WorldWideScience

Sample records for connected synchronous generator

  1. Hysteresis Control for a DC Connected Synchronous Generator

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Evangelos, Dimarakis

    2009-01-01

    Abstract— for offshore wind farms the distance to the coast increases, therefore DC cables will have to be used. For a variable speed wind turbine a rectifier and a synchronous generator with a boost converter is used. As a new suggestion for control the generator speed hysteresis control...

  2. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    Science.gov (United States)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of

  3. Identification of Synchronous Generator Electric Parameters Connected to the Distribution Grid

    Directory of Open Access Journals (Sweden)

    Frolov M. Yu.

    2017-04-01

    Full Text Available According to modern trends, the power grids with distributed generation will have an open system architecture. It means that active consumers, owners of distributed power units, including mobile units, must have free access to the grid, like when using internet, so it is necessary to have plug and play technologies. Thanks to them, the system will be able to identify the unit type and the unit parameters. Therefore, the main aim of research, described in the paper, was to develop and research a new method of electric parameters identification of synchronous generator. The main feature of the proposed method is that parameter identification is performed while the generator to the grid, so it fits in the technological process of operation of the machine and does not influence on the connection time of the machine. For the implementation of the method, it is not necessary to create dangerous operation modes for the machine or to have additional expensive equipment and it can be used for salient pole machines and round rotor machines. The parameter identification accuracy can be achieved by more accurate account of electromechanical transient process, and making of overdetermined system with many more numbers of equations. Parameter identification will be made with each generator connection to the grid. Comparing data obtained from each connection, the middle values can be find by numerical method, and thus, each subsequent identification will accurate the machine parameters.

  4. Wind generator based on cascade connection of two asynchronized synchronous machines

    International Nuclear Information System (INIS)

    Dzhagarov, N.; Dzhagarova, Yu.

    2000-01-01

    A model of a wind generator with two asynchronized synchronous machines presented and different regimes are investigated. The analysis shows that the suggested scheme of a brushless generator works and has more advantages (reliability, easy for operation) in comparison with the known ones

  5. Modal analysis of a grid-connected direct-drive permanent magnet synchronous generator wind turbine system

    DEFF Research Database (Denmark)

    Tan, Jin; Wang, Xiao Ru; Chen, Zhe

    2013-01-01

    In order to study the stability of a grid-connected direct-drive permanent magnet synchronous generator (PMSG) wind turbine systems, this paper presents the modal analysis of a PMSG wind turbine system. A PMSG model suitable for small signal stability analysis is presented. The modal properties...... of a grid-connected PMSG wind turbine system are studied. Then the comprehensive impacts of the shaft model, shaft parameters, operation points and lengths of the transmission line on the modal characteristic of the system are investigated by the eigenvalue analysis method. Meanwhile, the corresponding...... analysis. It offers a better understanding about the essence of the stability of grid-connected PMSG wind turbine system....

  6. Dynamic modeling of wind turbine based axial flux permanent magnetic synchronous generator connected to the grid with switch reduced converter

    Directory of Open Access Journals (Sweden)

    Ali Reza Dehghanzadeh

    2018-03-01

    Full Text Available This paper studies the power electronic converters for grid connection of axial flux permanent magnetic synchronous generators (AFPMSG based variable speed wind turbine. In this paper, a new variable speed wind turbine with AFPMSG and Z-source inverter is proposed to improve number of switches and topology reliability. Besides, dynamic modeling of AFPMSG is presented to analyze grid connection of the proposed topology. The Z-source inverter controls maximum power point tracking (MPPT and delivering power to the grid. Therefore other DC–DC chopper is not required to control the rectified output voltage of generator in view of MPPT. As a result, the proposed topology requires less power electronic switches and the suggested system is more reliable against short circuit. The ability of proposed energy conversion system with AFPMSG is validated with simulation results and experimental results using PCI-1716 data acquisition system.

  7. Synchronous-flux-generator (SFG)

    Energy Technology Data Exchange (ETDEWEB)

    Zweygbergk, S.V.; Ljungstroem, O. (ed.)

    1976-01-01

    The synchronous machine is the most common rotating electric machine for producing electric energy in a large scale, but it is also used for other purposes. One well known everyday example is its use as driving motor in the electric synchronous clock. One has in this connection made full use of one of the main qualities of this kind of machine--its rotating speed is bound to the frequency of the feeding voltage, either if it is working as a motor or as a generator. Characteristics are discussed.

  8. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  9. Phase synchronization in train connection timetables

    Energy Technology Data Exchange (ETDEWEB)

    Fretter, Christoph; Mueller-Hannemann, Matthias [Martin Luther Universitaet, Halle-Wittenberg (Germany); Krumov, Lachezar; Weihe, Karsten [TU Darmstadt (Germany); Huett, Marc-Thorsten [Jacobs University, Bremen (Germany)

    2010-07-01

    Train connection timetables are an important research topic in algorithmics. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is an important contribution to the functioning of public transportation. In addition to efficiency (given, e.g. by minimal average travel times), the robustness of the timetable, i.e. a minimization of delay propagation, is an important criterion. Here we study the balance of efficiency and robustness in train connection timetables from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspectives opens a new avenue towards an understanding of train connection timetables by representing them as spatiotemporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern.

  10. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...

  11. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  12. Synchronization from second order network connectivity statistics

    Directory of Open Access Journals (Sweden)

    Liqiong eZhao

    2011-07-01

    Full Text Available We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks (SONETs, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by a pool and redistribute mechanism. The pooling of many inputs averages out independent fluctuations, amplifying weak correlations in the inputs. With increased chain connections, neurons with many inputs tend to have many outputs. Hence, chains ensure that the amplified correlations in the neurons with many inputs are redistributed throughout the network, enhancing the development of synchrony across the network.

  13. A Steady-State Analysis Method for Modular Multilevel Converters Connected to Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Zhijie Liu

    2018-02-01

    Full Text Available Modular multilevel converters (MMCs have shown great potential in the area of multi-megawatt wind energy conversion system (WECS based on permanent magnet synchronous generators (PMSGs. However, the studies in this area are few, and most of them refer to the MMC used in high-voltage direct current (HVDC systems, and hence the characteristics of the PMSG are not considered. This paper proposes a steady-state analysis method for MMCs connected to a PMSG-based WECS. In the proposed method, only the wind speed (operating condition is required as input, and all the electrical quantities in the MMC, including the amplitudes, phase angles and their harmonics, can be calculated step by step. The analysis method is built on the proposed d-q frame mathematical model. Interactions of electrical quantities between the MMC and PMSG are comprehensively considered. Moreover, a new way to calculate the average switching functions are adopted in order to improve the accuracy of the analysis method. Applications of the proposed method are also presented, which includes the characteristic analysis of capacitor voltage ripples and the capacitor sizing. Finally, the accuracy of the method and the correctness of the analysis are verified by simulations and experiments.

  14. Synchronization and survival of connected bacterial populations

    Science.gov (United States)

    Gokhale, Shreyas; Conwill, Arolyn; Ranjan, Tanvi; Gore, Jeff

    Migration plays a vital role in controlling population dynamics of species occupying distinct habitat patches. While local populations are vulnerable to extinction due to demographic or environmental stochasticity, migration from neighboring habitat patches can rescue these populations through colonization of uninhabited regions. However, a large migratory flux can synchronize the population dynamics in connected patches, thereby enhancing the risk of global extinction during periods of depression in population size. Here, we investigate this trade-off between local rescue and global extinction experimentally using laboratory populations of E. coli bacteria. Our model system consists of co-cultures of ampicillin resistant and chloramphenicol resistant strains that form a cross-protection mutualism and exhibit period-3 oscillations in the relative population density in the presence of both antibiotics. We quantify the onset of synchronization of oscillations in a pair of co-cultures connected by migration and demonstrate that period-3 oscillations can be disturbed for moderate rates of migration. These features are consistent with simulations of a mechanistic model of antibiotic deactivation in our system. The simulations further predict that the probability of survival of connected populations in high concentrations of antibiotics is maximized at intermediate migration rates. We verify this prediction experimentally and show that survival is enhanced through a combination of disturbance of period-3 oscillations and stochastic re-colonization events.

  15. New GOES satellite synchronized time code generation

    Science.gov (United States)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  16. Application of synchronous grid-connected controller in the wind-solar-storage micro grid

    OpenAIRE

    Li, Hua; Ren, Yongfeng; Li, Le; Luo, Zhenpeng

    2016-01-01

    Recently, there has been an increasing interest in using distributed generators (DG) not only to inject power into the grid, but also to enhance the power quality. In this study, a space voltage pulse width modulation (SVPWM) control method is proposed for a synchronous grid-connected controller in a wind-solar-storage micro grid. This method is based on the appropriate topology of the synchronous controller. The wind-solar-storage micro grid is controlled to reconnect to the grid synchronous...

  17. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  18. A Straightforward Convergence Method for ICCG Simulation of Multiloop and Time-Stepping FE Model of Synchronous Generators with Simultaneous AC and Rectified DC Connections

    Directory of Open Access Journals (Sweden)

    Shanming Wang

    2015-01-01

    Full Text Available Now electric machines integrate with power electronics to form inseparable systems in lots of applications for high performance. For such systems, two kinds of nonlinearities, the magnetic nonlinearity of iron core and the circuit nonlinearity caused by power electronics devices, coexist at the same time, which makes simulation time-consuming. In this paper, the multiloop model combined with FE model of AC-DC synchronous generators, as one example of electric machine with power electronics system, is set up. FE method is applied for magnetic nonlinearity and variable-step variable-topology simulation method is applied for circuit nonlinearity. In order to improve the simulation speed, the incomplete Cholesky conjugate gradient (ICCG method is used to solve the state equation. However, when power electronics device switches off, the convergence difficulty occurs. So a straightforward approach to achieve convergence of simulation is proposed. At last, the simulation results are compared with the experiments.

  19. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  20. Connectivities and synchronous firing in cortical neuronal networks

    International Nuclear Information System (INIS)

    Jia, L.C.; Sano, M.; Lai, P.-Y.; Chan, C.K.

    2004-01-01

    Network connectivities (k-bar) of cortical neural cultures are studied by synchronized firing and determined from measured correlations between fluorescence intensities of firing neurons. The bursting frequency (f) during synchronized firing of the networks is found to be an increasing function of k-bar. With f taken to be proportional to k-bar, a simple random model with a k-bar dependent connection probability p(k-bar) has been constructed to explain our experimental findings successfully

  1. Modulated Field Synchronous Generator for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper presents a modern electromechanical conversion systemsolution as the modulated field synchronous generator, offering on theone hand, an output voltage with constant frequency in terms of speedvariation of the wind turbine and on the other hand an advantagepower / weight ratio due to the high frequency for which the magneticcircuit of the electric machine is sized. The mathematical model of the modulated field synchronous generator is implemented in MatLABmodeling language, highlighting the command structure on thetransistors bases of the inverter transistors, through which thefunctioning of the electric machine can be studied, especially in terms of the frequency of the delivered voltage.

