin 26 in contexts of pH, ion concentration and voltage, employing computational methods, no such study has been performed so far involving temperature changes. In this study, using molecular dynamics simulation, we investigate thermosensitivity of the human Connexin 26 hemichannel. Our results show that the channel approaches a structurally closed state at lower temperature compared to higher temperature. This is in fair agreement with experimental results that indicate channel closure at lower temperature. Furthermore, our MD simulation results show that some regions of connexin 26 hemichannel are more sensitive to temperature compared to other regions. Whereas the intercellular half of the channel does not show any considerable response to temperature during the simulation time accessible in this study, the cytoplasmic half approaches a closed structural state at lower temperature compared to the higher temperature. Specifically, our results suggest that the cytoplasmic loop, the cytoplasmic half of the second transmembrane helix, and the N-terminus helix play a dominant role in temperature gating.

  4. Impact of Genetic Counseling and Connexin-26 and Connexin-30 Testing on Deaf Identity and Comprehension of Genetic Test Results in a Sample of Deaf Adults: A Prospective, Longitudinal Study

    Science.gov (United States)

    Palmer, Christina G. S.; Boudreault, Patrick; Baldwin, Erin E.; Sinsheimer, Janet S.

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results. PMID:25375116

  5. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-09-01

    Full Text Available Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26, a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity.Methods: By screening a combinatorial library of human single-chain fragment variable (scFv antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells.Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action

  6. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes

    Directory of Open Access Journals (Sweden)

    Haiyun Pei

    2017-11-01

    Full Text Available Abstract Background Bi-potential hepatic progenitor cells can give rise to both hepatocytes and cholangiocytes, which is the last phase and critical juncture in terms of sequentially hepatic lineage restriction from any kind of stem cells. If their differentiation can be controlled, it might access to functional hepatocytes to develop pharmaceutical and biotechnology industries as well as cell therapies for end-stage liver diseases. Methods In this study, we investigated the influence of Cx32 and Cx43 on hepatocyte differentiation of WB-F344 cells by in vitro gain and loss of function analyses. An inhibitor of Cx32 was also used to make further clarification. To reveal p38 MAPK pathway is closely related to Cxs, rats with 70% partial hepatectomy were injected intraperitoneally with a p38 inhibitor, SB203580. Besides, the effects of p38 MAPK pathway on differentiation of hepatoblasts isolated from fetal rat livers were evaluated by addition of SB203580 in culture medium. Results In vitro gain and loss of function analyses showed overexpression of Connexin 32 and knockdown of Connexin 43 promoted hepatocytes differentiation from hepatic progenitor cells. In addition, in vitro and ex vivo research revealed inhibition of p38 mitogen-activated protein kinase pathway can improve hepatocytes differentiation correlating with upregulation of Connexin 32 expression and downregulation of Connexin 43 expression. Conclusions Here we demonstrate that Connexins play crucial roles in facilitating differentiation of hepatic progenitors. Our work further implicates that regulators of Connexins and their related pathways might provide new insights to improve lineage restriction of stem cells to mature hepatocytes.

  7. Different domains are critical for oligomerization compatibility of different connexins

    Science.gov (United States)

    MARTÍNEZ, Agustín D.; MARIPILLÁN, Jaime; ACUÑA, Rodrigo; MINOGUE, Peter J.; BERTHOUD, Viviana M.; BEYER, Eric C.

    2011-01-01

    Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies. PMID:21348854

  8. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    Science.gov (United States)

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  9. Inhibition of Connexin 26/43 and Extracellular-Regulated Kinase Protein Plays a Critical Role in Melatonin Facilitated Gap Junctional Intercellular Communication in Hydrogen Peroxide-Treated HaCaT Keratinocyte Cells

    Directory of Open Access Journals (Sweden)

    Hyo-Jung Lee

    2012-01-01

    Full Text Available Though melatonin was known to regulate gap junctional intercellular communication (GJIC in chick astrocytes and mouse hepatocytes, the underlying mechanism by melatonin was not elucidated in hydrogen peroxide- (H2O2- treated HaCaT keratinocyte cells until now. In the current study, though melatonin at 2 mM and hydrogen peroxide (H2O2 at 300 μM showed weak cytotoxicity in HaCaT keratinocyte cells, melatonin significantly suppressed the formation of reactive oxygen species (ROS in H2O2-treated HaCaT cells compared to untreated controls. Also, the scrape-loading dye-transfer assay revealed that melatonin enhances the intercellular communication by introducing Lucifer Yellow into H2O2-treated cells. Furthermore, melatonin significantly enhanced the expression of connexin 26 (Cx26 and connexin 43 (Cx43 at mRNA and protein levels, but not that of connexin 30 (Cx30 in H2O2-treated HaCaT cells. Of note, melatonin attenuated the phosphorylation of extracellular signal-regulated protein kinases (ERKs more than p38 MAPK or JNK in H2O2-treated HaCaT cells. Conversely, ERK inhibitor PD98059 promoted the intercellular communication in H2O2-treated HaCaT cells. Furthermore, combined treatment of melatonin (200 μM and vitamin C (10 μg/mL significantly reduced ROS production in H2O2-treated HaCaT cells. Overall, these findings support the scientific evidences that melatonin facilitates gap junctional intercellular communication in H2O2-treated HaCaT keratinocyte cells via inhibition of connexin 26/43 and ERK as a potent chemopreventive agent.

  10. Investigação genética da surdez hereditária: mutação do gene da Conexina 26 Genetic investigation of hereditary deafness: connexin 26 gene mutation

    Directory of Open Access Journals (Sweden)

    Paula Michele da Silva Schmidt

    2009-01-01

    Full Text Available Nos últimos anos houve grande progresso na localização de genes associados à deficiência auditiva hereditária, possibilitando diagnósticos cada vez mais precisos e precoces. Mutações no gene da Conexina 26 (GJB2 - Cx26 causam deficiência auditiva. Pela facilidade e benefício do rastreamento de mutações no gene GJB2, o teste genético está se tornando um importante recurso na saúde pública. O objetivo foi realizar pesquisa bibliográfica sobre a mutação do gene da Conexina 26 e sua influência na audição. Foi realizado um levantamento bibliográfico por meio de busca eletrônica utilizando os descritores: perda auditiva, genética, triagem genética, Conexina 26, nas bases de dados MEDLINE, SciELO e LILACS, desde a década de 90 até os dias atuais. Concluiu-se que a mutação 35delG da Conexina 26 está potencialmente vinculada a alguns casos de perda auditiva não esclarecida. A pesquisa desta mutação poderia ser incluída na bateria de exames de investigação etiológica da surdez indeterminada, uma vez que esclarece a etiologia de alguns casos e a sua identificação possibilita o aconselhamento genético.In the last few years, great progress has been made in the search for genes associated to hereditary hearing impairment, allowing more precise and earlier diagnosis. Connexin 26 gene mutations (GJB2 - Cx26 cause hearing impairment. Due to the easiness and benefits of the screening of mutations on the gene GJB2, genetic testing is becoming an important resource in public health. The aim of the present study was to conduct a literature research about the mutation of the Connexin 26 gene and its influence in hearing. It was carried out a literature review through electronic search using the keywords: hearing loss, genetics, genetic screening, and Connexin 26, at the databases MEDLINE, SciELO and LILACS, from the 90s to the present days. The results indicate that the 35delG mutation of Connexin 26 is potentially associated

  11. Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis.

    Directory of Open Access Journals (Sweden)

    Ivett Teleki

    Full Text Available Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers.Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models.The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively.Differential expression of Cx43 and Cx

  12. Connexins and Disease

    DEFF Research Database (Denmark)

    Delmar, Mario; Laird, Dale W; Naus, Christian C

    2017-01-01

    Inherited or acquired alterations in the structure and function of connexin proteins have long been associated with disease. In the present work, we review current knowledge on the role of connexins in diseases associated with the heart, nervous system, cochlea, and skin, as well as cancer...... of connexins are fundamental components in the pathophysiology of multiple connexin related disorders, many of them highly debilitating and life threatening. Improved understanding of connexin biology has the potential to advance our understanding of mechanisms, diagnosis, and treatment of disease....

  13. [Cochlear implantation in a child with congenital sensorineural deafness due to 35 DELG mutation in GJB2 (connexin 26) gene].

    Science.gov (United States)

    Teriutin, F M; Barashkov, N A; Dzhemileva, L U; Posukh, O L; Fedotova, E E; Gurinova, E E; Fedorova, S A; Tavartkiladze, G A; Khusnutdinova, E K

    2009-01-01

    This paper reports the first case of cochlear implantation performed in this country in a child with congenital non-syndromic sensorineural loss of hearing having hereditary etiology and attributable to autosomal-recessive 35 delG mutation in locus DFNB1 (13q.11-q12) of GJB2 (connexin 26) gene.

  14. Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria

    Directory of Open Access Journals (Sweden)

    Mariana C. Fiori

    2017-11-01

    Full Text Available In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46. Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.

  15. Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes.

    Science.gov (United States)

    Dere, E; De Souza-Silva, M A; Frisch, C; Teubner, B; Söhl, G; Willecke, K; Huston, J P

    2003-08-01

    Gap-junction channels in the brain, formed by connexin (Cx) proteins with a distinct regional/cell-type distribution, allow intercellular electrical and metabolic communication. In astrocytes, mainly the connexins 43, 26 and 30 are expressed. In addition, connexin30 is expressed in ependymal and leptomeningeal cells, as well as in skin and cochlea. The functional implications of the astrocytic gap-junctional network are not well understood and evidence regarding their behavioural relevance is lacking. Thus, we have tested groups of Cx30-/-, Cx30+/-, and Cx30+/+ mice in the open-field, an object exploration task, in the graded anxiety test and on the rotarod. The Cx30-/- mice showed reduced exploratory activity in terms of rearings but not locomotion in the open-field and object exploration task. Furthermore, Cx30-/- mice exhibited anxiogenic behaviour as shown by higher open-field centre avoidance and corner preference. Graded anxiety test and rotarod performance was similar across groups. The Cx30-/- mice had elevated choline levels in the ventral striatum, possibly related to their aberrant behavioural phenotypes. The Cx30+/- mice had lower dopamine and metabolite levels in the amygdala and ventral striatum and lower hippocampal 5-hydroxyindole acid (5-HIAA) concentrations relative to Cx30+/+ mice. Furthermore, the Cx30+/- mice had lower acetylcholine concentrations in the ventral striatum and higher choline levels in the neostriatum, relative to Cx30+/+ mice. Our data suggest that the elimination of connexin30 can alter the reactivity to novel environments, pointing to the importance of gap-junctional signalling in behavioural processes.

  16. A novel mutation in the connexin 26 gene (GJB2) in a child with clinical and histological features of keratitis-ichthyosis-deafness (KID) syndrome

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Tranebjaerg, L; Esberg, G

    2011-01-01

    Keratitis-ichthyosis-deafness (KID) syndrome is a rare congenital ectodermal disorder, caused by heterozygous missense mutation in GJB2, encoding the gap junction protein connexin 26. The commonest mutation is the p.Asp50Asn mutation, and only a few other mutations have been described to date....

  17. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers

    International Nuclear Information System (INIS)

    Morita, Hidekazu; Katsuno, Tatsuro; Hoshimoto, Aihiro; Hirano, Noriaki; Saito, Yasushi; Suzuki, Yasuo

    2004-01-01

    In some cell types, gap junctional intercellular communication (GJIC) is associated with tight junctions. The present study was performed to determine the roles of GJIC in regulation of the barrier function of tight junctions. Caco-2 human colonic cells were used as a monolayer model, and barrier function was monitored by measuring mannitol permeability and transepithelial electrical resistance (TER). The monolayers were chemically disrupted by treatment with oleic acid and taurocholic acid. Western blotting analyses were performed to evaluate the protein levels of connexins, which are components of gap junctional intercellular channels. Cx26 expression was detected in preconfluent Caco-2 cells, and its level increased gradually after the monolayer reached confluency. These results prompted us to examine whether overexpression of Cx26 affects barrier function. Monolayers of Caco-2 cells stably expressing Cx26 showed significantly lower mannitol permeability and higher TER than mock transfectants when the monolayers were chemically disrupted. The levels of claudin-4, an important component of tight junctions, were significantly increased in the stable Cx26 transfectant. These results suggest that Cx26-mediated GJIC may play a crucial role in enhancing the barrier function of Caco-2 cell monolayers

  18. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    Directory of Open Access Journals (Sweden)

    Cinzia Ambrosi

    Full Text Available Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26 that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P. Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels

  19. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  20. Differential Connexin Function Enhances Self-Renewal in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro Hitomi

    2015-05-01

    Full Text Available The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43, but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.

  1. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mathieu Charvériat

    2017-06-01

    Full Text Available Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the “tripartite synapse” with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial

  2. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target.

    Science.gov (United States)

    Charvériat, Mathieu; Naus, Christian C; Leybaert, Luc; Sáez, Juan C; Giaume, Christian

    2017-01-01

    Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as

  3. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    Science.gov (United States)

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-09-03

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mobilization from glycogen stores, when compared with wild-type liver. Thus, connexin32-containing gap junctions are essential in mouse liver for maximal intercellular propagation of the noradrenaline signal from the periportal (upstream) area, where it is received from sympathetic nerve endings, to perivenous (downstream) hepatocytes. In connexin32-defective liver, the amount of connexin26 protein expressed was found to be lower than in wild-type liver, and the total area of gap junction plaques was approximately 1000-fold smaller than in wild-type liver. In contrast to patients with connexin32 defects suffering from X chromosome-linked Charcot-Marie-Tooth disease (CMTX) due to demyelination in Schwann cells of peripheral nerves, connexin32-deficient mice did not show neurological abnormalities when analyzed at 3 months of age. It is possible, however, that they may develop neurodegenerative symptoms at older age.

  4. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    Science.gov (United States)

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  5. Connexin43 gene and its irradiation-induced expression

    International Nuclear Information System (INIS)

    Long Xianhui; Zhou Pingkun

    2005-01-01

    Gap junctions, composed of connexin protein subunits, provide the important channel for the intercellular communication. Connexin43, the most popular component of the connexin protein family, is widely expressed in multiple tissues and cell lines and plays an important role in cell proliferation, differention and tissue homeostasis. Recently it was reported that the expression of connexin43 gene is remarkedly up-regulated by low dose ionizing radiation, the available data suggest connexin43 gene to be a poten-tial sensitive bio-marker in radiation damage. (authors)

  6. Green fluorescent protein changes the conductance of connexin 43 (Cx43) hemichannels reconstituted in planar lipid bilayers.

    Science.gov (United States)

    Carnarius, Christian; Kreir, Mohamed; Krick, Marcel; Methfessel, Christoph; Moehrle, Volker; Valerius, Oliver; Brüggemann, Andrea; Steinem, Claudia; Fertig, Niels

    2012-01-20

    In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein.

  7. Targeting connexin 43 in diabetic wound healing: Future perspectives

    Directory of Open Access Journals (Sweden)

    Bajpai S

    2009-01-01

    Full Text Available The unknown mechanisms of impaired tissue repair in diabetes mellitus are making this disease a serious clinical problem for the physicians worldwide. The lacuna in the knowledge of the etiology of diabetic wounds necessitates more focused research in order to develop new targeting tools with higher efficacy for their effective management. Gap-junction proteins, connexins, have shown some promising results in the process of diabetic wound healing. Till now the role of connexins has been implicated in peripheral neuropathy, deafness, skin disorders, cataract, germ cell development and treatment of cancer. Recent findings have revealed that gap junctions play a key role in normal as well as diabetic wound healing. The purpose of this review is to provide the information related to etiology, epidemiology, clinical presentation of diabetic wounds and to analyze the role of connexin 43 (Cx43 in the diabetic wound healing process. The current control strategies and the future research challenges have also been discussed briefly in this review.

  8. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  9. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas.

    Science.gov (United States)

    Teixeira, Tarso Felipe; Gentile, Luciana Boffoni; da Silva, Tereza Cristina; Mennecier, Gregory; Chaible, Lucas Martins; Cogliati, Bruno; Roman, Marco Antonio Leon; Gioso, Marco Antonio; Dagli, Maria Lucia Zaidan

    2014-03-01

    Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants.

  10. Gap junction connexins in female reproductive organs: implications for women's reproductive health.

    Science.gov (United States)

    Winterhager, Elke; Kidder, Gerald M

    2015-01-01

    Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth

  11. Inhibition of connexin43 gap junction channels by the endocrine disruptor ioxynil

    International Nuclear Information System (INIS)

    Leithe, Edward; Kjenseth, Ane; Bruun, Jarle; Sirnes, Solveig; Rivedal, Edgar

    2010-01-01

    Gap junctions are intercellular plasma membrane domains containing channels that mediate transport of ions, metabolites and small signaling molecules between adjacent cells. Gap junctions play important roles in a variety of cellular processes, including regulation of cell growth and differentiation, maintenance of tissue homeostasis and embryogenesis. The constituents of gap junction channels are a family of trans-membrane proteins called connexins, of which the best-studied is connexin43. Connexin43 functions as a tumor suppressor protein in various tissue types and is frequently dysregulated in human cancers. The pesticide ioxynil has previously been shown to act as an endocrine disrupting chemical and has multiple effects on the thyroid axis. Furthermore, both ioxynil and its derivative ioxynil octanoate have been reported to induce tumors in animal bioassays. However, the molecular mechanisms underlying the possible tumorigenic effects of these compounds are unknown. In the present study we show that ioxynil and ioxynil octanoate are strong inhibitors of connexin43 gap junction channels. Both compounds induced rapid loss of connexin43 gap junctions at the plasma membrane and increased connexin43 degradation. Ioxynil octanoate, but not ioxynil, was found to be a strong activator of ERK1/2. The compounds also had different effects on the phosphorylation status of connexin43. Taken together, the data show that ioxynil and ioxynil octanoate are potent inhibitors of intercellular communication via gap junctions.

  12. Joint diseases: from connexins to gap junctions.

    Science.gov (United States)

    Donahue, Henry J; Qu, Roy W; Genetos, Damian C

    2017-12-19

    Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.

  13. Green Fluorescent Protein Changes the Conductance of Connexin 43 (Cx43) Hemichannels Reconstituted in Planar Lipid Bilayers*

    Science.gov (United States)

    Carnarius, Christian; Kreir, Mohamed; Krick, Marcel; Methfessel, Christoph; Moehrle, Volker; Valerius, Oliver; Brüggemann, Andrea; Steinem, Claudia; Fertig, Niels

    2012-01-01

    In mammalian tissues, connexin 43 (Cx43) is the most prominent member of the connexin family. In a single lipid bilayer, six connexin subunits assemble into a hemichannel (connexon). Direct communication of apposing cells is realized by two adjacent hemichannels, which can form gap junction channels. Here, we established an expression system in Pichia pastoris to recombinantly produce and purify Cx43 as well as Cx43 fused to green fluorescent protein (GFP). Proteins were isolated from crude cell membrane fractions via affinity chromatography. Cx43 and Cx43-GFP hemichannels were reconstituted in giant unilamellar vesicles as proven by fluorescence microscopy, and their electrophysiological behavior was analyzed on the single channel level by planar patch clamping. Cx43 and Cx43-GFP both showed an ohmic behavior and a voltage-dependent open probability. Cx43 hemichannels exhibited one major mean conductance of 224 ± 26 picosiemens (pS). In addition, a subconductance state at 124 ± 5 pS was identified. In contrast, the analysis of Cx43-GFP single channels revealed 10 distinct conductance states in the range of 15 to 250 pS, with a larger open probability at 0 mV as compared with Cx43, which suggests that intermolecular interactions between the GFP molecules alter the electrophysiology of the protein. PMID:22139870

  14. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure.

    Science.gov (United States)

    Beyer, Eric C; Lipkind, Gregory M; Kyle, John W; Berthoud, Viviana M

    2012-08-01

    The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011. Published by Elsevier B.V.

  15. Astrocyte and Oligodendrocyte Connexins of the Glial Syncytium in Relation to Astrocyte Anatomical Domains and Spatial Buffering

    OpenAIRE

    NAGY, JAMES I.; RASH, JOHN E.

    2003-01-01

    Astroctyes express a set of three connexins (Cx26, Cx30, and Cx43) that are contained in astrocyte-to-astrocyte (A/A) gap junctions; oligodendrocytes express a different set of three connexins (Cx29, Cx32, and Cx47) that are contained in the oligodendrocyte side of necessarily heterotypic astrocyte-to-oligodendrocyte (A/O) gap junctions, and there is little ultrastructural evidence for gap junction formation between individual oligodendrocytes. In addition, primarily Cx29 and Cx32 are contain...

  16. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  17. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    Science.gov (United States)

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  18. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H

    2001-01-01

    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  19. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    OpenAIRE

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min...

  20. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    Science.gov (United States)

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (PLucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  1. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  2. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli are repo...... selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli....... Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors...

  3. Molecular interaction of connexin 30.3 and connexin 31 suggests a dominant-negative mechanism associated with erythrokeratodermia variabilis

    DEFF Research Database (Denmark)

    Plantard, Laure; Huber, Marcel; Macari, Francoise

    2003-01-01

    Connexins are homologous four-transmembrane-domain proteins and major components of gap junctions. We recently identified mutations in either GJB3 or GJB4 genes, encoding respectively connexin 31 (Cx31) or 30.3 (Cx30.3), as causally involved in erythrokeratodermia variabilis (EKV), a mostly autos...

  4. A simple RT-PCR-based strategy for screening connexin identity

    Directory of Open Access Journals (Sweden)

    M. Urban

    1999-08-01

    Full Text Available Vertebrate gap junctions are aggregates of transmembrane channels which are composed of connexin (Cx proteins encoded by at least fourteen distinct genes in mammals. Since the same Cx type can be expressed in different tissues and more than one Cx type can be expressed by the same cell, the thorough identification of which connexin is in which cell type and how connexin expression changes after experimental manipulation has become quite laborious. Here we describe an efficient, rapid and simple method by which connexin type(s can be identified in mammalian tissue and cultured cells using endonuclease cleavage of RT-PCR products generated from "multi primers" (sense primer, degenerate oligonucleotide corresponding to a region of the first extracellular domain; antisense primer, degenerate oligonucleotide complementary to the second extracellular domain that amplify the cytoplasmic loop regions of all known connexins except Cx36. In addition, we provide sequence information on RT-PCR primers used in our laboratory to screen individual connexins and predictions of extension of the "multi primer" method to several human connexins.

  5. Connexins and pannexins in the integumentary system: the skin and appendages.

    Science.gov (United States)

    Faniku, Chrysovalantou; Wright, Catherine S; Martin, Patricia E

    2015-08-01

    The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.

  6. Cloning, embryonic expression, and functional characterization of two novel connexins from Xenopus laevis

    NARCIS (Netherlands)

    de Boer, Teun P.; Kok, Bart; Roël, Giulietta; van Veen, Toon A. B.; Destrée, Olivier H. J.; Rook, Martin B.; Vos, Marc A.; de Bakker, Jacques M. T.; van der Heyden, Marcel A. G.

    2006-01-01

    Vertebrate gap junctions are constituted of connexin (Cx) proteins. In Xenopus laevis, only seven different Cxs have been described so far. Here, we identify two new Cxs from X. laevis. Cx28.6 displays > 60% amino acid identity with human Cx25, Cx29 displays strong homology with mouse Cx26 and Cx30.

  7. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  8. Connexins, diabetes and the metabolic syndrome.

    Science.gov (United States)

    Hamelin, Romain; Allagnat, Florent; Haefliger, Jacques-Antoine; Meda, Paolo

    2009-02-01

    Diabetes and the related metabolic syndrome are multi system disorders that result from improper interactions between various cell types. Even though the underlying mechanism remains to be fully understood, it is most likely that both the long and the short distance range cell interactions, which normally ensure the physiologic functioning of the pancreas, and its relationships with the insulin-targeted organs, are altered. This review focuses on the short-range type of interactions that depend on the contact between adjacent cells and, specifically, on the interactions that are dependent on connexins. The widespread distribution of these membrane proteins, their multiple modes of action, and their interactions with conditions/molecules associated to both the pathogenesis and the treatment of the 2 main forms of diabetes and the metabolic syndrome, make connexins an essential part of the chain of events that leads to metabolic diseases. Here, we review the present state of knowledge about the molecular and cell biology of the connexin genes and proteins, their general mechanisms of action, the roles specific connexin species play in the endocrine pancreas and the major insulin-targeted organs, under physiological and patho-physiological conditions.

  9. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    Science.gov (United States)

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  10. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression

    International Nuclear Information System (INIS)

    Gao Fenghou; Wang Qiong; Wu Yingli; Li Xi; Zhao Kewen; Chen Guoqiang

    2007-01-01

    AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites in the 5'-flanking region upstream to Cx43 gene. AML1-ETO could directly bind to these two AML1-binding sites in electrophoretic mobility shift assay, but luciferase reporter assay revealed that the AML1 binding sites were not indispensable for Cx43 induction by AML1-ETO protein. Conversely, AP1 sites exerted an important role in this event. In agreement, AML1-ETO overexpression in leukemic U937 cells activated c-Jun N-terminal kinase (JNK), while its specific inhibitor SP600125 effectively abrogated AML1-ETO-induced Cx43 expression, indicating that JNK signaling pathway contributes to AML1-ETO induced Cx43 expression. These results would shed new insights for understanding mechanisms of AML1-ETO-associated leukemogenesis

  11. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity

    Science.gov (United States)

    Huckstepp, Robert T R; id Bihi, Rachid; Eason, Robert; Spyer, K Michael; Dicke, Nikolai; Willecke, Klaus; Marina, Nephtali; Gourine, Alexander V; Dale, Nicholas

    2010-01-01

    Arterial , a major determinant of breathing, is detected by chemosensors located in the brainstem. These are important for maintaining physiological levels of in the blood and brain, yet the mechanisms by which the brain senses CO2 remain controversial. As ATP release at the ventral surface of the brainstem has been causally linked to the adaptive changes in ventilation in response to hypercapnia, we have studied the mechanisms of CO2-dependent ATP release in slices containing the ventral surface of the medulla oblongata. We found that CO2-dependent ATP release occurs in the absence of extracellular acidification and correlates directly with the level of . ATP release is independent of extracellular Ca2+ and may occur via the opening of a gap junction hemichannel. As agents that act on connexin channels block this release, but compounds selective for pannexin-1 have no effect, we conclude that a connexin hemichannel is involved in CO2-dependent ATP release. We have used molecular, genetic and immunocytochemical techniques to demonstrate that in the medulla oblongata connexin 26 (Cx26) is preferentially expressed near the ventral surface. The leptomeninges, subpial astrocytes and astrocytes ensheathing penetrating blood vessels at the ventral surface of the medulla can be loaded with dye in a CO2-dependent manner, suggesting that gating of a hemichannel is involved in ATP release. This distribution of CO2-dependent dye loading closely mirrors that of Cx26 expression and colocalizes to glial fibrillary acidic protein (GFAP)-positive cells. In vivo, blockers with selectivity for Cx26 reduce hypercapnia-evoked ATP release and the consequent adaptive enhancement of breathing. We therefore propose that Cx26-mediated release of ATP in response to changes in is an important mechanism contributing to central respiratory chemosensitivity. PMID:20736421

  12. Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Moolenaar, W H

    2001-01-01

    Gap junctions are composed of connexins that form transmembrane channels between adjacent cells. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated in the regulation of Cx43 channel gating. Interestingly, channel-independent processes regulated

  13. Three novel GJB2 (connexin 26) variants associated with autosomal dominant syndromic and nonsyndromic hearing loss.

    Science.gov (United States)

    DeMille, Desiree; Carlston, Colleen M; Tam, Oliver H; Palumbos, Janice C; Stalker, Heather J; Mao, Rong; Zori, Roberto T; Viskochil, David H; Park, Albert H; Carey, John C

    2018-04-01

    Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene. © 2018 Wiley Periodicals, Inc.

  14. The potential prognostic value of connexin 26 and 46 expression in neoadjuvant-treated breast cancer

    Directory of Open Access Journals (Sweden)

    Teleki Ivett

    2013-02-01

    Full Text Available Abstract Background Several classification systems are available to assess pathological response to neoadjuvant chemotherapy in breast cancer, but reliable biomarkers to predict the efficiency of primary systemic therapy (PST are still missing. Deregulation of gap junction channel forming connexins (Cx has been implicated in carcinogenesis and tumour progression through loss of cell cycle control. In this study we correlated Cx expression and cell proliferation with disease survival and pathological response to neoadjuvant chemotherapy in breast cancers using existing classification systems. Methods The expression of Cx26, Cx32, Cx43, Cx46 and Ki67 was evaluated in 96 breast cancer patients prior to and after neoadjuvant chemotherapy using duplicate cores in tissue microarrays (TMA. Cx plaques of Results In our cohort dominated by hormone receptor (ER/PR positive and HER2 negative cases, only the CPS-EG classification showed prognostic relevance: cases with scores 1–2 had significantly better overall survival (p=0.015 than cases with scores 3–5. Pre-chemotherapy Cx43 expression correlated positively with hormone receptor status both before and after chemotherapy and had a negative correlation with HER2 expression pre-chemotherapy. There was a positive correlation between Cx32 and HER2 expression pre-chemotherapy and between Cx32 and Ki67 expression post-chemotherapy. A negative correlation was found between post-chemotherapy Cx46 and Ki67 expression. Decreased post-chemotherapy Cx26 expression (20% pre- and post-chemotherapy correlated with significantly better survival in the intermediate prognostic subgroups of EWGBSP TR2b (ppre-chemo=0.006; Sataloff TB (ppre-chemo=0.005; ppost-chemo=0.029 and in Miller-Payne G3 (ppre-chemo=0.002; ppost-chemo=0.012 classifications. Pre-chemotherapy, Cx46 expression was the only marker that correlated with overall survival within these subgroups. Conclusion Our results suggest that Cx46 and Cx26 expression

  15. Connexin-based intercellular communication and astrocyte heterogeneity.

    Science.gov (United States)

    Theis, Martin; Giaume, Christian

    2012-12-03

    This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Colocalization of connexin 36 and corticotropin-releasing hormone in the mouse brain

    Directory of Open Access Journals (Sweden)

    Ribeiro Ana C

    2009-04-01

    Full Text Available Abstract Background Gap junction proteins, connexins, are expressed in most endocrine and exocrine glands in the body and are at least in some glands crucial for the hormonal secretion. To what extent connexins are expressed in neurons releasing hormones or neuropeptides from or within the central nervous system is, however, unknown. Previous studies provide indirect evidence for gap junction coupling between subsets of neuropeptide-containing neurons in the paraventricular nucleus (PVN of the hypothalamus. Here we employ double labeling and retrograde tracing methods to investigate to what extent neuroendocrine and neuropeptide-containing neurons of the hypothalamus and brainstem express the neuronal gap junction protein connexin 36. Results Western blot analysis showed that connexin 36 is expressed in the PVN. In bacterial artificial chromosome transgenic mice, which specifically express the reporter gene Enhanced Green Fluorescent Protein (EGFP under the control of the connexin 36 gene promoter, EGFP expression was detected in magnocellular (neuroendocrine and in parvocellular neurons of the PVN. Although no EGFP/connexin36 expression was seen in neurons containing oxytocin or vasopressin, EGFP/connexin36 was found in subsets of PVN neurons containing corticotropin-releasing hormone (CRH, and in somatostatin neurons located along the third ventricle. Moreover, CRH neurons in brainstem areas, including the lateral parabrachial nucleus, also expressed EGFP/connexin 36. Conclusion Our data indicate that connexin 36 is expressed in subsets of neuroendocrine and CRH neurons in specific nuclei of the hypothalamus and brainstem.

  17. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rodriguez-Jimenez

    2015-11-01

    Full Text Available Ion channels included in the family of Connexins (Cx help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50 in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC. epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI (epSPCi. When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.

  18. Connexin: a potential novel target for protecting the central nervous system?

    Directory of Open Access Journals (Sweden)

    Hong-yan Xie

    2015-01-01

    Full Text Available Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer′s disease, Parkinson′s disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  19. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    Science.gov (United States)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the expression of connexin 32-type gap junctions. (2) The increased sensitivity of FRTL-5 cells to proton irradiation was independent of their ability to communicate through connexin 32 gap junctions. (3) The fact that the beta components of the survival curves from both gamma rays and proton beams were

  20. Gap junction mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice.

    Directory of Open Access Journals (Sweden)

    Qing Chang

    Full Text Available Connexin26 (Cx26 and connexin30 (Cx30 are two major protein subunits that co-assemble to form gap junctions (GJs in the cochlea. Mutations in either one of them are the major cause of non-syndromic prelingual deafness in humans. Because the mechanisms of cochlear pathogenesis caused by Cx mutations are unclear, we investigated effects of Cx30 null mutation on GJ-mediated ionic and metabolic coupling in the cochlea of mice. A novel flattened cochlear preparation was used to directly assess intercellular coupling in the sensory epithelium of the cochlea. Double-electrode patch clamp recordings revealed that the absence of Cx30 did not significantly change GJ conductance among the cochlear supporting cells. The preserved electrical coupling is consistent with immunolabeling data showing extensive Cx26 GJs in the cochlea of the mutant mice. In contrast, dye diffusion assays showed that the rate and extent of intercellular transfer of multiple fluorescent dyes (including a non-metabolizable D-glucose analogue, 2-NBDG among cochlear supporting cells were severely reduced in Cx30 null mice. Since the sensory epithelium in the cochlea is an avascular organ, GJ-facilitated intercellular transfer of nutrient and signaling molecules may play essential roles in cellular homeostasis. To test this possibility, NBDG was used as a tracer to study the contribution of GJs in transporting glucose into the cochlear sensory epithelium when delivered systemically. NBDG uptake in cochlear supporting cells was significantly reduced in Cx30 null mice. The decrease was also observed with GJ blockers or glucose competition, supporting the specificity of our tests. These data indicate that GJs facilitate efficient uptake of glucose in the supporting cells. This study provides the first direct experimental evidence showing that the transfer of metabolically-important molecules in cochlear supporting cells is dependent on the normal function of GJs, thereby suggesting a

  1. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  2. Data of the molecular dynamics simulations of mutations in the human connexin46 docking interface

    Directory of Open Access Journals (Sweden)

    Patrik Schadzek

    2016-06-01

    The data described here are related to the research article entitled “The cataract related mutation N188T in human connexin46 (hCx46 revealed a critical role for residue N188 in the docking process of gap junction channels” (Schadzek et al., 2015 [1].

  3. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    NARCIS (Netherlands)

    van Zeijl, Leonie; Ponsioen, Bas; Giepmans, Ben N G; Ariaens, Aafke; Postma, Friso R; Várnai, Péter; Balla, Tamas; Divecha, Nullin; Jalink, Kees; Moolenaar, Wouter H

    2007-01-01

    Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol

  4. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.

    Science.gov (United States)

    de Toledo, Sonia M; Buonanno, Manuela; Harris, Andrew L; Azzam, Edouard I

    2017-10-01

    To examine the time window during which intercellular signaling though gap junctions mediates non-targeted (bystander) effects induced by moderate doses of ionizing radiation; and to investigate the impact of gap junction communication on genomic instability in distant progeny of bystander cells. A layered cell culture system was developed to investigate the propagation of harmful effects from irradiated normal or tumor cells that express specific connexins to contiguous bystander normal human fibroblasts. Irradiated cells were exposed to moderate mean absorbed doses from 3.7 MeV α particle, 1000 MeV/u iron ions, 600 MeV/u silicon ions, or 137 Cs γ rays. Following 5 h of co-culture, pure populations of bystander cells, unexposed to secondary radiation, were isolated and DNA damage and oxidative stress was assessed in them and in their distant progeny (20-25 population doublings). Increased frequency of micronucleus formation and enhanced oxidative changes were observed in bystander cells co-cultured with confluent cells exposed to either sparsely ionizing ( 137 Cs γ rays) or densely ionizing (α particles, energetic iron or silicon ions) radiations. The irradiated cells propagated signals leading to biological changes in bystander cells within 1 h of irradiation, and the effect required cellular coupling by gap junctions. Notably, the distant progeny of isolated bystander cells also exhibited increased levels of spontaneous micronuclei. This effect was dependent on the type of junctional channels that coupled the irradiated donor cells with the bystander cells. Previous work showed that gap junctions composed of connexin26 (Cx26) or connexin43 (Cx43) mediate toxic bystander effects within 5 h of co-culture, whereas gap junctions composed of connexin32 (Cx32) mediate protective effects. In contrast, the long-term progeny of bystander cells expressing Cx26 or Cx43 did not display elevated DNA damage, whereas those coupled by Cx32 had enhanced DNA

  5. The potential prognostic value of connexin 26 and 46 expression in neoadjuvant-treated breast cancer

    International Nuclear Information System (INIS)

    Teleki, Ivett; Varga, Zsuzsanna; Krenacs, Tibor; Szasz, Marcell A; Kulka, Janina; Wichmann, Barna; Leo, Cornelia; Papassotiropoulos, Barbel; Riemenschnitter, Cosima; Moch, Holger

    2013-01-01

    Several classification systems are available to assess pathological response to neoadjuvant chemotherapy in breast cancer, but reliable biomarkers to predict the efficiency of primary systemic therapy (PST) are still missing. Deregulation of gap junction channel forming connexins (Cx) has been implicated in carcinogenesis and tumour progression through loss of cell cycle control. In this study we correlated Cx expression and cell proliferation with disease survival and pathological response to neoadjuvant chemotherapy in breast cancers using existing classification systems. The expression of Cx26, Cx32, Cx43, Cx46 and Ki67 was evaluated in 96 breast cancer patients prior to and after neoadjuvant chemotherapy using duplicate cores in tissue microarrays (TMA). Cx plaques of <1μm were detected with multilayer, multichannel fluorescence digital microscopy. Current classifications to assess residual tumour burden after primary systemic therapy included the EWGBSP, CPS-EG, Miller-Payne, Sataloff and NSABP systems. In our cohort dominated by hormone receptor (ER/PR) positive and HER2 negative cases, only the CPS-EG classification showed prognostic relevance: cases with scores 1–2 had significantly better overall survival (p=0.015) than cases with scores 3–5. Pre-chemotherapy Cx43 expression correlated positively with hormone receptor status both before and after chemotherapy and had a negative correlation with HER2 expression pre-chemotherapy. There was a positive correlation between Cx32 and HER2 expression pre-chemotherapy and between Cx32 and Ki67 expression post-chemotherapy. A negative correlation was found between post-chemotherapy Cx46 and Ki67 expression. Decreased post-chemotherapy Cx26 expression (<5%) statistically correlated with better overall survival (p=0.011). Moderate or higher Cx46 expression (>20%) pre- and post-chemotherapy correlated with significantly better survival in the intermediate prognostic subgroups of EWGBSP TR2b (p pre-chemo =0

  6. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep.

    Directory of Open Access Journals (Sweden)

    Joanne O Davidson

    Full Text Available Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age. Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6 or vehicle infusion for controls (occlusion-vehicle group, n = 7. Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05, with reduced neuronal loss in the caudate and putamen (p<0.05, but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05 and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05, with a significant increase in proliferation (p<0.05. Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.

  7. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    Science.gov (United States)

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103–104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia. PMID:24865217

  8. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.

    Science.gov (United States)

    Bargiello, Thaddeus A; Oh, Seunghoon; Tang, Qingxiu; Bargiello, Nicholas K; Dowd, Terry L; Kwon, Taekyung

    2018-01-01

    Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (V m or V i-o ). These transjunctional voltage dependent processes have been termed V j - or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use

  9. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?

    Directory of Open Access Journals (Sweden)

    Mauricio A. Retamal

    2017-11-01

    Full Text Available In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia. It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs. Recent evidence shows that connexin43 (Cx43 hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.

  10. Detailed regulatory mechanism of the interaction between ZO-1 PDZ2 and connexin43 revealed by MD simulations.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available The gap junction protein connexin43 (Cx43 binds to the second PDZ domain of Zonula occludens-1 (ZO-1 through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9 and Ser (-10 of the peptide can disrupt the association. However, only a crystal structure of ZO-1 PDZ2 in complex with a shorter 9 aa peptide of connexin43 was solved experimentally. Here, the interactions between ZO-1 PDZ2 and the short, long and phosphorylated Cx43 peptides were studied using molecular dynamics (MD simulations and free energy calculation. The short peptide bound to PDZ2 exhibits large structural variations, while the extension of three upstream residues stabilizes the peptide conformation and enhanced the interaction. Phosphorylation at Ser(-9 significantly weakens the binding and results in conformational flexibility of the peptide. Glu210 of ZO-1 PDZ2 was found to be a key regulatory point in Cx43 binding and phosphorylation induced dissociation.

  11. Connexin Communication Compartments and Wound Repair in Epithelial Tissue.

    Science.gov (United States)

    Chanson, Marc; Watanabe, Masakatsu; O'Shaughnessy, Erin M; Zoso, Alice; Martin, Patricia E

    2018-05-03

    Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  12. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  13. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  14. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Science.gov (United States)

    Maddala, Rupalatha; Nagendran, Tharkika; de Ridder, Gustaaf G; Schey, Kevin L; Rao, Ponugoti Vasantha

    2013-01-01

    Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial

  15. Role of Connexin40 in the autoregulatory response of the afferent arteriole

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Giese, Isaiah; Braunstein, Thomas Hartig

    2012-01-01

    Connexins in renal arterioles affect autoregulation of arteriolar tonus and renal blood flow and are believed to be involved in the transmission of the tubuloglomerular feedback (TGF) response across the cells of the juxtaglomerular apparatus. Connexin40 (Cx40) also plays a significant role in th...

