WorldWideScience

Sample records for connexin 43-with special

  1. Association of connexin43 with a receptor protein tyrosine phosphatase

    NARCIS (Netherlands)

    Giepmans, Ben N G; Feiken, Elles; Gebbink, Martijn F B G; Moolenaar, Wouter H

    2003-01-01

    Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap juncti

  2. Gap junction protein connexin-43 interacts directly with microtubules

    NARCIS (Netherlands)

    Giepmans, B N; Verlaan, I; Hengeveld, T; Janssen, H; Calafat, J; Falk, M M; Moolenaar, W H

    2001-01-01

    Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated

  3. Connexin43 in retinal injury and disease.

    Science.gov (United States)

    Danesh-Meyer, Helen V; Zhang, Jie; Acosta, Monica L; Rupenthal, Ilva D; Green, Colin R

    2016-03-01

    Gap junctions are specialized cell-to-cell contacts that allow the direct transfer of small molecules between cells. A single gap junction channel consists of two hemichannels, or connexons, each of which is composed of six connexin protein subunits. Connexin43 is the most ubiquitously expressed isoform of the connexin family and in the retina it is prevalent in astrocytes, Müller cells, microglia, retinal pigment epithelium and endothelial cells. Prior to docking with a neighboring cell, Connexin43 hemichannels have a low open probability as open channels constitute a large, relatively non-specific membrane pore. However, with injury and disease Connexin43 upregulation and hemichannel opening has been implicated in all aspects of secondary damage, especially glial cell activation, edema and loss of vascular integrity, leading to neuronal death. We here review gap junctions and their roles in the retina, and then focus in on Connexin43 gap junction channels in injury and disease. In particular, the effect of pathological opening of gap junction hemichannels is described, and hemichannel mediated loss of vascular integrity explained. This latter phenomenon underlies retinal pigment epithelium loss and is a common feature in several retinal diseases. Finally, Connexin43 channel roles in a number of retinal diseases including macular degeneration, glaucoma and diabetic retinopathy are considered, along with results from related animal models. A final section describes gap junction channel modulation and the ocular delivery of potential therapeutic molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  5. Connexin Hemichannels in Astrocytes

    DEFF Research Database (Denmark)

    Nielsen, Brian Skriver; Hansen, Daniel Bloch; Ransom, Bruce R.

    2017-01-01

    are reported to open the hemichannels and thereby create a permeation pathway through the plasma membrane. Cx30 and Cx43 have, in their hemichannel configuration, been proposed to act as ion channels and membrane pathways for different molecules, such as fluorescent dyes, ATP, prostaglandins, and glutamate......Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a ‘docked’ counterpart on the neighboring cell. A variety of stimuli...

  6. Connexins and pannexins in the integumentary system: the skin and appendages.

    Science.gov (United States)

    Faniku, Chrysovalantou; Wright, Catherine S; Martin, Patricia E

    2015-08-01

    The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.

  7. Connexins and the kidney

    DEFF Research Database (Denmark)

    Hanner, Fiona; Sørensen, Charlotte Mehlin; Holstein-Rathlou, Niels-Henrik

    2010-01-01

    Connexins (Cxs) are widely-expressed proteins that form gap junctions in most organs, including the kidney. In the renal vasculature, Cx37, Cx40, Cx43, and Cx45 are expressed, with predominant expression of Cx40 in the endothelial cells and Cx45 in the vascular smooth muscle cells. In the tubules......, the major function of Cxs in the kidney appears to be intercellular communication, although they may also form hemichannels that allow cellular secretion of large signaling molecules. Renal Cxs facilitate vascular conduction, juxtaglomerular apparatus calcium signaling, and tubular purinergic signaling....... Accordingly, current evidence points to roles for these Cxs in several important regulatory mechanisms in the kidney, including the renin angiotensin system, tubuloglomerular feedback, and salt and water reabsorption. At the systemic level, renal Cxs may help regulate blood pressure and may be involved...

  8. Connexins and the kidney.

    Science.gov (United States)

    Hanner, Fiona; Sorensen, Charlotte Mehlin; Holstein-Rathlou, Niels-Henrik; Peti-Peterdi, János

    2010-05-01

    Connexins (Cxs) are widely-expressed proteins that form gap junctions in most organs, including the kidney. In the renal vasculature, Cx37, Cx40, Cx43, and Cx45 are expressed, with predominant expression of Cx40 in the endothelial cells and Cx45 in the vascular smooth muscle cells. In the tubules, there is morphological evidence for the presence of gap junction plaques only in the proximal tubules. In the distal nephron, Cx30, Cx30.3, and Cx37 are expressed, but it is not known whether they form gap junctions connecting neighboring cells or whether they primarily act as hemichannels. As in other systems, the major function of Cxs in the kidney appears to be intercellular communication, although they may also form hemichannels that allow cellular secretion of large signaling molecules. Renal Cxs facilitate vascular conduction, juxtaglomerular apparatus calcium signaling, and tubular purinergic signaling. Accordingly, current evidence points to roles for these Cxs in several important regulatory mechanisms in the kidney, including the renin angiotensin system, tubuloglomerular feedback, and salt and water reabsorption. At the systemic level, renal Cxs may help regulate blood pressure and may be involved in hypertension and diabetes.

  9. Connexin channels and phospholipids: association and modulation

    Directory of Open Access Journals (Sweden)

    Harris Andrew L

    2009-08-01

    Full Text Available Abstract Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion

  10. Connexin hemichannels in the lens

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2014-02-01

    Full Text Available The normal function and survival of cells in the avascular lens is facilitated by intercellular communication through an extensive network of gap junctions formed predominantly by three connexins (Cx43, Cx46, and Cx50. In expression systems, these connexins can all induce hemi-channel currents, but other lens proteins (e.g., pannexin1 can also induce similar currents. Hemichannel currents have been detected in isolated lens fiber cells. These hemichannels may make significant contributions to normal lens physiology and pathophysiology. Studies of some connexin mutants linked to congenital cataracts have implicated hemichannels with aberrant voltage-dependent gating or modulation by divalent cations in disease pathogenesis. Hemichannels may also contribute to age- and disease-related cataracts.

  11. Cardiac connexins and impulse propagation

    NARCIS (Netherlands)

    J.A. Jansen; T.A.B. van Veen; J.M.T. de Bakker; H.V.M. van Rijen

    2010-01-01

    Gap junctions form the intercellular pathway for cell-to-cell transmission of the cardiac impulse from its site of origin, the sinoatrial node, along the atria, the atrioventricular conduction system to the ventricular myocardium. The component parts of gap junctions are proteins called connexins (C

  12. Connexins and pannexins in liver damage

    Science.gov (United States)

    Crespo Yanguas, Sara; Willebrords, Joost; Maes, Michaël; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Cogliati, Bruno; Zaidan Dagli, Maria Lucia; Vinken, Mathieu

    2016-01-01

    Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets. PMID:27065778

  13. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  14. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  15. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the best-studied

  16. Mutations in connexin genes and disease.

    Science.gov (United States)

    Pfenniger, Anna; Wohlwend, Annelise; Kwak, Brenda R

    2011-01-01

    Connexins are a family of transmembrane proteins that are widely expressed in the human body. Connexins play an important role in cell-cell communication and homeostasis in various tissues by forming gap junction channels, which enable a direct passage of ions or metabolites from one cell to another. Twenty-one different connexins are expressed in humans, each having distinct expression patterns and regulation properties. Knowledge on this family of proteins can be gained by making an inventory of mutations and associated diseases in human. PubMed and other relevant databases were searched. In addition, key review articles were screened for relevant original publications. Sections of representative organs were photographed and annotated. The crucial role of connexins is highlighted by the discovery of mutations in connexin genes which cause a variety of disorders such as myelin-related diseases, skin disorders, hearing loss, congenital cataract, or more complex syndromes such as the oculodendrodigital dysplasia. This review systematically addresses current knowledge on mutations in connexin genes and disease, focusing on the correlation between genetic defects, cellular phenotypes and clinical manifestations. The review of diseases caused by mutations in connexin genes highlights the essential nature of connexin function and intercellular communication in tissue homeostasis. © 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.

  17. Connexins in lymphatic vessel physiology and disease.

    Science.gov (United States)

    Meens, Merlijn J; Sabine, Amélie; Petrova, Tatiana V; Kwak, Brenda R

    2014-04-17

    Connexins are transmembrane proteins that form gap junction- and hemi-channels. Once inserted into the membrane, hemi-channels (connexons) allow for diffusion of ions and small molecules (Gap junction channels allow diffusion of similar molecules between the cytoplasms of adjacent cells. The expression and function of connexins in blood vessels has been intensely studied in the last few decades. In contrast, only a few studies paid attention to lymphatic vessels; convincing in vivo data with respect to expression patterns of lymphatic connexins and their functional roles have only recently begun to emerge. Interestingly, mutations in connexin genes have been linked to diseases of lymphatic vasculature, most notably primary and secondary lymphedema. This review summarizes the available data regarding lymphatic connexins. More specifically it addresses (i) early studies aimed at presence of gap junction-like structures in lymphatic vessels, (ii) more recent studies focusing on lymphatic connexins using genetically engineered mice, and (iii) results of clinical studies that have reported lymphedema-linked mutations in connexin genes. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Immunohisto- and cytochemistry analysis of connexins

    Science.gov (United States)

    Cogliati, Bruno; Maes, Michaël; Pereira, Isabel Veloso Alves; Willebrords, Joost; da Silva, Tereza Cristina; Crespo Yanguas, Sara; Vinken, Mathieu

    2016-01-01

    Summary Immunohistochemistry (IHC) is a ubiquitous used technique to identify and analyze protein expression in the context of tissue and cell morphology. In the connexin research field, IHC is applied to identify the subcellular location of connexin proteins, as this can be directly linked to their functionality. The present chapter describes a protocol for fluorescent IHC to detect connexin proteins in tissues slices and cells, with slight modifications depending on the nature of biological sample, histological processing and/or protein expression level. Basically, fluorescent IHC is a short, simple and cost-effective technique, which allows the visualization of proteins based on fluorescent-labeled antibody-antigen recognition. PMID:27207286

  19. Role of connexins and pannexins in cardiovascular physiology.

    Science.gov (United States)

    Meens, Merlijn J; Kwak, Brenda R; Duffy, Heather S

    2015-08-01

    Connexins and pannexins form connexons, pannexons and membrane channels, which are critically involved in many aspects of cardiovascular physiology. For that reason, a vast number of studies have addressed the role of connexins and pannexins in the arterial and venous systems as well as in the heart. Moreover, a role for connexins in lymphatics has recently also been suggested. This review provides an overview of the current knowledge regarding the involvement of connexins and pannexins in cardiovascular physiology.

  20. Connexin43 hemichannel-mediated regulation of connexin43.

    Directory of Open Access Journals (Sweden)

    Kai Li

    Full Text Available BACKGROUND: Many signaling molecules and pathways that regulate gap junctions (GJs protein expression and function are, in fact, also controlled by GJs. We, therefore, speculated an existence of the GJ channel-mediated self-regulation of GJs. Using a cell culture model in which nonjunctional connexin43 (Cx43 hemichannels were activated by cadmium (Cd(2+, we tested this hypothesis. PRINCIPAL FINDINGS: Incubation of Cx43-transfected LLC-PK1 cells with Cd(2+ led to an increased expression of Cx43. This effect of Cd(2+ was tightly associated with JNK activation. Inhibition of JNK abolished the elevation of Cx43. Further analysis revealed that the changes of JNK and Cx43 were controlled by GSH. Supplement of a membrane-permeable GSH analogue GSH ethyl ester or GSH precursor N-acetyl-cystein abrogated the effects of Cd(2+ on JNK activation and Cx43 expression. Indeed, Cd(2+ induced extracellular release of GSH. Blockade of Cx43 hemichannels with heptanol or Cx43 mimetic peptide Gap26 to prevent the efflux of GSH significantly attenuated the Cx43-elevating effects of Cd(2+. CONCLUSIONS: Collectively, our results thus indicate that Cd(2+-induced upregulation of Cx43 is through activation of nonjunctional Cx43 hemichannels. Our findings thus support the existence of a hemichannel-mediated self-regulation of Cx43 and provide novel insights into the molecular mechanisms of Cx43 expression and function.

  1. CONNEXIN-47 AND CONNEXIN-32 IN GAP JUNCTIONS OF OLIGODENDROCYTE SOMATA, MYELIN SHEATHS, PARANODAL LOOPS AND SCHMIDT-LANTERMAN INCISURES: IMPLICATIONS FOR IONIC HOMEOSTASIS AND POTASSIUM SIPHONING

    OpenAIRE

    KAMASAWA, N.; SIK, A.; Morita, M; Yasumura, T; Davidson, K. G. V.; Nagy, J.I.; RASH, J.E.

    2005-01-01

    The subcellular distributions and co-associations of the gap junction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin32 without connexin47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron ...

  2. Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene.

    Science.gov (United States)

    Lefebvre, P P; Van De Water, T R

    2000-04-01

    Congenital deafness is a very frequent disorder occurring in approximately I in 1000 live births. Mutations in GJB2 encoding for gap junction protein connexin-26 (Cx26) have been established as the basis of autosomal recessive non-syndromic hearing loss and proposed in some rare cases of autosomal dominant form of deafness. Connexin are gap-junction proteins which constitute a major system of intercellular communication important in the exchange of electrolytes, second messengers and metabolites. In the inner ear, connexin 26 expression was demonstrated in the stria vascularis, basement membrane, limbus and the spiral prominence of the human cochlea. The loss of connexin 26 in the gap junction complex would expect to disrupt the recycling of potassium from the synapses at the base of hair cells through the supporting cells and fibroblasts of potassium ions back to the high potassium containing endolymph of the cochlear duct and therefore would result in a local intoxication of the Corti s organ by potassium, leading to the hearing loss. The discovery of the genes responsible of hearing loss in particular the identification of mutations in the gene coding for connexin 26 allows to hope some tremendous help in genetic counseling. The possible implication of the mutation of the connexin gene in the pathophysiology of some progressive adult deafness opens new prospects in the fine diagnostic of the ear diseases and eventually may lead to new therapeutic strategies applied to the cochlea.

  3. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning.

    Science.gov (United States)

    Kamasawa, N; Sik, A; Morita, M; Yasumura, T; Davidson, K G V; Nagy, J I; Rash, J E

    2005-01-01

    The subcellular distributions and co-associations of the gap junction-forming proteins connexin 47 and connexin 32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin 47 was co-localized with astrocytic connexin 43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin 32 without connexin 47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin 47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin 47 than connexin 32. Along surfaces of internodal myelin, connexin 47 was several times as abundant as connexin 32, and in the smallest gap junctions, often occurred without connexin 32. In contrast, connexin 32 was localized without connexin 47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin 47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin 32 is the predominant if not sole connexin in autologous ("reflexive") oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin 47-containing and connexin 32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and

  4. The gap junction cellular internet: connexin hemichannels enter the signalling limelight

    National Research Council Canada - National Science Library

    Evans, W Howard; De Vuyst, Elke; Leybaert, Luc

    2006-01-01

    Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs...

  5. Voltage regulation of connexin channel conductance.

    Science.gov (United States)

    Oh, Seunghoon; Bargiello, Thaddeus A

    2015-01-01

    Voltage is an important parameter that regulates the conductance of both intercellular and plasma membrane channels (undocked hemichannels) formed by the 21 members of the mammalian connexin gene family. Connexin channels display two forms of voltage-dependence, rectification of ionic currents and voltage-dependent gating. Ionic rectification results either from asymmetries in the distribution of fixed charges due to heterotypic pairing of different hemichannels, or by channel block, arising from differences in the concentrations of divalent cations on opposite sides of the junctional plaque. This rectification likely underpins the electrical rectification observed in some electrical synapses. Both intercellular and undocked hemichannels also display two distinct forms of voltage-dependent gating, termed Vj (fast)-gating and loop (slow)-gating. This review summarizes our current understanding of the molecular determinants and mechanisms underlying these conformational changes derived from experimental, molecular-genetic, structural, and computational approaches.

  6. Modulation of intercellular communication by differential regulation and heteromeric mixing of co-expressed connexins

    Directory of Open Access Journals (Sweden)

    Beyer E.C.

    2000-01-01

    Full Text Available Intercellular communication may be regulated by the differential expression of subunit gap junction proteins (connexins which form channels with differing gating and permeability properties. Endothelial cells express three different connexins (connexin37, connexin40, and connexin43 in vivo. To study the differential regulation of expression and synthesis of connexin37 and connexin43, we used cultured bovine aortic endothelial cells which contain these two connexins in vitro. RNA blots demonstrated discordant expression of these two connexins during growth to confluency. RNA blots and immunoblots showed that levels of these connexins were modulated by treatment of cultures with transforming growth factor-ß1. To examine the potential ability of these connexins to form heteromeric channels (containing different connexins within the same hemi-channel, we stably transfected connexin43-containing normal rat kidney (NRK cells with connexin37 or connexin40. In the transfected cells, both connexin proteins were abundantly produced and localized in identical distributions as detected by immunofluorescence. Double whole-cell patch-clamp studies showed that co-expressing cells exhibited unitary channel conductances and gating characteristics that could not be explained by hemi-channels formed of either connexin alone. These observations suggest that these connexins can readily mix with connexin43 to form heteromeric channels and that the intercellular communication between cells is determined not only by the properties of individual connexins, but also by the interactions of those connexins to form heteromeric channels with novel properties. Furthermore, modulation of levels of the co-expressed connexins during cell proliferation or by cytokines may alter the relative abundance of different heteromeric combinations.

  7. Cardiac to cancer: connecting connexins to clinical opportunity.

    Science.gov (United States)

    Grek, Christina L; Rhett, J Matthew; Ghatnekar, Gautam S

    2014-04-17

    Gap junctions and their connexin components are indispensable in mediating the cellular coordination required for tissue and organ homeostasis. The critical nature of their existence mandates a connection to disease while at the same time offering therapeutic potential. Therapeutic intervention may be offered through the pharmacological and molecular disruption of the pathways involved in connexin biosynthesis, gap junction assembly, stabilization, or degradation. Chemical inhibitors aimed at closing connexin channels, peptide mimetics corresponding to short connexin sequences, and gene therapy approaches have been incredibly useful molecular tools in deciphering the complexities associated with connexin biology. Recently, therapeutic potential in targeting connexins has evolved from basic research in cell-based models to clinical opportunity in the form of human trials. Clinical promise is particularly evident with regards to targeting connexin43 in the context of wound healing. The following review is aimed at highlighting novel advances where the pharmacological manipulation of connexin biology has proven beneficial in animals or humans. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Connexin's Connection in Breast Cancer Growth and Progression.

    Science.gov (United States)

    Banerjee, Debarshi

    2016-01-01

    Gap junctions are cell-to-cell junctions that are located in the basolateral surface of two adjoining cells. A gap junction channel is composed of a family of proteins called connexins. Gap junction channels maintain intercellular communication between two cells through the exchange of ions, small metabolites, and electrical signals. Gap junction channels or connexins are widespread in terms of their expression and function in maintaining the development, differentiation, and homeostasis of vertebrate tissues. Gap junction connexins play a major role in maintaining intercellular communication among different cell types of normal mammary gland for proper development and homeostasis. Connexins have also been implicated in the pathogenesis of breast cancer. Differential expression pattern of connexins and their gap junction dependent or independent functions provide pivotal cross talk of breast tumor cells with the surrounding stromal cell in the microenvironment. Substantial research from the last 20 years has accumulated ample evidences that allow us a better understanding of the roles that connexins play in the tumorigenesis of primary breast tumor and its metastatic progression. This review will summarize the knowledge about the connexins and gap junction activities in breast cancer highlighting the differential expression and functional dynamics of connexins in the pathogenesis of the disease.

  9. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    Science.gov (United States)

    2015-09-01

    and challenges of connexin connections to cancer. Nat Rev Cancer, 10, 435-441. 5. Plante ,I., Stewart,M.K.G., Barr,K., Allan,A.L., and Laird,D.W...Gap junction protein connexin32 interacts with the Src homology 3/hook do- main of Discs large homolog 1. J. Biol. Chem. 282, 9789–9796 45. Stauch, K

  10. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  11. Characterization of connexin30.3-deficient mice suggests a possible role of connexin30.3 in olfaction.

    Science.gov (United States)

    Zheng-Fischhöfer, Qingyi; Schnichels, Marc; Dere, Ekrem; Strotmann, Jörg; Loscher, Nadine; McCulloch, Fiona; Kretz, Markus; Degen, Joachim; Reucher, Harald; Nagy, James I; Peti-Peterdi, Janos; Huston, Joseph P; Breer, Heinz; Willecke, Klaus

    2007-12-01

    We have generated connexin30.3-deficient mice in which the coding region of the connexin30.3 gene was replaced by the lacZ reporter gene. The expression pattern of this connexin was characterized using beta-galactosidase staining and immunoblot analyses. In skin, beta-galactosidase/connexin30.3 protein was expressed in the spinous and granulous layers of the epidermis. Specific beta-galactosidase/connexin30.3 expression was also detected in the thin ascending limb of Henle's loop in the kidney. In addition, we found beta-galactosidase/connexin30.3 in progenitor cells of the olfactory epithelium and in a subpopulation of cells in the apical layer of the vomeronasal organ. Connexin30.3-deficient mice were fertile and displayed no abnormalities in the skin or in the chemosensory systems. Furthermore, they showed normal auditory thresholds as measured by brain stem evoked potentials. These mice did, however, exhibit reduced behavioural responses to a vanilla scent.

  12. The connexin43 carboxyl terminus and cardiac gap junction organization.

    Science.gov (United States)

    Palatinus, Joseph A; Rhett, J Matthew; Gourdie, Robert G

    2012-08-01

    The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Cardiac Connexin 43 and Ischemic Cardioprotection

    Institute of Scientific and Technical Information of China (English)

    Jin-yi LI; Guo-qiang ZHONG; Yan HE; Yun LING

    2009-01-01

    The connexin 43 (Cx43) proteins, which is the predominant protein that can form gap junctions and non-junctional hemichannels in ventricular myocardium, are central to the cardioprotection afforded by ischemic precondi-tioning (IP) and maybe ischemic postconditioning (PC) too. Recent studies showed that recruitment of Cx43 to the mitochondria in IP might play a role in the production of reactive oxygen species (ROS) that mediates IP. The localiza-tion of Cx43 at mitochondria appears to be important for the achieved cardioprotection and opens a new door for us to reveal the exact mechanisms of ischemia/reperfusion (I/R) injury and cardioprotection, and it might be new targets of pharmacological modulator to achieved cardioprotection.

  14. Connexins in respiratory and gastrointestinal mucosal immunity.

    Science.gov (United States)

    Bou Saab, Joanna; Losa, Davide; Chanson, Marc; Ruez, Richard

    2014-04-17

    The mucosal lining forms the physical and chemical barrier that protects against pathogens and hostile particles and harbors its own population of bacteria, fungi and archea, known as the microbiota. The immune system controls tolerance of this population of microorganisms that have proven to be beneficial for its host. Keeping its physical integrity and a correct balance with the microbiota, the mucosa preserves its homeostasis and its protective function and maintains host's health. However, in some conditions, pathogens may succeed in breaching mucosal homeostasis and successfully infecting the host. In this review we will discuss the role the mucosa plays in the defense against bacterial pathogens by considering the gap junction protein connexins. We will detail their implication in mucosal homeostasis and upon infection with bacteria in the respiratory and the gastrointestinal tracts. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Role of connexin 43 in cardiovascular diseases.

    Science.gov (United States)

    Michela, Pecoraro; Velia, Verrilli; Aldo, Pinto; Ada, Popolo

    2015-12-05

    Gap junctions (GJs) channels provide the basis for intercellular communication in the cardiovascular system for maintenance of the normal cardiac rhythm, regulation of vascular tone and endothelial function as well as metabolic interchange between the cells. They allow the transfer of small molecules and may enable slow calcium wave spreading, transfer of "death" or of "survival" signals. In the cardiomyocytes the most abundant isoform is Connexin 43 (Cx43). Alterations in Cx43 expression and distribution were observed in myocardium disease; i.e. in hypertrophic cardiomyopathy, heart failure and ischemia. Recent reports suggest the presence of Cx43 in the mitochondria as well, at least in the inner mitochondrial membrane, where it plays a central role in ischemic preconditioning. In this review, the current knowledge on the relationship between the remodeling of cardiac gap junctions and cardiac diseases are summarized. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Retroviral expression of connexins in embryonic chick lens.

    Science.gov (United States)

    Jiang, J X; Goodenough, D A

    1998-03-01

    To develop an in vivo model system in which exogenous proteins can be expressed in embryonic chick lens and to further understand the function of connexin-mediated gap junction intercellular communication in lens cell biology. RCAS(A) is a replication-competent chicken retrovirus that infects dividing cells. Retroviral constructs were prepared containing alkaline phosphatase (AP) and FLAG-tagged connexins. Chick lenses were infected in situ by injecting virus into the lumen of lens vesicles at stage 18, cultures were taken at various periods. The lenses were then dissected, and the expressed proteins were visualized by AP histochemical examination and immunostaining. Twenty-four hours after infection, alkaline phosphatase could be seen in epithelia and fibers. As lens fiber maturation progressed, however, the alkaline phosphatase staining was lost as the fibers matured, presumably because of the proteolytic removal of the enzyme. By 72 hours, alkaline phosphatase staining could still be observed in epithelial cells and in differentiating fibers in the bow region but not in the mature lens fibers. FLAG-tagged exogenous lens connexins were also abundantly expressed by viral infection. The exogenous connexins were localized at the cell surfaces in junctional maculae and showed the same cell-type specific distribution as that of their endogenous connexin counterparts. An in vivo model system has been developed in the chick that provides opportunities to study the expression of wild-type and mutant proteins during lens differentiation. Expression of wild-type connexins has revealed that the characteristic distribution of the three different lens connexins is maintained even when expression is driven by a viral promoter.

  17. NMR and structural data for Connexin 32 and Connexin 26 N-terminal peptides

    Directory of Open Access Journals (Sweden)

    Yuksel Batir

    2016-12-01

    Full Text Available In this article we present 1H and 13C chemical shift assignments, secondary structural propensity data and normalized temperature coefficient data for N-terminal peptides of Connexin 26 (Cx26, Cx26G12R and Cx32G12R mutants seen in syndromic deafness and Charcot Marie Tooth Disease respectively, published in “Structural Studies of N-Terminal Mutants of Connexin 26 and Connexin 32 Using 1H NMR Spectroscopy” (Y. Batir, T.A. Bargiello, T.L. Dowd, 2016 [1]. The mutation G12R affects the structure of both Cx26 and Cx32 peptides differently. We present data from secondary structure propensity chemical shift analysis which calculates a secondary structure propensity (SSP score for both disordered or folded peptides and proteins using the difference between the 13C secondary chemical shifts of the Cα and Cβ protons. This data supplements the calculated NMR structures from NOESY data [1]. We present and compare the SSP data for the Cx26 vs Cx26G12R peptides and the Cx32 and Cx32G12R peptides. In addition, we present plots of temperature coefficients obtained for Cx26, Cx26G12R and Cx32G12R peptides collected previously [1] and normalized to their random coil temperature coefficients, “Random coil 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG” (G. Merutka, H.J. Dyson, P.E. Wright, 1995 [2]. Reductions in these normalized temperature coefficients are directly observable for residues in different segments of the peptide and this data informs on solvent accessibility of the NH protons and NH protons which may be more constrained due to the formation of H bonds.

  18. Connexin43 is dispensable for phagocytosis.

    Science.gov (United States)

    Glass, Aaron M; Wolf, Benjamin J; Schneider, Karin M; Princiotta, Michael F; Taffet, Steven M

    2013-05-01

    Macrophages that lack connexin43 (Cx43), a gap junction protein, have been reported to exhibit dramatic deficiencies in phagocytosis. In this study, we revisit these findings using well-characterized macrophage populations. Cx43 knockout (Cx43(-/-)) mice die soon after birth, making the harvest of macrophages from adult Cx43(-/-) mice problematic. To overcome this obstacle, we used several strategies: mice heterozygous for the deletion of Cx43 were crossed to produce Cx43(+/+) (wild type [WT]) and Cx43(-/-) fetuses. Cells isolated from 12- to 14-d fetal livers were used to reconstitute irradiated recipient animals. After reconstitution, thioglycollate-elicited macrophages were collected by peritoneal lavage and bone marrow was harvested. Bone marrow cells and, alternatively, fetal liver cells were cultured in media containing M-CSF for 7-10 d, resulting in populations of cells that were >95% macrophages based on flow cytometry. Phagocytic uptake was detected using flow cytometric and microscopic techniques. Quantification of phagocytic uptake of IgG-opsonized sheep erythrocytes, zymosan particles, and Listeria monocytogenes failed to show any significant difference between WT and Cx43(-/-) macrophages. Furthermore, the use of particles labeled with pH-sensitive dyes showed equivalent acidification of phagosomes in both WT and Cx43(-/-) macrophages. Our findings suggest that modulation of Cx43 levels in cultured macrophages does not have a significant impact on phagocytosis.

  19. Involvement of connexin 43 in acupuncture analgesia

    Institute of Scientific and Technical Information of China (English)

    HUANG Guang-ying; ZHENG Cui-hong; YU Wei-chang; TIAN Dai-shi; WANG Wei

    2009-01-01

    Background Connexin 43 (Cx43) is one of the major components of human keratinocyte gap junctions. To study whether gap junctional intercellular communication participates in the transfer of acupoint signals and acupuncture analgesia, the expression of Cx43 was studied in Zusanli (ST36) acupoints compared with control non-acupoint regions in rats after acupuncture. In addition, Cx43 heterozygous gene knockout mice were used to further explore the relationship between Cx43 and acupuncture analgesia. Methods The expression of Cx43 was detected by immunohistochemistry, immunoblotting, and RT-PCR for the Cx43 protein and mRNA. The influence of the Cx43 gene knockout on acupuncture analgesia was measured by a hot plate and observing the writhing response on Cx43 heterozygous gene knockout mice. Results Immunohistochemistry showed abundant Cx43 expression in some cells in the skin and subcutaneous tissue of rat ST36 acupoints. The mRNA and protein levels of Cx43 in acupoints were significantly higher than those in the control points in the non-acupuncture group, and even more so after acupuncture. The hot plate and writhing response experiments showed that partial knockout of the Cx43 gene decreased acupuncture analgesia. Conclusion Cx43 expression and acupuncture analgesia showed a positive correlation.

  20. Connexins form functional hemichannels in porcine ciliary epithelium.

    Science.gov (United States)

    Shahidullah, Mohammad; Delamere, Nicholas A

    2014-01-01

    The expression of connexins in the ciliary epithelium is consistent with gap junctions between the pigmented (PE) and nonpigmented ciliary epithelium (NPE) that form when connexon hemichannels from adjacent cells pair to form a channel. Here we present evidence that suggests undocked connexons may form functional hemichannels that permit exchange of substances between NPE and the aqueous humor. Intact porcine eyes were perfused via the ciliary artery and propidium iodide (PI) (MW 668) was added to the aqueous humor compartment as a tracer. After calcium-free solution containing PI was introduced into the aqueous humor compartment for 30 min, fluorescence microscopy revealed PI in the NPE cell layer. PI entry into the NPE was inhibited by calcium and by the connexin antagonist 18α-glycyrrhetinic acid (18-AGA). Studies also were carried out with cultured porcine NPE. Under normal conditions, little PI entered the cultured cells but calcium-free medium stimulated PI accumulation and the entry was inhibited by 18-AGA. In cells loaded with calcein (MW 622), calcium-free solution stimulated calcein exit. 18-AGA partially suppressed calcein exit in calcium-free medium. Connexin 43 and connexin 50 proteins were detected by western blot analysis in both native and cultured NPE. In the intact eye, immunolocalization studies revealed connexin 50 at the basolateral, aqueous humor-facing, margin of the NPE. In contrast, connexin 43 was observed at the junction of the PE and NPE layer and on the basolateral membrane of PE. The results point to functional hemichannels at the NPE basolateral surface. It is feasible that hemichannels might contribute to the transfer of substances between the ciliary epithelium cytoplasm and aqueous humor.

  1. Adenoviral delivery of human connexin37 induces endothelial cell death through apoptosis.

    Science.gov (United States)

    Seul, Kyung H; Kang, Keum Y; Lee, Kyung S; Kim, Suhn H; Beyer, Eric C

    2004-07-09

    Gap junction channels formed of connexins directly link the cytoplasm of adjacent cells and have been implicated in intercellular signaling that may regulate the functions of vascular cells. To facilitate connexin manipulation and analysis of their roles in adult endothelial cells, we developed adenoviruses containing the vascular connexins (Cx37, Cx40, and Cx43). We infected cultured human umbilical vein endothelial cells with control or connexin adenoviruses. Connexin expression was verified by immunoblotting and immunofluorescence. Infection with the Cx37 adenovirus (but not control or other connexin adenoviruses) led to a dose-dependent death of the endothelial cells that was partially antagonized by the gap junction blocker alpha-glycyrrhetinic acid and altered the intercellular transfer of Lucifer yellow and neurobiotin. Cell morphology, Annexin V and TUNEL staining, and caspase 3 assays all implicated apoptosis in the cell death. These data suggest that connexin-specific alterations of intercellular communication may modulate endothelial cell growth and death.

  2. Connexin 43 impacts on mitochondrial potassium uptake

    Directory of Open Access Journals (Sweden)

    Kerstin eBoengler

    2013-06-01

    Full Text Available In cardiomyocytes, connexin 43 (Cx43 forms gap junctions and unopposed hemichannels at the plasma membrane, but the protein is also present at the inner membrane of subsarcolemmal mitochondria. Both inhibition and genetic ablation of Cx43 reduce ADP-stimulated complex 1 respiration. Since mitochondrial potassium influx impacts on oxygen consumption, we investigated whether or not inhibition or ablation of mitochondrial Cx43 alters mitochondrial potassium uptake.Subsarcolemmal mitochondria were isolated from rat left ventricular (LV myocardium and loaded with the potassium-sensitive dye PBFI. Intramitochondrial potassium was replaced by TEA (tetraethylammonium. Mitochondria were incubated under control conditions or treated with 250 µM Gap19, a peptide that specifically inhibits Cx43-dependent hemichannels at plasma membranes. Subsequently, 140 mM KCl was added and the slope of the increase in PBFI fluorescence over time was calculated. The slope of the PBFI fluorescence of the control mitochondria was set to 100%. In the presence of Gap19, the mitochondrial potassium influx was reduced from 100±11.6 % in control mitochondria to 65.5±10.7 % (n=6, p<0.05. In addition to the pharmacological inhibition of Cx43, potassium influx was studied in mitochondria isolated from conditional Cx43 knockout mice. Here, the ablation of Cx43 was achieved by the injection of 4-hydroxytamoxifen (Cx43Cre-ER(T/fl + 4-OHT. The mitochondria of the Cx43Cre-ER(T/fl + 4-OHT mice contained 3±1% Cx43 (n=6 of that in control mitochondria (100±11%, n=8, p<0.05. The ablation of Cx43 (n=5 reduced the velocity of the potassium influx from 100±11.2 % in control mitochondria (n=9 to 66.6±5.5 % (p<0.05.Taken together, our data indicate that both pharmacological inhibition and genetic ablation of Cx43 reduce mitochondrial potassium influx.

  3. Expression of connexins in human preimplantation embryos in vitro

    Directory of Open Access Journals (Sweden)

    Leese Henry J

    2004-06-01

    Full Text Available Abstract Intercellular communication via gap junctions is required to coordinate developmental processes in the mammalian embryo. We have investigated if the connexin (Cx isoforms known to form gap junctions in rodent preimplantation embryos are also expressed in human embryos, with the aim of identifying species differences in communication patterns in early development. Using a combination of polyA PCR and immunocytochemistry we have assessed the expression of Cx26, Cx31, Cx32, Cx40, Cx43 and Cx45 which are thought to be important in early rodent embryos. The results demonstrate that Cx31 and Cx43 are the main connexin isoforms expressed in human preimplantation embryos and that these isoforms are co-expressed in the blastocyst. Cx45 protein is expressed in the blastocyst but the protein may be translated from a generally low level of transcripts: which could only be detected in the PN to 4-cell embryos. Interestingly, Cx40, which is expressed by the extravillous trophoblast in the early human placenta, was not found to be expressed in the blastocyst trophectoderm from which this tissue develops. All of the connexin isoforms in human preimplantation embryos are also found in rodents pointing to a common regulation of these connexins in development of rodent and human early embryos and perhaps other species.

  4. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  5. Role of connexin43-interacting proteins at gap junctions

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2006-01-01

    Gap junctions are arrays of cell-to-cell channels that allow diffusion of small molecules between neighboring cells. The individual channels are formed by the four-transmembrane connexin (Cx) proteins. Recently, multiple proteins have been found to interact at the cytoplasmic site with the most abun

  6. Role of connexin43-interacting proteins at gap junctions

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2006-01-01

    Gap junctions are arrays of cell-to-cell channels that allow diffusion of small molecules between neighboring cells. The individual channels are formed by the four-transmembrane connexin (Cx) proteins. Recently, multiple proteins have been found to interact at the cytoplasmic site with the most

  7. The double life of connexin channels: single is a treat.

    Science.gov (United States)

    Bruzzone, Roberto

    2015-04-01

    Although several genetic diseases are caused by mutations in channels made by connexin family members, there has been little progress in the development and validation of therapeutic options. An in vitro study in this issue of JID suggests that an anti-malarial drug may be beneficial in keratitis-ichthyosis deafness, a severe conexin channel disease associated with potentially fatal recurrent infections.

  8. Differential Connexin Function Enhances Self-Renewal in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro Hitomi

    2015-05-01

    Full Text Available The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43, but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.

  9. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability.

    Science.gov (United States)

    Soon, Allyson Shook Ching; Chua, Jia Wang; Becker, David Laurence

    2016-10-28

    Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.

  10. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules.

    Science.gov (United States)

    Bevans, C G; Kordel, M; Rhee, S K; Harris, A L

    1998-01-30

    Intercellular connexin channels (gap junction channels) have long been thought to mediate molecular signaling between cells, but the nature of the signaling has been unclear. This study shows that connexin channels from native tissue have selective permeabilities, partially based on pore diameter, that discriminate among cytoplasmic second messenger molecules. Permeability was assessed by measurement of selective loss/retention of tracers from liposomes containing reconstituted connexin channels. The tracers employed were tritiated cyclic nucleotides and a series of oligomaltosaccharides derivatized with a small uncharged fluorescent moiety. The data define different size cut-off limits for permeability through homomeric connexin-32 channels and through heteromeric connexin-32/connexin-26 channels. Connexin-26 contributes to a narrowed pore. Both cAMP and cGMP were permeable through the homomeric connexin-32 channels. cAMP was permeable through only a fraction of the heteromeric channels. Surprisingly, cGMP was permeable through a substantially greater fraction of the heteromeric channels than was cAMP. The data suggest that isoform stoichiometry and/or arrangement within a connexin channel determines whether cyclic nucleotides can permeate, and which ones. This is the first evidence for connexin-specific selectivity among biological signaling molecules.

  11. Connexins: a myriad of functions extending beyond assembly of gap junction channels

    Directory of Open Access Journals (Sweden)

    Mroue Rana M

    2009-03-01

    Full Text Available Abstract Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  12. Connexins: a myriad of functions extending beyond assembly of gap junction channels.

    Science.gov (United States)

    Dbouk, Hashem A; Mroue, Rana M; El-Sabban, Marwan E; Talhouk, Rabih S

    2009-03-12

    Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.

  13. Temporal dynamic changes of connexin 43 expression in C6 cells following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    Ling Liu; Haiyan Liu; Zhenping Gao; Linbo Zhang; Lue Su; Guojun Dong; Haiyang Yu; Jiayi Tian; Hang Zhao; Yanyan Xu

    2012-01-01

    Connexin 43, a gap junction protein, is expressed mainly in glia in the central nervous system.Neuroinflammation plays an important role in central nervous system injury. Changes to glial connexin 43 levels and neuroinflammation may trigger brain injury and neurodegenerative diseases.To illustrate the relationship between connexin 43 and neuroinflammation, this study investigated how connexin 43 expression levels change in lipopolysaccharide-stimulated rat C6 glioma cells. C6 cells were treated with 0.05, 0.25, 0.5, 1, 2.5 and 5 μg/mL lipopolysaccharide for 24 hours. The nitrite estimation-detected nitric oxide release level was elevated substantially after lipopolysaccharide stimulation. To test the transcriptional level changes of inducible nitric oxide synthase, tumor necrosis factor-α and connexin 43 mRNA, C6 cells were treated with 5 μg/mL lipopolysaccharide for 3-48 hours. Reverse transcription-PCR showed that the expression of inducible nitric oxide synthase and tumor necrosis factor-α mRNA increased over time, but connexin 43 mRNA levels increased in lipopolysaccharide-stimulated C6 cells at 3 and 6 hours, and then decreased from 12 to 48 hours. Connexin 43 protein expression was detected by immunofluorescence staining, and the protein levels matched the mRNA expression levels. These results suggest that connexin 43 expression is biphasic in lipopolysaccharide-inducedneuroinflammation in C6 cells, which may be correlated with the connexin 43 compensatorymechanism.

  14. Detection of connexins in liver cells using sodiumdodecylsulfate polyacrylamide gel electrophoresis and immunoblot analysis

    Science.gov (United States)

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the set-up of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodiumdodecylsulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  15. Analysis of liver connexin expression using reverse transcription quantitative real-time polymerase chain reaction

    Science.gov (United States)

    Maes, Michaël; Willebrords, Joost; Crespo Yanguas, Sara; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Although connexin production is mainly regulated at the protein level, altered connexin gene expression has been identified as the underlying mechanism of several pathologies. When studying the latter, appropriate methods to quantify connexin mRNA levels are required. The present chapter describes a well-established reverse transcription quantitative real-time polymerase chain reaction procedure optimized for analysis of hepatic connexins. The method includes RNA extraction and subsequent quantification, generation of complementary DNA, quantitative real-time polymerase chain reaction and data analysis. PMID:27207283

  16. Modulation of connexin signaling by bacterial pathogens and their toxins.

    Science.gov (United States)

    Ceelen, Liesbeth; Haesebrouck, Freddy; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu

    2011-09-01

    Inherent to their pivotal tasks in the maintenance of cellular homeostasis, gap junctions, connexin hemichannels, and pannexin hemichannels are frequently involved in the dysregulation of this critical balance. The present paper specifically focuses on their roles in bacterial infection and disease. In particular, the reported biological outcome of clinically important bacteria including Escherichia coli, Shigella flexneri, Yersinia enterocolitica, Helicobacter pylori, Bordetella pertussis, Aggregatibacter actinomycetemcomitans, Pseudomonas aeruginosa, Citrobacter rodentium, Clostridium species, Streptococcus pneumoniae, and Staphylococcus aureus and their toxic products on connexin- and pannexin-related signaling in host cells is reviewed. Particular attention is paid to the underlying molecular mechanisms of these effects as well as to the actual biological relevance of these findings.

  17. Glial connexins and gap junctions in CNS inflammation and disease.

    Science.gov (United States)

    Kielian, Tammy

    2008-08-01

    Gap junctions facilitate direct cytoplasmic communication between neighboring cells, facilitating the transfer of small molecular weight molecules involved in cell signaling and metabolism. Gap junction channels are formed by the joining of two hemichannels from adjacent cells, each composed of six oligomeric protein subunits called connexins. Of paramount importance to CNS homeostasis are astrocyte networks formed by gap junctions, which play a critical role in maintaining the homeostatic regulation of extracellular pH, K+, and glutamate levels. Inflammation is a hallmark of several diseases afflicting the CNS. Within the past several years, the number of publications reporting effects of cytokines and pathogenic stimuli on glial gap junction communication has increased dramatically. The purpose of this review is to discuss recent observations characterizing the consequences of inflammatory stimuli on homocellular gap junction coupling in astrocytes and microglia as well as changes in connexin expression during various CNS inflammatory conditions.

  18. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    Science.gov (United States)

    2014-09-01

    vitamin D3 synthesis in the skin , a role for this vitamin in decreasing the risk of developing PCA has been suggested [5,6]. Numerous in vitro studies...role of connexins in ear and skin physiology- Functional insights from disease-associated mutations. Biochimica et Biophysica Acta (BBA... Antioxidant and Redox Signaling 11, 283-296 4. Laird, D. W. (2010) The gap junction proteome and its relationship to disease. Trends In Cell Biology 20

  19. Targeting connexin 43 in diabetic wound healing: Future perspectives

    Directory of Open Access Journals (Sweden)

    Bajpai S

    2009-01-01

    Full Text Available The unknown mechanisms of impaired tissue repair in diabetes mellitus are making this disease a serious clinical problem for the physicians worldwide. The lacuna in the knowledge of the etiology of diabetic wounds necessitates more focused research in order to develop new targeting tools with higher efficacy for their effective management. Gap-junction proteins, connexins, have shown some promising results in the process of diabetic wound healing. Till now the role of connexins has been implicated in peripheral neuropathy, deafness, skin disorders, cataract, germ cell development and treatment of cancer. Recent findings have revealed that gap junctions play a key role in normal as well as diabetic wound healing. The purpose of this review is to provide the information related to etiology, epidemiology, clinical presentation of diabetic wounds and to analyze the role of connexin 43 (Cx43 in the diabetic wound healing process. The current control strategies and the future research challenges have also been discussed briefly in this review.

  20. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice.

    Science.gov (United States)

    Maes, Michaël; Crespo Yanguas, Sara; Willebrords, Joost; Weemhoff, James L; da Silva, Tereza Cristina; Decrock, Elke; Lebofsky, Margitta; Pereira, Isabel Veloso Alves; Leybaert, Luc; Farhood, Anwar; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2017-08-15

    Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [The effect of Connexin43 downregulation on biological functions of HUVEC].

    Science.gov (United States)

    Zhang, Cai-zhen; Mu, Xiao-feng; Xu, Xian-xiang; Qiu, Fei; Lin, Jun-sheng; Diao, Yong

    2015-03-01

    Connexin43 has been shown to play a pivotal role in wound healing process. Wound repair is enhanced by acute downregulation of connexin43, by increasing proliferation and migration of keratinocyte and fibroblast. Angiogenesis is also a central feature of wound repair, but little is known about the effects of connexin43 modulation on functions of endothelial cells. We used connexin43 specific small interference RNA (siRNA) to reduce the expression of connexin43 in human umbilical vein endothelial cell (HUVEC), and investigated the effects of connexin43 downregulation on intercellular communication, viability, proliferation, migration and angiogenic activity of HUVEC. Treatment of siRNA markedly reduced the expression of connexin43 by -80% in HUVEC (P HUVEC decreased significantly (P < 0.05), compared with that of the normal cells. The results suggest that temporally downregulation of connexin43 expression at early stage of wound to inhibit the abnormal angiogenesis characterized with leaky and inflamed blood vessels, maybe a prerequisite for coordinated normal healing process.

  2. Expression of connexin 36 in central nervous system and its role in epileptic seizure

    Institute of Scientific and Technical Information of China (English)

    PENG Yu-fen; WU Jiong-xing; YANG Heng; DONG Xuan-qi; ZHENG Wen; SONG Zhi

    2012-01-01

    Objective This review discusses the experimental and clinical studies those show the expression of connexin 36 in the central nervous system and the possible role of connexin 36 in epileptic seizure.Data sources All articles used in this review were mainly searched from PubMed published in English from 1996 to 2012.Study selection Odginal articles and reviews were selected if they were related to the expression of connexin 36 in the central nervous system and its role in epilepsy.Results The distribution of connexin 36 is developmentally regulated,cell-specific and region-specific.Connexin 36 is involved in some neuronal functions and epileptic synchronization.Changes in the connexin 36 gene and protein were accompanied by seizures.Selective gap junction blockers have exerted anticonvulsant actions in a variety of experiments examined in both humans end experimental animals.Conclusions Connexin 36 plays an important role in both physiological and pathological conditions in the central nervous system.A better understanding of the role of connexin 36 in seizure activity may contribute to the development of new therapeutic approaches to treating epilepsy.

  3. The Renal Connexome and Possible Roles of Connexins in Kidney Diseases.

    Science.gov (United States)

    Sala, Gabriele; Badalamenti, Salvatore; Ponticelli, Claudio

    2016-04-01

    Connexins are membrane-spanning proteins that allow for the formation of cell-to-cell channels and cell-to-extracellular space hemichannels. Many connexin subtypes are expressed in kidney cells. Some mutations in connexin genes have been linked to various human pathologies, including cardiovascular, neurodegenerative, lung, and skin diseases, but the exact role of connexins in kidney disease remains unclear. Some hypotheses about a connection between genetic mutations, endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in kidney pathology have been explored. The potential relationship of kidney disease to abnormal production of connexin proteins, mutations in their genes together with ER stress, or the UPR is still a matter of debate. In this scenario, it is tantalizing to speculate about a possible role of connexins in the setting of kidney pathologies that are thought to be caused by a deregulated podocyte protein expression, the so-called podocytopathies. In this article, we give examples of the roles of connexins in kidney (patho)physiology and propose avenues for further research concerning connexins, ER stress, and UPR in podocytopathies that may ultimately help refine drug treatment.

  4. [Polymorphism of connexin 40 gene-- a novel genetic marker of the sick sinus node syndrome].

    Science.gov (United States)

    Chernova, A A; Nikulina, S Iu; Shul'man, V A; Kukushkina, T S; Voevoda, M I; Maksimov, V N

    2011-01-01

    In this work we have demonstrated for the first time on the clinico-genetic material association between hereditary sick sinus node syndrome and connexin 40 gene polymorphism. We have revealed that heterozygous variant of connexin 40 gene variant is more frequent among patients with sick sinus node syndrome and their healthy relatives than in persons of control group.

  5. The Role of Connexins in Wound Healing and Repair: Novel Therapeutic Approaches

    Science.gov (United States)

    Wong, Pui; Tan, Teresa; Chan, Catherine; Laxton, Victoria; Chan, Yin Wah Fiona; Liu, Tong; Wong, Wing Tak; Tse, Gary

    2016-01-01

    Gap junctions are intercellular proteins responsible for mediating both electrical and biochemical coupling through the exchange of ions, second messengers and small metabolites. They consist of two connexons, with (one) connexon supplied by each cell. A connexon is a hexamer of connexins and currently more than 20 connexin isoforms have been described in the literature thus far. Connexins have a short half-life, and therefore gap junction remodeling constantly occurs with a high turnover rate. Post-translational modification, such as phosphorylation, can modify their channel activities. In this article, the roles of connexins in wound healing and repair are reviewed. Novel strategies for modulating the function or expression of connexins, such as the use of antisense technology, synthetic mimetic peptides and bioactive materials for the treatment of skin wounds, diabetic and pressure ulcers as well as cornea wounds, are considered. PMID:27999549

  6. Expression of gap junction protein connexin 43 in bovine urinary bladder tumours.

    Science.gov (United States)

    Corteggio, A; Florio, J; Roperto, F; Borzacchiello, G

    2011-01-01

    The aetiopathogenesis of urinary bladder tumours in cattle involves prolonged ingestion of bracken fern and infection by bovine papillomavirus types 1 or 2 (BPV-1/2). The oncogenic activity of BPV is largely associated with the major oncoprotein E5. Gap junctions are the only communicating junctions found in animal tissues and are composed of proteins known as connexins. Alterations in connexin expression have been associated with oncogenesis. The present study investigated biochemically and immunohistochemically the expression of connexin 43 in samples of normal (n=2), dysplastic (n=3) and neoplastic (n=23) bovine urothelium. The tumours included 10 carcinomas in situ, five papillary urothelial carcinomas and eight invasive urothelial carcinomas. Normal and dysplastic urothelium had membrane expression of connexin 43, but this was reduced in samples of carcinoma in situ. Papillary urothelial carcinomas showed moderate cytoplasmic and membrane labelling, while invasive carcinoma showed loss of connexin 43 expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. TGF-β1 inhibits connexin-43 expression in cultured smooth muscle cells of human bladder

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhou Fenghai; Wang Yangmin

    2009-01-01

    Objective: In this research, we studied the TGF-β1 effects on connexin-43 expression in cultured human bladder smooth muscle cells. Methods: Human bladder smooth muscle cells primary cultures, with bladder tissue obtained from patients undergoing cystectomy, were intervened by recombinant human TGF-β1. Connexin-43 expression in human bladder smooth muscle cells was then examined by Western blotting and immunocytochemistry. Results: Stimulation with TGF-β1 led to significant reduction of cormexin-43 immunoreactivity and coupling (P<0.0001). Connexin-43 protein expression was significantly downregnlated (P<0.05). Simultaneously, low phosphorylation species of connexin-43 were particularly affected. Conclusion: Our experiments demonstrated a significant downregulation of connexin-43 by TGF-β1 in cultured human bladder smooth muscle cells. These findings support the view that TGF-β1 is involved in the pathophysiology of urinary bladder dysfunction.

  8. Roles of gap junctions, connexins and pannexins in epilepsy

    Directory of Open Access Journals (Sweden)

    Shanthini eMylvaganam

    2014-05-01

    Full Text Available Enhanced gap junctional communication (GJC between neurons is considered a major factor underlying the neuronal synchrony driving seizure activity. In addition, the hippocampal sharp wave ripple complexes, associated with learning and seizures, are diminished by GJC blocking agents. Although gap junctional blocking drugs inhibit experimental seizures, they all have other nonspecific actions. Besides interneuronal GJC between dendrites, inter-axonal and inter-glial GJC is also considered important for seizure generation. Interestingly, in most studies of cerebral tissue from animal seizure models and from human patients with epilepsy, there is up-regulation of glial, but not neuronal gap junctional mRNA and protein. Significant changes in the expression and post-translational modification of the astrocytic connexin Cx43, and Panx1 were observed in an in vitro Co++ seizure model, further supporting a role for glia in seizure-genesis, although the reasons for this remain unclear. Further suggesting an involvement of astrocytic GJC in epilepsy, is the fact that the expression of astrocytic Cx mRNAs (Cxs 30 and 43 is several fold higher than that of neuronal Cx mRNAs (Cxs 36 and 45, and the number of glial cells outnumber neuronal cells in mammalian hippocampal and cortical tissue. Pannexin expression is also increased in both animal and human epileptic tissues. Specific Cx43 mimetic peptides, Gap 27 and SLS, inhibit the docking of astrocytic connexin Cx43 proteins from forming intercellular gap junctions, diminishing spontaneous seizures. Besides GJs, Cx membrane hemichannels in glia and Panx membrane channels in neurons and glia are also inhibited by gap junctional pharmacological blockers. Although there is no doubt that connexin-based gap junctions and hemichannels, and pannexin-based membrane channels are related to epilepsy, the specific details of how they are involved and how we can modulate their function for therapeutic purposes remain to

  9. No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning.

    Science.gov (United States)

    Totzeck, Andreas; Boengler, Kerstin; van de Sand, Anita; Konietzka, Ina; Gres, Petra; Garcia-Dorado, David; Heusch, Gerd; Schulz, Rainer

    2008-11-01

    Cardiac connexin 43 (Cx43) is involved in infarct propagation, and the uncoupling of Cx43-formed channels reduces infarct size. Cx43-formed channels open upon Cx43 dephosphorylation, and ischemic preconditioning (IP) prevents the ischemia-induced Cx43 dephosphorylation. In addition to the sarcolemma, Cx43 is also present in the cardiomyocyte mitochondria. We now examined the interaction of Cx43 with protein phosphatases PP1alpha, PP2Aalpha, and PP2Balpha and the role of such interaction for Cx43 phosphorylation in preconditioned myocardium. Infarct size (in %area at risk) in left ventricular anterior myocardium of Göttinger minipigs subjected to 90 min of low-flow ischemia and 120 min of reperfusion was 23.1 +/- 2.7 [n = 7, nonpreconditioned (NIP) group] and was reduced by IP to 10.0 +/- 3.2 (n = 6, P < 0.05). Mitochondrial and gap junctional Cx43 dephosphorylation increased after 85 min of ischemia in NIP myocardium, whereas Cx43 phosphorylation was preserved with IP. PP2Aalpha and PP1alpha, but not PP2Balpha, were detected by Western blot analysis in the left ventricular myocardium. Cx43 coprecipitated with PP2Aalpha but not with PP1alpha. Although the total PP2Aalpha immunoreactivity (confocal laser scan) was increased to 154 +/- 24% and 194 +/- 13% of baseline (P < 0.05) after 85 min of ischemia in NIP and IP myocardium, respectively, the PP2A activities were similar between the groups. The amount of PP2Aalpha coimmunoprecipitated with Cx43 remained unchanged. Only PP2Aalpha coprecipitates with Cx43 in pig myocardium. This interaction is not affected by IP, suggesting that PP2Aalpha is not involved in the prevention of the ischemia-induced Cx43 dephosphorylation by IP.

  10. A simple RT-PCR-based strategy for screening connexin identity

    Directory of Open Access Journals (Sweden)

    M. Urban

    1999-08-01

    Full Text Available Vertebrate gap junctions are aggregates of transmembrane channels which are composed of connexin (Cx proteins encoded by at least fourteen distinct genes in mammals. Since the same Cx type can be expressed in different tissues and more than one Cx type can be expressed by the same cell, the thorough identification of which connexin is in which cell type and how connexin expression changes after experimental manipulation has become quite laborious. Here we describe an efficient, rapid and simple method by which connexin type(s can be identified in mammalian tissue and cultured cells using endonuclease cleavage of RT-PCR products generated from "multi primers" (sense primer, degenerate oligonucleotide corresponding to a region of the first extracellular domain; antisense primer, degenerate oligonucleotide complementary to the second extracellular domain that amplify the cytoplasmic loop regions of all known connexins except Cx36. In addition, we provide sequence information on RT-PCR primers used in our laboratory to screen individual connexins and predictions of extension of the "multi primer" method to several human connexins.

  11. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Directory of Open Access Journals (Sweden)

    Hussein Mansour

    Full Text Available We investigated age-associated changes in retinal astrocyte connexins (Cx by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC. We compared Wistar rat retinal wholemounts in animals aged 3 (young adult, 9 (middle-aged and 22 months (aged. We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (P<0.05 but the size of the plaques was significantly larger at 22 months compared to younger ages (p<0.05. With age, Cx26 increased significantly initially, but returned to basal levels; whereas Cx43 expression remained low and stable with age. Evidence that astrocytes alter connexin compositions of gap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  12. Induction of connexin 32 expression by potential embryonic signals in rabbit uterine epithelium.

    Science.gov (United States)

    Antoskiewicz, B; Müller, G; Grümmer, R; Winterhager, E

    1996-12-01

    Connexin 32 induction is found in rabbit uterine epithelium as a response to embryo recognition. Here we have chosen this connexin 32 expression as a cell biological marker to define the type of a locally acting embryonic signal. 17 beta-estradiol, onapristone, catechol estrogen (4-hydroxy-estradiol), prostaglandins E2 and F2 alpha, db-cAMP, and glass beads as mechanical stimuli were given to pseudopregnant animals on day 4, 5 or 6 posthuman chorionic gonadotropin (hCG). The induction of connexin 32 corresponded to the time of implantation at days 6-8 post-hCG by immunohistochemistry and Northern blot analysis. Untreated pseudopregnant animals started to express connexin 32 on day 8 post-hCG. In animals treated with 4-hydroxy-estradiol, 17 beta-estradiol or prostaglandins, connexin 32 expression started 1 day earlier (day 7 post-hCG) and led to an enhanced connexin 32 expression on day 8 post-hCG compared to control animals. The antigestagen, onapristone, as well as cAMP did not alter the endogenous program. Mechanical stimuli led to a high expression of connexin 32 starting at day 7 post-hCG whereas in pregnancy the blastocyst induces connexin 32 expression from day 6 postcoitum onwards. Combination of mechanical stimuli with 17 beta-estrogen advanced the induction to day 6 post-hCG. We conclude that a mechanical stimulus in combination with 17 beta-estradiol induces connexin 32 synthesis in a similar manner as compared to the blastocyst during pregnancy.

  13. Short-term pacing in the mouse alters cardiac expression of connexin43

    Directory of Open Access Journals (Sweden)

    Rindler Michael J

    2008-05-01

    Full Text Available Abstract Background Cardiac insults such as ischemia, infarction, hypertrophy and dilatation are often accompanied by altered abundance and/or localization of the connexin43 gap junction protein, which may predispose towards arrhythmic complications. Models of chronic dyssynchronous cardiac activation have also been shown to result in redistribution of connexin43 in cardiomyocytes. We hypothesized that alterations in connexin43 expression and localization in the mouse heart might be induced by ventricular pacing over a short period of time. Results The subdiaphragmatic approach was used to pace a series of wild type mice for six hours before the hearts were removed for analysis. Mice were paced at 10–15% above their average anesthetized sinus rate and monitored to ensure 1:1 capture. Short-term pacing resulted in a significant reduction in connexin43 mRNA abundance, a partial redistribution of connexin43 from the sarcolemma to a non-sarcolemmal fraction, and accumulation of ubiquitinated connexin43 without a significant change in overall connexin43 protein levels. These early pacing-induced changes in connexin43 expression were not accompanied by decreased cardiac function, prolonged refractoriness or increased inducibility into sustained arrhythmias. Conclusion Our data suggest that short-term pacing is associated with incipient changes in the expression of the connexin43 gap junction, possibly including decreased production and a slowed rate of degradation. This murine model may facilitate the study of early molecular changes induced by pacing and may ultimately assist in the development of strategies to prevent gap junction remodeling and the associated arrhythmic complications of cardiac disease.