  2. Grid Synchronization for Distributed Generations

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2017-01-01

    Distributed generators (DGs) like photovoltaic arrays, wind turbines, and fuel cell modules, as well as distributed storage (DS) units introduce some advantages to the power systems and make it more reliable, flexible, and controllable in comparison with the conventional power systems. Grid inter...

  3. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other,electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, mechanical...... with an electric load is used to drive the finite element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings...... of the rotor. Finally, heating losses are computed as a response to the electric load. The model is used to evaluate the transient response of the generator. © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of the Guest Editors....

  4. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...... each pole needs its own excitation coil, which limits the number of poles as each coil will take up too much space between the poles....

  5. Simulation of an HTS Synchronous Superconducting Generator

    DEFF Research Database (Denmark)

    In this work we present a simulation of a synchronous generator with superconducting rotor windings. As many other electrical rotating machines, superconducting generators are exposed to ripple fields that could be produced from a wide variety of sources: short circuit, load change, etc. Unlike...... of heating losses a cumbersome task. Furthermore, the high aspect ratio of the superconducting materials involved adds a penalty in the time required to perform simulations. The chosen strategy for simulation is as follows: A mechanical torque signal together with an electric load is used to drive the finite...... element model of a synchronous generator where the current distribution in the rotor windings is assumed uniform. Then, a second finite element model for the superconducting material is linked to calculate the actual current distribution in the windings of the rotor. Finally, heating losses are computed...

  6. Chaotic synchronization of three coupled oscillators with ring connection

    International Nuclear Information System (INIS)

    Kyprianidis, I.M.; Stouboulos, I.N.

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional)

  7. Chaotic synchronization of three coupled oscillators with ring connection

    CERN Document Server

    Kyprianidis, I M

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional).

  8. Robust controller for synchronous generator with local load via VSC

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Vazquez, J. [Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias, Departamento de Electronica, Av. Revolucion No. 1500, Modulo ' ' O' ' , Apdo. Postal 44840, Guadalajara Jalisco (Mexico); Loukianov, Alexander G.; Canedo, Jose M. [Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 31-438, Plaza La Luna, C. P. 44550, Guadalajara, Jalisco (Mexico); Utkin, Vadim I. [Department of Electrical Engineering, The Ohio-State University, Columbus, OH 43210-1272 (United States)

    2007-05-15

    The objective of this paper is to design a nonlinear observer-based excitation controller for power system comprising a single synchronous generator connected to an infinite bus with local load. The controller proposed is based on the using first singular perturbation systems concepts and then Sliding Mode Control technique combining with Block Control Principle. To reduce ''chattering'' a nonlinear observer with estimation of the mechanical torque and rotor fluxes is designed. This combined approach enables to compensate the inherent nonlinearities of the generator and to reject external disturbances. (author)

  9. The Always-Connected Generation

    Science.gov (United States)

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  10. Pinning Synchronization of Linear Complex Coupling Synchronous Generators Network of Hydroelectric Generating Set

    Directory of Open Access Journals (Sweden)

    Xuefei Wu

    2014-01-01

    Full Text Available A novel linear complex system for hydroturbine-generator sets in multimachine power systems is suggested in this paper and synchronization of the power-grid networks is studied. The advanced graph theory and stability theory are combined to solve the problem. Here we derive a sufficient condition under which the synchronous state of power-grid networks is stable in disturbance attenuation. Finally, numerical simulations are provided to illustrate the effectiveness of the results by the IEEE 39 bus system.

  11. Synchronous ethernet and IEEE 1588 in telecoms next generation synchronization networks

    CERN Document Server

    2013-01-01

    This book addresses the multiple technical aspects of the distribution of synchronization in new generation telecommunication networks, focusing in particular on synchronous Ethernet and IEEE1588 technologies. Many packet network engineers struggle with understanding the challenges that precise synchronization distribution can impose on networks. The usual “why”, “when” and particularly “how” can cause problems for many engineers. In parallel to this, some other markets have identical synchronization requirements, but with their own design requirements, generating further questions. This book attempts to respond to the different questions by providing background technical information. Invaluable information on state of-the-art packet network synchronization and timing architectures is provided, as well as an unbiased view on the synchronization technologies that have been internationally standardized over recent years, with the aim of providing the average reader (who is not skilled in the art) wi...

  12. Dynamic Analysis of Permanent Magnet Synchronous Generator with Power Electronics

    Directory of Open Access Journals (Sweden)

    OZCIRA, S.

    2010-05-01

    Full Text Available Permanent magnet DC motor-generators (PMDC, PMSG have been widely used in industrial and energy sectors recently. Power control of these systems can be achieved by controlling the output voltage. In this study, PMDC-PMSG systems are mathematically modeled and simulated in MATLAB and Simulink software. Then the results are discussed. A low power permanent magnet synchronous generator is driven by a permanent magnet DC motor and the output voltage is controlled by a frequency cycle-converter. The output of a half-wave uncontrolled rectifier is applied to an SPWM inverter and the power is supplied to a 300V, 50Hz load. The load which is connected to an LC filter is modeled by state-space equations. LC filter is utilized in order to suppress the voltage oscillations at the inverter output.

  13. A Novel Synchronization-Based Approach for Functional Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Angela Lombardi

    2017-01-01

    Full Text Available Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

  14. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  15. Linear Approach for Synchronous State Stability in Fully Connected PLL Networks

    Directory of Open Access Journals (Sweden)

    José R. C. Piqueira

    2008-01-01

    Full Text Available Synchronization is an essential feature for the use of digital systems in telecommunication networks, integrated circuits, and manufacturing automation. Formerly, master-slave (MS architectures, with precise master clock generators sending signals to phase-locked loops (PLLs working as slave oscillators, were considered the best solution. Nowadays, the development of wireless networks with dynamical connectivity and the increase of the size and the operation frequency of integrated circuits suggest that the distribution of clock signals could be more efficient if distributed solutions with fully connected oscillators are used. Here, fully connected networks with second-order PLLs as nodes are considered. In previous work, how the synchronous state frequency for this type of network depends on the node parameters and delays was studied and an expression for the long-term frequency was derived (Piqueira, 2006. Here, by taking the first term of the Taylor series expansion for the dynamical system description, it is shown that for a generic network with N nodes, the synchronous state is locally asymptotically stable.

  16. THE STUDY OF THE AUTONOMOUS SYNCHRONOUS GENERATOR MODES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2017-01-01

    Full Text Available The importance of the problem of the static stability of the stationary mode of the power system for its operation is extremely high. The investigation of the static stability of the power system is a subject of a number of works, but the problems of static stability of the stationary points of an autonomous synchronous generator are given little attention. The article considers transient and resonant (stationary modes of the generator under active-inductive and active-capacitive loads. Mathematical model of transients in a natural form and in the coordinate system d, q are plotted. It is discovered that the mathematical model of the transition process of an autonomous synchronous generator is identical to the mathematical model of the transition process of the synchronous machine under three-phase short circuit. Electromagnetic transients of an autonomous synchronous generator are described by a system of linear autonomous differential equations with constant coefficients. However, the equivalent circuit of a generator contains dependent sources. We investigated the stability of stationary motion of an autonomous synchronous generator at a given angular velocity of rotation of the rotor. The condition for the existence and stability of stationary points of an autonomous synchronous generator is derived. The condition for the existence of stationary points of such a generator does not depend on the active load resistance and stator windings, and inductance of the rotor. The determining of stationary points of the generator is reduced to finding roots of a polynomial of the fourth degree. The graphs of electromagnetic torque dependencies on the angular velocity of rotation of the rotor (mechanical characteristics are plotted. The equivalent circuits, corresponding to the equations of the transition process of an autonomous synchronous generator, are featured as well.

  17. Direct Driven Permanent Magnet Synchronous Generators with Diode Rectifiers for Use in Offshore Wind Turbines

    OpenAIRE

    Reigstad, Tor Inge

    2007-01-01

    This work is focused on direct-driven permanent magnets synchronous generators (PMSG) with diode rectifiers for use in offshore wind turbines. Reactive compensation of the generator, power losses and control of the generator are studied. Configurations for power transmission to onshore point of common connection are also considered. Costs, power losses, reliability and interface with the PMSG are discussed. The purpose of the laboratory tests and simulations are to learn how a PMSG with dio...

  18. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    Science.gov (United States)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  19. Complete synchronization of chaotic atmospheric models by connecting only a subset of state space

    Directory of Open Access Journals (Sweden)

    P. H. Hiemstra

    2012-11-01

    Full Text Available Connected chaotic systems can, under some circumstances, synchronize their states with an exchange of matter and energy between the systems. This is the case for toy models like the Lorenz 63, and more complex models. In this study we perform synchronization experiments with two connected quasi-geostrophic (QG models of the atmosphere with 1449 degrees of freedom. The purpose is to determine whether connecting only a subset of the model state space can still lead to complete synchronization (CS. In addition, we evaluated whether empirical orthogonal functions (EOF form efficient basis functions for synchronization in order to limit the number of connections. In this paper, we show that only the intermediate spectral wavenumbers (5–12 need to be connected in order to achieve CS. In addition, the minimum connection timescale needed for CS is 7.3 days. Both the connection subset and the connection timescale, or strength, are consistent with the time and spatial scales of the baroclinic instabilities in the model. This is in line with the fact that the baroclinic instabilities are the largest source of divergence between the two connected models. Using the Lorenz 63 model, we show that EOFs are nearly optimal basis functions for synchronization. The QG model results show that the minimum number of EOFs that need to be connected for CS is a factor of three smaller than when connecting the original state variables.

  20. Synchronous Generator Model Parameter Estimation Based on Noisy Dynamic Waveforms

    Science.gov (United States)

    Berhausen, Sebastian; Paszek, Stefan

    2016-01-01

    In recent years, there have occurred system failures in many power systems all over the world. They have resulted in a lack of power supply to a large number of recipients. To minimize the risk of occurrence of power failures, it is necessary to perform multivariate investigations, including simulations, of power system operating conditions. To conduct reliable simulations, the current base of parameters of the models of generating units, containing the models of synchronous generators, is necessary. In the paper, there is presented a method for parameter estimation of a synchronous generator nonlinear model based on the analysis of selected transient waveforms caused by introducing a disturbance (in the form of a pseudorandom signal) in the generator voltage regulation channel. The parameter estimation was performed by minimizing the objective function defined as a mean square error for deviations between the measurement waveforms and the waveforms calculated based on the generator mathematical model. A hybrid algorithm was used for the minimization of the objective function. In the paper, there is described a filter system used for filtering the noisy measurement waveforms. The calculation results of the model of a 44 kW synchronous generator installed on a laboratory stand of the Institute of Electrical Engineering and Computer Science of the Silesian University of Technology are also given. The presented estimation method can be successfully applied to parameter estimation of different models of high-power synchronous generators operating in a power system.