  16. Effect of enhanced expression of connexin 43 on sunitinib-induced cytotoxicity in mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2015-05-01

    Full Text Available Connexin (Cx makes up a type of intercellular channel called gap junction (GJ. GJ plays a regulatory role in cellular physiology. The Cx expression level is often decreased in cancer cells compared to that in healthy ones, and the restoration of its expression has been shown to exert antiproliferative effects. This work aims to evaluate the effect of the restoration of connexin 43 (Cx43 (the most ubiquitous Cx subtype expression on sunitinib (SU-induced cytotoxicity in malignant mesothelioma (MM cells. Increased Cx43 expression in an MM cell line (H28 improved the ability of SU to inhibit receptor tyrosine kinase (RTK signaling. Moreover, higher Cx43 expression promoted SU-induced apoptosis. The cell viability test revealed that Cx43 enhanced the cytotoxic effect of SU in a GJ-independent manner. The effect of Cx43 on a proapoptotic factor, Bax, was then investigated. The interaction between Cx43 and Bax was confirmed by immunoprecipitation. Furthermore, higher Cx43 expression increased the production of a cleaved (active form of Bax during SU-induced apoptosis with no alteration in total Bax expression. These findings indicate that Cx43 most likely increases sensitivity to SU in H28 through direct interaction with Bax. In conclusion, we found that Cx43 overcame the chemoresistance of MM cells.

  17. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    OpenAIRE

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-01-01

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mob...

  18. Expression of connexin 37, 40 and 43 in rat mesenteric arterioles and resistance arteries

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Mikkelsen, Hanne B; Arensbak, Birgitte

    2003-01-01

    Connexins are the protein constituents of gap junctions which mediate intercellular communication in most tissues. In arterioles gap junctions appear to be important for conduction of vasomotor responses along the vessel. Studies of the expression pattern of connexin isoforms in the microcirculat......Connexins are the protein constituents of gap junctions which mediate intercellular communication in most tissues. In arterioles gap junctions appear to be important for conduction of vasomotor responses along the vessel. Studies of the expression pattern of connexin isoforms...... in the microcirculation are sparse. We investigated the expression of the three major vascular connexins in mesenteric arterioles (diameter micro m) from male Sprague-Dawley rats, since conducted vasomotor responses have been described in these vessels. The findings were compared with those obtained from upstream...... small resistance arteries. Indirect immunofluorescence techniques were used on whole mounts of mesenteric arterioles and on frozen sections of resistance arteries (diameter approximately 300 micro m). Mesenteric arterioles expressed Cx40 and Cx43 in the endothelial layer, and Cx37 was found in most...

  19. Connexin Communication Compartments and Wound Repair in Epithelial Tissue

    Directory of Open Access Journals (Sweden)

    Marc Chanson

    2018-05-01

    Full Text Available Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.

  20. Phylogenetic and bioinformatic analysis of gap junction-related proteins, innexins, pannexins and connexins.

    Science.gov (United States)

    Fushiki, Daisuke; Hamada, Yasuo; Yoshimura, Ryoichi; Endo, Yasuhisa

    2010-04-01

    All multi-cellular animals, including hydra, insects and vertebrates, develop gap junctions, which communicate directly with neighboring cells. Gap junctions consist of protein families called connexins in vertebrates and innexins in invertebrates. Connexins and innexins have no homology in their amino acid sequence, but both are thought to have some similar characteristics, such as a tetra-membrane-spanning structure, formation of a channel by hexamer, and transmission of small molecules (e.g. ions) to neighboring cells. Pannexins were recently identified as a homolog of innexins in vertebrate genomes. Although pannexins are thought to share the function of intercellular communication with connexins and innexins, there is little information about the relationship among these three protein families of gap junctions. We phylgenetically and bioinformatically examined these protein families and other tetra-membrane-spanning proteins using a database and three analytical softwares. The clades formed by pannexin families do not belong to the species classification but do to paralogs of each member of pannexins. Amino acid sequences of pannexins are closely related to those of innexins but less to those of connexins. These data suggest that innexins and pannexins have a common origin, but the relationship between innexins/pannexins and connexins is as slight as that of other tetra-membrane-spanning members.

  1. Roles of gap junctions, connexins and pannexins in epilepsy

    Directory of Open Access Journals (Sweden)

    Shanthini eMylvaganam

    2014-05-01

    Full Text Available Enhanced gap junctional communication (GJC between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other nonspecific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43 is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45, and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions, diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by gap junctional pharmacological blockers. Although there is no doubt that connexin-based gap junctions and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to

  2. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah V Gerhart

    Full Text Available Connexins (Cx are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

  3. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?

    Science.gov (United States)

    Johnson, Robert D; Camelliti, Patrizia

    2018-03-15

    The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.

  4. Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells

    Directory of Open Access Journals (Sweden)

    Olsen Colin E

    2006-08-01

    Full Text Available Abstract Background Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332 proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC. Methods Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. Results When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. Conclusion Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.

  5. Connexin domains relevant to the chemical gating of gap junction channels

    Directory of Open Access Journals (Sweden)

    C. Peracchia

    1997-05-01

    Full Text Available Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons, each formed by the radial arrangement of six connexin (Cx proteins. Connexins span the bilayer four times (M1-M4 and have both amino- and carboxy-termini (NT, CT at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2 and one inner (IL loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2 of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R with sparagines (N at the beginning of CT (C1 greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL1 and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively

  6. Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice.

    Directory of Open Access Journals (Sweden)

    Pablo J Sáez

    Full Text Available Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1⁻/⁻ showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1⁻/⁻ hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1⁻/⁻ astrocytes also showed more intracellular Ca²⁺ signal oscillations mediated by functional connexin 43 hemichannels and P2Y₁ receptors. Therefore, Npc1⁻/⁻ astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.

  7. Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice.

    Science.gov (United States)

    Sáez, Pablo J; Orellana, Juan A; Vega-Riveros, Natalia; Figueroa, Vania A; Hernández, Diego E; Castro, Juan F; Klein, Andrés D; Jiang, Jean X; Zanlungo, Silvana; Sáez, Juan C

    2013-01-01

    Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1⁻/⁻) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1⁻/⁻ hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1⁻/⁻ astrocytes also showed more intracellular Ca²⁺ signal oscillations mediated by functional connexin 43 hemichannels and P2Y₁ receptors. Therefore, Npc1⁻/⁻ astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.

  8. Inhibition of connexin43 hemichannels impairs spatial short-term memory without affecting spatial working memory

    Directory of Open Access Journals (Sweden)

    Laura Walrave

    2016-12-01

    Full Text Available Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs. We here investigated whether interfering with connexin43 (Cx43 HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19 into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.

  9. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    Energy Technology Data Exchange (ETDEWEB)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States); Panda, Satya P., E-mail: panda@uthscsa.edu [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States)

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  10. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    International Nuclear Information System (INIS)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-01-01

    Highlights: → Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. → First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. → Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. → Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. → Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b 5 and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  11. Prolonged labour associated with lower expression of syndecan 3 and connexin 43 in human uterine tissue

    Directory of Open Access Journals (Sweden)

    Malmström Anders

    2006-05-01

    Full Text Available Abstract Background Prolonged labour is associated with greater morbidity and mortality for mother and child. Connexin 43 is a major myometrial gap junction protein found in human myometrium. Syndecan 3 seems to prevail in the human uterus among heparan sulphate proteoglycans, showing the most significant increase during labour. The aims of the present study were to investigate syndecan 3 and connexin 43 mRNA expressions and protein distributions in human uterine tissue during normal and prolonged labour. Methods Uterine isthmic biopsies were collected from non-pregnant (n = 7, term pregnant women not in labour (n = 14, in normal labour (n = 7 and in prolonged labour (n = 7. mRNA levels of syndecan 3 and connexin 43 were determined by real time RT-PCR. The localization and expression were demonstrated by immunohistochemistry and confocal microscopy. Results In women with prolonged labour, the mRNA expressions of syndecan 3 and Connexin 43 were considerably lower than the expression level at normal labour (p Conclusion The high expression of syndecan 3 and connexin 43 and their co-localization to the smooth muscle bundles during normal labour, together with the significant reduction in prolonged labour, may indicate a role for these proteins in the co-ordination of myometrial contractility.

  12. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants

    Directory of Open Access Journals (Sweden)

    Devroop Sarkar

    2014-01-01

    Full Text Available Connexin50 (Cx50 mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.

  13. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhong

    2017-05-01

    Full Text Available In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2 is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge of the crossing molecules.

  14. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Science.gov (United States)

    Zhong, Guoqiang; Akoum, Nazem; Appadurai, Daniel A.; Hayrapetyan, Volodya; Ahmed, Osman; Martinez, Agustin D.; Beyer, Eric C.; Moreno, Alonso P.

    2017-01-01

    In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules. PMID:28611680

  15. [Connexin gene 26 (GJB2) mutations in patients with hereditary non-syndromic sensorineural loss of hearing in the Republic of Sakha (Yakutia)].

    Science.gov (United States)

    Barashkov, N A; Dzhemileva, L U; Fedorova, S A; Maksimova, N R; Khusnutdinova, E K

    2008-01-01

    The aim of the study was to elucidate the causes of hereditary non-syndromic loss of hearing, a frequent monogene pathology in the Republic of Sakha (Yakutia). A search for mutations in the coding sequence of the connexin 26 gene gap-junction B2 (GJB2) was undertaken in 79 members of 65 unrelated families with the diagnosis of grade III-IV non-syndromic bilateral sensorineural loss of hearing. Five recessive mutations (35delG, V371, 312-326del14, 333-334delAA, R127H) and three polymorphic variants (V271, M34T, E114G) were identified in Yakut patients. Mutations 35delG (41.7%), 312-326dell4 (4.2%), and 333-334delAA (4.2%) were found in Caucasian patients (Russians, Ukrainians, Inguish). Yakuts were carriers of mutations 35delG (2.1%), V371 (2.1%), R127H (1.0%) and sequence variants V271 (6.3%), M34T (1.0%), E114G (1.0%). GJB2 mutations were identified in 50.1% of the Caucasian patients and in 7.2% of the Yakut patients. The low frequency of GJB2 mutations in Yakuts with non-syndromic sensorineural loss of hearing testifies to the presence of mutations of other genes controlling sound perception in this population.

  16. Regulation of Connexin-Based Channels by Fatty Acids

    Science.gov (United States)

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  17. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein

    NARCIS (Netherlands)

    Giepmans, B N; Moolenaar, W H

    1998-01-01

    Gap junctions mediate cell-cell communication in almost all tissues and are composed of channel-forming integral membrane proteins, termed connexins [1-3]. Connexin43 (Cx43) is the most widely expressed and the most well-studied member of this family. Cx43-based cell-cell communication is regulated

  18. Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Mohammad Abbasian

    2013-11-01

    Full Text Available Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx. Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of various central nervous system (CNS diseases, like multiple sclerosis, Alzheimer's disease and epilepsy. Neuroinflammation causes change in Connexins expression. Hippocampus, one of the main brain regions with a wide network of Gap junctions between different neural cell types, has particular vulnerability to damage and consequent inflammation. Cx32 – among Connexins– is expressed in hippocampal Olygodandrocytes and some neural subpopulations. Although multiple lines of evidence indicate that there is an association between neuroinflammation and the expression of connexin, the direct effect of neuroinflammation on the expression of connexins has not been well studied. In the present study, the effect of neuroinflammation induced by the Lipopolysaccharide (LPS on Cx32 gene and protein expressions in rat hippocampus is evaluated. Methods: LPS (2.5μg/rat was infused into the rat cerebral ventricles for 14 days. Cx32 mRNA and protein levels were measured by Real Time PCR and Western Blot after 1st, 7th and 14th injection of LPS in the hippocampus. Results: Significant increase in Cx32 mRNA expression was observed after 7th injection of LPS (P<0.001. However, no significant change was observed in Cx32 protein level. Conclusion: LPS seems to modify Cx32 GJ communication in the hippocampus at transcription level but not at translation or post-translation level. In order to have a full view concerning modification of Cx32 GJ communication, effect of LPS on Cx32 channel gating should also be determined.

  19. Connexins in Prostate Cancer Initiation and Progression

    Science.gov (United States)

    2013-11-01

    Connexin43 in the Failing Heart . Circ Res, 106, 1153-1163. 69. Bejiarno,E., Girao,H., Yuste,A., Patel,B., Marques,C., Spray,D., Pereira,P., and...Roth C, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitam A deficeincy. Effects of restoriation of vitamin A at...the syndrome of malformations induced by maternal vitamin A deficeincy. Effects of restoriation of vitamin A at varruous times during gestation. Am J

  20. Connexin43 orthologues in vertebrates: phylogeny from fish to man

    NARCIS (Netherlands)

    van der Heyden, Marcel A. G.; van Eijk, Marleen; Wilders, Ronald; de Bakker, Jacques M. T.; Opthof, Tobias

    2004-01-01

    The gap junction protein connexin43 (Cx43) is widely expressed in all vertebrate species; however, in ventricular myocardium, Cx43 expression is restricted to mammalian species only, where it provides the molecular correlate for both electrical conduction and synchronization of the repolarization

  1. Association of connexin43 with a receptor protein tyrosine phosphatase

    NARCIS (Netherlands)

    Giepmans, Ben N G; Feiken, Elles; Gebbink, Martijn F B G; Moolenaar, Wouter H

    2003-01-01

    Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap

  2. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the

  3. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    Full Text Available Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases

  4. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    Science.gov (United States)

    Liu, Shuo; Niger, Corinne; Koh, Eugene Y; Stains, Joseph P

    2015-01-01

    Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs) could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis)-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases like

  5. Altered Connexin 43 and Connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole.

    Science.gov (United States)

    Grippo, Angela J; Moffitt, Julia A; Henry, Matthew K; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles - a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n = 22) or control (paired, n = 23) conditions (4 weeks), alone or in combination with chronic mild stress (CMS) (1 week). Social isolation, versus paired control conditions, produced significantly (p Social isolation (alone) reduced (p social and environmental stress in the prairie vole.

  6. Prolongation of atrio-ventricular node conduction in a rabbit model of ischaemic cardiomyopathy: Role of fibrosis and connexin remodelling.

    Science.gov (United States)

    Nisbet, Ashley M; Camelliti, Patrizia; Walker, Nicola L; Burton, Francis L; Cobbe, Stuart M; Kohl, Peter; Smith, Godfrey L

    2016-05-01

    Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte-non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.

    Science.gov (United States)

    Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo

    2017-07-22

    Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Connexins and the kidney

    DEFF Research Database (Denmark)

    Hanner, Fiona; Sørensen, Charlotte Mehlin; Holstein-Rathlou, Niels-Henrik

    2010-01-01

    Connexins (Cxs) are widely-expressed proteins that form gap junctions in most organs, including the kidney. In the renal vasculature, Cx37, Cx40, Cx43, and Cx45 are expressed, with predominant expression of Cx40 in the endothelial cells and Cx45 in the vascular smooth muscle cells. In the tubules......, the major function of Cxs in the kidney appears to be intercellular communication, although they may also form hemichannels that allow cellular secretion of large signaling molecules. Renal Cxs facilitate vascular conduction, juxtaglomerular apparatus calcium signaling, and tubular purinergic signaling....... Accordingly, current evidence points to roles for these Cxs in several important regulatory mechanisms in the kidney, including the renin angiotensin system, tubuloglomerular feedback, and salt and water reabsorption. At the systemic level, renal Cxs may help regulate blood pressure and may be involved...

  9. Role of connexin 32 hemichannels in the release of ATP from peripheral nerves.

    Science.gov (United States)

    Nualart-Marti, Anna; del Molino, Ezequiel Mas; Grandes, Xènia; Bahima, Laia; Martin-Satué, Mireia; Puchal, Rafel; Fasciani, Ilaria; González-Nieto, Daniel; Ziganshin, Bulat; Llobet, Artur; Barrio, Luis C; Solsona, Carles

    2013-12-01

    Extracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration-evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X-linked form of Charcot-Marie-Tooth disease, suggesting that purinergic-mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. Copyright © 2013 Wiley Periodicals, Inc.

  10. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia.

    NARCIS (Netherlands)

    Paznekas, W.A.; Boyadjiev, S.A.; Shapiro, R.E.; Daniëls, O.; Wollnik, B.; Keegan, C.E.; Innis, J.W.; Dinulos, M.B.; Christian, C.; Hannibal, M.C.; Jabs, E.W.

    2003-01-01

    Gap junctions are assemblies of intercellular channels that regulate a variety of physiologic and developmental processes through the exchange of small ions and signaling molecules. These channels consist of connexin family proteins that allow for diversity of channel composition and conductance

  11. Studies on level of cytokines and expression of connexin43 in tumor and normal cells in culture conditions

    International Nuclear Information System (INIS)

    Asati, V.; Pandey, B.N.

    2016-01-01

    Factors secreted from the tumor cells in culture medium have been known to facilitate the growth of fresh cultures and also to affect the cellular radio-sensitivity. Moreover, expression of gap junction proteins like connexin-43 is known as a key player in cell survival and proliferation. The present study is aimed to evaluate the effects of conditioned medium on the growth of respective tumor/normal cells and the expression of connexin-43 in these cells

  12. The long-term effects of FSH and triiodothyronine administration during the pubertal period on Connexin 43 expression and spermatogenesis efficiency in adult rats.

    Science.gov (United States)

    Marchlewska, Katarzyna; Slowikowska-Hilczer, Jolanta; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Filipiak, Eliza; Kula, Krzysztof

    2015-04-01

    Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Hyperstimulation of both hormones evokes regressional changes in connexin 43 expression and the seminiferous epithelium in young rats during testicular maturation. However, separate treatments with T3 reduce Sertoli cell number, which seems to be closely connected with the maturation of connexin 43 gap junctions. FSH elevates Sertoli cell number and function, but this effect may take place regardless of the presence of connexin 43-dependent intercellular communication. The aim of the study was to evaluate the later effects of such treatments. Newborn, male Wistar rats were divided randomly into experimental groups receiving daily subcutaneous injections of either 7.5 IU/animal FSH, or 100 mg/kg b.w. T3, or both substances or the same volume of vehicle (control group) until day 15 of life. The animals were sacrificed on day 50. Morphometric analysis and immunohistochemical reactions were performed using antibodies against Vimentin, Proliferating Cell Nuclear Antigen and Connexin 43 in the testis. Sertoli cell count, efficiency of spermatogenesis, and hormonal pattern were examined. Disturbances in the connexin 43 expression reduced the number of Sertoli cells, the efficiency of spermatogenesis and impaired endocrine function of testes in adult rats treated with FSH and T3 during puberty. Stimulation with FSH alone increased Sertoli cell number, but was associated with a negative effect on cell-to-cell connexin 43-dependent communication, with a consequential reduction of spermatogenesis efficiency. J. Exp. Zool. 323A: 256-265, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Connexin 50 Mutation Lowers Blood Pressure in Spontaneously Hypertensive Rat

    Czech Academy of Sciences Publication Activity Database

    Šeda, Ondřej; Liška, F.; Pravenec, Michal; Vernerová, Z.; Kazdová, L.; Křenová, D.; Zídek, Václav; Šedová, Lucie; Krupková, M.; Křen, V.

    2017-01-01

    Roč. 66, č. 1 (2017), s. 15-28 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/12/0696 Institutional support: RVO:68378050 ; RVO:67985823 Keywords : Connexin * Hypertension * Transcriptome * Animal models * Insulin resistance Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cardiac and Cardiovascular systems; Cardiac and Cardiovascular systems (FGU-C) Impact factor: 1.461, year: 2016

  14. Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation

    International Nuclear Information System (INIS)

    Choudhary, Mayur; Naczki, Christine; Chen, Wenhong; Barlow, Keith D.; Case, L. Douglas; Metheny-Barlow, Linda J.

    2015-01-01

    Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation. Mural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43. Using parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support

  15. Regulation of connexins expression levels by microRNAs, an update

    Directory of Open Access Journals (Sweden)

    Juan Francisco Calderon

    2016-11-01

    Full Text Available Control of cell-cell coordination and communication is regulated by several factors, including paracrine and autocrine release of biomolecules, and direct exchange of soluble factors between cells through gap junction channels. Additionally, hemichannels also participate in cell-cell coordination through the release of signaling molecules, such as ATP and glutamate. A family of transmembrane proteins named connexins forms both gap junction channels and hemichannels. Because of their importance in cell and tissue coordination, connexins are controlled both by post-translational and post-transcriptional modifications. In recent years, non-coding RNAs have garnered research interest due to their ability to exert post-transcriptional regulation of gene expression. One of the most recent, well-documented control mechanisms of protein synthesis is found through the action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs. Put simply, miRNAs are negative regulators of the expression of a myriad proteins involved in many physiological and pathological processes. This mini review will briefly summarize what is currently known about the action of miRNAs over Cxs expression/function in different organs under some relevant physiological and pathological conditions

  16. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication

    Science.gov (United States)

    Li, Hanjun; Spagnol, Gaelle; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2014-01-01

    ABSTRACT Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health. PMID:24849651

  17. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication

    Science.gov (United States)

    Garciarena, Carolina D.; Malik, Akif; Swietach, Pawel; Moreno, Alonso P.; Vaughan-Jones, Richard D.

    2018-01-01

    Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue’s metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels—the major isoform in the heart and brain—is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel–mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid–base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.—Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication. PMID:29183963

  18. Fluoxetin Upregulates Connexin 43 Expression in Astrocyte

    Directory of Open Access Journals (Sweden)

    Hossein Mostafavi

    2014-02-01

    Full Text Available Introduction: Recent studies have shown that astrocytes play major roles in normal and disease condition of the central nervous system including multiple sclerosis (MS. Molecular target therapy studies in MS have revealed that connexin-43 (Cx43 and Aquaporin-4 (AQP4 contents of astrocytes undergo expression alteration. Fluoxetine had some effects in MS patients unrelated to its known antidepressant effects. Some of fluoxetine effects were attributed to its capability of cAMP signaling pathway stimulation. This study aimed to investigate possible acute effects of fluoxetine on Cx43 and AQP4 expression in astrocyte.  Methods: Astrocytoma cells were treated for 24 hours with fluoxetine (10 and 20 &mug/ml with or without adenyl cyclase (AC and protein kinase A (PKA inhibition. Cx43 expression at both mRNA and protein levels and AQP4 expression at mRNA level were evaluated.  Results: Acquired results showed that fluoxetine with and without AC and PKA inhibition resulted in Cx43 up-regulation both in mRNA and protein levels, whereas AQP4 expression have not changed.  Discussion: In conclusion, data showed that fluoxetine alone and in the absence of serotonin acutely up-regulated Cx43 expression in astrocytes that can be assumed in molecular target therapy of MS patients. It seems that cAMP involvement in fluoxetine effects need more researches.

  19. A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain.

    Science.gov (United States)

    Somaraju Chalasani, Madhavi Latha; Muppirala, Madhavi; G Ponnam, Surya Prakash; Kannabiran, Chitra; Swarup, Ghanshyam

    2013-01-01

    Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.

  20. Knockdown of connexin43-mediated regulation of the zone of polarizing activity in the developing chick limb leads to digit truncation.

    Science.gov (United States)

    Law, Lee Yong; Lin, Jun Sheng; Becker, David L; Green, Colin R

    2002-12-01

    In the developing chick wing, the use of antisense oligodeoxynucleotides to transiently knock down the expression of the gap junction protein, connexin43 (Cx43), results in limb patterning defects, including deletion of the anterior digits. To understand more about how such defects arise, the effects of transient Cx43 knockdown on the expression patterns of several genes known to play pivotal roles in limb formation were examined. Sonic hedgehog (Shh), which is normally expressed in the zone of polarizing activity (ZPA) and is required to maintain both the ZPA and the apical ectodermal ridge (AER), was found to be downregulated in treated limbs within 30 h. Bone morphogenetic protein-2 (Bmp-2), a gene downstream of Shh, was similarly downregulated. Fibroblast growth factor-8 expression, however, was unaltered 30 h after treatment but was greatly reduced at 48 h post-treatment, when the AER begins to regress. Expressions of Bmp-4 and Muscle segment homeobox-like gene (Msx-1) were not affected at any of the time points examined. Cx43 expression is therefore involved in some, but not all patterning cascades, and appears to play a role in the regulation of ZPA activity.

  1. Sex differences in connexin-43 expression in left ventricles of aging rats

    Czech Academy of Sciences Publication Activity Database

    Tribulová, N.; Dupont, E.; Soukup, Tomáš; Okruhlicová, L.; Severs, N. J.

    2005-01-01

    Roč. 54, č. 6 (2005), s. 705-708 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/05/0327 Grant - others:MYORES(XE) 511978; CZ-SK(CZ) 02-2004-05 Institutional research plan: CEZ:AV0Z50110509 Keywords : connexin-43 * rat cardiomyocytes * male and female specificity Subject RIV: ED - Physiology Impact factor: 1.806, year: 2005

  2. Na,K-ATPase regulates intercellular communication in the vascular wall via cSrc kinase dependent connexin43 phosphorylation

    DEFF Research Database (Denmark)

    Hangaard, Lise; Bouzinova, Elena; Stæhr, Christian Albeck

    2017-01-01

    Communication between vascular smooth muscle cells (VSMCs) is dependent on gap junctions and is regulated by the Na-K-ATPase. The Na-K-ATPase is therefore important for synchronized VSMC oscillatory activity, i.e., vasomotion. The signaling between the Na-K-ATPase and gap junctions is unknown. We...... coupling in rat mesenteric small arteries in vitro. Phosphorylation of cSrc kinase and connexin43 (Cx43) were semiquantified by Western blotting. Micromole concentration of ouabain reduced the amplitude of norepinephrine-induced vasomotion and desynchronized Ca2+ transients in VSMC in the arterial wall...

  3. Effect of Beta-Carotene on Oxidative Stress and Expression of Cardiac Connexin 43

    Energy Technology Data Exchange (ETDEWEB)

    Novo, Rosangela; Azevedo, Paula S.; Minicucci, Marcos F.; Zornoff, Leonardo A. M., E-mail: lzornoff@fmb.unesp.br; Paiva, Sergio A. R. [Faculdade de Medicina de Botucatu - Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Botucatu, SP (Brazil)

    2013-09-15

    Intervention studies have shown an increased mortality in patients who received beta-carotene. However, the mechanisms involved in this phenomenon are still unknown. Evaluate the influence of beta-carotene on oxidative stress and the expression of connexin 43 in rat hearts. Wistar rats, weighing approximately 100 g, were allocated in two groups: Control Group (n = 30), that received the diet routinely used in our laboratory, and Beta-Carotene Group (n = 28), which received beta-carotene (in crystal form, added and mixed to the diet) at a dose of 500 mg of beta carotene/kg of diet. The animals received the treatment until they reached 200-250g, when they were sacrificed. Samples of blood, liver and heart were collected to perform Western blotting and immunohistochemistry for connexin 43; morphometric studies, dosages of beta carotene by high performance liquid chromatography as well as reduced glutathione, oxidized glutathione and lipids hydroperoxides were performed by biochemical analysis. Beta-carotene was detected only in the liver of Beta-Carotene Group animals (288 ± 94.7 μg/kg). Levels of reduced/ oxidized glutathione were higher in the liver and heart of Beta-Carotene Group animals (liver - Control Group: 42.60 ± 1.62; liver - Beta-Carotene Group: 57.40 ± 5.90; p = 0.04; heart: - Control Group: 117.40 ± 1.01; heart - Beta-Carotene Group: 121.81 ± 1.32 nmol/mg protein; p = 0.03). The content of total connexin 43 was larger in Beta-Carotene Group. Beta-carotene demonstrated a positive effect, characterized by the increase of intercellular communication and improvement of anti-oxidizing defense system. In this model, mechanism does not explain the increased mortality rate observed with the beta-carotene supplementation in clinical studies.

  4. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    Science.gov (United States)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  5. Dynamic changes in connexin expression following engraftment of neural stem cells to striatal tissue

    International Nuclear Information System (INIS)

    Jaederstad, Johan; Jaederstad, Linda Maria; Herlenius, Eric

    2011-01-01

    Gap-junctional intercellular communication between grafted neural stem cells (NSCs) and host cells seem to be essential for many of the beneficial effects associated with NSC engraftment. Utilizing murine NSCs (mNSCs) grafted into an organotypic ex vivo model system for striatal tissue we examined the prerequisites for formation of gap-junctional couplings between graft and host cells at different time points following implantation. We utilized flow cytometry (to quantify the proportion of connexin (Cx) 26 and 43 expressing cells), immunohistochemistry (for localization of the gap-junctional proteins in graft and host cells), dye-transfer studies with and without pharmacological gap-junctional blockers (assaying the functionality of the formed gap-junctional couplings), and proliferation assays (to estimate the role of gap junctions for NSC well-being) to this end. Immunohistochemical staining and dye-transfer studies revealed that the NSCs already form functional gap junctions prior to engraftment, thereby creating a substrate for subsequent graft and host communication. The expression of Cx43 by grafted NSCs was decreased by neurotrophin-3 overexpression in NSCs and culturing of grafted tissue in serum-free Neurobasal B27 medium. Cx43 expression in NSC-derived cells also changed significantly following engraftment. In host cells the expression of Cx43 peaked following traumatic stimulation and then declined within two weeks, suggesting a window of opportunity for successful host cell rescue by NSC engraftment. Further investigation of the dynamic changes in gap junction expression in graft and host cells and the associated variations in intercellular communication between implanted and endogenous cells might help to understand and control the early positive and negative effects evident following neural stem cell transplantation and thereby optimize the outcome of future clinical NSC transplantation therapies.

  6. Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias

    NARCIS (Netherlands)

    Fernandes, Sarah; van Rijen, Harold V. M.; Forest, Virginie; Evain, Stéphane; Leblond, Anne-Laure; Mérot, Jean; Charpentier, Flavien; de Bakker, Jacques M. T.; Lemarchand, Patricia

    2009-01-01

    Cell-based therapies have great potential for the treatment of cardiovascular diseases. Recently, using a transgenic mouse model Roell et al. reported that cardiac engraftment of connexin43 (Cx43)-overexpressing myoblasts in vivo prevents post-infarct arrhythmia, a common cause of death in patients

  7. Connexin43 hemichannels contributes to the disassembly of cell junctions through modulation of intracellular oxidative status

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2016-10-01

    Full Text Available Connexin (Cx hemichannels regulate many cellular processes with little information available regarding their mechanisms. Given that many pathological factors that activate hemichannels also disrupts the integrity of cellular junctions, we speculated a potential participation of hemichannels in the regulation of cell junctions. Here we tested this hypothesis. Exposure of renal tubular epithelial cells to Ca2+-free medium led to disassembly of tight and adherens junctions, as indicated by the reduced level of ZO-1 and cadherin, disorganization of F-actin, and severe drop in transepithelial electric resistance. These changes were preceded by an activation of Cx43 hemichannels, as revealed by extracellular efflux of ATP and intracellular influx of Lucifer Yellow. Inhibition of hemichannels with chemical inhibitors or Cx43 siRNA greatly attenuated the disassembly of cell junctions. Further analysis using fetal fibroblasts derived from Cx43 wide-type (Cx43+/+, heterozygous (Cx43+/- and knockout (Cx43-/- littermates showed that Cx43-positive cells (Cx43+/+ exhibited more dramatic changes in cell shape, F-actin, and cadherin in response to Ca2+ depletion, as compared to Cx43-null cells (Cx43-/-. Consistently, these cells had higher level of protein carbonyl modification and phosphorylation, and much stronger activation of P38 and JNK. Hemichannel opening led to extracellular loss of the major antioxidant glutathione (GSH. Supplement of cells with exogenous GSH or inhibition of oxidative sensitive kinases largely prevented the above-mentioned changes. Taken together, our study indicates that Cx43 hemichannels promote the disassembly of cell junctions through regulation of intracellular oxidative status.

  8. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    Directory of Open Access Journals (Sweden)

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  9. Different expressions of connexin 43 and 32 in the fibroblasts of human dental pulp.

    Science.gov (United States)

    Ibuki, N; Yamaoka, Y; Sawa, Y; Kawasaki, T; Yoshida, S

    2002-06-01

    The expression and localization of gap junctional proteins connexin (Cx) 26, 32, and 43 was examined in human dental pulp. Dental pulp tissues were obtained from human third molars immediately after extraction. Some pulp tissues were used for cell culture, and the rest for histological observations. Immunostaining for cultured dental pulp fibroblasts (DPFs) showed that Cx32 and 43 were expressed in human DPFs, and proteins corresponding to 27 (Cx32) and 43kDa (Cx43) were identified by Western blot analysis. Immunostaining for tissue sections showed that the expression of Cx32 and 43 was observed in the entire region of the pulp and further strong expression of Cx32 was established beneath the cell-rich zone. Considering the close relationship between Cx types and cell functions, the results indicate that DPFs beneath the cell-rich zone may have specific, Cx32-related functions. The cell rich zone is thought to contain progenitor odontoblasts that can be induced to differentiate into mature odontoblasts in response to wounding. Therefore, it may be hypothesized that DPFs just beneath the cell-rich zone produce proteins and induce odontoblast differentiation from the cells in the cell-rich zone.

  10. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles

    DEFF Research Database (Denmark)

    Arensbak, B; Mikkelsen, Hanne Birte; Gustafsson, F

    2001-01-01

    arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern...

  11. Gap Junctions Contribute to the Regulation of Walking-Like Activity in the Adult Mudpuppy (Necturus Maculatus.

    Directory of Open Access Journals (Sweden)

    Igor Lavrov

    Full Text Available Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32, connexin 36 (Cx36, connexin 37 (Cx37, and connexin 43 (Cx43. Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.

  12. The dynamics of connexin expression, degradation and localisation are regulated by gonadotropins during the early stages of in vitro maturation of swine oocytes.

    Directory of Open Access Journals (Sweden)

    Nicolas Santiquet

    Full Text Available Gap junctional communication (GJC plays a primordial role in oocyte maturation and meiotic resumption in mammals by directing the transfer of numerous molecules between cumulus cells and the oocyte. Gap junctions are made of connexins (Cx, proteins that regulate GJC in numerous ways. Understanding the dynamic regulation of connexin arrangements during in vitro maturation (IVM could provide a powerful tool for controlling meiotic resumption and consequently in vitro development of fully competent oocytes. However, physiological events happening during the early hours of IVM may still be elucidated. The present study reports the dynamic regulation of connexin expression, degradation and localization during this stage. Cx43, Cx45 and Cx60 were identified as the main connexins expressed in swine COC. Cx43 and Cx45 transcripts were judged too static to be a regulator of GJC, while Cx43 protein expression was highly responsive to gonadotropins, suggesting that it might be the principal regulator of GJC. In addition, the degradation of Cx43 expressed after 4.5 h of IVM in response to equine chorionic gonadotropin appeared to involve the proteasomal complex. Cx43 localisation appeared to be associated with GJC. Taken together, these results show for the first time that gonadotropins regulate Cx43 protein expression, degradation and localisation in porcine COC during the first several hours of IVM. Regulation of Cx43 may in turn, via GJC, participate in the development of fully competent oocytes.

  13. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes.

    Science.gov (United States)

    Ram, Rashmi; Wescott, Andrew P; Varandas, Katherine; Dirksen, Robert T; Blaxall, Burns C

    2014-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1.

  14. Linoleic Acid Permeabilizes Gastric Epithelial Cells by Increasing Connexin43 Levels in the Cell Membrane Via a GPR40- and Akt-Dependent Mechanism

    Science.gov (United States)

    Puebla, Carlos; Cisterna, Bruno A.; Salas, Daniela P.; Delgado-López, Fernando; Lampe, Paul D.; Sáez, Juan C.

    2016-01-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintain the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  15. Proinflammatory cytokines downregulate connexin 43-gap junctions via the ubiquitin-proteasome system in rat spinal astrocytes.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2015-09-04

    Astrocytic gap junctions formed by connexin 43 (Cx43) are crucial for intercellular communication between spinal cord astrocytes. Various neurological disorders are associated with dysfunctional Cx43-gap junctions. However, the mechanism modulating Cx43-gap junctions in spinal astrocytes under pathological conditions is not entirely clear. A previous study showed that treatment of spinal astrocytes in culture with pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased both Cx43 expression and gap junction intercellular communication (GJIC) via a c-jun N-terminal kinase (JNK)-dependent pathway. The current study further elaborates the intracellular mechanism that decreases Cx43 under an inflammatory condition. Cycloheximide chase analysis revealed that TNF-α (10 ng/ml) alone or in combination with IFN-γ (5 ng/ml) accelerated the degradation of Cx43 protein in cultured spinal astrocytes. The reduction of both Cx43 expression and GJIC induced by a mixture of TNF-α and IFN-γ were blocked by pretreatment with proteasome inhibitors MG132 (0.5 μM) and epoxomicin (25 nM), a mixture of TNF-α and IFN-γ significantly increased proteasome activity and Cx43 ubiquitination. In addition, TNF-α and IFN-γ-induced activation of ubiquitin-proteasome systems was prevented by SP600125, a JNK inhibitor. Together, these results indicate that a JNK-dependent ubiquitin-proteasome system is induced under an inflammatory condition that disrupts astrocytic gap junction expression and function, leading to astrocytic dysfunction and the maintenance of the neuroinflammatory state. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Complex Subtype-Dependent Role of Connexin 43 (GJA1 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mélanie Busby

    2018-02-01

    Full Text Available Gap junction transmembrane channels allow the transfer of small molecules between the cytoplasm of adjacent cells. They are formed by proteins named connexins (Cxs that have long been considered as a tumor suppressor. This widespread view has been challenged by recent studies suggesting that the role of Connexin 43 (Cx43 in cancer is tissue- and stage-specific and can even promote tumor progression. High throughput profiling of invasive breast cancer has allowed for the construction of subtyping schemes that partition patients into at least four distinct intrinsic subtypes. This study characterizes Cx43 expression during cancer progression with each of the tumor subtypes using a compendium of publicly available gene expression data. In particular, we show that Cx43 expression depends greatly on intrinsic subtype. Tumor grade also co-varies with patient subtype, resulting in Cx43 co-expression with grade in a subtype-dependent manner. Better survival was associated with a high expression of Cx43 in unstratified and luminal tumors but with a low expression in Her2e subtype. A better understanding of Cx43 regulation in a subtype-dependent manner is needed to clarify the context in which Cx43 is associated with tumor suppression or cancer progression.

  17. The Complex Subtype-Dependent Role of Connexin 43 (GJA1) in Breast Cancer

    Science.gov (United States)

    Busby, Mélanie; Hallett, Michael T.; Plante, Isabelle

    2018-01-01

    Gap junction transmembrane channels allow the transfer of small molecules between the cytoplasm of adjacent cells. They are formed by proteins named connexins (Cxs) that have long been considered as a tumor suppressor. This widespread view has been challenged by recent studies suggesting that the role of Connexin 43 (Cx43) in cancer is tissue- and stage-specific and can even promote tumor progression. High throughput profiling of invasive breast cancer has allowed for the construction of subtyping schemes that partition patients into at least four distinct intrinsic subtypes. This study characterizes Cx43 expression during cancer progression with each of the tumor subtypes using a compendium of publicly available gene expression data. In particular, we show that Cx43 expression depends greatly on intrinsic subtype. Tumor grade also co-varies with patient subtype, resulting in Cx43 co-expression with grade in a subtype-dependent manner. Better survival was associated with a high expression of Cx43 in unstratified and luminal tumors but with a low expression in Her2e subtype. A better understanding of Cx43 regulation in a subtype-dependent manner is needed to clarify the context in which Cx43 is associated with tumor suppression or cancer progression. PMID:29495625

  18. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Steven C., E-mail: bug@uw.edu [Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109 (United States); University of Washington Department of Biochemistry, 1959 NE Pacific St., Seattle, WA 98195 (United States); Kennedy, Brian K., E-mail: bkennedy@buckinstitute.org [University of Washington Department of Biochemistry, 1959 NE Pacific St., Seattle, WA 98195 (United States); Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945 (United States); Lampe, Paul D., E-mail: plampe@fhcrc.org [Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2013-04-01

    An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna{sup −/−} mouse embryonic fibroblasts (MEFs) compared to Lmna{sup +/+}, and 1.8-fold more pERK1/2 co-precipitated from Lmna{sup −/−} MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna{sup −/−} MEFs by immunofluorescence. In an assay of gap junctional function, Lmna{sup −/−} MEFs transferred dye to 60% fewer partners compared to Lmna{sup +/+} controls. These results are mirrored in 5–6 week-old Lmna{sup −/−} mice compared to their Lmna{sup +/+} littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna{sup −/−} background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo. - Highlights: ► Connexin43 phosphorylation plays a role in laminopathy-associated conduction defects. ► Loss of A-type lamin activity results in release of pERK1/2 from the nucleus. ► Increased cytoplasmic localization of pERK1/2 acts to phosphorylate S279/282 of Cx43. ► Phosphorylation of S279/282 on Cx43 decreases gap junction activity in cell culture. ► Mice lacking A-type lamins have increased phosphorylation on S279/282 of Cx43.