  14. Connexin37: a potential modifier gene of inflammatory disease.

    Science.gov (United States)

    Chanson, Marc; Kwak, Brenda R

    2007-08-01

    There is an increasing appreciation of the importance of gap junction proteins (connexins) in modulating the severity of inflammatory diseases. Multiple epidemiological gene association studies have detected a link between a single nucleotide polymorphism in the human connexin37 (Cx37) gene and coronary artery disease or myocardial infarction in various populations. This C1019T polymorphism causes a proline-to-serine substitution (P319S) in the regulatory C terminal tail of Cx37, a protein that is expressed in the vascular endothelium as well as in monocytes and macrophages. Indeed, these three cell types are key players in atherogenesis. In the early phases of atherosclerosis, blood monocytes are recruited to the sites of injury in response to chemotactic factors. Monocytes adhere to the dysfunctional endothelium and transmigrate across endothelial cells to penetrate the arterial intima. In the intima, monocytes proliferate, mature, and accumulate lipids to progress into macrophage foam cells. This review focuses on Cx37 and its impact on the cellular and molecular events underlying tissue function, with particular emphasis of the contribution of the C1019T polymorphism in atherosclerosis. We will also discuss evidence for a potential mechanism by which allelic variants of Cx37 are differentially predictive of increased risk for inflammatory diseases.

  15. Functional hemichannels formed by human connexin 26 expressed in bacteria.

    Science.gov (United States)

    Fiori, Mariana C; Krishnan, Srinivasan; Cortes, D Marien; Retamal, Mauricio A; Reuss, Luis; Altenberg, Guillermo A; Cuello, Luis G

    2015-03-18

    Gap-junction channels (GJCs) communicate the cytoplasm of adjacent cells and are formed by head-to-head association of two hemichannels (HCs), one from each of the neighbouring cells. GJCs mediate electrical and chemical communication between cells, whereas undocked HCs participate in paracrine signalling because of their permeability to molecules such as ATP. Sustained opening of HCs under pathological conditions results in water and solute fluxes that cannot be compensated by membrane transport and therefore lead to cell damage. Mutations of Cx26 (connexin 26) are the most frequent cause of genetic deafness and it is therefore important to understand the structure-function relationship of wild-type and deafness-associated mutants. Currently available connexin HC expression systems severely limit the pace of structural studies and there is no simple high-throughput HC functional assay. The Escherichia coli-based expression system presented in the present study yields milligram amounts of purified Cx26 HCs suitable for functional and structural studies. We also show evidence of functional activity of recombinant Cx26 HCs in intact bacteria using a new growth complementation assay. The E. coli-based expression system has high potential for structural studies and high-throughput functional screening of HCs.

  16. Viral regulation of aquaporin 4, connexin 43, microcephalin and nucleolin.

    Science.gov (United States)

    Fatemi, S Hossein; Folsom, Timothy D; Reutiman, Teri J; Sidwell, Robert W

    2008-01-01

    The current study investigated whether human influenza viral infection in midpregnancy leads to alterations in proteins involved in brain development. Human influenza viral infection was administered to E9 pregnant Balb/c mice. Brains of control and virally-exposed littermates were subjected to microarray analysis, SDS-PAGE and western blotting at three postnatal stages. Microarray analysis of virally-exposed mouse brains showed significant, two-fold change in expression of multiple genes in both neocortex and cerebellum when compared to sham-infected controls. Levels of mRNA and protein levels of four selected genes were examined in brains of exposed mice. Nucleolin mRNA was significantly decreased in day 0 and day 35 neocortex and significantly increased in day 35 cerebellum. Protein levels were significantly upregulated at days 35 and 56 in neocortex and at day 56 in cerebellum. Connexin 43 protein levels were significantly decreased at day 56 in neocortex. Aquaporin 4 mRNA was significantly decreased in day 0 neocortex. Aquaporin 4 protein levels decreased in neocortex significantly at day 35. Finally, microcephalin mRNA was significantly decreased in day 56 neocortex and protein levels were significantly decreased at 56 cerebellum. These data suggest that influenza viral infection in midpregnancy in mice leads to long-term changes in brain markers for enhanced ribosome genesis (nucleolin), increased production of immature neurons (microcephalin), and abnormal glial-neuronal communication and neuron migration (connexin 43 and aquaporin 4).

  17. Extracellular cysteine in connexins: role as redox sensors

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2016-01-01

    Full Text Available Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteine could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.

  18. Role of Connexins and Pannexins in the Pancreas.

    Science.gov (United States)

    Cigliola, Valentina; Allagnat, Florent; Berchtold, Lukas Adrian; Lamprianou, Smaragda; Haefliger, Jacques-Antoine; Meda, Paolo

    2015-11-01

    The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.

  19. Connexin 30 expression and frequency of connexin heterogeneity in astrocyte gap junction plaques increase with age in the rat retina.

    Science.gov (United States)

    Mansour, Hussein; McColm, Janet R; Cole, Louise; Weible, Michael; Korlimbinis, Anastasia; Chan-Ling, Tailoi

    2013-01-01

    We investigated age-associated changes in retinal astrocyte connexins (Cx) by assaying Cx numbers, plaque sizes, protein expression levels and heterogeneity of gap junctions utilizing six-marker immunohistochemistry (IHC). We compared Wistar rat retinal wholemounts in animals aged 3 (young adult), 9 (middle-aged) and 22 months (aged). We determined that retinal astrocytes have gap junctions composed of Cx26, -30, -43 and -45. Cx30 was consistently elevated at 22 months compared to younger ages both when associated with parenchymal astrocytes and vascular-associated astrocytes. Not only was the absolute number of Cx30 plaques significantly higher (Pgap junctions was demonstrated by the significant increase in the number of Cx26/Cx45 gap junctions with age. We also found gap junctions comprised of 1, 2, 3 or 4 Cx proteins suggesting that retinal astrocytes use various connexin protein combinations in their gap junctions during development and aging. These data provides new insight into the dynamic and extensive Cx network utilized by retinal astrocytes for communication within both the parenchyma and vasculature for the maintenance of normal retinal physiology with age. This characterisation of the changes in astrocytic gap junctional communication with age in the CNS is crucial to the understanding of physiological aging and age-related neurodegenerative diseases.

  20. Connexin mutations in X-linked Charcot-Marie-Tooth disease

    Energy Technology Data Exchange (ETDEWEB)

    Bergoffen, J. (Univ. of Pennsylvania Medical School, Philadelphia, PA (United States)); Scherer, S.S.; Wang, S.; Scott, M.; Bone, L.J.; Chen, K.; Lensch, M.W.; Fischbeck, K.H. (Univ. of Pennsylvania Medical School, PA (United States)); Paul, D.L. (Harvard Medical School, Boston, MA (United States)); Change, P.F. (Univ. of Pennsylvania Medical School and Neurology Division, Philadelphia, PA (United States))

    1993-12-24

    X-linked Charcot-Marie-Tooth disease (CMTX) is a form of hereditary neuropathy with demyelination. Recently, this disorder was mapped to chromosome Xq13.1. The gene for the gap junction protein connexin32 is located in the same chromosomal segment, which led to its consideration as a candidate gene for CMTX. With the use of Northern (RNA) blot and immunohistochemistry techniques, it was found that connexin32 is normally expressed in myelinated peripheral nerve. Direct sequencing of the connexin32 gene showed seven different mutations in affected persons from eight CMTX families. These findings, a demonstration of inherited defects in a gap junction protein, suggest that connexin32 plays an important role in peripheral nerve.

  1. Connexin: a potential novel target for protecting the central nervous system?

    Directory of Open Access Journals (Sweden)

    Hong-yan Xie

    2015-01-01

    Full Text Available Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer′s disease, Parkinson′s disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  2. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling.

    Science.gov (United States)

    Rodríguez-Sinovas, Antonio; Cabestrero, Alberto; López, Diego; Torre, Iratxe; Morente, Miriam; Abellán, Arancha; Miró, Elisabet; Ruiz-Meana, Marisol; García-Dorado, David

    2007-01-01

    Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.

  3. Cellular and deafness mechanisms underlying connexin mutation induced hearing loss – A common hereditary deafness

    Directory of Open Access Journals (Sweden)

    Jeffrey C Wingard

    2015-05-01

    Full Text Available Hearing loss due to mutations in the connexin gene family which encodes gap junctional proteins is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2 mutations are responsible for ~50% of nonsyndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential (EP reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Additionally, there is no clear relationship between specific changes in connexin (channel functions and the phenotypes of mutation-induced hearing loss. Cx30, Cx29, Cx31, and Cx43 mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes and pathogeneses of specific-mutation induced hearing loss remain unclear. Finally, little information is available for humans. Further studies to address these deficiencies are urgently required.

  4. The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion

    Directory of Open Access Journals (Sweden)

    Beverley J. Glass

    2015-11-01

    Full Text Available Connexins have been proposed as a target for therapeutic treatment of a variety of conditions. The main approaches have been by antisense or small peptides specific against connexins. Some of these peptides enhance communication while others interfere with connexin binding partners or bind to the intracellular and extracellular loops of connexins. Here, we explored the mechanism of action of a connexin mimetic peptide by evaluating its effect on gap junction channels, connexin protein levels and hemichannel activity in fibroblast cells under normal conditions and following ischemia reperfusion injury which elevates Cx43 levels, increases hemichannel activity and causes cell death. Our results showed that the effects of the mimetic peptide were concentration-dependent. High concentrations (100-300 μM significantly reduced Cx43 protein levels and GJIC within 2 h, while these effects did not appear until 6 h when using lower concentrations (10-30 μM. Cell death can be reduced when hemichannel opening and GJIC were minimised.

  5. Connexin 26 mutations in congenital SNHL in Indian population

    Directory of Open Access Journals (Sweden)

    S S Nayyar

    2011-01-01

    Full Text Available Introduction: Hearing impairment is a sensory disability that affects millions of people all over the world. Fifty percent of these cases are hereditary. Two genes have been localized to DFNB locus (GJB2 & GJB6 on chromosome 13 which have been commonly implicated in autosomal recessive causes of deafness among which the Connexin 26 mutation is the most common. Materials and Methods: Twenty-seven unrelated Indian patients between the ages of 1 and 23 years with nonsyndromic congenital sensorineural hearing loss for GJB2 mutations, specifically for W24X. Analysis was done by the polymerase chain reaction (PCR Restriction fragment length polymorphism RFLP and sequencing methods. Results: Seven out of these 27 subjects were found to have the W24X mutation, implying a frequency of 26% (7/27. Conclusion: Our results are in concordance with what has been reported in world literature. We also showed a 100% concordance between the PCR RFLP and sequencing methods.

  6. Connexin mutant embryonic stem cells and human diseases

    Institute of Scientific and Technical Information of China (English)

    Kiyomasa; Nishii; Yosaburo; Shibata; Yasushi; Kobayashi

    2014-01-01

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin(Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells(ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  7. Distinct permeation profiles of the connexin 30 and 43 hemichannels

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Braunstein, Thomas Hartig; Nielsen, Morten Schak;

    2014-01-01

    , lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes......Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However......, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate...

  8. Connexin mutant embryonic stem cells and human diseases.

    Science.gov (United States)

    Nishii, Kiyomasa; Shibata, Yosaburo; Kobayashi, Yasushi

    2014-11-26

    Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.

  9. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia

    Science.gov (United States)

    Longchamp, Alban; Allagnat, Florent; Alonso, Florian; Kuppler, Christopher; Dubuis, Céline; Ozaki, Charles-Keith; Mitchell, James R.; Berceli, Scott; Corpataux, Jean-Marc

    2015-01-01

    Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC) proliferation and consequent intimal hyperplasia (IH). Intercellular communication mediated by Connexins (Cx) regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS) confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment. PMID:26398895

  10. Regulation of Connexin-Based Channels by Fatty Acids

    Science.gov (United States)

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  11. Regulation of Connexin-Based Channels by Fatty Acids.

    Science.gov (United States)

    Puebla, Carlos; Retamal, Mauricio A; Acuña, Rodrigo; Sáez, Juan C

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood.

  12. Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling.

    Science.gov (United States)

    Rash, John E; Kamasawa, Naomi; Davidson, Kimberly G V; Yasumura, Thomas; Pereda, Alberto E; Nagy, James I

    2012-06-01

    Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.

  13. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.

  14. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.

  15. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein

    NARCIS (Netherlands)

    Giepmans, B N; Moolenaar, W H

    1998-01-01

    Gap junctions mediate cell-cell communication in almost all tissues and are composed of channel-forming integral membrane proteins, termed connexins [1-3]. Connexin43 (Cx43) is the most widely expressed and the most well-studied member of this family. Cx43-based cell-cell communication is regulated

  16. Prolonged labour associated with lower expression of syndecan 3 and connexin 43 in human uterine tissue

    Directory of Open Access Journals (Sweden)

    Malmström Anders

    2006-05-01

    Full Text Available Abstract Background Prolonged labour is associated with greater morbidity and mortality for mother and child. Connexin 43 is a major myometrial gap junction protein found in human myometrium. Syndecan 3 seems to prevail in the human uterus among heparan sulphate proteoglycans, showing the most significant increase during labour. The aims of the present study were to investigate syndecan 3 and connexin 43 mRNA expressions and protein distributions in human uterine tissue during normal and prolonged labour. Methods Uterine isthmic biopsies were collected from non-pregnant (n = 7, term pregnant women not in labour (n = 14, in normal labour (n = 7 and in prolonged labour (n = 7. mRNA levels of syndecan 3 and connexin 43 were determined by real time RT-PCR. The localization and expression were demonstrated by immunohistochemistry and confocal microscopy. Results In women with prolonged labour, the mRNA expressions of syndecan 3 and Connexin 43 were considerably lower than the expression level at normal labour (p Conclusion The high expression of syndecan 3 and connexin 43 and their co-localization to the smooth muscle bundles during normal labour, together with the significant reduction in prolonged labour, may indicate a role for these proteins in the co-ordination of myometrial contractility.

  17. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects

    Science.gov (United States)

    Zhao, Y; de Toledo, S M; Hu, G; Hei, T K; Azzam, E I

    2014-01-01

    Background: Signalling events mediated by connexins and cyclooxygenase-2 (COX-2) have important roles in bystander effects induced by ionising radiation. However, whether these proteins mediate bystander effects independently or cooperatively has not been investigated. Methods: Bystander normal human fibroblasts were cocultured with irradiated adenocarcinoma HeLa cells in which specific connexins (Cx) are expressed in the absence of endogenous Cx, before and after COX-2 knockdown, to investigate DNA damage in bystander cells and their progeny. Results: Inducible expression of gap junctions composed of connexin26 (Cx26) in irradiated HeLa cells enhanced the induction of micronuclei in bystander cells (Pbystander response due to connexin expression. However, COX-2 knockdown resulted in enhanced micronucleus formation in the progeny of the bystander cells (P<0.001). COX-2 knockdown delayed junctional communication in HeLa Cx26 cells, and reduced, in the plasma membrane, the physical interaction of Cx26 with MAPKKK, a controller of the MAPK pathway that regulates COX-2 and connexin. Conclusions: Junctional communication and COX-2 cooperatively mediate the propagation of radiation-induced non-targeted effects. Characterising the mediating events affected by both mechanisms may lead to new approaches that mitigate secondary debilitating effects of cancer radiotherapy. PMID:24867691

  18. The connexin 30.3 of zebrafish homologue of human connexin 26 may play similar role in the inner ear.

    Science.gov (United States)

    Chang-Chien, Ju; Yen, Yung-Chang; Chien, Kuo-Hsuan; Li, Shaun-Yow; Hsu, Tsai-Ching; Yang, Jiann-Jou

    2014-07-01

    The intercellular gap junction channels formed by connexins (CXs) are important for recycling potassium ions in the inner ear. CXs are encoded by a family of the CX gene, such as GJB2, and the mechanism leading to mutant connexin-associated diseases, including hearing loss, remains to be elucidated. In this study, using bioinformatics, we found that two zebrafish cx genes, cx27.5 and cx30.3, are likely homologous to human and mouse GJB2. During embryogenesis, zebrafish cx27.5 was rarely expressed at 1.5-3 h post-fertilization (hpf), but a relatively high level of cx27.5 expression was detected from 6 to 96 hpf. However, zebrafish cx30.3 transcripts were hardly detected until 9 hpf. The temporal experiment was conducted in whole larvae. Both cx27.5 and cx30.3 transcripts were revealed significantly in the inner ear by reverse transcription polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization (WISH). In the HeLa cell model, we found that zebrafish Cx27.5 was distributed intracellularly in the cytoplasm, whereas Cx30.3 was localized in the plasma membrane of HeLa cells stably expressing Cx proteins. The expression pattern of zebrafish Cx30.3 in HeLa cells was more similar to that of cells expressing human CX26 than Cx27.5. In addition, we found that Cx30.3 was localized in the cell membrane of hair cells within the inner ear by immunohistochemistry (IHC), suggesting that zebrafish cx30.3 might play an essential role in the development of the inner ear, in the same manner as human GJB2. We then performed morpholino knockdown studies in zebrafish embryos to elucidate the physiological functions of Cx30.3. The zebrafish cx30.3 morphants exhibited wild-type-like and heart edema phenotypes with smaller inner ears at 72 hpf. Based on these results, we suggest that the zebrafish Cx30.3 and mammalian CX26 may play alike roles in the inner ear. Thus, zebrafish can potentially serve as a model for studying hearing loss disorders that result from human CX

  19. Connexin 26 facilitates gastrointestinal bacterial infection in vitro.

    Science.gov (United States)

    Simpson, Charlotte; Kelsell, David P; Marchès, Olivier

    2013-01-01

    Escherichia coli, including enteropathogenic E. coli (EPEC), represents the most common cause of diarrhoea worldwide and is therefore a serious public health burden. Treatment for gastrointestinal pathogens is hindered by the emergence of multiple antibiotic resistance, leading to the requirement for the development of new therapies. A variety of mechanisms act in combination to mediate gastrointestinal-bacterial-associated diarrhoea development. For example, EPEC infection of enterocytes induces attaching and effacing lesion formation and the disruption of tight junctions. An alternative enteric pathogen, Shigella flexneri, manipulates the expression of Connexin 26 (Cx26), a gap junction protein. S. flexneri can open Cx26 hemichannels allowing the release of ATP, whereas HeLa cells expressing mutant gap-junction-associated Cx26 are less susceptible to cellular invasion by S. flexneri than cells expressing wild-type (WT) Cx26. We have investigated further the link between Cx26 expression and gastrointestinal infection by using EPEC and S. flexneri as in vitro models of infection. In this study, a significant reduction in EPEC adherence was observed in cells expressing mutant Cx26 compared with WT Cx26. Furthermore, a significant reduction in both cellular invasion by S. flexneri and adherence by EPEC was demonstrated in human intestinal cell lines following treatment with Cx26 short interfering RNA. These in vitro results suggest that the loss of functional Cx26 expression provides improved protection against gastrointestinal bacterial pathogens. Thus, Cx26 represents a potential therapeutic target for gastrointestinal bacterial infection.

  20. HIV-Associated Cardiovascular Disease: Role of Connexin 43.

    Science.gov (United States)

    Prevedel, Lisa; Morocho, Camilla; Bennett, Michael V L; Eugenin, Eliseo A

    2017-09-01

    Chronic HIV infection due to effective antiretroviral treatment has resulted in a broad range of clinical complications, including accelerated heart disease. Individuals with HIV infection have a 1.5 to 2 times higher incidence of cardiovascular diseases than their uninfected counterparts; however, the underlying mechanisms are poorly understood. To explore the link between HIV infection and cardiovascular diseases, we used postmortem human heart tissues obtained from HIV-infected and control uninfected individuals to examine connexin 43 (Cx43) expression and distribution and HIV-associated inflammation. Here, we demonstrate that Cx43 is dysregulated in the hearts of HIV-infected individuals. In all HIV heart samples analyzed, there were areas where Cx43 was overexpressed and found along the lateral membrane of the cardiomyocyte and in the intercalated disks. Areas of HIV tissue with anomalous Cx43 expression and localization also showed calcium overload, sarcofilamental atrophy, and accumulation of collagen. All these changes were independent of viral replication, CD4 counts, inflammation, and type of antiretroviral treatment. Overall, we propose that HIV infection increases Cx43 expression in heart, resulting in tissue damage that likely contributes to the high rates of cardiovascular disease in HIV-infected individuals. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Overexpression of connexin 26 in carcinoma of the pancreas.

    Science.gov (United States)

    Kyo, Naganori; Yamamoto, Hirofumi; Takeda, Yutaka; Ezumi, Koji; Ngan, Chew Yee; Terayama, Motokazu; Miyake, Masakazu; Takemasa, Ichiro; Ikeda, Masataka; Doki, Yuichiro; Dono, Keizo; Sekimoto, Mitsugu; Nojima, Hiroshi; Monden, Morito

    2008-03-01

    Contrary to the previously purported role of gap junction (GJ) associated-protein connexin 26 (Cx26) as a tumor suppressor, increased expression of Cx26 has recently been demonstrated in several human malignancies. Surprisingly, this high expression is reportedly related to poor prognosis in squamous cell lung carcinoma and breast cancer. In this study, we examined levels of Cx26 in various human gastrointestinal (GI) carcinomas, with a focus on pancreatic carcinomas, using immunohistochemistry. Many GI carcinomas displayed abundant Cx26 expression, predominantly in the cytoplasm. Cx26 was detected in 5/8 gastric cancers (62.5%), 6/8 squamous cell carcinomas of the esophagus (75.0%), 7/8 pancreatic cancers (87.5%) and 7/8 colon cancer cases (87.5%). However, Cx26 expression was not present in hepatocellular carcinoma (HCC, 0/8). Extensive immunohistochemical examination was performed on pancreatic carcinomas, revealing strong expression of Cx26 protein in 30/43 cases (70%), weak expression in 6/43 (14%) and no expression in 7/43 (16%). The present study demonstrated up-regulated Cx26 expression in a considerable percentage of GI carcinomas, with the exception of HCC. Our findings suggest that Cx26 may be involved in some of the malignant processes of GI cancers, and especially in pancreatic carcinomas.

  2. Mutations of connexin43 in fetuses with congenital heart malformations

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; XIE Li-jian; HUANG Guo-ying; ZHAO Xiao-qing; CHANG Cai

    2005-01-01

    Background Gap junction channels formed by connexin43 (Cx43) protein are important in cardiac morphogenesis, and Cx43 gene is thought to be associated with congenital heart malformation (CHM). This study was undertaken to detect the mutations of Cx43 in fetuses with CHM.Methods Cx43 extron DNA was amplified by PCR from 16 fetuses with a variety of CHM. The PCR products were analyzed by SSCP and DNA sequencing. Thirty children who had no CHM were selected as controls. Results Eight homozygous mutations of Cx43 were observed in a fetus with double outlet right ventricule (DORV), five of the 8 mutations were missense mutations including Arg239Trp, Ser251Thr, Ala253Pro, Pro283Leu and Thr290Asn, and the remaining 3 were silent polymorphisms including Gly252Gly, Pro256Pro and Thr275Thr. No mutations were found in other fetuses and the control group.Conclusions Mutations of Cx43 may be associated with congenital conotruncal anomalies. PCR-SSCP is an effective method for screening the mutations of Cx43.

  3. Expression of Connexin43 in Rat Epithelial Cells and Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the role of connexin43 (Cx43) in gap junctional intercellular communication (GJIC) and propagated sensation along meridians, the expression of Cx43 in the rat epithelial cells and fibroblasts was studied both in vitro and in vivo. With the in vitro study, the rat epithelial cells and fibroblasts were cultured together, and the localization of Cx43 was detected by immunohistochemistry and indirect immunofluorescent cytochemistry and under confocal microscopy . And the expression of Cx43 on the surface of the cells was examined by flow cytometry. With the in vivo examination, 20 SD rats were randomized into control group (n = 10) and electrical acupuncture group (EAgroup, n=10). EA ( 0.5-1.5 V, 4-16 Hz , 30 min) was applied to"Zusanli"acupoint for 30 min at rat's hind paw, the localization of Cx43 was immunohistochemically detected.The immunohistochemical staining and indirect immunfluorescent cytochemistry showed that Cx43was localized on the surface of the cells and in the cytoplasm. The relative expression level of Cx43on the cellular membrane surfaces of the rat epithelial cells and fibroblasts, as determined by FACS, were 13.91 % and 29.53 % respectively. Our studied suggested that Cx43 might be involved in GJIC and propagated sensation along meridians.

  4. Ischemia Alters the Expression of Connexins in the Aged Human Brain

    Directory of Open Access Journals (Sweden)

    Taizen Nakase

    2009-01-01

    Full Text Available Although the function of astrocytic gap junctions under ischemia is still under debate, increased expression of connexin 43 (Cx43 has been observed in ischemic brain lesions, suggesting that astrocytic gap junctions could provide neuronal protection against ischemic insult. Moreover, different connexin subtypes may play different roles in pathological conditions. We used immunohistochemical analysis to investigate alterations in the expression of connexin subtypes in human stroke brains. Seven samples, sectioned after brain embolic stroke, were used for the analysis. Data, evaluated semiquantitatively by computer-assisted densitometry, was compared between the intact hemisphere and ischemic lesions. The results showed that the coexpression of Cx32 and Cx45 with neuronal markers was significantly increased in ischemic lesions. Cx43 expression was significantly increased in the colocalization with astrocytes and relatively increased in the colocalization with neuronal marker in ischemic lesions. Therefore, Cx32, Cx43, and Cx45 may respond differently to ischemic insult in terms of neuroprotection.

  5. Gap junction connexins in female reproductive organs: implications for women's reproductive health.

    Science.gov (United States)

    Winterhager, Elke; Kidder, Gerald M

    2015-01-01

    Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth

  6. Intracerebroventricular injection of lipopolysaccharide increases gene expression of connexin32 gap junction in rat hippocampus.

    Science.gov (United States)

    Abbasian, Mohammad; Sayyah, Mohammad; Babapour, Vahab; Mahdian, Reza

    2013-01-01

    Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of various central nervous system (CNS) diseases, like multiple sclerosis, Alzheimer's disease and epilepsy. Neuroinflammation causes change in Connexins expression. Hippocampus, one of the main brain regions with a wide network of Gap junctions between different neural cell types, has particular vulnerability to damage and consequent inflammation. Cx32 - among Connexins- is expressed in hippocampal Olygodandrocytes and some neural subpopulations. Although multiple lines of evidence indicate that there is an association between neuroinflammation and the expression of connexin, the direct effect of neuroinflammation on the expression of connexins has not been well studied. In the present study, the effect of neuroinflammation induced by the Lipopolysaccharide (LPS) on Cx32 gene and protein expressions in rat hippocampus is evaluated. LPS (2.5µg/rat) was infused into the rat cerebral ventricles for 14 days. Cx32 mRNA and protein levels were measured by Real Time PCR and Western Blot after 1st, 7th and 14th injection of LPS in the hippocampus. Significant increase in Cx32 mRNA expression was observed after 7th injection of LPS (P < 0.001). However, no significant change was observed in Cx32 protein level. LPS seems to modify Cx32 GJ communication in the hippocampus at transcription level but not at translation or post-translation level. In order to have a full view concerning modification of Cx32 GJ communication, effect of LPS on Cx32 channel gating should also be determined.

  7. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness.

    Science.gov (United States)

    Wingard, Jeffrey C; Zhao, Hong-Bo

    2015-01-01

    Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K(+)-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required.

  8. Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties.

    Science.gov (United States)

    Shuja, Zunaira; Li, Leping; Gupta, Shashank; Meşe, Gülistan; White, Thomas W

    2016-01-01

    Mutations in GJB2 (connexin [Cx]26) cause either deafness or deafness associated with skin diseases. That different disorders can be caused by distinct mutations within the same gene suggests that unique channel activities are influenced by each class of mutation. We have examined the functional characteristics of two human mutations, Cx26-H73R and Cx26-S183F, causing palmoplantar keratoderma (PPK) and deafness. Both failed to form gap junction channels or hemichannels when expressed alone. Coexpression of the mutants with wild-type Cx43 showed a transdominant inhibition of Cx43 gap junction channels, without reductions in Cx43 protein synthesis. In addition, the presence of mutant Cx26 shifted Cx43 channel gating and kinetics toward a more Cx26-like behavior. Coimmunoprecipitation showed Cx43 being pulled down more efficiently with mutant Cx26 than wild-type, confirming the enhanced formation of heteromeric connexons. Finally, the formation of heteromeric connexons resulted in significantly increased Cx43 hemichannel activity in the presence of Cx26 mutants. These findings suggest a common mechanism whereby Cx26 mutations causing PPK and deafness transdominantly influence multiple functions of wild-type Cx43. They also implicate a role for aberrant hemichannel activity in the pathogenesis of PPK and further highlight an emerging role for Cx43 in genetic skin diseases.

  9. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells

    Directory of Open Access Journals (Sweden)

    Van Lommel Alfons

    2008-09-01

    Full Text Available Abstract Background Myometrial smooth myocytes contract as a result of electrical signalling via a process called excitation-contraction coupling. This process is understood in great detail at the cellular level but the generation and coordination of electrical signals throughout the myometrium are incompletely understood. Recent evidence concerning the vital role of interstitial cells of Cajal in tissue-level signalling in gastrointestinal tract, and the presence of similar cells in urinary tract smooth muscle may be relevant for future research into myometrial contractility but there remains a lack of evidence regarding these cells in the myometrium. Methods Single stain immunohistochemical and double stain immunofluorescence techniques visualised antibodies directed against total connexin 43, unphosphorylated connexin 43, KIT, alpha-SMA and prolyl 4-hydroxylase in myometrial biopsies from 26 women representing all stages of reproductive life. Results Myometrial smooth myocytes from term uterine biopsies expressed connexin 43 in a punctate pattern typical of gap junctions. However, on the boundaries of the smooth muscle bundles, cells were present with a more uniform staining pattern. These cells continued to possess the same staining characteristics in non-pregnant biopsies whereas the smooth myocytes no longer expressed connexin 43. Immunohistochemistry using an antibody directed against connexin 43 unphosphorylated at serine 368 showed that it is this isoform that is expressed continually by these cells. Double-stain immunofluorescence for unphosphorylated connexin 43 and KIT, an established marker for interstitial cells, revealed a complete match indicating these cells are myometrial interstitial cells (MICs. MICs had elongated cell processes and were located mainly on the surface of the smooth muscle bundles and within the fibromuscular septum. No particular arrangement of cells as plexuses was observed. Antibody to prolyl 4-hydroxylase

  10. Connexin 26 and autosomal recessive non-syndromic hearing loss

    Directory of Open Access Journals (Sweden)

    Mukherjee Monisha

    2003-01-01

    Full Text Available Prelingual deafness occurs with a frequency of 1 in 1000 live births and is divided into syndromic and non-syndromic forms contributing 40 and 60% respectively. Autosomal recessive non-syndromic hearing loss (ARNSHL is responsible for 80% cases of childhood deafness. Nearly all genes localized for ARNSHL cause prelingual, severe to profound, sensorineural hearing impairment. ARNSHL is genetically heterogeneous and at least 39 loci have been identified. The most significant finding to date has been the discovery of mutations in GJB2 gene at the DFNB1 locus on chromosome 13q12 as the major cause of profound prelingual deafness. This was first reported in a Tunisian family in 1994 and thereafter in many different countries. GJB2 gene encodes the gap-junction protein, connexin 26 (Cx26, mutations in which have become the first genetic marker of inherited hearing loss. Allele-specific polymerase chain reaction (AS-PCR, single stranded conformation polymorphism (SSCP and sequencing methods have been developed for the detection of mutations in Cx26 gene. In India as well, the Cx26 mutations are being screened in families with hearing impaired children using these molecular methods. Therefore, in order to create awareness among the clinicians and the affected families; we have attempted to review the Cx26 gene mutations responsible for autosomal recessive type of non-syndromic hearing loss. The efficacy and utility of Cx26 gene analysis might open the path to proper counseling of families for carrier detection and prenatal diagnosis. It may even facilitate the development of strategies in future for the treatment of this common genetic disorder.

  11. Carbon Monoxide (CO) Is a Novel Inhibitor of Connexin Hemichannels*

    Science.gov (United States)

    León-Paravic, Carmen G.; Figueroa, Vania A.; Guzmán, Diego J.; Valderrama, Carlos F.; Vallejos, Antonio A.; Fiori, Mariana C.; Altenberg, Guillermo A.; Reuss, Luis; Retamal, Mauricio A.

    2014-01-01

    Hemichannels (HCs) are hexamers of connexins that can form gap-junction channels at points of cell contacts or “free HCs” at non-contacting regions. HCs are involved in paracrine and autocrine cell signaling, and under pathological conditions may induce and/or accelerate cell death. Therefore, studies of HC regulation are of great significance. Nitric oxide affects the activity of Cx43 and Cx46 HCs, whereas carbon monoxide (CO), another gaseous transmitter, modulates the activity of several ion channels, but its effect on HCs has not been explored. We studied the effect of CO donors (CORMs) on Cx46 HCs expressed in Xenopus laevis oocytes using two-electrode voltage clamp and on Cx43 and Cx46 expressed in HeLa cells using a dye-uptake technique. CORM-2 inhibited Cx46 HC currents in a concentration-dependent manner. The C-terminal domain and intracellular Cys were not necessary for the inhibition. The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhibitors, and was not due to endocytosis of HCs. However, the effect of CORM-2 was reversed by reducing agents that act extracellularly. Additionally, CO inhibited dye uptake of HeLa cells expressing Cx43 or Cx46, and MCF-7 cells, which endogenously express Cx43 and Cx46. Because CORM-2 carbonylates Cx46 in vitro and induces conformational changes, a direct effect of that CO on Cx46 is possible. The inhibition of HCs could help to understand some of the biological actions of CO in physiological and pathological conditions. PMID:25384983

  12. Connexin32 expression in central and peripheral nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H. [Univ. of Pennslylvania, PA (United States)

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  13. Absence of venous valves in mice lacking Connexin37.

    Science.gov (United States)

    Munger, Stephanie J; Kanady, John D; Simon, Alexander M

    2013-01-15

    Venous valves play a crucial role in blood circulation, promoting the one-way movement of blood from superficial and deep veins towards the heart. By preventing retrograde flow, venous valves spare capillaries and venules from being subjected to damaging elevations in pressure, especially during skeletal muscle contraction. Pathologically, valvular incompetence or absence of valves are common features of venous disorders such as chronic venous insufficiency and varicose veins. The underlying causes of these conditions are not well understood, but congenital venous valve aplasia or agenesis may play a role in some cases. Despite progress in the study of cardiac and lymphatic valve morphogenesis, the molecular mechanisms controlling the development and maintenance of venous valves remain poorly understood. Here, we show that in valved veins of the mouse, three gap junction proteins (Connexins, Cxs), Cx37, Cx43, and Cx47, are expressed exclusively in the valves in a highly polarized fashion, with Cx43 on the upstream side of the valve leaflet and Cx37 on the downstream side. Surprisingly, Cx43 expression is strongly induced in the non-valve venous endothelium in superficial veins following wounding of the overlying skin. Moreover, we show that in Cx37-deficient mice, venous valves are entirely absent. Thus, Cx37, a protein involved in cell-cell communication, is one of only a few proteins identified so far as critical for the development or maintenance of venous valves. Because Cxs are necessary for the development of valves in lymphatic vessels as well, our results support the notion of common molecular pathways controlling valve development in veins and lymphatic vessels.

  14. Connexin 43 is Involved in Aldosterone-Induced Podocyte Injury

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-11-01

    Full Text Available Background/Aims: Connexin43 (Cx43 belongs to a family of transmembrane proteins that build cell-to-cell channels in gap junctions, which play an essential role in intercellular communication, cell proliferation, differentiation and apoptosis. The aim of this study is to clarify the effect of Cx43 in aldosterone (Aldo-induced podocyte injury and explore the possible molecular mechanism behind this effect. Methods: Uninephrectomized Sprague-Dawley rats were given 1% NaCl (salt in their water and an Aldo infusion (0.75 μg/h for 28 days to induce podocyte injury. Podocytes were incubated in media containing either buffer or increasing concentrations of Aldo (10-9 - 10-7 M for variable time periods. The podocytes were then examined and the mechanism of injury investigated using TUNEL assay, ELISA, immunofluorescence staining, western blot, RNA interference, and DCFDA fluorescence. Results: Here, we report that in vivo administration of Aldo caused greater numbers of TUNEL-positive podocytes, accompanied by increased Cx43 expression, but a reduction in WT1-positive podocytes. In vitro studies indicated that Aldo induces podocyte apoptosis in a dose- and time-dependent manner and is accompanied by increases in Cx43 expression, gap junction intercellular communication (GJIC, ROS production, and the Bax/Bcl-2 ratio. Silencing of Cx43 expression attenuates the increase of ROS production and the subsequent up-regulation of the Bax/Bcl-2 ratio, which partially inhibited the podocytes apoptosis. Conclusions: Our study provides preliminary evidence that upregulation of Cx43 expression is involved in Aldo-induced podocyte injury, and that Cx43 is a potentially relevant therapeutic target for the treatment of chronic kidney diseases (CKD.

  15. Connexin32 mutations and Xq13 physical map

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, R.A.; Bone, L.J. [Univ. of Pennsylvania School of Medicine, Philadelphia (United States); Neystat, M. [Columbia Univ., New York, NY (United States)] [and others

    1994-09-01

    Mutations in the gap junction protein connexin32 (Cx32) are associated with X-linked Charcot-Marie-Tooth disease (CMTX). We and others have identified 24 separate mutations in 27 families. The third transmembrane domain of Cx32 has two mutations that occur in multiple families: three unrelated families have the same missense mutation at codon 139 (Val to Met), and two additional unrelated families have a single base change in codon 142 (Arg to Trp). In order to physically map the region surrounding the Cx32 gene and identify regulatory sequences that could be affected by additional mutations, we are developing a contiguous set of YAC clones for the region (Xq13.1-13.3). The YACs were identified primarily by PCR-based screening of total genomic YAC libraries from CEPH and Genethon. Additional YACs were obtained from collaborating investigators and a local library. A total of 41 overlapping YACs were identified with the STSs DXS106, DXS453, DXS348, IL2RG, GJB1(Cx32), CCG1, DXS559, DXS227, DXS986, DXS1197, and DXS128. Overlap between the YACs was determined by shared STS content and by appearance of identical segments in inter-Alu PCR. The set of overlapping YAC clones helps to define the relationship between CMTX/Cx32 and the nearby gene for severe combined immunodeficiency syndrome (SCIDX/IL2RG), and it is now being used in localization of the gene for dystonia-parkinsonism syndrome (lubag disease, DYT3), which also maps to this region.

  16. Interplay between connexin40 and nitric oxide signaling during hypertension.

    Science.gov (United States)

    Le Gal, Loïc; Alonso, Florian; Mazzolai, Lucia; Meda, Paolo; Haefliger, Jacques-Antoine

    2015-04-01

    Connexins (Cxs) and endothelial nitric oxide synthase (eNOS) contribute to the adaptation of endothelial and smooth muscle cells to hemodynamic changes. To decipher the in vivo interplay between these proteins, we studied Cx40-null mice, a model of renin-dependent hypertension which displays an altered endothelium-dependent relaxation of the aorta because of reduced eNOS levels. These mice, which were either untreated or subjected to the 1-kidney, 1-clip (1K1C) procedure, a model of volume-dependent hypertension, were compared with control mice submitted to either the 1K1C or the 2-kidney, 1-clip (2K1C) procedure, a model of renin-dependent hypertension. All operated mice became hypertensive and featured hypertrophy and altered Cx expression of the aorta. The combination of volume- and renin-dependent hypertension in Cx40-/- 1K1C mice raised blood pressure and cardiac weight index. Under these conditions, all aortas showed increased levels of Cx40 in endothelial cells and of both Cx37 and Cx45 in smooth muscle cells. In the wild-type 1K1C mice, the interactions between Cx40 and Cx37 with eNOS were enhanced, resulting in increased NO release. The Cx40-eNOS interaction could not be observed in mice lacking Cx40, which also featured decreased levels of eNOS. In these animals, the volume overload caused by the 1K1C procedure resulted in increased phosphorylation of eNOS and in a higher NO release. The findings provide evidence that Cx40 and Cx37 play an in vivo role in the regulation of eNOS.

  17. Connexin- and pannexin-based channels in normal skeletal muscles and their possible role in muscle atrophy.

    Science.gov (United States)

    Cea, Luis A; Riquelme, Manuel A; Cisterna, Bruno A; Puebla, Carlos; Vega, José L; Rovegno, Maximiliano; Sáez, Juan C

    2012-08-01

    Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.

  18. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhong

    2017-05-01

    Full Text Available In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2 is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge of the crossing molecules.

  19. Independence of connexin expression and vasomotor conduction from sympathetic innervation in hamster feed arteries.

    Science.gov (United States)

    Looft-Wilson, Robin C; Haug, Sara J; Neufer, P Darrell; Segal, Steven S

    2004-01-01

    Vasomotor responses can travel along the wall of resistance microvessels by two distinct mechanisms: cell-to-cell conduction through gap junctions or the release of neurotransmitter along perivascular nerves. It is unknown whether vascular innervation influences the expression of connexin molecules which comprise gap junctions, or the conduction of vasomotor responses. In feed arteries of the hamster retractor muscle (RFA), the authors tested whether sympathetic denervation would alter the expression of connexin isoforms and the conduction of vasomotor responses. Using intact vessels with sympathetic innervation and those 7-8 days following denervation surgery, mRNA expression was quantified using real-time PCR, cellular localization of Cx protein was characterized using immunohistochemistry, and vasomotor responses to dilator and constrictor stimuli were evaluated in isolated pressurized RFA. Connexin protein localization and mRNA expression were similar between innervated and denervated vessels. mRNA levels were Cx43 = Cx37 > Cx45 > Cx40. Vasodilation to acetylcholine conducted >/=2000 microm along innervated and denervated vessels, as did the biphasic conduction of vasoconstriction and vasodilation in response to KCl. Vasoconstriction to phenylephrine conducted <500 microm and was attenuated (p <.05) in denervated vessels. The profile of connexin expression and the conduction of vasomotor responses are largely independent of sympathetic innervation in feed arteries of the hamster retractor muscle (RFA).

  20. RXP-E: a connexin43-binding peptide that prevents action potential propagation block

    DEFF Research Database (Denmark)

    Lewandowski, Rebecca; Procida, Kristina; Vaidyanathan, Ravi

    2008-01-01

    Gap junctions provide a low-resistance pathway for cardiac electric propagation. The role of GJ regulation in arrhythmia is unclear, partly because of limited availability of pharmacological tools. Recently, we showed that a peptide called "RXP-E" binds to the carboxyl terminal of connexin43 and ...

  1. Connexin32 gene mutations in X-linked dominant Charcot-Marie-Tooth disease (CMTX1)

    NARCIS (Netherlands)

    Janssen, EAM; Kemp, S; Hensels, GW; Sie, OG; deDieSmulders, CEM; Hoogendijk, JE; deVisser, M; Bolhuis, PA

    Single-strand conformational polymorphisms (SSCP) of the connexin32 gene were analyzed in 121 patients possibly affected by Charcot-Marie-Tooth (CMT) disease. The 121 patients were selected from 443 possible CMT/HNPP (hereditary neuropathy with liability to pressure palsies) patients based on

  2. Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts.

    Science.gov (United States)

    Zhang, Yan; Kanter, Evelyn M; Laing, James G; Aprhys, Colette; Johns, David C; Kardami, Elissavet; Yamada, Kathryn A

    2008-09-01

    Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling. Interestingly, increasing Cx43 expression reduced fibroblast proliferation, whereas decreasing Cx43 expression increased proliferation. These data demonstrate that native fibroblasts isolated from the mouse heart exhibit intercellular coupling via gap junctions containing both Cx43 and Cx45. Fibroblast proliferation is inversely related to the expression level of Cx43. Thus, connexin expression and remodeling is likely to alter fibroblast function, maintenance of the extracellular matrix, and ventricular remodeling in both normal and diseased hearts.

  3. Atrial fibrillation-linked germline GJA5/connexin40 mutants showed an increased hemichannel function.

    Directory of Open Access Journals (Sweden)

    Yiguo Sun

    Full Text Available Mutations in GJA5 encoding the gap junction protein connexin40 (Cx40 have been linked to lone atrial fibrillation. Some of these mutants result in impaired gap junction function due to either abnormal connexin localization or impaired gap junction channels, which may play a role in promoting atrial fibrillation. However, the effects of the atrial fibrillation-linked Cx40 mutants on hemichannel function have not been studied. Here we investigated two atrial fibrillation-linked germline Cx40 mutants, V85I and L221I. These two mutants formed putative gap junction plaques at cell-cell interfaces, with similar gap junction coupling conductance as that of wild-type Cx40. Connexin deficient HeLa cells expressing either one of these two mutants displayed prominent propidium iodide-uptake distinct from cells expressing wild-type Cx40 or other atrial fibrillation-linked Cx40 mutants, I75F, L229M, and Q49X. Propidium iodide-uptake was sensitive to [Ca2+]o and the hemichannel blockers, carbenoxolone, flufenamic acid and mefloquine, but was not affected by the pannexin 1 channel blocking agent, probenecid, indicating that uptake is most likely mediated via connexin hemichannels. A gain-of-hemichannel function in these two atrial fibrillation-linked Cx40 mutants may provide a novel mechanism underlying the etiology of atrial fibrillation.

  4. Connexin32 gene mutations in X-linked dominant Charcot-Marie-Tooth disease (CMTX1)

    NARCIS (Netherlands)

    Janssen, EAM; Kemp, S; Hensels, GW; Sie, OG; deDieSmulders, CEM; Hoogendijk, JE; deVisser, M; Bolhuis, PA

    1997-01-01

    Single-strand conformational polymorphisms (SSCP) of the connexin32 gene were analyzed in 121 patients possibly affected by Charcot-Marie-Tooth (CMT) disease. The 121 patients were selected from 443 possible CMT/HNPP (hereditary neuropathy with liability to pressure palsies) patients based on geneti

  5. Connexin32 gene mutations in X-linked dominant Charcot-Marie-Tooth disease (CMTX1)

    NARCIS (Netherlands)

    Janssen, EAM; Kemp, S; Hensels, GW; Sie, OG; deDieSmulders, CEM; Hoogendijk, JE; deVisser, M; Bolhuis, PA

    1997-01-01

    Single-strand conformational polymorphisms (SSCP) of the connexin32 gene were analyzed in 121 patients possibly affected by Charcot-Marie-Tooth (CMT) disease. The 121 patients were selected from 443 possible CMT/HNPP (hereditary neuropathy with liability to pressure palsies) patients based on geneti

  6. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    NARCIS (Netherlands)

    van Zeijl, Leonie; Ponsioen, Bas; Giepmans, Ben N G; Ariaens, Aafke; Postma, Friso R; Várnai, Péter; Balla, Tamas; Divecha, Nullin; Jalink, Kees; Moolenaar, Wouter H

    2007-01-01

    Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol 4,5-bisphosp

  7. Mind the gap: connexins and cell-cell communication in the diabetic kidney.

    Science.gov (United States)

    Hills, Claire E; Price, Gareth W; Squires, Paul E

    2015-02-01

    Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell-cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell-cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention.

  8. Close the Gap : a study on the regulation of Connexin43 gap junctional communication

    NARCIS (Netherlands)

    Zeijl, Leonie van

    2009-01-01

    Gap junctions are groups of transmembrane channels that connect the cytoplasms of adjacent cells to mediate the diffusion of small molecules, such as ions, metabolites, second messengers and small peptides. The building blocks of gap junctions are connexin proteins. The most ubiquitous and best stu

  9. Data of the molecular dynamics simulations of mutations in the human connexin46 docking interface

    Directory of Open Access Journals (Sweden)

    Patrik Schadzek

    2016-06-01

    The data described here are related to the research article entitled “The cataract related mutation N188T in human connexin46 (hCx46 revealed a critical role for residue N188 in the docking process of gap junction channels” (Schadzek et al., 2015 [1].

  10. Electroporation transiently decreases GJB2 (connexin 26) expression in B16/BL6 melanoma cell line.

    Science.gov (United States)

    Rangel, Marcelo Monte Mór; Chaible, Lucas Martins; Nagamine, Marcia Kazumi; Mennecier, Gregory; Cogliati, Bruno; de Oliveira, Krishna Duro; Fukumasu, Heidge; Sinhorini, Idércio Luiz; Mir, Lluis Maria; Dagli, Maria Lúcia Zaidan

    2015-02-01

    Connexins are proteins that form gap junctions. Perturbations in the cell membrane reportedly promote changes in the expression profile of connexins. Electroporation promotes destabilization by applying electrical pulses, and this procedure is used in electrochemotherapy and gene therapy, among others. This in vitro work aimed to study the interference of electroporation on the expression profile of GJB2 (Cx26 gene) and Connexin 26 in melanoma cell line B16/BL6. The techniques of immunocytochemistry, Western blot, and real-time PCR were used. After electroporation, cells showed a transient decrease in GJB2 mRNA. The immunostaining of Cx26 showed no noticeable change after electroporation at different time points. However, Western blot showed a significant reduction in Cx26 30 min after electroporation. Our results showed that electroporation interferes transiently in the expression of Connexin 26 in melanoma and are consistent with the idea that electroporation is a process of intense stress that promotes cell homeostatic imbalance and results in disruption of cell physiological processes such as transcription and translation.

  11. Effect of thioridazine on gap junction intercellular communication in connexin 43-expressing cells.

    Science.gov (United States)

    Matesic, D F; Abifadel, D N; Garcia, E L; Jann, M W

    2006-07-01

    Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 micromol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a "hyperphosphorylated" connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in

  12. Biochemical requirements for inhibition of Connexin26-containing channels by natural and synthetic taurine analogs.

    Science.gov (United States)

    Tao, Liang; Harris, Andrew L

    2004-09-10

    Previous work has shown that protonated taurine and aminosulfonate pH buffers, including HEPES, can directly and reversibly inhibit connexin channels that contain connexin26 (Cx26) (Bevans, C. G., and Harris, A. L. (1999) J. Biol. Chem. 274, 3711-3719). The structural requirements for this inhibition were explored by studies of the effects of structural analogs of taurine on the activity of Cx26-containing reconstituted hemichannels from native tissue. Several analogs inhibited the channels, with a range of relative affinities and efficacies. Each active compound contains a protonated amine separated from an ionized sulfonate or sulfinate moiety by several methylene groups. The inhibition is eliminated if the sulfonate/sulfinate moiety or the amine is not present. Compounds that contain a protonated amine but lack a sulfonate/sulfinate moiety do not inhibit but do competitively block the effect of the active compounds. Compounds that lack the protonated amine do not significantly inhibit or antagonize inhibition. The results suggest involvement of the protonated amine in binding and of the ionized sulfur-containing moiety in effecting the inhibition. The maximal effect of the inhibitory compounds is enhanced when a carboxyl group is linked to the alpha-carbon. Inhibition but not binding is stereospecific, with l-isomers being inhibitory and the corresponding d-isomers being inactive but able to antagonize inhibition by the l-isomers. Whereas not all connexins are sensitive to aminosulfonates, the well defined structural requirements described here argue strongly for a highly specific regulatory interaction with some connexins. The finding that cytoplasmic aminosulfonates inhibit connexin channels whereas other cytoplasmic compounds antagonize the inhibition suggests that gap junction channels are regulated by a complex interplay of cytoplasmic ligands.

  13. Connections between connexins, calcium, and cataracts in the lens.

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Martinez-Wittinghan, Francisco J; Gong, Xiaohua; White, Thomas W; Mathias, Richard T

    2004-10-01

    There is a good deal of evidence that the lens generates an internal micro circulatory system, which brings metabolites, like glucose, and antioxidants, like ascorbate, into the lens along the extracellular spaces between cells. Calcium also ought to be carried into the lens by this system. If so, the only path for Ca2+ to get out of the lens is to move down its electrochemical gradient into fiber cells, and then move by electrodiffusion from cell to cell through gap junctions to surface cells, where Ca-ATPase activity and Na/Ca exchange can transport it back into the aqueous or vitreous humors. The purpose of the present study was to test this calcium circulation hypothesis by studying calcium homeostasis in connexin (Cx46) knockout and (Cx46 for Cx50) knockin mouse lenses, which have different degrees of gap junction coupling. To measure intracellular calcium, FURA2 was injected into fiber cells, and the gradient in calcium concentration from center to surface was mapped in each type of lens. In wild-type lenses the coupling conductance of the mature fibers was approximately 0.5 S/cm2 of cell to cell contact, and the best fit to the calcium concentration data varied from 700 nM in the center to 300 nM at the surface. In the knockin lenses, the coupling conductance was approximately 1.0 S/cm2 and calcium varied from approximately 500 nM at the center to 300 nM at the surface. Thus, when the coupling conductance doubled, the concentration gradient halved, as predicted by the model. In knockout lenses, the coupling conductance was zero, hence the efflux path was knocked out and calcium accumulated to approximately 2 microM in central fibers. Knockout lenses also had a dense central cataract that extended from the center to about half the radius. Others have previously shown that this cataract involves activation of a calcium-dependent protease, Lp82. We can now expand on this finding to provide a hypothesis on each step that leads to cataract formation: knockout of

  14. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  15. Impact of genetic counseling and Connexin-26 and Connexin-30 testing on deaf identity and comprehension of genetic test results in a sample of deaf adults: a prospective, longitudinal study.

    Science.gov (United States)

    Palmer, Christina G S; Boudreault, Patrick; Baldwin, Erin E; Sinsheimer, Janet S

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results.

  16. Expression of connexin 30 and connexin 32 in hippocampus of rat during epileptogenesis in a kindling model of epilepsy

    Institute of Scientific and Technical Information of China (English)

    Bijan Akbarpour; Mohammad Sayyah; Vahab Babapour; Reza Mahdian; Siamak Beheshti; Ahmad Reza Kamyab

    2012-01-01

    Objective Understanding the molecular and cellular mechanisms underlying epileptogenesis yields new insights into potential therapies that may ultimately prevent epilepsy.Gap junctions (GJs) create direct intercellular conduits between adjacent cells and are formed by hexameric protein subunits called connexins (Cxs).Changes in the expression of Cxs affect GJ communication and thereby could modulate the dissemination of electrical discharges.The hippocampus is one of the main regions involved in epileptogenesis and has a wide network of GJs between different cell types where Cx30 is expressed in astrocytes and Cx32 exists in neurons and oligodendrocytes.In the present study,we evaluated the changes of Cx30 and Cx32 expression in rat hippocampus during kindling epileptogenesis.Methods Rats were stereotaxically implanted with stimulating and recording electrodes in the basolateral amygdala,which was electrically stimulated once daily at afterdischarge threshold.Expression of Cx30 and Cx32,at both the mRNA and protein levels,was measured in the hippocampus at the beginning,in the middle (after acquisition of focal seizures),and at the end (after establishment of generalized seizures) of the kindling process,by real-time PCR and Western blot.Results Cx30 mRNA expression was upregulated at the beginning of kindling and after acquisition of focal seizures.Then it was downregulated when the animals acquired generalized seizures.Overexpression of Cx30 mRNA at the start of kindling was consistent with the respective initial protein increase.Thereafter,no change was found in protein abundance during kindling.Regarding Cx32,mRNA expression decreased after acquisition of generalized seizures and no other significant change was detected in mRNA and protein abundance during kindling.Conclusion We speculate that Cx32 GJ communication in the hippocampus does not contribute to kindling epileptogenesis.The Cx30 astrocytic network localized to perivascular regions in the hippocampus

  17. [Impacts of early metoprolol intervention on connexin 43 and phosphorylated connexin 43 expression in rabbits with experimental myocardial infarction].

    Science.gov (United States)

    Zhou, M; Lu, Q; Jiang, J Q; Chen, Z N; Gong, Z G; Li, Z G; Fu, W W; Ding, S F

    2017-04-24

    Objective: To investigate the early intervention effects of metoprolol on connexin 43(Cx43) and phosphorylated Cx43 (p-Cx43) expression in rabbits with post myocardial infarction. Methods: A total of 24 adult male New Zealand white rabbits were divided into sham group (n=6), early treatment group(n=6), routine treatment group(n=6), and myocardial infarction group(n=6) with a randomized block design blocked by weight. Myocardial infarction was induced by left anterior descending coronary artery (LAD) ligation. Rabbits in sham group received similar surgical procedure without LAD ligation. Metoprolol (12.5 mg/kg dissolved in 2 ml distilled water) was applied to rabbits in early treatment group and routine treatment group per gavage immediately after recovery from anesthesia and at 24 hours after myocardial infarction, respectively, then treated daily for 40 days. Rabbits in sham group and myocardial infarction group received 2 ml distilled water per gavage daily for 40 days. Plasma lactate dehydrogenase (LDH) and creatine kinase (CK) level were detected by automatic biochemistry analyzer after 6 hours in all rabbits. Ventricular fibrillation threshold (VFT) was measured in vivo by bipolar pacing electrodes at 40 days. Cx43 and p-Cx43 distribution in ventricular tissue was detected by immunofluorescence analyses. Cx43 and p-Cx43 protein level in ventricular tissue was determined by Western blot. Results: (1) Plasma LDH ((851.7±85.9)U/L vs. (332.3±39.6)U/L, Pmyocardial infarction group than in sham group (both Pmyocardial infarction group than that in sham group ((470.0±91.0) beats per minute vs. (683.3±60.9) beats per minute, Pmyocardial infarction group (both Pmyocardial infarction group. The expression of p-Cx43 in myocardial infarction group was less than in sham group, which was significantly upregulated in in early treatment group and routine treatment group when compared with myocardial infarction group, and expression of p-Cx43 was significantly higher in

  18. Gap Junction in the Teleost Fish Lineage: Duplicated Connexins May Contribute to Skin Pattern Formation and Body Shape Determination.

    Science.gov (United States)

    Watanabe, Masakatsu

    2017-01-01

    Gap junctions are intercellular channels that allow passage of ions and small molecules between adjacent cells. Gap junctions in vertebrates are composed of connexons, which are an assembly of six proteins, connexins. Docking of two connexons on the opposite cell surfaces forms a gap junction between the cytoplasm of two neighboring cells. Connexins compose a family of structurally related four-pass transmembrane proteins. In mammals, there are ~20 connexins, each of which contributes to unique permeability of gap junctions, and mutations of some connexin-encoding genes are associated with human diseases. Zebrafish has been predicted to contain 39 connexin-encoding genes; the high number can be attributed to gene duplication during fish evolution, which resulted in diversified functions of gap junctions in teleosts. The determination of body shapes and skin patterns in animal species is an intriguing question. Mathematical models suggest principle mechanisms explaining the diversification of animal morphology. Recent studies have revealed the involvement of gap junctions in fish morphological diversity, including skin pattern formation and body shape determination. This review focuses on connexins in teleosts, which are integrated in the mathematical models explaining morphological diversity of animal skin patterns and body shapes.

  19. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection.

    Science.gov (United States)

    Rodriguez-Sinovas, Antonio; Boengler, Kerstin; Cabestrero, Alberto; Gres, Petra; Morente, Miriam; Ruiz-Meana, Marisol; Konietzka, Ina; Miró, Elisabet; Totzeck, Andreas; Heusch, Gerd; Schulz, Rainer; Garcia-Dorado, David

    2006-07-07

    We have previously shown that connexin 43 (Cx43) is present in mitochondria, that its genetic depletion abolishes the protection of ischemia- and diazoxide-induced preconditioning, and that it is involved in reactive oxygen species (ROS) formation in response to diazoxide. Here we investigated the intramitochondrial localization of Cx43, the mechanism of Cx43 translocation to mitochondria and the effect of inhibiting translocation on the protection of preconditioning. Confocal microscopy of mitochondria devoid of the outer membrane and Western blotting on fractionated mitochondria showed that Cx43 is located at the inner mitochondrial membrane, and coimmunoprecipitation of Cx43 with Tom20 (Translocase of the outer membrane 20) and with heat shock protein 90 (Hsp90) indicated that it interacts with the regular mitochondrial protein import machinery. In isolated rat hearts, geldanamycin, a blocker of Hsp90-dependent translocation of proteins to the inner mitochondrial membrane through the TOM pathway, rapidly (15 minutes) reduced mitochondrial Cx43 content by approximately one-third in the absence or presence of diazoxide. Geldanamycin alone had no effect on infarct size, but it ablated the protection against infarction afforded by diazoxide. Geldanamycin abolished the 2-fold increase in mitochondrial Cx43 induced by 2 preconditioning cycles of ischemia/reperfusion, but this effect was not associated with reduced protection. These results demonstrate that Cx43 is transported to the inner mitochondrial membrane through translocation via the TOM complex and that a normal mitochondrial Cx43 content is important for the diazoxide-related pathway of preconditioning.

  20. Connexin43与心血管疾病关系的研究进展%Progress on correlation between connexin 43 and cardiovascular disease

    Institute of Scientific and Technical Information of China (English)

    吴瑶

    2011-01-01

    Connexin( Cx43)作为最重要的间隙连接蛋白,是哺乳动物心脏中最主要的连接蛋白。Cx43对心脏发育、心脏电生理活动、心肌的缺血后修复起重要作用,Cx43异常是很多心血管疾病包括先天性心脏病、缺血性心脏病、心律失常、高血压的重要病因。Cx43表达受多种因素影响,包括甲基化修饰、组蛋白修饰和非编码RNA调控等,这些调控机制的异常可能是其影响疾病发生、发展的重要因素。%As the most important gap junction protein, connexin 43 ( Cx43 ) is the most important connexin in the mammalian heart. Recent studies suggest that it plays an important role in heart development, cardiac electrophysiological activity and cell repair after myocardial ischemia. Cx43 abnormity is an important cause of many cardiovascular diseases including congenital heart disease, ischemic heart disease, arrhythmias and hypertension. The expression of Cx43 is regulated by various factors, including methylation, histone modification and non-coding RNA regulation, etc. These abnormal regulations may be important for the development of diseases.