  1. A Simple Excitation Control for an Isolated Synchronous Generator ...

    African Journals Online (AJOL)

    This paper shows a very simple method of determining the range of field voltages to be applied to an isolated synchronous generator from no-load to full load while maintaining the rated terminal voltage on the stator terminals. The d-q rotor reference frame equations were used for the calculations and it is shown that values ...

  2. Alternative designs of a superconducting synchronous generator: the Southampton approach

    OpenAIRE

    Goddard, K.F.; Lukasik, B.; Sykulski, J.K.

    2008-01-01

    The paper describes various designs undertaken at the University of Southampton for building both cored and coreless superconducting synchronous generators using high temperature superconducting (HTS) tapes. An overview of electromagnetic and mechanical design issues is presented and scalability is considered. Results are included for the full (original) size machine and extended to a double size unit.

  3. A 2MW 6-phase BLDC Generator Developed from a PM Synchronous Generator for Wind Energy Application

    DEFF Research Database (Denmark)

    Chen, Zhuihui; Chen, Zhe; Liu, Xiao

    2014-01-01

    rectifier is adopted. The cases the with different loads are studied. The finite element simulation shows the developed BLDC generator is better than the PMSM generator in terms of DC voltage ripple and torque ripple. Furthermore, the volume of the BLDC generator is smaller, despite of more permanent magnet......In the direct drive wind turbine application, a PMSM generator often works together with a diode rectifier, which connects to a boost converter. In this paper, a six-phase BLDC generator is developed from the prototype design of three-phase permanent magnet synchronous generator. The diode...... is required. The efficiencies and the costs are also compared. As the result shows, BLDC generators connected with the diode rectifiers are good candidates for direct drive wind turbines....

  4. FUZZY FAULT DETECTION FOR PERMANENT MAGNET SYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    N. Selvaganesan

    2011-07-01

    Full Text Available Faults in engineering systems are difficult to avoid and may result in serious consequences. Effective fault detection and diagnosis can improve system reliability and avoid expensive maintenance. In this paper fuzzy system based fault detection scheme for permanent magnet synchronous generator is proposed. The sequence current components like positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. Also, the fuzzy inference system is created and rule base is evaluated, relating the sequence current component to the type of faults. These rules are fired for specific changes in sequence current component and the faults are detected. The feasibility of the proposed scheme for permanent magnet synchronous generator is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.

  5. Alternative designs of high-temperature superconducting synchronous generators

    OpenAIRE

    Goddard, K. F.; Lukasik, B.; Sykulski, J. K.

    2010-01-01

    This paper discusses the different possible designs of both cored and coreless superconducting synchronous generators using high-temperature superconducting (HTS) tapes, with particular reference to demonstrators built at the University of Southampton using BiSCCO conductors. An overview of the electromagnetic, thermal, and mechanical issues is provided, the advantages and drawbacks of particular designs are highlighted, the need for compromises is explained, and practical solutions are offer...

  6. Automatic Generation of Symbolic Model for Parameterized Synchronous Systems

    Institute of Scientific and Technical Information of China (English)

    Wei-Wen Xu

    2004-01-01

    With the purpose of making the verification of parameterized system more general and easier, in this paper, a new and intuitive language PSL (Parameterized-system Specification Language) is proposed to specify a class of parameterized synchronous systems. From a PSL script, an automatic method is proposed to generate a constraint-based symbolic model. The model can concisely symbolically represent the collections of global states by counting the number of processes in a given state. Moreover, a theorem has been proved that there is a simulation relation between the original system and its symbolic model. Since the abstract and symbolic techniques are exploited in the symbolic model, state-explosion problem in traditional verification methods is efficiently avoided. Based on the proposed symbolic model, a reachability analysis procedure is implemented using ANSI C++ on UNIX platform. Thus, a complete tool for verifying the parameterized synchronous systems is obtained and tested for some cases. The experimental results show that the method is satisfactory.

  7. Banding of connection standards for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This report presents the views of distributed network operators (DNOs), developers, equipment manufacturers and consultants on the current banding of distributed generation in terms of connection standards and recommendations. The Documents ER G59/1, ER G75/1, ER G83/1 and ETR 113/1 covering recommendations for the connection of embedded generating plant to distribution systems and guidance notes for the protection of embedded generating plant are examined. The way in which the recommendations are applied in practice is investigated. Multiple distribution generator installations, fault ride through, and banding are considered as well as both protection required and maximum generator sizes at respective voltage levels.

  8. Voltage Regulation Using a Permanent Magnet Synchronous Generator with a Series Compensator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ping; Wu, Ziping; Muljadi, Eduard; Gao, Wenzhong

    2015-08-24

    A wind power plant (WPP) is often operated at unity power factor, and the utility host where the WPP connects prefers to regulate the voltage. Although this may not be an issue in a stiff grid, the connection to a weak grid can be a problematic. This paper explores the advantages of having voltage regulation capability via reactive power control. Another issue in wind power generation is that not all turbines are able to control their reactive power due to technical reasons or contractual obligations. A synchronous condenser (SC) using a permanent magnet synchronous generator (PMSG) is proposed to provide necessary reactive power for regulating voltage at a weak grid connection. A PMSG has the advantage of higher efficiency and reliability. Because of its lack of a field winding, a PMSG is typically controlled by a full-power converter, which can be costly. In the proposed system, the reactive power of the SC is controlled by a serially connected compensator operating in a closed-loop configuration. The compensator also damps the PMSG’s tendency to oscillate. The compensator’s VA rating is only a fraction of the rating of the SC and the PMSG. In this initial investigation, the proposed scheme is shown to be effective by computer simulations.

  9. An improved synchronous reference frame phase-locked loop for stand-alone variable speed constant frequency power generation systems

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Ke, Longzhang

    2017-01-01

    The phase-locked loop (PLL) based on conventional synchronous reference frame, i.e. dqPLL, is usually employed in grid-connected variable speed constant frequency (VSCF) power generation systems (PGSs). However, the voltage amplitude drop of stand-alone PGSs is often greater than that of the grid...

  10. Claw-pole Synchronous Generator for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    PAVEL Valentina

    2013-05-01

    Full Text Available This paper presents a claw-poles generator for compressed air energy storage systems. It is presented the structure of such a system used for compensating of the intermittency of a small wind energy system. For equipping of this system it is chosen the permanent magnet claw pole synchronous generator obtained by using ring NdFeB permanentmagnets instead of excitation coil. In such a way the complexity of the scheme is reduced and the generator become maintenance free. The new magnetic flux density in the air-gap is calculated by magneticreluctance method and by FEM method and the results are compared with measured values in the old and new generator.

  11. Research on Distributed PV Storage Virtual Synchronous Generator System and Its Static Frequency Characteristic Analysis

    Directory of Open Access Journals (Sweden)

    Xiangwu Yan

    2018-03-01

    Full Text Available The increasing penetration rate of grid connected renewable energy power generation reduces the primary frequency regulation capability of the system and poses a challenge to the security and stability of the power grid. In this paper, a distributed photovoltaic (PV storage virtual synchronous generator system is constructed, which realizes the external characteristics of synchronous generator/motor. For this kind of input/output bidirectional devices (e.g., renewable power generation/storage combined systems, pumped storage power stations, battery energy storage systems, and vehicle-to-grid electric vehicles, a synthesis analysis method for system power-frequency considering source-load static frequency characteristics (S-L analysis method is proposed in order to depict the system’s power balance dynamic adjustment process visually. Simultaneously, an inertia matching method is proposed to solve the problem of inertia matching in the power grid. Through the simulation experiment in MATLAB, the feasibility of the distributed PV storage synchronous virtual machine system is verified as well as the effectiveness of S-L analysis method and inertia matching method.

  12. Control of Permanent Magnet Synchronous Generator for large wind turbines

    DEFF Research Database (Denmark)

    Busca, Cristian; Stan, Ana-Irina; Stanciu, Tiberiu

    2010-01-01

    Direct Torque Control (DTC) and Field Oriented Control (FOC) are the most dominant control strategies used in generators for wind turbines. In this paper both control methods were implemented on a Permanent Magnet Synchronous Generator (PMSG). The variable speed wind turbine with full scale power...... converter topology was chosen for design. Parameters from a 2 MW wind turbine were used for system modeling. All the components of the wind turbine system (WTS), except the DC-link and the grid site converter were implemented in MATLAB/Simulink. The pitch controller was used to limit the output power...... produced by the turbine. DTC and FOC strategies, using SVM were used to control the generator rotor speed. The performance of the two control strategies were compared after different tests have been carried out....

  13. Benchmarking of Phase Locked Loop based Synchronization Techniques for Grid-Connected Inverter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Hadjidemetriou, Lenos; Blaabjerg, Frede

    2015-01-01

    Grid-connected renewables are increasingly developed in recent years, e.g. wind turbine systems and photovoltaic systems. Synchronization of the injected current with the grid is mandatory. However, grid disturbances like voltage sags, harmonics, and frequency deviations may occur during operatio...

  14. Adaptive Synchronization of Grid-Connected Threephase Inverters by Using Virtual Oscillator Control

    DEFF Research Database (Denmark)

    Li, Mingshen; Gui, Yonghao; Guerrero, Josep M.

    2018-01-01

    This paper presents an adaptive synchronization for current-controlled grid-connected inverter based on a time domain virtual oscillator controller (VOC). Inspired by the phenomenon of dynamics of adaptive oscillator under the perturbation effect. Firstly, the fast learning rule of the oscillator...

  15. Low-Voltage Ride-Through of Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2009-01-01

    This paper presents a simulation model of a MW-level variable speed wind turbine with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed in the simulation tool of PSCAD/EMTDC. The low voltage ride-through (LVRT) capability of the wind turbine is investigated. A new...... control scheme for the wind turbine that keeps it connected to the grid during grid faults is designed and simulated. Its design has special focus on the regulation of the DC-link voltage. Simulation results show the proposed control scheme is an effective measure to improve LVRT capability of variable...

  16. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    OpenAIRE

    Weihao Hu; Yunqian Zhang; Zhe Chen; Yanting Hu

    2013-01-01

    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution) power oscillation due to wind shear and tower shadow effects is the sign...

  17. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    Science.gov (United States)

    Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.