  19. THE FEATURES OF CONNEXINS EXPRESSION IN THE CELLS OF NEUROVASCLAR UNIT IN NORMAL CONDITIONS AND HYPOXIA IN VITRO

    Directory of Open Access Journals (Sweden)

    A. V. Morgun

    2014-01-01

    Full Text Available The aim of this research was to assess a role of connexin 43 (Cx43 and associated molecule CD38 in the regulation of cell-cell interactions in the neurovascular unit (NVU in vitro in physiological conditions and in hypoxia.Materials and methods. The study was done using the original neurovascular unit model in vitro. The NVU consisted of three cell types: neurons, astrocytes, and cerebral endothelial cells derived from rats. Hypoxia was induced by incubating cells with sodium iodoacetate for 30 min at37 °C in standard culture conditions.Results. We investigated the role of connexin 43 in the regulation of cell interactions within the NVU in normal and hypoxic injury in vitro. We found that astrocytes were characterized by high levels of expression of Cx43 and low level of CD38 expression, neurons demonstrated high levels of CD38 and low levels of Cx43. In hypoxic conditions, the expression of Cx43 and CD38 in astrocytes markedly increased while CD38 expression in neurons decreased, however no changes were found in endothelial cells. Suppression of Cx43 activity resulted in down-regulation of CD38 in NVU cells, both in physiological conditions and at chemical hypoxia.Conclusion. Thus, the Cx-regulated intercellular NAD+-dependent communication and secretory phenotype of astroglial cells that are the part of the blood-brain barrier is markedly changed in hypoxia.

  20. Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36

    Science.gov (United States)

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.

    2014-08-01

    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single-channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i.

  1. Changes in Expression of Connexin 32, Bile Canaliculus-Like Structures, and Localization of Alkaline Phosphatase in Primary Cultures of Fetal Rat Hepatocytes

    International Nuclear Information System (INIS)

    Fukazawa, Shoko; Chida, Kohsuke; Taguchi, Meiko; Takeuchi, Akihiro; Ikeda, Noriaki

    2013-01-01

    We devised an experimental design in primary cultures of fetal rat hepatocytes for studying hepatocyte differentiation over a short period. In the present study, hepatocytes were first cultured for 3 days in dexamethasone-supplemented medium and then for an additional 3 days in dexamethasone- or epidermal growth factor-supplemented medium. In hepatocytes cultured continuously in dexamethasone-supplemented medium, the expression of connexin 32 increased and bile canaliculus-like structures and localization of alkaline phosphatase in the plasma membrane around bile canaliculus-like structures were maintained. Few cells incorporated bromodeoxyuridine. On the other hand, in most of the hepatocytes cultured in epidermal growth factor-supplemented medium, the expression of connexin 32 was minimally recognized, bile canaliculus-like structures were shortened or eliminated, and alkaline phosphatase was localized as numerous fine spots throughout the cytoplasm. More than 20% of all hepatocytes incorporated bromodeoxyuridine. The present study suggests that in hepatocytes, there is a close relationship among connexin 32 expression, the maintenance of bile canaliculus-like structures, and the localization of alkaline phosphatase to the plasma membrane around the bile canaliculus-like structures, and this indicates that the present experimental model is useful for studying hepatocyte differentiation over a short period

  2. Multifaceted Roles of Connexin 43 in Stem Cell Niches.

    Science.gov (United States)

    Genet, Nafiisha; Bhatt, Neha; Bourdieu, Antonin; Hirschi, Karen K

    2018-01-01

    Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.

  3. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice.

    Science.gov (United States)

    Choi, Sheu-Ran; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

    2016-12-01

    We have previously shown using a spinal cord injury (SCI) model that gap junctions contribute to the early spread of astrocyte activation in the lumbar spinal cord and that this astrocyte communication plays critical role in the induction of central neuropathic pain. Sigma-1 receptors (Sig-1Rs) have been implicated in spinal astrocyte activation and the development of peripheral neuropathic pain, yet their contribution to central neuropathic pain remains unknown. Thus, we investigated whether SCI upregulates spinal Sig-1Rs, which in turn increase the expression of the astrocytic gap junction protein, connexin 43 (Cx43) leading to the induction of central neuropathic pain. A thoracic spinal cord hemisection significantly increased both astrocyte activation and Cx43 expression in lumbar dorsal horn. Sig-1Rs were also increased in lumbar dorsal horn astrocytes, but not neurons or microglia. Intrathecal injection of an astrocyte metabolic inhibitor (fluorocitrate); a gap junction/hemichannel blocker (carbenoxolone); or a Cx43 mimetic peptide ( 43 Gap26) significantly reduced SCI-induced bilateral below-level mechanical allodynia. Blockade of Sig-1Rs with BD1047 during the induction phase of pain significantly suppressed the SCI-induced development of mechanical allodynia, astrocyte activation, increased expression of Cx43 in both total and membrane levels, and increased association of Cx43 with Sig-1R. However, SCI did not change the expression of oligodendrocyte (Cx32) or neuronal (Cx36) gap junction proteins. These findings demonstrate that SCI activates astrocyte Sig-1Rs leading to increases in the expression of the gap junction protein, Cx43 and astrocyte activation in the lumbar dorsal horn, and ultimately contribute to the induction of bilateral below-level mechanical allodynia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Wang

    2014-04-01

    Full Text Available The use of preferentially tumor-targeting bacteria as vectors is one of the most innovative approaches for the treatment of cancer. This method is based on the observation that some obligate or facultative anaerobic bacteria are capable of selectively multiplying in tumors and inhibiting their growth. Previously, we found that the tumor-targeting efficiency of Salmonella could be modulated by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride (PAH, and these organisms are designated PAH-S.C. (S. choleraesuis. PAH can provide a useful platform for the chemical modification of Salmonella, perhaps by allowing a therapeutic gene to bind to tumor-targeting Salmonella. This study aimed to investigate the benefits of the use of PAH-S.C. for gene delivery. To evaluate this modulation, the invasion activity and gene transfer of DNA-PAH-S.C. were measured in vitro and in vivo. Treatment with PAH-S.C. carrying a tumor suppressor gene (connexin 43 resulted in inhibition of tumor growth, which suggested that tumor-targeted gene therapy using PAH-S.C. carrying a therapeutic gene could exert antitumor activities. This technique represents a promising strategy for the treatment of tumors.

  5. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    Qin eXu

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  6. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26.

    Directory of Open Access Journals (Sweden)

    Eun-Young Won

    Full Text Available Human dual-specificity phosphatase 26 (DUSP26 is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C, the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS measurements showed that DUSP26-N (C152S exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S revealed that the N-terminal region of DUSP26-N (C152S serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.

  7. Modulation of cardiac connexin-43 by omega-3 fatty acid ethyl-ester supplementation demonstrated in spontaneously diabetic rats

    Czech Academy of Sciences Publication Activity Database

    Radošinská, J.; Kurahara, L. H.; Hiraishi, K.; Viczenczová, C.; Egan Beňová, T.; Szeiffová Bačová, B.; Dosenko, V.; Navarová, J.; Obšitník, B.; Imanaga, I.; Soukup, Tomáš; Tribulová, N.

    2015-01-01

    Roč. 64, č. 6 (2015), s. 795-806 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 7AMB14SK123 Institutional support: RVO:67985823 Keywords : diabetes * omega-3 fatty acids * cardiac connexin-43 * PKC * ultrastructure Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  8. The first de novo mutation of the connexin 32 gene associated with X linked Charcot-Marie-Tooth disease

    NARCIS (Netherlands)

    Meggouh, F.; Benomar, A.; Rouger, H.; Tardieu, S.; Birouk, N.; Tassin, J.; Barhoumi, C.; Yahyaoui, M.; Chkili, T.; Brice, A.; LeGuern, E.

    1998-01-01

    X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified

  9. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  10. Hypothesis of K+-Recycling Defect Is Not a Primary Deafness Mechanism for Cx26 (GJB2 Deficiency

    Directory of Open Access Journals (Sweden)

    Hong-Bo Zhao

    2017-05-01

    Full Text Available K+-recycling defect is a long-standing hypothesis for deafness mechanism of Connexin26 (Cx26, GJB2 mutations, which cause the most common hereditary deafness and are responsible for >50% of nonsyndromic hearing loss. The hypothesis states that Cx26 deficiency may disrupt inner ear gap junctions and compromise sinking and recycling of expelled K+ ions after hair cell excitation, causing accumulation of K+-ions in the extracellular space around hair cells producing K+-toxicity, which eventually induces hair cell degeneration and hearing loss. However, this hypothesis has never been directly evidenced, even though it has been widely referred to. Recently, more and more experiments demonstrate that this hypothesis may not be a deafness mechanism underlying Cx26 deficiency. In this review article, we summarized recent advances on the K+-recycling and mechanisms underlying Cx26 deficiency induced hearing loss. The mechanisms underlying K+-sinking, which is the first step for K+-recycling in the cochlea, and Cx26 deficiency induced cochlear developmental disorders, which are responsible for Cx26 deficiency induced congenital deafness and associated with disruption of permeability of inner ear gap junctional channels to miRNAs, are also summarized and discussed.

  11. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  12. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43

    NARCIS (Netherlands)

    Boogerd, Kees-Jan; Wong, L. Y. Elaine; Christoffels, Vincent M.; Klarenbeek, Meinke; Ruijter, Jan M.; Moorman, Antoon F. M.; Barnett, Phil

    2008-01-01

    AIMS: T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering

  13. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    Science.gov (United States)

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  14. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    Science.gov (United States)

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The B[a]P-increased intercellular communication via translocation of connexin-43 into gap junctions reduces apoptosis

    International Nuclear Information System (INIS)

    Tekpli, X.; Rivedal, E.; Gorria, M.; Landvik, N.E.; Rissel, M.; Dimanche-Boitrel, M.-T.; Baffet, G.; Holme, J.A.; Lagadic-Gossmann, D.

    2010-01-01

    Gap junctions are channels in plasma membrane composed of proteins called connexins. These channels are organized in special domains between cells, and provide for direct gap junctional intercellular communication (GJIC), allowing diffusion of signalling molecules < 1 kD. GJIC regulates cell homeostasis and notably the balance between proliferation, cell cycle arrest, cell survival and apoptosis. Here, we have investigated benzo[a]pyrene (B[a]P) effects on GJIC and on the subcellular localization of the major protein of gap junction: connexin-43 (Cx43). Our results showed that B[a]P increased GJIC between mouse hepatoma Hepa1c1c7 cells via translocation of Cx43 from Golgi apparatus and lipid rafts into gap junction plaques. Interestingly, inhibition of GJIC by chlordane or small interference RNA directed against Cx43 enhanced B[a]P-induced apoptosis in Hepa1c1c7 cells. The increased apoptosis caused by inhibition of GJIC appeared to be mediated by ERK/MAPK pathway. It is suggested that B[a]P could induce transfer of cell survival signal or dilute cell death signal via regulation of ERK/MAPK through GJIC.

  16. Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain.

    Directory of Open Access Journals (Sweden)

    Carolin Giannini

    Full Text Available Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young and 24 month old (aged rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process.

  17. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility

  18. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  19. Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active α2,6-sialyltransferase.

    Science.gov (United States)

    Kajiura, Hiroyuki; Hamaguchi, Yuichi; Mizushima, Hiroki; Misaki, Ryo; Fujiyama, Kazuhito

    2015-12-01

    N-Glycosylation is an important post-translational modification in most secreted and membrane-bound proteins in eukaryotic cells. However, the insect N-glycosylation pathway and the potentials contributing to the N-glycan synthesis are still unclear because most of the studies on these subjects have focused on mammals and plants. Here, we identified Bombyx mori sialyltransferase (BmST), which is a Golgi-localized glycosyltransferase and which can modify N-glycans. BmST was ubiquitously expressed in different organs and in various stages of development and localized at the Golgi. Biochemical analysis using Sf9-expressed BmST revealed that BmST encoded α2,6-sialyltransferase and transferred N-acetylneuraminic acid (NeuAc) to the nonreducing terminus of Galβ1-R, but exhibited the highest activity toward GalNAcβ1,4-GlcNAc-R. Unlike human α2,6-sialyltransferase, BmST required the post-translational modification, especially N-glycosylation, for its full activity. N-Glycoprotein analysis of B. mori fifth instar larvae revealed that high-mannose-type structure was predominant and GlcNAc-linked and fucosylated structures were observed but endogenous galactosyl-, N-acetylgalactosaminyl- and sialyl-N-glycoproteins were undetectable under the standard analytical approach. These results indicate that B. mori genome encodes an α2,6-sialyltransferase, but further investigations of the sialylation potentials are necessary. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Connexin 43 Channels are Essential for Normal Bone Structure and Osteocyte Viability

    Science.gov (United States)

    Xu, Huiyun; Gu, Sumin; Riquelme, Manuel A.; Burra, Sirisha; Callaway, Danielle; Cheng, Hongyun; Guda, Teja; Schmitz, James; Fajardo, Roberto J.; Werner, Sherry L.; Zhao, Hong; Shang, Peng; Johnson, Mark L.; Bonewald, Lynda F.; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 serves important roles in bone function and development. Targeted deletion of Cx43 in osteoblasts or osteocytes leads to increased osteocyte apoptosis, osteoclast recruitment, and reduced biomechanical properties. Cx43 forms both gap junction channels and hemichannels, which mediate the communication between adjacent cells or between cell and extracellular environments, respectively. Two transgenic mouse models driven by a DMP1 promoter with the overexpression of dominant negative Cx43 mutants were generated to dissect the functional contribution of Cx43 gap junction channels and hemichannels in osteocytes. The R76W mutant blocks gap junction channel, but not hemichannel function, and the Δ130-136 mutant inhibits activity of both types of channels. Δ130-136 mice showed a significant increase in bone mineral density compared to WT and R76W mice. MicroCT analyses revealed a significant increase in total tissue and bone area in midshaft cortical bone of Δ130-136 mice. The bone marrow cavity was expanded, whereas the cortical thickness was increased and associated with increased bone formation along the periosteal area. However, there is no significant alteration in the structure of trabecular bone. Histologic sections of the midshaft showed increased apoptotic osteocytes in Δ130-136, but not in WT and R76W, mice which correlated with altered biomechanical and estimated bone material properties. Osteoclasts were increased along the endocortical surface in both transgenic mice with a greater effect in Δ130-136 mice which likely contributed to the increased marrow cavity. Interestingly, the overall expression of serum bone formation and resorption markers were higher in R76W mice. These findings suggest that osteocytic Cx43 channels play distinctive roles in the bone; hemichannels play a dominant role in regulating osteocyte survival, endocortical bone resorption and periosteal apposition, and gap junction communication is involved in the process of

  1. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana

    Science.gov (United States)

    Montacié, Charlotte; Durut, Nathalie; Opsomer, Alison; Palm, Denise; Comella, Pascale; Picart, Claire; Carpentier, Marie-Christine; Pontvianne, Frederic; Carapito, Christine; Schleiff, Enrico; Sáez-Vásquez, Julio

    2017-01-01

    In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity. PMID:29104584

  2. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels

    DEFF Research Database (Denmark)

    Alstrøm, Jette Skov; Stroemlund, Line Waring; Nielsen, Morten Schak

    2015-01-01

    Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix...... and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current...... knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results....

  3. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    KAUST Repository

    Ren, Jian; Wang, Xuhui; Wang, Guangchao; Wu, Junhua

    2013-01-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication

  4. Differential expression and localization of four connexins in the ovary of the ayu (Plecoglossus Altivelis)

    Science.gov (United States)

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Itoh, F.; Patino, R.

    2007-01-01

    The post-vitellogenic oocytes of teleost fish are generally unresponsive to maturation-inducing hormone (MIH) until a luteinizing hormone (LH) surge stimulates sensitivity via the acquisition of oocyte-maturational competence (OMC). Heterologous gap junctions (GJs) between granulosa cells and the oocyte have been previously implicated in the regulation of oocyte maturation in various vertebrate species. Although heterologous GJ are present in ovarian follicles of ayu (Plecoglossus altivelis), their role in maturation remains unclear. In the present study, we cloned and characterized complementary DNAs for GJ protein connexin (Cx), and examined the expression pattern of Cx messenger RNAs in the ayu ovary. Four Cx cDNAs with predicted molecular masses of 32.1 (Cx32.1), 34.9 (Cx34.9), 44.1 (Cx44.1), and 44.2 (Cx44.2) kDa, respectively, were cloned. Northern blot analysis revealed that the levels of Cx44.1 and Cx44.2 transcripts were similar during the vitellogenic and ovulatory stages. Cx32.1 transcripts were more abundant during the vitellogenic stage, but their levels declined thereafter. Cx34.9 transcript levels increased during the vitellogenic stage and remained high during the acquisition of OMC. In situ hybridization revealed that Cx44.1 and Cx44.2 signals were restricted to the oocyte, whereas the Cx32.1 and Cx34.9 signals were detected in both cellular fractions. Furthermore, a dye-transfer assay revealed the presence of functional GJs between the oocytes and follicle cells. These results suggest that Cx34.9 contributes to the formation of heterologous GJs between oocytes and granulosa cells. Moreover, GJs formed by Cx34.9 may function during the LH-dependent acquisition of OMC and the MIH-dependent resumption of meiosis in ayu. ?? 2007 Wiley-Liss, Inc.

  5. Cardiac Connexin-43 and PKC Signaling in Rats With Altered Thyroid Status Without and With Omega-3 Fatty Acids Intake

    Czech Academy of Sciences Publication Activity Database

    Szeiffová Bačová, B.; Egan Beňová, T.; Viczenczová, C.; Soukup, Tomáš; Rauchová, Hana; Pavelka, Stanislav; Knezl, V.; Barančík, M.; Tribulová, N.

    2016-01-01

    Roč. 65, Suppl.1 (2016), S77-S90 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : thyroid hormones * cardiac arrhythmias * Connexin-43 * omega-3 polyunsaturated fatty acids Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  6. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  7. Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera).

    Science.gov (United States)

    Wang, Li; Li, Gang; Wang, Jinhong; Ye, Shaohui; Jones, Gareth; Zhang, Shuyi

    2009-04-01

    Gap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.

  8. Synthesis and Cytotoxic Activity of Some New 2,6-Substituted Purines

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Kode

    2011-07-01

    Full Text Available A seriesof twenty four acyclic unsaturated 2,6-substututed purines 5a-20b were synthesized. These compounds were evaluated for cytotoxic activity against NCI-60 DTP human tumor cell line screen at 10µMconcentration. N9-[(Z-4'-chloro-2'-butenyl-1'-yl]-2,6-dichloropurine(5a, N9-[4'-chloro-2'-butynyl-1'-yl]-2,6-dichloropurine(10a, N9-[(E-2',3'-dibromo-4'-chloro-2'-butenyl-1'-yl]-6-methoxypurine(14and N9-[4'-chloro-2'-butynyl-1'-yl]-6-(4-methoxyphenyl-purine(19exhibited highly potent cytotoxic activity with GI50 values in the 1–5 µM range for most human tumor cell lines. Other compounds exhibited moderate activity.

  9. Characterization of a Novel Water Pocket Inside the Human Cx26 Hemichannel Structure

    Science.gov (United States)

    Araya-Secchi, Raul; Perez-Acle, Tomas; Kang, Seung-gu; Huynh, Tien; Bernardin, Alejandro; Escalona, Yerko; Garate, Jose-Antonio; Martínez, Agustin D.; García, Isaac E.; Sáez, Juan C.; Zhou, Ruhong

    2014-01-01

    Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket—termed the IC pocket—located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. PMID:25099799

  10. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury

    DEFF Research Database (Denmark)

    Lee, I. Hui; Lindqvist, Eva; Kiehn, Ole

    2005-01-01

    Spinal cord injury induces a complex cascade of degenerative and remodeling events evolving over time. The possible roles of changed intercellular communication via gap junctions after spinal cord injury (SCI) have remained relatively unexplored. We investigated the temporospatial expression...... patterns of gap junctional genes and proteins, connexin 43 (Cx43), Cx36, and Cx32, by in situ hybridization and immunohistochemistry in the rat neonatal, adult normal, and adult injured spinal cord. Cx36 was strongly expressed in immature neurons, and levels declined markedly during development, whereas Cx...

  11. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Katsuhisa Masaki

    Full Text Available BACKGROUND: Multiple sclerosis (MS and neuromyelitis optica (NMO occasionally have an extremely aggressive and debilitating disease course; however, its molecular basis is unknown. This study aimed to determine a relationship between connexin (Cx pathology and disease aggressiveness in Asian patients with MS and NMO. METHODS/PRINCIPAL FINDINGS: Samples included 11 autopsied cases with NMO and NMO spectrum disorder (NMOSD, six with MS, and 20 with other neurological diseases (OND. Methods of analysis included immunohistochemical expression of astrocytic Cx43/Cx30, oligodendrocytic Cx47/Cx32 relative to AQP4 and other astrocytic and oligodendrocytic proteins, extent of demyelination, the vasculocentric deposition of complement and immunoglobulin, and lesion staging by CD68 staining for macrophages. Lesions were classified as actively demyelinating (n=59, chronic active (n=58 and chronic inactive (n=23. Sera from 120 subjects including 30 MS, 30 NMO, 40 OND and 20 healthy controls were examined for anti-Cx43 antibody by cell-based assay. Six NMO/NMOSD and three MS cases showed preferential loss of astrocytic Cx43 beyond the demyelinated areas in actively demyelinating and chronic active lesions, where heterotypic Cx43/Cx47 astrocyte oligodendrocyte gap junctions were extensively lost. Cx43 loss was significantly associated with a rapidly progressive disease course as six of nine cases with Cx43 loss, but none of eight cases without Cx43 loss regardless of disease phenotype, died within two years after disease onset (66.7% vs. 0%, P=0.0090. Overall, five of nine cases with Cx43 loss and none of eight cases without Cx43 loss had distal oligodendrogliopathy characterized by selective myelin associated glycoprotein loss (55.6% vs. 0.0%, P=0.0296. Loss of oligodendrocytic Cx32 and Cx47 expression was observed in most active and chronic lesions from all MS and NMO/NMOSD cases. Cx43-specific antibodies were absent in NMO/NMOSD and MS patients. CONCLUSIONS

  12. Inverse relationship between tumour proliferation markers and connexin expression in a malignant cardiac tumour originating from mesenchymal stem cell engineered tissue in a rat in-vivo model.

    Directory of Open Access Journals (Sweden)

    Cathleen eSpath

    2013-04-01

    Full Text Available Background: Recently, we demonstrated the beneficial effects of engineered heart tissues for the treatment of dilated cardiomyopathy in rats. For further development of this technique we started to produce engineered tissue (ET from mesenchymal stem cells. Interestingly, we observed a malignant tumour invading the heart with an inverse relationship between proliferation markers and connexin-expression.Methods: Commercial CD54+/CD90+/CD34-/CD45- bone marrow derived mesenchymal rat stem cells (cBM-MSC, characterized were used for production of mesenchymal stem-cell-ET (MSC-ET by suspending them in a collagen-I, matrigel-mixture and cultivating for 14 days with electrical stimulation. 3 MSC-ET were implanted around the beating heart of adult rats for days. Another 3 MSC-ET were produced from freshly isolated rat bone marrow derived stem cells (sBM-MSC.Results: 3 weeks after implantation of the MSC-ETs the hearts were surgically excised. While in 5/6 cases the ET was clearly distinguishable and was found as a ring containing mostly connective tissue around the heart, in 1/6 the heart was completely surrounded by a huge, undifferentiated, pleomorphic tumour originating from the cMSC-ET (cBM-MSC, classified as a high grade malignant sarcoma. Quantitatively we found a clear inverse relationship between cardiac connexin-expression (Cx43, Cx40 or Cx45 and increased Ki-67 expression (Cx43: p<0.0001, Cx45: p<0.03, Cx40: p<0.014. At the tumour-heart border there were significantly more Ki-67 positive cells (p=0.001, and only 2% Cx45 and Ki-67-expressing cells, while the other connexins were nearly completely absent (p<0.0001.Conclusions and hypothesis: These observations strongly suggest the hypothesis, that invasive tumour growth is accompanied by reduction in connexins. This implicates that gap junction communication between tumour and normal tissue is reduced or absent, which could mean that growth and differentiation signals can not be exchanged.

  13. Molecular engineering of fungal GH5 and GH26 beta-(1,4-mannanases toward improvement of enzyme activity.

    Directory of Open Access Journals (Sweden)

    Marie Couturier

    Full Text Available Microbial mannanases are biotechnologically important enzymes since they target the hydrolysis of hemicellulosic polysaccharides of softwood biomass into simple molecules like manno-oligosaccharides and mannose. In this study, we have implemented a strategy of molecular engineering in the yeast Yarrowia lipolytica to improve the specific activity of two fungal endo-mannanases, PaMan5A and PaMan26A, which belong to the glycoside hydrolase (GH families GH5 and GH26, respectively. Following random mutagenesis and two steps of high-throughput enzymatic screening, we identified several PaMan5A and PaMan26A mutants that displayed improved kinetic constants for the hydrolysis of galactomannan. Examination of the three-dimensional structures of PaMan5A and PaMan26A revealed which of the mutated residues are potentially important for enzyme function. Among them, the PaMan5A-G311S single mutant, which displayed an impressive 8.2-fold increase in kcat /KM due to a significant decrease of KM, is located within the core of the enzyme. The PaMan5A-K139R/Y223H double mutant revealed modification of hydrolysis products probably in relation to an amino-acid substitution located nearby one of the positive subsites. The PaMan26A-P140L/D416G double mutant yielded a 30% increase in kcat /KM compared to the parental enzyme. It displayed a mutation in the linker region (P140L that may confer more flexibility to the linker and another mutation (D416G located at the entrance of the catalytic cleft that may promote the entrance of the substrate into the active site. Taken together, these results show that the directed evolution strategy implemented in this study was very pertinent since a straightforward round of random mutagenesis yielded significantly improved variants, in terms of catalytic efiiciency (kcat/KM.

  14. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Joana Balça-Silva

    2017-08-01

    Full Text Available Glioblastoma (GBM is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs. This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.

  15. Functional Testing of SLC26A4 Variants—Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria

    Science.gov (United States)

    Bernardinelli, Emanuele; Nofziger, Charity; Patsch, Wolfgang; Rasp, Gerd; Paulmichl, Markus; Dossena, Silvia

    2018-01-01

    The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype. PMID:29320412

  16. The oligodendroglial precursor cell line Oli-neu represents a cell culture system to examine functional expression of the mouse gap junction gene connexin29 (Cx29

    Directory of Open Access Journals (Sweden)

    Goran Christoph Söhl

    2013-06-01

    Full Text Available The potential gap junction forming mouse connexin29 (Cx29 protein is concomitantly expressed with connexin32 (Cx32 in peripheral myelin forming Schwann cells and together with both Cx32 and connexin47 (Cx47 in oligodendrocytes of the CNS. To study the genomic structure and functional expression of Cx29, either primary cells or cell culture systems might be selected, from which the latter are easier to cultivate. Both structure and expression of Cx29 is still not fully understood. In the mouse sciatic nerve, brain and the oligodendroglial precursor cell line Oli-neu the Cx29 gene is processed in two transcript isoforms both harbouring a unique reading frame. In contrast to Cx32 and Cx47, only Cx29 protein is abundantly expressed in undifferentiated as well as differentiated Oli-neu cells but the absence of Etbr dye transfer after microinjection concealed the function of Cx29 mediated gap junction communication between those cells. Although HeLa cells stably transfected with Cx29 or Cx29-eGFP neither demonstrated any permeability for Lucifer yellow nor for neurobiotin, blocking of Etbr uptake from the media by gap junction blockers does suppose a role of Cx29 in hemi-channel function. Thus, we conclude that, due to its high abundance of Cx29 expression and its reproducible culture conditions, the oligodendroglial precursor cell line Oli-neu might constitute an appropriate cell culture system to study molecular mechanisms or putative extracellular stimuli to functionally open Cx29 channels or hemi-channels.

  17. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  18. In vitro antifungal activities of 26 plant extracts on mycelial growth of ...

    African Journals Online (AJOL)

    Antifungal activities of 26 plant extracts were tested against Phytophthora infestans using radial growth technique. While all tested plant extracts produced some antifungal activities Xanthium strumarium, Lauris nobilis, Salvia officinalis and Styrax officinalis were the most active plants that showed potent antifungal activity.

  19. Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-05-01

    Full Text Available We observed mitochondrial connexin43 (mtCx43 expression under cerebral ischemia-reperfusion (I/R injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO. Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD activity and malondialdehyde (MDA content. MtCx43, p-mtCx43, protein kinase C (PKC, and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX and diazoxide (DZX groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists.

  20. 26 CFR 1.219-2 - Definition of active participant.

    Science.gov (United States)

    2010-04-01

    ... individuals whose compensation exceeds a certain amount accrue benefits under the plan. An individual whose... participant. However, any benefit that may vary with future compensation of an individual provides additional... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of active participant. 1.219-2...

  1. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models.

    Science.gov (United States)

    Schrobback, Karsten; Klein, Travis Jacob; Woodfield, Tim B F

    2015-06-01

    Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular

  2. Connexin 43 expression in human and mouse testes with impaired spermatogenesis

    Directory of Open Access Journals (Sweden)

    M Kotula-Balak

    2009-08-01

    Full Text Available Connexin 43 (Cx43 belongs to a family of proteins that form gap junction channels. The aim of this study was to examine the expression of Cx43 in the testis of a patient with Klinefelter’s syndrome and of mice with the mosaic mutation and a partial deletion in the long arm of the Y chromosome. These genetic disorders are characterized by the presence of numerous degenerated seminiferous tubules and impaired spermatogenesis. In mouse testes, the expression and presence of Cx43 were detected by means of immunohistochemistry and Western blot analysis, respectively. In testes of Klinefelter’s patient only immunoexpression of Cx43 was detected. Regardless of the species Cx43 protein was ubiquitously distributed in testes of reproductively normal males, whereas in those with testicular disorders either a weak intensity of staining or no staining within the seminiferous tubules was observed. Moderate to strong or very strong staining was confined to the interstitial tissue. In an immunoblot analysis of testicular homogenates Cx43 appeared as one major band of approximately 43 kDa. Our study adds three more examples of pathological gonads in which the absence or apparent decrease of Cx43 expression within the seminiferous tubules was found. A positive correlation between severe spermatogenic impairment and loss of Cx43 immunoreactivity observed in this study supports previous data that gap junctions play a crucial role in spermatogenesis. Strong Cx43 expression detected mostly in the interstitial tissue of the Klinefelter’s patient may presumably be of importance in sustaining Leydig cell metabolic activity. However, the role of gap junction communication in the control of Leydig cell function seems to be more complex than originally thought.

  3. Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2018-04-01

    Full Text Available The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs and hemichannels (HCs which are composed of hexamer of connexin43 (Cx43 protein. In particular, we discuss how GJ intercellular communication (GJIC in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC

  4. Opening of pannexin and connexin based-channels increases the excitability of nodose ganglion sensory neurons.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-06-01

    Full Text Available Satellite glial cells (SGCs are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system, astrocytes present connexin43 (Cx43 hemichannels and pannexin1 (Panx1 channels, and their opening allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in the glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complex (NPJc by confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to Ca2+/ Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT. Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because Panx1 knockout mouse showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. Data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.

  5. Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus-oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis

    Directory of Open Access Journals (Sweden)

    Aiudi Giulio

    2004-06-01

    Full Text Available Abstract The aim of this study was to investigate cumulus expansion, nuclear maturation and expression of connexin 43, cyclooxygenase-2 and FSH receptor transcripts in equine cumuli oophori during in vivo and in vitro maturation in the presence of equine FSH (eFSH and precursors for hyaluronic acid synthesis. Equine cumulus-oocyte complexes (COC were cultured in a control defined medium supplemented with eFSH (0 to 5 micrograms/ml, Fetal Calf Serum (FCS, precursors for hyaluronic acid synthesis or glutamine according to the experiments. After in vitro maturation, the cumulus expansion rate was increased with 1 microgram/ml eFSH, and was the highest with 20% FCS. It was not influenced by precursors for hyaluronic acid synthesis or glutamine. The expression of transcripts related to cumulus expansion was analyzed in equine cumulus cells before maturation, and after in vivo and in vitro maturation, by using reverse transcription-polymerase chain reaction (RT-PCR with specific primers. Connexin 43, cyclooxygenase-2 (COX-2 and FSH receptor (FSHr mRNA were detected in equine cumulus cells before and after maturation. Their level did not vary during in vivo or in vitro maturation and was influenced neither by FSH nor by precursors for hyaluronic acid synthesis. Results indicate that previously reported regulation of connexin 43 and COX-2 proteins during equine COC maturation may involve post-transcriptional mechanisms.

  6. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway.

    Science.gov (United States)

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-06-01

    Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. © 2014 The British Pharmacological Society.

  7. Neurons and satellite glial cells in adult rat lumbar dorsal root ganglia express connexin 36.

    Science.gov (United States)

    Pérez Armendariz, E Martha; Norcini, Monica; Hernández-Tellez, Beatriz; Castell-Rodríguez, Andrés; Coronel-Cruz, Cristina; Alquicira, Raquel Guerrero; Sideris, Alexandra; Recio-Pinto, Esperanza

    2018-04-01

    Previous studies have shown that following peripheral nerve injury there was a downregulation of the gap junction protein connexin 36 (Cx36) in the spinal cord; however, it is not known whether Cx36 protein is expressed in the dorsal root ganglia (DRGs), nor if its levels are altered following peripheral nerve injuries. Here we address these aspects in the adult rat lumbar DRG. Cx36 mRNA was detected using qRT-PCR, and Cx36 protein was identified in DRG sections using immunohistochemistry (IHC) and immunofluorescence (IF). Double staining revealed that Cx36 co-localizes with both anti-β-III tubulin, a neuronal marker, and anti-glutamine synthetase, a satellite glial cell (SGC) marker. In neurons, Cx36 staining was mostly uniform in somata and fibers of all sizes and its intensity increased at the cell membranes. This labeling pattern was in contrast with Cx36 IF dots mainly found at junctional membranes in islet beta cells used as a control tissue. Co-staining with anti-Cx43 and anti-Cx36 showed that whereas mostly uniform staining of Cx36 was found throughout neurons and SGCs, Cx43 IF puncta were localized to SGCs. Cx36 mRNA was expressed in normal lumbar DRG, and it was significantly down-regulated in L4 DRG of rats that underwent sciatic nerve injury resulting in persistent hypersensitivity. Collectively, these findings demonstrated that neurons and SGCs express Cx36 protein in normal DRG, and suggested that perturbation of Cx36 levels may contribute to chronic neuropathic pain resulting from a peripheral nerve injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Differentiation and magmatic activity in Vesta evidenced by 26Al-26Mg dating in eucrites and diogenites

    Science.gov (United States)

    Hublet, G.; Debaille, V.; Wimpenny, J.; Yin, Q.-Z.

    2017-12-01

    The 26Al-26Mg short-lived chronometer has been widely used for dating ancient objects in studying the early Solar System. Here, we use this chronometer to investigate and refine the geological history of the asteroid 4-Vesta. Ten meteorites widely believed to come from Vesta (4 basaltic eucrites, 3 cumulate eucrites and 3 diogenites) and the unique achondrite Asuka 881394 were selected for this study. All samples were analyzed for their δ26Mg∗ and 27Al/24Mg ratios, in order to construct both whole rock and model whole rock isochrons. Mineral separation was performed on 8 of the HED's in order to obtain internal isochrons. While whole rock Al-Mg analyses of HED's plot on a regression that could be interpreted as a vestan planetary isochron, internal mineral isochrons indicate a more complex history. Crystallization ages obtained from internal 26Al-26Mg systematic in basaltic eucrites show that Vesta's upper crust was formed during a short period of magmatic activity at 2.66-0.58+1.39 million years (Ma) after Calcium-Aluminum inclusions (after CAI). We also suggest that impact metamorphism and subsequent age resetting could have taken place at the surface of Vesta while 26Al was still extant. Cumulate eucrites crystallized progressively from 5.48-0.60+1.56 to >7.25 Ma after CAI. Model ages obtained for both basaltic and cumulate eucrites are similar and suggest that the timing of differentiation of a common eucrite source from a chondritic body can be modeled at 2.88-0.12+0.14 Ma after CAI, i.e. contemporaneously from the onset of the basaltic eucritic crust. Based on their cumulate texture, we suggest cumulate eucrites were likely formed deeper in the crust of Vesta. Diogenites have a more complicated history and their 26Al-26Mg systematics show that they likely formed after the complete decay of 26Al and thus are younger than eucrites. This refined chronology for eucrites and diogenites is consistent with a short magma ocean stage on 4-Vesta from which the

  9. Novel Functional Role of Heat Shock Protein 90 in Mitochondrial Connexin 43-Mediated Hypoxic Postconditioning

    Directory of Open Access Journals (Sweden)

    Rong-Hui Tu

    2017-11-01

    HSP90 prevented the protection of HPC and the HPC-induced association of Cx43, indicating that mitochondrial HSP90 was important for mitochondrial translocation of Cx43 during HPC. Conclusion: Mitochondrial HSP90 played a central role in HPC cardioprotection, and its activity was linked to the mitochondrial targeting of Cx43, the activation of which triggered ROS signaling and the subsequent reduction of redox stress. Consequently, its target gene, Bcl-2, was upregulated, and proapoptotic Bax was inhibited in the sarcolemma and mitochondria, ultimately attenuating H/R-induced cardiomyocyte apoptosis. These data reveal a novel mechanism of HPC protection.

  10. A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Belousov, Andrei B; Nishimune, Hiroshi; Denisova, Janna V; Fontes, Joseph D

    2018-02-14

    Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1 G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 26 CFR 1.469-9 - Rules for certain rental real estate activities.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Rules for certain rental real estate activities... certain rental real estate activities. (a) Scope and purpose. This section provides guidance to taxpayers... rental real estate, including any interest in rental real estate that gives rise to deductions under...

  12. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    Science.gov (United States)

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Oligomeric structure and functional characterization of Caenorhabditis elegans Innexin-6 gap junction protein.

    Science.gov (United States)

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-04-12

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.

  14. Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity.

    Science.gov (United States)

    Karpuk, Nikolay; Burkovetskaya, Maria; Fritz, Teresa; Angle, Amanda; Kielian, Tammy

    2011-01-12

    Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.

  15. Gap Junctions

    Science.gov (United States)

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  16. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate.

    Directory of Open Access Journals (Sweden)

    Jonathan Boudreau-Béland

    Full Text Available In native conditions, cardiac cells must continuously comply with diverse stimuli necessitating a perpetual adaptation. Polydimethylsiloxane (PDMS is commonly used in cell culture to study cellular response to changes in the mechanical environment. The aim of this study was to evaluate the impact of using PDMS substrates on the properties of spontaneous activity of cardiomyocyte monolayer cultures. We compared PDMS to the gold standard normally used in culture: a glass substrate. Although mean frequency of spontaneous activity remained unaltered, incidence of reentrant activity was significantly higher in samples cultured on glass compared to PDMS substrates. Higher spatial and temporal instability of the spontaneous rate activation was found when cardiomyocytes were cultured on PDMS, and correlated with decreased connexin-43 and increased CaV3.1 and HCN2 mRNA levels. Compared to cultures on glass, cultures on PDMS were associated with the strongest response to isoproterenol and acetylcholine. These results reveal the importance of carefully selecting the culture substrate for studies involving mechanical stimulation, especially for tissue engineering or pharmacological high-throughput screening of cardiac tissue analog.

  17. Enteric Glia Mediate Neuron Death in Colitis Through Purinergic Pathways That Require Connexin-43 and Nitric OxideSummary

    Directory of Open Access Journals (Sweden)

    Isola A.M. Brown

    2016-01-01

    Full Text Available Background & Aims: The concept of enteric glia as regulators of intestinal homeostasis is slowly gaining acceptance as a central concept in neurogastroenterology. Yet how glia contribute to intestinal disease is still poorly understood. Purines generated during inflammation drive enteric neuron death by activating neuronal P2X7 purine receptors (P2X7R; triggering adenosine triphosphate (ATP release via neuronal pannexin-1 channels that subsequently recruits intracellular calcium ([Ca2+]i in surrounding enteric glia. We tested the hypothesis that the activation of enteric glia contributes to neuron death during inflammation. Methods: We studied neuroinflammation in vivo using the 2,4-dinitrobenzene sulfonic acid model of colitis and in situ using whole-mount preparations of human and mouse intestine. Transgenic mice with a targeted deletion of glial connexin-43 (Cx43 [GFAP::CreERT2+/−/Cx43f/f] were used to specifically disrupt glial signaling pathways. Mice deficient in inducible nitric oxide (NO synthase (iNOS−/− were used to study NO production. Protein expression and oxidative stress were measured using immunohistochemistry and in situ Ca2+ and NO imaging were used to monitor glial [Ca2+]i and [NO]i. Results: Purinergic activation of enteric glia drove [Ca2+]i responses and enteric neuron death through a Cx43-dependent mechanism. Neurotoxic Cx43 activity, driven by NO production from glial iNOS, was required for neuron death. Glial Cx43 opening liberated ATP and Cx43-dependent ATP release was potentiated by NO. Conclusions: Our results show that the activation of glial cells in the context of neuroinflammation kills enteric neurons. Mediators of inflammation that include ATP and NO activate neurotoxic pathways that converge on glial Cx43 hemichannels. The glial response to inflammatory mediators might contribute to the development of motility disorders. Keywords: Enteric Nervous System, Hemichannels

  18. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review).