  1. Microtubule-assisted altered trafficking of astrocytic gap junction protein connexin 43 is associated with depletion of connexin 47 during mouse hepatitis virus infection.

    Science.gov (United States)

    Basu, Rahul; Bose, Abhishek; Thomas, Deepthi; Das Sarma, Jayasri

    2017-09-08

    Gap junctions (GJs) are important for maintenance of CNS homeostasis. GJ proteins, connexin 43 (Cx43) and connexin 47 (Cx47), play a crucial role in production and maintenance of CNS myelin. Cx43 is mainly expressed by astrocytes in the CNS and forms gap junction intercellular communications between astrocytes-astrocytes (Cx43-Cx43) and between astrocytes-oligodendrocytes (Cx43-Cx47). Mutations of these connexin (Cx) proteins cause dysmyelinating diseases in humans. Previously, it has been shown that Cx43 localization and expression is altered due to mouse hepatitis virus (MHV)-A59 infection both in vivo and in vitro; however, its mechanism and association with loss of myelin protein was not elaborated. Thus, we explored potential mechanisms by which MHV-A59 infection alters Cx43 localization and examined the effects of viral infection on Cx47 expression and its association with loss of the myelin marker proteolipid protein. Immunofluorescence and total internal reflection fluorescence microscopy confirmed that MHV-A59 used microtubules (MTs) as a conduit to reach the cell surface and restricted MT-mediated Cx43 delivery to the cell membrane. Co-immunoprecipitation experiments demonstrated that Cx43-β-tubulin molecular interaction was depleted due to protein-protein interaction between viral particles and MTs. During acute MHV-A59 infection, oligodendrocytic Cx47, which is mainly stabilized by Cx43 in vivo, was down-regulated, and its characteristic staining remained disrupted even at chronic phase. The loss of Cx47 was associated with loss of proteolipid protein at the chronic stage of MHV-A59 infection. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice

    Science.gov (United States)

    Chen, Gang; Park, Chul-Kyu; Xie, Rou-Gang; Berta, Temugin; Nedergaard, Maiken

    2014-01-01

    Accumulating evidence suggests that spinal cord astrocytes play an important role in neuropathic pain sensitization by releasing astrocytic mediators (e.g. cytokines, chemokines and growth factors). However, it remains unclear how astrocytes control the release of astrocytic mediators and sustain late-phase neuropathic pain. Astrocytic connexin-43 (now known as GJ1) has been implicated in gap junction and hemichannel communication of cytosolic contents through the glial syncytia and to the extracellular space, respectively. Connexin-43 also plays an essential role in facilitating the development of neuropathic pain, yet the mechanism for this contribution remains unknown. In this study, we investigated whether nerve injury could upregulate connexin-43 to sustain late-phase neuropathic pain by releasing chemokine from spinal astrocytes. Chronic constriction injury elicited a persistent upregulation of connexin-43 in spinal astrocytes for >3 weeks. Spinal (intrathecal) injection of carbenoxolone (a non-selective hemichannel blocker) and selective connexin-43 blockers (connexin-43 mimetic peptides 43Gap26 and 37,43Gap27), as well as astroglial toxin but not microglial inhibitors, given 3 weeks after nerve injury, effectively reduced mechanical allodynia, a cardinal feature of late-phase neuropathic pain. In cultured astrocytes, TNF-α elicited marked release of the chemokine CXCL1, and the release was blocked by carbenoxolone, Gap26/Gap27, and connexin-43 small interfering RNA. TNF-α also increased connexin-43 expression and hemichannel activity, but not gap junction communication in astrocyte cultures prepared from cortices and spinal cords. Spinal injection of TNF-α-activated astrocytes was sufficient to induce persistent mechanical allodynia, and this allodynia was suppressed by CXCL1 neutralization, CXCL1 receptor (CXCR2) antagonist, and pretreatment of astrocytes with connexin-43 small interfering RNA. Furthermore, nerve injury persistently increased excitatory

  3. Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Salomonsson, Max; Braunstein, Thomas Hartig;

    2008-01-01

    of mimetic peptides directed against one or more connexins. Preglomerular resistance vessels were microdissected from kidneys of Sprague-Dawley rats and loaded with fura 2. The vessels were stimulated locally by applying electrical current through a micropipette, and the conducted calcium response...... was measured 500 mum from the site of stimulation. Application of connexin mimetic peptides directed against Cx40, 37/43, 45, or a cocktail with equimolar amounts of each, did not inhibit the propagated response, whereas the nonselective gap junction uncoupler carbenoxolone completely abolished the propagated...... mimetic peptides directed against Cx40, 37/43, or 45. Further studies are needed to determine whether conducted vasoconstriction is mediated via previously undescribed pathways....

  4. Understanding of the molecular evolution of deafness-associated pathogenic mutations of connexin 26.

    Science.gov (United States)

    Han, Xin-Huan; Fan, Yi; Wei, Qin-Jun; Xing, Guang-Qian; Cao, Xin

    2014-12-01

    Connexins (Cxs) were first identified as subunit proteins of the intercellular membrane channels that cluster in the cell communication structures known as gap junctions. Mutations in the gap junction β2 (GJB2) gene encoding connexin 26 (Cx26) have been linked to sporadic and hereditary hearing loss. In some cases, the mechanisms through which these mutations lead to hearing loss have been partly elucidated using cell culture systems and animal models. The goal of this study was to re-assess the pathogenic roles of the GJB2 mutations by combining comparative evolutionary studies. We used Bayesian phylogenetic analyses to determine the relationships among 35 orthologs and to calculate the ancestral sequences of these orthologs. By aligning sequences from the 35 orthologs and their ancestors and categorizing amino acid sites by degree of conservation, we used comparative evolutionary methods to determine potential functionally important amino acid sites in Cx26 and to identify missense changes that are likely to affect function. We identified six conserved regions in Cx26, five of which are located in the Connexin_CCC, and another is in the connexin super family domain. Finally, we identified 51 missense changes that are likely to disrupt function, and the probability of these changes occurring at hydrophilic amino acid residues was twice that of occurring at hydrophobic residues in the trans-membrane regions of Cx26. Our findings, which were obtained by combining comparative evolutionary methods to predict Cx26 mutant function, are consistent with the pathogenic characteristics of Cx26 mutants. This study provides a new pathway for studying the role of aberrant Cx26 in hereditary hearing loss.

  5. Expression of connexins 26, 32 and 43 in the human colon--an immunohistochemical study.

    OpenAIRE

    Maria Sobaniec-Lotowska; Mariusz Koda; Stanislaw Sulkowski; Luiza Kanczuga-Koda; Mariola Sulkowska

    2005-01-01

    Gap junctional intercellular communication (GJIC) is a mechanism for direct cell-to-cell signalling and is mediated by gap junctions (GJs), which consist of proteins called connexins (Cxs). GJIC plays a critical role in tissue development and differentiation and is important in maintenance of tissue homeostasis. The purpose of the study was to evaluate the expression of Cx26, Cx32 and Cx43 in the human colon. Surgical specimens were obtained from patients who underwent surgical resection of c...

  6. Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels.

    Directory of Open Access Journals (Sweden)

    Lauw J Klaassen

    2011-07-01

    Full Text Available In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important

  7. Lens fiber connexin turnover and caspase-3-mediated cleavage are regulated alternately by phosphorylation.

    Science.gov (United States)

    Yin, Xinye; Liu, Jialu; Jiang, Jean X

    2008-05-01

    Lens connexins are phosphorylated in vivo; however, the function and regulation of the phosphorylation remain largely unknown. We have previously identified an in vivo phosphorylation site, Ser(364), at the COOH terminus of lens connexin (Cx) Cx45.6 and phosphorylation appears to regulate connexin protein turnover. To assess the specific mechanism of Ser(364) phosphorylation in Cx45.6, exogenous wild type and Ser(364) mutant Cx45.6 were expressed in primary lens cultures through retroviral infection. Cx45.6 turnover was attenuated primarily by proteasomal inhibitors and to a lesser extent by lysosomal inhibitors. Furthermore, the level of Cx45.6 protein in ubiquitin co-expressed cells was significantly reduced as compared to the cells expressing Cx45.6 alone. Moreover, overexpression of ubiquitin led to a more significant decrease in wild type Cx45.6 than Cx45.6(S364A), a mutant deficient of phosphorylation site at Ser(364), although we did not detect any difference in the levels of ubiquitination between wild type and mutant Cx45.6. Interestingly, the mutant mimicking constitutive phosphorylation, Cx45.6(S364D), partially prevented the cleavage of Cx45.6 by caspase-3. Together, our data suggest that phosphorylation of Cx45.6 at Ser(364) appears to stimulate Cx45.6 turnover primarily through proteasome pathway and this phosphorylation inhibits the cleavage of Cx45.6 by caspase-3. These findings provide further insights into regulatory mechanism of the specific phosphorylation of connexins in the lens.

  8. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death.

    Science.gov (United States)

    Van Norstrand, David W; Asimaki, Angeliki; Rubinos, Clio; Dolmatova, Elena; Srinivas, Miduturu; Tester, David J; Saffitz, Jeffrey E; Duffy, Heather S; Ackerman, Michael J

    2012-01-24

    An estimated 10% to 15% of sudden infant death syndrome (SIDS) cases may stem from channelopathy-mediated lethal arrhythmias. Loss of the GJA1-encoded gap junction channel protein connexin43 is known to underlie formation of lethal arrhythmias. GJA1 mutations have been associated with cardiac diseases, including atrial fibrillation. Therefore, GJA1 is a plausible candidate gene for premature sudden death. GJA1 open reading frame mutational analysis was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing on DNA from 292 SIDS cases. Immunofluorescence and dual whole-cell patch-clamp studies were performed to determine the functionality of mutant gap junctions. Immunostaining for gap junction proteins was performed on SIDS-associated paraffin-embedded cardiac tissue. Two rare, novel missense mutations, E42K and S272P, were detected in 2 of 292 SIDS cases, a 2-month-old white boy and a 3-month-old white girl, respectively. Analysis of the E42K victim's parental DNA demonstrated a de novo mutation. Both mutations involved highly conserved residues and were absent in >1000 ethnically matched reference alleles. Immunofluorescence demonstrated no trafficking abnormalities for either mutation, and S272P demonstrated wild-type junctional conductance. However, junctional conductance measurements for the E42K mutation demonstrated a loss of function not rescued by wild type. Moreover, the E42K victim's cardiac tissue demonstrated a mosaic immunostaining pattern for connexin43 protein. This study provides the first molecular and functional evidence implicating a GJA1 mutation as a novel pathogenic substrate for SIDS. E42K-connexin43 demonstrated a trafficking-independent reduction in junctional coupling in vitro and a mosaic pattern of mutational DNA distribution in deceased cardiac tissue, suggesting a novel mechanism of connexin43-associated sudden death.

  9. Connexin50 couples axon terminals of mouse horizontal cells by homotypic gap junctions.

    Science.gov (United States)

    Dorgau, Birthe; Herrling, Regina; Schultz, Konrad; Greb, Helena; Segelken, Jasmin; Ströh, Sebastian; Bolte, Petra; Weiler, Reto; Dedek, Karin; Janssen-Bienhold, Ulrike

    2015-10-01

    Horizontal cells in the mouse retina are of the axon-bearing B-type and contribute to the gain control of photoreceptors and to the center-surround organization of bipolar cells by providing feedback and feedforward signals to photoreceptors and bipolar cells, respectively. Horizontal cells form two independent networks, coupled by dendro-dendritic and axo-axonal gap junctions composed of connexin57 (Cx57). In Cx57-deficient mice, occasionally the residual tracer coupling of horizontal cell somata was observed. Also, negative feedback from horizontal cells to photoreceptors, potentially mediated by connexin hemichannels, appeared unaffected. These results point to the expression of a second connexin in mouse horizontal cells. We investigated the expression of Cx50, which was recently identified in axonless A-type horizontal cells of the rabbit retina. In the mouse retina, Cx50-immunoreactive puncta were predominantly localized on large axon terminals of horizontal cells. Electron microscopy did not reveal any Cx50-immunolabeling at the membrane of horizontal cell tips invaginating photoreceptor terminals, ruling out the involvement of Cx50 in negative feedback. Moreover, Cx50 colocalized only rarely with Cx57 on horizontal cell processes, indicating that both connexins form homotypic rather than heterotypic or heteromeric gap junctions. To check whether the expression of Cx50 is changed when Cx57 is lacking, we compared the Cx50 expression in wildtype and Cx57-deficient mice. However, Cx50 expression was unaffected in Cx57-deficient mice. In summary, our results indicate that horizontal cell axon terminals form two independent sets of homotypic gap junctions, a feature which might be important for light adaptation in the retina. © 2015 Wiley Periodicals, Inc.

  10. Connexin26 regulates assembly and maintenance of cochlear gap junction macromolecular complex for normal hearing

    Science.gov (United States)

    Kamiya, Kazusaku; Fukunaga, Ichiro; Hatakeyama, Kaori; Ikeda, Katsuhisa

    2015-12-01

    Hereditary deafness affects about 1 in 2000 children and GJB2 gene mutation is most frequent cause for this disease in the world. GJB2 encodes connexin26 (Cx26), a component in cochlear gap junction. Recently, we found macromolecular change of gap junction plaques with two different types of Cx26 mutation as major classification of clinical case, one is a model of dominant negative type, Cx26R75W+ and the other is conditional gene deficient mouse, Cx26f/fP0Cre as a model for insufficiency of gap junction protein [6]. Gap junction composed mainly of Cx26 and Cx30 in wild type mice formed large planar gap junction plaques (GJP). In contrast, Cx26R75W+ and Cx26f/fP0Cre showed fragmented small round GJPs around the cell border. In Cx26f/fP0Cre, some of the cells with Cx26 expression due to their cellular mosaicism showed normal large GJP with Cx26 and Cx30 only at the cell junction site between two Cx26 positive cells. These indicate that bilateral Cx26 expressions from both adjacent cells are essential for the formation of the cochlear linear GJP, and it is not compensated by other cochlear Connexins such as Connexin30. In the present study, we demonstrated a new molecular pathology in most common hereditary deafness with different types of Connexin26 mutations, and this machinery can be a new target for drag design of hereditary deafness.

  11. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    Science.gov (United States)

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103–104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia. PMID:24865217

  12. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep.

    Directory of Open Access Journals (Sweden)

    Joanne O Davidson

    Full Text Available Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age. Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6 or vehicle infusion for controls (occlusion-vehicle group, n = 7. Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05, with reduced neuronal loss in the caudate and putamen (p<0.05, but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05 and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05, with a significant increase in proliferation (p<0.05. Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.

  13. Higher Incidence of Lung Adenocarcinomas Induced by DMBA in Connexin 43 Heterozygous Knockout Mice

    Directory of Open Access Journals (Sweden)

    Krishna Duro de Oliveira

    2013-01-01

    Full Text Available Gap junctions are communicating junctions which are important for tissue homeostasis, and their disruption is involved in carcinogenic processes. This study aimed to verify the influence of deletion of one allele of the Connexin 43 gene on cancer incidence in different organs. The 7, 12-dimethylbenzanthracene (DMBA carcinogenic model, using hebdomadary doses by gavage of 9 mg per animal, was used to induce tumors in Connexin 43 heterozygous or wild-type mice. The experiment began in the eighth week of the mice life, and all of them were euthanized when reaching inadequate physical condition, or at the end of 53 weeks. No statistical differences occurred for weight gain and cancer survival time (P=0.9853 between heterozygous and wild-type mice. Cx43+/− mice presented significantly higher susceptibility to lung cancer (P=0.0200 which was not evidenced for benign neoplasms (P=0.3449. In addition, incidence of ovarian neoplasms was 2.5-fold higher in Cx43+/− mice, although not statistically significant. Other organs showed a very similar cancer occurrence between Cx43 groups. The experiment strengthens the evidence of the relationship between Connexin 43 deficiency and carcinogenesis.

  14. Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells.

    Science.gov (United States)

    Oyamada, Masahito; Takebe, Kumiko; Endo, Aya; Hara, Sachiko; Oyamada, Yumiko

    2013-01-01

    Pluripotent stem cells, i.e., embryonic stem (ES) and induced pluripotent stem (iPS) cells, can indefinitely proliferate without commitment and differentiate into all cell lineages. ES cells are derived from the inner cell mass of the preimplantation blastocyst, whereas iPS cells are generated from somatic cells by overexpression of a few transcription factors. Many studies have demonstrated that mouse and human iPS cells are highly similar but not identical to their respective ES cell counterparts. The potential to generate basically any differentiated cell types from these cells offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. ES cells and iPS cells also provide useful models to study connexin expression and gap-junctional intercellular communication (GJIC) during cell differentiation and reprogramming. In 1996, we reported connexin expression and GJIC in mouse ES cells. Because a substantial number of papers on these subjects have been published since our report, this Mini Review summarizes currently available data on connexin expression and GJIC in ES cells and iPS cells during undifferentiated state, differentiation, and reprogramming.

  15. Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells

    Directory of Open Access Journals (Sweden)

    Masahito eOyamada

    2013-07-01

    Full Text Available Pluripotent stem cells, i.e., embryonic stem (ES and induced pluripotent stem (iPS cells, can indefinitely proliferate without commitment and differentiate into all cell lineages. ES cells are derived from the inner cell mass of the preimplantation blastocyst, whereas iPS cells are generated from somatic cells by overexpression of a few transcription factors. Many studies have demonstrated that mouse and human iPS cells are highly similar but not identical to their respective ES cell counterparts. The potential to generate basically any differentiated cell types from these cells offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. ES cells and iPS cells also provide useful models to study connexin expression and gap-junctional intercellular communication (GJIC during cell differentiation and reprogramming. In 1996, we reported connexin expression and GJIC in mouse ES cells. Because a substantial number of papers on these subjects have been published since our report, this Mini Review summarizes currently available data on connexin expression and GJIC in ES cells and iPS cells during undifferentiated state, differentiation, and reprogramming.

  16. Data of the molecular dynamics simulations of mutations in the human connexin46 docking interface.

    Science.gov (United States)

    Schadzek, Patrik; Schlingmann, Barbara; Schaarschmidt, Frank; Lindner, Julia; Koval, Michael; Heisterkamp, Alexander; Ngezahayo, Anaclet; Preller, Matthias

    2016-06-01

    The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].

  17. The gene for human gap junction protein connexin37 (GJA4) maps to chromosome 1p35.1, in the vicinity of D1S195

    Energy Technology Data Exchange (ETDEWEB)

    Van Camp, G.; Coucke, P.; Willems, P.J. [Univ. of Antwerp (Belgium)] [and others

    1995-11-20

    Gap junctions are plasma membrane structures containing channels that allow the exchange of small molecules between cells. Each hemichannel is an oligomer of six subunit proteins called connexins. The formation of intercellular channels is possible through interaction with connexins in the plasma membrane of adjacent cells. Gapjunction channels allow the passage of different molecules up to 1 kDa, such as ions, many second messengers, and small metabolites. Connexins are numbered according to their molecular mass in kilodaltons, calculated from the gene sequences. They are found in the vast majority of cell types and facilitate intercellular communication between cells. Connexins are encoded by a family of homologous genes with highly conserved extracellular and transmembrane domains, whereas the cytoplasmic regions are specific for each subtype. All connexin genes described up to now contain no introns in the coding region. 17 refs., 1 fig.

  18. Aberrantly localized connexin32 protein enhances invasion and metastasis of hepatocellular carcinoma cells in vivo%间隙连接蛋白Connexin32对肝癌侵袭和转移能力的影响

    Institute of Scientific and Technical Information of China (English)

    李庆昌; 谢成耀; 高辉; 徐洪涛; 邱雪杉; 王恩华

    2009-01-01

    目的:探讨肝癌细胞中间隙连接蛋白Connexin32对肝癌细胞体内侵袭和转移能力的影响.方法:利用可以通过增减细胞外环境中Doxycycline调控Connexin32蛋白表达的肝癌细胞HuH7 Tet-off Cx32亚克隆,将之原位移植到重度联合免疫缺陷鼠肝脏浆膜下,通过饮用水中添加(去除)Doxycycline调控动物体内Connexin32的表达,8周后处死小鼠,观察肿瘤形成及转移情况,蛋白质印迹法及免疫组织化学方法检测其与对照组的Connexin32蛋白表达情况.结果:移植HuH7 Tet-off Cx32细胞的小鼠,在饮用水中去除Doxycycline诱发Connexin32高表达条件下,形成明显的肝内转移灶和腹膜转移灶;而饮用水中添加了Doxycycline的小鼠没有发现明显的转移灶形成.免疫组化证实,高表达的Connexin32蛋白定位于细胞质.蛋白质印迹法结果显示,Doxycycline在小鼠体内呈现较好的诱导性.结论:细胞质内异位蓄积的Connexin32蛋白明显增强肝癌细胞的体内侵袭和转移能力.

  19. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251

    Directory of Open Access Journals (Sweden)

    Liu Hongsheng

    2010-01-01

    Full Text Available Abstract Background bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. Methods In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI, and infection with adenovirus expressing green fluorescent protein (Ad-GFP at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Results Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. Conclusion To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  20. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251.

    Science.gov (United States)

    Zhang, Biao; Feng, Xuequan; Wang, Jinhuan; Xu, Xinnu; Liu, Hongsheng; Lin, Na

    2010-01-14

    bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  1. Identification of connexin 50 and 57 mRNA in A-type horizontal cells of the rabbit retina

    Institute of Scientific and Technical Information of China (English)

    He HUANG; Hui LI; Shi Gang HE

    2005-01-01

    Horizontal cells (HCs) mediate negative feedback to photoreceptors. In the mammalian retina, there are two types of HCs, which are extensively coupled to neighboring cells through homologous gap junctions. The permeability and therefore the strength of feedback can be regulated by light intensity, dopamine and many other factors. However, the component(s) of the most prominent gap junctions, those between A-type HCs in the rabbit retina, is still unknown. In this study, we compared the sequences of many types of mammalian connexins, obtained partial sequences of rabbit connexin 50 and 57. Using specific primers designed against the rabbit sequences, we identified mRNAs of connexin 50and/or 57 in visually selected single A-type HC using multiplex RT-PCR.

  2. Gap junction and hemichannel-independent actions of connexins on cell and tissue functions--an update.

    Science.gov (United States)

    Zhou, Jade Z; Jiang, Jean X

    2014-04-17

    Connexins, a family of transmembrane proteins, are components of both gap junction channels and hemichannels, which mediate the exchange of ions and small molecules between adjacent cells, and between the inside and outside of the cell, respectively. Substantial advancements have been made in the comprehension of the role of gap junctions and hemichannels in coordinating cellular events. In recent years, a plethora of studies demonstrate a role of connexin proteins in the regulation of tissue homeostasis that occurs independently of their channel activities. This is shown in the context of cell growth, adhesion, migration, apoptosis, and signaling. The major mechanisms of these channel-independent activities still remain to be discovered. In this review, we provide an updated overview on the current knowledge of gap junction- and hemichannel-independent functions of connexins, in particular, their effects on tumorigenesis, neurogenesis and disease development. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Mechanism for modulation of gating of connexin26-containing channels by taurine

    Science.gov (United States)

    Kieken, Fabien; Tao, Liang; Sorgen, Paul L.; Harris, Andrew L.

    2011-01-01

    The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28–amino acid “tag” to the carboxyl-terminal domain (CT) of Cx26 (Cx26T) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26Tc) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26Tc/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32T and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function. PMID:21844220

  4. Effect of Beta-Carotene on Oxidative Stress and Expression of Cardiac Connexin 43

    Energy Technology Data Exchange (ETDEWEB)

    Novo, Rosangela; Azevedo, Paula S.; Minicucci, Marcos F.; Zornoff, Leonardo A. M., E-mail: lzornoff@fmb.unesp.br; Paiva, Sergio A. R. [Faculdade de Medicina de Botucatu - Universidade Estadual Paulista ' Júlio de Mesquita Filho' , Botucatu, SP (Brazil)

    2013-09-15

    Intervention studies have shown an increased mortality in patients who received beta-carotene. However, the mechanisms involved in this phenomenon are still unknown. Evaluate the influence of beta-carotene on oxidative stress and the expression of connexin 43 in rat hearts. Wistar rats, weighing approximately 100 g, were allocated in two groups: Control Group (n = 30), that received the diet routinely used in our laboratory, and Beta-Carotene Group (n = 28), which received beta-carotene (in crystal form, added and mixed to the diet) at a dose of 500 mg of beta carotene/kg of diet. The animals received the treatment until they reached 200-250g, when they were sacrificed. Samples of blood, liver and heart were collected to perform Western blotting and immunohistochemistry for connexin 43; morphometric studies, dosages of beta carotene by high performance liquid chromatography as well as reduced glutathione, oxidized glutathione and lipids hydroperoxides were performed by biochemical analysis. Beta-carotene was detected only in the liver of Beta-Carotene Group animals (288 ± 94.7 μg/kg). Levels of reduced/ oxidized glutathione were higher in the liver and heart of Beta-Carotene Group animals (liver - Control Group: 42.60 ± 1.62; liver - Beta-Carotene Group: 57.40 ± 5.90; p = 0.04; heart: - Control Group: 117.40 ± 1.01; heart - Beta-Carotene Group: 121.81 ± 1.32 nmol/mg protein; p = 0.03). The content of total connexin 43 was larger in Beta-Carotene Group. Beta-carotene demonstrated a positive effect, characterized by the increase of intercellular communication and improvement of anti-oxidizing defense system. In this model, mechanism does not explain the increased mortality rate observed with the beta-carotene supplementation in clinical studies.

  5. Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease

    Directory of Open Access Journals (Sweden)

    Sand Jette C

    2007-07-01

    Full Text Available Abstract Background X-linked Charcot-Marie Tooth (CMT is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. Methods We describe two novel mutations in the connexin32 gene in two Norwegian families. Results Family 1 had a c.225delG (R75fsX83 which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands. The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25–49 m/s. Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals. Conclusion The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.

  6. Connexin hemichannels explain the ionic imbalance and lead to atrophy in denervated skeletal muscles.

    Science.gov (United States)

    Cisterna, Bruno A; Vargas, Aníbal A; Puebla, Carlos; Sáez, Juan C

    2016-11-01

    Denervated fast skeletal muscles undergo atrophy, which is associated with an increase in sarcolemma permeability and protein imbalance. However, the mechanisms responsible for these alterations remain largely unknown. Recently, a close association between de novo expression of hemichannels formed by connexins 43 and 45 and increase in sarcolemma permeability of denervated fast skeletal myofibers was demonstrated. However, it remains unknown whether these connexins cause the ionic imbalance of denervates fast myofibers. To elucidate the latter and the role of hemichannels formed by connexins (Cx HCs) in denervation-induced atrophy, skeletal myofibers deficient in Cx43 and Cx45 expression (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice) and control (Cx43(fl/fl)Cx45(fl/fl) mice) were denervated and several muscle features were systematically analyzed at different post-denervation (PD) times (1, 3, 5, 7 and 14days). The following sequence of events was found in denervated myofibers of Cx43(fl/fl)Cx45(fl/fl) mice: 1) from day 3 PD, increase in sarcolemmal permeability, 2) from day 5 PD, increases of intracellular Ca(2+) and Na(+) signals as well as a significant increase in protein synthesis and degradation, yielding a negative protein balance and 3) from day 7 PD, a fall in myofibers cross-section area. All the above alterations were either absent or drastically reduced in denervated myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Thus, the denervation-induced Cx HCs expression is an early event that precedes the electrochemical gradient dysregulation across the sarcolemma and critically contributes to the progression of skeletal muscle atrophy. Consequently, Cx HCs could be a therapeutic target to drastically prevent the denervation-induced atrophy of fast skeletal muscles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Gap junction signalling mediated through connexin-43 is required for chick limb development.

    Science.gov (United States)

    Makarenkova, H; Patel, K

    1999-03-15

    During chick limb development the gap junction protein Connexin-43 (Cx43) is expressed in discrete spatially restricted domains in the apical ectodermal ridge (AER) and mesenchyme of the zone of polarising activity. Antisense oligonucleotides (ODNs) were used to investigate the role of Connexin-43 (Cx43) in the development of the chick limb bud. We have used unmodified ODNs in Pluronic F-127 gel, which is liquid at low temperature but sets at room temperature and so remains situated at the point of application. As a mild surfactant, the gel increases antisense ODN penetration and supplies ODNs to the embryo continually for 12-18 h. We have shown a strong decrease in Cx43 protein expression after application of specific antisense oligonucleotides but the abundance of a closely related protein, Connexin-32 (Cx32), was not affected. Application of antisense Cx43 ODNs at stages 8-15 HH before limb outgrowth resulted in dramatic limb phenotypes. About 40% of treated embryos exhibited defects such as truncation of the limb bud, fragmentation into two or more domains, or complete splitting of the limb bud into two or three branches. Molecular analysis of antisense treated embryos failed to detect Shh or Bmp-2 in anterior structures and suggested that extra lobes seen in nicked and split limbs were not a result of establishment of new signalling centres as found after the application of FGF to the flank. However, examination of markers for the AER showed a number of abnormalities. In severely truncated specimens we were unable to detect the expression of either Fgf-4 or Fgf-8. In both nicked and split limbs the expression of these genes was discontinuous. Down-regulation of Cx43 after the antisense application could be comparable to AER removal and results in distal truncation of the limb bud. Taken together these data suggest the existence of a feedback loop between the FGFs and signalling mediated by Cx43.

  8. Connexin domains relevant to the chemical gating of gap junction channels

    Directory of Open Access Journals (Sweden)

    C. Peracchia

    1997-05-01

    Full Text Available Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons, each formed by the radial arrangement of six connexin (Cx proteins. Connexins span the bilayer four times (M1-M4 and have both amino- and carboxy-termini (NT, CT at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2 and one inner (IL loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2 of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R with sparagines (N at the beginning of CT (C1 greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL1 and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively

  9. Connexin abundance in resistance vessels from the renal microcirculation in normo- and hypertensive rats

    DEFF Research Database (Denmark)

    Braunstein, Thomas Hartig; Sørensen, Charlotte Mehlin; Holstein-Rathlou, Niels-Henrik

    2009-01-01

    The expression of connexins in renal arterioles is believed to have a profound impact on conducted responses, regulation of arteriolar tonus and renal blood flow. We have previously shown that in renal preglomerular arterioles, conducted vasomotor responses are 40% greater in spontaneously...... with SD and SHR. This high abundance of Cx37 was not related to blood pressure because normotensive SD demonstrated a level of Cx37 similar to that of SHR. Additionally, we found no evidence for an increased abundance of Cx40 and Cx43 in renal arterioles of SHR when compared with normotensive counterparts....

  10. Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive.

    Science.gov (United States)

    Ribeiro-Rodrigues, Teresa M; Catarino, Steve; Pinho, Maria J; Pereira, Paulo; Girao, Henrique

    2015-06-01

    Connexins (Cxs) are transmembrane proteins that form channels which allow direct intercellular communication (IC) between neighbouring cells via gap junctions. Mechanisms that modulate the amount of channels at the plasma membrane have emerged as important regulators of IC and their de-regulation has been associated with various diseases. Although Cx-mediated IC can be modulated by different mechanisms, ubiquitination has been described as one of the major post-translational modifications involved in Cx regulation and consequently IC. In this review, we focus on the role of ubiquitin and its effect on gap junction intercellular communication.

  11. Program specialization

    CERN Document Server

    Marlet, Renaud

    2013-01-01

    This book presents the principles and techniques of program specialization - a general method to make programs faster (and possibly smaller) when some inputs can be known in advance. As an illustration, it describes the architecture of Tempo, an offline program specializer for C that can also specialize code at runtime, and provides figures for concrete applications in various domains. Technical details address issues related to program analysis precision, value reification, incomplete program specialization, strategies to exploit specialized program, incremental specialization, and data speci

  12. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart.

    Science.gov (United States)

    Martins-Marques, Tania; Anjo, Sandra Isabel; Pereira, Paulo; Manadas, Bruno; Girão, Henrique

    2015-11-01

    The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331.

  13. Connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL: an involvement of ERK signaling pathway.

    Science.gov (United States)

    Yin, Guotian; Yang, Xiuli; Li, Bo; Yang, Meng; Ren, Mingfen

    2014-09-01

    Oxidized low-density lipoprotein (ox-LDL), one of the most important risk factors of atherosclerosis, is a highly antigenic, potent chemoattractant that facilitates the development of atherosclerosis. Gap junctions also play an important in the development of atherosclerosis. In this study, we investigated the effects of ox-LDL on connexin43 and the mechanisms of connexin43 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cell (HUVEC), to clarify the role of connexin43 in atherosclerosis. Our results showed that ox-LDL significantly inhibited the growth and promoted apoptosis of HUVEC in a dose-dependent manner. Also, ox-LDL upregulated the expression of connexin43. Furthermore, knockdown connexin43 by siRNA promoted proliferation and inhibited apoptosis in ox-LDL-stimulated HUVEC. Moreover, the level of phosphor-ERK1/2 and connexin43 was remarkably attenuated by a ERK pathway inhibitor (PD98059). These results suggest that connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL, and ERK signaling pathway appears to be involved in these processes.

  14. Dynamic changes of connexin-43, gap junctional protein, in outer layers of cumulus cells are regulated by PKC and PI 3-kinase during meiotic resumption in porcine oocytes.

    Science.gov (United States)

    Shimada, M; Maeda, T; Terada, T

    2001-04-01

    Mammalian oocytes are surrounded by numerous layers of cumulus cells, and the loss of gap junctional communication in the outer layers of cumulus cells induces meiotic resumption in oocytes. In this study, we investigated the dynamic changes in the gap junctional protein connexin-43 in cumulus cells during the meiotic resumption of porcine oocytes. The amount of connexin-43 in all layers of cumulus cells recovered from cumulus-oocyte complexes was increased after 4-h cultivation. However, at 12-h cultivation, the positive signal for connexin-43 immunoreactivity was markedly reduced in the outer layers of cumulus cells. When these reductions of connexin-43 were blocked by protein kinase C (PKC) or phosphatidylinositol (PI) 3-kinase inhibitor, networks of filamentous bivalents (i.e., advanced chromosomal status) were undetectable in the germinal vesicle of the oocyte. After 28-h cultivation, when the majority of oocytes were reaching the metaphase I (MI) stage, the connexin-43 in the inner layers of cumulus cells was phosphorylated, regardless of mitogen-activated protein (MAP) kinase activation. These results suggest that the initiation of meiotic resumption, namely, the formation of networks of filamentous bivalents in germinal vesicle, is associated with the reduction of gap junctional protein connexin-43 in the outer layers of cumulus cells via the PKC and/or PI 3-kinase pathway. Moreover, the connexin-43 in the inner layers of cumulus cells is phosphorylated during meiotic progression beyond the MI stage, regardless of MAP kinase activation in cumulus cells surrounding the oocyte.

  15. Occludin and connexin 43 expression contribute to the pathogenesis of traumatic brain edema*

    Institute of Scientific and Technical Information of China (English)

    Wanyin Ren; Guojie Jing; Qin Shen; Xiaoteng Yao; Yingchao Jing; Feng Lin; Weidong Pan

    2013-01-01

    The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney’s free fal ing method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Changes in brain water content were determined using the wet and dry weights. Our results showed that water content of tissue significantly increased after traumatic brain injury, and reached minimum at 24 hours. Hematoxylin-eosin staining revealed pathological impairment of brain tissue at each time point after injury, particularly at 3 days, with nerve celledema, degenera-tion, and necrosis observed, and the apoptotic rate significantly increased. Immunohistochemistry and western blot analysis revealed that the expression of occludin at the injured site gradual y de-creased as injury time advanced and reached a minimum at 3 days after injury; the expression of connexin 43 gradual y increased as injury time advanced and reached a peak at 24 hours after in-jury. The experimental findings indicate that changes in occludin and connexin 43 expression were consistent with the development of brain edema, and may reflect the pathogenesis of brain injury.

  16. Molecular cloning and evolutionary analysis of the GJA1 (connexin43) gene from bats (Chiroptera).

    Science.gov (United States)

    Wang, Li; Li, Gang; Wang, Jinhong; Ye, Shaohui; Jones, Gareth; Zhang, Shuyi

    2009-04-01

    Gap junction protein connexin43 (Cx43), encoded by the GJA1 gene, is the most abundant connexin in the cardiovascular system and was reported as a crucial factor maintaining cardiac electrical conduction, as well as having a very important function in facilitating the recycling of potassium ions from hair cells in the cochlea back into the cochlear endolymph during auditory transduction processes. In mammals, bats are the only taxon possessing powered flight, placing exceptional demand on many organismal processes. To meet the demands of flying, the hearts of bats show many specialties. Moreover, ultrasonic echolocation allows bat species to orientate and often detect and locate food in darkness. In this study, we cloned the full-length coding region of GJA1 gene from 12 different species of bats and obtained orthologous sequences from other mammals. We used the maximum likelihood method to analyse the evolution of GJA1 gene in mammals and the lineage of bats. Our results showed this gene is much conserved in mammals, as well as in bats' lineage. Compared with other mammals, we found one private amino acid substitution shared by bats, which is located on the inner loop domain, as well as some species-specific amino acid substitutions. The evolution rate analyses showed the signature of purifying selection on not only different classification level lineages but also the different domains and amino acid residue sites of this gene. Also, we suggested that GJA1 gene could be used as a good molecular marker to do the phylogenetic reconstruction.

  17. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    Directory of Open Access Journals (Sweden)

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  18. Chronic exposure to hexachlorobenzene results in down-regulation of connexin43 in the breast.

    Science.gov (United States)

    Delisle, Ariane; Ferraris, Emanuelle; Plante, Isabelle

    2015-11-01

    Decreased expression of connexins has been associated with cancer, but the underlying mechanisms are poorly understood. We have previously shown that a 5 day exposure to hexachlorobenzene (HCB) resulted in decreased connexins expression in hepatocytes 45 days later, and that this down-regulation was linked to activation of Akt through the ILK pathway. Because HCB promotes cancer in both the liver and breast, the present study aimed to determine if the mechanisms are similar in both tissues. MCF-12A breast cells were thus transfected with vectors coding for either Akt or a constitutively active form of Akt. In those cells, activation of Akt was correlated with decreased Cx43 levels. Female rats were then exposed to HCB by gavage either following the same protocol used previously for the liver or through a chronic exposure. While no changes were observed after the 5 days exposure protocol, chronic exposure to HCB resulted in increased Akt levels and decreased Cx43 levels in breast cells. In vitro, Akt was activated in MCF-12A cells exposed to HCB either for 7 days or chronically, but no changes were observed in junctional proteins. Together, these results suggested that, while activation of Akt can decrease Cx43 expression in breast cells in vitro, other mechanisms are involved during HCB exposure, leading to a decrease in Cx43 levels in a model- and duration-dependent manner. Finally, we showed that HCB effects are tissue specific, as we did not observe the same results in breast and liver tissues.

  19. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion.

    Science.gov (United States)

    Naus, Christian C; Aftab, Qurratulain; Sin, Wun Chey

    2016-02-01

    Cell migration is critical for cell differentiation, tissue formation and organ development. Several mechanisms come to play in the process of cell migration, orchestrating changes in cell polarity, adhesion, process extension and motility. Recent findings have shown that gap junctions, and specifically connexin43 (Cx43), can play a significant role in these processes, impacting adhesion and cytoskeletal rearrangements. Thus Cx43 within a cell regulates its motility and migration via intracellular signaling. Furthermore, Cx43 in the host cells can impact the degree of cellular migration through that tissue. Similarities in these connexin-based processes account for both neural progenitor migration in the developing brain, and for glioma cell invasion in the mature brain. In both cases, Cx43 in the tissue ("soil") in which cells ("seeds") exist facilitates their migration and, for glioma cells, tissue invasion. Cx43 mediates these effects through channel- and non-channel-dependent mechanisms which have similarities in both paradigms of cell migration. This provides insight into developmental processes and pathological situations, as well as possible therapeutic approaches regarding specific functional domains of gap junction proteins.

  20. Regulation of connexins expression levels by microRNAs, an update

    Directory of Open Access Journals (Sweden)

    Juan Francisco Calderon

    2016-11-01

    Full Text Available Control of cell-cell coordination and communication is regulated by several factors, including paracrine and autocrine release of biomolecules, and direct exchange of soluble factors between cells through gap junction channels. Additionally, hemichannels also participate in cell-cell coordination through the release of signaling molecules, such as ATP and glutamate. A family of transmembrane proteins named connexins forms both gap junction channels and hemichannels. Because of their importance in cell and tissue coordination, connexins are controlled both by post-translational and post-transcriptional modifications. In recent years, non-coding RNAs have garnered research interest due to their ability to exert post-transcriptional regulation of gene expression. One of the most recent, well-documented control mechanisms of protein synthesis is found through the action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs. Put simply, miRNAs are negative regulators of the expression of a myriad proteins involved in many physiological and pathological processes. This mini review will briefly summarize what is currently known about the action of miRNAs over Cxs expression/function in different organs under some relevant physiological and pathological conditions

  1. Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation.

    Science.gov (United States)

    Yin, X; Jedrzejewski, P T; Jiang, J X

    2000-03-10

    Connexin (Cx) 45.6, an avian counterpart of rodent Cx50, is phosphorylated in vivo, but the sites and function of the phosphorylation have not been elucidated. Our peptide mapping experiments showed that the Ser(363) site in the carboxyl (COOH) terminus of Cx45.6 was phosphorylated and that this site is within casein kinase (CK) II consensus sequence, although showing some similarity to CKI sequence. The peptide containing Ser(363) could be phosphorylated in vitro by CKII, but not by CKI. Furthermore, CKII phosphorylated Cx45.6 in embryonic lens membrane and the fusion protein containing the COOH terminus of Cx45.6. Two-dimensional peptide mapping experiments showed that one of the Cx45.6 peptides phosphorylated in vivo migrated to the same spot as one of those phosphorylated by CKII in vitro. Furthermore, CKII activity could be detected in lens lysates. To assess the function of this phosphorylation event, exogenous wild type and mutant Cx45.6 (Ser(363) --> Ala) were expressed in lens primary cultures by retroviral infection. The mutant Cx45.6 was shown to be more stable having a longer half-life compared with wild type Cx45.6. Together, the evidence suggests that CKII is likely a kinase responsible for the Ser(363) phosphorylation, leading to the destablization and degradation of Cx45.6. The connexin degradation induced by phosphorylation has a broad functional significance in the regulation of gap junctions in vivo.

  2. Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish.

    Science.gov (United States)

    Misu, Akihiro; Yamanaka, Hiroaki; Aramaki, Toshihiro; Kondo, Shigeru; Skerrett, I Martha; Iovine, M Kathryn; Watanabe, Masakatsu

    2016-06-10

    Fish remain nearly the same shape as they grow, but there are two different modes of bone growth. Bones in the tail fin (fin ray segments) are added distally at the tips of the fins and do not elongate once produced. On the other hand, vertebrae enlarge in proportion to body growth. To elucidate how bone growth is controlled, we investigated a zebrafish mutant, steopsel (stp(tl28d)). Vertebrae of stp(tl28d) (/+) fish look normal in larvae (∼30 days) but are distinctly shorter (59-81%) than vertebrae of wild type fish in adults. In contrast, the lengths of fin rays are only slightly shorter (∼95%) than those of the wild type in both larvae and adults. Positional cloning revealed that stp encodes Connexin43 (Cx43), a connexin that functions as a gap junction and hemichannel. Interestingly, cx43 was also identified as the gene causing the short-of-fin (sof) phenotype, in which the fin ray segments are shorter but the vertebrae are normal. To identify the cause of this difference between the alleles, we expressed Cx43 exogenously in Xenopus oocytes and performed electrophysiological analysis of the mutant proteins. Gap junction coupling induced by Cx43(stp) or Cx43(sof) was reduced compared with Cx43-WT. On the other hand, only Cx43(stp) induced abnormally high (50× wild type) transmembrane currents through hemichannels. Our results suggest that Cx43 plays critical and diverse roles in zebrafish bone growth.

  3. Expression of gap junction proteins connexins 26, 30, and 43 in Dupuytren's disease.

    Science.gov (United States)

    Holzer, Lukas A; Cör, Andrej; Holzer, Gerold

    2014-02-01

    Dupuytren's disease (DD) is a benign fibroproliferative process of the palmar aponeurosis showing similarities to wound healing. Communication of cells involved in wound healing is mediated by the composition of gap junction (GJ) proteins. We investigated the expression of 3 GJ proteins, connexins 26, 30, and 43 (Cx26, Cx30, and Cx43) in DD. Fragments of Dupuytren's tissue from 31 patients (mean age 56 (30-76) years, 24 male) were analyzed immunohistochemically and compared to control tissue for expression of the GJ proteins Cx26, Cx30, and Cx43 and also alfa-smooth muscle actin (α-SMA). 14 of 31 samples could be attributed to the involutional phase (α-SMA positive) whereas 17 samples had to be considered cords in the residual phase (α-SMA negative). Expression of Cx26 and Cx43 was seen in 12 of the 14 samples from the involutional phase, and Cx30 was seen in 7 of these. Only 4 of the 17 samples from the residual phase showed any Cx, and there was none in the controls. The high expression of GJ proteins Cx26, Cx30, and Cx43 in α-SMA positive myofibroblast-rich nodules, which are characteristic of the active involutional phase of DD, suggests that connexins could be a novel treatment target for the treatment of DD.

  4. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory.

    Science.gov (United States)

    Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J

    2016-01-01

    Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.

  5. Rational design of new NO and redox sensitivity into connexin26 hemichannels

    Science.gov (United States)

    Meigh, Louise; Cook, Daniel; Zhang, Jie; Dale, Nicholas

    2015-01-01

    CO2 directly opens hemichannels of connexin26 (Cx26) by carbamylating K125, thereby allowing salt bridge formation with R104 of the neighbouring subunit in the connexin hexamer. The formation of the inter-subunit carbamate bridges within the hexameric hemichannel traps it in the open state. Here, we use insights derived from this model to test whether the range of agonists capable of opening Cx26 can be extended by promoting the formation of analogous inter-subunit bridges via different mechanisms. The mutation K125C gives potential for nitrosylation on Cys125 and formation of an SNO bridge to R104 of the neighbouring subunit. Unlike wild-type Cx26 hemichannels, which are insensitive to NO and NO2−, hemichannels comprising Cx26K125C can be opened by NO2− and NO donors. However, NO2− was unable to modulate the doubly mutated (K125C, R104A) hemichannels, indicating that an inter-subunit bridge between C125 and R104 is required for the opening action of NO2−. In a further test, we introduced two mutations into Cx26, K125C and R104C, to allow disulfide bridge formation across the inter-subunit boundary. These doubly mutated hemichannels open in response to changes in intracellular redox potential. PMID:25673329

  6. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory

    Science.gov (United States)

    Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J.

    2016-01-01

    Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory. PMID:28066184

  7. Connexins in wound healing; perspectives in diabetic patients.

    Science.gov (United States)

    Becker, David L; Thrasivoulou, Christopher; Phillips, Anthony R J

    2012-08-01

    Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  8. Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication

    NARCIS (Netherlands)

    Giepmans, B N; Hengeveld, T; Postma, F R; Moolenaar, W H

    2001-01-01

    Cell-cell communication via connexin-43 (Cx43)-based gap junctions is transiently inhibited by certain mitogens, but the underlying regulatory mechanisms are incompletely understood. Our previous studies have implicated the c-Src tyrosine kinase in mediating transient closure of Cx43-based gap junct

  9. Cataract-causing mutation of human connexin 46 impairs gap junction, but increases hemichannel function and cell death.

    Directory of Open Access Journals (Sweden)

    Qian Ren

    Full Text Available Connexin channels play a critical role in maintaining metabolic homeostasis and transparency of the lens. Mutations in connexin genes are linked to congenital cataracts in humans. The G143R missense mutation on connexin (Cx 46 was recently reported to be associated with congenital Coppock cataracts. Here, we showed that the G143R mutation decreased Cx46 gap junctional coupling in a dominant negative manner; however, it significantly increased gap junctional plaques. The G143R mutant also increased hemichannel activity, inversely correlated with the level of Cx46 protein on the cell surface. The interaction between cytoplasmic loop domain and C-terminus has been shown to be involved in gating of connexin channels. Interestingly, the G143R mutation enhanced the interaction between intracellular loop and Cx46. Furthermore, this mutation decreased cell viability and the resistance of the cells to oxidative stress, primarily due to the increased hemichannel function. Together, these results suggest that mutation of this highly conserved residue on the cytoplasmic loop domain of Cx46 enhances its interaction with the C-terminus, resulting in a reduction of gap junction channel function, but increased hemichannel function. This combination leads to the development of human congenital cataracts.

  10. A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot

    NARCIS (Netherlands)

    Guida, V.; Ferese, R.; Rocchetti, M.; Bonetti, M.; Sarkozy, A.; Cecchetti, S.; Gelmetti, V.; Lepri, F.; Copetti, M.; Lamorte, G.; Cristina Digilio, M.; Marino, B.; Zaza, A.; den Hertog, J.; Dallapiccola, B.; De Luca, A.

    2013-01-01

    GJA5 gene (MIM no. 121013), localized at 1q21.1, encodes for the cardiac gap junction protein connexin 40. In humans, copy number variants of chromosome 1q21.1 have been associated with variable phenotypes comprising congenital heart disease (CHD), including isolated TOF. In mice, the deletion of Gj

  11. Specialization Patterns

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh; Lawall, Julia Laetitia; Consel, Charles

    2000-01-01

    Design patterns offer many advantages for software development, but can introduce inefficiency into the final program. Program specialization can eliminate such overheads, but is most effective when targeted by the user to specific bottlenecks. Consequently, we propose that these concepts...... are complementary. Program specialization can optimize programs written using design patterns, and design patterns provide information about the program structure that can guide specialization. Concretely, we propose specialization patterns, which describe how to apply program specialization to optimize uses...... of design patterns. In this paper, we analyze the specialization opportunities provided by specific uses of design patterns. Based on the analysis of each design pattern, we define the associated specialization pattern. These specialization opportunities can be declared using the specialization classes...

  12. THE EXPRESSION OF CONNEXIN GENES IN NASOPHARYNGEAL CARCINOMA CELLS AND THE EFFECT OF RETINOIC ACID ON THE REGULATION OF THOSE GENES

    Institute of Scientific and Technical Information of China (English)

    JIANG Ning; BIN Liang-hua; TANG Xiang-na; ZHOU Ming; ZENG Zhao-yang; Li Gui-yuan

    1999-01-01

    Objective: To detect which members in the connexin gene family are expressed in nasopharyngeal carcinoma (NPC) cell line HNE1, and the mechanism by which those genes are specifically switched on and off during retinoic acid (RA) induction. Methods: Establishing the cell growth curves of NPC cells. Observing the effect of RA on connexin genes by Northern hybridization. Results: Two genes Cx46 and Cx37, belonging to the connexin gene family, were expressed in HNE, The down-regulation of Cx46 and Cx37, up-regulation of RARa and growth inhibition was observed in HNE1, after exposure to RA. The gene expression and cell growth in HNE1 cells was restored after removal of RA. Conclusion: Two members of the connexin gene family: Cx37 and Cx46 were expressed in HNE1 cells, RA can inhibit the expression of those two genes mediated by RARa, and the effects of RA on HNE1 are reversible.

  13. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers.

    Science.gov (United States)

    Zhang, Ruowen; Wang, Liping; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R; Zhou, Xu Dong; Somji, Seema

    2016-10-01

    Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize.

  14. Expression of connexin 43 mRNA and protein in developing follicles of prepubertal porcine ovaries

    Science.gov (United States)

    Melton, C.M.; Zaunbrecher, G.M.; Yoshizaki, G.; Patio, R.; Whisnant, S.; Rendon, A.; Lee, V.H.

    2001-01-01

    A major form of cell-cell communication is mediated by gap junctions, aggregations of intercellular channels composed of connexins (Cxs), which are responsible for exchange of low molecular weight (hybridization revealed that Cx43 mRNA was detectable in granulosa cells of primary follicles but undetectable in dormant primordial follicles. The intensity of the signal increased with follicular growth and was greatest in the large antral follicles. Immunohistochemical evaluation indicated that Cx43 protein expression correlated with the presence of Cx43 mRNA. These results indicate that substantial amounts of Cx43 are first expressed in granulosa cells following activation of follicular development and that this expression increases throughout follicular growth and maturation. These findings suggest an association between the enhancement of intercellular gap-junctional communication and onset of follicular growth. ?? 2001 Elsevier Science Inc. All rights reserved.

  15. Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells.

    Science.gov (United States)

    Toma, Ildikó; Bansal, Eric; Meer, Elliott J; Kang, Jung Julie; Vargas, Sarah L; Peti-Peterdi, János

    2008-06-01

    Endothelial intracellular calcium ([Ca(2+)](i)) plays an important role in the function of the juxtaglomerular vasculature. The present studies aimed to identify the existence and molecular elements of an endothelial calcium wave in cultured glomerular endothelial cells (GENC). GENCs on glass coverslips were loaded with Fluo-4/Fura red, and ratiometric [Ca(2+)](i) imaging was performed using fluorescence confocal microscopy. Mechanical stimulation of a single GENC caused a nine-fold increase in [Ca(2+)](i), which propagated from cell to cell throughout the monolayer (7.9 +/- 0.3 microm/s) in a regenerative manner (without decrement of amplitude, kinetics, and speed) over distances >400 microm. Inhibition of voltage-dependent calcium channels with nifedipine had no effect on the above parameters, but the removal of extracellular calcium reduced Delta[Ca(2+)](i) by 50%. Importantly, the gap junction uncoupler alpha-glycyrrhetinic acid or knockdown of connexin 40 (Cx40) by transfecting GENCs with Cx40 short interfering RNA (siRNA) almost completely eliminated Delta[Ca(2+)](i) and the calcium wave. Breakdown of extracellular ATP using a scavenger cocktail (apyrase and hexokinase) or nonselective inhibition of purinergic P2 receptors with suramin, had similar blocking effects. Scraping cells off along a line eliminated physical contact between cells but did not effect calcium wave propagation. Using an ATP biosensor technique, we detected a significant elevation in extracellular ATP (Delta = 76 +/- 2 microM) during calcium wave propagation, which was abolished by Cx40 siRNA treatment (Delta = 6 +/- 1 microM). These studies suggest that connexin 40 hemichannels and extracellular ATP are key molecular elements of the glomerular endothelial calcium wave, which may serve important juxtaglomerular functions.

  16. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.

    Science.gov (United States)

    Rodriguez-Jimenez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2015-11-06

    Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.

  17. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rodriguez-Jimenez

    2015-11-01

    Full Text Available Ion channels included in the family of Connexins (Cx help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50 in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC. epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI (epSPCi. When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.

  18. The Expression of Connexins and SOX2 Reflects the Plasticity of Glioma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Joana Balça-Silva

    2017-08-01

    Full Text Available Glioblastoma (GBM is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs. This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.

  19. Expression of connexin36 in the adult and developing rat brain.

    Science.gov (United States)

    Belluardo, N; Mudò, G; Trovato-Salinaro, A; Le Gurun, S; Charollais, A; Serre-Beinier, V; Amato, G; Haefliger, J A; Meda, P; Condorelli, D F

    2000-05-19

    The distribution of connexin36 (Cx36) in the adult rat brain and retina has been analysed at the protein (immunofluorescence) and mRNA (in situ hybridization) level. Cx36 immunoreactivity, consisting primarily of round or elongated puncta, is highly enriched in specific brain regions (inferior olive and the olfactory bulb), in the retina, in the anterior pituitary and in the pineal gland, in agreement with the high levels of Cx36 mRNA in the same regions. A lower density of immunoreactive puncta can be observed in several brain regions, where only scattered subpopulations of cells express Cx36 mRNA. By combining in situ hybridization for Cx36 mRNA with immunohistochemistry for a general neuronal marker (NeuN), we found that neuronal cells are responsible for the expression of Cx36 mRNA in inferior olive, cerebellum, striatum, hippocampus and cerebral cortex. Cx36 mRNA was also demonstrated in parvalbumin-containing GABAergic interneurons of cerebral cortex, striatum, hippocampus and cerebellar cortex. Analysis of developing brain further revealed that Cx36 reaches a peak of expression in the first two weeks of postnatal life, and decreases sharply during the third week. Moreover, in these early stages of postnatal development Cx36 is detectable in neuronal populations that are devoid of Cx36 mRNA at the adult stage. The developmental changes of Cx36 expression suggest a participation of this connexin in the extensive interneuronal coupling which takes place in several regions of the early postnatal brain.

  20. Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea

    Science.gov (United States)

    Johnson, Stuart L.; Ceriani, Federico; Houston, Oliver; Polishchuk, Roman; Polishchuk, Elena; Crispino, Giulia; Zorzi, Veronica

    2017-01-01

    Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca2+ signaling in the nonsensory cells. However, this signaling from nonsensory cells was able to increase the intrinsic IHC firing frequency. We also found that connexin expression is key to IHC functional maturation. In Cx26 conditional knock-out mice (Cx26Sox10-Cre), the maturation of IHCs, which normally occurs at approximately postnatal day 12, was partially prevented. Although Cx30 has been shown not to be required for hearing in young adult mice, IHCs from Cx30 knock-out mice exhibited a comprehensive brake in their development, such that their basolateral membrane currents and synaptic machinery retain a prehearing phenotype. We propose that IHC functional differentiation into mature sensory receptors is initiated in the prehearing cochlea provided that the expression of either connexin reaches a threshold level. As such, connexins regulate one of the most crucial functional refinements in the mammalian cochlea, the disruption of which contributes to the deafness phenotype observed in mice and DFNB1 patients. SIGNIFICANCE STATEMENT The correct development and function of the mammalian cochlea relies not only on the sensory hair cells, but also on the surrounding nonsensory cells. Although the nonsensory cells have been largely implicated in the general homeostasis in the mature cochlea, their involvement in the initial functional differentiation of the sensory inner hair cells is less

  1. Timed conditional null of connexin26 in mice reveals temporary requirements of connexin26 in key cochlear developmental events before the onset of hearing.

    Science.gov (United States)

    Chang, Qing; Tang, Wenxue; Kim, Yeunjung; Lin, Xi

    2015-01-01

    Mutations in the Gjb2 gene, which encodes a gap junction protein connexin26 (Cx26), are the most prevalent form of hereditary deafness in humans and represent about half of non-syndromic congenital deafness cases in many ethnic populations. Cochlear potassium (K+) recycling in mature cochlea is required for normal hearing. It is thought that gap junctions are essential for K+ recycling and that Gjb2 mutations cause Gjb2-associated deafness by disrupting K+ recycling in mature cochlea. Here we present evidence showing that Gjb2 is required for normal development of the neonatal organ of Corti prior to the onset of the hearing in mice. In the conditional Gjb2 null (cCx26 null) mice, ribbon synapses in inner hair cells remained poorly developed, the afferent type I fibers failed to finish the refinement process to form convergent innervation to individual inner hair cells. The spontaneous depolarizing activities in the supporting cells, which normally diminish in the wild type cochleae after postnatal day 8 (P8), remained strong in the cochlea after P8 in the mutant mice. Furthermore, the deafness phenotype was readily generated only if the Cx26 expression in the organ of Corti was significantly reduced before P6. Similar amount of Cx26 reduction in more mature cochleae had a much weaker effect in damaging the hearing sensitivity. Our findings indicated that Cx26 plays essential roles in the maturation process of the organ of Corti prior to the establishment of high K+ in the endolymph and the onset of hearing. These results suggest that successful treatment of Cx26 deafness requires early intervention before the cochlea fully matures.

  2. Special Weapons

    Data.gov (United States)

    Federal Laboratory Consortium — Supporting Navy special weapons, the division provides an array of engineering services, technical publication support services, logistics support services, safety...

  3. 间隙连接蛋白43与妇科疾病%Connexin 43 and Gynecological Diseases

    Institute of Scientific and Technical Information of China (English)

    贾喜菲

    2011-01-01

    The normal and abnormal expression of connexin play a direct role in the function of cell, tissue , and organ, whereas connexin 43 is the most important gap junction protein.The expression of connexin 43 is increased in uterine tissues, as a low-impedance channel for uterine intermuscular cell contraction.Gap junction channels are subject to the penetration of ions, ensuring the metabolism and behavioral coordination of uterine muscular cell populations.The abnormal expression of connexin 43 is closely associated with the occurrence and progress of uterine myoma,endometriosis,cervical cancer,and other gynecological disorders.%间隙连接蛋白的正常和异常表达,可直接影响细胞及组织、器官的功能状态,其中间隙连接蛋白43是最重要的间隙连接蛋白.在子宫组织中,间隙连接蛋白43水平的升高,为子宫肌细胞间收缩控制提供了低电阻通道,使离子很容易通过间隙连接的通道,保证了子宫肌细胞群在代谢及行为上的协调性.其异常表达,与子宫肌瘤、子宫内膜异位症、宫颈癌等多种妇科疾病的发生、发展有着密切的联系.