    2011-11-01

    Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  18. Permanent Magnet Synchronous Generator Driven Wind Energy Conversion System Based on Parallel Active Power Filter

    Directory of Open Access Journals (Sweden)

    FERDI Brahim

    2014-05-01

    Full Text Available This paper proposes a novel application of the instantaneous P-Q theory in a wind energy conversion system (WECS. The proposed WECS is formed by permanent magnet synchronous generator (PMSG wind turbine system connected to the grid through parallel active power filter (PAPF. PAPF uses the generated wind energy to feed loads connected at the point of common coupling (PPC, compensates current harmonics and injects the excess of this energy into the grid using P-Q theory as control method. To demonstrate the feasibility and the performance of the proposed control scheme, simulation of this wind system has been realized using MATLAB/SIMULINK software. Simulation results show the accuracy and validity of the proposed control scheme for the PMSGPAPF system.

  19. Comprehensive synchronous reference frame discrete-time modelling of a grid-connected PV for fast DC-side voltage control

    NARCIS (Netherlands)

    Almeida, P.M.; Barbosa, P.G.; Duarte, J.L.; Ribeiro, P.F.

    2017-01-01

    This paper presents a novel comprehensive discrete-time model of a three-phase single stage grid-connected photovoltaic generation system. The detailed model is carried out on synchronous reference frame. It is shown that both converter's AC and DC-side discrete time model differs from the

  20. Internet services for planning distributed generation connections

    Energy Technology Data Exchange (ETDEWEB)

    Curry, D.; Morgan, A.; Barbier, C.; Reay, P.

    2005-07-01

    The required publication by distributed network operators (DNOs) of details of the current state of their network systems and future planned developments in the form of Long Term Development Statements (LTDS) are discussed. This project aims to increase the usefulness of the information in the LTDS by making it available on the internet and by providing an initial assessment of connection opportunities and the possibility of viewing existing renewable generation projects. The services developed covered data loading, data visualisation, security, connection assessment, reporting, and generation site registration. The benefits of an electronic version of the LTDS are highlighted.

  1. Zero-Axis Virtual Synchronous Coordinate Based Current Control Strategy for Grid-Connected Inverter

    Directory of Open Access Journals (Sweden)

    Longyue Yang

    2018-05-01

    Full Text Available Unbalanced power has a great influence on the safe and stable operation of the distribution network system. The static power compensator, which is essentially a grid-connected inverter, is an effective solution to the three-phase power imbalance problem. In order to solve the tracking error problem of zero-sequence AC current signals, a novel control strategy based on zero-axis virtual synchronous coordinates is proposed in this paper. By configuring the operation of filter transmission matrices, a specific orthogonal signal is obtained for zero-axis reconstruction. In addition, a controller design scheme based on this method is proposed. Compared with the traditional zero-axis direct control, this control strategy is equivalent to adding a frequency tuning module by the orthogonal signal generator. The control gain of an open loop system can be equivalently promoted through linear transformation. With its clear mathematical meaning, zero- sequence current control can be controlled with only a first-order linear controller. Through reasonable parameter design, zero steady-state error, fast response and strong stability can be achieved. Finally, the performance of the proposed control strategy is verified by both simulations and experiments.

  2. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  3. Micro-generation network connection (renewables)

    Energy Technology Data Exchange (ETDEWEB)

    Thornycroft, J.; Russell, T.; Curran, J.

    2003-07-01

    The drive to reduce emissions of carbon dioxide will result in an increase in the number of small generation units seeking connection to the electric power distribution network. The objectives of this study were to consider connection issues relating to micro-generation from renewables and their integration into the UK distribution network. The document is divided into two sections. The first section describes the present system which includes input from micro-generation, the technical impacts and the financial considerations. The second part discusses technical, financial and governance options for the future. A summary of preferred options and recommendations is given. The study was carried out by the Halcrow Group Ltd under contract to the DTI.

  4. Design and Implementation of the Permanent- Magnet Synchronous Generator Drive in Wind Generation Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the permanent-magnet synchronous generator drive in wind generation systems is presented in this paper. The permanent-magnet synchronous generator (PMSG can converse the alternating current (AC power of the wind turbine to direct current (DC power. In this paper, the dynamic model of a PMSG is first introduced. The current controller is designed based on T-S fuzzy models of the PMSG. The stability of the proposed PMSG drive system is analyzed and proved. The proposed T-S fuzzy current control possesses a disturbance suppression ability. Compared with the traditional fuzzy logic system, its stability can be proved and verified. Finally, the control performance of the PMSG drive is verified by experimental results.

  5. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  6. Grid Compatibility of Variable Speed Wind Turbines with Directly Coupled Synchronous Generator and Hydro-Dynamically Controlled Gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.; Poeller, M. [DIgSILENT GmbH, 72810 Gomaringen (Germany); Basteck, A.; Tilscher, M.; Pfister, J. [Voith Turbo GmbH and Co. KG, 74564 Crailsheim (Germany)

    2006-07-01

    This paper analyzes grid integration aspects of a new type of variable-speed wind turbine, the directly coupled synchronous generator with hydro-dynamically controlled gearbox. In contrast to existing wind generators using synchronous generators, the generator of this concept is directly connected to the AC grid, without the application of any power electronics converter. Variable speed operation of the turbine is mechanically achieved by a gear box with continuously controllable variable gear box ratio. For this purpose, a detailed dynamic model of a 2 MW wind turbine with a Voith WinDrive has been implemented using the modelling environment of the simulation software DIgSILENT PowerFactory. For investigating grid compatibility aspects of this new wind generator concept, a model of a 50 MW wind farm, with typical layout, based on 25 wind turbines of the 2 MW-class has been analyzed. This paper focuses on the compatibility of the new concept with existing connection standards, such as the E.ON grid code. Of special interest are typical stability phenomena of synchronous generators, such as transient and oscillatory stability as well as power quality issues like voltage flicker. The results of stability studies are presented and possible advantages of the new concept with special focus on offshore applications are discussed.

  7. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H.; Kim, A.R.; Kim, S. [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Park, M., E-mail: paku@changwon.ac.kr [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, I.K. [Changwon National University, 9 Sarim-dong, Changwon 641-773 (Korea, Republic of); Seong, K.C. [Superconducting Device and Cryogenics Group, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Won, Y.J. [Korea Electric Power Corporation, Changwon 641-241 (Korea, Republic of)

    2011-11-15

    A novel connection topology of SMES is proposed in this paper. Structure of the proposed system is cost-effective because it reduces a converter. The proposed system smoothens output power of wind power generation system. Advantage of the system is to improve the low voltage ride through capability. Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  8. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    International Nuclear Information System (INIS)

    Kim, G.H.; Kim, A.R.; Kim, S.; Park, M.; Yu, I.K.; Seong, K.C.; Won, Y.J.

    2011-01-01

    A novel connection topology of SMES is proposed in this paper. Structure of the proposed system is cost-effective because it reduces a converter. The proposed system smoothens output power of wind power generation system. Advantage of the system is to improve the low voltage ride through capability. Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  9. Superconduction in limiting-power synchronous generators. State, lines of development, problems

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, H W; Sergl, J

    1976-01-01

    The limiting power of conventional 2-pole rotary current synchronous generators is estimated. The limiting power may be raised by using superconducting materials for the field winding. After a short description of superconductive materials, the construction of a synchronous generator with a superconducting field winding is described. Finally, some problems in calculating the magnetic field and the transient behavior are discussed.

  10. Synaptic Remodeling Generates Synchronous Oscillations in the Degenerated Outer Mouse Retina

    Directory of Open Access Journals (Sweden)

    Wadood eHaq

    2014-09-01

    Full Text Available During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs establish contacts with remnant cone photoreceptors (cones as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs, we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from HCs. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.

  11. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance.

    Science.gov (United States)

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-09-26

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.

  12. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  13. Permanent magnet working point ripple in synchronous generators

    Directory of Open Access Journals (Sweden)

    Stefan Sjökvist

    2017-04-01

    Full Text Available Permanent magnets (PMs are today widely used in electrical machines of all sorts. With their increase in popularity, the amount of research has increased as well. In this study, the magnetic flux density ripple of the working point of the PMs in a 100 kW PM synchronous generator has been investigated for three different load cases: no load, AC load, and DC load. The PMs will be subjected to a shift in working point as a consequence of the characteristics of the electrical loading. This study is based on finite element method simulations where the ripple of the magnetic flux density in the PMs was recorded at three positions within a PM. The slot harmonic of 7.5 times the electrical frequency (f(el was present in the results for all load cases, but mainly at the surface of the PM, as expected. Results showed an unexpected harmonic of 1.5 f(el, assumed to be an undertone of the slot harmonics. The 6f(el harmonic for the DC load case was significantly higher than for the AC load case and is caused by the current fluctuation during passive rectification. For the studied machine, the added harmonics in the magnetic field due to passive rectification are less than the slot-related harmonics.

  14. Transient characteristics of parallel running of the 20kVA superconducting synchronous generator and a conventional one

    International Nuclear Information System (INIS)

    Nitta, T.; Okada, T.

    1989-01-01

    This paper describes electrical transient characteristics of parallel running of the 20kVA superconducting synchronous generator and a conventional one. In the experimental power system, the superconducting generator is connected through reactors (artificial transmission lines) to a regional power system (infinite bus) and the conventional generator (20kVA) is connected to the terminal of the superconducting generator. Several tests were performed in order to consider the transient behavior of superconducting generator (SCG) in the power system. The items of the tests are synchronous closing test, loss of synchronism test and disconnecting and reclosing test. From the experimental results, it can be said that by installing SCG in power systems, voltage stability and power system stability can be improved in transient states as well as in steady states and the variation of armature current of SCG during a transient period is extremely larger than that of the conventional one. The transient analysis by a computer simulation was also carried out for the experiments. The simulation results are in good agreement with the experimental ones

  15. Generating spatiotemporal joint torque patterns from dynamical synchronization of distributed pattern generators

    Directory of Open Access Journals (Sweden)

    Alex Pitti

    2009-10-01

    Full Text Available Pattern generators found in the spinal cords are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitute an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body’s dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment. Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cords, and for exploring the motor synergies in robots.

  16. Internet services for planning embedded generation connections

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    The required publication by distributed network operators (DNOs) of details of the current state of their network systems and future planned developments in the form of Long Term Development Statements (LTDS) are discussed. This project aims to increase the usefulness of the information in the LTDS by making it available on the internet, by transforming LTDSs into electronic format, and integrating LTDS information with geographical information in a single database. Services developed provide for data loading, data visualisation, initial assessment of connection opportunities, and reporting. The benefits of the services, and the demonstrated feasibility of publishing information concerning UK renewable generation sites are considered. The web address of the site is given.