    Science.gov (United States)

    Dong, Hui; Zhou, Xing-Wang; Wang, Xiang; Yang, Yuan; Luo, Jie-Wen; Liu, Yan-Hui; Mao, Qing

    2017-12-01

    Connexin (Cx)43 is a multifunction protein which forms gap junction channels and hemi‑channels. It also contains abundant binding domains which possess the ability to interact with certain Cx43‑associated proteins and therefore serve a fundamental role in various physiological and pathological functions. However, the understanding of the association between cancer and Cx43 along with Cx43‑gap junctions (GJ) remains unclear. All available data illustrate that Cx43 and its associated GJ serve important functions in cancers. The expression levels of Cx43 demonstrate a downward trend and an increase in the levels of malignancy, particularly in astrocytomas. The GJ intercellular communication activity in glioma cells can be adjusted via Cx43 phosphorylation and through the combination of Cx43 and its associated protein. Available evidence reveals Cx43 as a tumor‑inhibiting factor that suppresses glioma growth and proliferation. However, its mechanism is also regarded as complicated and ambiguous. Furthermore, it is apparent that Cx43‑GJ and the carboxyl tail may contribute to glioma growth and proliferation too. However, this valuable role could be weakened by its effects on migration and invasiveness. The detailed mechanism remains unclear and full of controversies. Cx43 can enhance the motor ability and invasiveness of astrocytic glioma cells. It is also able to influence glioma cells to detach from the tumor core to the peritumoral neocortex. This peritumoral region has recently been regarded as the basic focus of glioma‑associated seizure. Thus, Cx43 may take part in the onset and development of glioma‑associated epileptic discharge. In addition, change and increase of Cx43 expression in GJs has been observed in seizure perilesional tissue, which is associated with brain tumors. Cx43 or GJ/hemi‑channels exert enduring effects in the promotion of glioma‑associated epileptic release through direct mass effects and change of the tumor microenvironment

  19. Bone morphogenetic protein-2 (BMP-2 and transforming growth factor-β1 (TGF-β1 alter connexin 43 phosphorylation in MC3T3-E1 Cells

    Directory of Open Access Journals (Sweden)

    Rudkin George H

    2001-07-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs and transforming growth factor-βs (TGF-βs are important regulators of bone repair and regeneration. BMP-2 and TGF-β1 have been shown to inhibit gap junctional intercellular communication (GJIC in MC3T3-E1 cells. Connexin 43 (Cx43 has been shown to mediate GJIC in osteoblasts and it is the predominant gap junctional protein expressed in these murine osteoblast-like cells. We examined the expression, phosphorylation, and subcellular localization of Cx43 after treatment with BMP-2 or TGF-β1 to investigate a possible mechanism for the inhibition of GJIC. Results Northern blot analysis revealed no detectable change in the expression of Cx43 mRNA. Western blot analysis demonstrated no significant change in the expression of total Cx43 protein. However, significantly higher ratios of unphosphorylated vs. phosphorylated forms of Cx43 were detected after BMP-2 or TGF-β1 treatment. Immunofluorescence and cell protein fractionation revealed no detectable change in the localization of Cx43 between the cytosol and plasma membrane. Conclusions BMP-2 and TGF-β1 do not alter expression of Cx43 at the mRNA or protein level. BMP-2 and TGF-β1 may inhibit GJIC by decreasing the phosphorylated form of Cx43 in MC3T3-E1 cells.

  20. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice

    Directory of Open Access Journals (Sweden)

    Kaifeng Yin

    2017-05-01

    Full Text Available Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7, which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.

  1. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D; Mok, Ka-Wai; Li, Michelle W M; Wong, Chris K C; Lee, Will M; Han, Daishu; Silvestrini, Bruno; Cheng, C Yan

    2016-04-01

    Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to

  2. Ultrastructure and regulation of lateralized connexin43 in the failing heart.

    Science.gov (United States)

    Hesketh, Geoffrey G; Shah, Manish H; Halperin, Victoria L; Cooke, Carol A; Akar, Fadi G; Yen, Timothy E; Kass, David A; Machamer, Carolyn E; Van Eyk, Jennifer E; Tomaselli, Gordon F

    2010-04-02

    Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.

  3. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  4. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    Science.gov (United States)

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  5. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress.

    Science.gov (United States)

    Le, Hoa T; Sin, Wun Chey; Lozinsky, Shannon; Bechberger, John; Vega, José Luis; Guo, Xu Qiu; Sáez, Juan C; Naus, Christian C

    2014-01-17

    Oxidative stress induced by reactive oxygen species (ROS) is associated with various neurological disorders including aging, neurodegenerative diseases, as well as traumatic and ischemic insults. Astrocytes have an important role in the anti-oxidative defense in the brain. The gap junction protein connexin43 (Cx43) forms intercellular channels as well as hemichannels in astrocytes. In the present study, we investigated the contribution of Cx43 to astrocytic death induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which Cx43 exerts its effects. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased ROS-induced astrocytic death, supporting a cell protective effect of functional Cx43 channels. H2O2 transiently increased hemichannel activity, but reduced gap junction intercellular communication (GJIC). GJIC in wild-type astrocytes recovered after 7 h, but was absent in Cx43 knock-out astrocytes. Blockage of Cx43 hemichannels incompletely inhibited H2O2-induced hemichannel activity, indicating the presence of other hemichannel proteins. Panx1, which is predicted to be a major hemichannel contributor in astrocytes, did not appear to have any cell protective effect from H2O2 insults. Our data suggest that GJIC is important for Cx43-mediated ROS resistance. In contrast to hypoxia/reoxygenation, H2O2 treatment decreased the ratio of the hypophosphorylated isoform to total Cx43 level. Cx43 has been reported to promote astrocytic death induced by hypoxia/reoxygenation. We therefore speculate the increase in Cx43 dephosphorylation may account for the facilitation of astrocytic death. Our findings suggest that the role of Cx43 in response to cellular stress is dependent on the activation of signaling pathways leading to alteration of Cx43 phosphorylation states.

  6. Cytotoxic effect of the Her-2/Her-1 inhibitor PKI-166 on renal cancer cells expressing the connexin 32 gene.

    Science.gov (United States)

    Fujimoto, Eriko; Yano, Tomohiro; Sato, Hiromi; Hagiwara, Kiyokazu; Yamasaki, Hiroshi; Shirai, Sumiko; Fukumoto, Keiko; Hagiwara, Hiromi; Negishi, Etsuko; Ueno, Koichi

    2005-02-01

    We have reported that connexin (Cx) 32 acts as a tumor suppressor gene in renal cancer cells partly due to Her-2 inactivation. Here, we determined if a Her-2/Her-1 inhibitor (PKI-166) can enhance the tumor-suppressive effect of Cx32 in Caki-2 cells from human renal cell carcinoma. The expression of Cx32 in Caki-2 cells was required for PKI-166-induced cytotoxic effect at lower doses. The cyctotoxicity was dependent on the occurrence of apoptosis and partly mediated by Cx32-driven gap junction intercellular communications. These results suggest that PKI-166 further supports the tumor-suppressive effect of the Cx32 gene in renal cancer cells through the induction of apoptosis.

  7. Oligomeric Structure and Functional Characterization of Caenorhabditis elegans Innexin-6 Gap Junction Protein*

    Science.gov (United States)

    Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori

    2013-01-01

    Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640

  8. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  9. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    KAUST Repository

    Ren, Jian

    2013-04-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication (GJIC) remain obscure. We found that 17β estradiol (E2) up-regulated Cx43, and enhanced GJIC in osteocyte-like MLO-Y4 cells in fluorescence recovery after photobleaching (FRAP) assay. Combination of E2 pre-treatment and oscillating fluid flow (OFF) further enhanced Cx43 expression and mitogen-activated protein kinase (MAPK) phosphorylation, comparing to E2 or OFF treatment alone. Both blocking of classical estrogen receptors (ERα/β) by fulvestrant and ERα knockdown by small interfering RNA inhibited E2-mediated Cx43 increase, while a GPR30-specific agonist G-1 failed to promote Cx43 expression. Our results suggest that the presence of E2 enhanced Cx43-based GJIC mainly via ERα/β pathway, and sensitized osteocytes to mechanical loading. © 2012 Elsevier Inc. All rights reserved.

  10. Altered thyroid status affects myocardial expression of connexin-43 and susceptibility of rat heart to malignant arrhythmias that can be partially normalized by red palm oil intake

    Czech Academy of Sciences Publication Activity Database

    Szeiffová Bačová, B.; Vinczenzová, C.; Žurmanová, J.; Kašparová, Dita; Knezl, V.; Egan Beňová, T.; Pavelka, Stanislav; Soukup, Tomáš; Tribulová, N.

    2017-01-01

    Roč. 147, č. 1 (2017), s. 63-73 ISSN 0948-6143 R&D Projects: GA MŠk(CZ) LH15279; GA MŠk(CZ) 7AMB14SK123 Grant - others:AV ČR(CZ) SAV-15-03 Program:Bilaterální spolupráce Institutional support: RVO:67985823 Keywords : thyroid hormones * cardiac arrhythmias * connexin-43 * PKC * red palm oil Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 2.553, year: 2016

  11. Akt-dependent Activation of the Heart 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase (PFKFB2) Isoenzyme by Amino Acids*

    Science.gov (United States)

    Novellasdemunt, Laura; Tato, Irantzu; Navarro-Sabate, Aurea; Ruiz-Meana, Marisol; Méndez-Lucas, Andrés; Perales, Jose Carlos; Garcia-Dorado, David; Ventura, Francesc; Bartrons, Ramon; Rosa, Jose Luis

    2013-01-01

    Reciprocal regulation of metabolism and signaling allows cells to modulate their activity in accordance with their metabolic resources. Thus, amino acids could activate signal transduction pathways that control cell metabolism. To test this hypothesis, we analyzed the effect of amino acids on fructose-2,6-bisphosphate (Fru-2,6-P2) metabolism. We demonstrate that amino acids increase Fru-2,6-P2 concentration in HeLa and in MCF7 human cells. In conjunction with this, 6-phosphofructo-2-kinase activity, glucose uptake, and lactate concentration were increased. These data correlate with the specific phosphorylation of heart 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB2) isoenzyme at Ser-483. This activation was mediated by the PI3K and p38 signaling pathways. Furthermore, Akt inactivation blocked PFKFB2 phosphorylation and Fru-2,6-P2 production, thereby suggesting that the above signaling pathways converge at Akt kinase. In accordance with these results, kinase assays showed that amino acid-activated Akt phosphorylated PFKFB2 at Ser-483 and that knockdown experiments confirmed that the increase in Fru-2,6-P2 concentration induced by amino acids was due to PFKFB2. In addition, similar effects on Fru-2,6-P2 metabolism were observed in freshly isolated rat cardiomyocytes treated with amino acids, which indicates that these effects are not restricted to human cancer cells. In these cardiomyocytes, the glucose consumption and the production of lactate and ATP suggest an increase of glycolytic flux. Taken together, these results demonstrate that amino acids stimulate Fru-2,6-P2 synthesis by Akt-dependent PFKFB2 phosphorylation and activation and show how signaling and metabolism are inextricably linked. PMID:23457334

  12. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling

    Science.gov (United States)

    Urbano, Francisco J.; Leznik, Elena; Llinás, Rodolfo R.

    2007-01-01

    Modafinil (Provigil, Modiodal), an antinarcoleptic and mood-enhancing drug, is shown here to sharpen thalamocortical activity and to increase electrical coupling between cortical interneurons and between nerve cells in the inferior olivary nucleus. After irreversible pharmacological block of connexin permeability (i.e., by using either 18β-glycyrrhetinic derivatives or mefloquine), modafinil restored electrotonic coupling within 30 min. It was further established that this restoration is implemented through a Ca2+/calmodulin protein kinase II-dependent step. PMID:17640897

  13. Etiology and one-year follow-up results of hearing loss identified by screening of newborn hearing in Japan.

    Science.gov (United States)

    Adachi, Nodoka; Ito, Ken; Sakata, Hideaki; Yamasoba, Tatsuya

    2010-07-01

    To evaluate the incidence of newborn hearing loss in a Japanese population and to elucidate etiological factors and one-year prognosis. Screening of newborn hearing. Children's tertiary referral center. Between 1999 and 2008, 101,912 newborn infants were screened, with 693 infants (0.68%) referred. Etiology investigation included CT, detection of cytomegalovirus (CMV) DNA, and connexin 26 mutation. Abnormal results (auditory brainstem response [ABR] threshold > or = 35 normal hearing level [dB nHL] in either side) were observed in 312 infants (0.31%), and 133 subjects (0.13%) with ABR thresholds > or = 50 dB nHL on both sides were classified into the habilitation group. In this group, inner ear/internal auditory meatus anomalies were detected in 20 of 121 subjects (17%) tested, middle/external ear anomalies in 14 of 121 subjects (12%), CMV DNA in 13 of 77 subjects (17%), and connexin 26 mutation in 28 of 89 subjects (31%). In 68 subjects undergoing all three investigations (CT, CMV, and connexin 26), 41 (60%) had positive results in at least one test. With inclusion of otitis media with effusion and perinatal problems, this rate amounted to 78% (53 subjects). Of the 97 infants in the habilitation group successfully followed up to one year, 36 (37%) showed a threshold change of 20 dB or more in either ear: 11 (11%) progression and 25 (26%) improvement, and 15 infants (15%) were reclassified into a less severe classification. Considering that 26 percent of infants with bilateral moderate to severe hearing loss showed improvement in one year, habilitation protocols, especially very early cochlear implantation within one year of birth, should be reconsidered. 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  14. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  15. Regulatory effect of connexin 43 on basal Ca2+ signaling in rat ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available BACKGROUND: It has been found that gap junction-associated intracellular Ca(2+ [Ca(2+](i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca(2+ signaling, in particular the basal [Ca(2+](i activities, is unclear. METHODS AND RESULTS: Global and local Ca(2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY, respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43 with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca(2+ transients and local Ca(2+ sparks in monolayer NRVMs and Ca(2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP(3 butyryloxymethyl ester and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca(2+ signal and LY uptake by gap uncouplers, whereas blockade of IP(3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca(2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibody against Cx43 demonstrated apparent increases in membrane labeling of Cx43 and non-junctional Cx43 in overexpressed cells, suggesting functional hemichannels exist and also contribute to the Ca(2+ signaling regulation in cardiomyocytes. CONCLUSIONS: These data demonstrate that Cx43-associated gap coupling plays a role in the regulation of resting Ca(2

  16. Biological activity of 2,3-Di (quinolyl-2)-6-methyl quinoxaline

    International Nuclear Information System (INIS)

    Ansar, N.; Kaban, S.; Ahmed, R.

    2003-01-01

    The biological activities of the nitrogen containing conjugated heterocyclic compounds are considerably used pharmaceutically as antiulcer, antimalarial, tubercluocidal and sedatives besides their uses as dyes in the textile industries, pesticides, stabilizers and inhibitors etc. 2.3-Di(quinolyl-2)-6-methyl quinoxaline was synthesized by condensation followed by ring closure reaction when 1,2-di(quinolyl-2)-1,2 ethanedione was treated with methyl and substituted o-phenylenediamine. (author)

  17. Biological activity of 2,3-Di (quinolyl-2)-6-methyl quinoxaline

    Energy Technology Data Exchange (ETDEWEB)

    Ansar, N [Adamjee Government Science College, Karachi (Pakistan). Dept. of Chemistry; Kaban, S [Yildiz Technical Univ., Istanbul (Turkey). Dept. of Chemistry; Ahmed, R [University of Karachi, Karachi (Pakistan). Dept. of Chemistry

    2003-06-01

    The biological activities of the nitrogen containing conjugated heterocyclic compounds are considerably used pharmaceutically as antiulcer, antimalarial, tubercluocidal and sedatives besides their uses as dyes in the textile industries, pesticides, stabilizers and inhibitors etc. 2.3-Di(quinolyl-2)-6-methyl quinoxaline was synthesized by condensation followed by ring closure reaction when 1,2-di(quinolyl-2)-1,2 ethanedione was treated with methyl and substituted o-phenylenediamine. (author)

  18. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease. Phenotypic variability and central nervous system involvement.

    Science.gov (United States)

    Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios

    2014-06-15

    Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.

  20. Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123)

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Stahlhut, Martin; Mohammed, Shabaz

    2006-01-01

    Previous studies suggest that dephosphorylation of connexin43 (Cx43) is related to uncoupling of gap junction communication, which plays an important role in the genesis of ischemia-induced ventricular tachycardia. We studied changes in Cx43 phosphorylation during global ischemia in the absence...... and presence of the antiarrhythmic peptide analogue rotigaptide (formerly known as ZP123). Phosphorylation analysis was performed on Cx43 purified from isolated perfused rat hearts using matrix-assisted laser desorption/ionization mass spectrometry and liquid chromatography electrospray ionization tandem mass...... of ischemia, the critical time interval where gap junction uncoupling occurs, Ser297 and Ser368 also became fully dephosphorylated. During the same time period, all untreated hearts developed asystole. Treatment with rotigaptide significantly increased the time to ischemia-induced asystole and suppressed...

  1. Local activation of uterine Toll-like receptor 2 and 2/6 decreases embryo implantation and affects uterine receptivity in mice.

    Science.gov (United States)

    Sanchez-Lopez, Javier Arturo; Caballero, Ignacio; Montazeri, Mehrnaz; Maslehat, Nasim; Elliott, Sarah; Fernandez-Gonzalez, Raul; Calle, Alexandra; Gutierrez-Adan, Alfonso; Fazeli, Alireza

    2014-04-01

    Embryo implantation is a complex interaction between maternal endometrium and embryonic structures. Failure to implant is highly recurrent and impossible to diagnose. Inflammation and infections in the female reproductive tract are common causes of infertility, embryo loss, and preterm labor. The current work describes how the activation of endometrial Toll-like receptor (TLR) 2 and 2/6 reduces embryo implantation chances. We developed a morphometric index to evaluate the effects of the TLR 2/6 activation along the uterine horn (UH). TLR 2/6 ligation reduced the endometrial myometrial and glandular indexes and increased the luminal index. Furthermore, TLR 2/6 activation increased the proinflammatory cytokines such as interleukin (IL)-1beta and monocyte chemotactic protein (MCP)-1 in UH lavages in the preimplantation day and IL-1 receptor antagonist in the implantation day. The engagement of TLR 2/6 with its ligand in the UH during embryo transfer severely affected the rate of embryonic implantation (45.00% ± 6.49% vs. 16.69% ± 5.01%, P embryo implantation process was verified using an in vitro model of human embryo implantation where trophoblast spheroids failed to adhere to a monolayer of TLR 2- and TLR 2/6-activated endometrial cells. The inhibition of TLR receptors 2 and 6 in the presence of their specific ligands restored the ability of the spheroids to bind to the endometrial cells. In conclusion, the activation of the innate immune system in the uterus at the time of implantation interfered with the endometrial receptivity and reduced the chances of implantation success.

  2. Connexin 43 Communication Channels in Follicular Dendritic Cell Development and in Follicular Lymphomas

    Directory of Open Access Journals (Sweden)

    Hajnalka Rajnai

    2015-01-01

    Full Text Available Follicular dendritic cells (FDC show homo- and heterocellular metabolic coupling through connexin 43 (Cx43 gap junctions and support B cell selection and maturation in germinal centers. In follicular lymphomas B cells escape apoptosis while FDC develop abnormally. Here we tested Cx43 channels in reactive FDC development and follicular lymphomas. In culture, the treatment of FDC-B cell clusters (resembling to “ex vivo” germinal centers with Gap27 peptide, mimicking the 2nd extracellular loop of Cx43 protein, significantly impaired FDC-B cell cluster formation and cell survival. In untreated cultures of intact clusters, cell proliferation showed a moderate reduction. In tissues, Cx43 protein levels run parallel with the density of FDC both in reactive germinal centers and in malformed follicles of follicular lymphomas and showed strong upregulation in newly generated and/or degrading bi-/multinuclear FDC of rudimentary processes. However, the inverse correlation between Cx43 expression and B cell proliferation seen in reactive germinal centers was not detected in follicular lymphomas. Furthermore, Cx43 levels were not associated with either lymphoma grade or bone marrow involvement. Our results suggest that Cx43 channels are critical in FDC and “ex vivo” germinal center development and in the persistence of FDC in follicular lymphomas but do not affect tumor progression.

  3. TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Sara Crespo Yanguas

    2018-03-01

    Full Text Available Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.

  4. Visfatin Reduces Gap Junction Mediated Cell-to-Cell Communication in Proximal Tubule-Derived Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2013-11-01

    Full Text Available Background/Aims: In the current study we examined if the adipocytokine, visfatin, alters connexin-mediated intercellular communication in proximal tubule-derived epithelial cells. Methods: The effects of visfatin (10-200ng/mL on cell viability and cytotoxicity in HK2-cells were assessed by MTT, crystal violet and lactate dehydrogenase assays. Western blot analysis was used to confirm expression of Cx26, Cx40 and Cx43. The effect of visfatin (10-200ng/mL on TGF-β1 secretion was confirmed by ELISA, and the effects of both TGF-β1 (2-10ng/mL and visfatin (10-200ng/mL on connexin expression were assessed by western blot. Functional intercellular communication was determined using transfer of Lucifer Yellow and paired-whole cell patch clamp electrophysiology. Results: In low glucose (5mM, visfatin (10-200ng/mL did not affect membrane integrity, cytotoxicity or cell viability at 48hrs, but did evoke a concentration-dependent reduction in Cx26 and Cx43 expression. The expression of Cx40 was unaffected. At 48hrs, visfatin (10-200ng/mL increased the secretion of TGF-β1 and the visfatin-evoked changes in connexin expression were mimicked by exogenous application of the pro-fibrotic cytokine (2-10ng/ml. Visfatin reduced dye transfer between coupled cells and decreased functional conductance, with levels falling by 63% as compared to control. Although input resistance was increased following visfatin treatment by 166%, the change was not significant as compared to control. The effects of visfatin on Cx-expression and cell-coupling were blocked in the presence of a TGF-β1 specific neutralizing antibody. Conclusions: The adipocytokine visfatin selectively evoked a non-toxic reduction in connexin expression in HK2-cells. The loss in gap-junction associated proteins was mirrored by a loss in functional conductance between coupled cells. Visfatin increased TGF-β secretion and the pattern of change for connexins expression was mimicked by exogenous

  5. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Liao, H.-F.; Tsai, T.-H.; Wang, S.-Y.; Shiao, M.-S.

    2005-01-01

    Purpose: Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. Methods and Materials: The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-κB activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. Results: CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses of CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or γ-glutamyl transpeptidase activity. Radiation activated NF-κB was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. Conclusions: CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-κB activity, without toxicity to bone marrow, liver, and kidney

  6. Susceptibility of rats with altered thyroid status to malignant arrhythmias is primarily related to myocardial levels of connexin-43 and can be partially ameliorated by supplementation with red palm oil

    Czech Academy of Sciences Publication Activity Database

    Bačová, B.; Vinczenzová, C.; Žurmanová, J.; Kašparová, Dita; Knezl, V.; Radošinská, J.; Beňová, T.; Pavelka, Stanislav; Soukup, Tomáš; Tribulová, N.

    2013-01-01

    Roč. 18, Suppl A (2013), 41A-46A ISSN 1205-6626 R&D Projects: GA MŠk(CZ) 7AMB12SK158; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259 Grant - others:Univerzita Karlova(CZ) 628412 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : thyroid hormones * cardiac arrhythmias * connexin-43 * PKC.epsilon * red palm oil Subject RIV: ED - Physiology Impact factor: 0.758, year: 2013

  7. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... experiment showed a lower dye diffusion distance of Cx46 V44M cells, ... Studies of connexins show that channel gating and permeability .... have found that connexin assembled into gap junction plaques is not soluble in 1% ..... high glucose reduces gap junction activity in microvascular endothelial cells.

  8. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    Science.gov (United States)

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  9. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  10. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo.

    Science.gov (United States)

    Mancuso, M; Pasquali, E; Leonardi, S; Rebessi, S; Tanori, M; Giardullo, P; Borra, F; Pazzaglia, S; Naus, C C; Di Majo, V; Saran, A

    2011-11-10

    Ionizing radiation is a genotoxic agent and human carcinogen. Recent work has questioned long-held dogmas by showing that cancer-associated genetic alterations occur in cells and tissues not directly exposed to radiation, questioning the robustness of the current system of radiation risk assessment. In vitro, diverse mechanisms involving secreted soluble factors, gap junction intercellular communication (GJIC) and oxidative metabolism are proposed to mediate these indirect effects. In vivo, the mechanisms behind long-range 'bystander' responses remain largely unknown. Here, we investigate the role of GJIC in propagating radiation stress signals in vivo, and in mediating radiation-associated bystander tumorigenesis in mouse central nervous system using a mouse model in which intercellular communication is downregulated by targeted deletion of the connexin43 (Cx43) gene. We show that GJIC is critical for transmission of oncogenic radiation damage to the non-targeted cerebellum, and that a mechanism involving adenosine triphosphate release and upregulation of Cx43, the major GJIC constituent, regulates transduction of oncogenic damage to unirradiated tissues in vivo. Our data provide a novel hypothesis for transduction of distant bystander effects and suggest that the highly branched nervous system, similar to the vascular network, has an important role.

  11. Quantitative structure-activity relationships (QSAR) of 4-amino-2,6-diarylpyrimidine-5-carbonitriles with anti-inflammatory activity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Bosco P. da; Ramos, Mozart N.; Barros Neto, Benicio de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica Fundamental]. E-mail: mramos@ufpe.br; Melo, Sebastiao Jose de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos]. E-mail: melosebastiao@yahoo.com.br; Falcao, Emerson Peter da Silva [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro Academico de Vitoria de Santo Antao; Catanho, Maria Teresa J. de Almeida [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia

    2008-07-01

    The experimental anti-inflammatory activities of eight 4-amino-2,6-diarylpyrimidine-5- carbonitriles were subjected to a QSAR analysis based on results from B3LYP/6-31G(d,p) and AM1 electronic structure calculations. Principal component analyses and regressions based on these data indicate that potentially more active compounds should have low dipole moment and partition coefficient values and also be affected by the values of the charges of the carbon atoms through which the two aromatic rings are bonded to the pyrimidinic ring. Two new molecules were predicted to be at least as active as those with the highest activities used in the model building stage. One of them, having a methoxy group attached to one of the aromatic rings, was predicted to have an anti-inflammatory activity value of 52.3%. This molecule was synthesized and its experimental activity was found to be 52.8%, in agreement with the AM1 theoretical prediction. This value is 5% higher than the largest value used for modeling. (author)

  12. Quantitative structure-activity relationships (QSAR) of 4-amino-2,6-diarylpyrimidine-5-carbonitriles with anti-inflammatory activity

    International Nuclear Information System (INIS)

    Silva, Joao Bosco P. da; Ramos, Mozart N.; Barros Neto, Benicio de; Melo, Sebastiao Jose de; Falcao, Emerson Peter da Silva; Catanho, Maria Teresa J. de Almeida

    2008-01-01

    The experimental anti-inflammatory activities of eight 4-amino-2,6-diarylpyrimidine-5- carbonitriles were subjected to a QSAR analysis based on results from B3LYP/6-31G(d,p) and AM1 electronic structure calculations. Principal component analyses and regressions based on these data indicate that potentially more active compounds should have low dipole moment and partition coefficient values and also be affected by the values of the charges of the carbon atoms through which the two aromatic rings are bonded to the pyrimidinic ring. Two new molecules were predicted to be at least as active as those with the highest activities used in the model building stage. One of them, having a methoxy group attached to one of the aromatic rings, was predicted to have an anti-inflammatory activity value of 52.3%. This molecule was synthesized and its experimental activity was found to be 52.8%, in agreement with the AM1 theoretical prediction. This value is 5% higher than the largest value used for modeling. (author)

  13. Connexin 43 Expression on Peripheral Blood Eosinophils: Role of Gap Junctions in Transendothelial Migration

    Directory of Open Access Journals (Sweden)

    Harissios Vliagoftis

    2014-01-01

    Full Text Available Eosinophils circulate in the blood and are recruited in tissues during allergic inflammation. Gap junctions mediate direct communication between adjacent cells and may represent a new way of communication between immune cells distinct from communication through cytokines and chemokines. We characterized the expression of connexin (Cx43 by eosinophils isolated from atopic individuals using RT-PCR, Western blotting, and confocal microscopy and studied the biological functions of gap junctions on eosinophils. The formation of functional gap junctions was evaluated measuring dye transfer using flow cytometry. The role of gap junctions on eosinophil transendothelial migration was studied using the inhibitor 18-a-glycyrrhetinic acid. Peripheral blood eosinophils express Cx43 mRNA and protein. Cx43 is localized not only in the cytoplasm but also on the plasma membrane. The membrane impermeable dye BCECF transferred from eosinophils to epithelial or endothelial cells following coculture in a dose and time dependent fashion. The gap junction inhibitors 18-a-glycyrrhetinic acid and octanol did not have a significant effect on dye transfer but reduced dye exit from eosinophils. The gap junction inhibitor 18-a-glycyrrhetinic acid inhibited eosinophil transendothelial migration in a dose dependent manner. Thus, eosinophils from atopic individuals express Cx43 constitutively and Cx43 may play an important role in eosinophil transendothelial migration and function in sites of inflammation.

  14. Cardiotoxic Effects of Short-Term Doxorubicin Administration: Involvement of Connexin 43 in Calcium Impairment.

    Science.gov (United States)

    Pecoraro, Michela; Rodríguez-Sinovas, Antonio; Marzocco, Stefania; Ciccarelli, Michele; Iaccarino, Guido; Pinto, Aldo; Popolo, Ada

    2017-10-11

    The use of Doxorubicin (DOXO), a potent antineoplastic agent, is limited by the development of cardiotoxicity. DOXO-induced cardiotoxicity is multifactorial, although alterations in calcium homeostasis, seem to be involved. Since even the Connexin43 (Cx43) plays a pivotal role in these two phenomena, in this study we have analyzed the effects of DOXO on Cx43 expression and localization. Damage caused by anthracyclines on cardiomyocytes is immediate after each injection, in the present study we used a short-term model of DOXO-induced cardiomyopathy. C57BL/6j female mice were randomly divided in groups and injected with DOXO (2 or 10 mg/kg i.p.) for 1-3 or 7 days once every other day. Cardiac function was assessed by Echocardiography. Sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCAII) and phospholamban (PLB) expression were assessed by Western blot analysis, intracellular [Ca 2+ ] were detected spectrofluorometrically by means of Fura-2 pentakis (acetoxymethyl) ester (FURA-2AM), and Cx43 and pCx43 expression and localization was analyzed by Western blot and confirmed by immunofluorescence analysis. DOXO induces impairment in Ca 2+ homeostasis, already evident after a single administration, and affects Cx43 expression and localization. Our data suggest that DOXO-induced alterations in Ca 2+ homeostasis causes in the cells the induction of compensatory mechanisms until a certain threshold, above which cardiac injury is triggered.

  15. Compensatory role of the Nrf2–ARE pathway against paraquat toxicity: Relevance of 26S proteasome activity

    Directory of Open Access Journals (Sweden)

    Yasuhiko Izumi

    2015-11-01

    Full Text Available Oxidative stress and the ubiquitin–proteasome system play a key role in the pathogenesis of Parkinson disease. Although the herbicide paraquat is an environmental factor that is involved in the etiology of Parkinson disease, the role of 26S proteasome in paraquat toxicity remains to be determined. Using PC12 cells overexpressing a fluorescent protein fused to the proteasome degradation signal, we report here that paraquat yielded an inhibitory effect on 26S proteasome activity without an obvious decline in 20S proteasome activity. Relative low concentrations of proteasome inhibitors caused the accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2, which is targeted to the ubiquitin–proteasome system, and activated the antioxidant response element (ARE-dependent transcription. Paraquat also upregulated the protein level of Nrf2 without increased expression of Nrf2 mRNA, and activated the Nrf2–ARE pathway. Consequently, paraquat induced expression of Nrf2-dependent ARE-driven genes, such as γ-glutamylcysteine synthetase, catalase, and hemeoxygenase-1. Knockdown of Nrf2 or inhibition of γ-glutamylcysteine synthetase and catalase exacerbated paraquat-induced toxicity, whereas suppression of hemeoxygenase-1 did not. These data indicate that the compensatory activation of the Nrf2–ARE pathway via inhibition of 26S proteasome serves as part of a cellular defense mechanism to protect against paraquat toxicity.

  16. 29 CFR 32.26 - Discrimination prohibited.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Discrimination prohibited. 32.26 Section 32.26 Labor Office... RECEIVING FEDERAL FINANCIAL ASSISTANCE Accessibility § 32.26 Discrimination prohibited. No qualified... discrimination under any program or activity to which this part applies. ...

  17. 78 FR 33809 - Notification of Proposed Production Activity; Roper Corporation; Subzone 26G (Kitchen Ranges...

    Science.gov (United States)

    2013-06-05

    ... choose the duty rates during customs entry procedures that apply to gas and electric kitchen ranges (duty... Activity; Roper Corporation; Subzone 26G (Kitchen Ranges); Lafayette, Georgia Roper Corporation (Roper... currently has authority to produce various types of kitchen ranges using certain imported components. The...

  18. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    Science.gov (United States)

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  19. IL26 gene inactivation in Equidae.

    Science.gov (United States)

    Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T

    2013-12-01

    Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  20. On Biophysical Properties and Sensitivity to Gap Junction Blockers of Connexin 39 Hemichannels Expressed in HeLa Cells

    Science.gov (United States)

    Vargas, Anibal A.; Cisterna, Bruno A.; Saavedra-Leiva, Fujiko; Urrutia, Carolina; Cea, Luis A.; Vielma, Alex H.; Gutierrez-Maldonado, Sebastian E.; Martin, Alberto J. M.; Pareja-Barrueto, Claudia; Escalona, Yerko; Schmachtenberg, Oliver; Lagos, Carlos F.; Perez-Acle, Tomas; Sáez, Juan C.

    2017-01-01

    Although connexins (Cxs) are broadly expressed by cells of mammalian organisms, Cx39 has a very restricted pattern of expression and the biophysical properties of Cx39-based channels [hemichannels (HCs) and gap junction channels (GJCs)] remain largely unknown. Here, we used HeLa cells transfected with Cx39 (HeLa-Cx39 cells) in which intercellular electrical coupling was not detected, indicating the absence of GJCs. However, functional HCs were found on the surface of cells exposed to conditions known to increase the open probability of other Cx HCs (e.g., extracellular divalent cationic-free solution (DCFS), extracellular alkaline pH, mechanical stimulus and depolarization to positive membrane potentials). Cx39 HCs were blocked by some traditional Cx HC blockers, but not by others or a pannexin1 channel blocker. HeLa-Cx39 cells showed similar resting membrane potentials (RMPs) to those of parental cells, and exposure to DCFS reduced RMPs in Cx39 transfectants, but not in parental cells. Under these conditions, unitary events of ~75 pS were frequent in HeLa-Cx39 cells and absent in parental cells. Real-time cellular uptake experiments of dyes with different physicochemical features, as well as the application of a machine-learning approach revealed that Cx39 HCs are preferentially permeable to molecules characterized by six categories of descriptors, namely: (1) electronegativity, (2) ionization potential, (3) polarizability, (4) size and geometry, (5) topological flexibility and (6) valence. However, Cx39 HCs opened by mechanical stimulation or alkaline pH were impermeable to Ca2+. Molecular modeling of Cx39-based channels suggest that a constriction present at the intracellular portion of the para helix region co-localizes with an electronegative patch, imposing an energetic and steric barrier, which in the case of GJCs may hinder channel function. Results reported here demonstrate that Cx39 form HCs and add to our understanding of the functional roles of Cx39 HCs

  1. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  2. Gap junctions at the dendritic cell-T cell interface are key elements for antigen-dependent T cell activation.

    Science.gov (United States)

    Elgueta, Raul; Tobar, Jaime A; Shoji, Kenji F; De Calisto, Jaime; Kalergis, Alexis M; Bono, Maria R; Rosemblatt, Mario; Sáez, Juan C

    2009-07-01

    The acquired immune response begins with Ag presentation by dendritic cells (DCs) to naive T cells in a heterocellular cell-cell contact-dependent process. Although both DCs and T cells are known to express connexin43, a gap junction protein subunit, the role of connexin43 on the initiation of T cell responses remains to be elucidated. In the present work, we report the formation of gap junctions between DCs and T cells and their role on T cell activation during Ag presentation by DCs. In cocultures of DCs and T cells, Lucifer yellow microinjected into DCs is transferred to adjacent transgenic CD4(+) T cells, only if the specific antigenic peptide was present at least during the first 24 h of cocultures. This dye transfer was sensitive to gap junction blockers, such as oleamide, and small peptides containing the extracellular loop sequences of conexin. Furthermore, in this system, gap junction blockers drastically reduced T cell activation as reflected by lower proliferation, CD69 expression, and IL-2 secretion. This lower T cell activation produced by gap junction blockers was not due to a lower expression of CD80, CD86, CD40, and MHC-II on DCs. Furthermore, gap junction blocker did not affect polyclonal activation of T cell induced with anti-CD3 plus anti-CD28 Abs in the absence of DCs. These results strongly suggest that functional gap junctions assemble at the interface between DCs and T cells during Ag presentation and that they play an essential role in T cell activation.

  3. Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis.

    Science.gov (United States)

    Tsuchida, Shinji; Arai, Yuji; Kishida, Tsunao; Takahashi, Kenji A; Honjo, Kuniaki; Terauchi, Ryu; Inoue, Hiroaki; Oda, Ryo; Mazda, Osam; Kubo, Toshikazu

    2013-04-01

    The objective of the present study was to determine whether the expression of connexin 43 (Cx43) effected on inflammatory conditions in rat fibroblast-like synoviocytes (FLS) and on rat model of rheumatoid arthritis (RA). The expression of Cx43 in rat FLS stimulated with lipopolysaccharide (LPS) was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). The effects of small-interfering RNA targeting Cx43 (siCx43) on pro-inflammatory cytokines and chemokine were assessed by real-time RT-PCR and enzyme-linked immunosorbent assay (ELISA). The therapeutic and side effects of siCx43 in a rat model of collagen-induced arthritis (CIA) were examined by in vivo electroporation method. LPS markedly enhanced Cx43 gene expression in rat FLS, with transfection of siCx43 suppressing the over-expression of pro-inflammatory cytokines and the chemokine. Treatment of CIA rats with siCx43 significantly ameliorated paw swelling, and significantly reduced histological arthritis scores and radiographic scores. In histological appearance of rat ankle joints, siCx43 treatment significantly decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive (osteoclast-like) cells. These findings indicated that siCx43 had anti-inflammatory effects in rat FLS and efficiently inhibited the development of CIA. Cx43 may play an important role in the pathophysiology of RA, and may be a potential target molecule for novel RA therapies. Copyright © 2012 Orthopaedic Research Society.

  4. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    Science.gov (United States)

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  5. Effects of androgen on immunohistochemical localization of androgen receptor and Connexin 43 in mouse ovary.

    Science.gov (United States)

    Yang, Mei; Li, Jianhua; An, Yulin; Zhang, Shuiwen

    2015-10-01

    Androgens have essential roles in the regulation of follicular development and female fertility. Androgen excess is the leading defect in polycystic ovary syndrome (PCOS) patients and involved in the ovarian dysfunction. The aim of this study was to elucidate the regarding regulatory role of androgen in the follicular development of female mouse. Immunohistochemical staining and Western blot analyses were performed to detect androgen receptor (AR) and Connexin 43 (Cx43) expression in ovaries from both control and testosterone-treated group mice. In this study, localizations of AR and Cx43 were dramatically altered in testosterone-treated mouse ovaries. In addition, AR expression was significantly increased, whereas Cx43 expression was markedly decreased after testosterone treatment. Alterations of AR and Cx43 expression by testosterone with concomitant reduction of MII oocytes. Overall, these results suggest the involvement of androgen in the regulation of AR and Cx43 localizations in mouse ovary. Alterations of AR and Cx43 expression by testosterone may affect normal folliculogenesis. Together these findings will enable us to begin understanding the important roles of AR and Cx43 actions in the regulation of follicular development, as well as providing insights into the role of AR and Cx43 actions in the androgen-associated reproductive diseases such as PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Author Details

    African Journals Online (AJOL)

    Original Synthetic Report: Origin of the G2019S mutation associated to Parkinson's disease in Europeans and in North Africans Abstract PDF · Vol 1, No 2 (2009) - Articles Original Synthetic Report: Carrier frequencies of the common GJB2 (connexin-26) 35delG mutation in the Greek-Turkish area: predominance of the ...