  4. Aberrant distributions and relationships among E-cadherin, beta-catenin, and connexin 26 and 43 in endometrioid adenocarcinomas.

    Science.gov (United States)

    Wincewicz, Andrzej; Baltaziak, Marek; Kanczuga-Koda, Luiza; Lesniewicz, Tomasz; Rutkowski, Ryszard; Sobaniec-Lotowska, Maria; Sulkowski, Stanislaw; Koda, Mariusz; Sulkowska, Mariola

    2010-07-01

    During carcinogenesis, loss of intracellular cohesion is observed among cancer cells with altered expression of such adhesion molecules as E-cadherin and beta-catenin, and aberrant expression and cellular location of intercellular gap junction proteins-connexins. The aim of this study was to evaluate immunohistochemically the expression and relationship between E-cadherin and beta-catenin, and the connexins Cx26 and Cx43 in 86 endometrioid adenocarcinomas. The aberrant cytoplasmic translocation of the studied proteins was a predominant finding, whereas only a minority of cases showed normal, nuclear beta-catenin labeling or membranous distribution of the remaining molecules. E-cadherin was positively and significantly associated with beta-catenin (P=0.001, r=0.366), as was Cx26 with Cx43 (P<0.001, r=0.719), E-cadherin with Cx26 (P<0.001, r=0.413), and E-cadherin and Cx43 (P<0.001, r=0.434) in all cancers. A subgroup of endometrioid adenocarcinomas (FIGO IB+II) exclusively showed a positive significant association between the expression of beta-catenin and Cx26 (P=0.038, r=0.339). In addition, there were significantly more beta-catenin-positive carcinomas among superficially spreading cancers (FIGO IA) than among deeper invading neoplasms (FIGO IB+II) (P=0.056). The altered location of the studied proteins indicates impairment of their physiological functions. In particular, normal membranous distribution of E-cadherin and connexins is lost and replaced by abnormal cytoplasmic accumulation in most cancers, and thus intercellular ties are expected to be weakened and loosened as a consequence. In contrast, the lack of relationship between beta-catenin and connexins, E-cadherin seems to be closely associated with the expression of Cx26 and Cx43 in endometrioid adenocarcinomas.

  5. Association between C1019T polymorphism in the connexin 37 gene and Helicobacter pylori infection in patients with gastric cancer.

    Science.gov (United States)

    Jing, Yuan-Ming; Guo, Su-Xia; Zhang, Xiao-Ping; Sun, Ai-Jing; Tao, Feng; Qian, Hai-Xin

    2012-01-01

    To investigate the association between the connexin 37 C1019T polymorphism and Helicobacter pylori infection in patients with gastric cancer. 388 patients with gastric cancer (GC), 204 with chronic superficial gastritis (CSG) were studied. H. pylori was detected by gastric mucosal biopsies biopsy dyeing method. Connexin 37 gene polymorphism 1019 site genotypes were determined by gene sequencing technology. Genotypes and alleles frequencies were compared. (1) Connexin37 gene 1019 site distribution frequency (CC type, TC type, TT type) in the CSG group was 18.1%, 45.1% and 36.8%; in the stomach cancer group it was 35.1%, 45.9% and 19.%, conforming to the Hardy-Weinberg euilibrium. (2) In comparison with CSG group, the frequency of Connexin37 C allele was higher in the gastric cancer group (58.0% vs 40.7%, OR=2.01, 95%CI=1.58-2.57, Pinfection 211 cases, gastric cancer group of the male patients with HP positive patients with 187 cases, 40 cases of female patients with negative patients, 24 cases were HP positive, negative in 137 cases, control group male patients, 28 cases were Hp positive, negative in 95 patients, female patients with Hp positive 6 cases, 75 cases were negative. On hierarchical analysis, the male group OR value was 15.9 (95%CI to 9.22-27.3), and the female OR was 2.19 (95%CI 0.88-5.59), indicating a greater contribution in males (Pinfection was much higher than that in Hp negative cases in the GC group (64.5% vs 47.0%, OR=2.05, 95%CI=1.54-2.74, Pconnexin37 gene might not only be associated with gastric cancer but also with H. pylori infection.

  6. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts.

    Science.gov (United States)

    Locke, Darren; Liu, Jade; Harris, Andrew L

    2005-10-04

    Cell extraction with cold nonionic detergents or alkaline carbonate prepares an insoluble membrane fraction whose buoyant density permits its flotation in discontinuous sucrose gradients. These lipid "rafts" are implicated in protein sorting and are attractive candidates as platforms that coordinate signal transduction pathways with intracellular substrates. Gap junctions form a direct molecular signaling pathway by end-to-end apposition of hemichannels containing one (homomeric) or more (heteromeric) connexin isoforms. Residency of channels composed of Cx26 and/or Cx32 in lipid rafts was assessed by membrane insolubility in alkaline carbonate or different concentrations of Triton X100, Nonidet P40 and Brij-58 nonionic detergents. Using Triton X100, insoluble raft membranes contained homomeric Cx32 channels, but Cx26-containing channels only when low detergent concentrations were used. Results were similar using Nonidet P40, except that Cx26-containing channels were excluded from raft membranes at all detergent concentrations. In contrast, homomeric Cx26 channels were enriched within Brij-58-insoluble rafts, whereas Cx32-containing channels partitioned between raft and nonraft membranes. Immunofluorescence microscopy showed prominent colocalization only of nonjunctional connexin channels with raft plasma membrane; junctional plaques were not lipid rafts. Rafts prepared by different extraction methods had considerable quantitative and qualitative differences in their lipid compositions. That functionally different nonjunctional connexin channels partition among rafts with distinct lipid compositions suggests that unpaired Cx26 and/or Cx32 channels exist in membrane domains of slightly different physicochemical character. Rafts may be involved in trafficking of plasma membrane connexin channels to gap junctions.

  7. Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions.

    OpenAIRE

    Polacek, D.; Lal, R; Volin, M. V.; Davies, P F

    1993-01-01

    The structure and function of blood vessels depend on the ability of vascular cells to receive and transduce signals and to communicate with each other. One means by which vascular cells have been shown to communicate is via gap junctions, specifically connexin43. In atherosclerosis, the normal physical patterns of communication are disrupted by the subendothelial infiltration and accumulation of blood monocytes, which in turn can differentiate into resident foam cells. In this paper we repor...

  8. Characterisation of connexin expression and electrophysiological properties in stable clones of the HL-1 myocyte cell line.

    Directory of Open Access Journals (Sweden)

    Priyanthi Dias

    Full Text Available The HL-1 atrial line contains cells blocked at various developmental stages. To obtain homogeneous sub-clones and correlate changes in gene expression with functional alterations, individual clones were obtained and characterised for parameters involved in conduction and excitation-contraction coupling. Northern blots for mRNAs coding for connexins 40, 43 and 45 and calcium handling proteins (sodium/calcium exchanger, L- and T-type calcium channels, ryanodine receptor 2 and sarco-endoplasmic reticulum calcium ATPase 2 were performed. Connexin expression was further characterised by western blots and immunofluorescence. Inward currents were characterised by voltage clamp and conduction velocities measured using microelectrode arrays. The HL-1 clones had similar sodium and calcium inward currents with the exception of clone 2 which had a significantly smaller calcium current density. All the clones displayed homogenous propagation of electrical activity across the monolayer correlating with the levels of connexin expression. Conduction velocities were also more sensitive to inhibition of junctional coupling by carbenoxolone (∼ 80% compared to inhibition of the sodium current by lidocaine (∼ 20%. Electrical coupling by gap junctions was the major determinant of conduction velocities in HL-1 cell lines. In summary we have isolated homogenous and stable HL-1 clones that display characteristics distinct from the heterogeneous properties of the original cell line.

  9. Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes.

    Science.gov (United States)

    Kasahara, Hideko; Ueyama, Tomomi; Wakimoto, Hiroko; Liu, Margaret K; Maguire, Colin T; Converso, Kimber L; Kang, Peter M; Manning, Warren J; Lawitts, Joel; Paul, David L; Berul, Charles I; Izumo, Seigo

    2003-03-01

    Nkx2.5, an evolutionarily conserved homeodomain containing transcription factor, is one of the earliest cardiogenic markers. Although its expression continues through adulthood, its function in adult cardiomyocytes is not well understood. To examine the effect of Nkx2.5 in terminal differentiated postnatal cardiomyocytes, we generated transgenic mice expressing either wild-type Nkx2.5 (TG-wild), a putative transcriptionally active mutant (carboxyl-terminus deletion mutant: TG-DeltaC) or a DNA non-binding point mutant of Nkx2.5 (TG-I183P) under alpha-myosin heavy chain promoter. Most TG-wild and TG-DeltaC mice died before 4 months of age with heart failure associated with conduction abnormalities. Cardiomyocytes expressing wild-type Nkx2.5 or a putative transcriptionally active mutant (DeltaC) had dramatically reduced expression of connexin 43 and changed sarcomere structure. Wild-type Nkx2.5 adenovirus-infected adult cardiomyocytes demonstrated connexin 43 downregulation as early as 16 h after infection, indicating that connexin 43 downregulation is due to Nkx2.5 overexpression but not due to heart failure phenotype in vivo. These studies indicate that overexpression of Nkx2.5 in terminally differentiated cardiomyocytes dramatically alters cardiac cell structure and function.

  10. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones.

    Science.gov (United States)

    Kranz, Katharina; Paquet-Durand, François; Weiler, Reto; Janssen-Bienhold, Ulrike; Dedek, Karin

    2013-01-01

    Retinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1) by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout) and later stages of secondary cone death (rd1 mutants). Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP.

  11. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones.

    Directory of Open Access Journals (Sweden)

    Katharina Kranz

    Full Text Available Retinitis pigmentosa (RP relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other. As one of these mechanisms a gap junction-mediated bystander effect was proposed, i.e., toxic molecules generated in dying rods and propagating through gap junctions induce the death of healthy cone photoreceptors. We investigated whether disruption of rod-cone coupling can prevent secondary cone death and reduce the spread of degeneration. We tested this hypothesis in two different mouse models for retinal degeneration (rhodopsin knockout and rd1 by crossbreeding them with connexin36-deficient mice as connexin36 represents the gap junction protein on the cone side and lack thereof most likely disrupts rod-cone coupling. Using immunohistochemistry, we compared the progress of cone degeneration between connexin36-deficient mouse mutants and their connexin36-expressing littermates at different ages and assessed the accompanied morphological changes during the onset (rhodopsin knockout and later stages of secondary cone death (rd1 mutants. Connexin36-deficient mouse mutants showed the same time course of cone degeneration and the same morphological changes in second order neurons as their connexin36-expressing littermates. Thus, our results indicate that disruption of connexin36-mediated rod-cone coupling does not stop, delay or spatially restrict secondary cone degeneration and suggest that the gap junction-mediated bystander effect does not contribute to the progression of RP.

  12. Specialized languages

    DEFF Research Database (Denmark)

    Mousten, Birthe; Laursen, Anne Lise

    2016-01-01

    -disciplinarily, because they work with both derivative and contributory approaches. Derivative, because specialized language retrieves its philosophy of science as well as methods from both the natural sciences, social sciences and humanistic sciences. Contributory because language results support the communication......Across different fields of research, one feature is often overlooked: the use of language for specialized purposes (LSP) as a cross-discipline. Mastering cross-disciplinarity is the precondition for communicating detailed results within any field. Researchers in specialized languages work cross...... science fields communicate their findings. With this article, we want to create awareness of the work in this special area of language studies and of the inherent cross-disciplinarity that makes LSP special compared to common-core language. An acknowledgement of the importance of this field both in terms...

  13. Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells.

    Science.gov (United States)

    Dovmark, T H; Saccomano, M; Hulikova, A; Alves, F; Swietach, P

    2017-08-10

    Glycolytic cancer cells produce large quantities of lactate that must be removed to sustain metabolism in the absence of oxidative phosphorylation. The only venting mechanism described to do this at an adequate rate is H(+)-coupled lactate efflux on monocarboxylate transporters (MCTs). Outward MCT activity is, however, thermodynamically inhibited by extracellular acidity, a hallmark of solid tumours. This inhibition would feedback unfavourably on metabolism and growth, raising the possibility that other venting mechanisms become important in under-perfused tumours. We investigated connexin-assembled gap junctions as an alternative route for discharging lactate from pancreatic ductal adenocarcinoma (PDAC) cells. Diffusive coupling (calcein transmission) in vitro was strong between Colo357 cells, weaker yet hypoxia-inducible between BxPC3 cells, and very low between MiaPaCa2 cells. Coupling correlated with levels of connexin-43 (Cx43), a protein previously linked to late-stage disease. Evoked lactate dynamics, imaged in Colo357 spheroids using cytoplasmic pH as a read-out, indicated that lactate anions permeate gap junctions faster than highly-buffered H(+) ions. At steady-state, junctional transmission of lactate (a chemical base) from the spheroid core had an alkalinizing effect on the rim, producing therein a milieu conducive for growth. Metabolite assays demonstrated that Cx43 knockdown increased cytoplasmic lactate retention in Colo357 spheroids (diameter ~150 μm). MiaPaCa2 cells, which are Cx43 negative in monolayer culture, showed markedly increased Cx43 immunoreactivity at areas of invasion in orthotopic xenograft mouse models. These tissue areas were associated with chronic extracellular acidosis (as indicated by the marker LAMP2 near/at the plasmalemma), which can explain the advantage of junctional transmission over MCT in vivo. We propose that Cx43 channels are important conduits for dissipating lactate anions from glycolytic PDAC cells. Furthermore

  14. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture.

    Science.gov (United States)

    Tomasetto, C; Neveu, M J; Daley, J; Horan, P K; Sager, R

    1993-07-01

    In a previous paper (Lee et al., 1992), it was shown that normal human mammary epithelial cells (NMEC) express two connexin genes, Cx26 and Cx43, whereas neither gene is transcribed in a series of mammary tumor cell lines (TMEC). In this paper it is shown that normal human mammary fibroblasts (NMF) communicate and express Cx43 mRNA and protein. Transfection of either Cx26 or Cx43 genes into a tumor line, 21MT-2, induced the expression of the corresponding mRNAs and proteins as well as communication via gap junctions (GJs), although immunofluorescence demonstrated that the majority of Cx26 and Cx43 proteins present in transfected TMEC was largely cytoplasmic. Immunoblotting demonstrated that NMEC, NMF, and transfected TMEC each displayed a unique pattern of posttranslationally modified forms of Cx43 protein. The role of different connexins in regulating gap junction intercellular communication (GJIC) was examined using a novel two-dye method to assess homologous and heterologous communication quantitatively. The recipient cell population was prestained with a permanent non-toxic lipophilic dye that binds to membranes irreversibly (PKH26, Zynaxis); and the donor population is treated with a GJ-permeable dye Calcein, a derivative of fluorescein diacetate (Molecular Probes). After mixing the two cell populations under conditions promoting GJ formation, cells were analyzed by flow cytometry to determine the percentage of cells containing both dyes. It is shown here that Cx26 and Cx43 transfectants display strong homologous communication, as do NMEC and NMF. Furthermore, NMEC mixed with NMF communicate efficiently, Cx26 transfectants communicate with NMEC but not with NMF, and Cx43 transfectants communicate with NMF. Communication between Cx26 TMEC transfectants and NMEC was asymetrical with preferential movement of calcein from TMEC to NMEC. Despite the presence of Cx43 as well as Cx26 encoded proteins in the GJs of NMEC, few Cx43 transfectants communicated with NMEC

  15. Expression and function of connexin 43 in human gingival wound healing and fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rana Tarzemany

    Full Text Available Connexins (C×s are a family of transmembrane proteins that form hemichannels and gap junctions (GJs on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of

  16. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  17. Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Wang

    2014-04-01

    Full Text Available The use of preferentially tumor-targeting bacteria as vectors is one of the most innovative approaches for the treatment of cancer. This method is based on the observation that some obligate or facultative anaerobic bacteria are capable of selectively multiplying in tumors and inhibiting their growth. Previously, we found that the tumor-targeting efficiency of Salmonella could be modulated by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride (PAH, and these organisms are designated PAH-S.C. (S. choleraesuis. PAH can provide a useful platform for the chemical modification of Salmonella, perhaps by allowing a therapeutic gene to bind to tumor-targeting Salmonella. This study aimed to investigate the benefits of the use of PAH-S.C. for gene delivery. To evaluate this modulation, the invasion activity and gene transfer of DNA-PAH-S.C. were measured in vitro and in vivo. Treatment with PAH-S.C. carrying a tumor suppressor gene (connexin 43 resulted in inhibition of tumor growth, which suggested that tumor-targeted gene therapy using PAH-S.C. carrying a therapeutic gene could exert antitumor activities. This technique represents a promising strategy for the treatment of tumors.

  18. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    Directory of Open Access Journals (Sweden)

    Per eSvenningsen

    2013-10-01

    Full Text Available ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC and AQP2. Recently, we have shown that connexin (Cx 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30-/- mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i signaling in the CD. Cortical CDs (CCDs from wild type and Cx30-/- mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30-/- CCDs ([Ca2+]i increased only 1.2-fold, p

  19. Osteoblast connexin43 modulates skeletal architecture by regulating both arms of bone remodeling.

    Science.gov (United States)

    Watkins, Marcus; Grimston, Susan K; Norris, Jin Yi; Guillotin, Bertrand; Shaw, Angela; Beniash, Elia; Civitelli, Roberto

    2011-04-15

    Connexin43 (Cx43) has an important role in skeletal homeostasis, and Cx43 gene (Gja1) mutations have been linked to oculodentodigital dysplasia (ODDD), a human disorder characterized by prominent skeletal abnormalities. To determine the function of Cx43 at early steps of osteogenesis and its role in the ODDD skeletal phenotype, we have used the Dermo1 promoter to drive Gja1 ablation or induce an ODDD mutation in the chondro-osteogenic linage. Both Gja1 null and ODDD mutant mice develop age-related osteopenia, primarily due to a progressive enlargement of the medullary cavity and cortical thinning. This phenotype is the consequence of a high bone turnover state, with increased endocortical osteoclast-mediated bone resorption and increased periosteal bone apposition. Increased bone resorption is a noncell autonomous defect, caused by exuberant stimulation of osteoclastogenesis by Cx43-deficient bone marrow stromal cells, via decreased Opg production. The latter is part of a broad defect in osteoblast differentiation and function, which also results in abnormal structural and material properties of bone leading to decreased resistance to mechanical load. Thus Cx43 in osteogenic cells is a critical regulator of both arms of the bone remodeling cycle, its absence causing structural changes remindful of aged or disused bone.

  20. Localization of connexin 30 in the luminal membrane of cells in the distal nephron.

    Science.gov (United States)

    McCulloch, Fiona; Chambrey, Régine; Eladari, Dominique; Peti-Peterdi, János

    2005-12-01

    Several isoforms of the gap junction protein connexin (Cx) have been identified in a variety of tissues that communicate intercellular signals between adjacent cells. In the kidney, Cx37, Cx40, and Cx43 are localized in the vasculature, glomerulus, and tubular segments in a punctuate pattern, typical of classic gap junction channels. We performed immunohistochemistry in the mouse, rat, and rabbit kidney to study the localization of Cx30 protein, a new member of the Cx family. The vasculature, glomerulus, and proximal nephron segments were devoid of staining in all three species. Unexpectedly, Cx30 was found throughout the luminal membrane of select cells in the distal nephron. Expression of Cx30 was highest in the rat, which also showed some diffuse cytosolic labeling, continuous from the medullary thick ascending limb to the collecting duct system, and with the highest level in the distal convoluted tubule. Labeling in the mouse and rabbit was much less, limited to intercalated cells in the connecting segment and cortical collecting duct, where the apical signal was particularly strong. A high-salt-containing diet and culture medium upregulated Cx30 expression in the rat inner medulla and in M1 cells, respectively. The distinct, continuous labeling of the luminal plasma membrane and upregulation by high salt suggest that Cx30 may function as a hemichannel involved in the regulation of salt reabsorption in the distal nephron.

  1. Mutant connexin 50 (S276F) inhibits channel and hemichannel functions inducing cataract

    Indian Academy of Sciences (India)

    Yuanyuan Liu; Chen Qiao; Tanwei Wei; Fang Zheng; Shuren Guo; Qiang Chen; Ming Yan; Xin Zhou

    2015-06-01

    This study was designed to detect the expression, detergent resistance, subcellular localization, and channel and hemichannel functions of mutant Cx50 to understand the forming mechanism for inducing congenital cataract by a novel mutation p.S276F in connexin 50 (Cx50) reported previously by us. HeLa and human lens epithelial (HLE) cells were transfected with wild-type Cx50 and mutant Cx50 (S276F). We examined the functional characteristics of mutant Cx50 (S276F) in comparison with those of wild-type Cx50 using immunoblot, confocal fluorescence microscopy, dye transfer analysis and dye uptake assay. The mutant and wild-type Cx50 were expressed in equal levels and could efficiently localize to the plasma membrane without transportation and assembly problems. Scrape loading dye transfer was significantly evident in cells transfected with wild-type Cx50 compared to those in cells transfected with mutant Cx50 and cotransfected with wild-type and mutant Cx50. The dye uptake was found to be significantly lower in cells transfected with mutant Cx50 than in cells transfected with wild-type Cx50 and cells cotransfected with wild-type and mutant Cx50. The transfected HeLa and HLE cell lines showed similar performance in all the experiments. These results indicated that the mutant Cx50 (S276F) might inhibit the function of gap junction channel in a dominant negative manner, but inhibit the hemichannel function in a recessive negative manner.

  2. Connexin 30.2 is expressed in mouse pancreatic beta cells.

    Science.gov (United States)

    Coronel-Cruz, C; Hernández-Tellez, B; López-Vancell, R; López-Vidal, Y; Berumen, J; Castell, A; Pérez-Armendariz, E M

    2013-09-06

    Nowadays, connexin (Cx) 36 is considered the sole gap junction protein expressed in pancreatic beta cells. In the present research we investigated the expression of Cx30.2 mRNA and protein in mouse pancreatic islets. Cx30.2 mRNA and protein were identified in isolated islet preparations by qRT-PCR and Western blot, respectively. Immunohistochemical analysis showed that insulin-positive cells were stained for Cx30.2. Confocal images from double-labeled pancreatic sections revealed that Cx30.2 and Cx36 fluorescence co-localize at junctional membranes in islets from most pancreases. Abundant Cx30.2 tiny reactive spots were also found in cell cytoplasms. In beta cells cultured with stimulatory glucose concentrations, Cx30.2 was localized in both cytoplasms and cell membranes. In addition, Cx30.2 reactivity was localized at junctional membranes of endothelial or cluster of differentiation 31 (CD31) positive cells. Moreover, a significant reduction of Cx30.2 mRNA was found in islets preparations incubated for 24h in 22mM as compared with 3.3mM glucose. Therefore, it is concluded that Cx30.2 is expressed in beta and vascular endothelial cells of mouse pancreatic islets.

  3. Neuroprotection in the treatment of glaucoma--A focus on connexin43 gap junction channel blockers.

    Science.gov (United States)

    Chen, Ying-Shan; Green, Colin R; Danesh-Meyer, Helen V; Rupenthal, Ilva D

    2015-09-01

    Glaucoma is a form of optic neuropathy and a common cause of blindness, affecting over 60 million people worldwide with an expected rise to 80 million by 2020. Successful treatment is challenging due to the various causes of glaucoma, undetectable symptoms at an early stage and inefficient delivery of drugs to the back of the eye. Conventional glaucoma treatments focus on the reduction of elevated intraocular pressure (IOP) using topical eye drops. However, their efficacy is limited to patients who suffer from high IOP glaucoma and do not address the underlying susceptibility of retinal ganglion cells (RGC) to degeneration. Glaucoma is known as a neurodegenerative disease which starts with RGC death and eventually results in damage of the optic nerve. Neuroprotective strategies therefore offer a novel treatment option for glaucoma by not only preventing neuronal loss but also disease progression. This review firstly gives an overview of the pathophysiology of glaucoma as well as current treatment options including conventional and novel delivery strategies. It then summarizes the rational for neuroprotection as a novel therapy for glaucomatous neuropathies and reviews current potential neuroprotective strategies to preserve RGC, with a focus on connexin43 (Cx43) gap junction channel blockers.

  4. Connexin 43 enhances Bax activation via JNK activation in sunitinib-induced apoptosis in mesothelioma cells.

    Science.gov (United States)

    Uzu, Miaki; Sato, Hiromi; Shimizu, Ayaka; Shibata, Yukihiro; Ueno, Koichi; Hisaka, Akihiro

    2017-06-01

    The constituent protein of gap junctions, connexin (Cx), interacts with various proteins via its C-terminus region, including kinases, cell-adhesion proteins, and a pro-apoptotic protein, Bax. This molecular interaction may affect expression and functioning of the interacting proteins and modulate the cellular physiology. In our previous work, Cx43 was found to interact directly with Bax and in the presence of sunitinib, lead to the Bax-mediated apoptosis in mesothelioma cells. In this study, we investigated the mechanism of how Cx43 promotes Bax-mediated apoptosis using the same cell line. Treatment with sunitinib increased the expression of the active conformation of the Bax protein, which was predominantly localized at the mitochondria, only in Cx43-transfected cells. Bax oligomerization and decrease in the mitochondrial membrane potential were also observed. The involvement of c-Jun N-terminal kinase (JNK) in the interaction of Cx43 and Bax was further examined. Treatment with sunitinib increased the expression of phosphorylated (active) form of JNK only in the Cx43-transfected cells. Phosphorylated JNK and active Bax were co-localized, and the co-localization was suppressed by the knockdown of Cx43. Moreover, JNK inhibition clearly suppressed Bax activation. In conclusion, we identified a novel Cx43-JNK-Bax axis regulating the process of apoptosis for the first time. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. PREDICTIVE ROLE OF CONNEXIN 40 IN THE PATHOGENESIS OF HEREDITARY SICK SINUS SYNDROME

    Directory of Open Access Journals (Sweden)

    S. Yu. Nikulina

    2011-01-01

    Full Text Available Aim. To study the association of hereditary sick sinus syndrome (SSS with connexin 40 gene (Cx40 polymorphism. Material and methods. 29 families with hereditary SSS were involved into prospective study. Probands were 20 women and 9 men (aged 58±0.15. Relatives, I-III degree of kinship, were 65 men and 68 women (aged 39±0.13. Clinical and instrumental examination was performed in all probands and their relatives. Diagnosis of SSS was verified by transesophageal atrial electrostimulation. Molecular genetic investigation of SSS patients and their relatives was carried out in laboratory of medical genetics of Research Institute of Therapy , Siberian Branch of Russian Academy of Medical Sciences. Results. 71 SSS patients, 44 their healthy relatives, I-III degree of kinship, 197 subjects of control group were genotyped for the polymorphism of 44G>A of gene Cx40. According to allele-specific polymerase chain reaction 3 types of genotypes ADRA2B (II — homozygous wild, ID — heterozygous, DD — homozygous mutant were found in SSS patients, their relatives and healthy subjects of control group. Conclusion. Significant predominance of the heterozygous genotype 44G>A was found in SSS (45,07±5,9% patients in comparison with subjects of the control group (29,44±3,2%.

  6. Effects of Losartan on expression of connexins at the early stage of atherosclerosis in rabbits

    Directory of Open Access Journals (Sweden)

    Li-ming Ruan, Wei Cai, Jun-zhu Chen, Jin-feng Duan

    2010-01-01

    Full Text Available Aim: to investigate effects of Losartan on expression of connexin 40 and 43 (Cx40 and Cx43, in arteries at the early stage of atherosclerosis in a rabbit model. Methods: A total of 28 male New Zealand white rabbits were divided into following groups: control group, high fat diet group, and Losartan group (10 mg/kg/day. Losartan was administrated in food for two weeks. Iliac arteries were obtained for immunohistochemistry, transmission electron microscopy, Western blot, and reverse transcriptase-polymerase chain reaction (RT-PCR. Results: Transmission electron microscopy revealed abundant gap junctions between neointimal smooth muscle cells (SMCs, which were markedly reduced by treatment. RT-PCR and Western blot assay showed that the mRNA and protein expression of Cx40 and Cx43 were elevated in the neointimal area at the early stage of atherosclerosis. The mRNA and protein expression of Cx43 were significantly down-regulated by losartan treatment but those of Cx40 were not markedly changed. Conclusion: Cx40 and Cx43 in the neointimal SMCs were up-regulated at the early stage of atherosclerosis. Losartan (an angiotensin-converting enzyme inhibitor could reduce neointima proliferation and down-regulate the elevated protein expression of Cx43, suggesting the rennin-angiotensin system (RAS plays an important role in the remodeling of gap junction between ventricular myocytes under pathological conditions.

  7. Expression of connexins 26, 32 and 43 in the human colon--an immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Maria Sobaniec-Lotowska

    2005-02-01

    Full Text Available Gap junctional intercellular communication (GJIC is a mechanism for direct cell-to-cell signalling and is mediated by gap junctions (GJs, which consist of proteins called connexins (Cxs. GJIC plays a critical role in tissue development and differentiation and is important in maintenance of tissue homeostasis. The purpose of the study was to evaluate the expression of Cx26, Cx32 and Cx43 in the human colon. Surgical specimens were obtained from patients who underwent surgical resection of colorectal tumours. Tissue samples (50 cases were collected from normal colon, at the maximum distance from the tumor. Using antibodies for Cx26, Cx32 and Cx43, immunohistochemical detection was made. In epithelial cells, strong Cx26 immunoreactivity was found, whereas Cx32 and Cx43 were sparsely distributed. Strong Cx43 immunostaining in muscularis mucosae was observed. In the circular layer of muscularis externa, expression of Cx43 and Cx26 was seen, but only in the portion closest to the submucosa. No immunoreactivity was found in the longitudinal muscle layer. Small vessels stained positively only for Cx43. Furthermore, there was no difference in staining between samples derived from various sections of the colon. This study showed immunohistochemically for the first time the expression of Cx26 in human colon mucosa.

  8. Expression of connexins 26, 32 and 43 in the human colon--an immunohistochemical study.

    Science.gov (United States)

    Kanczuga-Koda, Luiza; Sulkowski, Stanislaw; Koda, Mariusz; Sobaniec-Lotowska, Maria; Sulkowska, Mariola

    2004-01-01

    Gap junctional intercellular communication (GJIC) is a mechanism for direct cell-to-cell signalling and is mediated by gap junctions (GJs), which consist of proteins called connexins (Cxs). GJIC plays a critical role in tissue development and differentiation and is important in maintenance of tissue homeostasis. The purpose of the study was to evaluate the expression of Cx26, Cx32 and Cx43 in the human colon. Surgical specimens were obtained from patients who underwent surgical resection of colorectal tumours. Tissue samples (50 cases) were collected from normal colon, at the maximum distance from the tumor. Using antibodies for Cx26, Cx32 and Cx43, immunohistochemical detection was made. In epithelial cells, strong Cx26 immunoreactivity was found, whereas Cx32 and Cx43 were sparsely distributed. Strong Cx43 immunostaining in muscularis mucosae was observed. In the circular layer of muscularis externa, expression of Cx43 and Cx26 was seen, but only in the portion closest to the submucosa. No immunoreactivity was found in the longitudinal muscle layer. Small vessels stained positively only for Cx43. Furthermore, there was no difference in staining between samples derived from various sections of the colon. This study showed immunohistochemically for the first time the expression of Cx26 in human colon mucosa.

  9. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    Science.gov (United States)

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.

  10. β-Adrenergic modulation of myocardial conduction velocity: Connexins vs. sodium current.

    Science.gov (United States)

    Campbell, Annabel S; Johnstone, Scott R; Baillie, George S; Smith, Godfrey

    2014-12-01

    The heart is capable of rapid changes in cardiac output: these are caused in large part by changes in the activity of the autonomic nervous system that alter heart rate, force and time course of contraction. While studies of autonomic control have focussed on heart rate and contractile mechanisms, fewer studies have considered the influence of electrical propagation across the chamber. Conduction velocity (CV) of the action potential (AP) is an important variable, which ensures efficient pumping action of the heart and, along with AP duration, is a determinant of the electrical stability of the myocardium. CV depends on multiple factors, including tissue excitability and intercellular resistance: the latter is controlled by the number and arrangement of gap junctions (GJs) linking adjacent cardiac cells. Whole heart studies (in vivo and in vitro) report variable effects of sympathetic nervous system stimulation on ventricular CV, a major complication in interpretation being the accompanying increase in heart rate. At the cellular level, changes in cardiomyocyte electrophysiology, mediated via β-adrenoreceptor (β-AR) activation, alter the AP shape and amplitude but the influence of these effects on the CV is unclear. Alternatively, CV changes may occur via altered GJ conductance, but despite detailed knowledge of the underlying channel protein (connexin), little consensus exists on the extent and time course of the change in GJ conductance induced by AR activation. This review will examine the literature on the modulation of ventricular AP conduction velocity by β-AR activation in a range of physiological preparations and highlight unresolved issues.

  11. Connexin 43 Is a Potential Prognostic Biomarker for Ewing Sarcoma/Primitive Neuroectodermal Tumor

    Directory of Open Access Journals (Sweden)

    Marilyn M. Bui

    2011-01-01

    Full Text Available Connexins (Cxs are building unit proteins of gap junctions (GJs that are prognostic markers in carcinomas. To investigate the role of Cx in Ewing sarcoma (EWS/primitive neuroectodermal tumor (PNET, we examined the expression of Cx43 and Cx26 in 36 EWS/PNETs and found (1 cytoplasmic Cx43 reactivity in 28/36 (78% cases. (2 Cx43 score was significantly correlated with overall survival (P=.025. The average scores for patients alive and dead at 3 years are 46.08 and 96.98 (P=.004 at 5 years are 46.06 and 96.42 (P=.002. (3 Metastasis had a significant effect on the overall survival (P=.003. (4 Cytoplasmic Cx26 reactivity was detected in 2 of 36 (6% patients who died with metastasis. Our results suggest a possible oncogenic and prognostic role for Cx43 and Cx26 in EWS/PNET. The lack of membranous immunoreactivity suggests that the effect of Cx in EWS/PNET is via a GJ function-independent mechanism.

  12. Role of connexin-43 hemichannels in the pathogenesis of Yersinia enterocolitica.

    Science.gov (United States)

    Velasquez Almonacid, L A; Tafuri, S; Dipineto, L; Matteoli, G; Fiorillo, E; Della Morte, R; Fioretti, A; Menna, L F; Staiano, N

    2009-12-01

    Connexin (Cx) channels are sites of cytoplasmic communication between contacting cells. Evidence indicates that the opening of hemichannels occurs under both physiological and pathological conditions. In this paper, the involvement of Cx-43 hemichannels is demonstrated in the pathogenesis of Yersinia. Parental HeLa cells and transfected HeLa cells stably expressing Cx-43 (HCx43) were infected with Yersiniaenterocolitica, and bacterial uptake was measured by the colony-forming unit method. Bacterial uptake was higher in HCx43 cells than in parental cells and was inhibited by the Cx channel blocker, 18-alpha-glycyrrhetinic acid (AGA). The inhibitory effect of AGA was more pronounced on the Y. enterocolitica uptake by HCx43 cells than by parental cells. The ability of HCx43 cells to incorporate the permeable fluorescent tracer Lucifer Yellow (LY) was assessed. Dye incorporation was inhibited by AGA, whereas Y. enterocolitica infection of HCx43 cells increased LY incorporation. Western blotting analysis demonstrated that Y. enterocolitica infection of HCx43 cells induced tyrosine phosphorylation of Cx-43, thus supporting a critical role for Cx-43 in the strategies exploited by bacterial pathogens to invade non-phagocytic cells.

  13. High glucose induces dysfunction of airway epithelial barrier through down-regulation of connexin 43.

    Science.gov (United States)

    Yu, Hongmei; Yang, Juan; Zhou, Xiangdong; Xiao, Qian; Lü, Yang; Xia, Li

    2016-03-01

    The airway epithelium is a barrier to the inhaled antigens and pathogens. Connexin 43 (Cx43) has been found to play critical role in maintaining the function of airway epithelial barrier and be involved in the pathogenesis of the diabetic retinal vasculature, diabetes nephropathy and diabetes skin. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that the down-regulation of Cx43 induced by HG alters the expression of tight junctions (zonula occludens-1 (ZO-1) and occludin) and contributes to dysfunction of airway epithelial barrier, and Cx43 plays a critical role in the process in human airway epithelial cells (16 HBE). We show that high glucose (HG) decreased the expression of ZO-1 and occludin, disassociated interaction between Cx43 and tight junctions, and then increased airway epithelial transepithelial electrical resistance (TER) and permeability by down-regulation of Cx43 in human airway epithelial cells. These observations demonstrate an important role for Cx43 in regulating HG-induced dysfunction of airway epithelial barrier. These findings may bring new insights into the molecular pathogenesis of pulmonary infection related to diabetes mellitus and lead to novel therapeutic intervention for the dysfunction of airway epithelial barrier in chronic inflammatory airway diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Role of Connexin and Pannexin containing channels in HIV infection and NeuroAIDS.

    Science.gov (United States)

    Malik, Shaily; Eugenin, Eliseo A

    2017-09-05

    Neuron-Glia crosstalk is essential for efficient synaptic communication, cell growth and differentiation, neuronal activity, neurotransmitter recycling, and brain immune response. The master regulators of this neuron-glia communication are connexin containing Gap Junctions (GJs) and Hemichannels (HCs) as well as pannexin HCs. However, the role of these channels under pathological conditions, especially in infectious diseases is still in exploratory stages. Human Immunodeficiency Virus-1 (HIV) is one such infectious agent that takes advantage of the host intercellular communication systems, GJs and HCs, to exacerbate viral pathogenesis in the brain in spite of the antiretroviral therapy effectively controlling viral replication in the periphery. Although most infectious agents lead to total "shutdown" of gap junctional communication in parenchymal cells, HIV infection maintains and "hijacks" GJs and HCs to enable few infected cells to spread toxic intracellular agents to neighboring uninfected cells aggravating viral neuropathology even in the absence of viral replication. In this mini-review, we present a comprehensive overview of the role of GJs and HCs in augmenting HIV neuropathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Classical swine fever virus down-regulates endothelial connexin 43 gap junctions.

    Science.gov (United States)

    Hsiao, Hsiang-Jung; Liu, Pei-An; Yeh, Hung-I; Wang, Chi-Young

    2010-07-01

    Classical swine fever is a contagious disease of pigs characterized by fatal hemorrhagic fever. Classical swine fever virus (CSFV) induces the expression of pro-inflammatory and pro-coagulant factors of vascular endothelial cells and establishes a long-term infection. This study aimed to understand the effect of CSFV on endothelial connexin 43 (Cx43) expression and gap junctional intercellular coupling (GJIC). Porcine aortic endothelial cells were infected with CSFV at different multiplicity of infection for 48 h. Semi-quantitative RT-PCR, immunoconfocal microscopy, and Western blotting showed that the transcription and translation of Cx43 were reduced, and this was associated with an attenuation of GJIC. This decrease occurred in a time-dependent manner. An ERK inhibitor (PD98059), a JNK inhibitor (SP600125), and proteasome/lysosome inhibitors all significantly reversed the reduction in Cx43 protein levels without any influence on the titer of progeny virus. In addition, CSFV activated ERK and JNK in a time-dependent manner and down-regulated Cx43 promoter activity, mainly through decreased AP2 binding. This effect was primarily caused by the replication of CSFV rather than a consequence of cytokines being induced by CSFV infection of endothelial cells.

  16. Loss of connexin36 in rat hippocampus and cerebellar cortex in persistent Borna disease virus infection.

    Science.gov (United States)

    Köster-Patzlaff, Christiane; Hosseini, Seyed Mehdi; Reuss, Bernhard

    2009-03-01

    Neonatal Borna disease virus (BDV) infection of the Lewis rat leads to progressive degeneration of dentate gyrus granule cells, and cerebellar Purkinje neurons. Our aim here was to clarify whether BDV interfered with the formation of electrical synapses, and we, therefore, analysed expression of the neuronal gap junction protein connexin36 (Cx36) in the Lewis rat hippocampal formation, and cerebellar cortex, 4 and 8 weeks after neonatal infection. Semiquantitative RT-PCR, revealed a BDV-dependent decrease in Cx36 mRNA in the hippocampal formation 4 and 8 weeks post-infection (p.i.), and in the cerebellar cortex 8 weeks p.i. Correspondingly, immunofluorescent staining revealed reduced Cx36 immunoreactivity in both dentate gyrus, and ammons horn CA3 region, 4 and 8 weeks post-infection. In the cerebellar cortex, Cx36 immunoreactivity was detected only 8 weeks post-infection in the molecular layer, where it was down regulated by BDV. Our findings demonstrate, for the first time, distinct BDV-dependent reductions in Cx36 mRNA and protein in the rat hippocampal formation and cerebellar cortex, suggesting altered neuronal network properties to be an important feature of persistent viral brain infections.

  17. Connexin-36 contributes to control function of insulin-producing cells.

    Science.gov (United States)

    Le Gurun, Sabine; Martin, David; Formenton, Andrea; Maechler, Pierre; Caille, Dorothee; Waeber, Gérard; Meda, Paolo; Haefliger, Jacques-Antoine

    2003-09-26

    Connexin-36 (Cx36) is a gap junction protein expressed by the insulin-producing beta-cells. We investigated the contribution of this protein in normal beta-cell function by using a viral gene transfer approach to alter Cx36 content in the insulin-producing line of INS-1E cells and rat pancreatic islets. Transcripts for Cx43, Cx45, and Cx36 were detected by reverse transcriptase-PCR in freshly isolated pancreatic islets, whereas only a transcript for Cx36 was detected in INS-1E cells. After infection with a sense viral vector, which induced de novo Cx36 expression in the Cx-defective HeLa cells we used to control the transgene expression, Western blot, immunofluorescence, and freeze-fracture analysis showed a large increase of Cx36 within INS-1E cell membranes. In contrast, after infection with an antisense vector, Cx36 content was decreased by 80%. Glucose-induced insulin release and insulin content were decreased, whether infected INS-1E cells expressed Cx36 levels that were largely higher or lower than those observed in wild-type control cells. In both cases, basal insulin secretion was unaffected. Comparable observations on basal secretion and insulin content were made in freshly isolated rat pancreatic islets. The data indicate that large changes in Cx36 alter insulin content and, at least in INS-1E cells, also affect glucose-induced insulin release.

  18. Connexin 26 induces growth suppression, apoptosis and increased efficacy of doxorubicin in prostate cancer cells.

    Science.gov (United States)

    Tanaka, Motoyoshi; Grossman, H Barton

    2004-02-01

    Connexin 26 (Cx26) encodes a gap junction protein and is a putative tumor suppressor gene. We evaluated the effect of forced expression of Cx26 on three human prostate cancer cell lines, PC-3, LNCap, and DU-145. The three cell lines were infected with a Cx26 adenovirus vector (Ad-Cx26) or a control vector or were mock infected. We tested cell growth, cell cycle, apoptosis, and the efficacy of combined treatment with doxorubicin. Ad-Cx26 infection suppressed the growth of all the cell lines compared with controls and induced cell cycle arrest at the G2/M phase and apoptosis. Ad-Cx26 decreased the expression of Bcl-2. LNCaP cell growth was dramatically suppressed by Ad-Cx26 alone. PC-3 and DU-145 had greater growth suppression with combined gene therapy and chemotherapy than with either Ad-Cx26 or doxorubicin alone. Forced expression of Cx26 suppresses the growth of prostate cancer cells and decreases the expression of Bcl-2. Combining Cx26 gene therapy with doxorubicin results in greater growth suppression.

  19. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system.

    Science.gov (United States)

    Ahir, Bhavesh K; Pratten, Margaret K

    2016-07-01

    Cardiomyocytes are electrically coupled by gap junctions, defined as clusters of low-resistance multisubunit transmembrane channels composed of connexins (Cxs). The expression of Cx40, Cx43 and Cx45, which are present in cardiomyocytes, is known to be developmentally regulated. This study investigates the premise that alterations in gap junction proteins are one of the mechanisms by which teratogens may act. Specifically, those molecules known to be teratogenic in humans could cause their effects via disruption of cell-to-cell communication pathways, resulting in an inability to co-ordinate tissue development. Caffeine significantly inhibited contractile activity at concentrations above and including 1500 μm (P caffeine on key cardiac gap junction protein (Cx40, Cx43 and Cx45) expression were analysed using immunocytochemistry and in-cell Western blotting. The results indicated that caffeine altered the expression pattern of Cx40, Cx43 and Cx45 at non-cytotoxic concentrations (≥2000 μm), i.e., at concentrations that did not affect total cell protein and cell viability. In addition the effects of caffeine on cardiomyocyte formation and function (contractile activity score) were correlated with modulation of Cxs (Cx40, Cx43 and Cx45) expression, at above and including 2000 μm caffeine concentrations (P < 0.05). These experiments provide evidence that embryonic chick cardiomyocyte micromass culture may be a useful in vitro method for mechanistic studies of perturbation of embryonic heart development. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Connexins and pannexins: At the junction of neuro-glial homeostasis & disease.

    Science.gov (United States)

    Lapato, Andrew S; Tiwari-Woodruff, Seema K

    2017-06-05

    In the central nervous system (CNS), connexin (Cx)s and pannexin (Panx)s are an integral component of homeostatic neuronal excitability and synaptic plasticity. Neuronal Cx gap junctions form electrical synapses across biochemically similar GABAergic networks, allowing rapid and extensive inhibition in response to principle neuron excitation. Glial Cx gap junctions link astrocytes and oligodendrocytes in the pan-glial network that is responsible for removing excitotoxic ions and metabolites. In addition, glial gap junctions help constrain excessive excitatory activity in neurons and facilitate astrocyte Ca(2+) slow wave propagation. Panxs do not form gap junctions in vivo, but Panx hemichannels participate in autocrine and paracrine gliotransmission, alongside Cx hemichannels. ATP and other gliotransmitters released by Cx and Panx hemichannels maintain physiologic glutamatergic tone by strengthening synapses and mitigating aberrant high frequency bursting. Under pathological depolarizing and inflammatory conditions, gap junctions and hemichannels become dysregulated, resulting in excessive neuronal firing and seizure. In this review, we present known contributions of Cxs and Panxs to physiologic neuronal excitation and explore how the disruption of gap junctions and hemichannels lead to abnormal glutamatergic transmission, purinergic signaling, and seizures. © 2017 Wiley Periodicals, Inc.

  1. Downregulation of connexin43 by microRNA-130a in cardiomyocytes results in cardiac arrhythmias.

    Science.gov (United States)

    Osbourne, Appledene; Calway, Tyler; Broman, Michael; McSharry, Saoirse; Earley, Judy; Kim, Gene H

    2014-09-01

    MicroRNAs (miRNAs) are now recognized as critical regulators of diverse physiological and pathological processes; however, studies of miRNAs and arrhythmogenesis remain sparse. Connexin43 (Cx43), a major cardiac gap junction protein, has elicited great interest in its role in arrhythmias. Additionally, Cx43 was a potential target for miR-130a as predicted by several computational algorithms. This study investigates the effect of miR-130a overexpression in the adult heart and its effect on cardiac rhythm. Using a cardiac-specific inducible system, transgenic mice demonstrated both atrial and ventricular arrhythmias. We performed ventricular-programmed electrical stimulation and found that the αMHC-miR130a mice developed sustained ventricular tachycardia beginning 6weeks after overexpression. Western blot analysis demonstrated a steady decline in Cx43 after 2weeks of overexpression with over a 90% reduction in Cx43 levels by 10weeks. Immunofluorescent staining confirmed a near complete loss of Cx43 throughout the heart. To validate Cx43 as a direct target of miR-130a, we performed in vitro target assays in 3T3 fibroblasts and HL-1 cardiomyocytes, both known to endogenously express miR-130a. Using a luciferase reporter fused to the 3'UTR of Cx43, we found a 52.9% reduction in luciferase activity in 3T3 cells (parrhythmias.

  2. Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice.

    Science.gov (United States)

    Abed, Ahmed; Toubas, Julie; Kavvadas, Panagiotis; Authier, Florence; Cathelin, Dominique; Alfieri, Carlo; Boffa, Jean-Jacques; Dussaule, Jean-Claude; Chatziantoniou, Christos; Chadjichristos, Christos E

    2014-10-01

    Excessive recruitment of monocytes and progression of fibrosis are hallmarks of chronic kidney disease (CKD). Recently we reported that the expression of connexin 43 (Cx43) was upregulated in the kidney during experimental nephropathy. To investigate the role of Cx43 in the progression of CKD, we interbred RenTg mice, a genetic model of hypertension-induced CKD, with Cx43+/- mice. The renal cortex of 5-month-old RenTgCx43+/- mice showed a marked decrease of cell adhesion markers leading to reduced monocyte infiltration and interstitial renal fibrosis compared with their littermates. In addition, functional and histological parameters such as albuminuria and glomerulosclerosis were ameliorated in RenTgCx43+/- mice. Interestingly, treatment with Cx43 antisense produced remarkable improvement of renal function and structure in 1-year-old RenTg mice. Similar results were found in Cx43+/- or wild-type mice treated with Cx43 antisense after obstructive nephropathy. Furthermore, in these mice, Cx43 antisense attenuated E-cadherin downregulation and phosphorylation of the transcription factor Sp1 by the ERK pathway resulting in decreased transcription of type I collagen gene. Interestingly, Cx43-specific blocking peptide inhibited monocyte adhesion in activated endothelium and profibrotic pathways in tubular cells. Cx43 was highly increased in biopsies of patients with CKD. Thus, Cx43 may represent a new therapeutic target against the progression of CKD.

  3. Role of connexin 32 in acetaminophen toxicity in a knockout mice model.

    Science.gov (United States)

    Igarashi, Isao; Maejima, Takanori; Kai, Kiyonori; Arakawa, Shingo; Teranishi, Munehiro; Sanbuissho, Atsushi

    2014-03-01

    Gap junctional intercellular communication (GJIC), by which glutathione (GSH) and inorganic ions are transmitted to neighboring cells, is recognized as being largely involved in toxic processes of chemicals. We examined acetaminophen (APAP)-induced hepatotoxicity clinicopathologically using male wild-type mice and mice lacking the gene for connexin32, a major gap junction protein in the liver [knockout (Cx32KO) mice]. When APAP was intraperitoneally administered at doses of 100, 200, or 300mg/kg, hepatic centrilobular necrosis with elevated plasma aminotransferase activities was observed in wild-type mice receiving 300mg/kg, and in Cx32KO mice given 100mg/kg or more. At 200mg/kg or more, hepatic GSH and GSSG contents decreased significantly and the effect was more severe in wild-type mice than in Cx32KO mice. On the other hand, markedly decreased GSH staining was observed in the hepatic centrilobular zones of Cx32KO mice compared to that of wild-type mice. These results demonstrate that Cx32KO mice are more susceptible to APAP hepatotoxicity than wild-type mice, and indicate that the distribution of GSH of the centrilobular zones in the hepatic lobules, rather than GSH and GSSG contents in the liver, is important in APAP hepatotoxicity. In conclusion, Cx32 protects against APAP-induced hepatic centrilobular necrosis in mice, which may be through the GSH transmission to neighboring hepatocytes by GJIC.

  4. X-连锁的腓骨肌萎缩症与COnnexin32

    Institute of Scientific and Technical Information of China (English)

    笪宇威; 沈定国

    2001-01-01

    @@ X-连锁的Charcot-Marie-Tooth病(CMTX)由间隙连接蛋白connexin32(Cx32)基因突变引起,是第二常见类型的腓骨肌萎缩症,其发病率占CMT1患者的5%~10%,低于CMT1A.本文就其近年来的研究情况综述如下. 1临床表现 CMTX的临床表现与CMT1A大体相似,但与后者相比,CMTX男性患者更重,而女性患者则比CMT1A患者轻.几乎所有的男性患者起病都在20岁以内,而Nicholson[1]等的研究中14名女性患者中的5人在20岁以后起病.步态困难通常最先出现,腿部肌肉萎缩.手部小肌肉的萎缩在男性患者比女性患者更突出,比CMT1A男性患者更明显.90%以上受累男性和80%以上临床受累女性患者都存在足跟行走困难.

  5. Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart

    Science.gov (United States)

    Mahoney, Vanessa M.; Mezzano, Valeria; Mirams, Gary R.; Maass, Karen; Li, Zhen; Cerrone, Marina; Vasquez, Carolina; Bapat, Aneesh; Delmar, Mario; Morley, Gregory E.

    2016-05-01

    Studies have demonstrated non-myocytes, including fibroblasts, can electrically couple to myocytes in culture. However, evidence demonstrating current can passively spread across scar tissue in the intact heart remains elusive. We hypothesize electrotonic conduction occurs across non-myocyte gaps in the heart and is partly mediated by Connexin43 (Cx43). We investigated whether non-myocytes in ventricular scar tissue are electrically connected to surrounding myocardial tissue in wild type and fibroblast-specific protein-1 driven conditional Cx43 knock-out mice (Cx43fsp1KO). Electrical coupling between the scar and uninjured myocardium was demonstrated by injecting current into the myocardium and recording depolarization in the scar through optical mapping. Coupling was significantly reduced in Cx43fsp1KO hearts. Voltage signals were recorded using microelectrodes from control scars but no signals were obtained from Cx43fsp1KO hearts. Recordings showed significantly decreased amplitude, depolarized resting membrane potential, increased duration and reduced upstroke velocity compared to surrounding myocytes, suggesting that the non-excitable cells in the scar closely follow myocyte action potentials. These results were further validated by mathematical simulations. Optical mapping demonstrated that current delivered within the scar could induce activation of the surrounding myocardium. These data demonstrate non-myocytes in the scar are electrically coupled to myocytes, and coupling depends on Cx43 expression.

  6. Focal adhesion kinase modulates radial glia-dependent neuronal migration through connexin-26.

    Science.gov (United States)

    Valiente, Manuel; Ciceri, Gabriele; Rico, Beatriz; Marín, Oscar

    2011-08-10

    Focal adhesion kinase (FAK) is an intracellular kinase and scaffold protein that regulates migration in many different cellular contexts but whose function in neuronal migration remains controversial. Here, we have analyzed the function of FAK in two populations of neurons with very distinct migratory behaviors: cortical interneurons, which migrate tangentially and independently of radial glia; and pyramidal cells, which undergo glial-dependent migration. We found that FAK is dispensable for glial-independent migration but is cell-autonomously required for the normal interaction of pyramidal cells with radial glial fibers. Loss of FAK function disrupts the normal morphology of migrating pyramidal cells, delays migration, and increases the tangential dispersion of neurons arising from the same radial unit. FAK mediates this process by regulating the assembly of Connexin-26 contact points in the membrane of migrating pyramidal cells. These results indicate that FAK plays a fundamental role in the dynamic regulation of Gap-mediated adhesions during glial-guided neuronal migration in the mouse.

  7. Connexin 43 controls the multipolar phase of neuronal migration to the cerebral cortex.

    Science.gov (United States)

    Liu, Xiuxin; Sun, Lin; Torii, Masaaki; Rakic, Pasko

    2012-05-22

    The prospective pyramidal neurons, migrating from the proliferative ventricular zone to the overlaying cortical plate, assume multipolar morphology while passing through the transient subventricular zone. Here, we show that this morphogenetic transformation, from the bipolar to the mutipolar and then back to bipolar again, is associated with expression of connexin 43 (Cx43) and, that knockdown of Cx43 retards, whereas its overexpression enhances, this morphogenetic process. In addition, we have observed that knockdown of Cx43 reduces expression of p27, whereas overexpression of p27 rescues the effect of Cx43 knockdown in the multipolar neurons. Furthermore, functional gap junction/hemichannel domain, and the C-terminal domain of Cx43, independently enhance the expression of p27 and promote the morphological transformation and migration of the multipolar neurons in the SVZ/IZ. Collectively, these results indicate that Cx43 regulates the passage of migrating neurons through their multipolar stage via p27 signaling and that interference with this process, by either genetic and/or environmental factors, may cause cortical malformations.

  8. The long-term effects of FSH and triiodothyronine administration during the pubertal period on Connexin 43 expression and spermatogenesis efficiency in adult rats.

    Science.gov (United States)

    Marchlewska, Katarzyna; Slowikowska-Hilczer, Jolanta; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Filipiak, Eliza; Kula, Krzysztof

    2015-04-01

    Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Hyperstimulation of both hormones evokes regressional changes in connexin 43 expression and the seminiferous epithelium in young rats during testicular maturation. However, separate treatments with T3 reduce Sertoli cell number, which seems to be closely connected with the maturation of connexin 43 gap junctions. FSH elevates Sertoli cell number and function, but this effect may take place regardless of the presence of connexin 43-dependent intercellular communication. The aim of the study was to evaluate the later effects of such treatments. Newborn, male Wistar rats were divided randomly into experimental groups receiving daily subcutaneous injections of either 7.5 IU/animal FSH, or 100 mg/kg b.w. T3, or both substances or the same volume of vehicle (control group) until day 15 of life. The animals were sacrificed on day 50. Morphometric analysis and immunohistochemical reactions were performed using antibodies against Vimentin, Proliferating Cell Nuclear Antigen and Connexin 43 in the testis. Sertoli cell count, efficiency of spermatogenesis, and hormonal pattern were examined. Disturbances in the connexin 43 expression reduced the number of Sertoli cells, the efficiency of spermatogenesis and impaired endocrine function of testes in adult rats treated with FSH and T3 during puberty. Stimulation with FSH alone increased Sertoli cell number, but was associated with a negative effect on cell-to-cell connexin 43-dependent communication, with a consequential reduction of spermatogenesis efficiency. J. Exp. Zool. 323A: 256-265, 2015. © 2015 Wiley Periodicals, Inc.

  9. Connexin mutation that causes dominant congenital cataracts inhibits gap junctions, but not hemichannels, in a dominant negative manner.

    Science.gov (United States)

    Banks, Eric A; Toloue, Masoud M; Shi, Qian; Zhou, Zifei Jade; Liu, Jialu; Nicholson, Bruce J; Jiang, Jean X

    2009-02-01

    The connexin (Cx) 50, E48K, mutation is associated with a human dominant congenital cataract; however, the underlying molecular mechanism has not been characterized. The glutamate (E) residue at position 48 is highly conserved across animal species and types of connexins. When expressed in paired Xenopus oocytes, human (h) and chicken (ch) Cx50 E48K mutants showed no electrical coupling. In addition, this mutation acts in a dominant negative manner when paired hetero-typically or hetero-merically with wild-type Cx50, but has no such effect on Cx46, the other lens fiber connexin. A similar loss-of-function and dominant negative effect was observed using dye transfer assays in the same system. By using two different dye transfer methods, with two different tracer dyes, we found chCx50 E48K expressed in chicken lens embryonic fibroblast cells by retroviral infection similarly failed to induce dye coupling, and prevented wild-type chCx50 from forming functional gap junctions. In contrast to its effect on gap junctions, the E48K mutation has no effect on hemichannel activity when assayed using electrical conductance in oocytes, and mechanically induced dye uptake in cells. Cx50 is functionally involved in cell differentiation and lens development, and the E48K mutant promotes primary lens cell differentiation indistinguishable from wild-type chCx50, despite its lack of junctional channel function. Together the data show that mutations affecting gap junctions but not hemichannel function of Cx50 can lead to dominant congenital cataracts in humans. This clearly supports the model of intercellular coupling of fiber cells creating a microcirculation of nutrients and metabolites required for lens transparency.

  10. Sertoli-cell-specific knockout of connexin 43 leads to multiple alterations in testicular gene expression in prepubertal mice

    Directory of Open Access Journals (Sweden)

    Sarah Giese

    2012-11-01

    A significant decline in human male reproductive function has been reported for the past 20 years but the molecular mechanisms remain poorly understood. However, recent studies showed that the gap junction protein connexin-43 (CX43; also known as GJA1 might be involved. CX43 is the predominant testicular connexin (CX in most species, including in humans. Alterations of its expression are associated with different forms of spermatogenic disorders and infertility. Men with impaired spermatogenesis often exhibit a reduction or loss of CX43 expression in germ cells (GCs and Sertoli cells (SCs. Adult male transgenic mice with a conditional knockout (KO of the Gja1 gene [referred to here as connexin-43 (Cx43] in SCs (SCCx43KO show a comparable testicular phenotype to humans and are infertile. To detect possible signaling pathways and molecular mechanisms leading to the testicular phenotype in adult SCCx43KO mice and to their failure to initiate spermatogenesis, the testicular gene expression of 8-day-old SCCx43KO and wild-type (WT mice was compared. Microarray analysis revealed that 658 genes were significantly regulated in testes of SCCx43KO mice. Of these genes, 135 were upregulated, whereas 523 genes were downregulated. For selected genes the results of the microarray analysis were confirmed using quantitative real-time PCR and immunostaining. The majority of the downregulated genes are GC-specific and are essential for mitotic and meiotic progression of spermatogenesis, including Stra8, Dazl and members of the DM (dsx and map-3 gene family. Other altered genes can be associated with transcription, metabolism, cell migration and cytoskeleton organization. Our data show that deletion of Cx43 in SCs leads to multiple alterations of gene expression in prepubertal mice and primarily affects GCs. The candidate genes could represent helpful markers for investigators exploring human testicular biopsies from patients showing corresponding spermatogenic deficiencies and for

  11. Depression of Intraocular Pressure Following Inactivation of Connexin43 in the Nonpigmented Epithelium of the Ciliary Body

    Science.gov (United States)

    Calera, Mónica R.; Wang, Zhao; Sanchez-Olea, Roberto; Paul, David L.; Civan, Mortimer M.; Goodenough, Daniel A.