  17. Establishing and maintaining a satellite campus connected by synchronous video conferencing.

    Science.gov (United States)

    Fox, Brent I; McDonough, Sharon L; McConatha, Barry J; Marlowe, Karen F

    2011-06-10

    Pharmacy education has experienced substantial growth in the number of new schools and existing schools establishing satellite campuses. Several models have previously been used to connect primary and satellite campuses. We describe the Auburn University Harrison School of Pharmacy's (AUHSOP's) experiences using synchronous video conferencing between the Auburn University campus in Auburn and a satellite campus in Mobile, Alabama. We focus on the technology considerations related to planning, construction, implementation, and continued use of the various resources that support our program. Students' perceptions of their experiences related to technology also are described.

  18. Low Voltage Ride-Through Capability Solutions for Permanent Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Victor F. Mendes

    2016-01-01

    Full Text Available Due to the increasing number of wind power plants, several countries have modified their grid codes to include specific requirements for the connection of this technology to the power system. One of the requirements is the ride-through fault capability (RTFC, i.e., the system capability to sustain operation during voltage sags. In this sense, the present paper intends to investigate the behavior of a full-converter wind generator with a permanent magnet synchronous machine during symmetrical and asymmetrical voltage sags. Two solutions to improve the low voltage ride-through capability (LVRT of this technology are analyzed: discharging resistors (brake chopper and resonant controllers (RCs. The design and limitations of these solutions and the others proposed in the literature are discussed. Experimental results in a 34 kW test bench, which represents a scaled prototype of a real 2 MW wind conversion system, are presented.

  19. Analysis of Generator Oscillation Characteristics Based on Multiple Synchronized Phasor Measurements

    Science.gov (United States)

    Hashiguchi, Takuhei; Yoshimoto, Masamichi; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro

    In recent years, there has been considerable interest in the on-line measurement, such as observation of power system dynamics and evaluation of machine parameters. On-line methods are particularly attractive since the machine’s service need not be interrupted and parameter estimation is performed by processing measurements obtained during the normal operation of the machine. Authors placed PMU (Phasor Measurement Unit) connected to 100V outlets in some Universities in the 60Hz power system and examine oscillation characteristics in power system. PMU is synchronized based on the global positioning system (GPS) and measured data are transmitted via Internet. This paper describes an application of PMU for generator oscillation analysis. The purpose of this paper is to show methods for processing phase difference and to estimate damping coeffcient and natural angular frequency from phase difference at steady state.

  20. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe

    2013-01-01

    operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power...... oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.......Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG...

  1. Flicker Study on Variable Speed Wind Turbines with Permanent Magnet Synchronous Generator

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Yue

    2008-01-01

    capacity, grid impedance angle) are analyzed. Flicker mitigation is realized by output reactive power control of the variable speed wind turbines with PMSG. Simulation results show the output reactive power control is an effective measure to mitigate the flicker during continuous operation of grid......Grid connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbines with a permanent magnet synchronous generator (PMSG) and a full-scale converter developed...... in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated during continuous operation. The dependence of flicker emission on wind characteristics (mean speed, turbulence intensity), 3p torque oscillations due to wind shear and tower shadow effects and grid conditions (short circuit...

  2. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    Energy Technology Data Exchange (ETDEWEB)

    Ohmacht, Martin

    2017-08-15

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  3. Generation-based memory synchronization in a multiprocessor system with weakly consistent memory accesses

    Science.gov (United States)

    Ohmacht, Martin

    2014-09-09

    In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.

  4. Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2016-06-01

    Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.

  5. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)

    2007-02-14

    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  6. Design and testing of an armature-reaction-compensated permanent magnet synchronous generator for island operation

    Energy Technology Data Exchange (ETDEWEB)

    Kamiev, K.

    2013-11-01

    At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6

  7. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  8. Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids

    DEFF Research Database (Denmark)

    Ashabani, Mahdi; Gooi, Hoay Beng; Guerrero, Josep M.

    2018-01-01

    This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both...... and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power...... sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management...

  9. Increased overall cortical connectivity with syndrome specific local decreases suggested by atypical sleep-EEG synchronization in Williams syndrome.

    Science.gov (United States)

    Gombos, Ferenc; Bódizs, Róbert; Kovács, Ilona

    2017-07-21

    Williams syndrome (7q11.23 microdeletion) is characterized by specific alterations in neurocognitive architecture and functioning, as well as disordered sleep. Here we analyze the region, sleep state and frequency-specific EEG synchronization of whole night sleep recordings of 21 Williams syndrome and 21 typically developing age- and gender-matched subjects by calculating weighted phase lag indexes. We found broadband increases in inter- and intrahemispheric neural connectivity for both NREM and REM sleep EEG of Williams syndrome subjects. These effects consisted of increased theta, high sigma, and beta/low gamma synchronization, whereas alpha synchronization was characterized by a peculiar Williams syndrome-specific decrease during NREM states (intra- and interhemispheric centro-temporal) and REM phases of sleep (occipital intra-area synchronization). We also found a decrease in short range, occipital connectivity of NREM sleep EEG theta activity. The striking increased overall synchronization of sleep EEG in Williams syndrome subjects is consistent with the recently reported increase in synaptic and dendritic density in stem-cell based Williams syndrome models, whereas decreased alpha and occipital connectivity might reflect and underpin the altered microarchitecture of primary visual cortex and disordered visuospatial functioning of Williams syndrome subjects.

  10. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  11. Exploration of a Permanent Magnet Synchronous Generator with Compensated Reactance Windings in Parallel Rod Configuration

    Science.gov (United States)

    Lyan, Oleg; Jankunas, Valdas; Guseinoviene, Eleonora; Pašilis, Aleksas; Senulis, Audrius; Knolis, Audrius; Kurt, Erol

    2018-02-01

    In this study, a permanent magnet synchronous generator (PMSG) topology with compensated reactance windings in parallel rod configuration is proposed to reduce the armature reactance X L and to achieve higher efficiency of PMSG. The PMSG was designed using iron-cored bifilar coil topology to overcome problems of market-dominant rotary type generators. Often the problem is a comparatively high armature reactance X L, which is usually bigger than armature resistance R a. Therefore, the topology is proposed to partially compensate or negligibly reduce the PMSG reactance. The study was performed by using finite element method (FEM) analysis and experimental investigation. FEM analysis was used to investigate magnetic field flux distribution and density in PMSG. The PMSG experimental analyses of no-load losses and electromotive force versus frequency (i.e., speed) was performed. Also terminal voltage, power output and efficiency relation with load current at different frequencies have been evaluated. The reactance of PMSG has low value and a linear relation with operating frequency. The low reactance gives a small variation of efficiency (from 90% to 95%) in a wide range of load (from 3 A to 10 A) and operation frequency (from 44 Hz to 114 Hz). The comparison of PMSG characteristics with parallel and series winding connection showed insignificant power variation. The research results showed that compensated reactance winding in parallel rod configuration in PMSG design provides lower reactance and therefore, higher efficiency under wider load and frequency variation.

  12. Challenges to Grid Synchronization of Single-Phase Grid-Connected Inverters in Zero-Voltage Ride-Through Operation

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With the fast development in Photovoltaic (PV) technology, the relevant grid-connection requirements/standards are continuously being updated, and more challenges have been imposed on both single-phase and three-phase grid-connected PV systems. For instance, PV systems are currently required...... to remain connected under grid voltage sags (even zero voltage condition). In this case, much attention should be paid to the grid synchronization in such a way to properly ride-through grid faults. Thus, in this paper, the most commonly-used and recently-developed Phase Locked Loop (PLL) synchronization...... methods have been evaluated for single-phase grid-connected PV systems in the case of Zero-Voltage Ride-Through (ZVRT) operation. The performances of the prior-art PLL methods in response to zero voltage faults in terms of detection precision and dynamic response are assessed in this paper. Simulation...

  13. Models for the transient stability of conventional power generating stations connected to low inertia systems

    Science.gov (United States)

    Zarifakis, Marios; Coffey, William T.; Kalmykov, Yuri P.; Titov, Sergei V.

    2017-06-01

    An ever-increasing requirement to integrate greater amounts of electrical energy from renewable sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating stations. One observation is the change in the electrical power output of synchronous generators following a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot be reproduced with existing mathematical models indicating that an understanding of the behaviour of synchronous generators, subjected to various disturbances especially in a system with low inertia requires a new modelling technique. Thus two models of a generating station based on a double pendulum described by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given and compared with numerical solutions. In particular the new finite grid model will allow one to identify limitations to the operational range of the synchronous generators used in conventional power generation and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to ± 0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements to the total inertia necessary, which is currently provided by conventional power generators only, thus allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and solar photo-voltaic installations.

  14. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity.

    Science.gov (United States)

    Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko

    2012-01-01

    Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.

  15. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    Directory of Open Access Journals (Sweden)

    Han Shuangshuang

    2013-07-01

    Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.

  16. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography.

    Science.gov (United States)

    Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang

    2010-08-16

    Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.

  17. Research on the control strategy of distributed energy resources inverter based on improved virtual synchronous generator.

    Science.gov (United States)

    Gao, Changwei; Liu, Xiaoming; Chen, Hai

    2017-08-22

    This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.

  18. The Synchronous Generators Rated Speed’s Influence on Electromagnetic Stresses and on Costs

    Directory of Open Access Journals (Sweden)

    Elisabeta Spunei

    2013-09-01

    Full Text Available During the design of synchronous generators is very important to establish the values of their electromagnetic stresses. The specific literature recommends that these stress values are to be chosen from the curves obtained during experimental design, where the independent values are the polar pitch and the number of pole pairs. The authors of this work propose a method of finding the dependency between the electromagnetic stress and the synchronous generator rated speed to rapidly estimate the stresses in a given interval of rated speed values.

  19. A Stationary Reference Frame Grid Synchronization System for Three-Phase Grid-Connected Power Converters Under Adverse Grid Conditions

    DEFF Research Database (Denmark)

    Rodríguez, P.; Luna, A.; Muñoz-Aguilar, R. S.

    2012-01-01

    synchronization method for three-phase three-wire networks, namely dual second-order generalized integrator (SOGI) frequency-locked loop. The method is based on two adaptive filters, implemented by using a SOGI on the stationary αβ reference frame, and it is able to perform an excellent estimation......Grid synchronization algorithms are of great importance in the control of grid-connected power converters, as fast and accurate detection of the grid voltage parameters is crucial in order to implement stable control strategies under generic grid conditions. This paper presents a new grid...

  20. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    Science.gov (United States)

    Grigoriadis, Karolos M.; Nyanteh, Yaw D.