  7. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3' UTR.

    Science.gov (United States)

    Liu, Niankun; Han, Hong; Lasko, Paul

    2009-12-01

    Vasa (Vas) is a DEAD-box RNA-binding protein required in Drosophila at several steps of oogenesis and for primordial germ cell (PGC) specification. Vas associates with eukaryotic initiation factor 5B (eIF5B), and this interaction has been implicated in translational activation of gurken mRNA in the oocyte. Vas is expressed in all ovarian germline cells, and aspects of the vas-null phenotype suggest a function in regulating the balance between germline stem cells (GSCs) and their fate-restricted descendants. We used a biochemical approach to recover Vas-associated mRNAs and obtained mei-P26, whose product represses microRNA activity and promotes GSC differentiation. We found that vas and mei-P26 mutants interact, and that mei-P26 translation is substantially reduced in vas mutant cells. In vitro, Vas protein bound specifically to a (U)-rich motif in the mei-P26 3' untranslated region (UTR), and Vas-dependent regulation of GFP-mei-P26 transgenes in vivo was dependent on the same (U)-rich 3' UTR domain. The ability of Vas to activate mei-P26 expression in vivo was abrogated by a mutation that greatly reduces its interaction with eIF5B. Taken together, our data support the conclusion that Vas promotes germ cell differentiation by directly activating mei-P26 translation in early-stage committed cells.

  8. Antibacterial activity of some selected plants traditionally used as ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... K. Womens'College, Kongkhampat,Nambol-795134, Manipur, India. 2Department of Life Science and Bioinformatics, Assam University, Silchar, ... antibacterial activity. The study revealed that all extracts show varied degree of antibacterial activity against the tested bacterial pathogens. The antibacterial ...

  9. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    Science.gov (United States)

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID

  10. impairs gap junction function causing congenital cataract

    Indian Academy of Sciences (India)

    Navya

    2017-03-24

    Mar 24, 2017 ... ... applied to analyze the expression and subcellular localization of recombinant ... Cx46. The fluorescent localization assay revealed the plaque formation ... composed of six trans-membrane protein subunits called connexins ...

  11. Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice.

    Science.gov (United States)

    Szilvásy-Szabó, Anett; Varga, Edina; Beliczai, Zsuzsa; Lechan, Ronald M; Fekete, Csaba

    2017-10-15

    Tanycytes are specialized glial cells lining the lateral walls and the floor of the third ventricle behind the optic chiasm. In addition to functioning as barrier cells, they also have an important role in the regulation of neuroendocrine axes and energy homeostasis. To determine whether tanycytes communicate with each other via Connexin 43 (Cx43) gap junctions, individual tanycytes were loaded with Lucifer yellow (LY) through a patch pipette. In all cases, LY filled a larger group of tanycytes as well as blood vessels adjacent to tanycyte processes. The Cx43-blocker, carbenoxolone, inhibited spreading of LY. The greatest density of Cx43-immunoreactive spots was observed in the cell membrane of α-tanycyte cell bodies. Cx43-immunoreactivity was also present in the membrane of β-tanycyte cell bodies, but in lower density. Processes of both types of tanycytes also contained Cx43-immunoreactivity. At the ultrastructural level, Cx43-immunoreactivity was present in the cell membrane of all types of tanycytes including their ventricular surface, but gap junctions were more frequent among α-tanycytes. Cx43-immunoreactivity was also observed in the cell membrane between contacting tanycyte endfeet processes, and between tanycyte endfeet process and axon varicosities in the external zone of the median eminence and capillaries in the arcuate nucleus and median eminence. These results suggest that gap junctions are present not only among tanycytes, but also between tanycytes and the axons of hypophysiotropic neurons. Cx43 hemichannels may also facilitate the transport between tanycytes and extracellular fluids, including the cerebrospinal fluid, extracellular space of the median eminence and bloodstream. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Science.gov (United States)

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  13. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available Tetramethylpyrazine (TMP has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD. The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32 induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  14. Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis.

    Science.gov (United States)

    Johnson, Jacque-Lynne F A; Lu, Chenggang; Raharjo, Eko; McNally, Karen; McNally, Francis J; Mains, Paul E

    2009-06-15

    The MEI-1/MEI-2 microtubule-severing complex, katanin, is required for oocyte meiotic spindle formation and function in C. elegans, but the microtubule-severing activity must be quickly downregulated so that it does not interfere with formation of the first mitotic spindle. Post-meiotic MEI-1 inactivation is accomplished by two parallel protein degradation pathways, one of which requires MEL-26, the substrate-specific adaptor that recruits MEI-1 to a CUL-3 based ubiquitin ligase. Here we address the question of how MEL-26 mediated MEI-1 degradation is triggered only after the completion of MEI-1's meiotic function. We find that MEL-26 is present only at low levels until the completion of meiosis, after which protein levels increase substantially, likely increasing the post-meiotic degradation of MEI-1. During meiosis, MEL-26 levels are kept low by the action of another type of ubiquitin ligase, which contains CUL-2. However, we find that the low levels of meiotic MEL-26 have a subtle function, acting to moderate MEI-1 activity during meiosis. We also show that MEI-1 is the only essential target for MEL-26, and possibly for the E3 ubiquitin ligase CUL-3, but the upstream ubiquitin ligase activating enzyme RFL-1 has additional essential targets.

  15. 26Al/sup g,m/ production cross sections from the 23Na(α,n)26Al reaction

    International Nuclear Information System (INIS)

    Norman, E.B.; Chupp, T.E.; Lesko, K.T.; Schwalbach, P.; Grant, P.J.

    1981-01-01

    Cross sections have been determined for the production of 26 Al/sup g,m/ from the 23 Na(α,n) reaction. Total 26 Al production cross sections were obtained from measurements of the thick-target neutron yield. 26 Al/sup m/ cross sections were measured using an activation technique. 26 Al/sup g/ cross sections were deduced by subtracting the 26 Al/sup m/ cross sections from the total (α,n) cross sections. The principle of detailed balance has been applied to the low energy data to obtain cross sections for the astrophysically interesting 26 Al/sup g/(n,α 0 ) 23 Na reaction. These results are compared with the results of Hauser-Feshbach calculations

  16. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice.

    Science.gov (United States)

    Ayeka, Peter Amwoga; Bian, YuHong; Githaiga, Peter Mwitari; Zhao, Ying

    2017-12-15

    The increasing use of complementary and alternative medicine (CAM) has kindled the need for scientific evaluation of the mechanism of action of CAMs. Although, licorice, a common ingredient in many Traditional Chinese medicine (TCM) has attracted great attention for its antitumor and immunomodulatory activities, the mechanism of action of its polysaccharides is still unclear. Here we report the immunomodulatory activity of licorice polysaccharides in vivo. The differential anticancer activities of licorice polysaccharides by tumorigenesis and immunomodulation was evaluated in vivo. Six weeks old, 120 CT-26 tumor bearing BALB/c mice, weighing 20 ± 2 g were used. They were randomly divided into six groups, three groups receiving high molecular weight (fraction A), low molecular weight (fraction B) polysaccharides and crude extract (fraction C); positive, negative and normal groups receiving cytoxin, saline and normal diet respectively. Weight of mice and tumors was determined and tumorigenicity assay calculated to determine the anticancer effects. Immunomodulatory potential was determined by immune organ indices, immune cell population and serum cytokine levels using immune organ weight and index, flow cytometry and cytokine/chemokine bead panel kit respectively. Licorice polysaccharides exhibited immunomodulatory activities in CT 26 tumor bearing BALB/c mice. The polysaccharides significantly suppressed tumor growth and increased immune organ index. Furthermore, the immunomodulatory effect was evident with activation of CD4 + and CD8 + immune cells population. The polysaccharides also affected the production of various cytokines, by increasing IL 2, IL 6, IL 7 levels and a decreasing TNFα levels. In summary, licorice polysaccharide especially of low molecular weight exhibit anticancer and immunomodulatory activities by suppressing tumor growth and improving general health of mice. They also augment the thymus/spleen index and population of T lymphocytes

  17. Connexins in the early development of the African clawed frog Xenopus laevis (Amphibia: The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis

    Directory of Open Access Journals (Sweden)

    Jaime Cofre

    2007-03-01

    Full Text Available Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR and western blotting we show that a Cx43-like molecule is present in oocytes and embryos of the African clawed frog Xenopus laevis, with specific localization in the animal-vegetal axis. This specific distribution is suggestive for an important role for this protein in the establishment of the dorso-ventral axis. Antisense RNA and antibodies directed against rat carboxyl terminal tail of the Cx43 (CT-Cx43 and injected in 1-cell stage Xenopus embryos, induced pronounced alterations in nervous system development, with a severe ventralization phenotype. Coherently, the overexpression of CT-Cx43 produced a dorsalization of the embryos. In antisense treated embryos, the expression of the beta-catenin gene is eliminated from the Nieuwkoop center, the pattern expression of the Chordin, Xnot and Xbra is modified, with no effect in expression of the Goosecoid gene. In CT-Cx43 mRNA treated embryos the pattern of expression of the beta-catenin, Chordin, Goosecoid, Xnot and engrailed-2 genes is modified. The expression of beta-catenin is increased in the Nieuwkoop center, the expression pattern of Chordin and Goosecoid is expanded to the posterior neural plate and engrailed-2 presents ectopic expression in the ventral region. Taken together our data suggest a role for CT-Cx43 as a maternal determinant with a critical function in the formation of the dorso-ventral axis in Xenopus laevis. The Cx43 may be one of the earliest markers of the dorso-ventral axis in these embryos and could possibly be acting through regionalization of factors responsible for the establishment of this axis.

  18. Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions

    DEFF Research Database (Denmark)

    Rennie, Sarah; Dalby, Maria; van Duin, Lucas

    2018-01-01

    Transcriptional regulation is tightly coupled with chromosomal positioning and three-dimensional chromatin architecture. However, it is unclear what proportion of transcriptional activity is reflecting such organisation, how much can be informed by RNA expression alone and how this impacts disease...... proportion of total levels and is highly informative of topological associating domain activities and organisation, revealing boundaries and chromatin compartments. Furthermore, expression data alone accurately predict individual enhancer-promoter interactions, drawing features from expression strength...... between transcription and chromatin architecture....

  19. Intercellular communications within the rat anterior pituitary. XVI: postnatal changes of distribution of S-100 protein positive cells, connexin 43 and LH-RH positive sites in the pars tuberalis of the rat pituitary gland. An immunohistochemical and electron microscopic study.

    Science.gov (United States)

    Wada, Ikuo; Sakuma, Eisuke; Shirasawa, Nobuyuki; Wakabayashi, Kenjiro; Otsuka, Takanobu; Hattori, Kazuki; Yashiro, Takashi; Herbert, Damon C; Soji, Tsuyoshi

    2014-02-01

    The architecture of luteinizing hormone-releasing hormone (LH-RH) nerve ends and the S-100 protein containing folliculo-stellate cells forming gap junctions in the pars tuberalis is basically important in understanding the regulation of the hormone producing mechanism of anterior pituitary glands. In this study, intact male rats 5-60 days old were prepared for immunohistochemistry and electron microscopy. From immunostained sections, the S-100 containing cells in pars tuberalis were first detected on day 30 and increased in number to day 60; this was parallel to the immunohistochemical staining of gap junction protein, connexin 43. LH-RH positive sites were clearly observed on just behind the optic chiasm and on the root of pituitary stalk on day 30. On day 60, the width of layer increased, while follicles and gap junctions were frequently observed between agranular cells in 10 or more layers of pars tuberalis. In the present study, we investigated the sexual maturation of the anterior pituitary glands through the postnatal development of S-100 positive cells, connexin 43 and LH-RH nerves. It is suggested that the folliculo-stellate cell system including the LH-RH neurons in the pars tuberalis participates in the control of LH secretion along with the portal vein system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Connexons and pannexons: newcomers in neurophysiology

    Directory of Open Access Journals (Sweden)

    Giselle eCheung

    2014-11-01

    Full Text Available Connexin hemichannels are single membrane channels which have been traditionally thought to work in pairs to form gap junction channels across two opposing cells. In astrocytes, gap junction channels allow direct intercellular communication and greatly facilitate the transmission of signals. Recently, there has been growing evidence demonstrating that connexin hemichannels, as well as pannexin channels, on their own are open in various conditions. They allow bidirectional flow of ions and signaling molecules and act as release sites for transmitters like ATP and glutamate into the extracellular space. While much attention has focused on the function of connexin hemichannels and pannexons during pathological situations like epilepsy, inflammation, neurodegeneration or ischemia, their potential roles in physiology is often ignored. In order to fully understand the dynamic properties and roles of connexin hemichannels and pannexons in the brain, it is essential to decipher whether they also have some physiological functions and contribute to normal cerebral processes. Here, we present recent studies in the CNS suggesting emerging physiological functions of connexin hemichannels and pannexons in normal neuronal activity and behavior. We also discuss how these pioneer studies pave the way for future research to extend the physiological relevance of connexons and pannexons, and some fundamental issues yet to be addressed.

  1. Connexin 26 ( GJB2 ) mutation in KID syndrome: An Egyptian patient

    African Journals Online (AJOL)

    Keratitis ± ichthyosis ± deafness (KID) syndrome is a rare disorder characterized by the occurrence of localized erythematous scaly skin lesions, severe bilateral keratitis, and sensorineural deafness. Other ocular manifestations include corneal epithelial defects and scarring, which cause progressive decline of visual acuity ...

  2. Sex differences in functional activation patterns revealed by increased emotion processing demands.

    Science.gov (United States)

    Hall, Geoffrey B C; Witelson, Sandra F; Szechtman, Henry; Nahmias, Claude

    2004-02-09

    Two [O(15)] PET studies assessed sex differences regional brain activation in the recognition of emotional stimuli. Study I revealed that the recognition of emotion in visual faces resulted in bilateral frontal activation in women, and unilateral right-sided activation in men. In study II, the complexity of the emotional face task was increased through tje addition of associated auditory emotional stimuli. Men again showed unilateral frontal activation, in this case to the left; whereas women did not show bilateral frontal activation, but showed greater limbic activity. These results suggest that when processing broader cross-modal emotional stimuli, men engage more in associative cognitive strategies while women draw more on primary emotional references.

  3. Thioredoxin Txnl1/TRP32 Is a Redox-active Cofactor of the 26 S Proteasome

    DEFF Research Database (Denmark)

    Andersen, Katrine M; Klausen, Louise Kjær; Prag, Søren

    2009-01-01

    in the cytoplasm and nucleus. Txnl1 has thioredoxin activity with a redox potential of about -250 mV. Mutant Txnl1 with one active site cysteine replaced by serine formed disulfide bonds to eEF1A1, a substrate-recruiting factor of the 26S proteasome. eEF1A1 is therefore a likely physiological substrate....... In response to knock-down of Txnl1, ubiquitin-protein conjugates were moderately stabilised. Hence, Txnl1 is the first example of a direct connection between protein reduction and proteolysis, two major intracellular protein quality control mechanisms....

  4. Revealing School Counselors' Perspectives on Using Physical Activity and Consulting with Coaches

    Science.gov (United States)

    Hayden, Laura; Silva, Meghan Ray; Gould, Kaitlin

    2018-01-01

    This study reveals school counselors' perspectives on using physical activity and a consultative process with coaches to provide school-based support for youth. Emerging from this exploration are ways that school-based physical activity might be used to help students develop life skills and to remove barriers to systemic integration of…

  5. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  6. Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Mieke Metzemaekers

    2017-07-01

    Full Text Available CXC chemokine ligand (CXCL9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.

  7. Risk factors for overweight and obesity in children aged 2-6 years.

    Science.gov (United States)

    Kondolot, Meda; Poyrazoğlu, Serpil; Horoz, Duygu; Borlu, Arda; Altunay, Canan; Balcı, Elcin; Öztürk, Ahmet; Mazıcıoğlu, Mümtaz M; Kurtoğlu, Selim

    2017-05-01

    Understanding risk factors that may vary culturally can help improve preventive strategies for obesity. This is the first cross-sectional study aimed to determine the risk factors for overweight/obesity in children aged 2-6 years in a central Anatolian city in Turkey. A total of 1582 children (1351 healthy, 231 overweight/obese) aged 2-6 years were included from the Anthropometry of Turkish Children aged 0-6 years database. Age, gender, birth weight, birth order, mother's age, mother's body mass index (BMI), weight gain of mothers during pregnancy, presence of gestational diabetes, breastfeeding duration, history of formula feeding, mother's and father's education, mother's job, monthly income, smoking at home and physical activity, sleep duration and duration of television (TV) watching of the children were evaluated as independent risk factors. Logistic regression analyses were performed to investigate risk factors for overweight/obesity. Having a high family income compared to bad [odds ratio (OR)=1.96; 95% confidence interval (CI): 1.237-3.106], increased the time of watching TV during the weekend (OR=1.094; 95% CI: 1.032-1.159), and similar physical activity level according to their peers compared to less (OR=2.957; 95% CI: 1.056-8.282) were found to be significantly associated with a higher risk of overweight/obesity in children aged 2-6 years old. The early childhood period seems to be important in the establishment of healthy behavioral patterns, especially limitation of TV watching and encouragement of physical activity. Obesogenic environment in families with high incomes need to be revealed.

  8. The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes.

    Science.gov (United States)

    Liu, Xinhe; Petit, Jean-Marie; Ezan, Pascal; Gyger, Joël; Magistretti, Pierre; Giaume, Christian

    2013-12-01

    Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'. Copyright © 2013. Published by Elsevier Ltd.

  9. Electron Tomography Reveals the Active Phase–Support Interaction in Sulfidic Hydroprocessing Catalysts

    NARCIS (Netherlands)

    Eijsbouts, Sonja; Li, Xuang; Juan-Alcaniz, Jana; van den Oetelaar, Leon C A; Bergwerff, Jaap; Loos, Joachim; Carlsson, Anna; Vogt, E.T.C.

    2017-01-01

    Conventional two-dimensional (2D) transmission electron microscopy of sulfidic hydroprocessing catalysts can be deceiving and give the impression that parts of the support are overloaded with active phase. High-angle annular dark field scanning transmission electron microscopy tomography reveals

  10. 40 CFR 26.1118-26.1122 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false [Reserved] 26.1118-26.1122 Section 26.1118-26.1122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN... Exposure of Non-pregnant, Non-nursing Adults §§ 26.1118-26.1122 [Reserved] ...

  11. 40 CFR 26.1103-26.1106 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false [Reserved] 26.1103-26.1106 Section 26.1103-26.1106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN... Exposure of Non-pregnant, Non-nursing Adults §§ 26.1103-26.1106 [Reserved] ...

  12. A multidisciplinary approach to paediatric hearing loss: programme at the centre for hearing intervention and language development, National University Hospital, Singapore.

    Science.gov (United States)

    Lim, Lynne H Y

    2008-12-01

    The objective is to describe the multidisciplinary management programme at the National University Hospital (NUH) in Singapore for children with hearing impairment (HI). Over 99.95% of babies born at NUH have hearing tested with both otoacoustic emission and automated auditory brainstem response tests by 6 weeks of age. The referral rate to Otolaryngology is 0.5%. Acquired causes of congenital HI are decreasing. Thirty percent of patients at NUH with idiopathic congenital sensorineural HI have DFNB1/ GJB6 Connexin 26 HI. CT scan or MRI imaging has a higher diagnostic yield when there is unilateral, fluctuating or non-Connexin 26 related HI. Routine electrocardiogram and Opthalmology evaluations will exclude associations of fatal cardiac rhythm anomaly and retinopathy. Other investigations are directed by history and clinical examination. There is now a very wide range of increasingly sophisticated medication, neuro-otologic external, middle and inner ear surgery, hearing aids, middle ear implants and cochlear implants available to improve hearing. A multidisciplinary team from neonatology, paediatrics, otolaryngology, audiology, auditory verbal and speech therapy, ophthalmology, radiology, and psychology working closely with the child, family and schools is needed to develop a cost-effective and comprehensive management programme for paediatric HI.

  13. Irradiation-Induced Cardiac Connexin-43 and miR-21 Responses Are Hampered by Treatment with Atorvastatin and Aspirin

    Directory of Open Access Journals (Sweden)

    Csilla Viczenczova

    2018-04-01

    Full Text Available Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43, activation of the protein kinase C (PKC signaling along with the decline of microRNA (miR-1 and an increase of miR-21 levels in the left ventricle (LV. We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day, atorvastatin (0.25 mg/day, and sildenafil (0.3 mg/day for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.

  14. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    Science.gov (United States)

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  15. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  16. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Evaluation of Connexin 43 Redistribution and Endocytosis in Astrocytes Subjected to Ischemia/Reperfusion or Oxygen-Glucose Deprivation and Reoxygenation

    Directory of Open Access Journals (Sweden)

    Hongyan Xie

    2017-01-01

    Full Text Available Connexin 43 (Cx43 is the major component protein in astrocytic gap junction communication. Recent studies have shown the cellular processes of gap junction internalization and degradation, but many details remain unknown. This study investigated the distribution of Cx43 and its mechanism after ischemic insult. Astrocyte culture system and a model of ischemia/reperfusion (IR or oxygen-glucose deprivation and reoxygenation (OGDR were established. Cx43 distribution was observed by laser scanning confocal microscopy under different cultivation conditions. Western blot and RT-PCR assays were applied to quantify Cx43 and MAPRE1 (microtubule-associated protein RP/EB family member 1 expression at different time points. The total number of Cx43 was unchanged in the normal and IR/OGDR groups, but Cx43 particles in the cytoplasm of the IR/OGDR group were significantly greater than that of the normal group. Particles in the cytoplasm were significantly fewer after endocytosis was blocked by dynasore. There was no difference among the groups at each time point regarding protein or gene expression of MAPRE1. We concluded that internalization of Cx43 into the cytoplasm occurred during ischemia, which was partially mediated through endocytosis, not by the change of Cx43 quantity. Moreover, internalization was not related to microtubule transport.

  18. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions.

    Science.gov (United States)

    Rimkute, Lina; Kraujalis, Tadas; Snipas, Mindaugas; Palacios-Prado, Nicolas; Jotautis, Vaidas; Skeberdis, Vytenis A; Bukauskas, Feliksas F

    2018-01-01

    Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pH i ) and cytosolic magnesium ion concentration ([Mg 2+ ] i ), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pH i and [Mg 2+ ] i affect junctional conductance (g j ) in an interdependent manner; in other words, intracellular acidification cause increase or decay in g j depending on whether [Mg 2+ ] i is high or low, respectively, and intracellular alkalization cause reduction in g j independently of [Mg 2+ ] i . Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pH i and [Mg 2+ ] i . Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pH i and [Mg 2+ ] i . Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg 2+ ] i , while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36 * E8Q lost the initial increase of g j at low [Mg 2+ ] i and double mutation lost the sensitivity to high [Mg 2+ ] i . These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg 2+ and H + ions.

  19. Proteins interacting with the 26S proteasome

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Gordon, C

    2004-01-01

    The 26S proteasome is the multi-protein protease that recognizes and degrades ubiquitinylated substrates targeted for destruction by the ubiquitin pathway. In addition to the well-documented subunit organization of the 26S holoenzyme, it is clear that a number of other proteins transiently...... associate with the 26S complex. These transiently associated proteins confer a number of different roles such as substrate presentation, cleavage of the multi-ubiquitin chain from the protein substrate and turnover of misfolded proteins. Such activities are essential for the 26S proteasome to efficiently...... fulfill its intracellular function in protein degradation....

  20. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala.

    Science.gov (United States)

    Stehberg, Jimmy; Moraga-Amaro, Rodrigo; Salazar, Christian; Becerra, Alvaro; Echeverría, Cesar; Orellana, Juan A; Bultynck, Geert; Ponsaerts, Raf; Leybaert, Luc; Simon, Felipe; Sáez, Juan C; Retamal, Mauricio A

    2012-09-01

    Recent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.

  1. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    Science.gov (United States)

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Direct chemical synthesis of 1 alpha,25-dihydroxy[26,27-3H] vitamin D3 with high specific activity: its use in receptor studies

    International Nuclear Information System (INIS)

    Napoli, J.L.; Mellon, W.S.; Fivizzani, M.A.; Schnoes, H.K.; DeLuca, H.F.

    1980-01-01

    The first direct chemical synthesis of radiolabeled 1 alpha, 25-dihydroxyvitamin D3 is reported. Unlike all previous syntheses, the new approach does not rely on enzymatic 1 alpha-hydroxylation of radiolabeled precursors. Rather, isotope is introduced in the last synthetic step by reaction of [3H] -methylmagnesium bromide with methyl 1 alpha-hydroxy-26,27-dinorvitamin D3-25-carboxylate to give 1 alpha,25-dihydroxy-[26,27-3H] vitamin D3 with a specific activity of 160 Ci/mmol. Mass spectroscopy confirmed that the radiohormone consists of a single isomer with six tritium atoms bound to carbons 26 and 27. Synthetically produced 1 alpha,25-dihydroxy [26,27-3H] vitamin D3 is indistinguishable from 1 alpha,25-dihydroxy-[26,27-3H] vitamin D3 obtained from the enzymatic 1 alpha-hydroxylation of 25-hydroxy[26,27-3H] vitamin D3 (160 Ci/mmol) by high-pressure liquid chromatography analysis and in the competitive binding assay using chick intestinal cytosol as the receptor source. Equilibrium dissociation constant measurements with the high specific activity radiohormone indicate a Kd of 8.2 x 10(-11) M for the chick intestinal cytosol 1 alpha,25-dihydroxyvitamin D3 receptor--a value considerably lower than the constants in the range of (1-5) x 10(-9) M previously reported

  3. The genome sequence of Polymorphum gilvum SL003B-26A1(T reveals its genetic basis for crude oil degradation and adaptation to the saline soil.

    Directory of Open Access Journals (Sweden)

    Yong Nie

    Full Text Available Polymorphum gilvum SL003B-26A1(T is the type strain of a novel species in the recently published novel genus Polymorphum isolated from saline soil contaminated with crude oil. It is capable of using crude oil as the sole carbon and energy source and can adapt to saline soil at a temperature of 45°C. The Polymorphum gilvum genome provides a genetic basis for understanding how the strain could degrade crude oil and adapt to a saline environment. Genome analysis revealed the versatility of the strain for emulsifying crude oil, metabolizing aromatic compounds (a characteristic specific to the Polymorphum gilvum genome in comparison with other known genomes of oil-degrading bacteria, as well as possibly metabolizing n-alkanes through the LadA pathway. In addition, COG analysis revealed Polymorphum gilvum SL003B-26A1(T has significantly higher abundances of the proteins responsible for cell motility, lipid transport and metabolism, and secondary metabolite biosynthesis, transport and catabolism than the average levels found in all other genomes sequenced thus far, but lower abundances of the proteins responsible for carbohydrate transport and metabolism, defense mechanisms, and translation than the average levels. These traits support the adaptability of Polymorphum gilvum to a crude oil-contaminated saline environment. The Polymorphum gilvum genome could serve as a platform for further study of oil-degrading microorganisms for bioremediation and microbial-enhanced oil recovery in harsh saline environments.

  4. Androgen Signaling Disruption during Fetal and Postnatal Development Affects Androgen Receptor and Connexin 43 Expression and Distribution in Adult Boar Prostate

    Directory of Open Access Journals (Sweden)

    Anna Hejmej

    2013-01-01

    Full Text Available To date, limited knowledge exists regarding the role of the androgen signaling during specific periods of development in the regulation of androgen receptor (AR and connexin 43 (Cx43 in adult prostate. Therefore, in this study we examined mRNA and protein expression, and tissue distribution of AR and Cx43 in adult boar prostates following fetal (GD20, neonatal (PD2, and prepubertal (PD90 exposure to an antiandrogen flutamide (50 mg/kg bw. In GD20 and PD2 males we found the reduction of the luminal compartment, inflammatory changes, decreased AR and increased Cx43 expression, and altered localization of both proteins. Moreover, enhanced apoptosis and reduced proliferation were detected in the prostates of these animals. In PD90 males the alterations were less evident, except that Cx43 expression was markedly upregulated. The results presented herein indicate that in boar androgen action during early fetal and neonatal periods plays a key role in the maintenance of normal phenotype and functions of prostatic cells at adulthood. Furthermore, we demonstrated that modulation of Cx43 expression in the prostate could serve as a sensitive marker of hormonal disruption during different developmental stages.

  5. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Aschner, Michael [Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Luo, Wen-Jing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jing-Yuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2016-04-15

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  6. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    International Nuclear Information System (INIS)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua; Aschner, Michael; Luo, Wen-Jing; Chen, Jing-Yuan

    2016-01-01

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  7. Synthesis and Fungicidal Activities of (Z/E-3,7-Dimethyl-2,6-octadienamide and Its 6,7-Epoxy Analogues

    Directory of Open Access Journals (Sweden)

    Mingyan Yang

    2015-11-01

    Full Text Available In order to find new lead compounds with high fungicidal activity, (Z/E-3,7-dimethyl-2,6-octadienoic acids were synthesized via selective two-step oxidation using the commercially available geraniol/nerol as raw materials. Twenty-eight different (Z/E-3,7-dimethyl-2,6-octadienamide derivatives were prepared by reactions of (Z/E-carboxylic acid with various aromatic and aliphatic amines, followed by oxidation of peroxyacetic acid to afford their 6,7-epoxy analogues. All of the compounds were characterized by HR-ESI-MS and 1H-NMR spectral data. The preliminary bioassays showed that some of these compounds exhibited good fungicidal activities against Rhizoctonia solani (R. solani at a concentration of 50 µg/mL. For example, 5C, 5I and 6b had 94.0%, 93.4% and 91.5% inhibition rates against R. solani, respectively. Compound 5f displayed EC50 values of 4.3 and 9.7 µM against Fusahum graminearum and R. Solani, respectively.

  8. HID and KID syndromes are associated with the same connexin 26 mutation.

    NARCIS (Netherlands)

    Geel, M. van; Steensel, M.A.M. van; Kuster, W.; Hennies, H.C.; Happle, R.H.G.; Steijlen, P.M.; Konig, A.C.

    2002-01-01

    BACKGROUND: Keratitis-ichthyosis-deafness (KID) syndrome is a debilitating ectodermal dysplasia that predisposes patients to develop squamous cell carcinomas in addition to leading to profound sensory deafness and erythrokeratoderma. We recently demonstrated that KID can be caused by a specific

  9. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Directory of Open Access Journals (Sweden)

    Kristina Kirschner

    2015-03-01

    Full Text Available The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage and chronically activated (in senescent or pro-apoptotic conditions p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.

  10. Engagement in activities revealing the body and psychosocial adjustment in adults with a trans-tibial prosthesis.

    Science.gov (United States)

    Donovan-Hall, M K; Yardley, L; Watts, R J

    2002-04-01

    The purpose of this study was to examine the effects of the appearance of a prosthesis on social behaviour, social discomfort and psychological well-being in eleven amputees taking delivery of a prosthesis with a silicone cover. Two new scales were developed: the 'Engagement in everyday activities involving revealing the body' (EEARB); and the 'Discomfort-Engagement in everyday activities involving revealing the body' (Discomfort-EEARB) scales. The psychometric properties of these scales were determined using a sample of 101 able-bodied adults. The Hospital Anxiety and Depression Scale and the Rosenberg Self-Esteem Scale were also used to measure psychological well-being in the amputee sample. The EEARB and Discomfort-EEARB proved to have good reliability and validity. Comparison of amputees' scores prior to receiving the silicone cosmesis with those of the able-bodied adults revealed significant behavioural limitations and social discomfort, associated with low self-esteem, anxiety and depression. There was a significant increase in amputees' scores three months afier taking delivery of their prosthesis, indicating that amputees reported engaging in more activities which involved revealing their body, and that they would feel more comfortable in situations which involved revealing the body. As the amputee sample available was small and self-selected, it is not possible to generalise these findings to the amputee population as a whole. However, since there is little previous research investigating the effects of the appearance of the prosthesis, these findings demonstrate the need for further research in this area.

  11. Enhanced Bacterial α(2,6-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate.

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Kang

    Full Text Available Bacterial α(2,6-sialyltransferases (STs from Photobacterium damsela, Photobacterium sp. JT-ISH-224, and P. leiognathi JT-SHIZ-145 were recombinantly expressed in Escherichia coli and their ST activities were compared directly using a galactosylated bi-antennary N-glycan as an acceptor substrate. In all ST reactions, there was an increase of sialylated glycans at shorter reaction times and later a decrease in prolonged reactions, which is related with the inherent sialidase activities of bacterial STs. These sialidase activities are greatly increased by free cytidine monophosphate (CMP generated from a donor substrate CMP-N-acetylneuraminic acid (CMP-Neu5Ac during the ST reactions. The decrease of sialylated glycans in prolonged ST reaction was prevented through an inhibition of sialidase activity by simple treatment of alkaline phosphatase (AP, which dephosphorylates CMP to cytidine. Through supplemental additions of AP and CMP-Neu5Ac to the reaction using the recombinant α(2,6-ST from P. leiognathi JT-SHIZ-145 (P145-ST, the content of bi-sialylated N-glycan increased up to ~98% without any decrease in prolonged reactions. This optimized P145-ST reaction was applied successfully for α(2,6-sialylation of asialofetuin, and this resulted in a large increase in the populations of multi-sialylated N-glycans compared with the reaction without addition of AP and CMP-Neu5Ac. These results suggest that the optimized reaction using the recombinant P145-ST readily expressed from E. coli has a promise for economic glycan synthesis and glyco-conjugate remodeling.

  12. Tanshinone IIA increases the bystander effect of herpes simplex virus thymidine kinase/ganciclovir gene therapy via enhanced gap junctional intercellular communication.

    Directory of Open Access Journals (Sweden)

    Jianyong Xiao

    Full Text Available The bystander effect is an intriguing phenomenon by which adjacent cells become sensitized to drug treatment during gene therapy with herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV. This effect is reported to be mediated by gap junctional intercellular communication (GJIC, and therefore, we postulated that upregulation of genes that facilitate GJIC may enhance the HSV-tk/GCV bystander effect. Previous findings have shown Tanshinone IIA (Tan IIA, a chemical substance derived from a Chinese medicine herb, promotes the upregulation of the connexins Cx26 and Cx43 in B16 cells. Because gap junctions are formed by connexins, we hypothesized that Tan IIA might increase GJIC. Our results show that Tan IIA increased GJIC in B16 melanoma cells, leading to more efficient GCV-induced bystander killing in cells stably expressing HSV-tk. Additionally, in vivo experiments demonstrated that tumors in mice with 10% HSV-tk positive B16 cells and 90% wild-type B16 cells became smaller following treatment with the combination of GCV and Tan IIA as compared to GCV or Tan IIA alone. These data demonstrate that Tan IIA can augment the bystander effect of HSV-tk/GCV system through increased gap junction coupling, which adds strength to the promising strategy that develops connexins inducer to potentiate the effects of suicide gene therapy.

  13. Synthesis of 25-hydroxy-[26,27-3H]vitamin D2, 1,25-dihydroxy-[26,27-3H]vitamin D2 and their (24R)-epimers

    International Nuclear Information System (INIS)

    Sicinski, R.R.; Tanaka, Y.; Phelps, M.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27- 3 H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27- 3 H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27- 3 H[vitamin D2 and 1,25-dihydroxy-[26,27- 3 H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27- 3 H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27- 3 H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27- 3 H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3

  14. SACCHAROTHRIX SP. ABH26, A NEW ACTINOBACTERIAL STRAIN FROM ALGERIAN SAHARAN SOIL: ISOLATION, IDENTIFICATION AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Abdelhadi Lahoum

    2015-04-01

    Full Text Available A new strain of actinobacteria, designated ABH26, was isolated from a Saharan soil in the Adrar region (Algeria, by the dilution agar plating method using a chitin-vitamins B medium supplemented with polymyxin and penicillin. The morphological studies showed that this strain represents a member of the Saccharothrix genus. Phylogenetic analysis showed that this strain had 16S rRNA gene sequence similarities ranging from 97.63% (with Saccharothrix violaceirubra NBRC 102064T to 99.86% (with Saccharothrix xinjiangensis NBRC 101911T. Furthermore, strain ABH26 presented a strong activity against mycotoxigenic and phytopathogenic fungi including Aspergillus carbonarius (M333, A. flavus (NRRL 3251, A. westerdijkiae (ATCC 3174, Fusarium oxysporum f. sp. lini (Fol and F. solani (Fsol. Additionally, the strain exhibited an important antimicrobial activity against many strains of the pathogenic yeast Candida albicans (M2, M3 and IPA200 and against methicillin resistant Staphylococcus aureus (MRSA 639c. Thus, four solvents (n-hexane, dichloromethane, ethyl acetate and n-butanol were used for the extraction of produced antibiotic compounds. The highest antimicrobial activities were obtained using the butanolic extract. The thin layer chromatography (TLC method showed two bioactive spots, named HAD1 and HAD2, which were reveled negatively by using chemical revelators (ninhydrin, naphtoresorcinol-sulfuric acid, ferrous iron chloride and formaldehyde-sulfuric. These results indicated the absence of amine group, sugar, hydroxamic acid, phenol and aromatic compound.

  15. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents

    Energy Technology Data Exchange (ETDEWEB)

    Bendell, L.I., E-mail: bendell@sfu.ca

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of 'pulse' toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a 'snap-shot' of soil, plant or avian tissue trace metal analysis post-mining activity. - Research Highlights: {yields} Archived gizzard samples reveals mining history. {yields} Grit ingestion exposes grouse to cadmium and lead. {yields} Grit selection includes particles enriched in cadmium. {yields} Cadmium enriched particles are of toxicological significance.

  16. 26Mg(p,n)26Al and 23Na(α,n)26Al reactions

    International Nuclear Information System (INIS)

    Skelton, R.T.

    1985-01-01

    Cross sections for the 26 Mg(p,n) 26 Al reaction were measured from threshold at 4.988 MeV to 5.820 MeV. Cross sections for the 23 Na(α,n) 26 Al reaction were measured from threshold at 3.483 MeV to 4.597 MeV. In each case, separate measurements were to the ground state and to the first and second excited states of 26 Al. Cross sections for the inverse reactions were calculated and reaction rate factors relating to the destruction of 26 Al in a supernova environment were determined. Astrophysical implications relating to the observation of live and extinct 26 Al are discussed. Excitation functions for several additional exit channels for the 26 Mg + rho and 23 Na + α reactions are reported

  17. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    Science.gov (United States)

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  19. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    Science.gov (United States)

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  20. Argirein alleviates stress-induced and diabetic hypogonadism in rats via normalizing testis endothelin receptor A and connexin 43.