    2010-01-01

    Purpose Conditional inactivation of connexin43 (Cx43) in the pigmented epithelium of the mouse eye results in a reduction in aqueous humor production and complete loss of the vitreous chamber. It was proposed that gap junctions between pigmented and nonpigmented epithelia of the ciliary body are critical for the production of the aqueous humor. To form such junctions, Cx43 in the pigmented epithelium must interact with connexin(s) present in the adjacent cells of the nonpigmented epithelium. The importance of Cx43 expression in the nonpigmented epithelium for the establishment of gap junctions and the regulation of intraocular pressure was tested. Methods To inactivate Cx43 in the nonpigmented epithelium of the mouse eye, a mouse line was crossed with a floxed Cx43 locus (Cx43flox/flox) and a transgenic mouse line expressing cre recombinase under the control of the Pax6α promoter. General eye structure was evaluated by light microscopy, gap junctions were analyzed by electron microscopy, and intraocular pressure was directly assessed with micropipettes. Results In Pax6α-cre/Cx43flox/flox mice, Cx43 was partially inactivated in the nonpigmented epithelium of the ciliary body and iris. Animals developed dilatations between the pigmented and nonpigmented epithelia and displayed a significant reduction in intraocular pressure. However, gap junctions between the ciliary epithelial layers were decreased but not eliminated. Conclusions Cx43 expression in the nonpigmented epithelium of the ciliary body contributes to the formation of gap junctions with the cells of the pigmented epithelium. These gap junctions play a critical role in maintaining the physical integrity of the ciliary body epithelium. Although the partial loss of Cx43 from the nonpigmented epithelium was correlated with a measurable drop in intraocular pressure, possible changes in Cx43 in the aqueous outflow pathway may provide an additional contribution to the observed phenotype. PMID:19168903

  12. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.

    Science.gov (United States)

    de Toledo, Sonia M; Buonanno, Manuela; Harris, Andrew L; Azzam, Edouard I

    2017-06-15

    To examine the time window during which intercellular signaling though gap junctions mediates non-targeted (bystander) effects induced by moderate doses of ionizing radiation; and to investigate the impact of gap junction communication on genomic instability in distant progeny of bystander cells. A layered cell culture system was developed to investigate the propagation of harmful effects from irradiated normal or tumor cells that express specific connexins to contiguous bystander normal human fibroblasts. Irradiated cells were exposed to moderate mean absorbed doses from 3.7 MeV α particle, 1000 MeV/u iron ions, 600 MeV/u silicon ions, or (137)Cs γ rays. Following 5 h of co-culture, pure populations of bystander cells, unexposed to secondary radiation, were isolated and DNA damage and oxidative stress was assessed in them and in their distant progeny (20-25 population doublings). Increased frequency of micronucleus formation and enhanced oxidative changes were observed in bystander cells co-cultured with confluent cells exposed to either sparsely ionizing ((137)Cs γ rays) or densely ionizing (α particles, energetic iron or silicon ions) radiations. The irradiated cells propagated signals leading to biological changes in bystander cells within 1 h of irradiation, and the effect required cellular coupling by gap junctions. Notably, the distant progeny of isolated bystander cells also exhibited increased levels of spontaneous micronuclei. This effect was dependent on the type of junctional channels that coupled the irradiated donor cells with the bystander cells. Previous work showed that gap junctions composed of connexin26 (Cx26) or connexin43 (Cx43) mediate toxic bystander effects within 5 h of co-culture, whereas gap junctions composed of connexin32 (Cx32) mediate protective effects. In contrast, the long-term progeny of bystander cells expressing Cx26 or Cx43 did not display elevated DNA damage, whereas those coupled by Cx32 had enhanced DNA

  13. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals.

    Science.gov (United States)

    Forge, Andrew; Becker, David; Casalotti, Stefano; Edwards, Jill; Marziano, Nerissa; Nevill, Graham

    2003-12-08

    The distribution and size of gap junctions (GJ) in the sensory epithelia of the inner ear have been examined in a reptile (gecko), birds (chicken and owl), and mammals (mouse, guinea pig, gerbil, and bat), and the connexin composition of GJs in the mammalian inner ear has been assessed. Freeze fracture revealed a common pattern of GJ distribution in auditory and vestibular sensory epithelia in the different vertebrate classes. In all these tissues, GJs are numerous, often occupying more than 25% of the plasma membrane area of supporting cells and sometimes composed of more than 100,000 channels. Screening for 12 members of the connexin family in the mammalian inner ear by RT-PCR, Western blotting, and immunohistochemistry revealed four connexin isotypes, cx26, cx30, cx31, and cx43, in the cochlea and three, cx26, cx30, and cx43, in the vestibular organs. With antibodies characterised for their specificity, cx26 and cx30 colocalised in supporting cells of the organ of Corti, in the basal cell region of the stria vascularis, and in type 1 fibrocytes of the spiral ligament. No other connexin was detected in these regions. Cx31 was localised among type 2 fibrocytes below the spiral prominence, a region where cx30 was not expressed and cx26 expression appeared to be low. Cx43 was detected only in the region of "tension fibrocytes" lining the inner aspect of the otic capsule. This suggests separate functional compartments in the cochlea. In addition to cx26 and cx30, cx43 was detected in supporting cells of the vestibular sensory epithelia. Where cx26 and cx30 were colocalised, double immunogold labelling of thin sections showed both cx26 and cx30 evenly distributed in individual GJ plaques, a pattern consistent with the presence of heteromeric connexons. Coimmunoprecipitation of cochlear membrane proteins solubilised with a procedure that preserves the oligomeric structure of connexons confirmed the presence of heteromeric cx26/cx30 connexons. Heteromeric cx26/cx30

  14. Connexin43 Mediated Delivery of ADAMTS5 Targeting siRNAs from Mesenchymal Stem Cells to Synovial Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shuo Liu

    Full Text Available Osteoarthritis is a joint-destructive disease that has no effective cure. Human mesenchymal stem cells (hMSCs could offer therapeutic benefit in the treatment of arthritic diseases by suppressing inflammation and permitting tissue regeneration, but first these cells must overcome the catabolic environment of the diseased joint. Likewise, gene therapy also offers therapeutic promise given its ability to directly modulate key catabolic factors that mediate joint deterioration, although it too has limitations. In the current study, we explore an approach that combines hMSCs and gene therapy. Specifically, we test the use of hMSC as a vehicle to deliver ADAMTS5 (an aggrecanase with a key role in osteoarthritis-targeting siRNAs to SW982 synovial fibroblast-like cells via connexin43 containing gap junctions. Accordingly, we transduced hMSCs with ADAMTS5-targeting shRNA or non-targeted shRNA, and co-cultured them with synovial fibroblasts to allow delivery of siRNAs from hMSC to synovial fibroblasts. We found that co-culture of hMSCs-shRNA-ADAMTS5 and synovial fibroblasts reduced ADAMTS5 expression relative to co-culture of hMSCs-shRNA-control and synovial fibroblasts. Furthermore, ADAMTS5 was specifically reduced in the synovial fibroblasts populations as determined by fluorescence-activated cell sorting, suggesting transfer of the siRNA between cells. To test if Cx43-containing gap junctions are involved in the transfer of siRNA, we co-cultured hMSCs-shRNA-ADAMTS5 cells with synovial fibroblasts in which connexin43 was knocked down. Under these conditions, ADAMTS5 levels were not inhibited by co-culture, indicating that connexin43 mediates the delivery of siRNA from hMSCs to synovial fibroblasts. In total, our findings demonstrate that hMSCs can function as donor cells to host and deliver siRNAs to synovial fibroblasts via connexin43 gap junction in vitro. These data may have implications in the combination of hMSCs and gene therapy to treat diseases

  15. An Escherichia coli Strain for Expression of the Connexin45 Carboxyl Terminus Attached to the 4th Transmembrane Domain

    Directory of Open Access Journals (Sweden)

    Jennifer eKopanic

    2013-08-01

    Full Text Available A major problem for structural characterization of membrane proteins, such as connexins, by nuclear magnetic resonance (NMR occurs at the initial step of the process, the production of sufficient amounts of protein. This occurs because proteins must be expressed in minimal based media. Here, we describe an expression system for membrane proteins that significantly improves yield by addressing two common problems, cell toxicity caused by protein translation and codon bias between genomes. This work provides researchers with a cost-effective tool for NMR and other biophysical studies, to use when faced with little-to-no expression of eukaryotic membrane proteins in E. coli expression systems.

  16. Deciphering the potential efficacy of acetyl-L-carnitine (ALCAR) in maintaining connexin-mediated lenticular homeostasis

    OpenAIRE

    Muralidharan, Arumugam Ramachandran; Leema, George; Annadurai, Thangaraj; Anitha, Thirugnanasambandhar Sivasubramanian; Thomas, Philip A.; Geraldine, Pitchairaj

    2012-01-01

    Purpose To determine the putative role of acetyl-L-carnitine (ALCAR) in maintaining normal intercellular communication in the lens through connexin. Methods In the present study, Wistar rat pups were divided into 3 groups of eight each. On postpartum day ten, Group I rat pups received an intraperitoneal injection (50 µl) of 0.89% saline. Rats in Groups II and III received a subcutaneous injection (50 µl) of sodium selenite (19 µmol/kg bodyweight); Group III rat pups also received an intraperi...

  17. Connexin32 accumulation in Golgi apparatus facilitates motility and invasiveness in Li-7 hepatocellular carcinoma cells%高尔基体内Connexin32蛋白对肝癌细胞Li-7的运动和侵袭能力的影响

    Institute of Scientific and Technical Information of China (English)

    李庆昌; 王鑫; 潘泳岐; 刘树立; 邱雪杉; 王恩华

    2012-01-01

    Objective To explore the effects of gap junction protein Connexin 32 on motility and invasiveness of hepatocellular carcinoma ( HCC) cells and the possible mechanism. Methods The stable subclone Li -7 Tet-off Connexin32 in which Connexin32 expression could be controlled by doxycycline was established in HCC Li -7 cells by retrovirus infection. Golgi apparatus was stained with BODIPY TR C5-ceramide to ascertain subcellular localization of Connexin 32 and scrape-loading dye transfer assay was performed to determine the GJIC . Cell motile and invasive ability was analyzed by in vitro transwell motility and invasion assay. Results A subclone originated from Li-7 cells was established, in which both Connexin32 cDNA and regulatory element Tet-off were stably integrated. Western-blot result showed that exogenous Connexin 32 was expressed in cytoplasm , mainly in Golgi apparatus, thus could not form GJIC among the adjacent HCC cells . Moreover, the abnormal accumulation of Connexin32 protein in cytoplasm could significantly promote motility and invasiveness of Li -7 cells. Conclusions Intra-Golgi accumulation of Connexin 32 protein can enhance tumor progression in Li -7 HCC cells with GJIC-independent manner.%目的 探讨肝癌细胞中间隙连接蛋白Connexin32 对肝癌细胞运动和侵袭能力的影响及可能 的分子机制.方法 利用逆病毒感染的方法在肝癌细胞系Li-7 中建立Connexin32 蛋白表达可通过doxycyc- line 调控的Li-7 Tet-off Connexin32 稳定克隆,应用高尔基体染色确定Connexin32 蛋白亚细胞定位,应用刮擦 负荷-染料转移实验(SL-DT)方法评价间隙连接介导的细胞间通讯(GJIC)水平,运用体外跨室细胞运动及侵 袭方法验证Connexin32 表达与肝癌细胞运动和侵袭能力的相关性.结果 利用逆病毒感染方法建立了稳定 整合了Connexin32 cDNA 和调控序列Tet-off 的肝癌细胞Li-7 Tet-off Connexin32 亚克隆,Western-blot 结果显 示外源性Connexin32 蛋白

  18. Opening of pannexin and connexin based-channels increases the excitability of nodose ganglion sensory neurons.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-06-01

    Full Text Available Satellite glial cells (SGCs are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system, astrocytes present connexin43 (Cx43 hemichannels and pannexin1 (Panx1 channels, and their opening allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in the glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complex (NPJc by confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to Ca2+/ Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT. Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because Panx1 knockout mouse showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. Data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.

  19. Opening of pannexin- and connexin-based channels increases the excitability of nodose ganglion sensory neurons.

    Science.gov (United States)

    Retamal, Mauricio A; Alcayaga, Julio; Verdugo, Christian A; Bultynck, Geert; Leybaert, Luc; Sáez, Pablo J; Fernández, Ricardo; León, Luis E; Sáez, Juan C

    2014-01-01

    Satellite glial cells (SGCs) are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system (CNS), astrocytes present connexin43 (Cx43) hemichannels and pannexin1 (Panx1) channels, and the opening of these channels allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complexes (NPJcs) using confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and in sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to a Ca(2+)/Mg(2+)-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT). Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because in those from Panx1 knockout mice showed a reduced increase of neuronal activity induced by Ca(2+)/Mg(2+)-free extracellular conditions. The data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.

  20. Effects of rotigaptide (ZP123) on connexin43 remodeling in canine ventricular fibrillation.

    Science.gov (United States)

    Su, Guo-Ying; Wang, Jing; Xu, Zhen-Xing; Qiao, Xiao-Jun; Zhong, Jing-Quan; Zhang, Yun

    2015-10-01

    The present study investigated the effects of rotigaptide (ZP123) on the expression, distribution and phosphorylation of connexin43 (Cx43) in myocardial cell membranes in cardioversion of ventricular fibrillation (VF). A model of prolonged VF (8, 12 and 30 min) was established in mongrel dogs (n=8/group), following treatment with ZP123 or normal saline (NS control). A sham control was included. Cardiopulmonary resuscitation was begun at the start of VF followed by defibrillation. Animals received a maximum of three defibrillations of increasing energy (70, 100 and 150 J biphasic shock) as required. The average defibrillation energy, defibrillation success rate, return of spontaneous circulation and survival rate were recorded. Cx43 and phosphorylated (p-)Cx43 expression in cardiomyocyte membranes was detected by western blot and immunofluorescence analyses. Compared with the NS-treated control groups, the success defibrillation rate in the 8-min and 12-min ZP123 groups was significantly higher (P<0.05), while the average defibrillation energy was significantly lower (P<0.05). Cx43 expression in the VF groups was significantly lower than that in the sham control group (P<0.05). Cx43 expression was higher in the 12-min and 30-min ZP123 groups than that in the NS control group (P<0.05), while p-Cx43 expression decreased, although the levels were significantly higher than those in the control groups (P<0.05). Cx43 expression was positively correlated with the defibrillation success rate (r=0.91; P<0.01) and negatively with the mean defibrillation energy (r=-0.854; P<0.01), while p-Cx43 expression was positively correlated with the success rate of the previous three defibrillations (r=0.926; P<0.01).In conclusion, ZP123 reduced Cx43 remodeling through regulating the expression, distribution and phosphorylation of Cx43, thereby reducing the defibrillation energy required for successful cardioversion.

  1. Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss.

    Science.gov (United States)

    Zhu, Y; Chen, J; Liang, C; Zong, L; Chen, J; Jones, R O; Zhao, H-B

    2015-01-22

    Connexin26 (Cx26, GJB2) mutations account for >50% of nonsyndromic hearing loss. The deafness is not always congenital. A large group of these patients (∼30%) demonstrate a late-onset hearing loss, starting in childhood. They have normal hearing early in life and are therefore good candidates for applying protective and therapeutic interventions. However, the underlying deafness mechanism is unclear. In this study, we used a time-controlled, inducible gene knockout technique to knockout Cx26 expression in the cochlea after birth. We found that deletion of Cx26 after postnatal day 5 (P5) in mice could lead to late-onset hearing loss. Similar to clinical observations, the mice demonstrated progressive, mild to moderate hearing loss. The hearing loss initiated at high frequencies and then extended to the middle- and low-frequency range. The cochlea showed normal development and had no apparent hair cell loss. However, distortion product otoacoustic emission (DPOAE) was reduced. The reduction was also progressive and large at high-frequencies. Consistent with DPOAE reduction, we found that outer hair cell electromotility-associated nonlinear capacitance was shifted to the right and the slope of voltage dependence was reduced. The endocochlear potential was reduced in Cx26 conditional knockout (cKO) mice but the reduction was not associated with progressive hearing loss. These data suggest that Cx26 deficiency may impair active cochlear amplification leading to late-onset hearing loss. Our study also helps develop newer protective and therapeutic interventions to this common nonsyndromic hearing loss.

  2. ATP releasing connexin 30 hemichannels mediate flow-induced calcium signaling in the collecting duct.

    Science.gov (United States)

    Svenningsen, Per; Burford, James L; Peti-Peterdi, János

    2013-01-01

    ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC, and AQP2. Recently, we have shown that connexin (Cx) 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD) and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30(-/-) mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca(2+)]i) signaling in the CD. Cortical CDs (CCDs) from wild type and Cx30(-/-) mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca(2+)]i in wild type CCDs. This response was blunted in Cx30(-/-) CCDs ([Ca(2+)]i increased only 1.2-fold, p < 0.0001 vs. WT, n = 6 each). To further test our hypothesis we performed CD [Ca(2+)]i imaging in intact mouse kidneys in vivo using multiphoton microscopy and micropuncture delivery of the calcium-sensitive fluorophore Rhod-2. We found intrinsic, spontaneous [Ca(2+)]i oscillations in free-flowing CDs of wild type but not Cx30(-/-) mice. The [Ca(2+)]i oscillations were sensitive also to P2-receptor inhibition by suramin. Taken together, these data confirm that mechanosensitive Cx30 hemichannels mediate tubular ATP release and purinergic calcium signaling in the CD which mechanism plays an important role in the regulation of CD salt and water reabsorption.

  3. Diminished Paracrine Regulation of the Epithelial Na+ Channel by Purinergic Signaling in Mice Lacking Connexin 30*

    Science.gov (United States)

    Mironova, Elena; Peti-Peterdi, Janos; Bugaj, Vladislav; Stockand, James D.

    2011-01-01

    We tested whether ATP release through Connexin 30 (Cx30) is part of a local purinergic regulatory system intrinsic to the aldosterone-sensitive distal nephron (ASDN) important for proper control of sodium excretion; if changes in sodium intake influence ATP release via Cx30; and if this allows a normal ENaC response to changes in systemic sodium levels. In addition, we define the consequences of disrupting ATP regulation of ENaC in Cx30−/− mice. Urinary ATP levels in wild-type mice increase with sodium intake, being lower and less dependent on sodium intake in Cx30−/− mice. Loss of inhibitory ATP regulation causes ENaC activity to be greater in Cx30−/− versus wild-type mice, particularly with high sodium intake. This results from compromised ATP release rather than end-organ resistance: ENaC in Cx30−/− mice responds to exogenous ATP. Thus, loss of paracrine ATP feedback regulation of ENaC in Cx30−/− mice disrupts normal responses to changes in sodium intake. Consequently, ENaC is hyperactive in Cx30−/− mice lowering sodium excretion particularly during increases in sodium intake. Clamping mineralocorticoids high in Cx30−/− mice fed a high sodium diet causes a marked decline in renal sodium excretion. This is not the case in wild-type mice, which are capable of undergoing aldosterone-escape. This loss of the ability of ENaC to respond to changes in sodium levels contributes to salt-sensitive hypertension in Cx30−/− mice. PMID:21075848

  4. Diminished paracrine regulation of the epithelial Na+ channel by purinergic signaling in mice lacking connexin 30.

    Science.gov (United States)

    Mironova, Elena; Peti-Peterdi, Janos; Bugaj, Vladislav; Stockand, James D

    2011-01-14

    We tested whether ATP release through Connexin 30 (Cx30) is part of a local purinergic regulatory system intrinsic to the aldosterone-sensitive distal nephron (ASDN) important for proper control of sodium excretion; if changes in sodium intake influence ATP release via Cx30; and if this allows a normal ENaC response to changes in systemic sodium levels. In addition, we define the consequences of disrupting ATP regulation of ENaC in Cx30(-/-) mice. Urinary ATP levels in wild-type mice increase with sodium intake, being lower and less dependent on sodium intake in Cx30(-/-) mice. Loss of inhibitory ATP regulation causes ENaC activity to be greater in Cx30(-/-) versus wild-type mice, particularly with high sodium intake. This results from compromised ATP release rather than end-organ resistance: ENaC in Cx30(-/-) mice responds to exogenous ATP. Thus, loss of paracrine ATP feedback regulation of ENaC in Cx30(-/-) mice disrupts normal responses to changes in sodium intake. Consequently, ENaC is hyperactive in Cx30(-/-) mice lowering sodium excretion particularly during increases in sodium intake. Clamping mineralocorticoids high in Cx30(-/-) mice fed a high sodium diet causes a marked decline in renal sodium excretion. This is not the case in wild-type mice, which are capable of undergoing aldosterone-escape. This loss of the ability of ENaC to respond to changes in sodium levels contributes to salt-sensitive hypertension in Cx30(-/-) mice.

  5. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis.

    Science.gov (United States)

    Sipos, Arnold; Vargas, Sarah L; Toma, Ildikó; Hanner, Fiona; Willecke, Klaus; Peti-Peterdi, János

    2009-08-01

    In the renal tubule, ATP is an important regulator of salt and water reabsorption, but the mechanism of ATP release is unknown. Several connexin (Cx) isoforms form mechanosensitive, ATP-permeable hemichannels. We localized Cx30 to the nonjunctional apical membrane of cells in the distal nephron and tested whether Cx30 participates in physiologically important release of ATP. We dissected, partially split open, and microperfused cortical collecting ducts from wild-type and Cx30-deficient mice in vitro. We used PC12 cells as ATP biosensors by loading them with Fluo-4/Fura Red to measure cytosolic calcium and positioning them in direct contact with the apical surface of either intercalated or principal cells. ATP biosensor responses, triggered by increased tubular flow or by bath hypotonicity, were approximately three-fold greater when positioned next to intercalated cells than next to principal cells. In addition, these responses did not occur in preparations from Cx30-deficient mice or with purinergic receptor blockade. After inducing step increases in mean arterial pressure by ligating the distal aorta followed by the mesenteric and celiac arteries, urine output increased 4.2-fold in wild-type mice compared with 2.6-fold in Cx30-deficient mice, and urinary Na(+) excretion increased 5.2-fold in wild-type mice compared with 2.8-fold in Cx30-deficient mice. Furthermore, Cx30-deficient mice developed endothelial sodium channel-dependent, salt-sensitive elevations in mean arterial pressure. Taken together, we suggest that mechanosensitive Cx30 hemichannels have an integral role in pressure natriuresis by releasing ATP into the tubular fluid, which inhibits salt and water reabsorption.

  6. Connexin43- and Pannexin-Based Channels in Neuroinflammation and Cerebral Neuropathies

    Directory of Open Access Journals (Sweden)

    Denis Sarrouilhe

    2017-10-01

    Full Text Available Connexins (Cx are largely represented in the central nervous system (CNS with 11 Cx isoforms forming intercellular channels. Moreover, in the CNS, Cx43 can form hemichannels (HCs at non-junctional membrane as does the related channel-forming Pannexin1 (Panx1 and Panx2. Opening of Panx1 channels and Cx43 HCs appears to be involved in inflammation and has been documented in various CNS pathologies. Over recent years, evidence has accumulated supporting a link between inflammation and cerebral neuropathies (migraine, Alzheimer’s disease (AD, Parkinson’s disease (PD, major depressive disorder, autism spectrum disorder (ASD, epilepsy, schizophrenia, bipolar disorder. Involvement of Panx channels and Cx43 HCs has been also proposed in pathophysiology of neurological diseases and psychiatric disorders. Other studies showed that following inflammatory injury of the CNS, Panx1 activators are released and prolonged opening of Panx1 channels triggers neuronal death. In neuropsychiatric diseases, comorbidities are frequently present and can aggravate the symptoms and make therapeutic management more complex. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving inflammatory pathways and Panx1 channels or Cx43 HCs. Thus, anti-inflammatory therapy opens perspectives of targets for new treatments and could have real potential in controlling a cerebral neuropathy and some of its comorbidities. The purpose of this mini review is to provide information of our knowledge on the link between Cx43- and Panx-based channels, inflammation and cerebral neuropathies.

  7. c-Src Kinase Inhibition Reduces Arrhythmia Inducibility and Connexin43 Dysregulation after Myocardial Infarction

    Science.gov (United States)

    Rutledge, Cody A.; Ng, Fu Siong; Sulkin, Matthew S.; Greener, Ian D.; Sergeyenko, Artem M.; Liu, Hong; Gemel, Joanna; Beyer, Eric C.; Sovari, Ali A.; Efimov, Igor R.; Dudley, Samuel C.

    2014-01-01

    Objectives The aim of this study was to evaluate the role of c-Src inhibition on connexin43 (Cx43) regulation in a mouse model of myocardial infarction (MI). Background MI is associated with decreased expression of Cx43, the principal gap junction protein responsible for propagating current in ventricles. Activated c-Src has been linked to Cx43 dysregulation. Methods MI was induced in 12-week-old mice by coronary artery occlusion. MI mice were treated with c-Src inhibitors (PP1 or AZD0530), PP3 (an inactive analogue of PP1), or saline. Treated hearts were compared to sham mice by echocardiography, optical mapping, telemetry ECG monitoring, and inducibility studies. Tissues were collected for immunoblotting, quantitative PCR, and immunohistochemistry. Results Active c-Src was elevated in PP3-treated MI mice compared to sham at the scar border (280%, p=0.003) and distal ventricle (346%, p=0.013). PP1 treatment restored active c-Src to sham levels at the scar border (86%, p=0.95) and distal ventricle (94%, p=1.0). PP1 raised Cx43 expression by 69% in the scar border (p=0.048) and by 73% in distal ventricle (p=0.043) compared to PP3 mice. PP1-treated mice had restored conduction velocity at the scar border (PP3: 32 cm/s, PP1: 41 cm/s, p < 0.05) and lower arrhythmic inducibility (PP3: 71%, PP1: 35%, p < 0.05) than PP3 mice. PP1 did not change infarct size, ECG pattern, or cardiac function. AZD0530 treatment demonstrated restoration of Cx43 comparable to PP1. Conclusions c-Src inhibition improved Cx43 levels and conduction velocity and lowered arrhythmia inducibility after MI, suggesting a new approach for arrhythmia reduction following MI. PMID:24361364

  8. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  9. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    Science.gov (United States)

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria.

    Science.gov (United States)

    Boengler, Kerstin; Stahlhofen, Sabine; van de Sand, Anita; Gres, Petra; Ruiz-Meana, Marisol; Garcia-Dorado, David; Heusch, Gerd; Schulz, Rainer

    2009-03-01

    Cardiomyocytes contain subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria, which differ in their respiratory and calcium retention capacity. Connexin 43 (Cx43) is located at the inner membrane of SSM, and Cx43 is involved in the cardioprotection by ischemic preconditioning (IP). The function of Cx43-formed channels is regulated in part by phosphorylation at residues in the carboxy terminus of Cx43. The aim of the present study was (1) to investigate whether Cx43 is also present in IFM, and (2) to characterize its spatial orientation in the inner mitochondrial membrane (IMM). Confirming previous findings, ADP-stimulated respiration was greater in IFM than in SSM from rat ventricles. In preparations from rats and mice not contaminated with sarcolemmal proteins, Cx43 was exclusively detected in SSM, but not in IFM by Western blot analysis (n = 6). SSM were exposed to different proteinase K concentrations to cleave peptide bonds, and Western blot analysis was performed for ATP synthase alpha (IMM, subunit in the matrix), uncoupling protein 3 (UCP3, IMM, intermembrane space epitope), and manganese superoxide dismutase (MnSOD, matrix). At a proteinase K concentration of 50 microg/ml, immunoreactivities of all the analyzed proteins were completely lost. The use of 5 microg/ml proteinase K resulted in similarly reduced immunoreactivities for Cx43 (19.4 +/- 5.8% of untreated mitochondria, n = 6) and UCP3 (23.0 +/- 4%, n = 7), whereas the immunoreactivities of ATP synthase alpha (49.1 +/- 6.4%, n = 7) and MnSOD (79.9 +/- 17.4%, n = 6) were better preserved, suggesting that the carboxy terminus of Cx43 is directed towards the intermembrane space. The results were confirmed in digitonin-treated mitochondria. Taken together, Cx43 is exclusively localized in SSM, with its carboxy terminus directed towards the intermembrane space. Since loss of mitochondrial Cx43 abolishes IP's cardioprotection, SSM and IFM apparently differ in their function in the signal transduction of

  11. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo.

    Science.gov (United States)

    Schulz, Rainer; Gres, Petra; Skyschally, Andreas; Duschin, Alexej; Belosjorow, Sergej; Konietzka, Ina; Heusch, Gerd

    2003-07-01

    During myocardial ischemia, connexin 43 (Cx43) is dephosphorylated in vitro, and the subsequent opening of gap junctions formed by two opposing Cx43 hexamers was suggested to propagate ischemia/reperfusion injury. Reduction of infarct size (IS) by ischemic preconditioning (IP) involves activation of protein kinase C (PKC) and p38 mitogen activated protein kinase (MAPK), both of which can phosphorylate Cx43. We now studied in anesthetized pigs whether IP impacts on Cx43 phosphorylation by measuring the density of non-phosphorylated and total Cx43 (confocal laser) during normoperfusion and 90-min ischemia in non-preconditioned and preconditioned hearts. Co-localization of PKCalpha, p38MAPKalpha, and p38MAPKbeta with Cx43 and the activity of p38MAPK were assessed. IP by 10 min ischemia and 15 min reperfusion reduced IS. Non-phosphorylated Cx43 remained unchanged during ischemia in preconditioned hearts, while it increased from 35+/-3 to 75+/-8 AU (P<0.05) in non-preconditioned hearts. Co-localization of PKCalpha, p38MAPKalpha, and p38MAPKbeta with Cx43 during ischemia increased only in preconditioned hearts. While the ischemia-induced increase in p38MAPKalpha activity was comparable in preconditioned and non-preconditioned hearts, p38MAPKbeta activity was increased only in preconditioned hearts. Blockade of p38MAPK by SB203580 attenuated the IS-reduction and the increased p38MAPK-Cx43 co-localization by IP. We conclude that IP increases co-localization of protein kinases with Cx43 and preserves phosphorylation of Cx43 during ischemia.

  12. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning.

    Science.gov (United States)

    Boengler, Kerstin; Dodoni, Giuliano; Rodriguez-Sinovas, Antonio; Cabestrero, Alberto; Ruiz-Meana, Marisol; Gres, Petra; Konietzka, Ina; Lopez-Iglesias, Carmen; Garcia-Dorado, David; Di Lisa, Fabio; Heusch, Gerd; Schulz, Rainer

    2005-08-01

    Connexin 43 (Cx43) is involved in infarct size reduction by ischemic preconditioning (IP); the underlying mechanism of protection, however, is unknown. Since mitochondria have been proposed to be involved in IP's protection, the present study analyzed whether Cx43 is localized at mitochondria of cardiomyocytes and whether such localization is affected by IP. Western blot analysis on mitochondrial preparations isolated from rat, mouse, pig, and human hearts showed the presence of Cx43. The preparations were not contaminated with markers for other cell compartments. The localization of Cx43 to mitochondria was also confirmed by FACS sorting (double staining with MitoTracker Red and Cx43) and immuno-electron and confocal microscopy. To study the role of Cx43 in IP, mitochondria were isolated from the ischemic anterior wall (AW) and the control posterior wall (PW) of pig myocardium at the end of 90 min low-flow ischemia without (n=13) or with (n=13) a preceding preconditioning cycle of 10 min ischemia and 15 min reperfusion. With IP, the mitochondrial Cx43/adenine nucleotide transporter ratio was 3.4+/-0.7 fold greater in AW than in PW, whereas the ratio remained unchanged in non-preconditioned myocardium (1.1+/-0.2, p<0.05). The enhancement of the mitochondrial Cx43 protein level occurred rapidly, since an increase of mitochondrial Cx43 was already detected with two cycles of 5 min ischemia/reperfusion in isolated rat hearts to 262+/-63% of baseline. These data demonstrate that Cx43 is localized at cardiomyocyte mitochondria and that IP enhances such mitochondrial localization.

  13. Losartan reduced connexin43 expression in left ventricular myocardium of spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Li-li ZHAO; Hong-juan CHEN; Jun-zhu CHEN; Min YU; Yun-lan NI; Wei-fang ZHANG

    2008-01-01

    Objective: To assess the effect of angiotensin Ⅱ type 1 (AT1) receptor antagonist losartan on myocardium connexin43 (Cx43) gap junction (GJ) expression in spontaneously hypertensive rats (SHRs) and investigate possible mechanisms. Methods: Sixteen 9-week-old male SHRs and 8 age-matched male Wistar-Kyoto (WKY) rats were included in this study. SHRs were randomly divided into two groups to receive losartan at 30mg/(kg·d) by oral gavage once daily for 8 weeks (SHR-L) or vehicle (0.9% saline) to act as controls (SHR-V); WKY rats receiving vehicle for 8 weeks served as normotensive controls. At the end of the experiment, rats were sacrificed and the hearts were removed. Expressions of Cx43 and nuclear factor-kappaB p65 (NF-κB p65) proteins in all three groups were observed and further investigations on the effect of angiotensin Ⅱ type 1 receptor antagonist losartan (30mg/(kg·d), 8 weeks) on Cx43 expression were conducted with Western blot and immunohistochemistry. NF-κB p65 protein in nuclear extracts was determined by Western blot. Results: Left ventricular (LV) hypertrophy was prominent in SHRs, Cx43 and NF-κB p65 protein expressions were obviously upregulated and Cx43 distribution was dispersed over the cell surface. Treatment with losarton reduced the over-expressions of Cx43 and NF-κB p65 in LV myocardium. The distribution of Cx43 gap junction also became much regular and confined to intercalated disk after losartan treatment. Conclusion: Cx43 level was upregulated in LV myocardium of SHR during early stage of hypertrophy. Angiotensin Ⅱ type l receptor antagonist losartan prevented Cx43 gap junction remodeling in hypertrophied left ventricles, possibly through the NF-κB pathway.

  14. Suppression of cell membrane permeability by suramin: involvement of its inhibitory actions on connexin 43 hemichannels.

    Science.gov (United States)

    Chi, Yuan; Gao, Kun; Zhang, Hui; Takeda, Masayuki; Yao, Jian

    2014-07-01

    Suramin is a clinically prescribed drug for treatment of human African trypanosomiasis, cancer and infection. It is also a well-known pharmacological antagonist of P2 purinoceptors. Despite its clinical use and use in research, the biological actions of this molecule are still incompletely understood. Here, we investigated the effects of suramin on membrane channels, as exemplified by its actions on non-junctional connexin43 (Cx43) hemichannels, pore-forming α-haemolysin and channels involved in ATP release under hypotonic conditions. Hemichannels were activated by removing extracellular Ca(2+) . The influences of suramin on hemichannel activities were evaluated by its effects on influx of fluorescent dyes and efflux of ATP. The membrane permeability and integrity were assessed through cellular retention of preloaded calcein and LDH release. Suramin blocked Cx43 hemichannel permeability induced by removal of extracellular Ca(2+) without much effect on Cx43 expression and gap junctional intercellular communication. This action of suramin was mimicked by its analogue NF023 and NF449 but not by another P2 purinoceptor antagonist PPADS. Besides hemichannels, suramin also significantly blocked intracellular and extracellular exchanges of small molecules caused by α-haemolysin from Staphylococcus aureus and by exposure of cells to hypotonic solution. Furthermore, it prevented α-haemolysin- and hypotonic stress-elicited cell injury. Suramin blocked membrane channels and protected cells against toxin- and hypotonic stress-elicited injury. Our finding provides novel mechanistic insights into the pharmacological actions of suramin. Suramin might be therapeutically exploited to protect membrane integrity under certain pathological situations. © 2014 The British Pharmacological Society.

  15. Connexin 32 and 43 promoter methylation in Helicobacter pylori-associated gastric tumorigenesis.

    Science.gov (United States)

    Wang, Yu; Huang, Li-Hua; Xu, Can-Xia; Xiao, Jing; Zhou, Li; Cao, Dan; Liu, Xiao-Min; Qi, Yong

    2014-09-07

    To explore the mechanism of abnormal Connexin (Cx) 32 and Cx43 expression in the gastric mucosa after Helicobacter pylori (H. pylori) infection. Biopsy specimens of gastric mucosa in different gastric carcinogenesis stages with H. pylori infection, that is, non-atrophic gastritis (NAG; n = 24), chronic atrophic gastritis (CAG; n = 25), intestinal metaplasia (IM; n = 28), dysplasia (DYS; n = 24), and gastric cancer (GC; n = 30), as well as specimens of normal gastric mucosa without H. pylori infection (NGM; n = 25), were confirmed by endoscopy and pathological examination. Cx32 and Cx43 mRNA expression was detected by real-time polymerase chain reaction (PCR). Cx32 and Cx43 promoter CpG island methylation status was determined by methylation-specific PCR (MSP), bisulfite PCR sequencing (BSP) and MassArray methods. The relative mRNA expression levels in the gastric mucosa of patients with NGM, NAG, CAG, IM, DYS and GC were 0.146 ± 0.011, 0.133 ± 0.026, 0.107 ± 0.035, 0.039 ± 0.032, 0.037 ± 0.01 and 0.03 ± 0.011 for Cx32; and 0.667 ± 0.057, 0.644 ± 0.051, 0.624 ± 0.049, 0.555 ± 0.067, 0.536 ± 0.058 and 0.245 ± 0.121 for Cx43, respectively, which were gradually decreasing and significantly different (GC vs NGM: P infection-associated gastric carcinogenesis, and it is associated with hypermethylation of these genes' promoter.

  16. Acute inflammation decreases the expression of connexin 40 in mouse lung.

    Science.gov (United States)

    Rignault, Stéphanie; Haefliger, Jacques-Antoine; Waeber, Bernard; Liaudet, Lucas; Feihl, François

    2007-07-01

    Transmigration of neutrophil polymorphonuclear leukocytes through the microvascular endothelium is a cardinal event of acute inflammation. In vitro, this process can be restricted by gap junctional intercellular communication, but whether it also occurs in vivo is unknown. Connexin 40 (Cx40) is a gap junctional protein abundantly present in the lung, notably in vascular endothelium. We hypothesized that acute lung inflammation would be aggravated in knockout mice genetically deficient in Cx40. This hypothesis was tested in two different models: 1) intranasal instillation of LPS at either supramaximal (50 microg/mouse) or inframaximal dose (0.01 microg/mouse) and 2) pulmonary inflammation as a distant consequence of an abdominal infection caused by cecal ligation and perforation. Pulmonary transmigration of neutrophils was assessed by counting these cells in bronchoalveolar lavage fluid (LPS model) or with the myeloperoxidase assay in homogenates of blood-free tissue (cecal ligation and perforation model). Pulmonary content in Cx40 and Cx43 was evaluated with immunoblots. In wild-type mice, there was a time-dependent decrease of Cx40 expression in both models. The time points for studies with the knockout mice were chosen in such a manner that inflammation was clearly present and Cx40 still largely expressed in wild-type animals. In either model, the development of lung inflammation did not differ between wild-type and Cx40-deficient mice. In conclusion, the pulmonary expression of the Cx40 protein is progressively and markedly decreased in two different murine models of acute lung inflammation, but there is no causal relationship between this process and the pulmonary transmigration of neutrophils.

  17. A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection.

    Science.gov (United States)

    Anand, Rahul J; Dai, Shipan; Gribar, Steven C; Richardson, Ward; Kohler, Jeff W; Hoffman, Rosemary A; Branca, Maria F; Li, Jun; Shi, Xiao-Hua; Sodhi, Chhinder P; Hackam, David J

    2008-12-15

    The pathways that lead to the internalization of pathogens via phagocytosis remain incompletely understood. We now demonstrate a previously unrecognized role for the gap junction protein connexin43 (Cx43) in the regulation of phagocytosis by macrophages and in the host response to bacterial infection of the peritoneal cavity. Primary and cultured macrophages were found to express Cx43, which localized to the phagosome upon the internalization of IgG-opsonized particles. The inhibition of Cx43 using small interfering RNA or by obtaining macrophages from Cx43 heterozygous or knockout mice resulted in significantly impaired phagocytosis, while transfection of Cx43 into Fc-receptor expressing HeLa cells, which do not express endogenous Cx43, conferred the ability of these cells to undergo phagocytosis. Infection of macrophages with adenoviruses expressing wild-type Cx43 restored phagocytic ability in macrophages from Cx43 heterozygous or deficient mice, while infection with viruses that expressed mutant Cx43 had no effect. In understanding the mechanisms involved, Cx43 was required for RhoA-dependent actin cup formation under adherent particles, and transfection with constitutively active RhoA restored a phagocytic phenotype after Cx43 inactivation. Remarkably, mortality was significantly increased in a mouse model of bacterial peritonitis after Cx43 inhibition and in Cx43 heterozygous mice compared with untreated and wild-type counterparts. These findings reveal a novel role for Cx43 in the regulation of phagocytosis and rearrangement of the F-actin cytoskeleton, and they implicate Cx43 in the regulation of the host response to microbial infection.

  18. Evolutionary adaptation of the sensitivity of connexin26 hemichannels to CO2.

    Science.gov (United States)

    de Wolf, Elizabeth; Cook, Jonathan; Dale, Nicholas

    2017-02-08

    CO2 readily combines with H2O to form [Formula: see text] and H(+) Because an increase of only 100 nM in the concentration of H(+) (a decrease of 0.1 unit of pH) in blood can prove fatal, the regulated excretion of CO2 during breathing is an essential life-preserving process. In rodents and humans, this vital process is mediated in part via the direct sensing of CO2 via connexin26 (Cx26). CO2 binds to hemichannels of Cx26 causing them to open and allow release of the neurotransmitter ATP. If Cx26 were to be a universal and important CO2 sensor across all homeothermic animals, then a simple hypothesis would posit that it should exhibit evolutionary adaptation in animals with different homeostatic set points for the regulation of partial pressure of arterial CO2 (PaCO2). In humans and rats, PaCO2 is regulated around a set point of 40 mmHg. By contrast, birds are able to maintain cerebral blood flow and breathing at much lower levels of PaCO2 Fossorial mammals, such as the mole rat, live exclusively underground in burrows that are both hypoxic and hypercapnic and can thrive under very hypercapnic conditions. We have therefore compared the CO2 sensitivity of Cx26 from human, chicken, rat and mole rat (Heterocephalus glaber). We find that both the affinity and cooperativity of CO2 binding to Cx26 have been subjected to evolutionary adaption in a manner consistent with the homeostatic requirements of these four species. This is analogous to the evolutionary adaptation of haemoglobin to the needs of O2 transport across the animal kingdom and supports the hypothesis that Cx26 is an important and universal CO2 sensor in homeotherms.

  19. Nicotine protects rat hypoglossal motoneurons from excitotoxic death via downregulation of connexin 36

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Rauti, Rossana; Nistri, Andrea

    2017-01-01

    Motoneuron disease including amyotrophic lateral sclerosis may be due, at an early stage, to deficit in the extracellular clearance of the excitatory transmitter glutamate. A model of glutamate-mediated excitotoxic cell death based on pharmacological inhibition of its uptake was used to investigate how activation of neuronal nicotinic receptors by nicotine may protect motoneurons. Hypoglossal motoneurons (HMs) in neonatal rat brainstem slices were exposed to the glutamate uptake blocker DL-threo-β-benzyloxyaspartate (TBOA) that evoked large Ca2+ transients time locked among nearby HMs, whose number fell by about 30% 4 h later. As nicotine or the gap junction blocker carbenoxolone suppressed bursting, we studied connexin 36 (Cx36), which constitutes gap junctions in neurons and found it largely expressed by HMs. Cx36 was downregulated when nicotine or carbenoxolone was co-applied with TBOA. Expression of Cx36 was preferentially observed in cytosolic rather than membrane fractions after nicotine and TBOA, suggesting protein redistribution with no change in synthesis. Nicotine raised the expression of heat shock protein 70 (Hsp70), a protective factor that binds the apoptotic-inducing factor (AIF) whose nuclear translocation is a cause of cell death. TBOA increased intracellular AIF, an effect blocked by nicotine. These results indicate that activation of neuronal nicotinic receptors is an early tool for protecting motoneurons from excitotoxicity and that this process is carried out via the combined decrease in Cx36 activity, overexpression of Hsp70 and fall in AIF translocation. Thus, retarding or inhibiting HM death may be experimentally achieved by targeting one of these processes leading to motoneuron death. PMID:28617431

  20. Vascular Pericyte Impairment and Connexin43 Gap Junction Deficit Contribute to Vasomotor Decline in Diabetic Retinopathy.

    Science.gov (United States)

    Ivanova, Elena; Kovacs-Oller, Tamas; Sagdullaev, Botir T

    2017-08-09

    Adequate blood flow is essential to brain function, and its disruption is an early indicator in diseases, such as stroke and diabetes. However, the mechanisms contributing to this impairment remain unclear. To address this gap, in the diabetic and nondiabetic male mouse retina, we combined an unbiased longitudinal assessment of vasomotor activity along a genetically defined vascular network with pharmacological and immunohistochemical analyses of pericytes, the capillary vasomotor elements. In nondiabetic retina, focal stimulation of a pericyte produced a robust vasomotor response, which propagated along the blood vessel with increasing stimulus. In contrast, the magnitude, dynamic range, a measure of fine vascular diameter control, and propagation of vasomotor response were diminished in diabetic retinas from streptozotocin-treated mice. These functional changes were linked to several mechanisms. We found that density of pericytes and their sensitivity to stimulation were reduced in diabetes. The impaired response propagation from the stimulation site was associated with lower expression of connexin43, a major known gap junction unit in vascular cells. Indeed, selective block of gap junctions significantly reduced propagation but not initiation of vasomotor response in the nondiabetic retina. Our data establish the mechanisms for fine local regulation of capillary diameter by pericytes and a role for gap junctions in vascular network interactions. We show how disruption of this balance contributes to impaired vasomotor control in diabetes.SIGNIFICANCE STATEMENT Identification of mechanisms governing capillary blood flow in the CNS and how they are altered in disease provides novel insight into early states of neurological dysfunction. Here, we present physiological and anatomical evidence that both intact pericyte function as well as gap junction-mediated signaling across the vascular network are essential for proper capillary diameter control and vasomotor

  1. Role of connexins in human congenital heart disease: the chicken and egg problem

    Directory of Open Access Journals (Sweden)

    Aida eSalameh

    2013-06-01

    Full Text Available Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone's anomaly often do not involve only the heart but also the great vessels and although occurring less frequently these severe cardiac malformations will become symptomatically within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade there is increasing evidence that cardiac gap junction proteins, the connexins (Cx, might have an impact on cardiac anomalies. In the heart mainly three of them (Cx40, Cx43 and Cx45 are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses potential role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.

  2. Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes.

    Science.gov (United States)

    Martins-Marques, Tania; Catarino, Steve; Zuzarte, Monica; Marques, Carla; Matafome, Paulo; Pereira, Paulo; Girão, Henrique

    2015-04-15

    GJIC (gap junction intercellular communication) between cardiomyocytes is essential for synchronous heart contraction and relies on Cx (connexin)-containing channels. Increased breakdown of Cx43 has been often associated with various cardiac diseases. However, the mechanisms whereby Cx43 is degraded in ischaemic heart remain unknown. The results obtained in the present study, using both HL-1 cells and organotypic heart cultures, show that simulated ischaemia induces degradation of Cx43 that can be prevented by chemical or genetic inhibitors of autophagy. Additionally, ischaemia-induced degradation of Cx43 results in GJIC impairment in HL-1 cells, which can be restored by autophagy inhibition. In cardiomyocytes, ubiquitin signals Cx43 for autophagic degradation, through the recruitment of the ubiquitin-binding proteins Eps15 (epidermal growth factor receptor substrate 15) and p62, that assist in Cx43 internalization and targeting to autophagic vesicles, via LC3 (light chain 3). Moreover, we establish that degradation of Cx43 in ischaemia or I/R (ischaemia/reperfusion) relies upon different molecular players. Indeed, degradation of Cx43 during early periods of ischaemia depends on AMPK (AMP-activated protein kinase), whereas in late periods of ischaemia and I/R Beclin 1 is required. In the Langendorff-perfused heart, Cx43 is dephosphorylated in ischaemia and degraded during I/R, where Cx43 degradation correlates with autophagy activation. In summary, the results of the present study provide new evidence regarding the molecular mechanisms whereby Cx43 is degraded in ischaemia, which may contribute to the development of new strategies that aim to preserve GJIC and cardiac function in ischaemic heart.

  3. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles

    Science.gov (United States)

    Giaume, Christian; Leybaert, Luc; C. Naus, Christian; C. Sáez, Juan

    2013-01-01

    Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease. PMID:23882216

  4. Role of connexins in human congenital heart disease: the chicken and egg problem.

    Science.gov (United States)

    Salameh, Aida; Blanke, Katja; Daehnert, Ingo

    2013-01-01

    Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone's anomaly often do not involve only the heart, but also the great vessels and although occurring less frequently, these severe cardiac malformations will become symptomatic within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade, there is increasing evidence that cardiac gap junction proteins, the connexins (Cx), might have an impact on cardiac anomalies. In the heart, mainly three of them (Cx40, Cx43, and Cx45) are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions have often been supposed to transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses the potentional role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.

  5. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression.

    Science.gov (United States)

    Moffitt, Julia A; Henry, Matthew K; Welliver, Kathryn C; Jepson, Amanda J; Garnett, Emily R

    2013-03-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43.

  6. Connexin 43 expression in human and mouse testes with impaired spermatogenesis

    Directory of Open Access Journals (Sweden)

    M Kotula-Balak

    2009-08-01

    Full Text Available Connexin 43 (Cx43 belongs to a family of proteins that form gap junction channels. The aim of this study was to examine the expression of Cx43 in the testis of a patient with Klinefelter’s syndrome and of mice with the mosaic mutation and a partial deletion in the long arm of the Y chromosome. These genetic disorders are characterized by the presence of numerous degenerated seminiferous tubules and impaired spermatogenesis. In mouse testes, the expression and presence of Cx43 were detected by means of immunohistochemistry and Western blot analysis, respectively. In testes of Klinefelter’s patient only immunoexpression of Cx43 was detected. Regardless of the species Cx43 protein was ubiquitously distributed in testes of reproductively normal males, whereas in those with testicular disorders either a weak intensity of staining or no staining within the seminiferous tubules was observed. Moderate to strong or very strong staining was confined to the interstitial tissue. In an immunoblot analysis of testicular homogenates Cx43 appeared as one major band of approximately 43 kDa. Our study adds three more examples of pathological gonads in which the absence or apparent decrease of Cx43 expression within the seminiferous tubules was found. A positive correlation between severe spermatogenic impairment and loss of Cx43 immunoreactivity observed in this study supports previous data that gap junctions play a crucial role in spermatogenesis. Strong Cx43 expression detected mostly in the interstitial tissue of the Klinefelter’s patient may presumably be of importance in sustaining Leydig cell metabolic activity. However, the role of gap junction communication in the control of Leydig cell function seems to be more complex than originally thought.

  7. Atorvastatin prevents connexin43 remodeling in hypertrophied left ventricular myocardium of spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-juan; YAO Lei; CHEN Tu-gang; YU Min; WANG Li-hong; CHEN Jun-zhu

    2007-01-01

    Background Connexin43 (Cx43) is the predominant gap junction protein in heart and is involved in the control of cell-to-cell communication to modulate the contractility and the electrical coupling of cardiac myocytes. Left ventricular(LV) hypertrophy is accompanied by changes of Cx43 expression. Recent studies have demonstrated that statins reduced cardiac hypertrophy. However, it is unknown whether statins can affect Cx43 expression in hypertrophied left ventricular myocardium. This study was designed to assess the effects of atorvastatin on LV hypertrophy and Cx43 expression in spontaneously hypertensive rats (SHR).Methods Nine-week old SHRs were randomly divided into two groups. Some received atorvastatin at 30 mg/kg by oral gavage once daily for 8 weeks (SHR-A); others received vehicle. Age-matched Wistar-Kyoto rats (WKY) received atorvastatin or vehicle for 8 weeks were used as controls. At the end of the experiment, we investigated LV hypertrophy and the expression of Cx43 in LV myocardium in four groups. Cx43 expression was investigated by the methods of Western blotting, immunohistochemistry, and transmission electron microscope. LV hypertrophy was accessed by pathological analysis and plasma brain natriuretic peptide (BNP) level.Results LV hypertrophy was prominent in untreated SHR. In SHR, LV myocardium Cx43 level was upregulated, and the distribution of Cx43 was displaced from their usual locations to other sites at various distances away from the intercalated disks. After atorvastatin treatment, myocardium Cx43 level was reduced in SHR-A, and the distribution of Cx43 gap junction became much regular and confined to intercalated disk. Statins also prevented LV hypertrophy in SHR.Conclusions These results provide novel in vivo evidence for the key role of Cx43 gap junctions in LV hypertrophy and the possible mechanism in anti-hypertrophic effect of statins. Atorvastatin treatment may have beneficial effects on LV hypertrophy in spontaneously hypertensive

  8. Loss of functional endothelial connexin40 results in exercise-induced hypertension in mice.

    Science.gov (United States)

    Morton, Susan K; Chaston, Daniel J; Howitt, Lauren; Heisler, Jillian; Nicholson, Bruce J; Fairweather, Stephen; Bröer, Stefan; Ashton, Anthony W; Matthaei, Klaus I; Hill, Caryl E

    2015-03-01

    During activity, coordinated vasodilation of microcirculatory networks with upstream supply vessels increases blood flow to skeletal and cardiac muscles and reduces peripheral resistance. Endothelial dysfunction in humans attenuates activity-dependent vasodilation, resulting in exercise-induced hypertension in otherwise normotensive individuals. Underpinning activity-dependent hyperemia is an ascending vasodilation in which the endothelial gap junction protein, connexin (Cx)40, plays an essential role. Because exercise-induced hypertension is proposed as a forerunner to clinical hypertension, we hypothesized that endothelial disruption of Cx40 function in mice may create an animal model of this condition. To this end, we created mice in which a mutant Cx40T152A was expressed alongside wildtype Cx40 selectively in the endothelium. Expression of the Cx40T152A transgene in Xenopus oocytes and mouse coronary endothelial cells in vitro impaired both electric and chemical conductance and acted as a dominant-negative against wildtype Cx40, Cx43, and Cx45, but not Cx37. Endothelial expression of Cx40T152A in Cx40T152ATg mice attenuated ascending vasodilation, without effect on radial coupling through myoendothelial gap junctions. Using radiotelemetry, Cx40T152ATg mice showed an activity-dependent increase in blood pressure, which was significantly greater than in wildtype mice, but significantly less than in chronically hypertensive, Cx40knockout mice. The increase in heart rate with activity was also greater than in wildtype or Cx40knockout mice. We conclude that the endothelial Cx40T152A mutation attenuates activity-dependent vasodilation, producing a model of exercise-induced hypertension. These data highlight the importance of endothelial coupling through Cx40 in regulating blood pressure during activity.

  9. Maturational changes in connexin 43 expression in the seminiferous tubules may depend on thyroid hormone action

    Science.gov (United States)

    Marchlewska, Katarzyna; Kula, Krzysztof; Walczak-Jedrzejowska, Renata; Kula, Wojciech; Oszukowska, Elzbieta; Filipiak, Eliza; Moszura, Tomasz

    2013-01-01

    Introduction Connexin 43 (Cx43) mediates the effect of thyroid hormone on Sertoli cell maturation in vitro. We investigated the influence of triiodothyronine (T3) administration on Cx43 expression in relation to the progress in seminiferous tubule maturation. Material and methods Male rats were daily injected with 100 µg T3/kg body weight from birth until postnatal day (pnd) 5 (transient treatment – tT3) or until pnd 15 (continuous treatment – cT3) or solvent – control (C). On pnd 16 serum hormone levels, body and testes weight, seminiferous tubule morphometry, Cx43 immunostaining and germ cell degeneration were investigated. Cx43 expression was also assessed in six 50-day-old adult untreated rats. Result tT3 increased 2.6-fold serum level of T3, testes weight, and seminiferous tubule diameter, and induced maturation-like dislocation of Cx43 expression from the apical to the peripheral region of Sertoli cell cytoplasm. In addition, incidence of Cx43-positive tubules declined from 86% in C to 46% after tT3, being similar to the adult value (30% of tubules Cx43-positive). In turn, cT3 increased serum T3 level 12-fold, and decreased body weight. Seminiferous tubules became shortened and distended, Sertoli cell cytoplasm vacuolated, Cx43 expression had minimal intensity and germ cell degeneration increased. Conclusions Cx43 might intermediate a short and transient stimulatory effect of T3 on seminiferous tubule maturation that disappeared together with exposure to the toxic effect of a continuously high level of the hormone. PMID:23515877

  10. Connexin 43 is not essential for the control of renin synthesis and secretion.

    Science.gov (United States)

    Gerl, Melanie; Kurt, Birgül; Kurtz, Armin; Wagner, Charlotte

    2014-05-01

    The juxtaglomerular areas of mammalian kidneys express the gap junction proteins connexin 37, 40, 43, and 45. Among these, Cx40 plays a major role for the function of juxtaglomerular renin-expressing cells, while Cx37 and Cx45 appear to be less relevant in this context. Since the role of the remaining Cx43 for the function of renin expression is not well understood, this study aimed to systematically characterize the direct role of Cx43 for renin expression and secretion. For this aim, we generated mice with endothelium and with renin cell-specific deletions of Cx43, and we characterized the regulation of renin expression and renin secretion in the kidneys of these mice on normal salt diet and during chronic challenge of the renin system by pretreatment of mice with a low-salt diet in combination with an angiotensin I-converting enzyme inhibitor. We found that renal renin mRNA abundance, plasma renin concentration, and systolic blood pressure did not differ between wild-type, Cx43(fl/fl) Ren1d(+/Cre) mice as well as Cx43(fl/fl) Tie-2(+/Cre) mice under basal conditions nor under chronic stimulation by salt depletion. The localization of renin-expressing cells was also regular in kidneys of all genotypes, and moreover, regulation of renin secretion by beta-adrenergic stimulation and renal perfusion pressure measured in isolated perfused kidneys of Cx43(fl/fl) Ren1d(+/Cre) and Cx43(fl/fl) Tie-2(+/Cre) mice was not different from control. We infer from these results that Cx43 plays if at all only a minor role for the functional control of renin-producing cells in the kidney.

  11. Aberrant expression of connexin 26 is associated with lung metastasis of colorectal cancer.

    Science.gov (United States)

    Ezumi, Koji; Yamamoto, Hirofumi; Murata, Kohei; Higashiyama, Masahiko; Damdinsuren, Bazarragchaa; Nakamura, Yurika; Kyo, Naganori; Okami, Jiro; Ngan, Chew Yee; Takemasa, Ichiro; Ikeda, Masataka; Sekimoto, Mitsugu; Matsuura, Nariaki; Nojima, Hiroshi; Monden, Morito

    2008-02-01

    Connexin 26 (Cx26) is one of the gap junction-forming family members classically considered to be tumor suppressors. However, recent studies show association of elevated expression of Cx26 with poor prognosis in several human malignancies. Furthermore, Cx26 has been observed to be indispensable to spontaneous metastasis of melanoma cells. Here, we assessed Cx26 expression in primary colorectal cancer (CRC) and the metastatic lesions to elucidate its role in metastasis. Cx26 expression was assessed in 25 adenomas, 167 CRCs, and normal mucosa, together with the metastatic lesions. Normal mucosa and adenomatous tissue expressed Cx26 mainly in the plasma membrane, whereas cancer cells mostly contained Cx26 in the cytoplasm. The incidence of aberrant Cx26 expression varied widely in CRC (mean, 49.5 +/- 35.5%), and the expression levels were confirmed by Western blot and quantitative reverse transcription-PCR. Clinicopathologic survey revealed association of high expression with less differentiated histology and venous invasion (P = 0.0053 and P = 0.0084, respectively). Notably, high Cx26 expression was associated with shorter disease-free survival and shorter lung metastasis-free survival in 154 curatively resected CRC sets (P = 0.041 and P = 0.028, respectively). Survey of metastatic lesions revealed that lung metastasis, but not liver and lymph nodes metastases, expressed higher Cx26 than the CRC series or corresponding primary CRCs (P < 0.0001 and P = 0.0001, respectively). These findings suggest that aberrant expression of Cx26 plays an essential role in lung metastasis. Thus, Cx26 is a promising therapeutic target, particularly for CRC patients who develop lung metastasis.

  12. Identifying connexin expression and determining gap junction intercellular communication in rainbow trout cells.

    Science.gov (United States)

    Hooper, Joshua; Poynter, Sarah J; DeWitte-Orr, Stephanie J

    2017-05-01

    Gap junctions are groups of membrane-bound channels that allow the passage of small molecules and ions between cells, permitting cell-cell communication. Because of their importance in cell homeostasis, gap junction presence and function were characterized in three commonly studied rainbow trout cell lines, namely RTgill-W1, RTgutGC, and RTG-2. Firstly, gap junction presence was determined by screening for gap junction protein alpha 7 and alpha 1 (GJA7 and GJA1) presence at the transcript level and GJA7 at the protein level. GJA7 was successfully identified at both the transcript and protein levels, and GJA1 was detected at the transcript level in all three cell lines. This is the first report of a GJA7 full-length transcript sequence in rainbow trout cells. Gap junction function, as determined by gap junction intercellular communication (GJIC), was examined using Lucifer yellow dye migration with the scrape and load technique; visualized by fluorescence microscopy. Phorbol 12-myristate 13-acetate (PMA), a gap junction inhibitor, was used to confirm the presence of functional gap junctions. Effects of serum deprivation on GJIC were also monitored; 24-h serum deprivation resulted in greater dye migration compared with 30-min serum deprivation. Both RTG-2 and RTgill-W1 showed significant dye migration that was inhibited by PMA while RTgutGC did not. Human foreskin fibroblast (HFF-1) cells were used as a positive control for gap junction presence and function. Taken together, our study shows that rainbow trout cells express connexin transcripts and proteins, and RTG-2 and, to a lesser extent, RTgill-W1 cells are able to perform GJIC.