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control. PMID:25884036

  1. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Guoyan Cao

    2015-01-01

    Full Text Available Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  2. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  3. An optimally evolved connective ratio of neural networks that maximizes the occurrence of synchronized bursting behavior

    Science.gov (United States)

    2012-01-01

    Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685

  4. A network of networks model to study phase synchronization using structural connection matrix of human brain

    Science.gov (United States)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  5. Robust transient stabilisation problem for a synchronous generator in a power network

    Science.gov (United States)

    Verrelli, C. M.; Damm, G.

    2010-04-01

    The robust transient stabilisation problem (with stability proof€) of a synchronous generator in an uncertain power network with transfer conductances is rigorously formulated and solved. The generator angular speed and electrical power are required to be kept close, when mechanical and electrical perturbations occur, to the synchronous speed and mechanical input power, respectively, while the generator terminal voltage is to be regulated, when perturbations are removed, to its pre-fault reference constant value. A robust adaptive nonlinear feedback control algorithm is designed on the basis of a third-order model of the synchronous machine: only two system parameters (synchronous machine damping and inertia constants) along with upper and lower bounds on the remaining uncertain ones are supposed to be known. The conditions to be satisfied by the remote network dynamics for guaranteeing ℒ2 and ℒ∞ robustness and asymptotic relative speed and voltage regulation to zero are weaker than those required by the single machine-infinite bus approximation: dynamic interactions between the local deviations of the generator states from the corresponding equilibrium values and the remote generators states are allowed.

  6. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas W. [GE Energy Management, Atlanta, GA (United States); Leonardi, Bruno [GE Energy Management, Atlanta, GA (United States); D' Aquila, Robert [GE Energy Management, Atlanta, GA (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable

  7. Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2016-01-01

    Full Text Available In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW. This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it

  8. Going smarter in the connection of distributed generation

    International Nuclear Information System (INIS)

    Anaya, Karim L.; Pollitt, Michael G.

    2017-01-01

    This study explores and quantifies the benefits of connecting more distributed generation (DG) with and without the use of smart connections in Great Britain. We examine the impacts on different parties (Distribution Network Operators, wider society and generators). As illustration we use a specific case study. Alternative connection scenarios are proposed (with partial and full interruptible capacity quota under a mix of generation with different technology-specific curtailment levels) for integrating DG units in a constrained area of the East of England covered by the Flexible Plug and Play project. The smart (interruptible) connection option is the preferred option across all the scenarios (higher NPV/MW). The analysis of the distribution of benefits between the different parties suggests that generators capture most of the benefits while DNOs and wider society capture much less benefit. A smart connection incentive, which recreates the benefits to DNOs from an earlier losses incentive, is proposed. By contrast with other societally desirable metrics which are usually incentivised or penalised, there is currently no direct connection between more DG MWs connected and DNO incentive payments. Our proposed smart connection incentive, by charging DG for smarter connection may help to distribute more efficiently the benefits for connecting more DG. - Highlights: • Three different dimensions of going smarter to connect DG are discussed. • Benefits for connecting DG in a constrained area (FPP project) are estimated. • Different DG connection scenarios are evaluated. • Generators benefit the most and wider society the least. • A smart connection incentive may help to reallocate the benefits of DG more efficiently.

  9. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  10. The stability of a class of synchronous generator damping model

    Science.gov (United States)

    Liu, Jun

    2018-03-01

    Electricity is indispensable to modern society and the most convenient energy, it can be easily transformed into other forms of energy, has been widely used in engineering, transportation and so on, this paper studied the generator model with damping machine, using the Lyapunov function method, we obtain sufficient conditions for the asymptotic stability of the model.

  11. Analysis of synchronous and induction generators used at hydroelectric power plant

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  12. A generative modeling approach to connectivity-Electrical conduction in vascular networks

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav

    2016-01-01

    The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel...... to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks...... of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub...

  13. Application of a synchronous generator with a boost converter in wind turbines: an experimental overview

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Bogi Bech

    2012-01-01

    An electrical structure of a variable-speed wind turbine based on an externally excited synchronous generator; a passive diode rectifier; and a boost converter is discussed in this study. The clear advantage of such a system is its lower-semi-conductor devices count. A brief theoretical explanation...... of such a system is included. A boost converter normally utilies an inductor (energy storage) to boost the voltage level from its input to a higher output value. This study analyses the possibility of using the generator inductance as a boost inductor. It is discussed and verified in the study that for the given...... switching frequency of the boost converter (fs=1= kHz), the generator sub-transient inductance (not the synchronous inductance) appears as an equivalent inductance seen by the boost converter. The parasitic capacitors present in the generator terminals are often neglected from design issues. It is presented...

  14. Development of synchronous generator saturation model from steady-state operating data

    Energy Technology Data Exchange (ETDEWEB)

    Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)

    2010-11-15

    A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)

  15. MODELING AND STUDY OF HYDROELECTRIC GENERATING SETS OF SMALL HYDRO POWER PLANTS WITH FREQUENCY-CONTROLLED PERMANENT MAGNET SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2016-01-01

    Full Text Available Currently, the hydroelectric generating sets of small HPPs with Pelton turbines employ as their generating units conventional synchronous generators with electromagnetic excitation. To deal with the torque pulsatile behaviour, they generally install a supplementary flywheel on the system shaft that levels the pulsations. The Pelton turbine power output is adjusted by the needle changing water flow in the nozzle, whose advancement modifies the nozzle area and eventually – the flow. They limit the needle full stroke time to 20–40 sec. since quick shutting the nozzle for swift water flow reduction may result in pressure surges. For quick power adjustment so-called deflectors are employed, whose task is retraction of water jets from the Pelton turbine buckets. Thus, the mechanical method of power output regulation requires agreement between the needle stroke inside the turbine nozzles and the deflector. The paper offers employing frequency-controlled synchronous machines with permanent magnets qua generating units for the hydroelectric generating sets of small HPPs with Pelton turbines. The developed computer model reveals that this provides a higher level of adjustability towards rapid-changing loads in the grid. Furthermore, this will replace the power output mechanical control involving the valuable deflector drive and the turbine nozzle needles with electrical revolution rate and power output regulation by a frequency converter located in the generator stator circuit. Via frequency start, the controllable synchronous machine ensures stable operation of the hydroelectric generating set with negligibly small amount of water (energy carrier. Finally, in complete absence of water, the frequency-relay start facilitates shifting the generator operation to the synchronous capacitor mode, which the system operating parameter fluctograms obtained through computer modeling prove. 

  16. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  17. Validity testing of third-order nonlinear models for synchronous generators

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, M.A. [Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de La Laguna Torreon, Coah. (Mexico); Escarela-Perez, R. [Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, Av. San Pablo 180, Col. Reynosa, C.P. 02200 (Mexico); Espinosa-Perez, G. [Division de Estudios Posgrado de la Facultad de Ingenieria Universidad Nacional Autonoma de Mexico (Mexico); Alvarez-Ramirez, J. [Universidad Autonoma Metropolitana -Iztapalapa, Division de Ciencias Basicas e Ingenieria (Mexico)

    2009-06-15

    Third-order nonlinear models are commonly used in control theory for the analysis of the stability of both open-loop and closed-loop synchronous machines. However, the ability of these models to describe the electrical machine dynamics has not been tested experimentally. This work focuses on this issue by addressing the parameters identification problem for third-order models for synchronous generators. For a third-order model describing the dynamics of power angle {delta}, rotor speed {omega} and quadrature axis transient EMF E{sub q}{sup '}, it is shown that the parameters cannot be identified because of the effects of the unknown initial condition of E{sub q}{sup '}. To avoid this situation, a model that incorporates the measured electrical power dynamics is considered, showing that state measurements guarantee the identification of the model parameters. Data obtained from a 7 kVA lab-scale synchronous generator and from a 150 MVA finite-element simulation were used to show that, at least for the worked examples, the estimated parameters display only moderate variations over the operating region. This suggests that third-order models can suffice to describe the main dynamical features of synchronous generators, and that third-order models can be used to design and tune power system stabilizers and voltage regulators. (author)

  18. Impact Assessment of Various Methods for Control of Synchronous Generator Excitation on Quality of Transient Processes

    Directory of Open Access Journals (Sweden)

    Y. D. Filipchik

    2011-01-01

    Full Text Available The paper considers an impact of various methods for control of an exciting current pertaining to a synchronous generator on the nature of transient processes. A control algorithm for the exciting current in relation to changes in sliding and acceleration of a generator rotor has been proposed in the paper. The algorithm makes it possible to improve quality of the transient processes due to reduction of oscillation range concerning as an active power so a δ-angle as well.

  19. Torsional vibration analysis in turbo-generator shaft due to mal-synchronization fault

    Science.gov (United States)

    Bangunde, Abhishek; Kumar, Tarun; Kumar, Rajeev; Jain, S. C.

    2018-03-01

    A rotor of turbo-generator shafting is many times subjected to torsional vibrations during its lifespan. The reasons behind these vibrations are three-Phase fault, two-phase fault, line to ground fault, faulty-mal synchronization etc. Sometimes these vibrations can cause complete failure of turbo-generator shafting system. To calculate moment variation during these faults on the shafting system vibration analysis is done using Finite Elements Methods to calculate mass and stiffness matrix. The electrical disturbance caused during Mal-synchronization is put on generator section, and corresponding second order equations are solved by using “Duhamel Integral”. From the moment variation plots at four sections critically loaded sections are identified.

  20. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  1. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden)

    2011-01-15

    When designing a generator for a wind turbine it is important to adapt the generator to the source, i.e. the wind conditions at the specific site. Furthermore, the variable speed operation of the generator needs to be considered. In this paper, electromagnetic losses in direct driven permanent magnet synchronous generators are evaluated through simulations. Six different generators are compared to each other. The simulations are performed by using an electromagnetic model, solved in a finite element environment and a control model developed in MATLAB. It is shown that when designing a generator it is important to consider the statistical wind distribution, control system, and aerodynamic efficiency in order to evaluate the performance properly. In this paper, generators with high overload capability are studied since they are of interest for this specific application. It is shown that a generator optimised for a minimum of losses will have a high overload capability. (author)

  2. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    OpenAIRE

    Naggar H. Saad; Ahmed A. El-Sattar; Mohamed I. Marei

    2016-01-01

    The main challenges of wind energy conversion systems (WECS) are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG) based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG curren...

  3. Determination of Permissible Short-Time Emergency Overloading of Turbo-Generators and Synchronous Compensators

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2011-01-01

    Full Text Available The paper shows that failure to take into account variable ratio of short-time emergency overloading of turbo-generators (synchronous compensators that can lead to underestimation of overloading capacity or impermissible insulation over-heating.A method has been developed for determination of permissible duration of short-time emergency over-loading that takes into account changes of over-loading ratio in case of a failure.