    Science.gov (United States)

    Xu, Ming; Hu, Chen; Khan, Hussein-hamed; Shi, Fang-hong; Cong, Xiao-dong; Li, Qing; Dai, Yin; Dai, De-zai

    2016-02-01

    Argirein (rhein-arginine) is a derivative of rhein isolated from Chinese rhubarb (Rheum Officinale Baill.) that exhibits antioxidant and anti-inflammatory activities. In the present study we investigated the effects of argirein on stress-induced (hypergonadotrophic) and diabetic (hypogonadotrophic) hypogonadism in male rats. Stress-induced and diabetic hypogonadism was induced in male rats via injection of isoproterenol (ISO) or streptozotocin (STZ). ISO-injected rats were treated with argirein (30 mg·kg(-1)·d(-1), po) or testosterone replacement (0.5 mg·kg(-1)·d(-1), sc) for 5 days, and STZ-injected rats were treated with argirein (40-120 mg·kg(-1)·d(-1), po) or aminoguanidine (100 mg·kg(-1)·d(-1), po) for 4 weeks. After the rats were euthanized, blood samples and testes were collected. Serum hormone levels were measured, and the expression of endothelin receptor A (ETA), connexin 43 (Cx43) and other proteins in testes was detected. For in vitro experiments, testis homogenate was prepared from normal male rats, and incubated with ISO (1 μmol/L) or high glucose (27 mmol/L). ISO injection induced hyper-gonadotrophic hypogonadism characterized by low testosterone and high FSH and LH levels in the serum, whereas STZ injection induced hypogonadotrophic hypogonadism as evidenced by low testosterone and low FSH and LH levels in the serum. In the testes of ISO- and STZ-injected rats, the expression of ETA, MMP-9, NADPH oxidase and pPKCε was significantly increased, and the expression of Cx43 was decreased. Administration of argirein attenuated both the abnormal serum hormone levels and the testis changes in ISO- and STZ-injected rats, and aminoguanidine produced similar actions in STZ-injected rats; testosterone replacement reversed the abnormal serum hormone levels, but did not affect the testis changes in ISO-injected rats. Argirein (0.3-3 μmol/L) exerted similar effects in testis homogenate incubated with ISO or high glucose in vitro. Two types of

  1. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    International Nuclear Information System (INIS)

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-01-01

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  2. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  3. Chemotherapeutic agents attenuate CXCL12-mediated migration of colon cancer cells by selecting for CXCR4-negative cells and increasing peptidase CD26

    International Nuclear Information System (INIS)

    Cutler, Murray J.; Lowthers, Erica L.; Richard, Cynthia L.; Hajducek, Dagmar M.; Spagnuolo, Paul A.; Blay, Jonathan

    2015-01-01

    Recurrence of colorectal cancer (CRC) may arise due to the persistence of drug-resistant and cancer-initiating cells that survive exposure to chemotherapy. Proteins responsible for this recurrence include the chemokine receptor CXCR4, which is known to enable CRC metastasis, as well as the cancer-initiating cell marker and peptidase CD26, which terminates activity of its chemokine CXCL12. We evaluated the expression and function of CXCR4 and CD26 in colon cancer cell lines and xenografts following treatment with common chemotherapies using radioligand binding, flow cytometry, immunofluorescence, and enzymatic assays. 5-Fluorouracil, oxaliplatin and SN-38 (the active metabolite of irinotecan), as well as cisplatin, methotrexate and vinblastine, each caused decreases in cell-surface CXCR4 and concomitant increases in CD26 on HT-29, T84, HRT-18, SW480 and SW620 CRC cell lines. Flow cytometry indicated that the decline in CXCR4 was associated with a significant loss of CXCR4+/CD26- cells. Elevations in CD26 were paralleled by increases in both the intrinsic dipeptidyl peptidase activity of CD26 as well as its capacity to bind extracellular adenosine deaminase. Orthotopic HT-29 xenografts treated with standard CRC chemotherapeutics 5-fluorouracil, irinotecan, or oxaliplatin showed dramatic increases in CD26 compared to untreated tumors. Consistent with the loss of CXCR4 and gain in CD26, migratory responses to exogenous CXCL12 were eliminated in cells pretreated with cytotoxic agents, although cells retained basal motility. Analysis of cancer-initiating cell CD44 and CD133 subsets revealed drug-dependent responses of CD26/CD44/CD133 populations, suggesting that the benefits of combining standard chemotherapies 5-fluoruracil and oxaliplatin may be derived from their complementary elimination of cell populations. Our results indicate that conventional anticancer agents may act to inhibit chemokine-mediated migration through eradication of CXCR4+ cells and attenuation of

  4. Cardiomyopathy-Associated Gene 1-Sensitive PKC-Dependent Connexin 43 Expression and Phosphorylation in Left Ventricular Noncompaction Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xie

    2017-11-01

    Full Text Available Background/Aims: Cardiomyopathy-associated gene 1 (CMYA1 plays an important role in embryonic cardiac development, postnatal cardiac remodeling and myocardial injury repair. Abnormal CMYA1 expression may be involved in cardiac dysplasia and primary cardiomyopathy. Our study aims to establish the relationship between CMYA1 and Left ventricular noncompaction cardiomyopathy (LVNC pathogenesis. Methods: We explored the effects of CMYA1 on connexins (Cx, which contribute to gap junction intercellular communication (GJIC, and the underlying signaling pathway in human normal tissues, LVNC myocardial tissues and HL1 cells by means of western blotting, RT-qPCR, immunohistochemistry, immunofluorescence, co-immunoprecipitation and scrape loading-dye transfer. Results: CMYA1 expression was inversely associated with Cx43 and Cx40 expression, as determined by gap junction PCR array analysis. An increased expression and disordered distribution of CMYA1 at the intercalated discs in LVNC myocardial tissue was also observed. CMYA1 and Cx43 are co-expressed and interact in myocardial cells. CMYA1 expression was positively correlated with p-Cx43 (S368 via the Protein kinase C (PKC signaling pathway in myocardial tissue and HL1 cells. The diffusion distance of Lucifer Yellow in the HL1 cells in which CMYA1 was over-expressed or knocked down was significantly less or more than that of the control group, respectively. Conclusion: Abnormal CMYA1 expression affects the expression and phosphorylation of Cx43 through the PKC signaling pathway, which is involved in the regulation of GJIC. CMYA1 participates in the molecular mechanism of LVNC pathogenesis.

  5. 31P NMR Spectroscopy Revealed Adenylate kinase-like Activity and Phosphotransferase-like Activity from F1-ATPase of Escherichia coli

    International Nuclear Information System (INIS)

    Kim, Hyun Won

    2011-01-01

    Adenylate kinase-like activity and phosphotransferase-like activity from F 1 -ATPase of Escherichia coli was revealed by 31 P NMR spectroscopy. Incubation of F 1 -ATPase with ADP in the presence of Mg 2+ shows the appearance of 31 P resonances from AMP and Pi, suggesting generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of F1-ATPase with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase-like activity of F 1 -ATPase. Both adenylate kinase-like activity and phosphotransferase-like activity has not been reported from F 1 -ATPase of Escherichia coli. 31 P NMR could be a valuable tool for the investigation of phosphorous related enzyme

  6. Managing the complexity of communication: regulation of gap junctions by post-translational modification

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; von Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein...... probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated...

  7. Right and left amygdalae activation in patients with major depression receiving antidepressant treatment, as revealed by fMRI.

    Science.gov (United States)

    Chen, Yen-Ting; Huang, Min-Wei; Hung, I-Chung; Lane, Hsien-Yuan; Hou, Chun-Ju

    2014-10-08

    A differential contribution of the right and left amygdalae to affective information processing has been proposed. However, the direction of this lateralization has not been confirmed. In this study, we used a pre- and post-treatment (escitalopram) design to analyze the relative differences between neural activity in the right and left amygdalae during exposure to emotional stimuli in currently depressed patients. To the best of our knowledge, this study is to compare neural activity between the left and right amygdalae in people with depression. Our findings could lead to the development of parameters or biomarkers for depressive symptoms and treatment response. We used a pre-post-test design without a control group. Twenty currently depressed participants underwent an emotion processing task during fMRI. These participants were then treated with an antidepressant for 6 weeks. We used amygdala region-of-interest analysis to evaluate the hemodynamic response during exposure to colored emotional pictures. In total, thirteen of the 20 participants were placed into a separate group based on degree of response to antidepressants. The partial response group had an averaged HDRS score of 10.75 ± 2.25 and an averaged DBOLDLR signal of 189.18 ± 140.23 (m1 = 8), and the remitted group had an averaged HDRS score of 4.80 ± 1.64 and an averaged DBOLDLR signal of 421.26 ± 109.19 (m2 = 5). Each individual had lateralized amygdala activity, and the direction of asymmetry persisted following treatment. Amygdala responses to four types of emotional stimuli did not significantly change (p > 0.05) with treatment in either the right or the left amygdala. However, the difference in neural activity between the right and left amygdalae was greater after treatment, and the variation in neural activity was larger in the left amygdala. We found that the response between the right and left amygdala did not differ in terms of time series, although activity increased after pharmaceutical

  8. Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses.

    Science.gov (United States)

    Yu, Xiaodi; Veesler, David; Campbell, Melody G; Barry, Mary E; Asturias, Francisco J; Barry, Michael A; Reddy, Vijay S

    2017-05-01

    Human adenoviruses (HAdVs) cause acute respiratory, ocular, and gastroenteric diseases and are also frequently used as gene and vaccine delivery vectors. Unlike the archetype human adenovirus C5 (HAdV-C5), human adenovirus D26 (HAdV-D26) belongs to species-D HAdVs, which target different cellular receptors, and is differentially recognized by immune surveillance mechanisms. HAdV-D26 is being championed as a lower seroprevalent vaccine and oncolytic vector in preclinical and human clinical studies. To understand the molecular basis for their distinct biological properties and independently validate the structures of minor proteins, we determined the first structure of species-D HAdV at 3.7 Å resolution by cryo-electron microscopy. All the hexon hypervariable regions (HVRs), including HVR1, have been identified and exhibit a distinct organization compared to those of HAdV-C5. Despite the differences in the arrangement of helices in the coiled-coil structures, protein IX molecules form a continuous hexagonal network on the capsid exterior. In addition to the structurally conserved region (3 to 300) of IIIa, we identified an extra helical domain comprising residues 314 to 390 that further stabilizes the vertex region. Multiple (two to three) copies of the cleaved amino-terminal fragment of protein VI (pVIn) are observed in each hexon cavity, suggesting that there could be ≥480 copies of VI present in HAdV-D26. In addition, a localized asymmetric reconstruction of the vertex region provides new details of the three-pronged "claw hold" of the trimeric fiber and its interactions with the penton base. These observations resolve the previous conflicting assignments of the minor proteins and suggest the likely conservation of their organization across different HAdVs.

  9. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew

    2014-01-01

    that retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  10. Antiproliferative activity and apoptotic effects of Filipendula ulmaria pollen against C26 mice colon tumour cells

    Directory of Open Access Journals (Sweden)

    Mărgăoan Rodica

    2016-06-01

    Full Text Available Honeybee collected pollen exhibits high nutritional and pharmaceutical benefits for the human diet and medicine. Pollen’s antioxidant, anti-ageing, anti-inflammatory, anti-atherosclerosis, and cardioprotective activity, depending on the floral origin, are well known. Recent studies proposed that pollen may also be an excellent cancer-fighting candidate, as pollen harbours high amounts of phenolic substances. In our study, Filipendula ulmaria pollen (bee collected was methanol-water extracted and used to verify its in vitro pharmacological activities on C26 mice cancer tumour cells. Three different concentrations of the extract were tested in antitumour assays. Monitoring was done after 6, 12, 24, and 48 hours. Promising results were obtained for antiproliferative and apoptotic activity of the pollen extracts, with high efficiency for the highest concentration (1 mg/mL. For both activities, time and concentration-dependent effects were observed. Pollen extracts or bee collected pollen has a high potential as an antitumour agent for use in human medicine, because they are both rich in bioactive compounds.

  11. Rosa26-GFP direct repeat (RaDR-GFP mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.

    Directory of Open Access Journals (Sweden)

    Michelle R Sukup-Jackson

    2014-06-01

    Full Text Available Homologous recombination (HR is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.

  12. Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Leonie M Kamminga

    Full Text Available RNA interference (RNAi-related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3' ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA-methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3'-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1-bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4-bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways.

  13. Aftershock activity of Bhuj earthquake of January 26th, 2001

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2001-01-26

    Jan 26, 2001 ... The epicenter of the mainshock falls on the southern edge of ... Daily frequency of aftershocks (ML ≥ 1) from February 5th to February 27th, 2001. local network around the .... Financial support to carry out the study became.

  14. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  15. Wheat chloroplast targeted sHSP26 promoter confers heat and abiotic stress inducible expression in transgenic Arabidopsis Plants.

    Directory of Open Access Journals (Sweden)

    Neetika Khurana

    Full Text Available The small heat shock proteins (sHSPs have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the hloroplast targeted sHSP26 promoter in detail, deletion analysis of the promoter is carried out and analysed via transgenics in Arabidopsis. In the present study, complete assessment of the importance of CCAAT-box elements along with Heat shock elements (HSEs in the promoter of sHSP26 was performed. Moreover, the importance of 5' untranslated region (UTR has also been established in the promoter via Arabidopsis transgenics. An intense GUS expression was observed after heat stress in the transgenics harbouring a full-length promoter, confirming the heat-stress inducibility of the promoter. Transgenic plants without UTR showed reduced GUS expression when compared to transgenic plants with UTR as was confirmed at the RNA and protein levels by qRT-PCR and GUS histochemical assays, thus suggesting the possible involvement of some regulatory elements present in the UTR in heat-stress inducibility of the promoter. Promoter activity was also checked under different abiotic stresses and revealed differential expression in different deletion constructs. Promoter analysis based on histochemical assay, real-time qPCR and fluorimetric analysis revealed that HSEs alone could not transcribe GUS gene significantly in sHSP26 promoter and CCAAT box elements contribute synergistically to the transcription. Our results also provide insight into the importance of 5`UTR of sHsp26 promoter thus emphasizing the probable role of imperfect CCAAT-box element or some novel cis-element with respect to heat stress.

  16. 26 CFR 1.401(a)(26)-7 - Testing methods.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Testing methods. 1.401(a)(26)-7 Section 1.401(a... (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.401(a)(26)-7 Testing methods... the rules in § 1.401(a)(26)-5. (b) Simplified testing method. A plan is treated as satisfying the...

  17. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    Science.gov (United States)

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Chi [Cryo-EM Structural; Tong, Simon [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Zhou, Yuchen [Department of Applied Mathematics; Elmes, Matthew W. [Department of Biochemistry and; Yan, Su [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Kaczocha, Martin [Department of Biochemistry and; Department of Anesthesiology, Stony Brook University, Stony; Deutsch, Dale G. [Department of Biochemistry and; Institute of Chemical Biology and; Rizzo, Robert C. [Department of Applied Mathematics; Institute of Chemical Biology and; Laufer; Ojima, Iwao [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; Institute of Chemical Biology and; Li, Huilin [Cryo-EM Structural; Institute of Chemical Biology and

    2017-06-28

    Human FABP5 and FABP7 are intracellular endocannabinoid transporters. SBFI-26 is an α-truxillic acid 1-naphthyl monoester that competitively inhibits the activities of FABP5 and FABP7 and produces antinociceptive and anti-inflammatory effects in mice. The synthesis of SBFI-26 yields several stereoisomers, and it is not known how the inhibitor binds the transporters. Here we report co-crystal structures of SBFI-26 in complex with human FABP5 and FABP7 at 2.2 and 1.9 Å resolution, respectively. We found that only (S)-SBFI-26 was present in the crystal structures. The inhibitor largely mimics the fatty acid binding pattern, but it also has several unique interactions. Notably, the FABP7 complex corroborates key aspects of the ligand binding pose at the canonical site previously predicted by virtual screening. In FABP5, SBFI-26 was unexpectedly found to bind at the substrate entry portal region in addition to binding at the canonical ligand-binding pocket. Our structural and binding energy analyses indicate that both R and S forms appear to bind the transporter equally well. We suggest that the S enantiomer observed in the crystal structures may be a result of the crystallization process selectively incorporating the (S)-SBFI-26–FABP complexes into the growing lattice, or that the S enantiomer may bind to the portal site more rapidly than to the canonical site, leading to an increased local concentration of the S enantiomer for binding to the canonical site. Our work reveals two binding poses of SBFI-26 in its target transporters. This knowledge will guide the development of more potent FABP inhibitors based upon the SBFI-26 scaffold.

  19. Aftershocks of 26th January 2001 Bhuj earthquake and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Aftershocks of 26th January 2001 Bhuj earthquake and seismotectonics of the Kutch region. K S Misra∗, R Bhutani and R Sonp. Geological Survey of India, Alandi Road, Pune - 6, India. ∗email: gsi−pune@vsnl.com. The 26th January 2001 Bhuj earthquake was followed by intense aftershock activity. Aftershock data from ...

  20. Frequency of c.35delG Mutation in GJB2 Gene (Connexin 26 in Syrian Patients with Nonsyndromic Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Hazem Kaheel

    2017-01-01

    Full Text Available Background. Hearing impairments (HI are the most common birth defect worldwide. Very large numbers of genes have been identified but the most profound is GJB2. The clinical interest regarding this gene is very pronounced due to its high carrier frequency (0.5–5.4% across different ethnic groups. This study aimed to determine the prevalence of common GJB2 mutations in Syrian patients with profound sensorineural HI. Methods. We carried out PCR, restriction enzyme based screening, and sequencing of 132 Syrian patients diagnosed clinically with hereditary deafness for different GJB2 mutations. Results. The result revealed that, in GJB2 gene, c.35delG is the most prevalent among affected studied subjects (13.64%, followed by c.457G>A (2.4%. Conclusion. The benefit of this study on the one hand is its first report of prelingual deafness causative gene mutations identified by sequencing technology in the Syrian families. It is obvious from the results that the deployment in biomedical research is highly effective and has a great impact on the ability to uncover the cause of genetic variation in different genetic diseases.

  1. Inhibition of GSK-3β Rescues the Impairments in Bone Formation and Mechanical Properties Associated with Fracture Healing in Osteoblast Selective Connexin 43 Deficient Mice

    Science.gov (United States)

    Loiselle, Alayna E.; Lloyd, Shane A. J.; Paul, Emmanuel M.; Lewis, Gregory S.; Donahue, Henry J.

    2013-01-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair. PMID:24260576

  2. Computational study of the activity, dynamics, energetics and conformations of insulin analogues using molecular dynamics simulations: Application to hyperinsulinemia and the critical residue B26

    Directory of Open Access Journals (Sweden)

    Anastasios Papaioannou

    2017-09-01

    Full Text Available Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues—three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor—using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1 hyperinsulinemia may be due to the drastically reduced activity (and binding affinity of the mutant insulins. 2 Y26BS and Y26BE are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.

  3. Active sulforhodamine 101 uptake into hippocampal astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Schnell

    Full Text Available Sulforhodamine 101 (SR101 is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes.

  4. 41 CFR 101-26.505-4-101-26.505-6 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true [Reserved] 101-26.505-4-101-26.505-6 Section 101-26.505-4-101-26.505-6 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26...

  5. Impaired osteogenic differentiation associated with connexin43/microRNA-206 in steroid-induced avascular necrosis of the femoral head.

    Science.gov (United States)

    Liu, Gang; Luo, Gaobin; Bo, Zhandong; Liang, Xiaonan; Huang, Jie; Li, Donghui

    2016-08-01

    Connexin(Cx)43 and microRNA(miR)-206 play an important role in osteogenesis. However, their role in steroid-induced femoral head osteonecrosis (SANFH) is still ambiguous. The present study aimed to establish a rabbit model and investigate osteogenesis in steroid-induced femoral head osteonecrosis occurring via Cx43/miR-206 and the changes of Wnt/β-catenin signal pathway-related proteins. A total of 72 adult New Zealand white rabbits were divided randomly into a model group (Group A) and a control group (Group B) of 36 rabbits each. Group A was injected intravenously with lipopolysaccharide (10μg/kg body weight, once per day). After 48h, three injections of methylprednisolone (MPS; 20mg/kg body weight) were administered intramuscularly at 24-hour intervals. Group B were fed and housed under identical conditions but received saline injections. All animals were sacrificed at two, four, and eight weeks from the first MPS injection. Typical early osteonecrosis symptoms were observed in Group A. The expression of miR-206 in Group A was significantly higher than that of Group B. The mRNA and protein levels of Cx43, β-catenin, runt-related transcription factor 2, and alkaline phosphatase gradually decreased while Dickkopf-1 (Dkk-1) gradually increased in Group A compared with Group B. These findings indicated that Cx43/miR-206 is involved in the pathogenesis of early stage SANFH and may be associate with Wnt/β-catenin signal pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A 26-year-old man with dyspnea and chest pain

    Directory of Open Access Journals (Sweden)

    Saurabh Mittal

    2017-01-01

    Full Text Available A 26-year-old smoker male presented with a history of sudden onset dyspnea and right-sided chest pain. Chest radiograph revealed large right-sided pneumothorax which was managed with tube thoracostomy. High-resolution computed tomography thorax revealed multiple lung cysts, and for a definite diagnosis, a video-assisted thoracoscopic surgery-guided lung biopsy was performed followed by pleurodesis. This clinicopathologic conference discusses the clinical and radiological differential diagnoses, utility of lung biopsy, and management options for patients with such a clinical presentation.

  7. Natural and Semisynthetic Analogues of Manadoperoxide B Reveal New Structural Requirements for Trypanocidal Activity

    Science.gov (United States)

    Chianese, Giuseppina; Scala, Fernando; Calcinai, Barbara; Cerrano, Carlo; Dien, Henny A.; Kaiser, Marcel; Tasdemir, Deniz; Taglialatela-Scafati, Orazio

    2013-01-01

    Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1), namely 12-isomanadoperoxide B (2) and manadoperoxidic acid B (3). These compounds were isolated along with a new short chain dicarboxylate monoester (4), bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6–8) were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure–activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents. PMID:23989650

  8. Natural and Semisynthetic Analogues of Manadoperoxide B Reveal New Structural Requirements for Trypanocidal Activity

    Directory of Open Access Journals (Sweden)

    Orazio Taglialatela-Scafati

    2013-08-01

    Full Text Available Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1, namely 12-isomanadoperoxide B (2 and manadoperoxidic acid B (3. These compounds were isolated along with a new short chain dicarboxylate monoester (4, bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6–8 were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure–activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents.

  9. The 26th Amendment and Youth Voting Rights.

    Science.gov (United States)

    Schamel, Wynell

    1996-01-01

    Describes learning activities to be used in conjunction with a facsimile of the 92nd Congress's joint resolution passing the 26th Amendment extending the voting franchise to 18-year-olds. These activities include document analysis, time lines, class discussions, and storytelling. Briefly reviews the amendment process. (MJP)

  10. 26 CFR 26.2653-1 - Taxation of multiple skips.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Taxation of multiple skips. 26.2653-1 Section 26.2653-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE...-1 Taxation of multiple skips. (a) General rule. If property is held in trust immediately after a GST...

  11. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    Science.gov (United States)

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  12. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.

    Science.gov (United States)

    Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela

    2016-04-15

    The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins

    Science.gov (United States)

    Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela

    2015-01-01

    Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950

  14. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    Directory of Open Access Journals (Sweden)

    Jiayang Qin

    Full Text Available Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  15. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    Science.gov (United States)

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  16. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    KAUST Repository

    Kim, Jeong Joo

    2016-04-09

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Kim et al. obtain the first crystal structure of the PKG I R domain bound with cGMP representing its activated state. It reveals a symmetric R dimer where cGMP molecules provide dimeric contacts. This R-R interaction prevents the high-affinity inhibitory interaction between R-C domain and sustains activation. © 2016 Elsevier Ltd.

  17. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    KAUST Repository

    Kim, Jeong  Joo; Lorenz, Robin; Arold, Stefan T.; Reger, Albert  S.; Sankaran, Banumathi; Casteel, Darren  E.; Herberg, Friedrich  W.; Kim, Choel

    2016-01-01

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Kim et al. obtain the first crystal structure of the PKG I R domain bound with cGMP representing its activated state. It reveals a symmetric R dimer where cGMP molecules provide dimeric contacts. This R-R interaction prevents the high-affinity inhibitory interaction between R-C domain and sustains activation. © 2016 Elsevier Ltd.

  18. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Shuyu D. Li

    2017-10-01

    Full Text Available Abstract Background Next-generation sequencing (NGS of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932 of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932 of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation.

  19. Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice

    Science.gov (United States)

    Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.

    2016-01-01

    The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483

  20. Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway

    Science.gov (United States)

    Murali, Rajmohan; Chandramohan, Raghu; Möller, Inga; Scholz, Simone L.; Berger, Michael; Huberman, Kety; Viale, Agnes; Pirun, Mono; Socci, Nicholas D.; Bouvier, Nancy; Bauer, Sebastian; Artl, Monika; Schilling, Bastian; Schimming, Tobias; Sucker, Antje; Schwindenhammer, Benjamin; Grabellus, Florian; Speicher, Michael R.; Schaller, Jörg; Hillen, Uwe; Schadendorf, Dirk; Mentzel, Thomas; Cheng, Donavan T.; Wiesner, Thomas; Griewank, Klaus G.

    2015-01-01

    Angiosarcomas are rare malignant mesenchymal tumors of endothelial differentiation. The clinical behavior is usually aggressive and the prognosis for patients with advanced disease is poor with no effective therapies. The genetic bases of these tumors have been partially revealed in recent studies reporting genetic alterations such as amplifications of MYC (primarily in radiation-associated angiosarcomas), inactivating mutations in PTPRB and R707Q hotspot mutations of PLCG1. Here, we performed a comprehensive genomic analysis of 34 angiosarcomas using a clinically-approved, hybridization-based targeted next-generation sequencing assay for 341 well-established oncogenes and tumor suppressor genes. Over half of the angiosarcomas (n = 18, 53%) harbored genetic alterations affecting the MAPK pathway, involving mutations in KRAS, HRAS, NRAS, BRAF, MAPK1 and NF1, or amplifications in MAPK1/CRKL, CRAF or BRAF. The most frequently detected genetic aberrations were mutations in TP53 in 12 tumors (35%) and losses of CDKN2A in 9 tumors (26%). MYC amplifications were generally mutually exclusive of TP53 alterations and CDKN2A loss and were identified in 8 tumors (24%), most of which (n = 7, 88%) arose post-irradiation. Previously reported mutations in PTPRB (n = 10, 29%) and one (3%) PLCG1 R707Q mutation were also identified. Our results demonstrate that angiosarcomas are a genetically heterogeneous group of tumors, harboring a wide range of genetic alterations. The high frequency of genetic events affecting the MAPK pathway suggests that targeted therapies inhibiting MAPK signaling may be promising therapeutic avenues in patients with advanced angiosarcomas. PMID:26440310

  1. Community Lenses Revealing the Role of Sociocultural Environment on Physical Activity

    Science.gov (United States)

    Belon, Ana Paula; Nieuwendyk, Laura M.; Vallianatos, Helen; Nykiforuk, Candace I. J.

    2016-01-01

    Purpose To identify perceptions of how sociocultural environment enabled and hindered physical activity (PA) participation. Design Community-based participatory research. Setting Two semirural and two urban communities located in Alberta, Canada. Participants Thirty-five people (74.3% females, 71.4% aged 25–64 years) across the four communities. Method PhotoVoice activities occurred over 3 months during the spring of 2009. Participants were asked to document perceived environmental attributes that might foster or inhibit PA in their community. Photographs and narratives were shared in one-on-one interviews. Line-by-line coding of the transcripts was independently conducted by two researchers using an inductive approach. Codes were arranged into themes and subthemes, which were then organized into the Analysis Grid for Environments Linked to Obesity (ANGELO) framework. Results Six main themes (accompanied by subthemes) emerged: sociocultural aesthetics, safety, social involvement, PA motivation, cultural ideas of recreation, and car culture. Representative quotes and photographs illustrate enablers and obstacles identified by participants. Conclusion This PhotoVoice study revealed how aspects of participants’ sociocultural environments shaped their decisions to be physically active. Providing more PA resources is only one step in the promotion of supportive environments. Strategies should also account for the beautification and maintenance of communities, increasing feelings of safety, enhancement of social support among community members, popularization of PA, and mitigating car culture, among others. PMID:25973966

  2. Community Lenses Revealing the Role of Sociocultural Environment on Physical Activity.

    Science.gov (United States)

    Belon, Ana Paula; Nieuwendyk, Laura M; Vallianatos, Helen; Nykiforuk, Candace I J

    2016-01-01

    To identify perceptions of how sociocultural environment enabled and hindered physical activity (PA) participation. Community-based participatory research. Two semirural and two urban communities located in Alberta, Canada. Thirty-five people (74.3% females, 71.4% aged 25-64 years) across the four communities. PhotoVoice activities occurred over 3 months during the spring of 2009. Participants were asked to document perceived environmental attributes that might foster or inhibit PA in their community. Photographs and narratives were shared in one-on-one interviews. Line-by-line coding of the transcripts was independently conducted by two researchers using an inductive approach. Codes were arranged into themes and subthemes, which were then organized into the Analysis Grid for Environments Linked to Obesity (ANGELO) framework. Six main themes (accompanied by subthemes) emerged: sociocultural aesthetics, safety, social involvement, PA motivation, cultural ideas of recreation, and car culture. Representative quotes and photographs illustrate enablers and obstacles identified by participants. This PhotoVoice study revealed how aspects of participants' sociocultural environments shaped their decisions to be physically active. Providing more PA resources is only one step in the promotion of supportive environments. Strategies should also account for the beautification and maintenance of communities, increasing feelings of safety, enhancement of social support among community members, popularization of PA, and mitigating car culture, among others.

  3. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  4. Inter-species activity correlations reveal functional correspondences between monkey and human brain areas

    Science.gov (United States)

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim

    2012-01-01

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809

  5. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities

    DEFF Research Database (Denmark)

    Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.

    2013-01-01

    to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer...... and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible...... a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling....

  6. Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series

    International Nuclear Information System (INIS)

    Silva, Fabrício B; Shimabukuro, Yosio E; Aragão, Luiz E O C; Anderson, Liana O; Pereira, Gabriel; Cardozo, Franciele; Arai, Egídio

    2013-01-01

    Depiction of phenological cycles in tropical forests is critical for an understanding of seasonal patterns in carbon and water fluxes as well as the responses of vegetation to climate variations. However, the detection of clear spatially explicit phenological patterns across Amazonia has proven difficult using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). In this work, we propose an alternative approach based on a 26-year time-series of the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) to identify regions with homogeneous phenological cycles in Amazonia. Specifically, we aim to use a pattern recognition technique, based on temporal signal processing concepts, to map Amazonian phenoregions and to compare the identified patterns with field-derived information. Our automated method recognized 26 phenoregions with unique intra-annual seasonality. This result highlights the fact that known vegetation types in Amazonia are not only structurally different but also phenologically distinct. Flushing of new leaves observed in the field is, in most cases, associated to a continuous increase in NDVI. The peak in leaf production is normally observed from the beginning to the middle of the wet season in 66% of the field sites analyzed. The phenoregion map presented in this work gives a new perspective on the dynamics of Amazonian canopies. It is clear that the phenology across Amazonia is more variable than previously detected using remote sensing data. An understanding of the implications of this spatial heterogeneity on the seasonality of Amazonian forest processes is a crucial step towards accurately quantifying the role of tropical forests within global biogeochemical cycles. (letter)

  7. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    Science.gov (United States)

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  8. Changes in serum levels of lipopolysaccharides and CD26 in patients with Crohn's disease

    Science.gov (United States)

    Kotze, Paulo Gustavo; Martinez, Carlos Augusto Real; Camargo, Michel Gardere; Guadagnini, Dioze; Calixto, Antonio Ramos; Vasques, Ana Carolina Junqueira; Ayrizono, Maria de Lourdes Setsuko; Geloneze, Bruno; Pareja, José Carlos; Saad, Mario José; Coy, Claudio Saddy Rodrigues

    2017-01-01

    Background/Aims Lipopolysaccharide (LPS) is a molecule formed by lipids and polysaccharides and is the major cell wall component of gram-negative bacteria. High LPS levels are known to block CD26 expression by activating Toll-like receptor 4. The aim of this study was to correlate the serum levels of LPS and CD26 in Crohn's disease (CD) patients with serum levels of C-reactive protein (CRP), interleukins, CD activity index, and tumor necrosis factor-α (TNF-α). Methods Serum samples were collected from 27 individuals (10 with active CD, 10 with inactive CD, and 7 controls) and the levels of LPS, CD26, TNF-α, interleukin-1β (IL-1β), IL-6, IL-17, and CRP were determined by enzyme-linked immunosorbent assay. The levels of LPS and CD26 were then tested for correlation with TNF-α, IL-1β, IL-6, IL-17, and CRP. Results Serum levels of LPS were significantly elevated in the active CD group (P=0.003). Levels of IL-1β (P=0.002), IL-6 (P=0.003), and IL-17 (P<0.001) were lower in the CD groups. Serum TNF-α levels were increased in the active CD group. The CRP levels were elevated in the CD groups when compared to controls (P<0.001). The CD26 levels were lower in the CD groups than in the control group (P<0.001). Among the variables analyzed, there was a correlation between LPS and CRP (r=−0.53, P=0.016) in the CD groups. Conclusions Individuals with CD exhibited higher serum levels of LPS varying from a 2- to 6-fold increase depending on disease activity, when compared with healthy controls. CD26 levels were lower in the CD groups. Both LPS and CD26 correlated with disease severity and serve as potential CD biomarkers. PMID:28670232

  9. Kölliker’s Organ and the Development of Spontaneous Activity in the Auditory System: Implications for Hearing Dysfunction

    Directory of Open Access Journals (Sweden)

    M. W. Nishani Dayaratne

    2014-01-01

    Full Text Available Prior to the “onset of hearing,” developing cochlear inner hair cells (IHCs and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker’s organ, which is only present during this critical period of auditory development. There is strong evidence for a purinergic signalling mechanism underlying such activity. ATP released through connexin hemichannels may activate P2 purinergic receptors in both Kölliker’s organ and the adjacent IHCs, leading to generation of electrical activity throughout the auditory system. However, recent work has suggested an alternative origin, by demonstrating the ability of IHCs to generate this spontaneous activity without activation by ATP. Regardless, developmental abnormalities of Kölliker’s organ may lead to congenital hearing loss, considering that mutations in ion channels (hemichannels, gap junctions, and calcium channels involved in Kölliker’s organ activity share strong links with such types of deafness.

  10. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  11. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells.

    Science.gov (United States)

    Li, Jun; An, Gang; Zhang, Meng; Ma, Qingfang

    2016-09-02

    Long non-coding RNA taurine upregulated gene 1 (TUG1) acts as an important regulator in cancer pathogenesis; however, its functional mechanism in glioma development remains unclear. This study aims to explore the potential function of TUG1 in glioma by sponging miR-26a. The expression of TUG1, miR-26a, and phosphatase and tensin homolog (PTEN) in 20 paired glioma tissues was detected by quantitative real-time PCR and subjected to correlation analysis. Bioinformatics analysis was performed by using DIANA Tools. Abnormal TUG1 expression was conducted in two glioma cells to analyze its regulation on miR-26a and PTEN using real-time PCR, western blot, and luciferase reporter assay. TUG1 expression was confirmed to be upregulated in glioma tissues, and showed an inverse correlation with downregulated miR-26a. TUG1 could negatively regulate the expression of miR-26a in glioma cells. The bioinformatics prediction revealed putative miR-26a binding sites within TUG1 transcripts. Further experiments demonstrated the positive regulation of TUG1 on the miR-26a target, PTEN, wherein TUG1 could inhibit the negative regulation of miR-26a on PTEN by binding its 3'UTR. Additionally, the expression of PTEN was also upregulated in glioma tissues, showing a positive or negative correlation with TUG1 or miR-26a, respectively. TUG1 could serve as a miR-26a sponge in human glioma cells, contributing to the upregulation of PTEN. This study revealed a new TUG1/miR-26a/PTEN regulatory mechanism and provided a further understanding of the tumor-suppressive role of TUG1 in glioma development. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    International Nuclear Information System (INIS)

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi; Hirakawa, Yuko; Nagasawa, Naoko; Kasuga, Jun-ichi; Hashimoto, Yuichi; Miyachi, Hiroyuki; Morikawa, Kosuke

    2009-01-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid and glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode

  13. Weak activity of haloalkane dehalogenase LinB with 1,2,3-trichloropropane revealed by X-Ray crystallography and microcalorimetry.

    Science.gov (United States)

    Monincová, Marta; Prokop, Zbynek; Vévodová, Jitka; Nagata, Yuji; Damborsky, Jirí

    2007-03-01

    1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (k(cat) = 0.005 s(-1)) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities.

  14. Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry▿

    Science.gov (United States)

    Monincová, Marta; Prokop, Zbyněk; Vévodová, Jitka; Nagata, Yuji; Damborský, Jiří

    2007-01-01

    1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (kcat = 0.005 s−1) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities. PMID:17259360

  15. The 26 December 2004 Sumatra tsunami recorded on the coast of ...

    African Journals Online (AJOL)

    Analysis of sea-level data obtained from the Atlantic Global Sea Level Observing System (GLOSS) sea-level station at Takoradi, Ghana, West Africa, clearly reveals a tsunami signal associated with the Mw = 9.3 Sumatra earthquake of 26 December 2004 in the Indian Ocean. The tsunami arrived at this location on 27 ...

  16. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    Science.gov (United States)

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  17. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    Science.gov (United States)

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.

    2015-01-01

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570

  18. Aluminum-26 in the early solar system - Fossil or fuel

    Science.gov (United States)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  19. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  20. Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry▿

    OpenAIRE

    Monincová, Marta; Prokop, Zbyněk; Vévodová, Jitka; Nagata, Yuji; Damborský, Jiří

    2007-01-01

    1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (kcat = 0.005 s−1) of Li...

  1. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer.

    Science.gov (United States)

    Zhang, H; Ma, R-R; Wang, X-J; Su, Z-X; Chen, X; Shi, D-B; Guo, X-Y; Liu, H-T; Gao, P

    2017-10-05

    Tumor metastasis is the main reason of cancer-related death for gastric cancer (GC) patients and gene expression microarray data indicate that kinesin family member 26B (KIF26B) is one of the most upregulated genes in metastatic GC samples. Specifically, KIF26B expression was upregulated in a stepwise manner from non-tumorous gastric mucosa, primary GC tissues without metastasis, via primary GC tissues with metastasis, to secondary lymph node metastatic (LNM) foci. Increased expression of KIF26B was correlated with tumor size, positive LNM or distant metastases and poor prognosis. KIF26B, negatively regulated by miR-372, promoted GC cell proliferation and metastasis in vitro and in vivo. Mechanistic investigations confirmed that the main target of KIF26B was the vascular endothelial growth factor (VEGF) signaling pathway, particularly by inhibition or overexpression of VEGFA, PXN, FAK, PIK3CA, BCL2 and CREB1. Thus, KIF26B, a novel oncogene regulated by miR-372, promotes proliferation and metastasis through the VEGF pathway in GC.

  2. Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    Science.gov (United States)

    Li, L; Lin, K; Correia, J J; Pilkis, S J

    1992-08-15

    Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6

  3. New manganese (II) structures derived from 2,6-dichlorobenzoic acid: Syntheses, crystal structures and magnetism

    International Nuclear Information System (INIS)

    Esteves, D.; Tedesco, J.C.D.; Pedro, S.S.; Cruz, C.; Reis, M.S.; Brandão, P.

    2014-01-01

    One novel coordination polymer [Mn 2 (μ-2,6-DCBA) 3 (μ 2 -CH 3 CO 2 ) 2 (2H 2 O)]·2H 2 O (2,6-DCBA = 2,6-dichlorobenzoato) (compound 1) has been synthesized by self-assembly of bridging ligand 2,6-dichlorobenzoic acid and manganese acetate tetrahydrate. Single crystal X-ray diffraction analysis reveals that this compound crystallizes in space group P2 1 /c with a = 10.1547(7), b = 24.5829(2), c = 12.6606(2) Å, β = 93.707(3), V = 3153.9(3) Å 3 and Z = 4. The Mn(II) ions are connected by 2,6-DCBA and acetate group in μ-bridging mode to form 1D chains. Two water molecules are in the inter-layer space forming strong hydrogen bonds originating 2D layer structure. The preparation of this compound is very sensitive to the synthesis conditions, mainly to the solution pH and solvent yielding other two compounds 2 and 3. In compound 1 Mn(II) atoms in octahedral coordination are arranged in a zig–zag chain, with a trimeric structure repeated periodically along the chain, giving two exchange parameters: J 1 related to a syn–syn bond; and J 2 related to a bond of type anti–anti. A theoretical model was developed and then fitted to the magnetic susceptibility data, revealing an antiferromagnetic arrangement along the chain

  4. Mapping Breakpoints of Complex Chromosome Rearrangements Involving a Partial Trisomy 15q23.1-q26.2 Revealed by Next Generation Sequencing and Conventional Techniques.

    Directory of Open Access Journals (Sweden)

    Qiong Pan

    Full Text Available Complex chromosome rearrangements (CCRs, which are rather rare in the whole population, may be associated with aberrant phenotypes. Next-generation sequencing (NGS and conventional techniques, could be used to reveal specific CCRs for better genetic counseling. We report the CCRs of a girl and her mother, which were identified using a combination of NGS and conventional techniques including G-banding, fluorescence in situ hybridization (FISH and PCR. The girl demonstrated CCRs involving chromosomes 3 and 8, while the CCRs of her mother involved chromosomes 3, 5, 8, 11 and 15. HumanCytoSNP-12 Chip analysis identified a 35.4 Mb duplication on chromosome 15q21.3-q26.2 in the proband and a 1.6 Mb microdeletion at chromosome 15q21.3 in her mother. The proband inherited the rearranged chromosomes 3 and 8 from her mother, and the duplicated region on chromosome 15 of the proband was inherited from the mother. Approximately one hundred genes were identified in the 15q21.3-q26.2 duplicated region of the proband. In particular, TPM1, SMAD6, SMAD3, and HCN4 may be associated with her heart defects, and HEXA, KIF7, and IDH2 are responsible for her developmental and mental retardation. In addition, we suggest that a microdeletion on the 15q21.3 region of the mother, which involved TCF2, TCF12, ADMA10 and AQP9, might be associated with mental retardation. We delineate the precise structures of the derivative chromosomes, chromosome duplication origin and possible molecular mechanisms for aberrant phenotypes by combining NGS data with conventional techniques.

  5. Map-based Cloning and Characterization of a Brown Planthopper Resistance Gene BPH26 from Oryza sativa L. ssp. indica Cultivar ADR52

    OpenAIRE

    Tamura, Yasumori; Hattori, Makoto; Yoshioka, Hirofumi; Yoshioka, Miki; Takahashi, Akira; Wu, Jianzhong; Sentoku, Naoki; Yasui, Hideshi

    2014-01-01

    The brown planthopper (BPH) is the most serious insect pest of rice in Asia. The indica rice cultivar ADR52 carries two BPH resistance genes, BPH26 (BROWN PLANTHOPPER RESISTANCE 26) and BPH25. Map-based cloning of BPH26 revealed that BPH26 encodes a coiled-coil-nucleotide-binding-site?leucine-rich repeat (CC?NBS?LRR) protein. BPH26 mediated sucking inhibition in the phloem sieve element. BPH26 was identical to BPH2 on the basis of DNA sequence analysis and feeding ability of the BPH2-virulent...