  13. Involvement of connexin43 hemichannel in ATP release after γ-irradiation

    Science.gov (United States)

    Ohshima, Yasuhiro; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Kojima, Shuji

    2012-01-01

    Ionizing radiation induces biological effects not only in irradiated cells but also in non-irradiated cells, which is called the bystander effect. Recently, in vivo and in vitro experiments have suggested that both gap junction hemichannel connexin43 (Cx43) and extracellular adenosine triphosphate (ATP) released from cells play a role in the bystander effect. We have reported that γ-irradiation induces ATP release from B16 melanoma cells, which is dependent on the P2X7 receptor. However, the mechanism of ATP release caused by irradiation remains unclear. We here show the involvement of Cx43 in P2X7 receptor-dependent ATP release after 0.5 Gy γ-irradiation. Inhibitors of gap junction hemichannels and an inhibitory peptide for Cx43 (gap26), but not an inhibitory peptide for pannexin1 (Panx1), significantly blocked γ-irradiation-induced ATP release from B16 melanoma cells. We confirmed high expression of Cx43 mRNA in B16 melanoma cells. These results suggest involvement of Cx43 in radiation-induced ATP release. We found that after 0.5 Gy γ-irradiation tyrosine phosphorylation was significantly blocked by P2X7 receptor antagonist, but not gap26, suggesting that tyrosine phosphorylation is a downstream event from the P2X7 receptor. Since tyrosine kinase inhibitor significantly suppressed radiation-induced ATP release, tyrosine phosphorylation appears to play an important role in the Cx43-mediated ATP release downstream of the P2X7 receptor. In conclusion, the Cx43 hemichannel, which lies downstream of the P2X7 receptor, is involved in ATP release in response to radiation. Our results suggest a novel mechanism for radiation-induced biological effects mediated by both ATP and Cx43. PMID:22843620

  14. Connexin 36 is expressed in beta and connexins 26 and 32 in acinar cells at the end of the secondary transition of mouse pancreatic development and increase during fetal and perinatal life.

    Science.gov (United States)

    Pérez-Armendariz, Elia Martha; Cruz-Miguel, Lourdes; Coronel-Cruz, Cristina; Esparza-Aguilar, Marcelino; Pinzon-Estrada, Enrique; Rancaño-Camacho, Elizabeth; Zacarias-Climaco, Gerardo; Olivares, Paola Fernández; Espinosa, Ana Maria; Becker, Ingeborg; Sáez, Juan C; Berumen, Jaime; Pérez-Palacios, Gregorio

    2012-06-01

    To identify when during fetal development connexins (Cxs) 26 (Cx26) 32 (Cx32), and 36 (Cx36) begin to be expressed, as well as to characterize their spatial distribution, real time polymerase chain reaction and immunolabeling studies were performed. Total RNA from mouse pancreases at 13 and 18 days postcoitum (dpc) and 3 days postpartum (dpp) was analyzed. In addition, pancreatic sections of mouse at 13, 14, 15, 16, 18 dpc and 3 dpp and of rat at term were double labeled with either anti-insulin or anti-α-amylase and anti-Cx26 or -Cx32 or -Cx36 antibodies and studied with confocal microscopy. From day 13 dpc, Cxs 26, 32, and 36 transcripts were identified and their levels increased with age. At 13-14 dpc, Cxs 26 and 32 were localized in few acinar cells, whereas Cx36 was distributed in small beta cell clumps. From day 14 dpc onwards, the number of labeled cells and relative immunofluorescent reactivity of all three Cxs at junctional membranes of the respective cell types increased. Cxs 26 and 32 colocalized in fetal acinar cells. In rat pancreas at term, a similar connexin distribution was found. Relative Cxs levels evaluated by immunoblotting also increased (two-fold) in pancreas homogenates from day 18 dpc to 3 dpp. The early cell specific, wide distribution, and age dependent expression of Cxs 26, 32, and 36 during fetal pancreas ontogeny suggests their possible involvement in pancreas differentiation and prenatal maturation.

  15. International Specialization

    DEFF Research Database (Denmark)

    Kleindienst, Ingo; Geisler Asmussen, Christian; Hutzschenreuter, Thomas;

    2012-01-01

    Whether and how international diversification and cross-border arbitrage affects firm performance remains one of the major unresolved research questions in the strategy and international business literatures. We propose that knowing how much a firm has internationally diversified tells us very...... little about performance implications, if we do not know, and do not ask, how the firm has diversified. Therefore, building on the two broad arguments of operating flexibility and location-specific commitment, we develop a theoretical framework that focuses on the extent to which a firm's international...... arbitrage strategy is characterized by specialization versus replication and argue that these different strategies may have differential impact on profitability and risk reduction. Developing a sophisticated measure of international specialization and using a unique panel data set of 92 German MNEs to test...

  16. International Specialization

    DEFF Research Database (Denmark)

    Kleindienst, Ingo; Geisler Asmussen, Christian; Hutzschenreuter, Thomas

    2012-01-01

    Whether and how international diversification and cross-border arbitrage affects firm performance remains one of the major unresolved research questions in the strategy and international business literatures. We propose that knowing how much a firm has internationally diversified tells us very...... little about performance implications, if we do not know, and do not ask, how the firm has diversified. Therefore, building on the two broad arguments of operating flexibility and location-specific commitment, we develop a theoretical framework that focuses on the extent to which a firm's international...... arbitrage strategy is characterized by specialization versus replication and argue that these different strategies may have differential impact on profitability and risk reduction. Developing a sophisticated measure of international specialization and using a unique panel data set of 92 German MNEs to test...

  17. Special offer

    CERN Multimedia

    Staff Association

    2010-01-01

    Special offer for members of the Staff Association and their families 10% reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20% reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * next “vente privée” from 24th to 29th May 2010  

  18. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    SPECIAL OFFER FOR OUR MEMBERS Tarif unique Adulte/Enfant Entrée Zone terrestre 19 euros instead of 23 euros Entrée “Zone terrestre + aquatique” 24 euros instead of 31 euros Free for children under 3, with limited access to the attractions. Walibi Rhône-Alpes is open daily from 22 June to 31 August, and every week end from 3 September until 31 October. Closing of the “zone aquatique” 11 September.

  19. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    SPECIAL OFFER FOR OUR MEMBERS Tarif unique Adulte/Enfant Entrée Zone terrestre 19 euros instead of 23 euros Entrée “Zone terrestre + aquatique” 24 euros instead of 31 euros Free for children under 3, with limited access to the attractions. Walibi Rhône-Alpes is open daily from 22 June to 31 August, and every week end from 3 September until 31 October. Closing of the “zone aquatique” 11 September.

  20. Effects of Angiotensin Ⅱ on Expression of the Gap Junction Channel Protein Connexin 43 in Neonatal Rat Ventricular Myocytes

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Wei Wu

    2007-01-01

    To study the effects of angiotensin Ⅱ,as a mediator of cardiac hypertrophy,on expression of connexin 43 (Cx43) in cultured neonatal rat ventricular myocytes and correlation of expression of Cx43 and cardiomyocyte hypertrophy.Methods Cardiomyocytes were isolated from newborn SD rats.Angiotensin Ⅱ was added into the media to induce myocyte hypertrophy.Cultures were exposed to 10 ~6 mol/L angiotensin Ⅱ for 72 h,Cx43 expression was characterized by RT-PCR and Immunofluorescence methods.Results Immunofluorescence analysis revealed decreased Cx43 immunoreactivity in cells treated for 72 h with angiotensin Ⅱ.RT-PCR analysis demonstrated there was an obvious decrease of Cx43 mRNA level in cells exposed to angiotensin Ⅱ for 72 h.The changes of expression of connexin 43 were related to its entrance into S phase of the cell cycle.Cultured neonatal rat cardiomyocytes were exposed for 72 h to increase concentrations of angiotensin Ⅱ ( 1.0 × 10-9 ~ 1.0 × 10-6mol/L),resulting in significantly decreased Cx43 expression.Conclusions Angiotensin Ⅱ leads to a concentration-dependent decrease in Cx43 protein in cultured neonatal rat ventricular myocytes by decreasing Cx43 mRNA synthesis.Signal transduction pathways activated by angiotensin Ⅱ under pathophysiologic conditions of cardiac hypertrophy could initiate remodeling of gap junctions.

  1. Mouse otocyst transuterine gene transfer restores hearing in mice with connexin 30 deletion-associated hearing loss.

    Science.gov (United States)

    Miwa, Toru; Minoda, Ryosei; Ise, Momoko; Yamada, Takao; Yumoto, Eiji

    2013-06-01

    Although numerous causative genes for hereditary hearing loss have been identified, there are no fundamental treatments for this condition. Herein, we describe a novel potential treatment for genetic hearing loss. Because mutations or deletions in the connexin (Cx) genes are common causes of profound congenital hearing loss in both humans and mice, we investigated whether gene supplementation therapy using the wild-type Cx gene could cure hearing loss. We first generated inner ear-specific connexin 30 (Cx30)-deficient mice via the transuterine transfer of Cx30-targeted short hairpin RNA (shRNA-Cx30) into otocysts. The inner ear-specific Cx30-deficient mice mimicked homozygous Cx30-deficient mice both histologically and physiologically. Subsequently, we cotransfected the shRNA-Cx30 and the wild-type Cx30 gene. The cotransfected mice exhibited Cx30 expression in the cochleae and displayed normal auditory functions. Next, we performed the transuterine transfer of the wild-type Cx30 gene into the otocysts of homozygous Cx30-deficient mice, thereby rescuing the lack of Cx30 expression in the cochleae and restoring auditory functioning. These results demonstrate that supplementation therapy with wild-type genes can restore postnatal auditory functioning. Moreover, this is the first report to show that Cx-related genetic hearing loss is treatable by in vivo gene therapy.

  2. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

    Science.gov (United States)

    Gerhart, Sarah V; Eble, Diane M; Burger, R Michael; Oline, Stefan N; Vacaru, Ana; Sadler, Kirsten C; Jefferis, Rebecca; Iovine, M Kathryn

    2012-01-01

    Connexins (Cx) are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

  3. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah V Gerhart

    Full Text Available Connexins (Cx are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

  4. Omega-3 fatty acids and atorvastatin affect connexin 43 expression in the aorta of hereditary hypertriglyceridemic rats.

    Science.gov (United States)

    Dlugosová, Katarína; Weismann, Peter; Bernátová, Iveta; Sotníková, Ruzena; Slezák, Ján; Okruhlicová, Ludmila

    2009-12-01

    Statins and omega-3 polyunsaturated fatty acids (n-3 PUFA) reduce cardiovascular disease incidence during hypertriglyceridemia (HTG). To elucidate possible cardioprotective mechanisms, we focused on gap junction protein connexin 43 (Cx43). Its expression is disturbed during atherogenesis, but little information is available on its expression during HTG. Experiments were performed on adult male hereditary HTG (hHTG) rats treated with n-3 PUFA (30 mg/day) and atorvastatin (0.5 mg/100 g body weight per day) for 2 months. Cx43 expression and distribution in the aorta were investigated by using Western blotting and immunolabeling, followed by quantitative analysis. Transmission electronmicroscopy was used to study ultrastructure of endothelial contact sites. In contrast to age-matched Wistar, Cx43 expression in aorta of hHTG rats was significantly higher (p < 0.05), and prominent Cx43 immunospots were seen in tunica media and less in endothelium of hHTG rats. Changes in Cx43 expression were accompanied by local qualitative subcellular alterations of interendothelial connections. Treatment of hHTG rats with n-3 PUFA and atorvastatin markedly lowered Cx43 expression in aorta and modified connexin distribution in endothelium and media (p < 0.05 vs. untreated hHTG). The protective effect of treatment of HTG was observed on the structural integrity of the endothelium and was readily visible at the molecular level. Results indicate the involvement of altered Cx43 expression in vascular pathophysiology during HTG and during HTG treatment.

  5. Dioscin augments HSV-tk-mediated suicide gene therapy for melanoma by promoting connexin-based intercellular communication

    Science.gov (United States)

    Li, Bin; Wu, Yingya; Liu, Xijuan; Tan, Yuhui; Du, Biaoyan

    2017-01-01

    Suicide gene therapy is a promising strategy against melanoma. However, the low efficiency of the gene transfer technique can limit its application. Our preliminary data showed that dioscin, a glucoside saponin, could upregulate the expression of connexins Cx26 and Cx43, major components of gap junctions, in melanoma cells. We hypothesized that dioscin may increase the bystander effect of herpes simplex virus thymidine kinase/ganciclovir (HSV-tk/GCV) through increasing the formation of gap junctions. Further analysis showed that dioscin indeed could increase the gap junctional intercellular communication in B16 melanoma cells, resulting in more efficient GCV-induced bystander killing in B16tk cells. By contrast, overexpression of dominant negative Cx43 impaired the cell-cell communication of B16 cells and subsequently weakened the bystander effect of HSV-tk/GCV gene therapy. In vivo, combination treatment with dioscin and GCV of tumor-bearing mice with 30% positive B16tk cells and 70% wild-type B16 cells caused a significant reduction in tumor volume and weight compared to treatment with GCV or dioscin alone. Taken together, these results demonstrated that dioscin could augment the bystander effect of the HSV-tk/GCV system through increasing connexin-mediated gap junction coupling. PMID:27903977

  6. A novel mutation in the connexin 26 gene (GJB2) in a child with clinical and histological features of keratitis-ichthyosis-deafness (KID) syndrome

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Tranebjaerg, L; Esberg, Gitte;

    2011-01-01

    Keratitis-ichthyosis-deafness (KID) syndrome is a rare congenital ectodermal disorder, caused by heterozygous missense mutation in GJB2, encoding the gap junction protein connexin 26. The commonest mutation is the p.Asp50Asn mutation, and only a few other mutations have been described to date....

  7. Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin-response elements in osteoblast promoters

    Science.gov (United States)

    Stains, Joseph P.; Lecanda, Fernando; Screen, Joanne; Towler, Dwight A.; Civitelli, Roberto

    2003-01-01

    Loss-of-function mutations of gap junction proteins, connexins, represent a mechanism of disease in a variety of tissues. We have shown that recessive (gene deletion) or dominant (connexin45 overexpression) disruption of connexin43 function results in osteoblast dysfunction and abnormal expression of osteoblast genes, including down-regulation of osteocalcin transcription. To elucidate the molecular mechanisms of gap junction-sensitive transcriptional regulation, we systematically analyzed the rat osteocalcin promoter for sensitivity to gap junctional intercellular communication. We identified an Sp1/Sp3 containing complex that assembles on a minimal element in the -70 to -57 region of the osteocalcin promoter in a gap junction-dependent manner. This CT-rich connexin-response element is necessary and sufficient to confer gap junction sensitivity to the osteocalcin proximal promoter. Repression of osteocalcin transcription occurs as a result of displacement of the stimulatory Sp1 by the inhibitory Sp3 on the promoter when gap junctional communication is perturbed. Modulation of Sp1/Sp3 recruitment also occurs on the collagen Ialpha1 promoter and translates into gap junction-sensitive transcriptional control of collagen Ialpha1 gene expression. Thus, regulation of Sp1/Sp3 recruitment to the promoter may represent a potential general mechanism for transcriptional control of target genes by signals passing through gap junctions.

  8. Genetic heterogeneity in erythrokeratodermia variabilis : Novel mutations in the connexin gene GJB4 (Cx30.3) and genotype-phenotype correlations

    NARCIS (Netherlands)

    Richard, G; Brown, N; Rouan, F; Van der Schroeff, JG; Eichenfield, LE; Sybert, VP; Greer, KE; Hogan, P; Campanelli, C; Compton, JG; Bale, SJ; DiGiovanna, JJ; Uitto, J; Bijlsma, E.

    2003-01-01

    Erythrokeratodermia variabilis is an autosomal dominant genodermatosis characterized by persistent plaque-like or generalized hyperkeratosis and transient red patches of variable size, shape, and location. The disorder maps to a cluster of connexin genes on chromosome 1p34-p35.1 and, in a subset of

  9. The contribution of GJB2 (Connexin 26) 35delG to age-related hearing impairment and noise-induced hearing loss.

    NARCIS (Netherlands)

    Eyken, E. van; Laer, L. van; Fransen, E.; Topsakal, V.; Hendrickx, J.J.; Demeester, K.; Heyning, P. van de; Maki-Torkko, E.; Hannula, S.; Sorri, M.; Jensen, M.; Parving, A.; Bille, M.; Baur, M.; Pfister, M.; Bonaconsa, A.; Mazzoli, M.; Orzan, E.; Espeso, A.; Stephens, D.; Verbruggen, K.; Huyghe, J.; Dhooge, I.J.; Huygen, P.L.M.; Kremer, H.; Cremers, C.W.R.J.; Kunst, S.J.W.; Manninen, M.; Pyykko, I.; Rajkowska, E.; Pawelczyk, M.; Sliwinska-Kowalska, M.; Steffens, M.; Wienker, T.F.; Camp, G. van

    2007-01-01

    HYPOTHESIS: The common GJB2 (Connexin 26) 35delG mutation might contribute to the development of age-related hearing impairment (ARHI) and noise-induced hearing loss (NIHL). BACKGROUND: GJB2, a gene encoding a gap junction protein expressed in the inner ear, has been suggested to be involved in the

  10. Special Photoconverter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A special device with photocurrent amplification function is reported. The device with long base region structure consists of dual-route photodetectors and their amplifier. Two photodetectors with a space of 50μm are precisely located in this device. The device with current sensitivity of S≥15A/lm,static state current transmission coefficient of hFE≥5000, single-route dark current of ID≥1μA, high frequency current transmission coefficient modulus of |hfe|≥1 at 400MHz is obtained. At present, the device has been tried out in some inertia systems.

  11. Special offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions. TPG: reduced rates on annual transport passes for active and retired staff. Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret. FNAC: 5% reduction on FNAC vouchers. For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  12. Special Offers

    CERN Multimedia

    Association du personnel

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions. TPG: reduced rates on annual transport passes for active and retired staff. Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret. Walibi: reduced prices for children and adults at this French attraction park in Les Avenières. FNAC: 5% reduction on FNAC vouchers. For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  13. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    OFFRE SPECIALE POUR NOS MEMBRES Les vendredis 29 juillet, 5 et 12 août, Aquaparc fermera ses portes exceptionnellement à 22h00. Pour ces évènements, des tarifs défiant toute concurrence vous sont proposés. Au programme : Clown spécialiste de la sculpture de ballons de 16h00 à 21h00 Ambiance Salsa avec danseurs professionnel : Démonstration et Cours de Salsa. Les tarifs : Pour une entrée à partir de 15h00 : Enfant : CHF 22.- Adulte : CHF 26.-  

  14. Omega-3 fatty acids do not alter P-wave parameters in electrocardiogram or expression of atrial connexins in patients undergoing coronary artery bypass surgery.

    Science.gov (United States)

    Saravanan, Palaniappan; West, Annette L; Bridgewater, Ben; Davidson, Neil C; Calder, Philip C; Dobrzynsky, Halina; Trafford, Andrew; O'Neill, Stephen C

    2016-10-01

    We previously reported omega-3 polyunsaturated fatty acids (n-3PUFAs) supplementation does not reduce atrial fibrillation (AF) following coronary artery bypass graft (CABG) surgery. The aim of the present study is to evaluate the impact of n-3 PUFAs on electrocardiogram (ECG) atrial arrhythmic markers and compare with expression of gap-junction proteins, Connexins. Subset of clinical trial subjects with right atrial sampling during CABG surgery included. Twelve-lead ECG performed at recruitment and at surgery [after supplementation with n-3 PUFA (∼1.8 g/day) or matched placebo] for ∼14 days. Electrocardiograms analysed for maximum P-wave duration (P-max) and difference between P-max and minimum P-wave duration, P-wave dispersion (PWD). Right atrial specimens analysed for expression of Connexins 40 and 43 using real-time quantitative polymerase chain reaction (qPCR) and western blot. Serum levels of n-3 PUFA at baseline, at surgery, and atrial tissue levels at surgery collated from file. Postoperative AF was quantified by analysing data from stored continuous electrograms. A total of 61 patients (n-3 PUFA 34, Placebo 27) had ECG analysis and AF burden, of which 52 patients (26 in each group) had qPCR and 16 (8 in each group) had western blot analyses for Connexins 40 and 43. No difference between the two groups in ECG parameters or expression of Connexin 40 or 43. P-wave dispersion in the preoperative ECG independently predicted occurrence of AF following CABG surgery. Omega-3 polyunsaturated fatty acids supplementation does not alter pro-arrhythmic P-wave parameters in ECG or connexin expression in human atrium with no effect on the incidence of AF following CABG surgery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  15. Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis.

    Directory of Open Access Journals (Sweden)

    Ivett Teleki

    Full Text Available Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers.Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models.The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively.Differential expression of Cx43 and Cx

  16. Connexin 43 Upregulation in Mouse Lungs during Ovalbumin-Induced Asthma.

    Directory of Open Access Journals (Sweden)

    Yin Yao

    Full Text Available Connexin (Cx-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease.Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed.The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF; higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration.Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43

  17. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Katsuhisa Masaki

    Full Text Available BACKGROUND: Multiple sclerosis (MS and neuromyelitis optica (NMO occasionally have an extremely aggressive and debilitating disease course; however, its molecular basis is unknown. This study aimed to determine a relationship between connexin (Cx pathology and disease aggressiveness in Asian patients with MS and NMO. METHODS/PRINCIPAL FINDINGS: Samples included 11 autopsied cases with NMO and NMO spectrum disorder (NMOSD, six with MS, and 20 with other neurological diseases (OND. Methods of analysis included immunohistochemical expression of astrocytic Cx43/Cx30, oligodendrocytic Cx47/Cx32 relative to AQP4 and other astrocytic and oligodendrocytic proteins, extent of demyelination, the vasculocentric deposition of complement and immunoglobulin, and lesion staging by CD68 staining for macrophages. Lesions were classified as actively demyelinating (n=59, chronic active (n=58 and chronic inactive (n=23. Sera from 120 subjects including 30 MS, 30 NMO, 40 OND and 20 healthy controls were examined for anti-Cx43 antibody by cell-based assay. Six NMO/NMOSD and three MS cases showed preferential loss of astrocytic Cx43 beyond the demyelinated areas in actively demyelinating and chronic active lesions, where heterotypic Cx43/Cx47 astrocyte oligodendrocyte gap junctions were extensively lost. Cx43 loss was significantly associated with a rapidly progressive disease course as six of nine cases with Cx43 loss, but none of eight cases without Cx43 loss regardless of disease phenotype, died within two years after disease onset (66.7% vs. 0%, P=0.0090. Overall, five of nine cases with Cx43 loss and none of eight cases without Cx43 loss had distal oligodendrogliopathy characterized by selective myelin associated glycoprotein loss (55.6% vs. 0.0%, P=0.0296. Loss of oligodendrocytic Cx32 and Cx47 expression was observed in most active and chronic lesions from all MS and NMO/NMOSD cases. Cx43-specific antibodies were absent in NMO/NMOSD and MS patients. CONCLUSIONS

  18. The potential prognostic value of connexin 26 and 46 expression in neoadjuvant-treated breast cancer

    Directory of Open Access Journals (Sweden)

    Teleki Ivett

    2013-02-01

    Full Text Available Abstract Background Several classification systems are available to assess pathological response to neoadjuvant chemotherapy in breast cancer, but reliable biomarkers to predict the efficiency of primary systemic therapy (PST are still missing. Deregulation of gap junction channel forming connexins (Cx has been implicated in carcinogenesis and tumour progression through loss of cell cycle control. In this study we correlated Cx expression and cell proliferation with disease survival and pathological response to neoadjuvant chemotherapy in breast cancers using existing classification systems. Methods The expression of Cx26, Cx32, Cx43, Cx46 and Ki67 was evaluated in 96 breast cancer patients prior to and after neoadjuvant chemotherapy using duplicate cores in tissue microarrays (TMA. Cx plaques of Results In our cohort dominated by hormone receptor (ER/PR positive and HER2 negative cases, only the CPS-EG classification showed prognostic relevance: cases with scores 1–2 had significantly better overall survival (p=0.015 than cases with scores 3–5. Pre-chemotherapy Cx43 expression correlated positively with hormone receptor status both before and after chemotherapy and had a negative correlation with HER2 expression pre-chemotherapy. There was a positive correlation between Cx32 and HER2 expression pre-chemotherapy and between Cx32 and Ki67 expression post-chemotherapy. A negative correlation was found between post-chemotherapy Cx46 and Ki67 expression. Decreased post-chemotherapy Cx26 expression (20% pre- and post-chemotherapy correlated with significantly better survival in the intermediate prognostic subgroups of EWGBSP TR2b (ppre-chemo=0.006; Sataloff TB (ppre-chemo=0.005; ppost-chemo=0.029 and in Miller-Payne G3 (ppre-chemo=0.002; ppost-chemo=0.012 classifications. Pre-chemotherapy, Cx46 expression was the only marker that correlated with overall survival within these subgroups. Conclusion Our results suggest that Cx46 and Cx26 expression

  19. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels.

    Science.gov (United States)

    Cea, Luis A; Balboa, Elisa; Puebla, Carlos; Vargas, Aníbal A; Cisterna, Bruno A; Escamilla, Rosalba; Regueira, Tomás; Sáez, Juan C

    2016-10-01

    Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43(fl/fl)Cx45(fl/fl)) and Cx43/Cx45 expression-deficient (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre) skeletal myofibers. Myofibers of Cx43(fl/fl)Cx45(fl/fl) mice treated with DEX (5h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5h DEX treatment in vivo, myofibers of Cx43(fl/fl)Cx45(fl/fl) mice showed Evans blue uptake, which was absent in myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca(2+) signal and a reduction in resting membrane potential in Cx43(fl/fl)Cx45(fl/fl) myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43(fl/fl)Cx45(fl/fl) myofibers, but these parameters remained unaffected in Cx43(fl/fl)Cx45(fl/fl):Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker.

  20. Role of gap junction and connexin-43 in hypoxic-ischemic brain damage

    Institute of Scientific and Technical Information of China (English)

    Jieying Lin; Niyang Lin

    2006-01-01

    OBJECTEVE:Gap junctin (GJ)is the structural basis for direct intercellular communication of nerve cells . Connexin(Cx) is the protein subunit for constructling GJ channel. Among them, Cx43is closely related with nervous system. Both Cx43 and nervous system play an important role in the pathophysiological development of hypoxic-ischemic injury. We are in attempt to investigate GJ,Cx43 and their correlations with hypoxic-ischemic brain damage by research.DATA SOURCES:Using the terms "brain gap junction"in English and "gap junction"in Chinese, we searched the Medline database and Chinese BioMedical Literature Database as well as China Hospital Knowledge Database to identify the articles published from 1996 to 2006 about GJ and brain hypoxic-ischemic injury.STUDY SELECTION:The articles were selected firstly and abstracts of 250 articles were read thuugh.Articles in which the experimental design met randomized controlled principle were included,and study articles and case reports with repetitve contents were excluded.DATA EXTRACTION:Among 53 included correlative articles, 23 were excluded for repetitive contents and the other 30 were analyzed.DATA SYNTHESIS:GJ,widely esistling in nervous system,plays a key role in maintainling normal differentiation and development as well as physiological function brain tissue.GJ channel is a hydrophilic,low-selectivity and lowohmic channel, which can provide direct channel for intercellular substance transmission and information communication. It plays an important role in the differentiation and development of nerve cells and regulation of physiological function,The funtions of GJ channel are regulated by many factors,which invilved intracellular Ph value, Ca2+concentration, ATP concentration, phosphorylation of Cx, transchannel pressure,some neurohormonal factors,regulatory factors of protein and so on. Cx43 is the main component of GJ channel in the brain tissues. Its expression in the brain tissue of mammal is the strongest

  1. Special Offers

    CERN Multimedia

    Association du personnel

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions.     TPG: reduced rates on annual transport passes for active and retired staff.     Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret.     Walibi: reduced prices for children and adults at this French attraction park in Les Avenières.       FNAC: 5% reduction on FNAC vouchers.       For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  2. Special Offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions.     TPG: reduced rates on annual transport passes for all active and retired staff.     Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret.     Walibi: reduced prices for children and adults at this French attraction park in Les Avenières.       FNAC: 5% reduction on FNAC vouchers.       For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  3. Special convoy

    CERN Multimedia

    TS-IC Group

    2007-01-01

    A special wide-load convoy will affect traffic between Hall 180 (Meyrin site) and Point 1 (ATLAS) on Tuesday 29 May. The following measures will be in place: Partial closure of Route Arago and Route Einstein between 9.00 a.m. and 12 midday, depending on the rate at which the convoy advances. Closure of Route Einstein between 12 and 2.00 p.m. between Building 104 and Route Veksler (see diagram). Closure of Entrance B in both directions between 12 and 2.30 p.m. Please use Entrance A. For safety reasons, cyclists and pedestrians will not be allowed to ride or walk alongside the convoy. Please comply with the instructions given by the convoy officers. TS-IC Group (tel : 160319 - 163012)

  4. Special relativity

    CERN Document Server

    Faraoni, Valerio

    2013-01-01

    This book offers an essential bridge between college-level introductions and advanced graduate-level books on special relativity. It begins at an elementary level, presenting and discussing the basic concepts normally covered in college-level works, including the Lorentz transformation. Subsequent chapters introduce the four-dimensional worldview implied by the Lorentz transformations, mixing time and space coordinates, before continuing on to the formalism of tensors, a topic usually avoided in lower-level courses. The book’s second half addresses a number of essential points, including the concept of causality; the equivalence between mass and energy, including applications; relativistic optics; and measurements and matter in Minkowski spacetime. The closing chapters focus on the energy-momentum tensor of a continuous distribution of mass-energy and its covariant conservation; angular momentum; a discussion of the scalar field of perfect fluids and the Maxwell field; and general coordinates. Every chapter...

  5. Connexin45 is expressed in the juxtaglomerular apparatus and is involved in the regulation of renin secretion and blood pressure.

    Science.gov (United States)

    Hanner, Fiona; von Maltzahn, Julia; Maxeiner, Stephan; Toma, Ildiko; Sipos, Arnold; Krüger, Olaf; Willecke, Klaus; Peti-Peterdi, János

    2008-08-01

    Connexin (Cx) proteins are known to play a role in cell-to-cell communication via intercellular gap junction channels or transiently open hemichannels. Previous studies have identified several connexin isoforms in the juxtaglomerular apparatus (JGA), but the vascular connexin isoform Cx45 has not yet been studied in this region. The present work aimed to identify in detail the localization of Cx45 in the JGA and to suggest a functional role for Cx45 in the kidney using conditions where Cx45 expression or function was altered. Using mice that express lacZ coding DNA under the control of the Cx45 promoter, we observed beta-galactosidase staining in cortical vasculature and glomeruli, with specific localization to the JGA region. Renal vascular localization of Cx45 was further confirmed with the use of conditional Cx45-deficient (Cx45fl/fl:Nestin-Cre) mice, which express enhanced green fluorescence protein (EGFP) instead of Cx45 only in cells that, during development, expressed the intermediate filament nestin. EGFP fluorescence was found in the afferent and efferent arteriole smooth muscle cells, in the renin-producing juxtaglomerular cells, and in the extra- and intraglomerular mesangium. Cx45fl/fl:Nestin-Cre mice exhibited increased renin expression and activity, as well as higher systemic blood pressure. The propagation of mechanically induced calcium waves was slower in cultured vascular smooth muscle cells (VSMCs) from Cx45fl/fl:Nestin-Cre mice and in control VSMC treated with a Cx45 gap mimetic peptide that inhibits Cx45 gap junctional communication. VSMCs allowed the cell-to-cell passage of the gap junction permeable dye Lucifer yellow, and calcium wave propagation was not altered by addition of the ATP receptor blocker suramin, suggesting that Cx45 regulates calcium wave propagation via direct gap junction coupling. In conclusion, the localization of Cx45 to the JGA and functional data from Cx45fl/fl:Nestin-Cre mice suggest that Cx45 is involved in the

  6. Cytokine effects on gap junction communication and connexin expression in human bladder smooth muscle cells and suburothelial myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Marco Heinrich

    Full Text Available BACKGROUND: The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC and overactive bladder syndrome (OAB. Gap junctional intercellular communication (GJIC is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC and suburothelial myofibroblasts (hsMF. Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL 4, IL6, IL10, tumor necrosis factor-alpha (TNFα and transforming growth factor-beta1 (TGFβ1 on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC and human suburothelial myofibroblasts (hsMF. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP. Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC. CONCLUSIONS/SIGNIFICANCE: Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that

  7. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels.

    Science.gov (United States)

    Richter, Katrin; Kiefer, Kevin P; Grzesik, Benno A; Clauss, Wolfgang G; Fronius, Martin

    2014-01-01

    Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; Plung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.

  8. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Ionasescu, V.; Ionasescu, R.; Searby, C. [Univ. of Iowa Hospitals and Clinics, Iowa City, IA (United States)

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these families showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.

  9. Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis.

    Science.gov (United States)

    Cea, Luis A; Puebla, Carlos; Cisterna, Bruno A; Escamilla, Rosalba; Vargas, Aníbal A; Frank, Marina; Martínez-Montero, Paloma; Prior, Carmen; Molano, Jesús; Esteban-Rodríguez, Isabel; Pascual, Ignacio; Gallano, Pía; Lorenzo, Gustavo; Pian, Héctor; Barrio, Luis C; Willecke, Klaus; Sáez, Juan C

    2016-07-01

    Skeletal muscles of patients with Duchenne muscular dystrophy (DMD) show numerous alterations including inflammation, apoptosis, and necrosis of myofibers. However, the molecular mechanism that explains these changes remains largely unknown. Here, the involvement of hemichannels formed by connexins (Cx HCs) was evaluated in skeletal muscle of mdx mouse model of DMD. Fast myofibers of mdx mice were found to express three connexins (39, 43 and 45) and high sarcolemma permeability, which was absent in myofibers of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice (deficient in skeletal muscle Cx43/Cx45 expression). These myofibers did not show elevated basal intracellular free Ca(2+) levels, immunoreactivity to phosphorylated p65 (active NF-κB), eNOS and annexin V/active Caspase 3 (marker of apoptosis) but presented dystrophin immunoreactivity. Moreover, muscles of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice exhibited partial decrease of necrotic features (big cells and high creatine kinase levels). Accordingly, these muscles showed similar macrophage infiltration as control mdx muscles. Nonetheless, the hanging test performance of mdx Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice was significantly better than that of control mdx Cx43(fl/fl)Cx45(fl/fl) mice. All three Cxs found in skeletal muscles of mdx mice were also detected in fast myofibers of biopsy specimens from patients with muscular dystrophy. Thus, reduction of Cx expression and/or function of Cx HCs may be potential therapeutic approaches to abrogate myofiber apoptosis in DMD.

  10. The Carboxyl Tail of Connexin32 Regulates Gap Junction Assembly in Human Prostate and Pancreatic Cancer Cells*

    Science.gov (United States)

    Katoch, Parul; Mitra, Shalini; Ray, Anuttoma; Kelsey, Linda; Roberts, Brett J.; Wahl, James K.; Johnson, Keith R.; Mehta, Parmender P.

    2015-01-01

    Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size. PMID:25548281

  11. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells

    Science.gov (United States)

    Johnson, Kristen E.; Mitra, Shalini; Katoch, Parul; Kelsey, Linda S.; Johnson, Keith R.; Mehta, Parmender P.

    2013-01-01

    The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions. PMID:23363606

  12. Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL‑1 cardiomyocytes.

    Science.gov (United States)

    Zhang, Qianhuan; Deng, Chunyu; Rao, Fang; Modi, Rohan M; Zhu, Jiening; Liu, Xiaoying; Mai, Liping; Tan, Honghong; Yu, Xiyong; Lin, Qiuxiong; Xiao, Dingzhang; Kuang, Sujuan; Wu, Shulin

    2013-09-01

    Desmosomes and gap junctions are situated in the intercalated disks of cardiac muscle and maintain the integrity of mechanical coupling and electrical impulse conduction between cells. The desmosomal plakin protein, desmoplakin (DSP), also plays a crucial role in the stability of these interconnected components as well as gap junction connexin proteins. In addition to cell‑to‑cell junctions, other molecules, including voltage‑gated sodium channels (Nav1.5) are present in the intercalated disk and support the contraction of cardiac muscle. Mutations in genes encoding desmosome proteins may result in fatal arrhythmias, including arrhythmogenic right ventricular cardiomyopathy (ARVC). Therefore, the aim of the present study was to determine whether the presence of DSP is necessary for the normal function and localization of gap junction protein connexin43 (Cx43) and Nav1.5. To examine this hypothesis, RNA interference was utilized to knock down the expression of DSP in HL‑1 cells and the content, distribution and function of Cx43 and Nav1.5 was assessed. Western blotting and flow cytometry experiments revealed that Cx43 and Nav1.5 expression decreased following DSP silencing. In addition, immunofluorescence studies demonstrated that a loss of DSP expression led to an abnormal distribution of Cx43 and Nav1.5, while scrape‑loading dye/transfer revealed a decrease in dye transfer in DSP siRNA‑treated cells. The sodium current was also recorded by the whole‑cell patch clamp technique. The results indicated that DSP suppression decreased sodium current and slowed conduction velocity in cultured cells. The present study indicates that impaired mechanical coupling largely affects electrical synchrony, further uncovering the pathogenesis of ARVC.

  13. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

    Science.gov (United States)

    Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos

    2016-07-22

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.

  14. Hepatic granulomas induced by Schistosoma mansoni in mice deficient for connexin 43 present lower cell proliferation and higher collagen content.

    Science.gov (United States)

    Oloris, Silvia Catarina Salgado; Mesnil, Marc; Reis, Viviane Neri de Souza; Sakai, Mônica; Matsuzaki, Patrícia; Fonseca, Evelise de Souza Monteiro; da Silva, Tereza Cristina; Avanzo, José Luís; Sinhorini, Idércio Luiz; Guerra, José Luiz; Costa-Pinto, Frederico Azevedo; Maiorka, Paulo Cesar; Dagli, Maria Lúcia Zaidan

    2007-03-06

    Granuloma formation involves a coordinated interaction between monocytes and macrophages, epithelioid cells, lymphocytes, eosinophils, neutrophils and fibroblasts. It has been established that extracellular communication via cytokines is important for the assembly of granulomas. However, the importance of gap junctions and intercellular communication to granuloma formation and development had never been assessed. Connexins are proteins that form gap junctions, and connexin 43 (Cx43) is present in macrophages, lymphoid cells, myelogenous cells, fibroblasts and others. We analyzed the effect of heterologous deletion of Gja1 (Cx43 gene) on the formation and development of hepatic granulomas induced by Schistosoma mansoni eggs. Heterozygous (Cx43(+/-)) and wild-type (Cx43(+/+)) mice were infected subcutaneously with S. mansoni cercarie and evaluated after 6, 8 and 12 weeks. Granuloma cells express Cx43, as revealed by real-time PCR in isolated granulomas, and by immunohistochemistry. Cx43 expression was reduced in Cx43(+/-) mice, as expected. No differences in the average area of granulomas or number of cells per granuloma were observed between mice of different genotypes. However, granuloma cells from Cx43(+/-) mice displayed a reduced index of the proliferating cell nuclear antigen (PCNA) labeling at 8 and 12 weeks post-infection. Moreover, Cx43(+/-) granulomas unexpectedly presented a higher degree of fibrosis, quantified by morphometric analysis in Sirius Red-stained slides. Our results indicate that the deletion of one allele of the Cx43 gene, and possibly the reduced gap junction intercellular communication capacity (GJIC), may impair the interactions between granuloma cells, reducing their proliferation and increasing their collagen content, thereby modifying the characteristics of S. mansoni granuloma in mice.

  15. Localization of connexins in neurons and glia cells of the Helix aspersa suboesophageal brain ganglia by immunocytochemistry.

    Science.gov (United States)

    Azanza, M J; Pes, N; Pérez-Bruzón, R N; Aisa, J; Raso, M; Junquera, C; Lahoz, J M; Maestú, C; Martínez-Ciriano, C; Pérez-Castejón, C; Vera-Gil, A; Del Moral, A

    2007-05-01

    The aim of the present study was to examine the distribution of cells expressing connexin 26 (Cx26) in the suboesophageal visceral, left and right parietal and left and right pleural ganglia of the snail Helix aspersa by immunocytochemistry. Altogether we have found approximately 452 immunoreactive neurons which represent the 4.7% of the total neurons counted. The stained large neurons (measured diameter 55-140 microm) occurred mostly on the peripheral surface of the ganglia while the small immunostained cells (5-25 microm diameter) were observed in groups near the neuropil. The number of large neurons giving positive Cx26-like immunostaining was small in comparison with that for medium (30-50 microm diameter) and small sized cells. The expression of Cx26 was also observed in the processes of glia cells localized among neurons somata and in the neuropil showing that the antiserum recognized epitopes in both protoplasmic and fibrous glia cells of Helix aspersa. The neuropils of all ganglia showed fibers densely immunostained. While we have observed a good specificity for Cx26-antiserum in neurons, a lack of reaction for Cx43 antiserum was observed in neurons and glia cells. The reaction for enolase antiserum in neurons was light and non-specific and a lack of reaction in glia cells and processes for GFAP antiserum was observed. Although the percentage of positive neurons for Cx26 antiserum was low is suggested that in normal physiological conditions or under stimulation the expression of connexin could be increased. The observed results can be considered of interest in the interpretation of Helix aspersa elemental two neuron networks synchronizing activity, observed under applied extremely low frequency magnetic fields.

  16. A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Cigliola

    Full Text Available Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36, which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D. GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123 associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis.

  17. Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells

    Directory of Open Access Journals (Sweden)

    Olsen Colin E

    2006-08-01

    Full Text Available Abstract Background Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332 proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC. Methods Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. Results When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. Conclusion Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.

  18. THE FEATURES OF CONNEXINS EXPRESSION IN THE CELLS OF NEUROVASCLAR UNIT IN NORMAL CONDITIONS AND HYPOXIA IN VITRO

    Directory of Open Access Journals (Sweden)

    A. V. Morgun

    2014-01-01

    Full Text Available The aim of this research was to assess a role of connexin 43 (Cx43 and associated molecule CD38 in the regulation of cell-cell interactions in the neurovascular unit (NVU in vitro in physiological conditions and in hypoxia.Materials and methods. The study was done using the original neurovascular unit model in vitro. The NVU consisted of three cell types: neurons, astrocytes, and cerebral endothelial cells derived from rats. Hypoxia was induced by incubating cells with sodium iodoacetate for 30 min at37 °C in standard culture conditions.Results. We investigated the role of connexin 43 in the regulation of cell interactions within the NVU in normal and hypoxic injury in vitro. We found that astrocytes were characterized by high levels of expression of Cx43 and low level of CD38 expression, neurons demonstrated high levels of CD38 and low levels of Cx43. In hypoxic conditions, the expression of Cx43 and CD38 in astrocytes markedly increased while CD38 expression in neurons decreased, however no changes were found in endothelial cells. Suppression of Cx43 activity resulted in down-regulation of CD38 in NVU cells, both in physiological conditions and at chemical hypoxia.Conclusion. Thus, the Cx-regulated intercellular NAD+-dependent communication and secretory phenotype of astroglial cells that are the part of the blood-brain barrier is markedly changed in hypoxia.

  19. Special offers

    CERN Multimedia

    Association du personnel

    2012-01-01

    Special discount to the members of the Staff Association Aquaparc Discounted prices on admission of whole day. Children from 5 to 15 years: 26.– CHF instead of 35.– CHF; Adults from 16 years: 32.– CHF instead of 43.– CHF.Tickets on sale to the Staff Association Secretariat. BCGE Account management on salary account and annual subscription to credit cards free of charge. Other benefits on mortgage loan and financial planning. Comédie de Genève 20% off on full price tickets (also available for partner): from 24 to 32 CHF a ticket instead of 30 to 40 CHF depending on the shows. Ezee Suisse 15% off on the range of electric bikes upon presentation of your Staff Association membership card before payment. FNAC 5% discount on gifts card available in four Swiss shops without any restriction. Gifts card on sale to the Staff Association Secretariat. FutureKids 15% off for the Staff Association members who enrol their children of 5 to 16 years old in ...

  20. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    Science.gov (United States)

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  1. Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells

    OpenAIRE

    Pollok, Simone; Pfeiffer, Ann-Catherine; Lobmann, Ralf; Wright, Catherine S; Moll, Ingrid; Martin, Patricia E M; Johanna M Brandner

    2010-01-01

    Abstract During early wound healing (WH) events Connexin 43 (Cx43) is down-regulated at wound margins. In chronic wound margins, including diabetic wounds, Cx43 expression is enhanced suggesting that down-regulation is important for WH. We previously reported that the Cx43 mimetic peptide Gap27 blocks Cx43 mediated intercellular communication and promotes skin cell migration of infant cells in vitro. In the present work we further investigated the molecular mechanism of Gap27 action and its t...

  2. Keratitis-Ichthyosis-Deafness Syndrome, Atypical Connexin GJB2 Gene Mutation, and Peripheral T-Cell Lymphoma: More Than a Random Association?

    Directory of Open Access Journals (Sweden)

    Claudio Fozza

    2011-01-01

    Full Text Available Keratitis-ichthyosis-deafness (KID syndrome is a rare congenital disorder characterized by skin lesions, neurosensorial hypoacusia, and keratitis, usually due to the c.148G→A mutation involving the connexin 26 gene. We report on a KID patient who showed the atypical c.101T→C mutation and developed a T-cell lymphoma so far never described in this group of patients.

  3. Thrombocytosis and immunohistochemical expression of connexin 43 at diagnosis predict survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy.

    Science.gov (United States)

    Du, Gangjun; Yang, Yiming; Yang, Yingming; Zhang, Yaping; Sun, Ting; Liu, Weijie; Wang, Yingying; Li, Jiahuan; Zhang, Houyun

    2013-04-01

    Patients with advanced non-small-cell lung cancer (NSCLC) have poor survival, and platinum-based chemotherapy agents are the standard first-line chemotherapy agents for advanced NSCLC. This study aimed to identify predictive factors associated with the response to chemotherapy and survival in 258 patients with advanced NSCLC treated with platinum-based chemotherapy. Stage IIIA-IV NSCLC patients diagnosed in Kaifeng second people's hospital (Henan, China) between March 2002 and September 2011 were retrospectively reviewed. All of the patients had received platinum-based chemotherapy, and patients were followed up to date of death or last follow-up to obtain data of response to chemotherapy and survival. Potential prognostic factors such as gender, age, tumor size, tumor type, histologic stage, anemia, calcium levels, ECOG performance status (PS), thrombocytosis, TTF-1, p63, and connexin 43 were analyzed. Response to chemotherapy, overall survival (OS) and progression-free survival (PFS) were calculated by the Kaplan-Meier method and Cox regression model. A univariate analysis indicated that thrombocytosis and connexin 43 were found to be significant prognostic factors (p thrombocytosis was associated with increased mortality and resistance to chemotherapy in chemotherapy responders. In addition, all 21 patients of the 5-year OS were from chemotherapy responders with connexin 43 ≥ +2 or non-thrombocytosis. Thrombocytosis and connexin 43 absence may be reliable surrogate markers for the prediction of chemotherapy response and prognosis for patients with advanced NSCLC, and assessment of these factors may identify a population of patients with advanced NSCLC that is likely to have a prolonged life expectancy.

  4. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants

    Directory of Open Access Journals (Sweden)

    Devroop Sarkar

    2014-01-01

    Full Text Available Connexin50 (Cx50 mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.

  5. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice.

    Science.gov (United States)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14days and ovaries collected 3days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (Pobese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (Pobesity while total CX37 protein was reduced (Pobese ovaries. Cx43 mRNA and total protein levels were decreased (Pobese ovaries while basal protein staining intensity was reduced (Pobese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (Pobesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice.

    Directory of Open Access Journals (Sweden)

    Pablo J Sáez

    Full Text Available Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1⁻/⁻ showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1⁻/⁻ hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1⁻/⁻ astrocytes also showed more intracellular Ca²⁺ signal oscillations mediated by functional connexin 43 hemichannels and P2Y₁ receptors. Therefore, Npc1⁻/⁻ astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.

  7. Role of gamma carboxylated Glu47 in connexin 26 hemichannel regulation by extracellular Ca{sup 2+}: Insight from a local quantum chemistry study

    Energy Technology Data Exchange (ETDEWEB)

    Zonta, Francesco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova, 35131 Padova (Italy); Mammano, Fabio, E-mail: fabio.mammano@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova, 35131 Padova (Italy); Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, 35129 Padova (Italy); Istituto CNR di Neuroscienze, 35131 Padova (Italy); Torsello, Mauro; Fortunati, Nicola [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova (Italy); Orian, Laura, E-mail: laura.orian@unipd.it [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova (Italy); Polimeno, Antonino [Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova (Italy)

    2014-02-28

    Graphical abstract: - Highlights: • QM calculations show that Ca{sup 2+} binds to γGlu47 in connexin hemichannels. • Molecular models of increasing size are employed in hybrid DFT calculations. • Ca{sup 2+} binding affects the interaction between γGlu47 and Arg75, Arg184. • Ca{sup 2+} binding alters the structure in a critical region of connexin hemichannels. - Abstract: Connexin hemichannels are regulated by several gating mechanisms, some of which depend critically on the extracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub e}). It is well established that hemichannel activity is inhibited at normal (∼1 mM) [Ca{sup 2+}]{sub e}, whereas lowering [Ca{sup 2+}]{sub e} to micromolar levels fosters hemichannel opening. Atomic force microscopy imaging shows significant and reversible changes of pore diameter at the extracellular mouth of Cx26 hemichannels exposed to different [Ca{sup 2+}]{sub e}, however, the underlying molecular mechanisms are not fully elucidated. Analysis of the crystal structure of connexin 26 (Cx26) gap junction channels, corroborated by molecular dynamics (MD) simulations, suggests that several negatively charged amino acids create a favorable environment for low-affinity Ca{sup 2+} binding within the extracellular vestibule of the Cx26 hemichannel. In particular a highly conserved glutammic acid, found in position 47 in most connexins, is thought to undergo post translational gamma carboxylation (γGlu47), and is thus likely to play an important role in Ca{sup 2+} coordination. γGlu47 may also form salt bridges with two conserved arginines (Arg75 and Arg184 in Cx26), which are considered important in stabilizing the structure of the extracellular region. Using a combination of quantum chemistry methods, we analyzed the interaction between γGlu47, Arg75 and Arg184 in a Cx26 hemichannel model both in the absence and in the presence of Ca{sup 2+}. We show that Ca{sup 2+} imparts significant local structural changes and speculate

  8. 核酸酶I-SceI介导的转基因斑马鱼构建及连接蛋白Connexin48.5的定位研究%I-SceI Meganuclease Mediates Transgenesis in Zebrafish and Connexin48.5 Localization Research

    Institute of Scientific and Technical Information of China (English)

    刘俊; 杨镇滔; 李汉杰; 田书也; 韩家淮

    2012-01-01

    细胞连接蛋白是由多基因家族编码的一类结构相似、分子质量不同的蛋白质.在细胞膜上,每6个相同或不同的连接蛋白围绕中央孔排列形成一个连接子,相邻细胞膜上的连接子相互对接形成细胞间隙连接,细胞间隙连接是一种重要的通讯连接,它不仅是细胞间代谢偶联、冲动传导的结构基础,而且可以通过介导与细胞的迁移、分化、增生和器官形成有关的信号物质而在胚胎发育中起重要作用.为了进一步探讨细胞间隙连接在生物体中的作用,采用斑马鱼胚胎显微注射核酸酶I-SceI和质粒DNA的方法成功构建了绿色荧光蛋白GFP与细胞连接蛋白Connexin48.5融合表达的转基因荧光斑马鱼品系,并通过对荧光蛋白发光的观察在斑马鱼鱼体中进行连接蛋白Connexin48.5的定位.实验结果表明:核酸酶I-SceI介导下的斑马鱼转基因方法效率较高,可行性好;连接蛋白Connexin48.5在斑马鱼体内主要定位于眼球晶状体和脊索.所获得的Connexin48.5-GFP融合表达斑马鱼系,以及利用该品系进行的Connexin48.5定位研究对细胞连接蛋白在生物体内的功能研究将具有重要作用.%Connexinj are a group of proteins coded by multi gene family. On the cell membrane,every 6 Connexins combine together to form a Connexon,and two Connexons of two different cells connect with each other to form a gap junction. Gap junction is a very important kind of communicational connection between cells,which is not only the constructional basic of metabolic coupling and signal transduction betweens cells,but also the channel of signal substance controlling cell migration,differentiation,proliferation and or-ganogenesis. For a deeper study of gap junction function in organisms, we generated a transgenic zebrafish line that expresses Con-nexin48. 5-GFP fusion protein by co-injecting meganuclease I-Scel and plasmid DNA into zebrafish embryos. I-Scel mediated trans

  9. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D; Mok, Ka-Wai; Li, Michelle W M; Wong, Chris K C; Lee, Will M; Han, Daishu; Silvestrini, Bruno; Cheng, C Yan

    2016-04-01

    Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to

  10. Algorithmically specialized parallel computers

    CERN Document Server

    Snyder, Lawrence; Gannon, Dennis B

    1985-01-01

    Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster

  11. Blocking connexin43 expression caused abnormal zebrafish posterior somites development%Connexin43基因表达下调导致斑马鱼胚胎后部体节发育异常

    Institute of Scientific and Technical Information of China (English)

    刘东

    2011-01-01

    目的:验证斑马鱼胚胎体节的发育是否受到间隙连接蛋白connexin43(cx43)基因表达调控.方法:利用吗啉修饰的反义寡核苷酸(morpholino antisense oligos)下调cx43基因的表达;单克隆抗体CH1进行全胚胎的免疫荧光来标记体节;全胚胎的TUNEL实验检测细胞凋亡.结果:研究发现cx43基因表达下调的斑马鱼胚胎呈现为尾部向侧下弯曲,并且后部体节排列紊乱.进一步的研究证实cx43下调诱导了后部体节细胞的异常凋亡.结论:cx43与斑马鱼后部体节的正常发育有关.

  12. Regulation of gap-junction protein connexin 43 by β-adrenergic receptor stimulation in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yi XIA; Kai-zheng GONG; Ming XU; You-yi ZHANG; Ji-hong GUO; Yao SONG; Ping ZHANG

    2009-01-01

    Aim:β-adrenergic receptor (β-AR) agonists are among the most potent factors regulating cardiac electrophysiological properties.Connexin 43 (Cx43),the predominant gap-junction protein in the heart,has an indispensable role in modulating cardiac electric activities by affecting gap-junction function.The present study investigates the effects of short-term stimulation of β-AR subtypes on Cx43 expression and gap junction intercellular communication (GJIC) function.Methods:The level of Cx43 expression in neonatal rat cardiomyocytes (NRCM) was detected by a Western blotting assay.The GJIC function was evaluated by scrape loading/dye transfer assay.Results:Stimulation of β-AR by the agonist isoproterenol for 5 min induces the up-regulation of nonphosphorylated Cx43 protein level,but not total Cx43.Selective β2-AR inhibitor ICI 118551,but not β-AR inhibitor CGP20712,could fully abolish the effect.Moreover,pretreatment with both protein kinase A inhibitor H89 and G,protein inhibitor pertussis toxin also inhibited the isoproterenol-induced increase of nonphosphorylated Cx43 expression.Isoproterenol-induced up-regulation of nonphosphorylated Cx43 is accompanied with enhanced GJIC function.Conclusion:Taken together,β2-AR stimulation increases the expression of nonphosphorylated Cx43,thereby enhancing the gating function of gap junctions in cardiac myocytes in both a protein kinase A-and G1-dependent manner.

  13. Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells

    Directory of Open Access Journals (Sweden)

    Ieva Antanavičiūtė

    2014-01-01

    Full Text Available Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK in hyperthermia-induced changes of connexin43 (Cx43 expression and permeability of Cx43 gap junctions (GJs in the rabbit skeletal myoblasts (SkMs and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC. In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia.

  14. Connexin43 recruits PTEN and Csk to inhibit c-Src activity in glioma cells and astrocytes

    Science.gov (United States)

    González-Sánchez, Ana; Jaraíz-Rodríguez, Myriam; Domínguez-Prieto, Marta; Herrero-González, Sandra; Medina, José M.; Tabernero, Arantxa

    2016-01-01

    Connexin43 (Cx43), the major protein forming gap junctions in astrocytes, is reduced in high-grade gliomas, where its ectopic expression exerts important effects, including the inhibition of the proto-oncogene tyrosine-protein kinase Src (c-Src). In this work we aimed to investigate the mechanism responsible for this effect. The inhibition of c-Src requires phosphorylation at tyrosine 527 mediated by C-terminal Src kinase (Csk) and dephosphorylation at tyrosine 416 mediated by phosphatases, such as phosphatase and tensin homolog (PTEN). Our results showed that the antiproliferative effect of Cx43 is reduced when Csk and PTEN are silenced in glioma cells, suggesting the involvement of both enzymes. Confocal microscopy and immunoprecipitation assays confirmed that Cx43, in addition to c-Src, binds to PTEN and Csk in glioma cells transfected with Cx43 and in astrocytes. Pull-down assays showed that region 266–283 in Cx43 is sufficient to recruit c-Src, PTEN and Csk and to inhibit the oncogenic activity of c-Src. As a result of c-Src inhibition, PTEN was increased with subsequent inactivation of Akt and reduction of proliferation of human glioblastoma stem cells. We conclude that the recruitment of Csk and PTEN to the region between residues 266 and 283 within the C-terminus of Cx43 leads to c-Src inhibition. PMID:27391443

  15. Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2016-05-01

    Full Text Available We observed mitochondrial connexin43 (mtCx43 expression under cerebral ischemia-reperfusion (I/R injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO. Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD activity and malondialdehyde (MDA content. MtCx43, p-mtCx43, protein kinase C (PKC, and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX and diazoxide (DZX groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists.

  16. Hyperthermia differently affects connexin43 expression and gap junction permeability in skeletal myoblasts and HeLa cells.

    Science.gov (United States)

    Antanavičiūtė, Ieva; Mildažienė, Vida; Stankevičius, Edgaras; Herdegen, Thomas; Skeberdis, Vytenis Arvydas

    2014-01-01

    Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK) in hyperthermia-induced changes of connexin43 (Cx43) expression and permeability of Cx43 gap junctions (GJs) in the rabbit skeletal myoblasts (SkMs) and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h) enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC). In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia.

  17. The protective effect of functional connexin43 channels on a human epithelial cell line exposed to oxidative stress.

    Science.gov (United States)

    Hutnik, Cindy M L; Pocrnich, Cady E; Liu, Hong; Laird, Dale W; Shao, Qing

    2008-02-01

    To determine the role of connexin43 (Cx43) and gap junctional intercellular communication (GJIC) in the response of the human retinal pigment epithelial cell line ARPE-19 to oxidative stress. ARPE-19 cells were treated with the chemical oxidant tert-butyl hydroperoxide (t-BOOH), and cell viability was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. GJIC was evaluated by scrape loading/dye transfer and microinjection assays, and Cx43 expression was detected by Western blot and immunofluorescent staining combined with confocal microscopy analysis. Retroviral infection of ARPE-19 cells with shRNA vectors targeting Cx43 or vectors encoding Cx43, Cx26, and a disease-linked dominant negative Cx43 mutant (G21R) were used, and the effect on cell viability was assessed. t-BOOH-induced ARPE-19 cell death was correlated with reductions in GJIC and in the total level of Cx43 protein expression. Overexpression of Cx26 and Cx43 increased the viability of oxidant-treated ARPE-19 cells. Conversely, shRNA knockdown of Cx43, expression of a disease-linked dominant negative Cx43 mutant, and blocking GJIC with 18beta-glycyrrhetinic acid and flufenamic acid all increased t-BOOH-induced ARPE-19 cell death. Cx43-mediated protection of ARPE-19 cells from oxidative stress-induced death is dependent on functional Cx43 channels.

  18. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  19. Identification of a protein kinase activity that phosphorylates connexin43 in a pH-dependent manner

    Directory of Open Access Journals (Sweden)

    P. Yahuaca

    2000-04-01

    Full Text Available The carboxyl-terminal (CT domain of connexin43 (Cx43 has been implicated in both hormonal and pH-dependent gating of the gap junction channel. An in vitro assay was utilized to determine whether the acidification of cell extracts results in the activation of a protein kinase that can phosphorylate the CT domain. A glutathione S-transferase (GST-fusion protein was bound to Sephadex beads and used as a target for protein kinase phosphorylation. A protein extract produced from sheep heart was allowed to bind to the fusion protein-coated beads. The bound proteins were washed and then incubated with 32P-ATP. Phosphorylation was assessed after the proteins were resolved by SDS-PAGE. Incubation at pH 7.5 resulted in a minimal amount of phosphorylation while incubation at pH 6.5 resulted in significant phosphorylation reaction. Maximal activity was achieved when both the binding and kinase reactions were performed at pH 6.5. The protein kinase activity was stronger when the incubations were performed with manganese rather than magnesium. Mutants of Cx43 which lack the serines between amino acids 364-374 could not be phosphorylated in the in vitro kinase reaction, indicating that this is a likely target of this reaction. These results indicate that there is a protein kinase activity in cells that becomes more active at lower pH and can phosphorylate Cx43.