  4. Simulating synchronization in neuronal networks

    Science.gov (United States)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  5. Embedded generation connection incentives for distribution network operators

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.; Andrews, S.

    2002-07-01

    This is the final report with respect to work commissioned by the Department of Trade and Industry (DTI) as part of the New and Renewable Energy Programme into incentives for distribution network operators (DNOs) for the connection of embedded generation. This report, which incorporates the contents of the interim report submitted in February 2002, considers the implications of changes in the structure and regulation in the UK electricity industry on the successful technical and commercial integrated of embedded generation into distribution networks. The report examines: the obligations of public electricity suppliers (PESs); current DNO practices regarding the connection of embedded generation; the changes introduced by the Utilities Act 2000, including the impact of new obligations placed on DNOs on the connection of embedded generation and the requirements of the new Electricity Distribution Standard Licence conditions; and problems and prospects for DNO incentives.

  6. Selecting tense, aspect, and connecting words in language generation

    Energy Technology Data Exchange (ETDEWEB)

    Gaasterland, T. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Dorr, B. [Univ. of Maryland, College Park, MD (United States). Dept. of Computer Science

    1995-12-31

    Generating language that reflects the temporal organization of represented knowledge requires a language generation model that integrates contemporary theories of tense and aspect, temporal representations, and methods to plan text. This paper presents a model that produces complex sentences that reflect temporal relations present in underlying temporal concepts. The main result of this work is the successful application of constrained linguistic theories of tense and aspect to a generator which produces meaningful event combinations and selects appropriate connecting words that relate them.

  7. Coordinated Low Voltage Ride through strategies for Permanent Magnet Direct Drive Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Zhang Ge

    2016-01-01

    Full Text Available By analyzing the mechanism of the low voltage ride through on the permanent magnet direct drive synchronous wind power generating units, this paper proposes a coordinated control strategy for permanent magnet synchronous generator. In order to avoid over speed operation of the generation units, over voltage on DC capacitor and over current on convert, the improved pitch angle control and inverter control are used. When the grid voltage drops, the captured wind power is cut down by the variable pitch system, which limits the speed of the generator, the generator side converter keeps the DC capacitor voltage stabile; and the grid side converter provides reactive power to the grid to help the grid voltage recover. The control strategy does not require any additional hardware equipment, with existing control means, the unit will be able to realize low voltage ride through. Finally, based on Matlab/Simulink to build permanent magnet direct drive wind power generation system, the simulation results verify the correctness and effectiveness of the control strategy.

  8. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  9. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Science.gov (United States)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-08-01

    In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  10. Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

    International Nuclear Information System (INIS)

    Messadi, Manal; Mellit, Adel; Kemih, Karim; Ghanes, Malek

    2015-01-01

    This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. (paper)

  11. Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)

    2000-08-01

    In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)

  12. Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

    Science.gov (United States)

    Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes

    2015-01-01

    This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).

  13. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    Science.gov (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  14. Motion planning and synchronized control of the dental arch generator of the tooth-arrangement robot.

    Science.gov (United States)

    Jiang, Jin-Gang; Zhang, Yong-De

    2013-03-01

    The traditional, manual method of reproducing the dental arch form is prone to numerous random errors caused by human factors. The purpose of this study was to investigate the automatic acquisition of the dental arch and implement the motion planning and synchronized control of the dental arch generator of the multi-manipulator tooth-arrangement robot for use in full denture manufacture. First, the mathematical model of the dental arch generator was derived. Then the kinematics and control point position of the dental arch generator of the tooth arrangement robot were calculated and motion planning of each control point was analysed. A hardware control scheme is presented, based on the industrial personal computer and control card PC6401. In order to gain single-axis, precise control of the dental arch generator, we studied the control pulse realization of high-resolution timing. Real-time, closed-loop, synchronous control was applied to the dental arch generator. Experimental control of the dental arch generator and preliminary tooth arrangement were gained by using the multi-manipulator tooth-arrangement robotic system. The dental arch generator can automatically generate a dental arch to fit a patient according to the patient's arch parameters. Repeated positioning accuracy is 0.12 mm for the slipways that drive the dental arch generator. The maximum value of single-point error is 1.83 mm, while the arc-width direction (x axis) is -33.29 mm. A novel system that generates the dental arch has been developed. The traditional method of manually determining the dental arch may soon be replaced by a robot to assist in generating a more individual dental arch. The system can be used to fabricate full dentures and bend orthodontic wires. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Identification and non-integer order modelling of synchronous machines operating as generator

    Directory of Open Access Journals (Sweden)

    Szymon Racewicz

    2012-09-01

    Full Text Available This paper presents an original mathematical model of a synchronous generator using derivatives of fractional order. In contrast to classical models composed of a large number of R-L ladders, it comprises half-order impedances, which enable the accurate description of the electromagnetic induction phenomena in a wide frequency range, while minimizing the order and number of model parameters. The proposed model takes into account the skin eff ect in damper cage bars, the eff ects of eddy currents in rotor solid parts, and the saturation of the machine magnetic circuit. The half-order transfer functions used for modelling these phenomena were verifi ed by simulation of ferromagnetic sheet impedance using the fi nite elements method. The analysed machine’s parameters were identified on the basis of SSFR (StandStill Frequency Response characteristics measured on a gradually magnetised synchronous machine.

  16. Enhanced Control for a Direct-driven Permanent Synchronous Generator Wind-power Generation System with Flywheel Energy Storage Unit Under Unbalanced Grid Fault

    DEFF Research Database (Denmark)

    Yao, Jun; Zhou, Te; Hu, Weihao

    2015-01-01

    This article presents an enhanced control strategy for a direct-driven permanent synchronous generator based wind-power generation system with a flywheel energy storage unit. The behaviors of the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit under......, the DC-link voltage oscillations can be effectively suppressed during the unbalanced grid fault by controlling the flywheel energy storage unit. Furthermore, a proportional–integral-resonant controller is designed for the flywheel motor to eliminate the oscillations in the DC-link voltage. Finally......, the proposed coordinated control strategy for the direct-driven permanent magnet synchronous generator system with a flywheel energy storage unit has been validated by the simulation results of a 1-MW direct-driven permanent magnet synchronous generator wind power generation system with a flywheel energy...

  17. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  18. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  19. A multi-objective control strategy for grid connection of DG (distributed generation) resources

    Energy Technology Data Exchange (ETDEWEB)

    Pouresmaeil, Edris; Montesinos-Miracle, Daniel; Bergas-Jane, Joan [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Departament d' Enginyeria Electrica, Universitat Politecnica de Catalunya, ETS d' Enginyeria Industrial de Barcelona (Spain); Gomis-Bellmunt, Oriol [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Departament d' Enginyeria Electrica, Universitat Politecnica de Catalunya, ETS d' Enginyeria Industrial de Barcelona (Spain); Catalonia Institute for Energy Research IREC, Barcelona (Spain)

    2010-12-15

    This paper presents a flexible control technique for connection of DG (distributed generation) resources to distribution networks, especially during ride-through on faulty grid. This strategy is derived from the abc/{alpha}{beta} and {alpha}{beta}/dq transformations of the ac system variables. The active and reactive currents injected by the DG source are controlled in the synchronously rotating orthogonal dq reference frame. The transformed variables are used to control the VSI (voltage source inverter) which connects the DG to the distribution network. Using a P.L.L. (phase locked loop) in circuit of proposed control technique, the angle of positive sequence has been detected, in order to synchronize the currents to the distribution network. The proposed control technique has the capability of providing active and reactive powers and harmonic currents to nonlinear loads with a fast dynamic response. Simulation results and mathematical analysis have been completed in order to achieve a reduced THD (total harmonic distortion), increased power factor and compensated load's active and reactive powers. The analyses show the high performance of this control strategy in DG applications in comparison with other existing strategies. (author)

  20. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huijun, E-mail: huijun024@gmail.com [School of Instrumentation Science and Opto-electronics Engineering, Beihang University (China); Qu, Zheng; Tang, Shaofei; Pang, Mingqi [School of Instrumentation Science and Opto-electronics Engineering, Beihang University (China); Zhang, Mingju [Shanghai Aerospace Control Technology Institute, Shanghai (China)

    2017-08-15

    Highlights: • One novel permanent magnet generator structure has been proposed to reduce voltage regulation ratio. • Finite element method and equivalent circuit methods are both employed to realize rapid generator design. • Design of experiment (DOE) method is used to optimize permanent magnet shape for reduce voltage waveform distortion. • The obtained analysis and experiment results verify the proposed design methods. - Abstract: In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  1. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    International Nuclear Information System (INIS)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-01-01

    Highlights: • One novel permanent magnet generator structure has been proposed to reduce voltage regulation ratio. • Finite element method and equivalent circuit methods are both employed to realize rapid generator design. • Design of experiment (DOE) method is used to optimize permanent magnet shape for reduce voltage waveform distortion. • The obtained analysis and experiment results verify the proposed design methods. - Abstract: In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  2. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    Science.gov (United States)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  3. Grid-Connected Inverter for Distributed Generation in Microgrid

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Miveh, Mohammad Reza; Guerrero, Josep M.

    for power generation. DGS units can operate in parallel to the main grid or in a Microgrid (MG) mode. An MG is a discrete energy system consisting of DGSs and loads capable of operating in parallel with, or independently from, the main grid. Meanwhile, Grid-Connected Inverters (GCIs) are typically used...

  4. Unbalanced voltage control of virtual synchronous generator in isolated micro-grid

    Science.gov (United States)

    Cao, Y. Z.; Wang, H. N.; Chen, B.

    2017-06-01

    Virtual synchronous generator (VSG) control is recommended to stabilize the voltage and frequency in isolated micro-grid. However, common VSG control is challenged by widely used unbalance loads, and the linked unbalance voltage problem worsens the power quality of the micro-grid. In this paper, the mathematical model of VSG was presented. Based on the analysis of positive- and negative-sequence equivalent circuit of VSG, an approach was proposed to eliminate the negative-sequence voltage of VSG with unbalance loads. Delay cancellation method and PI controller were utilized to identify and suppress the negative-sequence voltages. Simulation results verify the feasibility of proposed control strategy.

  5. Design of the robust synchronous generator stator voltage regulator based on the interval plant model

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe

    2013-01-01

    Full Text Available In this paper a novel method for the stator voltage regulator of a synchronous generator based on the interval plant mode, is presented. Namely, it is shown in the literature that, in order to design a controller for the first-order compensator, the limited number of interval plants needs to be examined. Consequently, the intervals of the plant model parameter variations used to calculate the four extreme interval plants required for the sequential PI controller design are determined. The controller is designed using frequency-domain-based techniques, while its robust performance is examined using simulation tests.