  6. A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome

    NARCIS (Netherlands)

    van Steensel, Maurice A. M.; van Geel, Michel; Nahuys, Marc; Smitt, J. Henk Sillevis; Steijlen, Peter M.

    2002-01-01

    Keratitis-ichthyosis-deafness syndrome is a rare disorder characterized by erythrokeratoderma, deafness, and keratitis. Scarring alopecia and squamous cell carcinoma can also occur. Most cases described so far were sporadic. Here we present evidence that keratitis-ichthyosis-deafness syndrome is

  7. A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome.

    NARCIS (Netherlands)

    Steensel, M.A.M. van; Geel, M. van; Nahuys, M.; Smitt, J.H.; Steijlen, P.M.

    2002-01-01

    Keratitis-ichthyosis-deafness syndrome is a rare disorder characterized by erythrokeratoderma, deafness, and keratitis. Scarring alopecia and squamous cell carcinoma can also occur. Most cases described so far were sporadic. Here we present evidence that keratitis-ichthyosis-deafness syndrome is

  8. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, Hiroki; Bourgonje, Vincent J A; Fontes, Magda S C; Raaijmakers, Antonia J A; Driessen, Helen; Jansen, John A.; Van Der Nagel, Roel; Kok, Bart; Van Stuijvenberg, Leonie; Boulaksil, Mohamed; Takemoto, Yoshio; Yamazaki, Masatoshi; Tsuji, Yukiomi; Honjo, Haruo; Kamiya, Kaichiro; Kodama, Itsuo; Anderson, Mark E.; Van Der Heyden, Marcel A G; Van Rijen, Harold V M; van Veen, AAB; Vos, Marc A.

    2016-01-01

    Aim In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  9. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent

    NARCIS (Netherlands)

    Takanari, H.; Bourgonje, V.J.; Fontes, M.S.; Raaijmakers, A.J.; Driessen, H.; Jansen, JA; Nagel, R. van der; Kok, B; Stuijvenberg, L. van; Boulaksil, M.; Takemoto, Y.; Yamazaki, M.; Tsuji, Y.; Honjo, H.; Kamiya, K.; Kodama, I.; Anderson, M.E.; Heyden, M.A. van der; Rijen, H.V. van; Veen, T.A. van; Vos, M.A.

    2016-01-01

    AIM: In healthy hearts, ventricular gap junctions are mainly composed by connexin43 (Cx43) and localize in the intercalated disc, enabling appropriate electrical coupling. In diseased hearts, Cx43 is heterogeneously down-regulated, whereas activity of calmodulin/calcium-calmodulin protein kinase II

  10. Re-examining the 26Mg(α ,α')26Mg reaction: Probing astrophysically important states in 26Mg

    Science.gov (United States)

    Adsley, P.; Brümmer, J. W.; Li, K. C. W.; Marín-Lámbarri, D. J.; Kheswa, N. Y.; Donaldson, L. M.; Neveling, R.; Papka, P.; Pellegri, L.; Pesudo, V.; Pool, L. C.; Smit, F. D.; van Zyl, J. J.

    2017-11-01

    Background: The 22Ne(α ,n )25Mg reaction is one of the neutron sources for the s process in massive stars. The properties of levels in 26Mg above the α -particle threshold control the strengths of the 22Ne(α ,n )25Mg and 22Ne(α ,γ )26Mg reactions. The strengths of these reactions as functions of temperature are one of the major uncertainties in the s process. Purpose: Information on the existence, spin, and parity of levels in 26Mg can assist in constraining the strengths of the 22Ne(α ,γ )26Mg and 22Ne(α ,n )25Mg reactions, and therefore in constraining s -process abundances. Methods: Inelastically scattered α particles from a 26Mg target were momentum-analyzed in the K600 magnetic spectrometer at iThemba LABS, South Africa. The differential cross sections of states were deduced from the focal-plane trajectory of the scattered α particles. Based on the differential cross sections, spin and parity assignments to states are made. Results: A newly assigned 0+ state was observed in addition to a number of other states, some of which can be associated with states observed in other experiments. Some of the deduced Jπ values of the states observed in the present study show discrepancies with those assigned in a similar experiment performed at RCNP Osaka. The reassignments and additions of the various states can strongly affect the reaction rate at low temperatures. Conclusion: The number, location, and assignment of levels in 26Mg that may contribute to the 22Ne+α reactions are not clear. Future experimental investigations of 26Mg must have an extremely good energy resolution to separate the contributions from different levels. Coincidence experiments of 26Mg provide a possible route for future investigations.

  11. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    Science.gov (United States)

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Distribution patterns of firearm discharge residues as revealed by neutron activation analysis

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Driscoll, D.C.; Jester, W.A.

    1975-01-01

    A systematic investigation using a variety of handguns has revealed the existence of distinguisable distribution patterns of firearm discharge residues on surfaces below the flight path of a bullet. The residues are identificable even at distances of 12 meters from the gun using nondestructive neutron activation analysis. The results of these investigations show that the distribution pattern for a gun is reproducible using similar ammunition and that there exist two distinct regions to the patterns developed between the firearm and the target-one with respect to the position of the gun and the other in the vicinity of the target. The judicious applications of these findings could be of significant value in criminal investigations. (T.G.)

  13. Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles in a concentration-dependent manner. The impact of DMBA on connexin (CX) proteins that mediate communication between follicular cell types along with pro-apoptotic factors p53 and Bax were investigated. Postnatal day (PND) 4 Fisher 344 rat ovaries were cultured for 4 days in vehicle medium (1% DMSO) followed by a single exposure to vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and cultured for 4 or 8 days. RT-PCR was performed to quantify Cx37, Cx43, p53 and Bax mRNA level. Western blotting and immunofluorescence staining were performed to determine CX37 or CX43 level and/or localization. Cx37 mRNA and protein increased (P < 0.05) at 4 days of 12.5 nM DMBA exposure. Relative to vehicle control-treated ovaries, mRNA encoding Cx43 decreased (P < 0.05) but CX43 protein increased (P < 0.05) at 4 days by both DMBA exposures. mRNA expression of pro-apoptotic p53 was decreased (P < 0.05) but no changes in Bax expression were observed after 4 days of DMBA exposures. In contrast, after 8 days, DMBA decreased Cx37 and Cx43 mRNA and protein but increased both p53 and Bax mRNA levels. CX43 protein was located between granulosa cells, while CX37 was located at the oocyte cell surface of all follicle stages. These findings support that DMBA exposure impacts ovarian Cx37 and Cx43 mRNA and protein prior to both observed changes in pro-apoptotic p53 and Bax and follicle loss. It is possible that such interference in follicular cell communication is detrimental to follicle viability, and may play a role in DMBA-induced follicular atresia. - Highlights: • DMBA increases Cx37 and Cx43 expression prior to follicle loss. • During follicle loss both Cx37 and Cx43 expressions are reduced. • CX43 protein is absent in follicle remnants lacking an oocyte.

  14. 26Al(n,p)26Mg and 26Al(n,α)23Na cross sections from thermal energy to approximately 50 keV

    International Nuclear Information System (INIS)

    Koehler, P.E.; Gledenov, Yu.M.; Popov, Yu.P.

    1993-01-01

    Understanding the origin of 26 Al is important because it is one of the very few radioactive products of stellar nucleosynthesis to be observed directly by γ-ray telescopes. 26 Al has also been observed indirectly as a 26 Mg anomaly in some meterorites. The 26 Al(n,p) 26 Mg and 26 Al(n,α) 23 Na reactions are thought to be the major means for the destruction of 26 Al in some astrophysical environments, so a knowledge of the cross sections for these reactions is important for a better understanding of the origin of 26 Al. The authors have measured the 26 Al(n,p 1 ) 26 Mg and 26 Al(n,α 0 ) 23 Na cross sections from thermal energy to approximately 50 keV. Most of this energy range has not been explored by previous measurements. The measurements were made at the white neutron source of the Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) using a ΔE-E solid-state detector telescope. Several resonances were observed. This data will be compared to previous measurements and the effect of the new data on the calculated nucleosynthesis of 26 Al will be discussed

  15. Complexes of uranyl nitrate with 2,6-pyridinedicarboxamides: synthesis, crystal structure, and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Alyapyshev, Mikhail; Babain, Vasiliy [ITMO University, 49, Kronverksky pr., 197101, St. Petersburg (Russian Federation); ThreeArc Mining Ltd., 5, Stary Tolmachevskiy per., 115184, Moscow (Russian Federation); Tkachenko, Lyudmila; Lumpov, Alexander [Khlopin Radium Institute, 28, 2nd Murinskiy pr., 194021, St. Petersburg (Russian Federation); Gurzhiy, Vladislav; Zolotarev, Andrey; Dar' in, Dmitriy [St. Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg (Russian Federation); Ustynyuk, Yuriy; Gloriozov, Igor [M.V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Paulenova, Alena [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States)

    2017-05-04

    Two complexes of uranyl nitrate with N,N,N',N'-tetrabutyl-2,6-pyridinedicarboxamide (TBuDPA) and N,N'-diethyl-N,N'-diphenyl-2,6-pyridinedicarboxamide (EtPhDPA) were synthesized and studied. The complex of tetraalkyl-2,6-pyridinedicarboxamide with metal nitrate was synthesized for the first time. XRD analysis revealed the different type of complexation: a 1:1 metal:ligand complex for EtPhDPA and complex with polymeric structure for TBuDPA. The quantum chemical calculations (DFT) confirm that both ligands form the most stable complexes that match the minimal values pre-organization energy of the ligands. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jennifer L Major

    Full Text Available The E2F pathway plays a critical role in cardiac growth and development, yet its role in cardiac metabolism remains to be defined. Metabolic changes play important roles in human heart failure and studies imply the ketogenic enzyme β-hydroxybutyrate dehydrogenase I (BDH1 is a potential biomarker.To define the role of the E2F pathway in cardiac metabolism and dilated cardiomyopathy (DCM with a focus on BDH1.We previously developed transgenic (Tg mice expressing the transcriptional repressor, E2F6, to interfere with the E2F/Rb pathway in post-natal myocardium. These Tg mice present with an E2F6 dose dependent DCM and deregulated connexin-43 (CX-43 levels in myocardium. Using the Seahorse platform, a 22% decrease in glycolysis was noted in neonatal cardiomyocytes isolated from E2F6-Tg hearts. This was associated with a 39% reduction in the glucose transporter GLUT4 and 50% less activation of the regulator of glucose metabolism AKT2. The specific reduction of cyclin B1 (70% in Tg myocardium implicates its importance in supporting glycolysis in the postnatal heart. No changes in cyclin D expression (known to regulate mitochondrial activity were noted and lipid metabolism remained unchanged in neonatal cardiomyocytes from Tg hearts. However, E2F6 induced a 40-fold increase of the Bdh1 transcript and 890% increase in its protein levels in hearts from Tg pups implying a potential impact on ketolysis. By contrast, BDH1 expression is not activated until adulthood in normal myocardium. Neonatal cardiomyocytes from Wt hearts incubated with the ketone β-hydroxybutyrate (β-OHB showed a 100% increase in CX-43 protein levels, implying a role for ketone signaling in gap junction biology. Neonatal cardiomyocyte cultures from Tg hearts exhibited enhanced levels of BDH1 and CX-43 and were not responsive to β-OHB.The data reveal a novel role for the E2F pathway in regulating glycolysis in the developing myocardium through a mechanism involving cyclin B1. We

  17. FAM26F: An Enigmatic Protein Having a Complex Role in the Immune System.

    Science.gov (United States)

    Malik, Uzma; Javed, Aneela

    2016-09-19

    Mammalian immune system is a complex amalgam of diverse cellular and noncellular components such as cytokines, receptors and co-receptors. FAM26F (family with sequence similarity 26, member F) is a recently identified tetraspanin-like membrane glycoprotein which is predicted to make homophilic interactions and potential synapses between several immune cells including CD4 + , CD8 + , NK, dendritic cells and macrophages. Various whole transcriptome analyses have demonstrated the differential expression of FAM26F in several bacterial, viral and parasitic infections, in certain pathophysiological conditions such as liver and heart transplantation, and in various cancers. The complete understanding of transcriptional regulation of FAM26F is in its infancy however it is up regulated by various stimulants such as polyI:C, LPS, INF gamma and TNF alpha, and via various proposed pathways including TLR3, TLR4 IFN-β and Dectin-1. These pathways can merge in STAT1 activation. The synergistic expression of FAM26F on both NK-cells and myeloid dendritic cells is required to activate NK-cells against tumors via its cytoplasmic tail, thus emphasizing therapeutic potential of FAM26F for NK sensitive tumors. Current review provides a comprehensive basis to propose that FAM26F expression level is at least a hallmark for IFN-γ-lead immune responses and thus can proficiently be regarded as an early diagnostic marker. Future investigation dissecting the role of FAM26F in activation of various immune cell populations in local amplification by cell-cell contact is crucial to provide the missing link imperative for elucidating the relevance of this protein in immune responses.

  18. Changes in immunostaining of inner ears after antigen challenge into the scala tympani.

    Science.gov (United States)

    Ichimiya, I; Kurono, Y; Hirano, T; Mogi, G

    1998-04-01

    To study the mechanisms of immune responses and immune injuries in inner ears, labyrinthitis was induced by inoculation of keyhole limpet hemocyanin (KLH) into the scala tympani of systemically sensitized guinea pigs. Inner ears were then immunostained for KLH, immunoglobulin G (IgG), albumin, connexin26 (Cx26), and sodium-potassium adenosine triphosphate (Na,K-ATPase). Inflammatory cells containing KLH were observed in the scala tympani and in the collecting venule of the spiral modiolar vein (SMV). Spiral ligament, spiral limbus, and blood vessels including the SMV were diffusely positive for IgG and albumin. Immunoreactivity for Cx26 and Na,K-ATPase was decreased compared with the normal ears in the fibrocytes of the spiral ligament. These results suggest that inflammatory cells and blood constituents could extravasate into the cochlea from blood vessels and that fibrocyte damage in the spiral ligament could cause cochlear dysfunction.

  19. SAFARI: Searching Asteroids For Activity Revealing Indicators

    Science.gov (United States)

    Curtis, Anthony; Chandler, Colin Orion; Mommert, Michael; Sheppard, Scott; Trujillo, Chadwick A.

    2018-06-01

    We present results on one of the deepest and widest systematic searches for active asteroids, objects in the main-belt which behave dynamically like asteroids but display comet-like comae. This activity comes from a variety of sources, such as the sublimation of ices or rotational breakup, the former of which offers an opportunity to study a family of protoplanetary ices different than those seen in comets and Kuiper Belt objects. Indications of activity may be detected through visual or spectroscopic evidence of gas or dust emissions. However, these objects are still poorly understood, with only about 25 identified to date. We looked for activity indicators with a pipeline that examined ~35,000 deep images taken with the Dark Energy Camera (DECam) mounted on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. Our pipeline was configured to perform astrometry on DECam images and produce thumbnail images of known asteroids in the field to be examined by eye for signs of activity. We detected three previously identified active asteroids, one of which has shown repeated signs of activity in these data. Our proof of concept demonstrates 1) our novel informatics approach can locate active asteroids 2) DECam data are well suited to search for active asteroids. We will discuss the design structure of our pipeline, adjustments that had to be made for the specific dataset to improve performance, and the the significance of detecting activity in the main-belt. The authors acknowledge funding for this project through NSF grant number AST-1461200.

  20. Immunohistochemistry of connexin 43 throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-stellate cells.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Kouki, Tom; Kikuchi, Motoshi; Yashiro, Takashi

    2008-12-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear. The S100b-GFP transgenic rat has recently been generated, which expresses green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary. This model is expected to be a powerful tool for studies of FS cells. The purpose of the present paper was therefore to examine the localization of GJ on connexin 43 immunohistochemistry throughout the anterior pituitary gland of S100b-GFP rats under confocal laser microscopy. The localization patterns of FS cells was also observed in primary culture of anterior pituitary cells and the question of whether GJ between FS cells are reconstructed in vitro was investigated. In vivo studies showed that GJ were present specifically between FS cells from the pars tuberalis to the pars distalis in the anterior pituitary gland. The appearance of FS cells was distinguished into two types, with localization of GJ differing between types. In vitro, it was observed for the first time that FS cells in primary culture could be categorized into two types. In vivo localization of GJ between FS cells was reconstructed in vitro. These morphological observations are consistent with the hypothesis that FS cells form an electrophysiological network throughout the anterior pituitary for signal transmission.

  1. Structural and functional annotation of human FAM26F: A multifaceted protein having a critical role in the immune system.

    Science.gov (United States)

    Malik, Uzma; Javed, Aneela; Ali, Amjad; Asghar, Kashif

    2017-01-15

    Human immune system is a complex amalgam of a greatly diverse ensemble comprising of various cellular and non-cellular components, including proteins. FAM26F (family with sequence similarity 26, member F) is a relatively recently identified gene reported to play important role in diverse immune responses. Numerous studies have reported FAM26F to be differentially expressed in several viral, bacterial and parasitic infections, in certain pathophysiological conditions such as heart and liver transplantation, and in several cancers. FAM26F has also been found to be upregulated by various stimulants such as polyI:C, LPS, INF gamma and TNF alpha, and via various anticipated pathways including TLR3, TLR4 IFN-β and Dectin-1. Moreover, the synergistic expression of FAM26F on both NK-cells and myeloid dendritic cells is required to activate NK-cells against tumors via its cytoplasmic tail, thus emphasizing the therapeutic potential of FAM26F for NK sensitive tumors. Although a considerable amount of evidence is present regarding the potential role of FAM26F in immune modulation, the exact function and modulatory pathways of this gene are yet to be elucidated. We aimed to completely characterize FAM26F in order to apprehend its function and role in the immune responses. The results revealed human FAM26F to be located at chromosomal position 6q22.1. FAM26F mRNA contains 1141bp coding region encoding a 315 amino acid long, stable protein that has been well-conserved throughout evolution. It is a signal peptide deprived transmembrane protein that is secreted through non-classical pathway. The presence of a single well-conserved Ca_hom_mod domain indicated FAM26F to be a cation channel involved in the transport of molecules. A potential N-glycosylation and 14 phosphorylation sites were also predicted, along with four interacting partners of FAM26F. The secondary and tertiary structures of FAM26F were determined. Moreover, the presence of an immunoglobulin-like fold in FAM26F

  2. Speech Perception Outcomes after Cochlear Implantation in Children with GJB2/DFNB1 associated Deafness

    Directory of Open Access Journals (Sweden)

    Marina Davcheva-Chakar

    2014-03-01

    Full Text Available Background: Cochlear implants (CI for the rehabilitation of patients with profound or total bilateral sensorineural hypoacusis represent the initial use of electrical fields to provide audibility in cases where the use of sound amplifiers does not provide satisfactory results. Aims: To compare speech perception performance after cochlear implantation in children with connexin 26-associated deafness with that of a control group of children with deafness of unknown etiology. Study Design: Retrospective comparative study. Methods: During the period from 2006 to , cochlear implantation was performed on 26 children. Eighteen of these children had undergone genetic tests for mutation of the Gap Junction Protein Beta 2 (GJB2 gene. Bi-allelic GJB2 mutations were confirmed in 7 out of 18 examined children. In order to confirm whether genetic factors have influence on speech perception after cochlear implantation, we compared the post-implantation speech performance of seven children with mutations of the GBJ2 (connexin 26 gene with seven other children who had the wild type version of this particular gene. The latter were carefully matched according to the age at cochlear implantation. Speech perception performance was measured before cochlear implantation, and one and two years after implantation. All the patients were arranged in line with the appropriate speech perception category (SPC. Non-parametric tests, Friedman ANOVA and Mann-Whitney’s U test were used for statistical analysis. Results: Both groups showed similar improvements in speech perception scores after cochlear implantation. Statistical analysis did not confirm significant differences between the groups 12 and 24 months after cochlear implantation. Conclusion: The results obtained in this study showed an absence of apparent distinctions in the scores of speech perception between the two examined groups and therefore might have significant implications in selecting prognostic indicators

  3. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  4. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  5. Active sensing associated with spatial learning reveals memory-based attention in an electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2016-05-01

    Active sensing behaviors reveal what an animal is attending to and how it changes with learning. Gymnotus sp, a gymnotiform weakly electric fish, generates an electric organ discharge (EOD) as discrete pulses to actively sense its surroundings. We monitored freely behaving gymnotid fish in a large dark "maze" and extracted their trajectories and EOD pulse pattern and rate while they learned to find food with electrically detectable landmarks as cues. After training, they more rapidly found food using shorter, more stereotyped trajectories and spent more time near the food location. We observed three forms of active sensing: sustained high EOD rates per unit distance (sampling density), transient large increases in EOD rate (E-scans) and stereotyped scanning movements (B-scans) were initially strong at landmarks and food, but, after learning, intensified only at the food location. During probe (no food) trials, after learning, the fish's search area and intense active sampling was still centered on the missing food location, but now also increased near landmarks. We hypothesize that active sensing is a behavioral manifestation of attention and essential for spatial learning; the fish use spatial memory of landmarks and path integration to reach the expected food location and confine their attention to this region. Copyright © 2016 the American Physiological Society.

  6. A Noncellulosomal Mannanase26E Contains a CBM59 in Clostridium cellulovorans

    Directory of Open Access Journals (Sweden)

    Kosuke Yamamoto

    2014-01-01

    Full Text Available A multicomponent enzyme-complex prevents efficient degradation of the plant cell wall for biorefinery. In this study, the method of identifying glycoside hydrolases (GHs to degrade hemicelluloses was demonstrated. The competence of C. cellulovorans, which changes to be suitable for degradation of each carbon source, was used for the method. C. cellulovorans was cultivated into locust bean gum (LBG that is composed of galactomannan. The proteins produced by C. cellulovorans were separated into either fractions binding to crystalline cellulose or not. Proteins obtained from each fraction were further separated by SDS-PAGE and were stained with Coomassie Brilliant Blue and were detected for mannanase activity. The proteins having the enzymatic activity for LBG were cut out and were identified by mass spectrometry. As a result, four protein bands were classified into glycosyl hydrolase family 26 (GH26 mannanases. One of the identified mannanases, Man26E, contains a carbohydrate-binding module (CBM family 59, which binds to xylan, mannan, and Avicel. Although mannose and galactose are the same as a hexose, the expression patterns of the proteins from C. cellulovorans were quite different. More interestingly, zymogram for mannanase activity showed that Man26E was detected in only LBG medium.

  7. The effects of octanol on penicillin induced epileptiform activity in rats: an in vivo study.

    Science.gov (United States)

    Bostanci, M Omer; Bağirici, Faruk

    2006-10-01

    The common features of all types of epilepsy are the synchronized and uncontrolled discharges of nerve cell assemblies. The reason for the pathologically synchronized discharges of the neuron is not exactly known yet. Recent reports claim that gap junctions have a critical role in neuronal synchronization. The present study was planned to investigate the effects of octanol, a gap junction blocker, on penicillin-induced experimental epilepsy. Permanent screw electrodes allowing EEG monitoring from conscious animals and permanent cannula providing the administration of the substances to the brain ventricle were placed into the cranium of rats under general anesthesia. After the postoperative recovery period, epileptiform activity was generated by injecting 300 IU crystallized penicillin through the ventricular cannula. When epileptiform activity, monitored from a digital recording system, reached at its maximum intensity, octanol was applied in the same way as penicillin administered. Application of octanol caused an inhibition in the epileptiform activity. Vehicle solution alone did not affect the epileptiform activity. Results of this study suggest that the blockade of electrical synapses may contribute to the prevention and amelioration of epileptic activity. Production of gap junction blockers selective for connexin types is needed. Further studies on the differential roles of gap junctions on certain epileptiform activities are required.

  8. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  9. [Morphological features of the myometrium in connective tissue dysplasia in women with uterine inertia].

    Science.gov (United States)

    Konovalov, P V; Mitrofanova, L B; Gorshkov, A N; Ovsyannikov, F A

    2015-01-01

    to reveal the morphological features of the lower uterine segment myometrium in connective tissue dysplasia (CTD) in women with uterine inertia. Histological, immunohistochemical (with antibodies against collagen types I and III, matrix metalloproteinases 1 and 9 (MMR-1, MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), fibronectin; fibulin-5, connexin-43), electron microscopic, and electron immunocytochemical studies with morphometry of myometrial fragments from 15 parturient women with CTD and uterine inertia (a study group) and those from 10 women without CTD (a control group). The myometrium in CTD exhibited the decreased expression of connextin-43, fibulin-5, TIMP-1, collagens types I and III with collagen type III predominance and the unchanged levels of fibronectin and MMP-1 and MMP-9. Electron microscopy and immunocytochemistry showed fewer intercellular contacts and the dramatically lower expression of connexin-43 than in the control. A set of found myometrial changes in women with uterine inertia is a manifestation of CTD.

  10. Evidence for transmission of bluetongue virus serotype 26 through direct contact.

    Directory of Open Access Journals (Sweden)

    Carrie Batten

    Full Text Available The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26 in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.

  11. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  12. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  13. Delayed allogeneic skin graft rejection in CD26-deficient mice.

    Science.gov (United States)

    Zhao, Xiangli; Zhang, Kai; Daniel, Peter; Wisbrun, Natali; Fuchs, Hendrik; Fan, Hua

    2018-03-23

    Organ transplantation is an effective therapeutic tool for treating many terminal diseases. However, one of the biggest challenges of transplantation is determining how to achieve the long-term survival of the allogeneic or xenogeneic transplant by, for example, preventing transplant rejection. In the current study, CD26 gene-knockout mice were used to investigate the potential role of CD26/dipeptidyl peptidase-4 (DPPIV) in allogeneic skin graft rejection by tail-skin transplantation. Compared with wild-type (CD26 +/+ ) counterparts, CD26 -/- mice showed reduced necrosis of grafts and delayed graft rejection after skin transplantation. Concentrations of serum IgG, including its subclasses IgG1 and IgG2a, were significantly reduced in CD26 -/- mice during graft rejection. Moreover, after allogeneic skin transplantation, the secretion levels of the cytokines IFN-γ, IL-2, IL-6, IL-4, and IL-13 were significantly reduced, whereas the level of the cytokine IL-10 was increased in the serum of CD26 -/- mice compared with that in the serum of CD26 +/+ mice. Additionally, the concentration of IL-17 in serum and the percentage of cells secreting IL-17 in mouse peripheral blood lymphocytes (MPBLs) were both significantly lower, while the percentage of regulatory T cells (Tregs) was significantly higher in MPBLs of CD26 -/- mice than in those of CD26 +/+ mice. Furthermore, a lower percentage of CD8 + T cells in MPBLs and fewer infiltrated macrophages and T cells in graft tissues of CD26 -/- mice were detected during graft rejection. These results indicate that CD26 is involved in allogeneic skin graft rejection and provides another hint that CD26 deficiency leads to less rejection due to lower activation and proliferation of host immune cells.

  14. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    Science.gov (United States)

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  16. Testicular toxoplasmosis in a 26-year-old immunocompetent man.

    Science.gov (United States)

    Wong, Vincent; Amarasekera, Channa; Kundu, Shilajit

    2018-06-04

    Testicular toxoplasmosis is a very rare presentation of Toxoplasma gondii A 26-year-old immunocompetent man presented to us with right testicular pain and a right epididymal mass. Ultrasound was concerning for malignancy and a radical orchiectomy was performed. Surgical pathology revealed chronic granulomatous inflammation which stained positive for T. gondii . © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Disruption of ion-trafficking system in the cochlear spiral ligament prior to permanent hearing loss induced by exposure to intense noise: possible involvement of 4-hydroxy-2-nonenal as a mediator of oxidative stress.

    Directory of Open Access Journals (Sweden)

    Taro Yamaguchi

    Full Text Available Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K(+ transport apparatuses including Na(+, K(+-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na(+, K(+-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs. One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K(+-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na(+, K(+-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, N(ω-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na(+, K(+-ATPase α1, as well as Na(+, K(+-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na(+, K(+-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na(+, K(+-ATPase activity in the cochlear lateral wall structures.

  18. 26 CFR 26.2642-5 - Finality of inclusion ratio.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Finality of inclusion ratio. 26.2642-5 Section...-5 Finality of inclusion ratio. (a) Direct skips. The inclusion ratio applicable to a direct skip...) Other GSTs. With respect to taxable distributions and taxable terminations, the inclusion ratio for a...

  19. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  20. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  1. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

    Directory of Open Access Journals (Sweden)

    Aneeshkumar G Arimbasseri

    2015-12-01

    Full Text Available Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(22G26 modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(22G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(22G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(22G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(22G26 modification and that this response is conserved among highly divergent yeasts and human cells.

  2. 26 CFR 26.2611-1 - Generation-skipping transfer defined.

    Science.gov (United States)

    2010-04-01

    ... AND GIFT TAXES GENERATION-SKIPPING TRANSFER TAX REGULATIONS UNDER THE TAX REFORM ACT OF 1986 § 26.2611... either a direct skip, a taxable distribution, or a taxable termination. See § 26.2612-1 for the definition of these terms. The determination as to whether an event is a GST is made by reference to the most...

  3. Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity.

    Science.gov (United States)

    Riès, Stephanie K; Dhillon, Rummit K; Clarke, Alex; King-Stephens, David; Laxer, Kenneth D; Weber, Peter B; Kuperman, Rachel A; Auguste, Kurtis I; Brunner, Peter; Schalk, Gerwin; Lin, Jack J; Parvizi, Josef; Crone, Nathan E; Dronkers, Nina F; Knight, Robert T

    2017-06-06

    Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.

  4. PREFACE: 26th Symposium on Plasma Science for Materials (SPSM-26)

    Science.gov (United States)

    2014-06-01

    26th Symposium on Plasma Science for Materials (SPSM-26) Takayuki Watanabe The 26th Symposium on Plasma Science for Materials (SPSM-26) was held in Fukuoka, Japan on September 23-24, 2013. SPSM has been held annually since 1988 under the sponsorship of The 153rd Committee on Plasma Materials Science, Japan Society for the Promotion of Science (JSPS). This symposium is one of the major activities of the Committee, which is organized by researchers in academia and industry for the purpose of advancing intersectional scientific information exchange and discussion of science and technology of plasma materials processing. Plasma processing have attracted extensive attention due to their unique advantages, and it is expected to be utilized for a number of innovative industrial applications such as synthesis of high-quality and high-performance nanomaterials. The advantages of plasmas including high chemical reactivity in accordance with required chemical reactions are beneficial for innovative processing. In recent years, plasma materials processing with reactive plasmas has been extensively employed in the fields of environmental issues and biotechnology. This conference seeks to bring different scientific communities together to create a forum for discussing the latest developments and issues. The conference provides a platform for the exploration of both fundamental topics and new applications of plasmas by the contacts between science, technology, and industry. The conference was organized in plenary lectures, invited, contributed oral presentations, and poster sessions. At this meeting, we had 142 participants from 10 countries and 104 presentations, including 11 invited presentations. This year, we arranged special topical sessions that cover Plasma Medicine and Biotechnologies, Business and Academia Cooperation, Plasma with Liquids, Plasma Processes for Nanomaterials, together with Basic, Electronics, and Thermal Plasma sessions. This special issue presents 28

  5. 26 CFR 1.381(c)(26)-1 - Credit for employment of certain new employees.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Credit for employment of certain new employees. 1.381(c)(26)-1 Section 1.381(c)(26)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(26)-1 Credit...

  6. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas.

    Science.gov (United States)

    Ekoue-Kovi, Kekeli; Yearick, Kimberly; Iwaniuk, Daniel P; Natarajan, Jayakumar K; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activities of more than 50 7-chloro-4-aminoquinolyl-derived sulfonamides 3-8 and 11-26, ureas 19-22, thioureas 23-26, and amides 27-54. Many of the CQ analogues prepared for this study showed submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strains of Plasmodium falciparum) and low resistance indices were obtained in most cases. Systematic variation of the side chain length and introduction of fluorinated aliphatic and aromatic termini revealed promising leads that overcome CQ resistance. In particular, sulfonamide 3 exhibiting a short side chain with a terminal dansyl moiety combined high antiplasmodial potency with a low resistance index and showed IC(50)s of 17.5 and 22.7 nM against HB3 and Dd2 parasites.

  7. Structure-Activity Relationship and Molecular Mechanics Reveal the Importance of Ring Entropy in the Biosynthesis and Activity of a Natural Product.

    Science.gov (United States)

    Tran, Hai L; Lexa, Katrina W; Julien, Olivier; Young, Travis S; Walsh, Christopher T; Jacobson, Matthew P; Wells, James A

    2017-02-22

    Macrocycles are appealing drug candidates due to their high affinity, specificity, and favorable pharmacological properties. In this study, we explored the effects of chemical modifications to a natural product macrocycle upon its activity, 3D geometry, and conformational entropy. We chose thiocillin as a model system, a thiopeptide in the ribosomally encoded family of natural products that exhibits potent antimicrobial effects against Gram-positive bacteria. Since thiocillin is derived from a genetically encoded peptide scaffold, site-directed mutagenesis allows for rapid generation of analogues. To understand thiocillin's structure-activity relationship, we generated a site-saturation mutagenesis library covering each position along thiocillin's macrocyclic ring. We report the identification of eight unique compounds more potent than wild-type thiocillin, the best having an 8-fold improvement in potency. Computational modeling of thiocillin's macrocyclic structure revealed a striking requirement for a low-entropy macrocycle for activity. The populated ensembles of the active mutants showed a rigid structure with few adoptable conformations while inactive mutants showed a more flexible macrocycle which is unfavorable for binding. This finding highlights the importance of macrocyclization in combination with rigidifying post-translational modifications to achieve high-potency binding.

  8. Contribution of TyrB26 to the Function and Stability of Insulin

    Science.gov (United States)

    Pandyarajan, Vijay; Phillips, Nelson B.; Rege, Nischay; Lawrence, Michael C.; Whittaker, Jonathan; Weiss, Michael A.

    2016-01-01

    Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of TyrB26, a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the GluB26 analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although TyrB26 is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences. PMID:27129279

  9. Facile solvothermal synthesis of monodisperse Pt2.6Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions

    International Nuclear Information System (INIS)

    Jiang, Liu-Ying; Lin, Xiao-Xiao; Wang, Ai-Jun; Yuan, Junhua; Feng, Jiu-Ju; Li, Xin-Sheng

    2017-01-01

    Highlights: • Uniform Pt 2.6 Co 1 nanoflowers were prepared by a simple solvothermal method. • Glucose and CTAC were used as the green reductant and structure director, respectively. • The architectures had the enlarged ECSA. • The architectures exhibited excellent catalytic performances for HER in acid and alkaline media. • The architectures showed highly catalytic performances for ORR in acid media. - Abstract: Herein, uniform Pt 2.6 Co 1 nanoflowers (NFs) were synthesized in oleylamine by a one-pot solvothermal method, using cetyltrimethylammonium chloride (CTAC) and glucose as the capping agent and green reducing agent. The samples were mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning TEM (HAADF-STEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The architectures had larger electrochemically active surface area (ECSA) of 23.84 m 2 g −1 Pt than Pt 1.2 Co 1 nanocrystals (NCs, 14.96 m 2 g −1 Pt ), Pt 3.7 Co 1 NCs (16.96 m 2 g −1 Pt ) and commercial Pt black (20.35 m 2 g −1 Pt ). And the as-obtained Pt 2.6 Co 1 catalyst displayed superior catalytic performance and better durability for hydrogen evolution reaction (HER) as compared to Pt 1.2 Co 1 NCs, Pt 3.7 Co 1 NCs, commercial 50% Pt/C and Pt black catalysts in acid and alkaline media. Meanwhile, the electrocatalytic performance of Pt 2.6 Co 1 NFs for oxygen reduction reaction (ORR) is better in acid media as compared with that in alkaline media. It indicates the great potential applications of the as-prepared catalyst in fuel cells.

  10. Ethiopian Pharmaceutical Journal - Vol 26, No 1 (2008)

    African Journals Online (AJOL)

    Leaf Essential oils of Salvia nilotica and Salvia schimperi: Their Antimicrobial and Antioxidant Activities · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. H Ahfaha, K Asres, A Mazumder, F Bucar, 49-58. http://dx.doi.org/10.4314/epj.v26i1.35132 ...

  11. Plasma levels of leptin, omentin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and adiponectin before and after oral glucose uptake in slim adults

    Directory of Open Access Journals (Sweden)

    Schäffler Andreas

    2007-02-01

    Full Text Available Abstract Background Adipose tissue secreted proteins are collectively named adipocytokines and include leptin, adiponectin, resistin, collagenous repeat-containing sequence of 26-kDa protein (CORS-26 and omentin. Several of these adipocytokines influence insulin sensitivity and glucose metabolism and therefore systemic levels may be affected by oral glucose uptake. Whereas contradictory results have been published for leptin and adiponectin, resistin has not been extensively investigated and no reports on omentin and CORS-26 do exist. Methods Therefore the plasma levels of these proteins before and 120 min after an oral glucose load were analyzed in 20 highly-insulin sensitive, young adults by ELISA or immunoblot. Results Circulating leptin was reduced 2 h after glucose uptake whereas adiponectin and resistin levels are not changed. Distribution of adiponectin and CORS-26 isoforms were similar before and after glucose ingestion. Omentin is highly abundant in plasma and immunoblot analysis revealed no alterations when plasma levels before and 2 h after glucose intake were compared. Conclusion Taken together our data indicate that only leptin is reduced by glucose uptake in insulin-sensitive probands whereas adiponectin and resistin are not altered. CORS-26 was demonstrated for the first time to circulate as high molecular weight form in plasma and like omentin was not influenced by oral glucose load. Omentin was shown to enhance insulin-stimulated glucose uptake but systemic levels are not correlated to postprandial blood glucose.

  12. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    Science.gov (United States)

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  13. An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans

    DEFF Research Database (Denmark)

    von Freiesleben, Pernille; Spodsberg, Nikolaj; Holberg Blicher, Thomas

    2016-01-01

    The activity and substrate degradation pattern of a novel Aspergillus nidulans GH26 endo-β-mannanase (AnMan26A) was investigated using two galactomannan substrates with varying amounts of galactopyranosyl residues. The AnMan26A was characterized in parallel with the GH26 endomannanase from Podosp...

  14. MiR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression.

    Science.gov (United States)

    Chen, Zheng-Gang; Zheng, Chuan-Yi; Cai, Wang-Qing; Li, Da-Wei; Ye, Fu-Yue; Zhou, Jian; Wu, Ran; Yang, Kun

    2017-08-11

    Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA (miR)-26b/cyclooxygenase (COX)-2 axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased level of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting miR-26b mimic into U-373 cells. The invasive cell number and wounld closing rate were reduced in U-373 cells transfected with miR-26b mimic. Besides, COX2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume and the expression of matrix metalloproteinase (MMP)-2, MMP-9). Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for treatment of glioma.

  15. First international 26Al interlaboratory comparison - Part II

    International Nuclear Information System (INIS)

    Merchel, Silke; Bremser, Wolfram

    2005-01-01

    After finishing Part I of the first international 26 Al interlaboratory comparison with accelerator mass spectrometry (AMS) laboratories [S. Merchel, W. Bremser, Nucl. Instr. and Meth. B 223-224 (2004) 393], the evaluation of Part II with radionuclide counting laboratories took place. The evaluation of the results of the seven participating laboratories on four meteorite samples shows a good overall agreement between laboratories, i.e. it does not reveal any statistically significant differences if results are compared sample-by-sample. However, certain interlaboratory bias is observed with a more detailed statistical analysis including some multivariate approaches

  16. Live Faecalibacterium prausnitzii induces greater TLR2 and TLR2/6 activation than the dead bacterium in an apical anaerobic co-culture system.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Altermann, Eric; Roy, Nicole C

    2018-02-01

    Inappropriate activation of intestinal innate immune receptors, such as toll-like receptors (TLRs), by pathogenic bacteria is linked to chronic inflammation. In contrast, a "tonic" level of TLR activation by commensal bacteria is required for intestinal homeostasis. A technical challenge when studying this activation in vitro is the co-culturing of oxygen-requiring mammalian cells with obligate anaerobic commensal bacteria. To overcome this, we used a novel apical anaerobic co-culture system to successfully adapt a TLR activation assay to be conducted in conditions optimised for both cell types. Live Faecalibacterium prausnitzii, an abundant obligate anaerobe of the colonic microbiota, induced higher TLR2 and TLR2/6 activation than the dead bacterium. This enhanced TLR induction by live F. prausnitzii, which until now has not previously been described, may contribute to maintenance of gastrointestinal homeostasis. This highlights the importance of using physiologically relevant co-culture systems to decipher the mechanisms of action of live obligate anaerobes. © 2017 John Wiley & Sons Ltd.