  20. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice.

    Science.gov (United States)

    Yu, Q; Wang, Y; Chang, Q; Wang, J; Gong, S; Li, H; Lin, X

    2014-01-01

    Mutations in GJB2, which codes for the gap junction (GJ) protein connexin26 (Cx26), are the most common causes of human nonsyndromic hereditary deafness. We inoculated modified adeno-associated viral (AAV) vectors into the scala media of early postnatal conditional Gjb2 knockout mice to drive exogenous Cx26 expression. We found extensive virally expressed Cx26 in cells lining the scala media, and intercellular GJ network was re-established in the organ of Corti of mutant mouse cochlea. Widespread ectopic Cx26 expression neither formed ectopic GJs nor affected normal hearing thresholds in wild-type (WT) mice, suggesting that autonomous cellular mechanisms regulate proper membrane trafficking of exogenously expressed Cx26 and govern the functional manifestation of them. Functional recovery of GJ-mediated coupling among the supporting cells was observed. We found that both cell death in the organ of Corti and degeneration of spiral ganglion neurons in the cochlea of mutant mice were substantially reduced, although auditory brainstem responses did not show significant hearing improvement. This is the first report demonstrating that virally mediated gene therapy restored extensive GJ intercellular network among cochlear non-sensory cells in vivo. Such a treatment performed at early postnatal stages resulted in a partial rescue of disease phenotypes in the cochlea of the mutant mice.

  1. Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage.

    Science.gov (United States)

    Mayan, Maria D; Carpintero-Fernandez, Paula; Gago-Fuentes, Raquel; Martinez-de-Ilarduya, Oskar; Wang, Hong-Zhang; Valiunas, Virginijus; Brink, Peter; Blanco, Francisco J

    2013-04-01

    Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 μm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Connexin36 Gap Junction Blockade Is Ineffective at Reducing Seizure-Like Event Activity in Neocortical Mouse Slices

    Directory of Open Access Journals (Sweden)

    Logan J. Voss

    2010-01-01

    Full Text Available Despite much research, there remains controversy over the role of gap junctions in seizure processes. Many studies report anticonvulsant effects of gap junction blockade, but contradictory results have also been reported. The aim of this study was to clarify the role of connexin36 (Cx36 gap junctions in neocortical seizures. We used the mouse neocortical slice preparation to investigate the effect of pharmacological (mefloquine and genetic (Cx36 knockout mice (Cx36KO manipulation of Cx36 gap junctions on two seizure models: low-magnesium artificial cerebrospinal fluid (ACSF and aconitine perfusion in low-magnesium ACSF. Low-magnesium- (nominally zero and aconitine- (230 nM induced seizure-like event (SLE population activity was recorded extracellularly. The results were consistent in showing that neither mefloquine (25 μM nor genetic knockdown of Cx36 expression had anticonvulsant effects on SLE activity generated by either method. These findings call into question the widely held idea that open Cx36 gap junctions promote seizure activity.

  3. Connexin 50 gene on human chromosome 1q21 is associated with schizophrenia in matched case–control and family‐based studies

    Science.gov (United States)

    Ni, Xingqun; Valente, Jose; Azevedo, Maria H; Pato, Michelle T; Pato, Carlos N; Kennedy, James L

    2007-01-01

    Background The gap junction subunit connexin permits direct intercellular exchange of ions and molecules including glutamate, and plays an important role in the central nervous system. The connexin 40 (Cx40) and connexin 50 (Cx50) genes are located on chromosome 1q21.1, a region strongly linked with schizophrenia. These lines of evidence suggest that Cx40 and Cx50 may play a role in schizophrenia. Methods Using an allele‐specific PCR assay, four polymorphisms each were genotyped for Cx40 and Cx50 in 190 Caucasian patients with schizophrenia and 190 controls matched for sex, age and ethnicity. Following up, Cx50 rs989192 and rs4950495 were investigated in 99 Canadian and 163 Portuguese trios and nuclear families with schizophrenia probands. Hardy–Weinberg equilibrium and linkage disequilibrium (LD) block identification was carried out with HaploView, and association analysis for alleles and haplotypes with a permutation test of 10 000 simulations was carried out using the UNPHASED software program. Results Distributions of genotype frequencies of all markers were in Hardy–Weinberg equilibrium in Caucasian patients, controls and families. One rs989192‐rs4950495 LD block was found in patients but not in controls. We found a significant association between the Cx50 rs989192‐rs4950495 haplotype and schizophreniay (χ2 = 29.55, p<0.01). The A‐C haplotype had a higher frequency in patients (χ2 = 7.153, p<0.01). Family studies also showed that the A‐C haplotype was transmitted more often to patients with schizophrenia (χ2 = 8.43, p<0.01). No association of Cx40 with schizophrenia was found for allele, genotype or haplotype analyses. Conclusions Our matched case–control and family study indicate that Cx50, but not Cx40, may play a role in the genetic susceptibility to schizophrenia. PMID:17412882

  4. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins.

    Directory of Open Access Journals (Sweden)

    Rupalatha Maddala

    Full Text Available Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations

  5. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  6. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice.

    Science.gov (United States)

    Munger, Stephanie J; Geng, Xin; Srinivasan, R Sathish; Witte, Marlys H; Paul, David L; Simon, Alexander M

    2016-04-15

    Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.

  7. Connexins in the early development of the African clawed frog Xenopus laevis (Amphibia: The role of the connexin43 carboxyl terminal tail in the establishment of the dorso-ventral axis

    Directory of Open Access Journals (Sweden)

    Jaime Cofre

    2007-03-01

    Full Text Available Connexins are a family of related proteins identified in vertebrate forming gap junctions, which mediate cell-to-cell communication in early embryos, with an important role in establishing embryonic asymmetry and ‘communication compartments’. By in situ hybridization, immunocytochemistry, reverse transcriptase PCR (RT-PCR and western blotting we show that a Cx43-like molecule is present in oocytes and embryos of the African clawed frog Xenopus laevis, with specific localization in the animal-vegetal axis. This specific distribution is suggestive for an important role for this protein in the establishment of the dorso-ventral axis. Antisense RNA and antibodies directed against rat carboxyl terminal tail of the Cx43 (CT-Cx43 and injected in 1-cell stage Xenopus embryos, induced pronounced alterations in nervous system development, with a severe ventralization phenotype. Coherently, the overexpression of CT-Cx43 produced a dorsalization of the embryos. In antisense treated embryos, the expression of the beta-catenin gene is eliminated from the Nieuwkoop center, the pattern expression of the Chordin, Xnot and Xbra is modified, with no effect in expression of the Goosecoid gene. In CT-Cx43 mRNA treated embryos the pattern of expression of the beta-catenin, Chordin, Goosecoid, Xnot and engrailed-2 genes is modified. The expression of beta-catenin is increased in the Nieuwkoop center, the expression pattern of Chordin and Goosecoid is expanded to the posterior neural plate and engrailed-2 presents ectopic expression in the ventral region. Taken together our data suggest a role for CT-Cx43 as a maternal determinant with a critical function in the formation of the dorso-ventral axis in Xenopus laevis. The Cx43 may be one of the earliest markers of the dorso-ventral axis in these embryos and could possibly be acting through regionalization of factors responsible for the establishment of this axis.

  8. Histopathological analysis of neonatal mouse hearts with connexin43 gene defects%Connexin43基因缺陷新生小鼠心脏组织病理学研究

    Institute of Scientific and Technical Information of China (English)

    谢利剑; 黄国英; 赵晓晴; 沈媛; 周国民

    2005-01-01

    目的观察不同程度Connexin43基因缺陷对新生小鼠心脏发育的影响.方法采用Cx43基因敲除(Cx43 KO)和CMV43CT两种Cx43基因缺陷的小鼠模型,聚合酶链反应鉴定基因型.然后将新生小鼠心脏分离固定,HE染色观察心脏的形态结构.普通C57BL6/SJ小鼠作为对照.结果所有11只纯合型Cx43 KO小鼠生后1 d内均死亡,心脏表现为严重右室流出道梗阻.在20只纯合型CMV43CT新生小鼠中,有12只生后2 d内死亡,其心脏不仅表现有右室流出道梗阻,还出现了房间隔缺损、室间隔缺损等其他心脏畸形;而另外8只未见心脏异常.所有杂合型Cx43 KO和CMV43CT基因缺陷的小鼠生后均存活,心脏病理学检测未见异常.结论 Cx43基因缺陷与心脏发育异常有密切的关系,但不同类型和不同程度的Cx43基因功能缺失对心脏发育的影响也不尽相同.

  9. Connexin 30.3 is expressed in the kidney but not regulated by dietary salt or high blood pressure.

    Science.gov (United States)

    Hanner, Fiona; Schnichels, Marc; Zheng-Fischhöfer, Qingyi; Yang, Li E; Toma, Ildikó; Willecke, Klaus; McDonough, Alicia A; Peti-Peterdi, János

    2008-05-01

    Several isoforms of connexin (Cx) proteins have been identified in a variety of tissues where they play a role in intercellular communication, either as the components of gap junctions or as large, nonselective pores known as hemichannels. This investigation seeks to identify the localization and regulation of Cx30.3 in mouse, rat, and rabbit kidney using a Cx30.3(+/lacZ) transgenic approach and immunofluorescence. Cx30.3 was detected in all three species and predominantly in the renal medulla. Both the nuclear lacZ staining indicative of Cx30.3 expression and indirect immunohistochemistry provided the same results. Cx30.3 immunolabeling was mainly punctate in the mouse, typical for gap junctions. In contrast, it showed continuous apical plasma membrane localization in certain tubule segments in the rat and rabbit kidney, suggesting that it may also function as hemichannels. In the cortex, Cx30.3 was localized in the intercalated cells of the cortical collecting duct, because the immunoreactive cells did not label for AQP2, a marker for principal cells. In the medulla, dense Cx30.3 staining was confined to the ascending thin limbs of the loop of Henle, because the immunoreactive cells did not label for AQP1, a marker of the descending thin limbs. Immunoblotting studies indicated that Cx30.3 expression was unchanged in response to either high or low salt intake or in spontaneously hypertensive rats. Cx30.3 appears to be constitutively expressed in certain renal tubular segments and cells and its role in overall kidney function remains to be investigated.

  10. Dynamic alterations of connexin43, matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 during ventricular fibrillation in canine.

    Science.gov (United States)

    Wang, Jing; Li, Jing-sha; Liu, Hong-zhen; Yi, Shao-lei; Su, Guo-ying; Zhang, Yun; Zhong, Jing-quan

    2014-06-01

    The aim of this study is to investigate the dynamic alterations of cardiac connexin 43 (Cx43), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in the setting of different ventricular fibrillation (VF) duration. In this study, thirty-two dogs were randomly divided into sham control group, 8-min VF group, 12-min VF group, and 30-min VF group. Cx43 and phosphorylated Cx43 (p-Cx43) in tissues were detected by western blot and immunofluorescence analysis. MMP-2 and TIMP-2 were detected by western blot and immunohistochemistry analysis. The results showed that Cx43 levels in three VF groups were significantly decreased compared with sham control group. p-Cx43 levels in 12-min and 30-min VF groups were significantly reduced compared with sham control group. The ratio of p-Cx43/Cx43 was also decreased in VF groups. Compared with sham controls, no significant difference was observed between the sham control group and 8-min VF group in MMP-2 level, but MMP-2 level increased in 12-min and 30-min VF groups. The ratios of MMP-2/TIMP-2 were higher in VF groups, and were correlated with the duration of VF. A remarkable correlation was observed between the ratio of p-Cx43/Cx43 and MMP-2/TIMP-2 (r = -0.93, P MMP-2 and TIMP-2 may contribute to the initiation and/or persistence of VF. Maneuvers managed to modulate Cx43 level or normalize the balance of MMP-2/TIMP-2 are promising to ameliorate prognosis of VF.

  11. Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.; Ainsworth, P. [Victoria Hospital, Ontario (Canada)]|[Childrens Hospital of Western Ontario (Canada)

    1994-09-01

    Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions, while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.

  12. The Cataract-linked Mutant Connexin50D47A Causes Endoplasmic Reticulum Stress in Mouse Lenses.

    Science.gov (United States)

    Berthoud, Viviana M; Minogue, Peter J; Lambert, Paul A; Snabb, Joseph I; Beyer, Eric C

    2016-08-19

    Mice expressing connexin50D47A (Cx50D47A) exhibit nuclear cataracts and impaired differentiation. Cx50D47A does not traffic properly, and homozygous mutant lenses show increased levels of the stress-responsive αB-crystallins. Therefore, we assessed whether expression of Cx50D47A led to endoplasmic reticulum (ER) stress in the lens in vivo Although pharmacologic induction of ER stress can be transduced by three different pathways, we found no evidence for activation of the IRE1α or ATF6 pathways in Cx50D47A-expressing lenses. In contrast, heterozygous and homozygous Cx50D47A lenses showed an increase in phosphorylated PERK immunoreactivity and in the ratio of phosphorylated to total EIF2α (2.4- and 3.3-fold, respectively) compared with wild type. Levels of ATF4 were similar in wild type and heterozygous lenses but elevated in homozygotes (391%). In both heterozygotes and homozygotes, levels of calreticulin protein were increased (184 and 262%, respectively), as was Chop mRNA (1.9- and 12.4-fold, respectively). CHOP protein was increased in homozygotes (384%). TUNEL staining was increased in Cx50D47A lenses, especially in homozygous mice. Levels of two factors that may be pro-survival, Irs2 and Trib3, were greatly increased in homozygous lenses. These results suggest that expression of Cx50D47A induces ER stress, triggering activation of the PERK-ATF4 pathway, which potentially contributes to the lens pathology and leads to increased expression of anti-apoptotic factors, allowing cell survival.

  13. Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats

    Science.gov (United States)

    Hussein, Abdelaziz M.; Ghalwash, Mohammed; Magdy, Khaled; Abulseoud, Osama A.

    2016-01-01

    Background and Purpose: This study aimed to investigate the effect of ceftriaxone on oxidative stress and gap junction protein (connexin 43, Cx-43) expression in pentylenetetrazole (PTZ) induced kindling model. Methods: Twenty four Sprague dawely rats were divided into 3 equal groups (a) normal group: normal rats. (b) PTZ kindled group: received PTZ at the dose of 50 mg/kg via intraperitoneal injection (i.p.) every other day for 2 weeks (c) ceftriaxone treated group: received ceftriaxone at the dose 200 mg\\kg/12 hrs via i.p. injection daily from the 6th dose of PTZ for 3 days. Racine score, latency before beginning the first myoclonic jerk and duration of the jerks used as parameters of behavioral assessment. Immunohistopathological study for Cx-43 expression in hippocampus and measurement of markers of oxidative stress (malondialdehyde [MDA], low reduced glutathione [GSH] and catalase [CAT]) in hippocampal neurons were done. Results: PTZ kindling was associated with behavioral changes (in the form high stage of Racine score, long seizure duration and short latency for the first jerk), enhanced oxidative stress state (as demonstrated by high MDA, low GSH and CAT) and up regulation of Cx43 in hippocampal regions. While, ceftriaxone treatment ameliorated, significantly, PTZ-induced convulsions and caused significant improvement in oxidative stress markers and Cx-43 expression in hippocamal regions (p < 0.05). Conclusions: These findings support the anticonvulsive effects of some beta-lactams antibiotics which could offer a possible contributor in the basic treatment of temporal lobe epilepsy. This effect might be due to reduction of oxidative stress and Cx43 expression. PMID:27390674

  14. Altered Expression of Connexin-43 and Impaired Capacity of Gap Junctional Intercellular Communication in Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    XING Yifei; XIAO Yajun; ZENG FuQing; ZHAO Jun; XIAO Chuanguo; XIONG Ping; FENG Wei

    2007-01-01

    Connexin-43 (Cx43) expression in prostate cancer (PCa) cells and the potency of gap junctional intercellular communication (GJIC) in the cells were investigated, with an attempt to elucidate the reason why the so-called "bystander effect" mediated by thymidine kinase (TK) suicide gene therapy on PCa cells is not of significance and to explore the role of GJIC in PCa carcinogenesis.mRNA and protein expression of Cx43 in a PCa cell line PC-3m was detected by reverse-transcription polymerase chain reaction (RT-PCR) and strapt-avidin-biotin-enzyme complex (SABC) immunohistochemical staining, and inherent GJIC of PC-3m cells was assayed by scrape-loading and dye transfer (SLDT) assay. The expression of Cx43 in human normal and malignant prostate tissues was determined by SABC immunohistochemistry as well. It was found that Cx43 mRNA and protein expression in PC-3m cells was slightly reduced as compared with positive controls and the location of Cx43 protein was aberrant in cytoplasm rather than on membrane. Assessment of paraffin sections demonstrated that the expression of Cx43 protein in PCa cells was abnormally located and markedly diminished as compared with normal prostatic epithelial ones, displaying a negative correlation to the pathological grade (χ2=4.025, P<0.05). Additionally, capacity of inherent GJIC in PC-3m cells was disrupted, which was semi-quantified as (+) or (-). It was indicated that both down-regulated expression of Cx43 mRNA and aberrant location of Cx43 protein participated in the mechanisms leading to deficient GJIC in PC-3m cells. Lack of efficient GJIC is a molecular event, which may contribute not only to limited extent of "bystander effect", but also to initiation and progression of prostatic neoplasm.

  15. Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with Cisplatin.

    Science.gov (United States)

    Tanaka, M; Grossman, H B

    2001-12-10

    The connexin 26 (Cx26) gene encodes a protein involved in gap junctional intercellular communication and is a putative tumor suppressor. We constructed a Cx26 adenovirus vector (Ad-Cx26) and used it to infect human bladder cancer cell lines UM-UC-3, UM-UC-6, UM-UC-14, and T24. Infection with Ad-Cx26 suppressed the growth of these cell lines in vitro and prevented tumor formation in vivo. Cell cycle accumulation or arrest at the G(1) phase was noted in UM-UC-3 cells and at the G(2)/M phase in UM-UC-6, UM-UC-14, and T24 cells. Apoptosis was noted in UM-UC-3, UM-UC-6, and UM-UC-14 cells both in vitro and in vivo. These effects were not seen with control adenovirus (Ad-CTR) or mock infection. Ad-Cx26 did not significantly alter the growth of the immortalized normal human bladder cell line SV-HUC. Direct injection of Ad-Cx26 into established UM-UC-3 and UM-UC-14 tumors in nude mice resulted in Cx26 expression, apoptosis, and significantly decreased growth compared with Ad-CTR treated tumors. Delayed resumption of tumor growth was associated with loss of Cx26 expression. Combination therapy with Ad-Cx26 and cisplatin resulted in decreased growth in vitro compared with either agent alone. We explored combination therapy with Ad-Cx26 and cisplatin to improve the in vivo efficacy of Cx26 gene therapy. In vivo therapy with Ad-Cx26 and cisplatin resulted in long-term suppression of tumor growth. These data demonstrate that combining gene and chemotherapy can result in dramatic synergy in vivo.

  16. Modulation of connexin expression and gap junction communication in astrocytes by the gram-positive bacterium S. aureus.

    Science.gov (United States)

    Esen, Nilufer; Shuffield, Debbie; Syed, Mohsin M D; Kielian, Tammy

    2007-01-01

    Gap junctions establish direct intercellular conduits between adjacent cells and are formed by the hexameric organization of protein subunits called connexins (Cx). It is unknown whether the proinflammatory milieu that ensues during CNS infection with S. aureus, one of the main etiologic agents of brain abscess in humans, is capable of eliciting regional changes in astrocyte homocellular gap junction communication (GJC) and, by extension, influencing neuron homeostasis at sites distant from the primary focus of infection. Here we investigated the effects of S. aureus and its cell wall product peptidoglycan (PGN) on Cx43, Cx30, and Cx26 expression, the main Cx isoforms found in astrocytes. Both bacterial stimuli led to a time-dependent decrease in Cx43 and Cx30 expression; however, Cx26 levels were elevated following bacterial exposure. Functional examination of dye coupling, as revealed by single-cell microinjections of Lucifer yellow, demonstrated that both S. aureus and PGN inhibited astrocyte GJC. Inhibition of protein synthesis with cyclohexamide (CHX) revealed that S. aureus directly modulates, in part, Cx43 and Cx30 expression, whereas Cx26 levels appear to be regulated by a factor(s) that requires de novo protein production; however, CHX did not alter the inhibitory effects of S. aureus on astrocyte GJC. The p38 MAPK inhibitor SB202190 was capable of partially restoring the S. aureus-mediated decrease in astrocyte GJC to that of unstimulated cells, suggesting the involvement of p38 MAPK-dependent pathway(s). These findings could have important implications for limiting the long-term detrimental effects of abscess formation in the brain which may include seizures and cognitive deficits. Copyright 2006 Wiley-Liss, Inc.

  17. Mixed Electrical-Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36.

    Science.gov (United States)

    Hamzei-Sichani, Farid; Davidson, Kimberly G V; Yasumura, Thomas; Janssen, William G M; Wearne, Susan L; Hof, Patrick R; Traub, Roger D; Gutiérrez, Rafael; Ottersen, Ole P; Rash, John E

    2012-01-01

    Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for "mixed" (electrical/chemical) synapses on both principal cells and interneurons in adult rat hippocampus. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF) terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr), apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into weakly fixed CA3pyr was detected in MF axons that contacted four injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold labeling revealed diverse sizes and morphologies of connexin-36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons), three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin-section images of a CA3pyr, but none were found by immunogold labeling, suggesting the rarity of GABAergic mixed synapses. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal neurons.

  18. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  19. Early disruption of glial communication via connexin gap junction in multiple sclerosis, Baló's disease and neuromyelitis optica.

    Science.gov (United States)

    Masaki, Katsuhisa

    2015-10-01

    Multiple sclerosis (MS), neuromyelitis optica (NMO), and Baló's disease (BD) are inflammatory demyelinating diseases of the CNS. We previously reported anti-aquaporin-4 (anti-AQP4) antibody-dependent AQP4 loss occurs in some NMO patients, while antibody-independent AQP4 astrocytopathy can occur in heterogeneous demyelinating conditions, including MS, NMO and BD. To investigate the relationship between astrocytopathy and demyelination, we focused on connexins (Cxs), which form gap junctions (GJs) between astrocytes and oligodendrocytes and maintain homeostasis in the CNS. We evaluated expression of astrocytic Cx43/Cx30 and oligodendrocytic Cx47/Cx32 in autopsied materials from MS, NMO and BD patients. Astrocytic Cx43 and oligodendrocytic Cx32/Cx47 expressions were significantly diminished in both demyelinated and preserved myelin layers in all BD samples. In the leading edge of BD lesions, Cx43 and AQP4 loss preceded Cx32/Cx47 loss. Half of the NMO and MS samples showed preferential loss of astrocytic Cx43 expression in actively demyelinating and chronic active lesions, where heterotypic Cx43/Cx47 astrocyte-oligodendrocyte GJs were lost. Cases with Cx43 loss were significantly associated with rapid disease progression, regardless of the disease phenotype. Pathologically, Cx43 loss was frequently accompanied by distal oligodendrogliopathy. Our findings suggest that Cx43 astrocytopathy can occur in MS, BD and NMO. Moreover, astrocytic Cx43 loss may be associated with disease aggressiveness and distal oligodendrogliopathy in demyelinating conditions. Early disruption of glial communications via GJs may cause loss of glia syncytium, thereby inducing oligodendroglial damage and myelin loss. Inhibition of Cx hemichannels and restoration of GJs may be a possible therapeutic target for demyelinating disorders. © 2015 Japanese Society of Neuropathology.

  20. A mechanism of gap junction docking revealed by functional rescue of a human-disease-linked connexin mutant.

    Science.gov (United States)

    Gong, Xiang-Qun; Nakagawa, So; Tsukihara, Tomitake; Bai, Donglin

    2013-07-15

    Gap junctions are unique intercellular channels formed by the proper docking of two hemichannels from adjacent cells. Each hemichannel is a hexamer of connexins (Cxs) - the gap junction subunits, which are encoded by 21 homologous genes in the human genome. The docking of two hemichannels to form a functional gap junction channel is only possible between compatible Cxs, but the underlying molecular mechanism is unclear. On the basis of the crystal structure of the Cx26 gap junction, we developed homology models for homotypic and heterotypic channels from Cx32 and/or Cx26; these models predict six hydrogen bonds at the docking interface of each pair of the second extracellular domain (E2). A Cx32 mutation N175H and a human-disease-linked mutant N175D were predicted to lose the majority of the hydrogen bonds at the E2 docking-interface; experimentally both mutations failed to form morphological and functional gap junctions. To restore the lost hydrogen bonds, two complementary Cx26 mutants - K168V and K168A were designed to pair with the Cx32 mutants. When docked with Cx26K168V or K168A, the Cx32N175H mutant was successfully rescued morphologically and functionally in forming gap junction channels, but not Cx32 mutant N175Y. By testing more homotypic and heterotypic Cx32 and/or Cx26 mutant combinations, it is revealed that a minimum of four hydrogen bonds at each E2-docking interface are required for proper docking and functional channel formation between Cx26 and Cx32 hemichannels. Interestingly, the disease-linked Cx32N175D could be rescued by Cx26D179N, which restored five hydrogen bonds at the E2-docking interface. Our findings not only provide a mechanism for gap junction docking for Cx26 and Cx32 hemichannels, but also a potential therapeutic strategy for gap junction channelopathies.

  1. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Directory of Open Access Journals (Sweden)

    Vania A Figueroa

    2014-09-01

    Full Text Available Gap junction channels (GJCs and hemichannels (HCs are composed of protein subunits termed connexins (Cxs and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive nonsyndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the ATP release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects.

  2. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress.

    Science.gov (United States)

    Le, Hoa T; Sin, Wun Chey; Lozinsky, Shannon; Bechberger, John; Vega, José Luis; Guo, Xu Qiu; Sáez, Juan C; Naus, Christian C

    2014-01-17

    Oxidative stress induced by reactive oxygen species (ROS) is associated with various neurological disorders including aging, neurodegenerative diseases, as well as traumatic and ischemic insults. Astrocytes have an important role in the anti-oxidative defense in the brain. The gap junction protein connexin43 (Cx43) forms intercellular channels as well as hemichannels in astrocytes. In the present study, we investigated the contribution of Cx43 to astrocytic death induced by the ROS hydrogen peroxide (H2O2) and the mechanism by which Cx43 exerts its effects. Lack of Cx43 expression or blockage of Cx43 channels resulted in increased ROS-induced astrocytic death, supporting a cell protective effect of functional Cx43 channels. H2O2 transiently increased hemichannel activity, but reduced gap junction intercellular communication (GJIC). GJIC in wild-type astrocytes recovered after 7 h, but was absent in Cx43 knock-out astrocytes. Blockage of Cx43 hemichannels incompletely inhibited H2O2-induced hemichannel activity, indicating the presence of other hemichannel proteins. Panx1, which is predicted to be a major hemichannel contributor in astrocytes, did not appear to have any cell protective effect from H2O2 insults. Our data suggest that GJIC is important for Cx43-mediated ROS resistance. In contrast to hypoxia/reoxygenation, H2O2 treatment decreased the ratio of the hypophosphorylated isoform to total Cx43 level. Cx43 has been reported to promote astrocytic death induced by hypoxia/reoxygenation. We therefore speculate the increase in Cx43 dephosphorylation may account for the facilitation of astrocytic death. Our findings suggest that the role of Cx43 in response to cellular stress is dependent on the activation of signaling pathways leading to alteration of Cx43 phosphorylation states.

  3. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with purinergic Ca2+ signaling in HeLa cells

    Science.gov (United States)

    Figueroa, Vania A.; Retamal, Mauricio A.; Cea, Luis A.; Salas, José D.; Vargas, Aníbal A.; Verdugo, Christian A.; Jara, Oscar; Martínez, Agustín D.; Sáez, Juan C.

    2014-01-01

    Gap junction channels (GJCs) and hemichannels (HCs) are composed of protein subunits termed connexins (Cxs) and are permeable to ions and small molecules. In most organs, GJCs communicate the cytoplasm of adjacent cells, while HCs communicate the intra and extracellular compartments. In this way, both channel types coordinate physiological responses of cell communities. Cx mutations explain several genetic diseases, including about 50% of autosomal recessive non-syndromic hearing loss. However, the possible involvement of Cxs in the etiology of acquired hearing loss remains virtually unknown. Factors that induce post-lingual hearing loss are diverse, exposure to gentamicin an aminoglycoside antibiotic, being the most common. Gentamicin has been proposed to block GJCs, but its effect on HCs remains unknown. In this work, the effect of gentamicin on the functional state of HCs was studied and its effect on GJCs was reevaluated in HeLa cells stably transfected with Cxs. We focused on Cx26 because it is the main Cx expressed in the cochlea of mammals where it participates in purinergic signaling pathways. We found that gentamicin applied extracellularly reduces the activity of HCs, while dye transfer across GJCs was not affected. HCs were also blocked by streptomycin, another aminoglycoside antibiotic. Gentamicin also reduced the adenosine triphosphate release and the HC-dependent oscillations of cytosolic free-Ca2+ signal. Moreover, gentamicin drastically reduced the Cx26 HC-mediated membrane currents in Xenopus laevis oocytes. Therefore, the extracellular gentamicin-induced inhibition of Cx HCs may adversely affect autocrine and paracrine signaling, including the purinergic one, which might partially explain its ototoxic effects. PMID:25237294

  4. Astrocytes induce proliferation of oligodendrocyte progenitor cells via connexin 47-mediated activation of the ERK/Id4 pathway.

    Science.gov (United States)

    Liu, Zhaoyu; Xu, Dan; Wang, Shang; Chen, Yi; Li, Zhen; Gao, Xiaoyan; Jiang, Lu; Tang, Yong; Peng, Yan

    2017-04-03

    The proliferative ability of oligodendrocyte progenitor cells (OPCs) varied markedly under different culture conditions. Astrocytes (ASTs) have been verified to play a major role in regulating the proliferation of OPCs through direct contact. However, the mechanisms have not been fully clarified. To investigate the effect and mechanism under AST and OPC co-culture conditions, we analyzed all connexins comprehensively in OPCs under OPC mono-culture, AST-secreted cell factor co-culture and AST-OPC direct-contact co-culture, and found that significantly differentially expressed Cx47 was the most significant. To assess whether Cx47 plays a role in proliferation, Cx47 siRNA were conducted. The result indicates that the cell cycle of OPCs was changed, and the cell proliferation was markedly inhibited. Kyoto Encyclopedia of Genes and Genomes (KEGG) predictive analysis suggested that Cx47 regulate cell cycle and proliferation by Ca(2+) activation of ERK1/2. To verify the prediction, flow cytometry, confocal microscopy, 5-ethynyl-2'-deoxyuridine (EdU), polymerase chain reaction (RT-PCR) and western blot were used. The results show that interference of Cx47 led to decreased Ca(2+) concentrations, lower p-ERK 1/2 levels, reduced transcription factor inhibitor of DNA binding 4 (Id4) expression, arrested cell cycle and reduced OPCs proliferative ability. Additionally, blocking ERK1/2 signaling caused decreased Id4 expression, arrested cell cycle in G1 phase, and reduced OPCs proliferative ability. In conclusion, ASTs can cause Ca(2+) signaling activation, ERK1/2 phosphorylation, and Id4 expression stimulation in OPCs, inducing proliferation of these cells, mainly through Cx47.

  5. Special Education in Yugoslavia.

    Science.gov (United States)

    Hrnjica, Sulejman

    1990-01-01

    This article describes Yugoslavia's education system, health and welfare services for children with disabilities, the nature and organization of special education services, the integration of disabled children in ordinary schools, models for training special educators, and problems. (DB)

  6. The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice.

    Science.gov (United States)

    Lübkemeier, Indra; Andrié, René; Lickfett, Lars; Bosen, Felicitas; Stöckigt, Florian; Dobrowolski, Radoslaw; Draffehn, Astrid M; Fregeac, Julien; Schultze, Joachim L; Bukauskas, Feliksas F; Schrickel, Jan Wilko; Willecke, Klaus

    2013-12-01

    Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and a major cause of stroke. In the mammalian heart the gap junction proteins connexin40 (Cx40) and connexin43 (Cx43) are strongly expressed in the atrial myocardium mediating effective propagation of electrical impulses. Different heterozygous mutations in the coding region for Cx40 were identified in patients with AF. We have generated transgenic Cx40A96S mice harboring one of these mutations, the loss-of-function Cx40A96S mutation, as a model for atrial fibrillation. Cx40A96S mice were characterized by immunochemical and electrophysiological analyses. Significantly reduced atrial conduction velocities and strongly prolonged episodes of atrial fibrillation were found after induction in Cx40A96S mice. Analyses of the gating properties of Cx40A96S channels in cultured HeLa cells also revealed significantly lower junctional conductance and enhanced sensitivity voltage gating of Cx40A96S in comparison to Cx40 wild-type gap junctions. This is caused by reduced open probabilities of Cx40A96S gap junction channels, while single channel conductance remained the same. Similar to the corresponding patient, heterozygous Cx40A96S mice revealed normal expression levels and localization of the Cx40 protein. We conclude that heterozygous Cx40A96S mice exhibit prolonged episodes of induced atrial fibrillation and severely reduced atrial conduction velocities similar to the corresponding human patient.

  7. Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels

    Science.gov (United States)

    Orellana, Juan A.; Hernández, Diego E.; Ezan, Pascal; Velarde, Victoria; Bennett, Michael V. L.; Giaume, Christian; Sáez, Juan C.

    2009-01-01

    Brain ischemia causes more extensive injury in hyperglycemic than normoglycemic subjects, and the increased damage is to astroglia as well as neurons. In the present work, we found that in cortical astrocytes from rat or mouse, reoxygenation after hypoxia in a medium mimicking interstitial fluid during ischemia increases hemichannel activity and decreases cell-cell communication via gap junctions as indicated by dye uptake and dye coupling, respectively. These effects were potentiated by high glucose during the hypoxia in a concentration-dependent manner (and by zero glucose) and were not observed in connexin 43−/− astrocytes. The responses were transient or persistent after short and long periods of hypoxia, respectively. The persistent responses were associated with a progressive reduction in cell viability that was prevented by La3+ or peptides that block connexin 43 (Cx43) hemichannels or by inhibition of p38 MAP kinase prior to hypoxia-reoxygenation but not by treatments that block pannexin hemichannels. Block of Cx43 hemichannels did not affect the reduction in gap junction mediated dye coupling observed during reoxygenation. Cx43 hemichannels may be a novel therapeutic target to reduce cell death following stroke, particularly in hyperglycemic conditions. PMID:19705457

  8. Effects of all-trans-retinoic acid on the expression and tyrosine phosphorylation of gap junction connexin 43 in HeLa cell line and its significance

    Institute of Scientific and Technical Information of China (English)

    CHEN Bi-liang; MA Xiang-dong; XIN Xiao-yan; WANG De-tang; WANG Chun-mei

    2001-01-01

    Objective: To investigate the signal transduction mechanism of gap junctional genes connexin43 in human cervical carcinogenesis. Methods: Human cervical carcinoma cell line HeLa was cultured and treated by all-trans-retinoic acid (ATRA). Flow cytometer (FCM) was employed to detect expression of Cx43 protein in HeLa cells. Fluo-3 AM loading and laser scanning confocal microscope (LSCM) were used to measure the concentrations of intracellular calcium ([Ca2+]i) in HeLa cells. Phosphorylation on tyrosine of connexin43 protein was examined by immunoblot. Results: The positive rate of Cx43 protein increased from 1.9% in untreated HeLa cells to 26.3% in RA-treated HeLa cells as shown by FCM. [Ca2+]i was 35.73 nmol/L in untreated HeLa cells which was increased to 58.16 nmol/L in ATRA-treated cells.Immunoblot showed that ATRA-treated HeLa cells had phosphorylation on tyrosine in Cx43 protein whereas untreated cells had not. Conclusions: Carcinogenesis of human cervical carcinoma is related with the abnormal expression of cx43gene and disorder of signal transduction manifested as the decrease of [Ca2+]i and post-translation phosphorylation on tyrosine of Cx43 protein. The anti-tumor effect of ATRA in HeLa cells might be due to the up-regulation of cx43 gene and its signal transduction pathway.

  9. Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles in a concentration-dependent manner. The impact of DMBA on connexin (CX) proteins that mediate communication between follicular cell types along with pro-apoptotic factors p53 and Bax were investigated. Postnatal day (PND) 4 Fisher 344 rat ovaries were cultured for 4 days in vehicle medium (1% DMSO) followed by a single exposure to vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and cultured for 4 or 8 days. RT-PCR was performed to quantify Cx37, Cx43, p53 and Bax mRNA level. Western blotting and immunofluorescence staining were performed to determine CX37 or CX43 level and/or localization. Cx37 mRNA and protein increased (P < 0.05) at 4 days of 12.5 nM DMBA exposure. Relative to vehicle control-treated ovaries, mRNA encoding Cx43 decreased (P < 0.05) but CX43 protein increased (P < 0.05) at 4 days by both DMBA exposures. mRNA expression of pro-apoptotic p53 was decreased (P < 0.05) but no changes in Bax expression were observed after 4 days of DMBA exposures. In contrast, after 8 days, DMBA decreased Cx37 and Cx43 mRNA and protein but increased both p53 and Bax mRNA levels. CX43 protein was located between granulosa cells, while CX37 was located at the oocyte cell surface of all follicle stages. These findings support that DMBA exposure impacts ovarian Cx37 and Cx43 mRNA and protein prior to both observed changes in pro-apoptotic p53 and Bax and follicle loss. It is possible that such interference in follicular cell communication is detrimental to follicle viability, and may play a role in DMBA-induced follicular atresia. - Highlights: • DMBA increases Cx37 and Cx43 expression prior to follicle loss. • During follicle loss both Cx37 and Cx43 expressions are reduced. • CX43 protein is absent in follicle remnants lacking an oocyte.

  10. Mouse Hepatitis Virus Infection Remodels Connexin43-Mediated Gap Junction Intercellular Communication In Vitro and In Vivo.

    Science.gov (United States)

    Basu, Rahul; Banerjee, Kaveri; Bose, Abhishek; Das Sarma, Jayasri

    2015-12-16

    Gap junctions (GJs) form intercellular channels which directly connect the cytoplasm between neighboring cells to facilitate the transfer of ions and small molecules. GJs play a major role in the pathogenesis of infection-associated inflammation. Mutations of gap junction proteins, connexins (Cxs), cause dysmyelination and leukoencephalopathy. In multiple sclerosis (MS) patients and its animal model experimental autoimmune encephalitis (EAE), Cx43 was shown to be modulated in the central nervous system (CNS). The mechanism behind Cx43 alteration and its role in MS remains unexplored. Mouse hepatitis virus (MHV) infection-induced demyelination is one of the best-studied experimental animal models for MS. Our studies demonstrated that MHV infection downregulated Cx43 expression at protein and mRNA levels in vitro in primary astrocytes obtained from neonatal mouse brains. After infection, a significant amount of Cx43 was retained in endoplasmic reticulum/endoplasmic reticulum Golgi intermediate complex (ER/ERGIC) and GJ plaque formation was impaired at the cell surface, as evidenced by a reduction of the Triton X-100 insoluble fraction of Cx43. Altered trafficking and impairment of GJ plaque formation may cause the loss of functional channel formation in MHV-infected primary astrocytes, as demonstrated by a reduced number of dye-coupled cells after a scrape-loading Lucifer yellow dye transfer assay. Upon MHV infection, a significant downregulation of Cx43 was observed in the virus-infected mouse brain. This study demonstrates that astrocytic Cx43 expression and function can be modulated due to virus stress and can be an appropriate model to understand the basis of cellular mechanisms involved in the alteration of gap junction intercellular communication (GJIC) in CNS neuroinflammation. We found that MHV infection leads to the downregulation of Cx43 in vivo in the CNS. In addition, results show that MHV infection impairs Cx43 expression in addition to gap junction

  11. Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland.

    Science.gov (United States)

    Mroue, Rana; Inman, Jamie; Mott, Joni; Budunova, Irina; Bissell, Mina J

    2015-03-01

    Intercellular communication is essential for glandular functions and tissue homeostasis. Gap junctions couple cells homotypically and heterotypically and co-ordinate reciprocal responses between the different cell types. Connexins (Cxs) are the main mammalian gap junction proteins, and the distribution of some Cx subtypes in the heterotypic gap junctions is not symmetrical; in the murine mammary gland, Cx26, Cx30 and Cx32 are expressed only in the luminal epithelial cells and Cx43 is expressed only in myoepithelial cells. Expression of all four Cxs peaks during late pregnancy and throughout lactation suggesting essential roles for these proteins in the functional secretory activity of the gland. Transgenic (Tg) mice over-expressing Cx26 driven by keratin 5 promoter had an unexpected mammary phenotype: the mothers were unable to feed their pups to weaning age leading to litter starvation and demise in early to mid-lactation. The mammary gland of K5-Cx26 female mice developed normally and produced normal levels of milk protein, suggesting a defect in delivery rather than milk production. Because the mammary gland of K5-Cx26 mothers contained excessive milk, we hypothesized that the defect may be in an inability to eject the milk. Using ex vivo three-dimensional mammary organoid cultures, we showed that tissues isolated from wild-type FVB females contracted upon treatment with oxytocin, whereas, organoids from Tg mice failed to do so. Unexpectedly, we found that ectopic expression of Cx26 in myoepithelial cells altered the expression of endogenous Cx43 resulting in impaired gap junction communication, demonstrated by defective dye coupling in mammary epithelial cells of Tg mice. Inhibition of gap junction communication or knock-down of Cx43 in organoids from wild-type mice impaired contraction in response to oxytocin, recapitulating the observations from the mammary glands of Tg mice. We conclude that Cx26 acts as a trans-dominant negative for Cx43 function in

  12. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes.

    Directory of Open Access Journals (Sweden)

    José Carlos Valle-Casuso

    Full Text Available In previous work we showed that endothelin-1 (ET-1 increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43, the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.

  13. Modulation of connexin 36 expression in basal ganglia and motor cortex in rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    CHEN Xian-wen

    2013-08-01

    Full Text Available Objective To observe the expression of connexin 36 (Cx36 in the striatum and motor cortex of rat model of Parkinson's disease (PD in order to explore whether gap junction is involved in the pathogenesis of the cortex-basal ganglia circuit disturbances in PD. Methods Hemi-parkinsonian rat model was produced by stereotaxically injecting 6-hydroxydopamine (6-OHDA to right medial forebrain bundle (MFB. Immunohistochemical staining and Western blotting analysis were used to observe the expression changes of Cx36 in the striatum and motor cortex. Double immunofluorescence labeling was used to analyze the expression of Cx36 in enkephalin (ENK positive medium spiny neurons and Parvalbumin (PV positive interneurons in the striatum. Results Immunohistochemical staining showed Cx36 expression was elevated in the right striatum as well as right motor cortex of PD group compared with normal control group (t = 2.474, P = 0.048; t = 2.614, P = 0.040. Double immunofluorescence labeling staining revealed that ENK-positive striatum neurons were elevated (t = 3.987, P = 0.007 and Cx36 expression was increased in ENK-positive striatum neurons (t = 3.271, P = 0.017 in PD group compared with normal control group. While PV-positive interneurons decreased (t = 2.777, P = 0.032 and Cx36 expression was down-regulated in PV-positive interneurons (t = 2.624, P = 0.039 compared with the normal control group. Western blotting indicated that the 6-OHDA lesion induced a significant upregulation of Cx36 to (119.31 ± 8.92% in comparison with the normal group [(104.05 ± 3.82%] in right striatum (t = 3.516, P = 0.024. In right motor cortex Cx36 increased to (138.20 ± 17.88% , induced a significant upregulation of Cx36 in the right motor cortex in comparison with the normal control group [(105.27 ± 2.82%; t = 4.068, P = 0.015]. Conclusion The Cx36 expression was generally increased in the striatum and motor cortex of PD rat model, with upregulation in ENK-positive striatum

  14. PBX1 attributes as a determinant of connexin 32 downregulation in Helicobacter pylori-related gastric carcinogenesis.

    Science.gov (United States)

    Liu, Xiao-Ming; Xu, Can-Xia; Zhang, Lin-Fang; Huang, Li-Hua; Hu, Ting-Zi; Li, Rong; Xia, Xiu-Juan; Xu, Lin-Yong; Luo, Ling; Jiang, Xiao-Xia; Li, Ming

    2017-08-07

    To clarify the mechanisms of connexin 32 (Cx32) downregulation by potential transcriptional factors (TFs) in Helicobacter pylori (H. pylori)-associated gastric carcinogenesis. Approximately 25 specimens at each developmental stage of gastric carcinogenesis [non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric carcinoma (GC)] with H. pylori infection [H. pylori (+)] and 25 normal gastric mucosa (NGM) without H. pylori infection [H. pylori (-)] were collected. After transcriptional factor array analysis, the Cx32 and PBX1 expression levels of H. pylori-infected tissues from the developmental stages of GC and NGM with no H. pylori infection were measured by real-time polymerase chain reaction (RT-PCR) and Western blot analysis. Regarding H. pylori-infected animal models, the Cx32 and PBX1 mRNA expression levels and correlation between the gastric mucosa from 10 Mongolian gerbils with long-term H. pylori colonization and 10 controls were analyzed. PBX1 and Cx32 mRNA and protein levels were further studied under the H. pylori-infected condition as well as PBX1 overexpression and knockdown conditions in vitro. Incremental PBX1 was first detected by TF microarray in H. pylori-related gastric carcinogenesis. The identical trend of PBX1 and Cx32 expression was confirmed in the developmental stages of H. pylori-related clinical specimens. The negative correlation of PBX1 and Cx32 was confirmed in H. pylori-infected Mongolian gerbils. Furthermore, decreased PBX1 expression was detected in the normal gastric epithelial cell line GES-1 with H. pylori infection. Enforced overexpression or RNAi-mediated knockdown of PBX1 contributed to the diminished or restored Cx32 expression in GES-1 and the gastric carcinoma cell line BGC823, respectively. Finally, dual-luciferase reporter assay in HEK293T cells showed that Cx32 promoter activity decreased by 30% after PBX1 vector co-transfection, indicating PBX1 as a transcriptional downregulator

  15. On Biophysical Properties and Sensitivity to Gap Junction Blockers of Connexin 39 Hemichannels Expressed in HeLa Cells

    Science.gov (United States)

    Vargas, Anibal A.; Cisterna, Bruno A.; Saavedra-Leiva, Fujiko; Urrutia, Carolina; Cea, Luis A.; Vielma, Alex H.; Gutierrez-Maldonado, Sebastian E.; Martin, Alberto J. M.; Pareja-Barrueto, Claudia; Escalona, Yerko; Schmachtenberg, Oliver; Lagos, Carlos F.; Perez-Acle, Tomas; Sáez, Juan C.

    2017-01-01

    Although connexins (Cxs) are broadly expressed by cells of mammalian organisms, Cx39 has a very restricted pattern of expression and the biophysical properties of Cx39-based channels [hemichannels (HCs) and gap junction channels (GJCs)] remain largely unknown. Here, we used HeLa cells transfected with Cx39 (HeLa-Cx39 cells) in which intercellular electrical coupling was not detected, indicating the absence of GJCs. However, functional HCs were found on the surface of cells exposed to conditions known to increase the open probability of other Cx HCs (e.g., extracellular divalent cationic-free solution (DCFS), extracellular alkaline pH, mechanical stimulus and depolarization to positive membrane potentials). Cx39 HCs were blocked by some traditional Cx HC blockers, but not by others or a pannexin1 channel blocker. HeLa-Cx39 cells showed similar resting membrane potentials (RMPs) to those of parental cells, and exposure to DCFS reduced RMPs in Cx39 transfectants, but not in parental cells. Under these conditions, unitary events of ~75 pS were frequent in HeLa-Cx39 cells and absent in parental cells. Real-time cellular uptake experiments of dyes with different physicochemical features, as well as the application of a machine-learning approach revealed that Cx39 HCs are preferentially permeable to molecules characterized by six categories of descriptors, namely: (1) electronegativity, (2) ionization potential, (3) polarizability, (4) size and geometry, (5) topological flexibility and (6) valence. However, Cx39 HCs opened by mechanical stimulation or alkaline pH were impermeable to Ca2+. Molecular modeling of Cx39-based channels suggest that a constriction present at the intracellular portion of the para helix region co-localizes with an electronegative patch, imposing an energetic and steric barrier, which in the case of GJCs may hinder channel function. Results reported here demonstrate that Cx39 form HCs and add to our understanding of the functional roles of Cx39 HCs

  16. Expression of the gap junction gene connexin43 (Cx43) in preimplantation bovine embryos derived in vitro or in vivo.

    Science.gov (United States)

    Wrenzycki, C; Herrmann, D; Carnwath, J W; Niemann, H

    1996-09-01

    In this study we have examined the presence of mRNA encoding connexin 43 (Cx43) in bovine embryos derived in vivo and in vitro. Cumulus-oocyte complexes, immature and matured oocytes liberated from cumulus cells, zygotes, 2-4-cell and 8-16-cell embryos, morulae, blastocysts and hatched blastocysts were produced in vitro from ovaries obtained from an abattoir using TCM 199 supplemented with hormones and 10% oestrous cow serum for maturation. Cumulus-oocyte complexes matured for 24 h were exposed to bull spermatozoa for 19 h and then cultured in TCM 199 supplemented with 10% oestrous cow serum to the desired developmental stage. Morulae and blastocysts derived in vivo were collected from superovulated donor cows. Total RNA was extracted from pools of 60-200 bovine oocytes or embryos using a modified phenol-chloroform extraction method and analysed by reverse transcriptase polymerase chain reaction. Before reverse transcription, aliquots of DNase-digested embryonic RNA were tested by polymerase chain reaction using bovine-specific primers to control for residual genomic DNA contamination. DNA-free, total RNA was reverse transcribed after preincubation with the Cx43 specific 3'primer. The resultant cDNA was amplified by polymerase chain reaction using Cx43 specific primers that define a 516 bp fragment of Cx43. The reverse transcriptase polymerase chain reaction product was verified by restriction enzyme analysis with Alu I and sequencing. Assays were repeated at least twice for each developmental stage and provided identical results between replicates. Cx43 transcripts were detected in bovine morulae and blastocysts grown in vivo. In contrast, whereas the early in vitro stages from cumulus-oocyte complexes to morulae expressed Cx43, blastocysts and hatched blastocysts did not have detectable concentrations of mRNA from this gene. Restriction enzyme cutting revealed three fragments of the predicted size (139, 177, 200 bp). The amplified product showed 100% identity

  17. 连续性血液净化对肺泡上皮细胞Connexin43的影响%Effects of continuous blood purification on Connexin43 in human alveolar epi-thelial cells

    Institute of Scientific and Technical Information of China (English)

    杨溢; 甘华; 李正荣; 文以君; 王喜超

    2009-01-01

    AIM: To investigate the effect of continuous blood purification (CBP) on the expression of Connexin43 (Cx43) in human alveolar epithelial cells (AECs) induced by the serum of patients with severe acute pancreatitis (SAP) accompanied with acute lung injury (ALI). METHODS: Fasting serum of healthy volunteers and serum of patients with SAP and ALI at pre-CBP, 6-hour-CBP and 20-hour-CBP were collected, Immunofluores-cence staining and RT-PCR were used to detect the expression of Cx43 and Cx43 mRNA in AECs separately cultured by the serum from different groups for 48 h in vitro. ELISA was used to detect the level of serum TNF-α in each group. RESULTS: Cx43 posi-tive staining in each patient group was significantly less than that in healthy control group. With the increase of the treatment time, the positive staining gradually increased. The relative expression of Cx43 mRNA in pre-CBP group(0.08±0.01) was significantly leas than that in healthy control group (0.57±0.02) (P<0.01). With the increase of the treatment time, the expression gradually increased in 6-hoar-CBP group(0.23±0.02) and 20-hour-CBP group(0.36±0.02) (P<0.01). The level of serum TNF-α in pre-CBP group (59.43±4.50) ng/L was significantly higher than that in healthy control group(16.06±3.68) ng/L(P<0.01). With the increase of the treatment time, the level gradually decreased in 6-hour-CBP group (41.16±3.49) ng/L and 20-hour-CBP group (34.65±3.22) ng/L (P<0.01). The expression of Cx43 mRNA was negatively correlated with the level of TNF-α. CONCLUSION: The decrease of Cx43 in AECs plays a part in the process of SAP patients with secondary ALI. CBP up-regulates the expression of Cx43 by removing TNF-α and thus protects the respiratory function.%目的:研究连续性血液净化(CBP)对重症急性胰腺炎(SAP)伴急性肺损伤(ALI)患者血清诱导的人肺泡上皮细胞(AECs)间隙连接蛋白Connexin43(Cx43)表达的影响.方法:采集健康志愿者清晨空腹及SAP伴ALI患者CBP

  18. Overview of Specialized Courts

    OpenAIRE

    2009-01-01

    This Overview has two primary purposes. First, it provides judicial system officials with the arguments in favor of and in opposition to the creation of specialized courts. Second, it offers recommendations for consideration by judicial system officials when they are deliberating whether to establish specialized courts. This Overview also provides a review of types of specialized courts that have been established in court systems in some countries in Europe and the United States. This review ...

  19. 2007 special equipment safety

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The General Administration of Quality Supervision, Inspection and Quarantine of P.R.China (AQSIQ) issued a notice on May 28, 2007,requiring various locations to rectify their procedures for checking special equipment and hoisting machines for hidden problems. To further clarify and implement responsibility in the safety management of special equipment in enterprises, inspection responsibilities and test organizations related to technical assurance are to be established. Further, quality inspection departments will be supervised by law in order to improve special equipment safety.

  20. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste.......In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...

  1. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  2. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.

    Directory of Open Access Journals (Sweden)

    Cinzia Ambrosi

    Full Text Available Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26 that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P. Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels

  3. Study on connexin gene and protein expression and cellular distribution in relation to real-time proliferation of porcine granulosa cells.

    Science.gov (United States)

    Kempisty, B; Ziółkowska, A; Ciesiółka, S; Piotrowska, H; Antosik, P; Bukowska, D; Nowicki, M; Brüssow, K P; Zabel, M

    2014-01-01

    Granulosa cells (GCs) play an important role during follicle growth and development in preovulatory stage. Moreover, the proteins such as connexins are responsible for formation of protein channel between follicular-cumulus cells and oocyte. This study was aimed to investigate the role of connexin expression in porcine GCs in relation to their cellular distribution and real-time cell proliferation. In the present study, porcine GCs were isolated from the follicles of puberal gilts and then cultured in a real-time cellular analyzer (RTCA) system for 168 h. The expression levels of connexins (Cxs) Cx36, Cx37, Cx40 and Cx43 mRNA were measured by RQ-PCR analysis, and differences in the expression and distribution of Cx30, Cx31, Cx37, Cx43 and Cx45 proteins were analyzed by confocal microscopic visualization. We found higher level of Cx36, Cx37, and Cx43 mRNA expression in GCs at recovery (at 0 h of in vitro culture, IVC) compared to all analyzed time periods of IVC (24, 48, 72, 96, 120, 144 and 168 h; Pproteins were higher before (0 h) compared to after 168 h of IVC. The expression of Cx30 and Cx43, however, did not vary between the groups. In all, the proteins were distributed throughout the cell membrane rather than in the cytoplasm both before and after IVC. After 24 h of IVC, we observed a significant increase in the proliferation of GCs (log phase). We found differences in the proliferation index between 72-96 and 96- 140 h within the same population of GCs. In conclusion, the decrease in the expression of Cx mRNAs and proteins following IVC could be associated with a breakdown in gap-junction connections (GJCs), and leads to the decreased of their activity, which may be a reason of non-functional existence of connexon in follicular granulosa cells. These data indicated that the differentiation and proliferation of GCs and lutein cells are regulated by distinct mechanisms in pigs.

  4. The Big Special Stage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The 2007 Special Olympics World Summer Games have brought a change of attitude toward the mentally challenged No one would imagine that there could be any connection between the 1.65-meter skinny Wu Fangmiao and basketball. Actually,the short boy with cere- bral palsy is a basketball ace at the Special Olympics in Shanghai.

  5. New Special Finsler Spaces

    CERN Document Server

    Youssef, Nabil L

    2016-01-01

    The pullback approach to global Finsler geometry is adopted. Some new types of special Finsler spaces are introduced and investigated, namely, Ricci, generalized Ricci, projectively recurrent and m-projectively recurrent Finsler spaces. The properties of these special Finsler spaces are studied and the relations between them are singled out.

  6. Special Education in Jordan

    Science.gov (United States)

    Abu-Hamour, Bashir; Al-Hmouz, Hanan

    2014-01-01

    The purpose of this article is to provide a brief background about special education system in Jordan and particularly describes the present types of programmes and legislation provided within the country to students with special needs, as well as integration movement. Jordan has historically provided a limited number of educational opportunities…

  7. Postmodernism in Special Education.

    Science.gov (United States)

    Gerber, Michael M.

    1994-01-01

    This paper urges special educators to be wary of borrowing fashionable rhetoric of postmodernism to justify constructivism in the reform of instruction and curriculum without disentangling accompanying constructs and values. There are higher stakes for special education, particularly in national curriculum and testing reform, that accompany…

  8. Keeping Special Forces Special: Regional Proficiency in Special Forces

    Science.gov (United States)

    2011-12-01

    than one month IOT allow Soldiers to listen to the language, conduct travel/recon etc. —Special Forces Soldier294 Immersion is the third method by...incentive lower. Conversely, a person with a lower interest in regional proficiency would rate the incentive higher. Variable Mean Std Dev Regional...Variable Mean Std Dev Regional Proficiency Interest 6.29 .99 Command Environment Value 4.41 1.62 PDSI 2.54 1.60 Promotion 2.92 1.62 153

  9. Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease. Phenotypic variability and central nervous system involvement.

    Science.gov (United States)

    Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios

    2014-06-15

    Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.

  10. Special issue photovoltaic; Numero special photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-05-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  11. Linoleic Acid Permeabilizes Gastric Epithelial Cells by Increasing Connexin43 Levels in the Cell Membrane Via a GPR40- and Akt-Dependent Mechanism

    Science.gov (United States)

    Puebla, Carlos; Cisterna, Bruno A.; Salas, Daniela P.; Delgado-López, Fernando; Lampe, Paul D.; Sáez, Juan C.

    2016-01-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintain the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt. PMID:26869446

  12. Premature osteoblast clustering by enamel matrix proteins induces osteoblast differentiation through up-regulation of connexin 43 and N-cadherin.

    Directory of Open Access Journals (Sweden)

    Richard J Miron

    Full Text Available In recent years, enamel matrix derivative (EMD has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43 and N-cadherin (N-cad as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo.

  13. Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans.

    Directory of Open Access Journals (Sweden)

    Oliver Tress

    2011-07-01

    Full Text Available Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47, which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1, a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue.

  14. Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism.

    Science.gov (United States)

    Puebla, Carlos; Cisterna, Bruno A; Salas, Daniela P; Delgado-López, Fernando; Lampe, Paul D; Sáez, Juan C

    2016-05-01

    Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.

  15. An atrial-fibrillation-linked connexin40 mutant is retained in the endoplasmic reticulum and impairs the function of atrial gap-junction channels

    Directory of Open Access Journals (Sweden)

    Yiguo Sun

    2014-05-01

    Full Text Available Connexin40 (Cx40-containing gap-junction channels are expressed in the atrial myocardium and provide a low-resistance passage for rapid impulse propagation. A germline mutation in the GJA5 gene, which encodes Cx40, resulting in a truncated Cx40 (Q49X was identified in a large Chinese family with lone (idiopathic atrial fibrillation (AF. This mutation co-segregated with seven AF probands in an autosomal-dominant way over generations. To test the hypothesis that this Cx40 mutant affects the distribution and function of atrial gap junctions, we studied the Q49X mutant in gap-junction-deficient HeLa and N2A cells. The Q49X mutant, unlike wild-type Cx40, was typically localized in the cytoplasm and failed to form gap-junction plaques at cell-cell interfaces. When the Q49X mutant was co-expressed with Cx40 or Cx43, the mutant substantially reduced the gap-junction plaque formation of Cx40 and Cx43. Electrophysiological studies revealed no electrical coupling of cell pairs expressing the mutant alone and a significant decrease in the coupling conductance when the mutant was co-expressed with Cx40 or Cx43. Further colocalization experiments with the organelle residential proteins indicate that Q49X was retained in the endoplasmic reticulum. These findings provide evidence that the Q49X mutant is capable of impairing gap-junction distribution and function of key atrial connexins, which might play a role in the predisposition to and onset of AF.