  17. CD26: A Prognostic Marker of Acute Lymphoblastic Leukemia in Children in the Post Remission Induction Phase.

    Science.gov (United States)

    Mehde, Atheer Awad; Yusof, Faridah; Adel Mehdi, Wesen; Zainulabdeen, Jwan Abdulmohsin

    2015-01-01

    ALL is an irredeemable disease due to the resistance to treatment. There are several influences which are involved in such resistance to chemotherapy, including oxidative stress as a result of the generation of reactive oxygen species (ROS) and presence of hypodiploid cells. Cluster of differentiation 26 (CD26), also known as dipeptidyl peptidase-4, is a 110 kDa, multifunctional, membrane-bound glycoprotein. The aim of this study was to evaluate the clinical significance of serum CD26 in patients with acute lymphoblastic leukaemia patients in the post remission induction phase, as well as the relationship between CD26 activity and the oxidative stress status. CD26, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI), in addition to activity of related enzymes myeloperoxidase, glutathione- s-transferase and xanthine oxidase, were analysed in sixty children with acute lymphoblastic leukaemia in the post remission induction phase. The study showed significant elevation in CD26, TOS and OSI levels in patients with acute lymphoblastic leukaemia in the post remission induction phase in comparison to healthy control samples. In contrast, myeloperoxidase, glutathione-s-transferase and xanthine oxidase activities were decreased significantly. A significant correlation between CD26 concentration and some oxidative stress parameters was evident in ALL patients. Serum levels of CD26 appear to be useful as a new biomarker of oxidative stress in children with acute lymphoblastic leukaemia in the post remission induction phase, and levels of antioxidants must be regularly estimated during the treatment of children with ALL.

  18. 40 CFR 26.202 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Definitions. 26.202 Section 26.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Prohibition of... Pregnant or Nursing Women § 26.202 Definitions. The definitions in § 26.102 shall be applicable to this...

  19. 40 CFR 26.1202 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Definitions. 26.1202 Section 26.1202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Prohibition of... Pregnant or Nursing Women § 26.1202 Definitions. The definitions in § 26.1102 shall be applicable to this...

  20. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Directory of Open Access Journals (Sweden)

    Takuji Oyama

    Full Text Available CpMan5B is a glycoside hydrolase (GH family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196 in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  1. Mutational and structural analyses of Caldanaerobius polysaccharolyticus Man5B reveal novel active site residues for family 5 glycoside hydrolases.

    Science.gov (United States)

    Oyama, Takuji; Schmitz, George E; Dodd, Dylan; Han, Yejun; Burnett, Alanna; Nagasawa, Naoko; Mackie, Roderick I; Nakamura, Haruki; Morikawa, Kosuke; Cann, Isaac

    2013-01-01

    CpMan5B is a glycoside hydrolase (GH) family 5 enzyme exhibiting both β-1,4-mannosidic and β-1,4-glucosidic cleavage activities. To provide insight into the amino acid residues that contribute to catalysis and substrate specificity, we solved the structure of CpMan5B at 1.6 Å resolution. The structure revealed several active site residues (Y12, N92 and R196) in CpMan5B that are not present in the active sites of other structurally resolved GH5 enzymes. Residue R196 in GH5 enzymes is thought to be strictly conserved as a histidine that participates in an electron relay network with the catalytic glutamates, but we show that an arginine fulfills a functionally equivalent role and is found at this position in every enzyme in subfamily GH5_36, which includes CpMan5B. Residue N92 is required for full enzymatic activity and forms a novel bridge over the active site that is absent in other family 5 structures. Our data also reveal a role of Y12 in establishing the substrate preference for CpMan5B. Using these molecular determinants as a probe allowed us to identify Man5D from Caldicellulosiruptor bescii as a mannanase with minor endo-glucanase activity.

  2. Cellobiose dehydrogenase of Chaetomium sp. INBI 2-26(-): structural basis of enhanced activity toward glucose at neutral pH.

    Science.gov (United States)

    Vasilchenko, Liliya G; Karapetyan, Karen N; Yershevich, Olga P; Ludwig, Roland; Zamocky, Marcel; Peterbauer, Clemens K; Haltrich, Dietmar; Rabinovich, Mikhail L

    2011-05-01

    Cellobiose dehydrogenase (CDH) is an extracellular fungal flavocytochrome specifically oxidizing cellooligosaccharides and lactose to corresponding (-lactones by a variety of electron acceptors. In contrast to basidiomycetous CDHs, CDHs of ascomycetes also display certain activity toward glucose. The objective of this study was to establish the structural reasons of such an activity of CDH from mesophilic ascomycete Chaetomium sp. INBI 2-26 (ChCDH). The complete amino acid sequence of ChCDH displayed high levels of similarity with the amino acid sequences of CDHs from the thermophilic fungi Thielavia heterotallica and Myriococcum thermophilum. Peptide mass fingerprinting of purified ChCDH provided evidence for the oxidation of methionine residues in the FAD-domain. Comparative homology modeling of the structure of the ChCDH FAD-domain in complex with the transition state analog based on the structure of the same complex of basidiomycetous CDH (1NAA) as template indicated possible structural reasons for the enhanced activity of ascomycetous CDHs toward glucose at neutral pH, which is a prerequisite for application of CDH in a variety of biocompatible biosensors and biofuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  4. GJB2 (Connexin-26) mutations are not frequent among hearing impaired patients in East Greenland

    DEFF Research Database (Denmark)

    Homoe, P.; Koch, A.; Rendtorff, Nanna Dahl

    2012-01-01

    Objective: Investigate genetic causes of HI among the Inuit populations in the Arctic with a high prevalence of hearing impairment (HI). Design: A cross-sectional survey with population-based controls. Study sample: Forty-five patients, with sensorineural or mixed HI and an available blood sample...... for GJB2 sequencing from DNA, were selected from 166 East Greenlanders by specialist audiology examination, including pure-tone air and bone conduction audiometry from 125 Hz to 8000 Hz. Controls were 108 East- and 109 West-Greenlanders. Results: Forty-five patients with HI were included, 24 males and 21...

  5. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  6. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  7. Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites

    Science.gov (United States)

    Telus, M.; Huss, G. R.; Nagashima, K.; Ogliore, R. C.

    2014-06-01

    Zinner and Göpel found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al-26Mg systematics of these chondrites date "metamorphic cooling of the H4 parent body." Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al.). Zinner and Göpel used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel, indicating that ratio bias does not significantly affect 26Al-26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al-Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10-50 °C/Myr at 500 °C (Scott et al.), we conclude that the Al-Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the

  8. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue.

    Directory of Open Access Journals (Sweden)

    Monique Ramos de Oliveira Trugilho

    2017-05-01

    Full Text Available Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet

  9. 14 CFR 26.49 - Compliance plan.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Compliance plan. 26.49 Section 26.49... Data for Repairs and Alterations § 26.49 Compliance plan. (a) Compliance plan. Except for applicants... January 11, 2008, each person identified in §§ 26.43, 26.45, and 26.47, must submit a compliance plan...

  10. Glycoprotein profiles of macrophages at different stages of activation as revealed by lectin binding after electrophoretic separation.

    Science.gov (United States)

    Irimura, T; North, S M; Nicolson, G L

    1987-01-01

    Glycoprotein profiles of rat macrophages (M phi) at different stages of activation were studied by examining the reactivity of various lectins to the glycoproteins separated by polyacrylamide gel electrophoresis. Ricinus communis agglutinin 1 (RCA1) revealed several components including glycoproteins of Mr 160 kDa and 65 kDa prominent in resident M phi. A pokeweed mitogen (PWM) isolectin, Pa-4, recognizes branched poly(N-acetyllactosamine)-type carbohydrate chains, and revealed a significant increase in glycoproteins of Mr ranging from 70 kDa to 150 kDa on thioglycolate-elicited M phi. Increased reactivity of PWM to thioglycolate-elicited M phi was observed by direct binding of 125I-labeled Pa-4 to intact or glutaraldehyde-fixed M phi. Histochemical staining of formaldehyde-fixed M phi in vitro with biotinylated Pa-4 was consistent with the gel analysis, that is, resident M phi had no reactivity while thioglycolate-elicited M phi showed slight reactivity. Alveolar and intratumoral M phi bound more Pa-4 than resident or thioglycolate-elicited M phi. The PWM isolectin may therefore serve as a marker for an early stage of M phi activation.

  11. Parent-adolescent joint projects involving leisure time and activities during the transition to high school.

    Science.gov (United States)

    Marshall, Sheila K; Young, Richard A; Wozniak, Agnieszka; Lollis, Susan; Tilton-Weaver, Lauree; Nelson, Margo; Goessling, Kristen

    2014-10-01

    Leisure research to date has generally overlooked planning and organizing of leisure time and activities between parents and adolescents. This investigation examined how a sample of Canadian adolescents and their parents jointly constructed and acted on goals related to adolescents' leisure time during the move from elementary to high school. Using the Qualitative Action-Project Method, data were collected over an 8-10 month period from 26 parent-adolescent dyads located in two urban sites, through video-taped conversations about leisure time, video recall interviews, and telephone monitoring interviews. Analysis of the data revealed that the joint projects of the 26 dyads could be grouped into three clusters: a) governance transfer or attempts to shift, from parent to adolescent, responsibility over academic demands, organizing leisure time, and safety with peers, b) balancing extra-curricular activities with family life, academics, and social activities, and c) relationship adjustment or maintenance. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Different mechanisms of modulation of gap junction communication by non-genotoxic carcinogens in rat liver in vivo

    International Nuclear Information System (INIS)

    Cowles, C.; Mally, A.; Chipman, J.K.

    2007-01-01

    This is a comparative study of the mechanisms by which three different rodent non-genotoxic carcinogens modulate connexin-mediated gap junction intercellular communication in male rat liver in vivo. In the case of the peroxisome proliferating agent Wy-14,643, a non-hepatotoxic dose of 50 mg/kg led to a marked loss of inter-hepatocyte dye transfer associated with a loss of both Cx32 and Cx26 protein expression. In contrast, p,p'-dichlorodiphenyltrichloroethane (DDT) at a non-hepatotoxic dose (25 mg/kg) was not found to alter Cx32 or Cx26 expression or to produce a measurable Cx32 serine phosphorylation but did give a small, significant reduction of cell communication. Carbon tetrachloride (CCl 4 ) did not affect cell communication (despite a small significant reduction of Cx32 content) at a non-hepatotoxic dose. Both loss of communication and Cx32 expression was observed only at a dose that caused hepatocyte toxicity as evidenced by increased serum alanine aminotransferase activity. Overall, the findings emphasise that loss of gap junctional communication in vivo can contribute to carcinogenesis by non-genotoxic carcinogens through different primary mechanism. In contrast to Wy-14,643 and DDT, the results with CCl 4 are consistent with a requirement for hepatotoxicity in its carcinogenic action

  13. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due the shrinkage and the cytosolic loss

    Directory of Open Access Journals (Sweden)

    Vijay eKumar

    2014-08-01

    Full Text Available An actinomycetes strain designated as MN 2(6 was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27-37°C, pH 8-10 and below salt concentration of 6% (w/v. The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6 lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T, Streptomyces sporocinereus NBRC 100766T and Streptomyces demainii NRRL B-1478T with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6 can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6 showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6 by scanning electron microscopy (SEM revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6

  14. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    2010-11-01

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  15. 26 CFR 1.469-4 - Definition of activity.

    Science.gov (United States)

    2010-04-01

    ... Commissioner to prevent tax avoidance—(1) Rule. The Commissioner may regroup a taxpayer's activities if any of... Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Taxable Year for Which Deductions Taken § 1.469-4 Definition of activity. (a) Scope and...

  16. 49 CFR 1242.36 - Machinery repair and equipment damaged (accounts XX-26-40 and XX-26-48).

    Science.gov (United States)

    2010-10-01

    ... XX-26-40 and XX-26-48). 1242.36 Section 1242.36 Transportation Other Regulations Relating to... (accounts XX-26-40 and XX-26-48). Separate common expenses according to separation of common expenses in repair and maintenance (account XX-26-41). ...

  17. Experiences from tsunami relief activity: implications for medical education.

    Science.gov (United States)

    Balasubramaniam, Sudharsanam Manni; Mohan, Yogesh; Roy, Gautam

    2012-01-01

    A tsunami struck the coast of Tamilnadu and Pondicherry on 26 December 2004. Jawaharlal Institute of Postgraduate Medical Education & Research, (JIPMER) in Pondicherry played a vital role in providing medical relief. The experiences from the relief activities revealed areas of deficiency in medical education in regards to disaster preparedness. A qualitative study using focus group discussion was employed to find the lacunae in skills in managing medical relief measures. Many skills were identified; the most important of which was addressing the psychological impact of the tsunami on the victims. Limited coordination and leadership skills were also identified. It is recommended that activity-based learning can be included in the curriculum to improve these skills.

  18. Health physics in JAERI, 26

    International Nuclear Information System (INIS)

    1984-10-01

    In the annual report No.26 (fiscal 1983) are described the activities of health physics including radioactive waste management in Tokai Research Establishment, Takasaki Radiation Chemistry Research Establishment and Oarai Research Establishment. In all the three research establishments, radiation monitoring in nuclear facilities, individual monitoring, environmental monitoring and maintenance of measuring instruments were carried out as in the previous years. There were no occupational exposures exceeding the maximum permissible doses and no releases of radioactive gaseous and liquid wastes beyond the release limits specified according to the regulations. In the environment there were observed no abnormal radioactivities due to facilities. (J.P.N.)

  19. 32 CFR 26.655 - Individual.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Individual. 26.655 Section 26.655 National... GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 26.655 Individual. Individual means a natural person. ...

  20. 40 CFR 26.1124 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false [Reserved] 26.1124 Section 26.1124 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Basic Ethical...-nursing Adults § 26.1124 [Reserved] ...

  1. Genomic biomarkers and clinical outcomes of physical activity.

    Science.gov (United States)

    Izzotti, Alberto

    2011-07-01

    Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms. © 2011 New York Academy of Sciences.

  2. Ultrasonic preparation of nano-nickel/activated carbon composite using spent electroless nickel plating bath and application in degradation of 2,6-dichlorophenol.

    Science.gov (United States)

    Su, Jingyu; Jin, Guanping; Li, Changyong; Zhu, Xiaohui; Dou, Yan; Li, Yong; Wang, Xin; Wang, Kunwei; Gu, Qianqian

    2014-11-01

    Ni was effectively recovered from spent electroless nickel (EN) plating baths by forming a nano-nickel coated activated carbon composite. With the aid of ultrasonication, melamine-formaldehyde-tetraoxalyl-ethylenediamine chelating resins were grafted on activated carbon (MFT/AC). PdCl2 sol was adsorbed on MFT/AC, which was then immersed in spent electroless nickel plating bath; then nano-nickel could be reduced by ascorbic acid to form a nano-nickel coating on the activated carbon composite (Ni/AC) in situ. The materials present were carefully examined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemistry techniques. The resins were well distributed on the inside and outside surfaces of activated carbon with a size of 120 ± 30 nm in MFT/AC, and a great deal of nano-nickel particles were evenly deposited with a size of 3.8 ± 1.1 nm in Ni/MFT. Moreover, Ni/AC was successfully used as a catalyst for ultrasonic degradation of 2,6-dichlorophenol. Copyright © 2014. Published by Elsevier B.V.

  3. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling.

    Science.gov (United States)

    Fan, Jinqi; Zou, Lili; Cui, Kun; Woo, Kamsang; Du, Huaan; Chen, Shaojie; Ling, Zhiyu; Zhang, Quanjun; Zhang, Bo; Lan, Xianbin; Su, Li; Zrenner, Bernhard; Yin, Yuehui

    2015-01-01

    The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1-7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin-angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.

  4. Synthesis of 2-(6-Acetamidobenzothiazolethioacetic Acid Esters as Photosynthesis Inhibitors

    Directory of Open Access Journals (Sweden)

    Dusan Loos

    1998-04-01

    Full Text Available The synthesis and photosynthesis-inhibiting activity of 13 new 2-(6-acetamidobenzothiazolethioacetic acid esters are reported. The new compounds were prepared by acetylation of 2-(alkoxycarbonylmethylthio-6-aminobenzothiazoles with acetic anhydride. The structure of the compounds was verified by 1H NMR spectra. The compounds inhibit photosynthetic electron transfer in spinach chloroplasts. The structure - activity relation was studied. Lipophilicity was found to influence substantially photosynthetic electron transfer.

  5. Central diabetes insipidus preceding acute myeloid leukemia with t(3;12)(q26;p12)

    NARCIS (Netherlands)

    Nieboer, P; Vellenga, E; Adriaanse, R; van de Loosdrecht, AA

    A 52-year-old woman presented with polyuria and polydipsia. ii diagnosis of central diabetes insipidus (DI) was made, which turned out to be the first sign of acute myeloid leukemia (AML). Cytogenetic analysis revealed a balanced translocation between chromosome 3 and 12 t(3;12)(q26;p12). The

  6. 7 CFR 1221.26 - Research.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Research. 1221.26 Section 1221.26 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.26 Research. Research...

  7. 7 CFR 1215.26 - Removal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Removal. 1215.26 Section 1215.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Popcorn Board § 1215.26...

  8. Observations of A0535 + 26 with the SMM satellite

    Science.gov (United States)

    Sembay, S.; Schwartz, R. A.; Orwig, L. E.; Dennis, B. R.; Davies, S. R.

    1990-01-01

    An examination of archival data from the hard X-ray instruments on the Solar Maximum Mission (SMM) satellite has revealed a previously undetected outburst from the recurrent X-ray transient, A0535 + 26. The outburst occurred in June 1983 and reached a peak intensity of about 2 crab units in the energy range 32-91 keV. The outburst was detected over a span of 18 days, and the pulse period was observed to spin-up with an average rate of about -6 x 10 to the -8th s/s. A recently proposed model for A0535 + 26 has a pulsar powered by a short-lived accretion disk. A thin accretion disk model is fitted to the present data, assuming an orbital period of 111 days. Two solutions to the magnetic moment of the neutron star are derived. The slow rotator solution is more consistent with the model than the fast rotator, on the grounds that the conditions for the formation of an accretion disk are more favorable for a lower magnetic field strength.

  9. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gaoyang; Liu, Boning [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Meng, Zhaowei [Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052 (China); Liu, Yunde [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300052 (China); Li, Xuebing [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wu, Xiang [Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhou, Qinghua [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Xu, Ke, E-mail: ke_xu@hotmail.com [Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2017-03-15

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.

  10. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    International Nuclear Information System (INIS)

    Lin, Gaoyang; Liu, Boning; Meng, Zhaowei; Liu, Yunde; Li, Xuebing; Wu, Xiang; Zhou, Qinghua; Xu, Ke

    2017-01-01

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression in lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.

  11. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    Science.gov (United States)

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn 2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13 C ENDOR then reveals the locations of 13 C10 and reactive 13 C11 of linoleic acid relative to the metal; 1 H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  12. Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth.

    Directory of Open Access Journals (Sweden)

    Elias Gounaris

    2008-08-01

    Full Text Available It has been estimated that up to 30% of detectable polyps in patients regress spontaneously. One major challenge in the evaluation of effective therapy of cancer is the readout for tumor regression and favorable biological response to therapy. Inducible near infra-red (NIR fluorescent probes were utilized to visualize intestinal polyps of mice hemizygous for a novel truncation of the Adenomatous Polyposis coli (APC gene. Laser Scanning Confocal Microscopy in live mice allowed visualization of cathepsin activity in richly vascularized benign dysplastic lesions. Using biotinylated suicide inhibitors we quantified increased activities of the Cathepsin B & Z in the polyps. More than (3/4 of the probe signal was localized in CD11b(+Gr1(+ myeloid derived suppressor cells (MDSC and CD11b(+F4/80(+ macrophages infiltrating the lesions. Polyposis was attenuated through genetic ablation of cathepsin B, and suppressed by neutralization of TNFalpha in mice. In both cases, diminished probe signal was accounted for by loss of MDSC. Thus, in vivo NIR imaging of focal cathepsin activity reveals inflammatory reactions etiologically linked with cancer progression and is a suitable approach for monitoring response to therapy.

  13. Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis Reacting with Murine Monoclonal and Sheep Antibodies

    Science.gov (United States)

    Wu, Jingbo; Zhang, Hui; Wang, Yuanzhi; Qiao, Jun; Chen, Chuangfu; Gao, Goege F.; Allain, Jean-Pierre; Li, Chengyao

    2012-01-01

    More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90. PMID:22457830

  14. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    KAUST Repository

    Ferreira, Ari J S

    2014-06-12

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world\\'s oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  15. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    KAUST Repository

    Ferreira, Ari J S; Siam, Rania; Setubal, Joã o C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvä slaiho, Heikki; Ramadan, Eman; Antunes, André ; Stingl, Ulrich; Archer, John A.C.; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  16. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    Directory of Open Access Journals (Sweden)

    Ari J S Ferreira

    Full Text Available Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  17. 16 CFR 1025.26 - Settlements.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Settlements. 1025.26 Section 1025.26... PROCEEDINGS Prehearing Procedures, Motions, Interlocutory Appeals, Summary Judgments, Settlements § 1025.26 Settlements. (a) Availability. Any party shall have the opportunity to submit an offer of settlement to the...

  18. 14 CFR 380.26 - Discrimination.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Discrimination. 380.26 Section 380.26... REGULATIONS PUBLIC CHARTERS Requirements Applicable to Charter Operators § 380.26 Discrimination. No charter... unjust discrimination or any undue or unreasonable prejudice or disadvantage in any respect whatsoever. ...

  19. 40 CFR 26.1102 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Definitions. 26.1102 Section 26.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Basic Ethical...-nursing Adults § 26.1102 Definitions. (a) For purposes of this subpart, Administrator means the...

  20. Functional roles of the amino terminal domain in determining biophysical properties of Cx50 gap junction channels

    Directory of Open Access Journals (Sweden)

    Li eXin

    2013-12-01

    Full Text Available Communication through gap junction channels is essential for synchronized and coordinated cellular activities. The gap junction channel pore size, its switch control for opening/closing, and the modulations by chemicals can be different depending on the connexin subtypes that compose the channel. Recent structural and functional studies provide compelling evidence that the amino terminal (NT domains of several connexins line the pore of gap junction channels and play an important role in single channel conductance (γj and transjunctional voltage-dependent gating (Vj-gating. This article reviews recent studies conducted on a series of mutations/chimeras in the NT domain of connexin50 (Cx50. Functional examination of the gap junction channels formed by these mutants/chimeras shows the net charge number at the NT domain to be an important factor in γj and in Vj-gating. Furthermore, with an increase in the net negative charge at the NT domain, we observed an increase in the γj, as well as changes in the parameters of the Boltzmann fit of the normalized steady-state conductance and Vj relationship. Our data are consistent with a structural model where the NT domain of Cx50 lines the gap junction pore and plays an important role in sensing Vj and in the subsequent conformational changes leading to gating, as well as in limiting the rate of ion permeation.

  1. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Abe

    2017-04-01

    Full Text Available Diffusion functional MRI (DfMRI reveals neuronal activation even when neurovascular coupling is abolished, contrary to blood oxygenation level-dependent (BOLD functional MRI (fMRI. Here, we show that the water apparent diffusion coefficient (ADC derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity observed with local field potentials (LFPs, especially in regions involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimulation of the central medial thalamus nucleus (CM exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific neuronal swelling blocker, led the ADC to increase further locally, although LFP activity remained unchanged, and increased the current threshold awakening the animals under CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of a hypotonic solution (-80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF] led to a local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI.

  2. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Science.gov (United States)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  3. 19 CFR 212.26 - Determination.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Determination. 212.26 Section 212.26 Customs... IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT Procedures for Considering Applications § 212.26 Determination. The presiding officer shall issue a recommended determination on the application within 90 days after...

  4. 22 CFR 51.26 - Photographs.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Photographs. 51.26 Section 51.26 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS PASSPORTS Application § 51.26 Photographs. The applicant must submit with his or her application photographs as prescribed by the Department that are a...

  5. 28 CFR 26.21 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Definitions. 26.21 Section 26.21 Judicial Administration DEPARTMENT OF JUSTICE DEATH SENTENCES PROCEDURES Certification Process for State Capital Counsel Systems § 26.21 Definitions. For purposes of this part, the term— Appropriate state official means the...

  6. 30 CFR 281.26 - Payments.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Payments. 281.26 Section 281.26 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.26 Payments. (a...

  7. Characterization of P1 promoter activity of the β-galactoside α2,6 ...

    Indian Academy of Sciences (India)

    2012-04-05

    Apr 5, 2012 ... The level of β-galactoside α2,6-sialyltransferase I (ST6Gal I) mRNA, encoded by the gene siat1, is increased in malignant tissues. Expression is regulated by different promoters – P1, P2 and P3 – generating three mRNA isoforms. H, X and YZ. In cervical cancer tissue the mRNA isoform H, which results ...

  8. 26 CFR 1.141-5 - Private loan financing test.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Private loan financing test. 1.141-5 Section 1... loan financing test. (a) In general. Bonds of an issue are private activity bonds if more than the... determining whether the private loan financing test is met. In determining whether the proceeds of an issue...

  9. 41 CFR 101-26.607 - Billings.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Billings. 101-26.607 Section 101-26.607 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.6...

  10. 41 CFR 101-26.301 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Applicability. 101-26.301 Section 101-26.301 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.3...

  11. 41 CFR 101-26.504 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true [Reserved] 101-26.504 Section 101-26.504 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.5-GSA...

  12. 41 CFR 101-26.601 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true [Reserved] 101-26.601 Section 101-26.601 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND PROGRAM 26.6...

  13. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific

  14. Examination of the Addictive and Behavioral Properties of Fatty Acid Binding Protein Inhibitor SBFI26

    Directory of Open Access Journals (Sweden)

    Panayotis eThanos

    2016-04-01

    Full Text Available Abstract:The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, have shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid binding proteins (FABPs and subsequent catabolism by fatty acid amide hydrolase (FAAH. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working / recognition memory, and propensity for sociability and preference for social novelty given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0 mg/kg, 20.0 mg/kg, 40.0 mg/kg SBFI26 or vehicle during a conditioned placed preference (CPP paradigm. Following CPP, mice underwent a battery of behavioral tests (open field, novel object recognition (NOR, and social interaction (SI and novelty (SN paired with acute SBFI26 administration. Results showed that SBFI26 did not produce conditioned placed preference or conditioned place aversion regardless of dose, and did not induce any differences in locomotor and exploratory activity during CPP or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested.

  15. 32 CFR 26.640 - Employee.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Employee. 26.640 Section 26.640 National Defense... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 26.640 Employee. (a) Employee means the employee of a recipient directly engaged in the performance of work under the award, including— (1...

  16. 39 CFR 962.26 - Settlement.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Settlement. 962.26 Section 962.26 Postal Service... CIVIL REMEDIES ACT § 962.26 Settlement. (a) Either party may make offers of settlement or proposals of... settlement terms to the Attorney General, as appropriate. [59 FR 51860, Oct. 13, 1994] ...

  17. 24 CFR 26.18 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Discovery. 26.18 Section 26.18... PROCEDURES Hearings Before Hearing Officers Discovery § 26.18 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery procedures, which may commence at any time after an answer has...

  18. 24 CFR 26.42 - Discovery.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Discovery. 26.42 Section 26.42... PROCEDURES Hearings Pursuant to the Administrative Procedure Act Discovery § 26.42 Discovery. (a) General. The parties are encouraged to engage in voluntary discovery procedures, which may commence at any time...

  19. 29 CFR 1905.26 - Hearings.

    Science.gov (United States)

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 Hearings § 1905.26 Hearings. (a) Order of proceeding. Except as may... 29 Labor 5 2010-07-01 2010-07-01 false Hearings. 1905.26 Section 1905.26 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RULES OF...

  20. 47 CFR 32.26 - Materiality.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Materiality. 32.26 Section 32.26... FOR TELECOMMUNICATIONS COMPANIES General Instructions § 32.26 Materiality. Companies shall follow this... materiality under GAAP, unless a waiver has been granted under the provisions of § 32.18 of this subpart to do...

  1. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan

    2015-07-13

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  2. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan; Di Domizio, Jeremy; Voo, Kui S; Friedrich, Heike C; Chamilos, Georgios; Ganguly, Dipyaman; Conrad, Curdin; Gregorio, Josh; Le Roy, Didier; Roger, Thierry; Ladbury, John E; Homey, Bernhard; Watowich, Stanley; Modlin, Robert L; Kontoyiannis, Dimitrios P; Liu, Yong-Jun; Arold, Stefan T.; Gilliet, Michel

    2015-01-01

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  3. Development and validation of 26-item dysfunctional attitude scale.

    Science.gov (United States)

    Ebrahimi, Amrollah; Samouei, Rahele; Mousavii, Sayyed Ghafour; Bornamanesh, Ali Reza

    2013-06-01

    Dysfunctional Attitude Scale is one of the most common instruments used to assess cognitive vulnerability. This study aimed to develop and validate a short form of Dysfunctional Attitude Scale appropriate for an Iranian clinical population. Participants were 160 psychiatric patients from medical centers affiliated with Isfahan Medical University, as well as 160 non-patients. Research instruments were clinical interviews based on the Diagnostic and Statistical Manual-IV-TR, Dysfunctional Attitude Scale and General Heath Questionnaire (GHQ-28). Data was analyzed using multicorrelation calculations and factor analysis. Based on the results of factor analysis and item-total correlation, 14 items were judged candidates for omission. Analysis of the 26-item Dysfunctional Attitude Scale (DAS-26) revealed a Cronbach's alpha of 0.92. Evidence for the concurrent criterion validity was obtained through calculating the correlation between the Dysfunctional Attitude Scale and psychiatric diagnosis (r = 0.55), GHQ -28 (r = 0.56) and somatization, anxiety, social dysfunction, and depression subscales (0.45,0.53,0.48, and 0.57, respectively). Factor analysis deemed a four-factor structure the best. The factors were labeled as success-perfectionism, need for approval, need for satisfying others, and vulnerability-performance evaluation. The results showed that the Iranian version of the Dysfunctional Attitude Scale (DAS-26) bears satisfactory psychometric properties suggesting that this cognitive instrument is appropriate for use in an Iranian cultural context. Copyright © 2012 Wiley Publishing Asia Pty Ltd.

  4. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression.

    Science.gov (United States)

    Suh, Jong Hui; Choi, Eunmi; Cha, Min-Ji; Song, Byeong-Wook; Ham, Onju; Lee, Se-Yeon; Yoon, Cheesoon; Lee, Chang-Yeon; Park, Jun-Hee; Lee, Sun Hee; Hwang, Ki-Chul

    2012-06-29

    Myocardial ischemia is the major cause of morbidity and mortality due to cardiovascular diseases. This disease is a severe stress condition that causes extensive biochemical changes which trigger cardiac cell death. Stress conditions such as deprivation of glucose and oxygen activate the endoplasmic reticulum in the cytoplasm of cells, including cardiomyocytes, to generate and propagate apoptotic signals in response to these conditions. microRNAs (miRNAs) are a class of small non-coding RNAs that mediate posttranscriptional gene silencing. The miRNAs play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. However, the roles of miRNAs in reactive oxygen species (ROS)-mediated injury on cardiomyocytes are uncertain. In this study, we identified at the apoptotic concentration of H(2)O(2), miR-26a expression was increased. To determine the potential roles of miR-26a in H(2)O(2)-mediated cardiac apoptosis, miR-26a expression was regulated by a miR-26a or an anti-miR-26a. Overexpression of miR-26a increased apoptosis as determined by upregulation of Annexin V/PI positive cell population, caspase-3 activity and expression of pro-apoptotic signal molecules, whereas inhibition of miR-26a reduced apoptosis. We identified GSK3B as a direct downstream target of miR-26a. Furthermore, miR-26a attenuated viability and increased caspase-3 activity in normal cardiomyocytes. This study demonstrates that miR-26a promotes ROS-induced apoptosis in cardiomyocytes. Thus, miR-26a affects ROS-mediated gene regulation and cellular injury response. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. 24 CFR 26.41 - Default.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Default. 26.41 Section 26.41... PROCEDURES Hearings Pursuant to the Administrative Procedure Act Prehearing Procedures § 26.41 Default. (a) General. The respondent may be found in default, upon motion, for failure to file a timely response to the...

  6. 49 CFR 511.26 - Settlement.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Settlement. 511.26 Section 511.26 Transportation...; Summary Judgment; Settlement § 511.26 Settlement. (a) Applicability. This section applies only to cases of..., 89 Stat. 911 (15 U.S.C. section 2007(3)). Settlement in other cases may be made only in accordance...

  7. 43 CFR 26.1 - Introduction.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Introduction. 26.1 Section 26.1 Public Lands: Interior Office of the Secretary of the Interior GRANTS TO STATES FOR ESTABLISHING YOUTH CONSERVATION CORPS PROGRAMS § 26.1 Introduction. (a) The Youth Conservation Corps (YCC) is a program of summer...

  8. 30 CFR 735.26 - Reports.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reports. 735.26 Section 735.26 Mineral... AND ENFORCEMENT § 735.26 Reports. (a) The agency shall, for each grant made under this part, submit semiannually to the Director or his authorized designee a Financial Status Report, Form 269 for non...

  9. 12 CFR 1780.26 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Discovery. 1780.26 Section 1780.26 Banks and... OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Prehearing Proceedings § 1780.26 Discovery. (a) Limits on discovery. Subject to the limitations set out in paragraphs (b), (d), and (e) of this...

  10. 32 CFR 26.665 - State.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false State. 26.665 Section 26.665 National Defense... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 26.665 State. State means any of the States of the United States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory...

  11. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  12. Meta-analysis reveals an association between signal transducer and activator of transcription-4 polymorphism and hepatocellular carcinoma risk.

    Science.gov (United States)

    Zhang, Li; Xu, Kuihua; Liu, Chuanmiao; Chen, Jiasheng

    2017-03-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Signal transducer and activator of transcription (STAT) proteins play a multitude of important functions in liver pathophysiology. Recent studies have indicated associations of rs7574865 single nucleotide polymorphism (SNP) in the STAT4 gene with various autoimmune diseases. The association between STAT4 polymorphism and the risk of HCC has been analyzed in several studies, but results remain inconsistent. This study used a meta-analysis approach to comprehensively investigate the correlation between STAT4 polymorphism and HCC risk based on previously published reports. Studies were searched from the databases of PubMed, EMBase, Web of Science, and the Chinese National Knowledge Infrastructure up to 31 December 2015. The meta-analysis was carried out based on the statement of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Eight published studies, consisting of 7503 HCC patients (cases) and 13 831 individuals without HCC (controls), were included in the present study. Meta-analysis of the included studies revealed that STAT4 rs7574865 polymorphism contributed to the risk of HCC under all four genetic models, consisting of the allelic model (G vs. T: odds ratio [OR], 1.25; 95% confidence interval [CI], 1.19-1.30), the dominant effect model (GG + GT vs. TT: OR, 1.52; 95% CI, 1.26-1.84), the recessive effect model (GG vs. GT + TT: OR, 1.35; 95% CI, 1.21-1.50), and the co-dominant effect model (GG vs.. TT: OR, 1.72; 95% CI, 1.42-2.10) comparisons. No publication bias was indicated from either visualization of the funnel plot or Egger's test. A significantly increased risk of HCC associated with the rs7574865 G was found. The rs7574865 polymorphism might be used as one risk factor for HCC. © 2016 The Japan Society of Hepatology.

  13. [Acute myeloid leukemia with monosomy 7 and inv(3)(q21q26.2) complicated with central diabetes insipidus].

    Science.gov (United States)

    Nanno, Satoru; Hagihara, Kiyoyuki; Sakabe, Manami; Okamura, Hiroshi; Inaba, Akiko; Nagata, Yuki; Nishimoto, Mitsutaka; Koh, Hideo; Nakao, Yoshitaka; Nakane, Takahiko; Nakamae, Hirohisa; Shimono, Taro; Hino, Masayuki

    2013-04-01

    A 20-year-old female presented with thirst, polyposia, and polyuria and was referred to our hospital because of leukocytosis and anemia. Bone marrow aspiration revealed 66.8% myeloperoxidase-positive blasts and trilineage myelodysplasia. The karyotype was 45, XX, inv(3)(q21q26.2), -7[19]. Therefore, a diagnosis of AML with inv(3)(q21q26.2) complicated by -7 was made. Moreover, hyposthenuria and a low anti-diuretic hormone (ADH) level were observed. Although cerebrospinal fluid analysis was normal, magnetic resonance imaging (MRI) revealed the absence of hyperintensity in the neurohypophysis in T1-weighted images. Therefore, she was also diagnosed with diabetes insipidus. After she was administered a desmopressin nasal spray, the volume of urine produced decreased. Following treatment with second induction therapy containing high-dose cytarabine for AML, she achieved complete remission in the bone marrow. Moreover, when the abnormality on MRI and the volume of urine were normalized, she discontinued desmopressin. Although diabetes insipidus is a rare complication of AML, the majority of AML patients who have diabetes insipidus have the abnormal karyotypes with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and monosomy 7. Further study is required to clarify the pathogenesis and develop a strategy for the treatment of this category of AML.

  14. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Kauss, Mark

    2011-01-01

    November 29, 2010, through May 2, 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: (1) Determine whether contaminants of concern (COCs) are present; and (2) If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 539. Assessment of the data generated from closure activities revealed the following: (1) At CAS 26-99-05, the total effective dose for radiological releases did not exceed the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at three locations. A corrective action of clean closure was implemented at these locations, and verification samples indicated that no further action is necessary. (2) At CAS 25-99-21, the total effective dose for radiological releases exceeds the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at eight locations. A corrective action was implemented by removing the lead bricks and soil above FALs at these locations, and verification samples indicated that no further action is necessary. Pieces of debris with high radioactivity were identified as PSM and remain within the CAS boundary. A corrective action of closure in place with a UR was implemented at this CAS because closure activities showed evidence of remaining soil contamination and radioactive PSM. Future land use will be restricted from surface and intrusive activities. Closure activities generated waste streams consisting of industrial solid waste, recyclable materials, low-level radioactive waste, and mixed

  15. 42 CFR 408.26 - Examples.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Examples. 408.26 Section 408.26 Public Health... PREMIUMS FOR SUPPLEMENTARY MEDICAL INSURANCE Amount of Monthly Premiums § 408.26 Examples. Example 1. Mr. J... 10 percent greater than if he had enrolled in his initial enrollment period. Example 2. Mr. V, who...

  16. 25 CFR 152.26 - Advertisement.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Advertisement. 152.26 Section 152.26 Indians BUREAU OF... Trust Or Restricted Lands § 152.26 Advertisement. (a) Upon approval of an application for an advertised... unless for good cause a shorter period is authorized by the Secretary. (b) The notice of sale will...

  17. 27 CFR 26.39 - Labels.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Labels. 26.39 Section 26.39 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE... United States From Puerto Rico § 26.39 Labels. All labels affixed to bottles of liquors coming into the...

  18. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  19. Explosive destruction of "2"6Al

    International Nuclear Information System (INIS)

    Kahl, D.; Yamaguchi, H.; Shimizu, H.

    2016-01-01

    The γ-ray emission associated with the radioactive decay of "2"6Al is one of the key pieces of observational evidence indicating stellar nucleosynthesis is an ongoing process in our Galaxy, and it was the first such radioactivity to be detected. Despite numerous efforts in stellar modeling, observation, nuclear theory, and nuclear experiment over the past four decades, the precise sites and origin of Galactic "2"6Al remain elusive. We explore the present experimental knowledge concerning the destruction of "2"6Al in massive stars. The precise stellar rates of neutron-induced reactions on "2"6Al, such as (n,p) and (n,α), have among the largest impacts on the total "2"6Al yield. Meanwhile, reactions involving the short-lived isomeric state of "2"6Al such as radiative proton capture are highly-uncertain at present. Although we presented on-going experimental work from n TOF at CERN with an "2"6Al target, the present proceeding focuses only on the "2"6Al isomeric radioactive beam production aspect and the first experimental results at CRIB.

  20. Thermodynamic coupling between activation and inactivation gating in potassium channels revealed by free energy molecular dynamics simulations.

    Science.gov (United States)

    Pan, Albert C; Cuello, Luis G; Perozo, Eduardo; Roux, Benoît

    2011-12-01

    The amount of ionic current flowing through K(+) channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a variety of timescales. A recent analysis of multiple x-ray structures of open and partially open KcsA channels revealed the mechanism by which movements of the inner activation gate, formed by the inner helices from the four subunits of the pore domain, bias the conformational changes at the selectivity filter toward a nonconductive inactivated state. This analysis highlighted the important role of Phe103, a residue located along the inner helix, near the hinge position associated with the opening of the intracellular gate. In the present study, we use free energy perturbation molecular dynamics simulations (FEP/MD) to quantitatively elucidate the thermodynamic basis for the coupling between the intracellular gate and the selectivity filter. The results of the FEP/MD calculations are in good agreement with experiments, and further analysis of the repulsive, van der Waals dispersive, and electrostatic free energy contributions reveals that the energetic basis underlying the absence of inactivation in the F103A mutation in KcsA is the absence of the unfavorable steric interaction occurring with the large Ile100 side chain in a neighboring subunit when the intracellular gate is open and the selectivity filter is in a conductive conformation. Macroscopic current analysis shows that the I100A mutant indeed relieves inactivation in KcsA, but to a lesser extent than the F103A mutant.