  16. Mechanism of Regulatory Effect of MicroRNA-206 on Connexin 43 in Distant Metastasis of Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Zi-Jing Lin; Jia Ming; Lu Yang; Jun-Ze Du; Ning Wang; Hao-Jun Luo

    2016-01-01

    Background: MicroRNA-206 (miR-206) and connexin 43 (Cx43) are related with the distant metastasis of breast cancer.It remains unclear whether the regulatory effect of miR-206 on Cx43 is involved in metastasis of breast cancer.Methods: Using quantitative real-time polymerase chain reaction and Western blot, the expressions of miR-206 and Cx43 were determined in breast cancer tissues, hepatic and pulmonary metastasis (PM), and cell lines (MCF-10A, MCF-7, and MDA-MB-231).MCF-7/MDA-M-231 cells were transfected with lentivirus-shRNA vectors to enhance/inhibit miR-206, and then Cx43 expression was observed.Cell counting kit-8 assay and Transwell method were used to detect their changes in proliferation, migration, and invasion activity.The mutant plasmids of Cx43-3' untranslated region (3'UTR) at position 478-484 and position 1609-1615 were constructed.Luciferase reporter assay was performed to observe the effects of miR-206 on luciferase expression of different mutant plasmids and to confirm the potential binding sites of Cx43.Results: Cx43 protein expression in hepatic and PM was significantly higher than that in the primary tumor, while no significant difference was showed in messenger RNA (mRNA) expression.MiR-206 mRNA expression in hepatic and PM was significantly lower than that in the primary tumor.Cx43 mRNA and protein levels, as well as cell proliferation, migration, and invasion capabilities, were all significantly improved in MDA-MB-231 cells after reducing miR-206 expression but decreased in MCF-7 cells after elevating miR-206 expression, which demonstrated a significantly negative correlation between miR-206 and Cx43 expression (P =0.03).MiR-206 can drastically decrease Cx43 expression of MCF-7 cells but exerts no effects on Cx43 expression in 293 cells transfected with the Cx43 coding region but the lack of Cx43-3'UTR, suggesting that Cx43-3'UTR may be the key in Cx43 regulated by miR-206.Luciferase expression showed that the inhibition efficiency was

  17. Special theory of relativity

    CERN Document Server

    Kilmister, Clive William

    1970-01-01

    Special Theory of Relativity provides a discussion of the special theory of relativity. Special relativity is not, like other scientific theories, a statement about the matter that forms the physical world, but has the form of a condition that the explicit physical theories must satisfy. It is thus a form of description, playing to some extent the role of the grammar of physics, prescribing which combinations of theoretical statements are admissible as descriptions of the physical world. Thus, to describe it, one needs also to describe those specific theories and to say how much they are limit

  18. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  19. Trout Stream Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer shows Minnesota trout streams that have a special regulation as described in the 2006 Minnesota Fishing Regulations. Road crossings were determined using...

  20. History of Special English

    Institute of Scientific and Technical Information of China (English)

    贾庆文

    2004-01-01

    On October 19, 1959, the first Special English program was broadcast on the Voice of America. It was an experiment. The goal was to communicate by radio in clear and simple English with people whose native lan-

  1. FWS Special Designation Areas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the Special Designations that have been placed upon the lands and waters administered by the U.S. Fish and Wildlife Service (USFWS) in North...

  2. FWS Special Designation Areas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the Special Designations that have been placed upon the lands and waters administered by the U.S. Fish and Wildlife Service (USFWS) in North...

  3. Research Article Special Issue

    African Journals Online (AJOL)

    2016-07-16

    Jul 16, 2016 ... foster talent, to improve public and specialized awareness, and to determine the strategies ... employees' performance but also their personality. ..... to be innovative, and motivating employees to produce knowledge. ... Spritzer, G, Psychological empowerment in the workplace: Dimensions, Measurement.

  4. Specialized Investment Services

    Science.gov (United States)

    Burgess, Robert S.

    1970-01-01

    The informational needs of the investing public should be met by the public library. Suggestions for specialized investment information services with broad appeal, technical charts, and advisory services which public libraries might consider purchasing. (JS)

  5. Sport Specialization, Part I

    Science.gov (United States)

    Myer, Gregory D.; Jayanthi, Neeru; Difiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.

    2015-01-01

    Context: There is increased growth in sports participation across the globe. Sports specialization patterns, which include year-round training, participation on multiple teams of the same sport, and focused participation in a single sport at a young age, are at high levels. The need for this type of early specialized training in young athletes is currently under debate. Evidence Acquisition: Nonsystematic review. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Sports specialization is defined as year-round training (greater than 8 months per year), choosing a single main sport, and/or quitting all other sports to focus on 1 sport. Specialized training in young athletes has risks of injury and burnout, while the degree of specialization is positively correlated with increased serious overuse injury risk. Risk factors for injury in young athletes who specialize in a single sport include year-round single-sport training, participation in more competition, decreased age-appropriate play, and involvement in individual sports that require the early development of technical skills. Adults involved in instruction of youth sports may also put young athletes at risk for injury by encouraging increased intensity in organized practices and competition rather than self-directed unstructured free play. Strength-of-Recommendation Taxonomy (SORT): C. PMID:26502420

  6. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  7. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 (-/-) Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal Kv Channels.

    Science.gov (United States)

    Chaban, Y H Gerald; Chen, Ye; Hertz, Elna; Hertz, Leif

    2017-02-18

    The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K(+) concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca(2+). The resulting deficiency in Ca(2+) entry has many consequences, including lack of K(+)-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K(+) channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K(+) released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na(+),K(+)-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.

  8. PRES 2012 special section

    DEFF Research Database (Denmark)

    Klemeš, Jiří Jaromír; Varbanov, Petar Sabev; Wang, Qiuwang;

    2013-01-01

    This Special Section provides introduction to the 15th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES 2012). In this editorial introduction, the editors are highlighting the individual articles included in this issue and discussing the m...... the main points. The main areas of this issue can be summarised as: Process Integration for Energy Saving, Integrating Renewable Energy Sources and Energy Optimisation issues.......This Special Section provides introduction to the 15th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES 2012). In this editorial introduction, the editors are highlighting the individual articles included in this issue and discussing...

  9. SPECIAL ISSUE EDITORIAL

    Institute of Scientific and Technical Information of China (English)

    Amy J.C.TRAPPEY; Fataneh Taghaboni DUTTA; Kai-Ying CHEN

    2010-01-01

    @@ This special issue of Journal of Systems Science and Systems Engineering recognizes the contributions of authors and participants in the 16th ISPE International Conference on Concurrent Engineering (CE2009), 2009 ASME International Manufacturing - Science and Engineering Conference (MSEC) and 2009 IEEE International Conference on Systems, Man and Cybernetics. Among related papers presented in these conferences, the guest editors have selectively identified and invited the authors to re-write and extend their works to full-length papers for re-submission to the special issue.

  10. Specialization, Outsourcing and Wages

    DEFF Research Database (Denmark)

    Munch, Jakob Roland; Rose Skaksen, Jan

    2005-01-01

    This paper studies the impact of outsourcing on individual wages. In contrast to the standard approach in the literature, we focus on domestic outsourcing as well as foreign outsourcing. By using a simple theoretical model, we argue that, if outsourcing is associated with specialization gains...... arising from an increase in the extent of the market for intermediate goods, domestic outsourcing tends to increase wages for both unskilled and skilled labor. We use a panel data set of workers in Danish manufacturing industries to show that domestic and foreign outsurcing affect wages as predicted...... by the theory.Keywords: Outsourcing, Comparative advantage, Specialization, Wages.JEL Classification: F16, J31, C23....

  11. Procurement with specialized firms

    DEFF Research Database (Denmark)

    Boone, Jan; Schottmüller, Christoph

    2016-01-01

    This paper analyzes optimal procurement mechanisms when firms are specialized. The procurement agency has incomplete information concerning the firms’ cost functions and values high quality as well as low price. Lower type firms are cheaper (more expensive) than higher type firms when providing low...... (high) quality. With specialized firms, distortion is limited and a mass of types earns zero profits. The optimal mechanism can be inefficient: types providing lower second best welfare win against types providing higher second best welfare. As standard scoring rule auctions cannot always implement...

  12. Special Needs: A Philosophical Analysis

    Science.gov (United States)

    Vehmas, Simo

    2010-01-01

    This paper attempts to illuminate a central concept and idea in special education discourse, namely, "special needs". It analyses philosophically what needs are and on what grounds they are defined as "special" or "exceptional". It also discusses whether sorting needs into ordinary and special is discriminatory. It is argued that individualistic…

  13. Creating Special Events

    Science.gov (United States)

    deLisle, Lee

    2009-01-01

    "Creating Special Events" is organized as a systematic approach to festivals and events for students who seek a career in event management. This book looks at the evolution and history of festivals and events and proceeds to the nuts and bolts of event management. The book presents event management as the means of planning, organizing, directing,…

  14. Special Milk Program

    Science.gov (United States)

    US Department of Agriculture, 2009

    2009-01-01

    The Special Milk Program provides milk to children in schools, child care institutions and eligible camps that do not participate in other Federal child nutrition meal service programs. The program reimburses schools and institutions for the milk they serve. In 2008, 4,676 schools and residential child care institutions participated, along with…

  15. Telecommunications in Special Education.

    Science.gov (United States)

    Education Turnkey Systems, Inc., Falls Church, VA.

    One of four reports designed to assess the current state of new technologies, the document reviews the present and future 5-year status of telecommunication technologies in regular and special education. Briefly described are technological and economic aspects of videotex/teletext, subscription services, satellite broadcasting, cable television,…

  16. Research Article Special Issue

    African Journals Online (AJOL)

    2016-07-16

    Jul 16, 2016 ... In contrast to human resources or physical capital, social capital refers ... interaction plays the main role and bears the most responsibility. ..... Based on Special Value of Customer's Satisfaction: Case Study: the Industry of Iran Mobile. Phone Services in Boushehr, Scientific and Research Quarterly Journal ...

  17. Research Article Special Issue

    African Journals Online (AJOL)

    2016-05-15

    May 15, 2016 ... because he didn't have a good memory thereof, but his compulsory ... of specific musical terms; attention to the Quran and Ahl al-Bayt and special devotion ... language, regardless of its hobby effects, has some other benefits, ...

  18. Mediation in Special Education.

    Science.gov (United States)

    Fielding, Pamela S.

    1990-01-01

    This article presents a perspective for viewing mediation in resolving conflicts between parents and school personnel about the education of handicapped students. The appropriateness of mediation as well as its limitations are discussed, as are current uses of mediation in special education and legal problems and issues arising from its use.…

  19. Acceleration and Special Relativity

    CERN Document Server

    Yahalomi, E M

    2000-01-01

    The integration of acceleration over time before reaching the uniformvelocity turns out to be the source of all the special relativity effects. Itexplains physical phenomena like clocks comparisons. The equations forspace-time, mass and energy are presented. This phenomenon complements theexplanation for the twins paradox. A Universal reference frame is obtained.

  20. Research Article Special Issue

    African Journals Online (AJOL)

    2016-05-15

    May 15, 2016 ... customer's satisfaction and its impact on c ... ultimately, 135 questionnaires were analyze ... customer loyalty and customer satisfaction. ... One of the advantages of the high special value of brand is the .... n and buy goods and services ..... R, 2000, Service Quality Perspectives and Satisfaction in Private.

  1. The Special Purpose Vehicle

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    2013-01-01

    The purpose of this article is to investigate whether the situation where two companies appear as originators or sponsors behind a Special Purpose Vehicle (SPV) can be described as a merger, although on micro scale. Are the underlying grounds behind the creation of an SPV much different than thos...

  2. Handbook of Special Education

    Science.gov (United States)

    Kauffman, James M., Ed.; Hallahan, Daniel P., Ed.

    2011-01-01

    Special education is now an established part of public education in the United States--by law and by custom. However, it is still widely misunderstood and continues to be dogged by controversies related to such things as categorization, grouping, assessment, placement, funding, instruction, and a variety of legal issues. The purpose of this…

  3. Sports Specialization, Part II

    Science.gov (United States)

    Myer, Gregory D.; Jayanthi, Neeru; DiFiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.

    2016-01-01

    Context: Many coaches, parents, and children believe that the best way to develop elite athletes is for them to participate in only 1 sport from an early age and to play it year-round. However, emerging evidence to the contrary indicates that efforts to specialize in 1 sport may reduce opportunities for all children to participate in a diverse year-round sports season and can lead to lost development of lifetime sports skills. Early sports specialization may also reduce motor skill development and ongoing participation in games and sports as a lifestyle choice. The purpose of this review is to employ the current literature to provide evidence-based alternative strategies that may help to optimize opportunities for all aspiring young athletes to maximize their health, fitness, and sports performance. Evidence Acquisition: Nonsystematic review with critical appraisal of existing literature. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Based on the current evidence, parents and educators should help provide opportunities for free unstructured play to improve motor skill development and youth should be encouraged to participate in a variety of sports during their growing years to influence the development of diverse motor skills. For those children who do choose to specialize in a single sport, periods of intense training and specialized sport activities should be closely monitored for indicators of burnout, overuse injury, or potential decrements in performance due to overtraining. Last, the evidence indicates that all youth should be involved in periodized strength and conditioning (eg, integrative neuromuscular training) to help them prepare for the demands of competitive sport participation, and youth who specialize in a single sport should plan periods of isolated and focused integrative neuromuscular training to enhance diverse motor skill development and reduce injury risk factors. Strength of Recommendation Taxonomy (SORT): B. PMID

  4. Evidence of specialized tissue in human interatrial septum: histological, immunohistochemical and ultrastructural findings.

    Directory of Open Access Journals (Sweden)

    Lubov B Mitrofanova

    Full Text Available There is a paucity of information on structural organization of muscular bundles in the interatrial septum (IAS. The aim was to investigate histologic and ultrastructural organization of muscular bundles in human IAS, including fossa ovalis (FO and flap valve.Macroscopic and light microscopy evaluations of IAS were performed from postmortem studies of 40 patients. Twenty three IAS specimens underwent serial transverse sectioning, and 17--longitudinal sectioning. The transverse sections from 10 patients were immunolabeled for HCN4, Caveolin3 and Connexin43. IAS specimens from 6 other patients underwent electron microscopy.In all IAS specimens sections the FO, its rims and the flap valve had muscle fibers consisting of working cardiac myocytes. Besides the typical cardiomyocytes there were unusual cells: tortuous and horseshoe-shaped intertangled myocytes, small and large rounded myocytes with pale cytoplasm. The cells were aggregated in a definite structure in 38 (95% cases, which was surrounded by fibro-fatty tissue. The height of the structure on transverse sections positively correlated with age (P = 0.03 and AF history (P = 0.045. Immunohistochemistry showed positive staining of the cells for HCN4 and Caveolin3. Electron microscopy identified cells with characteristics similar to electrical conduction cells.Specialized conduction cells in human IAS have been identified, specifically in the FO and its flap valve. The cells are aggregated in a structure, which is surrounded by fibrous and fatty tissue. Further investigations are warranted to explore electrophysiological characteristics of this structure.

  5. Theory of Special Relativity

    CERN Document Server

    Zakamska, Nadia L

    2015-01-01

    Special Relativity is taught to physics sophomores at Johns Hopkins University in a series of eight lectures. Lecture 1 covers the principle of relativity and the derivation of the Lorentz transform. Lecture 2 covers length contraction and time dilation. Lecture 3 covers Minkowski diagrams, simultaneous events and causally connected events, as well as velocity transforms. Lecture 4 covers energy and momentum of particles and introduces 4-vectors. Lecture 5 covers energy and momentum of photons and collision problems. Lecture 6 covers Doppler effect and aberration. Lecture 7 covers relativistic dynamics. Optional Lecture 8 covers field transforms. The main purpose of these notes is to introduce 4-vectors and the matrix notation and to demonstrate their use in solving standard problems in Special Relativity. The pre-requisites for the class are calculus-based Classical Mechanics and Electricity & Magnetism, and Linear Algebra is highly recommended.

  6. Very special relativity.

    Science.gov (United States)

    Cohen, Andrew G; Glashow, Sheldon L

    2006-07-14

    By very special relativity (VSR) we mean descriptions of nature whose space-time symmetries are certain proper subgroups of the Poincaré group. These subgroups contain space-time translations together with at least a two-parameter subgroup of the Lorentz group isomorphic to that generated by K(x) + J(y) and K(y)- J(x). We find that VSR implies special relativity (SR) in the context of local quantum field theory or of conservation. Absent both of these added hypotheses, VSR provides a simulacrum of SR for which most of the consequences of Lorentz invariance remain wholly or essentially intact, and for which many sensitive searches for departures from Lorentz invariance must fail. Several feasible experiments are discussed for which Lorentz-violating effects in VSR may be detectable.

  7. Increased Connexin 43 Expression Improves the Migratory and Proliferative Ability of H9c2 Cells by Wnt-3a Overexpression

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu LIU; Wen LIU; Ling YANG; Beili XIA; Jinyan LI; Ji ZUO; Xiaotian LI

    2007-01-01

    The change of connexin 43 (Cx43) expression and the biological behaviors of Cx43 in rat heart cell line H9c2, expressing Wnt-3a (wingless-type MMTV integration site family, member 3A), were evaluated in the present study. Plasmid pcDNA3.1/Wnt-3a was constructed and transferred into H9c2 cells.The cell model Wnt-3a+-H9c2 steadily expressing Wnt-3a was obtained. Compared with H9c2 and pcDNA3.1-H9c2 cells, the expression of Cx43 in Wnt-3a+-H9c2 cells was clearly increased, the proliferation of Wnt-3a+-H9c2 cells was significantly changed, and cell migration abilities were also improved (P<0.05).In comparison with H9c2 and pcDNA3.1-H9c2 cells, the G2 phase of the cell cycle increased by 11% in Wnt-3a+-H9c2 cells. Thus, Wnt-3a overexpression is associated with an increase in Cx43 expression and altered migratory and proliferative activity in H9c2 cells. Cx43 might be one of the downstream target genes regulated by Wnt-3a.

  8. Transforming growth factor-β stimulates human ovarian cancer cell migration by up-regulating connexin43 expression via Smad2/3 signaling.

    Science.gov (United States)

    Qiu, Xin; Cheng, Jung-Chien; Zhao, Jianfang; Chang, Hsun-Ming; Leung, Peter C K

    2015-10-01

    Reduced connexin43 (Cx43) expression is frequently detected in different types of human cancer. Cx43 has been shown to regulate cancer cell migration in a cell-type dependent manner. In both primary and recurrent human ovarian cancer, overexpression of TGF-β ligand and its receptors have been detected. TGF-β can regulate Cx43 expression in other cell types and stimulate human ovarian cancer cell migration. However, whether Cx43 can be regulated by TGF-β and is involved in TGF-β-stimulated cell migration in human ovarian cancer cells remain unknown. In this study, we demonstrate that TGF-β up-regulates Cx43 in two human ovarian cancer cell lines, SKOV3 and OVCAR4. The stimulatory effect of TGF-β on Cx43 expression is blocked by inhibition of TGF-β receptor. Treatment with TGF-β activates Smad2 and Smad3 signaling pathways in both ovarian cancer cell lines. In addition, siRNA-mediated knockdown of Smad2 or Smd3 abolishes TGF-β-induced up-regulation of Cx43 expression. Moreover, knockdown of Cx43 attenuates TGF-β-stimulated cell migration. This study demonstrates an important role for Cx43 in mediating the effects of TGF-β on human ovarian cancer cell migration.

  9. Radix astragali inhibits the down-regulation of connexin 26 in the stria vascularis of the guinea pig cochlea after acoustic trauma.

    Science.gov (United States)

    Xiong, Min; Zhu, Yazhen; Lai, Huangwen; Fu, Xiaoyan; Deng, Wenting; Yang, Chuanhong; He, Qinglian; Zheng, Guangjuan

    2015-09-01

    Connexin 26 (cx26) plays an important role in the intercellular signaling and is related to K(+) metabolism in stria vascularis (SV). Reactive oxygen species (ROS) are negative regulators of cx26, reducing intercellular coupling in cochlea. ROS plays an important role in acoustic trauma. Radix astragali is a natural antioxidant that decreases impulse noise-induced hearing loss through its ability to inhibit ROS. The purpose of this study was to investigate if radix astragali has the potential to reduce the change of cx26 in SV from impulse noise. Guinea pigs in the experimental group were administered radix astragali intraperitoneally. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) at click and tone bursts of 8, 16 and 32 kHz, 24 h before and 72 h after exposure to impulse noise. 4-Hydroxynonenal, cx26 and KCNQ1 were determined immunohistochemically in SV. SV was analyzed by transmission electron microscopy. Radix astragali significantly reduced the ABR deficits and the SV damage, and decreased the shifts of the expression of cx26 and KCNQ1 in the SV. These results suggest that the beneficial effect of radix astragali on impulse noise-induced hearing loss may be also due to its ability to reduce the change of cx26 in SV.

  10. Transition from Preinvasive Carcinoma In Situ to Seminoma Is Accompanied by a Reduction of Connexin 43 Expression in Sertoli Cells and Germ Cells

    Directory of Open Access Journals (Sweden)

    Ralph Brehm

    2006-06-01

    Full Text Available Carcinoma in situ (CIS represents the preinvasive stage of human germ cell tumors, but the mechanism leading to pubertal proliferation and invasive malignancy remains unknown. Among testicular gap functional proteins, connexin 43 (Cx43 represents the predominant Cx, and, previously, an inverse correlation between synthesis of Cx43 protein and progression of tumor development was detected. In the present study, using cDNA microarray analysis, in situ hybridization, semi quantitative reverse transcription-polymerase chain reaction (RT-PCR from tissue homogenates, RT-PCR from microdissected tubules with normal spermatogenesis and CIS, and seminoma cells from invasive seminoma, we asked whether reduction of Cx43 protein is accompanied by a change of Cx43 transcripts. We detected a significant downregulation of Cx43 at mRNA level in Sertoli and germ cells starting in seminiferous tubules infiltrated with CIS and resulting in a complete loss in seminoma cells. It was demonstrated that downregulation of Cx43 expression in neoplastic human testis takes place at the transcriptional level and starts in CIS. This reduction of Cx43 expression further suggests that early intratubular derangement in Cx43 gene expression and disruption of intercellular communication between Sertoli cells and/or Sertoli and preinvasive tumor cells may play a role in the progression phase of human seminoma development.

  11. Transition from Preinvasive Carcinoma In Situ to Seminoma Is Accompanied by a Reduction of Connexin 43 Expression in Sertoli Cells and Germ Cells1

    Science.gov (United States)

    Brehm, Ralph; Rüttinger, Christina; Fischer, Petra; Gashaw, Isabella; Winterhager, Elke; Kliesch, Sabine; Bohle, Rainer M; Steger, Klaus; Bergmann, Martin

    2006-01-01

    Abstract Carcinoma in situ (CIS) represents the preinvasive stage of human germ cell tumors, but the mechanism leading to pubertal proliferation and invasive malignancy remains unknown. Among testicular gap junctional proteins, connexin 43 (Cx43) represents the predominant Cx, and, previously, an inverse correlation between synthesis of Cx43 protein and progression of tumor development was detected. In the present study, using cDNA microarray analysis, in situ hybridization, semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) from tissue homogenates, RT-PCR from microdissected tubules with normal spermatogenesis and CIS, and seminoma cells from invasive seminoma, we asked whether reduction of Cx43 protein is accompanied by a change of Cx43 transcripts. We detected a significant downregulation of Cx43 at mRNA level in Sertoli and germ cells starting in seminiferous tubules infiltrated with CIS and resulting in a complete loss in seminoma cells. It was demonstrated that downregulation of Cx43 expression in neoplastic human testis takes place at the transcriptional level and starts in CIS. This reduction of Cx43 expression further suggests that early intratubular derangement in Cx43 gene expression and disruption of intercellular communication between Sertoli cells and/or Sertoli and preinvasive tumor cells may play a role in the progression phase of human seminoma development. PMID:16820096

  12. 17β estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like MLO-Y4 cells.

    KAUST Repository

    Ren, Jian

    2013-04-01

    Connexin 43 (Cx43) plays an essential role in osteocyte mechanotransduction. Although estrogen involves in the adaptive responses of bone cells to mechanical loadings, its effects on osteocytic Cx43-based gap junction intercellular communication (GJIC) remain obscure. We found that 17β estradiol (E2) up-regulated Cx43, and enhanced GJIC in osteocyte-like MLO-Y4 cells in fluorescence recovery after photobleaching (FRAP) assay. Combination of E2 pre-treatment and oscillating fluid flow (OFF) further enhanced Cx43 expression and mitogen-activated protein kinase (MAPK) phosphorylation, comparing to E2 or OFF treatment alone. Both blocking of classical estrogen receptors (ERα/β) by fulvestrant and ERα knockdown by small interfering RNA inhibited E2-mediated Cx43 increase, while a GPR30-specific agonist G-1 failed to promote Cx43 expression. Our results suggest that the presence of E2 enhanced Cx43-based GJIC mainly via ERα/β pathway, and sensitized osteocytes to mechanical loading. © 2012 Elsevier Inc. All rights reserved.

  13. 3,5,4′-tri-O-acetylresveratrol Ameliorates Seawater Exposure-Induced Lung Injury by Upregulating Connexin 43 Expression in Lung

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    2013-01-01

    Full Text Available The aim of the present study was to examine the effects of 3,5,4′-tri-O-acetylresveratrol on connexin 43 (Cx43 in acute lung injury (ALI in rats induced by tracheal instillation of artificial seawater. Different doses (50, 150, and 450 mg/kg of 3,5,4′-tri-O-acetylresveratrol were administered orally for 7 days before modeling. Four hours after seawater inhalation, histological changes, contents of TNF-α, IL-1β and IL-10, and the expression of Cx43 in lungs were detected. Besides, the gap junction communication in A549 cells and human umbilical vein endothelial cells (HUVECs challenged by seawater was also evaluated. Histological changes, increased contents of inflammatory factors, upregulation in gene level, and deregulation in protein level of Cx43 in lungs stimulated by seawater were observed. On the other hand, pretreatment with 3,5,4′-tri-O-acetylresveratrol significantly inhibited infiltration of inflammation, development of pulmonary edema, and contents of inflammatory mediators in lungs. Above all, 3,5,4′-tri-O-acetylresveratrol upregulated the expression of Cx43 in both gene and protein levels, and its intermediate metabolite, resveratrol, also enhanced the gap junction communication in the two cell lines. The results of the present study suggested that administration of 3,5,4′-tri-O-acetylresveratrol may be beneficial for treatment of inflammatorycellsin lung.

  14. Connexin-Based Therapeutics and Tissue Engineering Approaches to the Amelioration of Chronic Pancreatitis and Type I Diabetes: Construction and Characterization of a Novel Prevascularized Bioartificial Pancreas

    Directory of Open Access Journals (Sweden)

    J. Matthew Rhett

    2016-01-01

    Full Text Available Total pancreatectomy and islet autotransplantation is a cutting-edge technique to treat chronic pancreatitis and postoperative diabetes. A major obstacle has been low islet cell survival due largely to the innate inflammatory response. Connexin43 (Cx43 channels play a key role in early inflammation and have proven to be viable therapeutic targets. Even if cell death due to early inflammation is avoided, insufficient vascularization is a primary obstacle to maintaining the viability of implanted cells. We have invented technologies targeting the inflammatory response and poor vascularization: a Cx43 mimetic peptide that inhibits inflammation and a novel prevascularized tissue engineered construct. We combined these technologies with isolated islets to create a prevascularized bioartificial pancreas that is resistant to the innate inflammatory response. Immunoconfocal microscopy showed that constructs containing islets express insulin and possess a vascular network similar to constructs without islets. Glucose stimulated islet-containing constructs displayed reduced insulin secretion compared to islets alone. However, labeling for insulin post-glucose stimulation revealed that the constructs expressed abundant levels of insulin. This discrepancy was found to be due to the expression of insulin degrading enzyme. These results suggest that the prevascularized bioartificial pancreas is potentially a tool for improving long-term islet cell survival in vivo.

  15. Effects of ferulic acid on oxidative stress, heat shock protein 70, connexin 43, and monoamines in the hippocampus of pentylenetetrazole-kindled rats.

    Science.gov (United States)

    Hussein, Abdelaziz M; Abbas, Khaled M; Abulseoud, Osama A; El-Hussainy, El-Hussainy M A

    2017-06-01

    The present study investigated the effects of ferulic acid (FA) on pentylenetetrazole (PTZ)-induced seizures, oxidative stress markers (malondialdehyde (MDA), catalase, and reduced glutathione (GSH)), connexin (Cx) 43, heat shock protein 70 (Hsp 70), and monoamines (serotonin (5-HT) and norepinephrine (NE)) levels in a rat model of PTZ-induced kindling. Sixty Sprague Dawley rats were divided into 5 equal groups: (a) normal group; (b) FA group: normal rats received FA at a dose of 40 mg/kg daily; (c) PTZ group: normal rats received PTZ at a dose of 50 mg/kg i.p. on alternate days for 15 days; (d) FA-before group: treatment was the same as for the PTZ group, except rats received FA; and (e) FA-after group: rats received FA from sixth dose of PTZ. PTZ caused a significant increase in MDA, Cx43, and Hsp70 along with a significant decrease in GSH, 5-HT, and NE levels and CAT activity in the hippocampus (p < 0.05). Pre- and post-treatment with FA caused significant improvement in behavioral parameters, MDA, CAT, GSH, 5-HT, NE, Cx43 expression, and Hsp70 expression in the hippocampal region (p < 0.05). We conclude that FA has neuroprotective effects in PTZ-induced epilepsy, which might be due to attenuation of oxidative stress and Cx43 expression and upregulation of neuroprotective Hsp70 and neurotransmitters (5-HT and NE).

  16. Late cardioprotection of exercise preconditioning against exhaustive exercise-induced myocardial injury by up-regulatation of connexin 43 expression in rat hearts

    Institute of Scientific and Technical Information of China (English)

    Kai Wang; Bai-Chao Xu; Hai-Yun Duan; Hua Zhang; Fu-Song Hu

    2015-01-01

    Objective:To investigate the expression of myocardium connexin 43 (Cx43) in late exercise preconditioning (LEP) cardioprotection.Methods: Eight-week-old adult male Sprague Dawley rats were randomly assigned into four groups (n=8). Myocardial injury was judged in accordance with serum levels of cTnⅠ and NT-proBNP as well as hematoxylin basicfuchsin picric acid staining of myocardium.Cx43mRNA was detected byin situhybridization and qualified by real-time fluorescence quantitative PCR. Cx43 protein was localized by immunohistochemistry and its expression level was determined by western blotting.Results:The LEP obviously attenuated the myocardial ischemia/hypoxia injury caused by exhaustive exercise. There was no significant difference of Cx43mRNA level between the four groups. Cx43 protein level was decreased significantly in group EE (P<0.05). However, LEP produced a significant increase in Cx43 protein level (P<0.05), and the decreased Cx43 protein level in exhaustive exercise was significantly up-regulated by LEP (P<0.05).Conclusions:LEP protects rat heart against exhaustive exercise-induced myocardial injury by up-regulating the expression of myocardial Cx43.

  17. Protection of a ceramide synthase 2 null mouse from drug-induced liver injury: role of gap junction dysfunction and connexin 32 mislocalization.

    Science.gov (United States)

    Park, Woo-Jae; Park, Joo-Won; Erez-Roman, Racheli; Kogot-Levin, Aviram; Bame, Jessica R; Tirosh, Boaz; Saada, Ann; Merrill, Alfred H; Pewzner-Jung, Yael; Futerman, Anthony H

    2013-10-25

    Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury.

  18. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis.

    Science.gov (United States)

    Khan, Zahidul; Yaiw, Koon-Chu; Wilhelmi, Vanessa; Lam, Hoyin; Rahbar, Afsar; Stragliotto, Giuseppe; Söderberg-Nauclér, Cecilia

    2014-01-01

    A lack of gap junctional intercellular communication (GJIC) is common in cancer. Many oncogenic viruses have been shown to downregulate the junctional protein connexin 43 (Cx43) and reduce GJIC. Human cytomegalovirus (HCMV) is a ubiquitous, species-specific betaherpesvirus that establishes life-long latency after primary infection. It encodes two viral gene products, immediate early (IE) proteins IE1 and IE2, which are crucial in viral replication and pathogenesis of many diseases. Emerging evidence demonstrates that HCMV DNA and proteins are highly prevalent in glioblastoma multiforme (GBM) and in other tumors, but HCMV's role in tumorigenesis remains obscure. In the present study, we examined the effects of HCMV infection on Cx43 expression and GJIC as well as the viral mechanism mediating the effects in human GBM cells and tissue samples. We found that HCMV downregulated Cx43 protein, resulting in disruption of functional GJIC as assayed by fluorescent dye transfer assay. We show that both HCMV-IE72 and IE86 mediate downregulation of Cx43 by silencing RNA targeting either IE72 or IE86 coupled with ganciclovir. This finding was further validated by transfection with expression vectors encoding IE72 or IE86, and we show that viral-mediated Cx43 depletion involved proteasomal degradation. Importantly, we also observed that the Cx43 protein levels and IE staining correlated inversely in 10 human GBM tissue specimens. Thus, HCMV regulates Cx43 expression and GJIC, which may contribute to gliomagenesis.

  19. [Audiologic and molecular screening for hearing loss by 35delG mutation in connexin 26 gene and congenital cytomegalovirus infection].

    Science.gov (United States)

    Streitenberger, Edgardo Raúl; Suárez, Ariel Ignacio; Masciovecchio, María Verónica; Laurnagaray, Diana; Alda, Ernesto

    2011-12-01

    Hearing loss may be attributed to genetic and environmental factors. Mutations in the gene of the CX26 protein (connexin 26), are responsible for 30-80% of all cases of non-syndromic profound hearing loss. The 35delG is the most frequent variant in the caucasian population. As to environmental factors, the cytomegalovirus (CMV) is the main cause of congenital infection. To determine the prevalence of congenital CMV infection and the frequency of the 35delG mutation in newborns. To identify those at risk of suffering hearing loss in order to do an audiologic follow-up of detected cases. One thousand and twenty samples of dry blood spots corresponding to newborns were tested using conventional and real time PCR. Audiologic screening was performed to all newborns before hospital discharge. Fifteen out of 1020 subjects were heterozygous for the mutation. No homozygous patients were found. Six out of the samples tested positive for CMV (confirmed by a urine sample), out of which only one newborn was symptomatic. The auditory brainstem response was recorded in all these children. Hearing loss was found in three children with congenital CMV infection and two with 35delG mutation. The frecuency of 35delG mutation carriers in our population was 1.3% and the CMV congenital infection prevalence was 0.6%. Audiologic monitoring of these two populations allowed detection of hearing loss of late onset.

  20. Upregulation of Connexin 43 Expression Via C-Jun N-Terminal Kinase Signaling in Prion Disease.

    Science.gov (United States)

    Lee, Geon-Hwi; Jang, Byungki; Choi, Hong-Seok; Kim, Hee-Jun; Park, Jeong-Ho; Jeon, Yong-Chul; Carp, Richard I; Kim, Yong-Sun; Choi, Eun-Kyoung

    2016-01-01

    Prion infection leads to neuronal cell death, glial cell activation, and the accumulation of misfolded prion proteins. However, the altered cellular environments in animals with prion diseases are poorly understood. In the central nervous system, cells connect the cytoplasm of adjacent cells via connexin (Cx)-assembled gap junction channels to allow the direct exchange of small molecules, including ions, neurotransmitters, and signaling molecules, which regulate the activities of the connected cells. Here, we investigate the role of Cx43 in the pathogenesis of prion diseases. Upregulated Cx43 expression, which was dependent on c-Jun N-Terminal Kinase (JNK)/c-Jun signaling cascades, was found in prion-affected brain tissues and hippocampal neuronal cells. Scrapie infection-induced Cx43 formed aggregated plaques within the cytoplasmic compartments at the cell-cell interfaces. The ethidium bromide (EtBr) uptake assay and scrape-loading dye transfer assay demonstrated that increased Cx43 has functional consequences for the activity of Cx43 hemichannels. Interestingly, blockade of PrPSc accumulation reduced Cx43 expression through the inhibition of JNK signaling, indicating that PrPSc accumulation may be directly involved in JNK activation-mediated Cx43 upregulation. Overall, our findings describe a scrapie infection-mediated novel regulatory signaling pathway of Cx43 expression and may suggest a role for Cx43 in the pathogenesis of prion diseases.

  1. A Cell-Based High-Throughput Assay for Gap Junction Communication Suitable for Assessing Connexin 43-Ezrin Interaction Disruptors Using IncuCyte ZOOM.

    Science.gov (United States)

    Dukic, Aleksandra R; McClymont, David W; Taskén, Kjetil

    2017-01-01

    Connexin 43 (Cx43), the predominant gap junction (GJ) protein, directly interacts with the A-kinase-anchoring protein (AKAP) Ezrin in human cytotrophoblasts and a rat liver epithelial cells (IAR20). The Cx43-Ezrin-protein kinase (PKA) complex facilitates Cx43 phosphorylation by PKA, which triggers GJ opening in cytotrophoblasts and IAR20 cells and may be a general mechanism regulating GJ intercellular communication (GJIC). Considering the importance of Cx43 GJs in health and disease, they are considered potential pharmaceutical targets. The Cx43-Ezrin interaction is a protein-protein interaction that opens possibilities for targeting with peptides and small molecules. For this reason, we developed a high-throughput cell-based assay in which GJIC can be assessed and new compounds characterized. We used two pools of IAR20 cells, calcein loaded and unloaded, that were mixed and allowed to attach. Next, GJIC was monitored over time using automated imaging via the IncuCyte imager. The assay was validated using known GJ inhibitors and anchoring peptide disruptors, and we further tested new peptides that interfered with the Cx43-Ezrin binding region and reduced GJIC. Although an AlphaScreen assay can be used to screen for Cx43-Ezrin interaction inhibitors, the cell-based assay described is an ideal secondary screen for promising small-molecule hits to help identify the most potent compounds.

  2. Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose.

    Science.gov (United States)

    Wu, Xia; Wang, Yanjun; Sun, Yu; Chen, Sen; Zhang, Shuai; Shen, Ling; Huang, Xiang; Lin, Xi; Kong, Weijia

    2014-09-26

    Connexin26 (Cx26), one of the major protein subunits forming gap junctions (GJs), is important in maintaining homeostasis in the inner ear and normal hearing. Cx26 mutation is one of the most common causes for inherited nonsyndromic deafness, but the relationship between Cx26 and presbycusis is unknown. Our study aimed at exploring the expression and the aberrant methylation of the promoter region of Cx26 gene in the cochlea of inner ear mimetic aging rats. We applied a mimetic aging of inner ear rat model with mtDNA common deletion by d-gal injection for 8weeks. Real-time RT-PCR and Western blot of rat inner ear tissue indicated that the Cx26 expression decreased in the d-gal group. Further bisulfite sequencing analysis revealed that the methylation status of the promoter region of Cx26 gene in the d-gal group was higher than that in control group. These results indicated that the decrease of Cx26 expression might contribute to the development of presbycusis and the hypermethylation of promoter region of GJB2 might be associated with the Cx26 downregulation.

  3. The Special Purpose Vehicle

    DEFF Research Database (Denmark)

    Fomcenco, Alex

    2013-01-01

    The purpose of this article is to investigate whether the situation where two companies appear as originators or sponsors behind a Special Purpose Vehicle (SPV) can be described as a merger, although on micro scale. Are the underlying grounds behind the creation of an SPV much different than thos...... in a merger situation? What is actually happening when two enterprises originate an SPV? And what distinguishes an SPV from a joint venture, or is it the same thing?...

  4. Special relativity (in Russian)

    CERN Document Server

    Grozin, Andrey

    2011-01-01

    A modern elementary introduction to special relativity for advanced school children or first-year university students, in Russian. I try to demonstrate that relativity does not contradict common sense; on the contrary, it follows from common sense logically. I discuss Minkowski space-time geometry in some detail. Geometrical approach, with few simple formulas but many pictures, makes results of the theory intuitively obvious.

  5. Special Observance Planning Guide

    Science.gov (United States)

    2015-11-01

    guide are not inclusive in nature and can be modified as necessary to support the needs of project officers and established committees. It is suggested... inclusive . Based on specific needs and desires, organizations may recognize other observances and are not required to limit their special...states, mayors of cities, and heads of other instrumentalities of government, as well as leaders of industry, educational and religious groups, labor

  6. 2015 Special Operations Essays

    Science.gov (United States)

    2015-05-01

    stability operations in Afghanistan.19 27 Goldstein: The First Women in SOF The persistent cultural stereotype of the female spy is of a hyper-sexual...outreach, and research in the science and art of joint special operations. JSOU provides education to the men and women of SOF and to those who...Human Domain in Warfare ................................ 11 The First Women in SOF: Women Operatives in the OSS and SOE as a Framework for the

  7. Introduction to Special Issue

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This special issue presents the Italian approach to planned interventions by the Government and public institutions to counteract disability and handicap.Analysis of the provisions and laws which have followed on in time highlight the diversity between two types of approach:one that only considers physical or mental disability and one that also takes into consideration,besides these limitations,aspects linked to the social participation and integration of people with disabilities.

  8. ECMR’13 Special Issue

    OpenAIRE

    Andrade-Cetto, Juan; Frese, Udo; Moritz, Tenorth

    2015-01-01

    This special issue contains extended versions of the best papers from the 6th European Conference on Mobile Robots (ECMR). ECMR is a biennial European forum, internationally open, that allows roboticists throughout Europe to become acquainted with the latest research accomplishments and innovations in mobile robotics and mobile human–robot systems. ECMR covers most aspects of mobile robotics research and machine intelligence, including (but not limited to) the following topics: multi-sensor f...

  9. Specialization, outsourcing and wages

    DEFF Research Database (Denmark)

    Munch, Jakob Roland; Skaksen, Jan Rose

    2009-01-01

    This paper studies the impact of outsourcing on individual wages. In contrast to the standard approach in the literature, we focus on domestic outsourcing as well as foreign outsourcing. We argue that if outsourcing is associated with specialization gains arising from an increase in the division...... of labor, domestic outsourcing tends to increase wages for both unskilled and skilled labor. We use a panel data set of workers in Danish manufacturing industries to show that domestic and foreign outsourcing affect wages as predicted....

  10. Special Administrative Jurisdictions

    Directory of Open Access Journals (Sweden)

    Vasilica Negruț

    2016-05-01

    Full Text Available The Constitution of Romania revised in 2003 establishes the free and voluntary nature of the special administrative jurisdictions, a fact which allows the party concerned to address either the administrative-judicial body or directly the court. If they opted for the administrative-judicial way, it must be followed to the end, then, under the terms established by the law, the party may address the court, under the right of access to justice provided by article 21 of the constitution. The administrative jurisdiction is an activity of solving an administrative litigation by specific procedural rules of judicial procedure, based on the principle of the independence, of insuring the right to defense and the administrative-jurisdictional independence activity, which results in a jurisdictional administrative act. In order to achieve the objectives of the paper, namely to highlight the essential elements of the resolution of litigation according to special administrative jurisdictions, we have achieved an analysis of the legislative acts referring to this activity, of the doctrine and jurisprudence. After examination and empirical research, the paper summarizes and specifies the general conclusions on the role and importance of special administrative courts.

  11. Brain specialization for music.

    Science.gov (United States)

    Peretz, Isabelle

    2002-08-01

    Music, like language, is a universal and specific trait to humans. Similarly, music appreciation, like language comprehension, appears to be the product of a dedicated brain organization. Support for the existence of music-specific neural networks is found in various pathological conditions that isolate musical abilities from the rest of the cognitive system. Cerebrovascular accidents, traumatic brain damage, and congenital brain anomalies can lead to selective disorders of music processing. Conversely, autism and epilepsy can reveal the autonomous functioning and the selectivity, respectively, of the neural networks that subserve music. However, brain specialization for music should not be equated with the presence of a singular "musical center" in the brain. Rather, multiple interconnected neural networks are engaged, of which some may capture the essence of brain specialization for music. The encoding of pitch along musical scales is likely such an essential component. The implications of the existence of such special-purpose cortical processes are that the human brain might be hardwired for music.

  12. Special software for computing the special functions of wave catastrophes

    Directory of Open Access Journals (Sweden)

    Andrey S. Kryukovsky

    2015-01-01

    Full Text Available The method of ordinary differential equations in the context of calculating the special functions of wave catastrophes is considered. Complementary numerical methods and algorithms are described. The paper shows approaches to accelerate such calculations using capabilities of modern computing systems. Methods for calculating the special functions of wave catastrophes are considered in the framework of parallel computing and distributed systems. The paper covers the development process of special software for calculating of special functions, questions of portability, extensibility and interoperability.

  13. Dyslexic: Special Education and Research

    Science.gov (United States)

    ... this page please turn JavaScript on. Feature: Dyslexia Special Education and Research Past Issues / Winter 2016 Table of Contents Special Education Services The Individuals with Disabilities Education Improvement Act ( ...

  14. [Biological evolution and specialization].

    Science.gov (United States)

    Luo, Weizhen; Wang, Deli

    2003-12-01

    There were some disputes about the concept and mechanism of biological evolution. This paper tried to give more explanations on the key concepts. The biological adaptability was distinguished into two different concepts: biological evolution and specialization. The former was defined as the process of biologically gradual evolvement, and the latter was considered as the process of species formation at horizontal development. Moreover, a new conceptual framework was applied to the popular biological theories known by people, and the previous research results or discoveries were explained over again.

  15. Special geometry in hypermultiplets

    CERN Document Server

    De Jaegher, J; Kleijn, B; Vandoren, S

    1998-01-01

    We give a detailed analysis of pairs of vector and hypermultiplet theories with N=2 supersymmetry in four spacetime dimensions that are related by the (classical) mirror map. The symplectic reparametrizations of the special transformations on the hypermultiplets. We construct the Sp(1)$\\times$Sp($n$) one-forms in terms of which the hypermultiplet couplings are encoded and exhibit their behaviour under symplectic reparametrizations. Both vector and hypermultiplet theories allow vectorial central charges in the supersymmetry algebra associated with integrals over the Kähler and hyper-Kähler forms, respectively. We show how these charges and the holomorphic BPS mass are related by the mirror map.

  16. The Special Student in Science.

    Science.gov (United States)

    Simons, Grace H.; Hepner, Nancy

    1992-01-01

    Article offers some adaptations the authors used to help integrate special education students in regular classrooms. Authors believe that productivity is achieved by having the special education teacher work directly with the classroom teacher in a two-teacher partnership situation. Provides lists of strategies to help special education students…

  17. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  18. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  19. The ARL Special Collections Initiative.

    Science.gov (United States)

    Hewitt, Joe A.; Panitch, Judith M.

    2003-01-01

    Reviews the Association of Research Libraries (ARL) activities regarding special collections. Highlights include local and collaborative approaches; budget pressures; access to special collections; digitization programs; recruiting qualified staff; results of a survey of ARL special collections; and the need for ongoing statistics for special…

  20. Virtual Reality and Special Needs

    Science.gov (United States)

    Jeffs, Tara L.

    2009-01-01

    The use of virtual environments for special needs is as diverse as the field of Special Education itself and the individuals it serves. Individuals with special needs often face challenges with attention, language, spatial abilities, memory, higher reasoning and knowledge acquisition. Research in the use of Virtual Learning Environments (VLE)…

  1. Response Essay: Special Education Research.

    Science.gov (United States)

    McGee, Paid

    2000-01-01

    This commentary reflects on findings from previous articles that reviewed trends in special education research in the United States, Norway, Botswana, Ecuador, Australia, and Turkey. It discusses the function, funding, and subject matter of special education research, on research on the education of special education teachers, and on research…

  2. JFDE Special ICAE 2015

    Directory of Open Access Journals (Sweden)

    Tillmann Klein

    2015-06-01

    Full Text Available We are proud to announce that the Journal of Facade Design and Engineering is becoming a firm partner for the distribution of scientific knowledge of the ICAE International Congress on Architectural Envelopes, organised by Tecnalia San Sebastian. Tecnalia is one of the founding members of the European Facade Network EFN, and this partnership supports the development of JFDE with regards to the discipline of facade design and engineering. This issue of JFDE is dedicated to ICAE 2015, the VIIth edition of the congress. The contributions have been carefully selected from 32 abstracts, submitted to the scientific section of the conference. Subsequently the finished papers have been subjected to the regular blind review process of the journal. At this point, we want to thank our special editors Julen Astudillo and Jose Antonio Chica for their effort to make this partnership happen. The paper contributions show an interesting selection of approaches to innovative materials, form finding, simulation and climatic concepts. This demonstrates the special character of the discipline we are working in, bridging research, design and practice. Facade Design and Engineering is a peer reviewed, open access journal, funded by The Netherlands Organisation for Scientific Research NWO (www.nwo.nl. We see ‘open access’ as the future publishing model. But it certainly requires new financial models which we will have to explore over the coming years.

  3. Investigação genética da surdez hereditária: mutação do gene da Conexina 26 Genetic investigation of hereditary deafness: connexin 26 gene mutation

    Directory of Open Access Journals (Sweden)

    Paula Michele da Silva Schmidt

    2009-01-01

    Full Text Available Nos últimos anos houve grande progresso na localização de genes associados à deficiência auditiva hereditária, possibilitando diagnósticos cada vez mais precisos e precoces. Mutações no gene da Conexina 26 (GJB2 - Cx26 causam deficiência auditiva. Pela facilidade e benefício do rastreamento de mutações no gene GJB2, o teste genético está se tornando um importante recurso na saúde pública. O objetivo foi realizar pesquisa bibliográfica sobre a mutação do gene da Conexina 26 e sua influência na audição. Foi realizado um levantamento bibliográfico por meio de busca eletrônica utilizando os descritores: perda auditiva, genética, triagem genética, Conexina 26, nas bases de dados MEDLINE, SciELO e LILACS, desde a década de 90 até os dias atuais. Concluiu-se que a mutação 35delG da Conexina 26 está potencialmente vinculada a alguns casos de perda auditiva não esclarecida. A pesquisa desta mutação poderia ser incluída na bateria de exames de investigação etiológica da surdez indeterminada, uma vez que esclarece a etiologia de alguns casos e a sua identificação possibilita o aconselhamento genético.In the last few years, great progress has been made in the search for genes associated to hereditary hearing impairment, allowing more precise and earlier diagnosis. Connexin 26 gene mutations (GJB2 - Cx26 cause hearing impairment. Due to the easiness and benefits of the screening of mutations on the gene GJB2, genetic testing is becoming an important resource in public health. The aim of the present study was to conduct a literature research about the mutation of the Connexin 26 gene and its influence in hearing. It was carried out a literature review through electronic search using the keywords: hearing loss, genetics, genetic screening, and Connexin 26, at the databases MEDLINE, SciELO and LILACS, from the 90s to the present days. The results indicate that the 35delG mutation of Connexin 26 is potentially associated

  4. 更昔洛韦治疗对Connexin26基因突变巨细胞病毒感染婴儿听力的影响%Effect of ganciclovir on improving listening comprehension in infants with cytomegalovirus infection and Connexin 26 gene mutation

    Institute of Scientific and Technical Information of China (English)

    林海龙; 周建; 刘学军; 林开春; 卢朝升

    2016-01-01

    目的 研究更昔洛韦治疗对Connexin26基因突变的巨细胞病毒感染婴儿听力的影响,并了解是否可以逆转此类婴儿的听力损害情况.方法 从温州医科大学附属第二医院及金华永康市第一人民医院筛选血和尿液CMV-DNA阳性婴儿,根据人Connexin26基因编码区核苷酸全序列,进行RT-PCR检测,获得产物继续碱基测序,存在基因突变的巨细胞病毒感染婴儿70例作为研究对象.根据血生化结果,将肝功能损害的婴儿列为Ⅰ组(22例,进行更昔洛韦治疗),将无肝功能损害的婴儿随机分为更昔洛韦治疗组(Ⅱ组,24例)和非更昔洛韦治疗组(Ⅲ组,24例),更昔洛韦的治疗为诱导期剂量为每次5 mg/kg,每12h一次,持续14 d,此后改为1次/d维持治疗,剂量同前,持续7d,复查肝功能及CMV-DNA拷贝数,检测并追踪患儿治疗前后脑干听觉诱发电位变化,比较各组肝功能指标、CMV-DNA拷贝数及脑干诱发电位结果.结果 经过更昔洛韦治疗,Ⅰ组婴儿肝功能异常情况明显好转(ALT:t =8.610 9,P<0.000 1;AST:t=15.007 7,P<0.000 1;TBil:t=10.993 3,P<0.0001),Ⅰ组和Ⅱ组CMV-DNA拷贝数明显下降(t=5.460 4,P<0.000 1),但BAEP检测异常的婴儿听力损害情况没有好转,部分患儿呈恶化趋势,而Ⅲ组婴儿听力损害情况无明显变化.结论 更昔洛韦治疗对巨细胞病毒感染所致肝炎等炎症性疾病有效,但对感音性神经性聋,特别是有Connexin26基因突变的听力损害无效.

  5. Connexin 37 and 43 gene and protein expression and developmental competence of isolated ovine secondary follicles cultured in vitro after vitrification of ovarian tissue.

    Science.gov (United States)

    Sampaio da Silva, Andréa Moreira; Bruno, Jamily Bezerra; de Lima, Laritza Ferreira; Ribeiro de Sá, Naíza Arcângela; Lunardi, Franciele Osmarini; Ferreira, Anna Clara Accioly; Vieira Correia, Hudson Henrique; de Aguiar, Francisco Léo Nascimento; Araújo, Valdevane Rocha; Lobo, Carlos Henrique; de Alencar Araripe Moura, Arlindo; Campello, Cláudio Cabral; Smitz, Johan; de Figueiredo, José Ricardo; Ribeiro Rodrigues, Ana Paula

    2016-05-01

    Cryoinjuries caused by vitrification of tissues and organs lead to the loss of membrane proteins that mediate intercellular communications, such as connexins 37 (Cx37) and 43 (Cx43). Thus, the present study aimed to evaluate ovine Cx37 and Cx43 gene and protein expressions and developmental competence by in vitro-cultured secondary follicles retrieved from vitrified ovarian tissue. Ovarian fragments for the same ovary pair were distributed into six treatments: (1) fresh ovarian tissue (FOT); (2) vitrified ovarian tissue (VOT); (3) isolated follicles from fresh ovarian tissue (FIF); (4) isolated follicles from vitrified ovarian tissue; (5) isolated follicles from fresh ovarian tissue followed by in vitro culture (CFIF); (6) isolated follicles from vitrified ovarian tissue followed by in vitro culture (CVIF). In all treatments, Cx37 and Cx43 gene and protein expression patterns were evaluated by reverse transcription polymerase chain reaction and immunocytochemistry. In addition, secondary follicles were analyzed according to follicular integrity and growth, apoptosis, and cell proliferation. In vitro-cultured secondary follicles (CFIF and CVIF) were evaluated based on morphology (extruded follicles), antrum formation, and viability. The percentage of intact follicles was higher, whereas antrum formation, oocyte extrusion rate, and follicle viability were lower in CVIF than in CFIF treatment (P isolated follicles from vitrified ovarian tissue and CVIF treatments than in follicles from FIF. Expression of Cx43 messenger RNA was lower in CVIF treatment when compared with follicles from all other treatments (P  0.05). Cx37 and Cx43 immunolabeling was localized mainly on granulosa cells and oocytes, respectively. In conclusion, isolation of ovine secondary follicles could be done successfully after vitrification of ovarian tissue, and the basement membrane integrity remained intact after in vitro culture. Although the gene and protein expression of Cx37 did not

  6. Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway.

    Science.gov (United States)

    Lee, Kyung Mi; Kwon, Jung Yeon; Lee, Ki Won; Lee, Hyong Joo

    2009-01-15

    Although the health benefits of dietary antioxidants have been extensively studied, their potential negative effects remain unclear. L-Ascorbic acid 6-palmitate (AAP), a synthetic derivative of ascorbic acid (AA), is widely used as an antioxidant and preservative in foods, vitamins, drugs, and cosmetics. Previously, we found that AA exerted an antitumor effect by protecting inhibition of gap-junctional intercellular communication (GJIC), which is closely associated with tumor progression. In this study, we examined whether AAP, an amphipathic derivative of AA, has chemopreventive effects using a GJIC model. AAP and AA exhibited dose-dependent free radical-scavenging activities and inhibited hydrogen peroxide (H(2)O(2))-induced intracellular reactive oxygen species (ROS) production in normal rat liver epithelial cells. Unexpectedly, however, AAP did not protect against the inhibition of GJIC induced by H(2)O(2); instead, it inhibited GJIC synergistically with H(2)O(2). AAP inhibited GJIC in a dose-dependent and reversible manner. This inhibitory effect was not due to the conjugated lipid structure of AAP, as treatment with palmitic acid alone failed to inhibit GJIC under the same conditions. The inhibition of GJIC by AAP was restored in the presence of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126, but not in the presence of other signal inhibitors and antioxidant (PKC inhibitors, EGFR inhibitor, NADPH oxidase inhibitor, catalase, vitamin E, or AA), indicating the critical involvement of MEK signaling in the GJIC inhibitory activity of AAP. Phosphorylation of ERK and connexin 43 (Cx43) was observed following AAP treatment, and this was reversed by U0126. These results suggest that the AAP-induced inhibition of GJIC is mediated by the phosphorylation of Cx43 via activation of the MEK-ERK pathway. Taken together, our results indicate that AAP has a potent carcinogenic effect, and that the influence of dietary

  7. The role of spinal interleukin-1β and astrocyte connexin 43 in the development of mirror-image pain in an inflammatory pain model.

    Science.gov (United States)

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Sheu-Ran; Kang, Suk-Yun; Moon, Ji-Young; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Lee, Jang-Hern

    2016-10-20

    Although we have recently demonstrated that carrageenan-induced inflammation upregulates the expression of spinal interleukin (IL)-1β, which inhibits spinal astrocyte activation and results in the delayed development of Mirror-Image Pain (MIP), little is known regarding the mechanisms that underlie how spinal IL-1β inhibits the astrocyte activation. In this study, we examined the effect of spinal IL-1β on astrocyte gap junctions (GJ) and the development of MIP. Following unilateral carrageenan (CA) injection, mechanical allodynia (MA) was evaluated at various time points. Immunohistochemistry and Western blot analysis were used to determine changes in the expression of GFAP and connexins (Cx) in the spinal cord dorsal horn. Carrageenan rats showed a delayed onset of contralateral MA, which mimicked the temporal expression pattern of spinal Cx43 (an astrocyte gap junctional protein) and GFAP. Intrathecal administration of an interleukin-1 receptor antagonist (IL-1ra) twice-a-day on post-carrageenan injection days 0 to 3 caused a significant increase in contralateral MA and spinal Cx43 and GFAP expression. In addition, co-administration of IL-1β with IL-1ra blocked the IL-1ra-induced increase in contralateral MA and the upregulated expression of spinal Cx43 and GFAP. Finally, co-administration of carbenoxolone (CBX; a GJ decoupler) or Gap26 (a specific Cx43 mimetic blocking peptide) with IL-1ra significantly blocked the IL-1ra-induced early development of contralateral MA and the associated upregulation of spinal Cx43 and GFAP expression. These results demonstrate that spinal IL-1β suppresses Cx43 expression and astrocyte activation during the early phase of CA-induced inflammation resulting in the delayed onset of contralateral MA. These findings imply that spinal IL-1β can inhibit astrocyte activation and regulate the time of induction of contralateral MA through modulation of spinal Cx43 expression.

  8. Vitamin E and caloric restriction promote hepatic homeostasis through expression of connexin 26, N-cad, E-cad and cholesterol metabolism genes.

    Science.gov (United States)

    Santolim, Leonardo Vinícius; Amaral, Maria Esméria Corezola do; Fachi, José Luís; Mendes, Maíra Felonato; Oliveira, Camila Andréa de

    2017-01-01

    Connexins (Cx) and cadherins are responsible for cell homeostasis. The Cx activity is directly related to cholesterol. The present work investigates whether vitamin E, with or without caloric restriction (CR), alters the mRNA expression of Cx26, Cx32, Cx43, N-cadherins (N-cads), E-cadherins (E-cads) and alpha-smooth muscle actin (α-SMA), and evaluates their relation to cholesterol metabolism in rat liver. Animals were divided into different groups: control with ad libitum diet (C), control+vitamin E (CV), aloric restriction with intake to 60% of group C (CR), and the intake of group CR+vitamin E (RV). There were increases of manganese superoxide dismutase (Mn-SOD) and glutathione S-transferase mu 1, indicating antioxidant effects of CR and vitamin E. An increase of nitric oxide in the CR group was in agreement with the Mn-SOD data. Supplementation with vitamin E, with or without CR, upregulated the expression of Cx26 mRNA and increased low-density lipoprotein cholesterol (LDL-c) in the CV group. Reductions of Cx32 and Cx43 were associated with lower LDL-c. Increases in Hmgcr and low-density lipoprotein receptor (LDLr) in the CV and RV groups could be explained by the effect of vitamin E. A reduction of LDLr in the CR group was due to the reduced dietary intake. Increases in cadherins in the CV, CR and RV groups were indicative of tissue maintenance, which was also supported by increases of α-SMA in groups CV and RV. Finally, vitamin E, with or without CR, increased Cx26, probably modulated by expression of the Hmgcr and LDLr genes. This suggests important relationship of Cxs and cholesterol metabolism genes.

  9. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation.

    Science.gov (United States)

    Voytenko, L P; Lushnikova, I V; Savotchenko, A V; Isaeva, E V; Skok, M V; Lykhmus, O Yu; Patseva, M A; Skibo, G G

    2015-08-07

    The hippocampal interneurons are ve