  6. Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica

    Directory of Open Access Journals (Sweden)

    Bernhard Thiele

    2015-01-01

    Full Text Available So far no qualifiable automatic code generators (ACGs are available for Modelica. Hence, digital control applications can be modeled and simulated in Modelica, but require tedious additional efforts (e.g., manual reprogramming to produce qualifiable target system production code. In order to more fully leverage the potential of a model-based development (MBD process in Modelica, a qualifiable automatic code generator is needed. Typical Modelica code generation is a fairly complex process which imposes a huge development burden to any efforts of tool qualification. This work aims at mapping a Modelica subset for digital control function development to a well-understood synchronous data-flow kernel language. This kernel language allows to resort to established compilation techniques for data-flow languages which are understood enough to be accepted by certification authorities. The mapping is established by providing a translational semantics from the Modelica subset to the synchronous data-flow kernel language. However, this translation turned out to be more intricate than initially expected and has given rise to several interesting issues that require suitable design decisions regarding the mapping and the language subset.

  7. Distributed generation connected to the local network - a guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This guide provides advice to the developers and operators of small distributed generation plant (including microgenerators) in the UK about the practical issues associated with connecting their plant and trading their output. Particular attention is given to sales revenues and how to access these revenue streams, including the mechanisms for purchasing Renewable Obligation Certificates (ROCs). The guide clarifies key terms, explains the wholesale trading system and provides an overview of sales opportunities (including ROCs and Levy Exemption Certificates (LECs)). Requirements on small distributed generation (including licensing, claiming class exemptions and metering) are described and the commercial aspects of connection (including the recent reduction in the barriers to connection) examined. Microgeneration (ie generators below 10 kW) issues are covered in their own chapter. The six appendices contain: background information about the industry; a list of purchasers of electricity from small distributed generators; descriptions of the generation, transmission and supply industries; information about industry standards and their governance; the role of government departments and institutions; and a glossary and other links.

  8. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  9. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    Science.gov (United States)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  10. Fault ride-through and grid support of permanent magnet synchronous generator-based wind farms with HVAC and VSC-HVDC transmission systems

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2012-01-01

    This paper describes fault ride-through and grid support of offshore wind farms based on permanent magnet synchronous generator (PMSG) wind turbines connected to the onshore AC network through two alternative transmission systems: high voltage AC (HVAC) or high voltage DC (HVDC) based on voltage...... source converters (VSC). The proposed configurations of the PMSG-based offshore wind farm and VSC-based HVDC are given as well as their control strategies under both steady state and fault state. The PMSG-based offshore wind farm is integrated into a test power transmission system via either HVAC or VSC...

  11. Proportional-Type Performance Recovery DC-Link Voltage Tracking Algorithm for Permanent Magnet Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Seok-Kyoon Kim

    2017-09-01

    Full Text Available This study proposes a disturbance observer-based proportional-type DC-link voltage tracking algorithm for permanent magnet synchronous generators (PMSGs. The proposed technique feedbacks the only proportional term of the tracking errors, and it contains the nominal static and dynamic feed-forward compensators coming from the first-order disturbance observers. It is rigorously proved that the proposed method ensures the performance recovery and offset-free properties without the use of the integrators of the tracking errors. A wind power generation system has been simulated to verify the efficacy of the proposed method using the PSIM (PowerSIM software with the DLL (Dynamic Link Library block.

  12. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    Renewable energy sources require accurate and appropriate performance not only under normal grid operation but also under abnormal and faulty grid conditions according to the modern grid codes. This paper proposes a novel phase-locked loop algorithm (MSHDC-PLL), which can enable the fast...... and dynamic synchronization of the interconnected renewable energy system under unbalanced grid faults and under highly harmonic distorted voltage. The outstanding performance of the suggested PLL is achieved by implementing an innovative multi-sequence/harmonic decoupling cell in order to dynamically cancel...... renewable energy systems. Therefore, the performance of the new PLL can increase the quality of the injected power under abnormal conditions and in addition enable the renewable energy systems to provide the appropriate support to the grid under balanced and unbalanced grid faults....

  13. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    Science.gov (United States)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  14. Control strategy of wind turbine based on permanent magnet synchronous generator and energy storage for stand-alone systems

    DEFF Research Database (Denmark)

    Deng, Fujin; Liu, Dong; Chen, Zhe

    2017-01-01

    This paper investigates a variable speed wind turbine based on permanent magnet synchronous generator and a full-scale power converter in a stand-alone system. An energy storage system(ESS) including battery and fuel cell-electrolyzer combination is connected to the DC link of the full-scale power...... converter through the power electronics interface. Wind is the primary power source of the system, the battery and FC-electrolyzer combination is used as a backup and a long-term storage system to provide or absorb power in the stand-alone system, respectively. In this paper, a control strategy is proposed...... for the operation of this variable speed wind turbine in a stand-alone system, where the generator-side converter and the ESS operate together to meet the demand of the loads. This control strategy is competent for supporting the variation of the loads or wind speed and limiting the DC-link voltage of the full...

  15. Grid-Connected Distributed Generation: Compensation Mechanism Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Alexandra Y [National Renewable Energy Laboratory (NREL), Golden, CO (United States); ; ; ; Zinaman, Owen R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-02

    This short report defines compensation mechanisms for grid-connected, behind-the-meter distributed generation (DG) systems as instruments that comprise three core elements: (1) metering and billing arrangements, (2) sell rate design, and (3) retail rate design. This report describes metering and billing arrangements, with some limited discussion of sell rate design. We detail the three possible arrangements for metering and billing of DG: net energy metering (NEM); buy all, sell all; and net billing.

  16. The PM-Assisted Reluctance Synchronous Starter/Generator (PM-RSM): Generator Experimental Characterization

    DEFF Research Database (Denmark)

    Pitic, Cristian Ilie; Tutelea, Lucian; Boldea, Ion

    2004-01-01

    and the parameters of the machine have to be known precisely. The present paper introduces a series of the tests for parameters and efficiency determination of a PM-assisted RSM in the generator mode. The testing methods consist of standstill tests (dc decay), generator no load testing with capacitor and on load ac...... and diode-rectifier dc tests. Satisfactory results are obtained but some unresolved questions are also raised....

  17. Study of the modifications on the synchronous generators, heavy water pumps and condenser batteries of the RA reactor - Annex 17

    International Nuclear Information System (INIS)

    Milosevic, M.

    1964-01-01

    Modifications done on the synchronous generators are related to the emergency power supply system, meaning one of the most important devices responsible for reactor safety. Without reducing the efficiency of the heavy water pumps the improved stability of generators operation was achieved by reducing the possibility of errors and simplifying manipulation. Condensator batteries were improved in order to decrease the leakage currents

  18. Automatic bearing fault diagnosis of permanent magnet synchronous generators in wind turbines subjected to noise interference

    Science.gov (United States)

    Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo

    2018-02-01

    An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.

  19. Improving Synchronization and Functional Connectivity in Autism Spectrum Disorders through Plasticity-Induced Rehabilitation Training

    Science.gov (United States)

    2011-08-01

    theory  of   mind :  evidence  from...Faces  in  2  and  4-­‐Year-­‐Old   Children  with   Autism  Spectrum  Disorder.   J.Autism  Dev.Disord..   Hadjikhani,  N...Connectivity in Autism Spectrum Disorders through Plasticity-Induced Rehabilitation Training PRINCIPAL INVESTIGATOR: Jaime A. Pineda,

  20. Dynamics Assessment of Grid-Synchronization Algorithms for Single-Phase Grid-Connected Converters

    DEFF Research Database (Denmark)

    Han, Yang; Luo, Mingyu; Guerrero, Josep M.

    2015-01-01

    Several advanced phase-lock-loop (PLL) algorithms have been proposed for single-phase power electronic systems. Among these algorithms, the orthogonal signal generators (OSGs) are widely utilized to generate a set of in-quadrature signals, owing to its benefit of simple digital implementation and...

  1. A current controlled matrix converter for wind energy conversion systems based on permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Naggar H. Saad

    2016-05-01

    Full Text Available The main challenges of wind energy conversion systems (WECS are to maximize the energy capture from the wind and injecting reactive power during the fault. This paper presents a current controlled matrix converter to interface Permanent Magnet Synchronous Generators (PMSG based WECS with the grid. To achieve fast dynamic response with reduced current ripples, a hysteresis current control is utilized. The proposed control system decouples the active and reactive components of the PMSG current to extract the maximum power from the wind at a given wind velocity and to inject reactive power to the grid. Reactive power injection during the fault satisfying the grid-codes requirement. The proposed WECS has been modeled and simulated using PSCAD/EMTDC software package.

  2. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  3. Generating Virtual Eye Contacts Through Online Synchronous Communications in Virtual Classroom Applications

    Directory of Open Access Journals (Sweden)

    T. Volkan YUZER

    2007-01-01

    Full Text Available The Internet usage has been increasing among persons in the worldwide. This situation highlights that the number of potential distance learners has been increasing in the Internet society. Besides, the terms and concepts of the Internet environments become to be spread out in this society like virtual reality. It is also possible to explain the characters of the Internet clearly via generating relatively new terms or concepts. “Virtual eye contact” concept is one of these. In this article, this concept is considered with a specific application of synchronous internet-based e-learning environments which is virtual classroom platform application. Explanation, technological infrastructure and benefits of this concept and training of the trainers to use this nonverbal communication type more powerfully are explained and discussed.

  4. Semiconductor-machine system for controlling excitation of synchronous medium power generators

    Energy Technology Data Exchange (ETDEWEB)

    Vrtikapa, G

    1982-01-01

    A system for controlling excitation (ARP-29/1) is described which was developed at the ''Nikola Tesla'' institute (Czechoslavakia) for rebuilding the Zvornik hydroelectric plant with 30 MV X A units. The system corresponds to the modern level of automation and considers positive characteristics of existing equipment, it is easily included in a technological process, has small dimensions and is easily installed during overhaul of a electric generating plant, and it allows one to obtain good economic results. Two years of use have confirmed the high reliability and quality of the excitation. The excitation control system consists of synchronous motor, excitation system, automatic control of voltage, manual control of excitation unit, unit for automatic following and switching, relay automatic device with protection and warning. The excitation system of the generator has: thyristor rectifier, thyristor converter, a bridge with thyristor control unit, machine excitation generator, switch for demagnetization. The excitation system is supplied from an electric power network or from a three phase generator with permanent magnets.

  5. METHOD OF ESTIMATION INFLUENCE OF MASS AND SIZE INDEXES OF SYNCHRONOUS GENERATORS ON THEIR DYNAMIC STABILITY AT EXTERNAL INDIGNATIONS

    OpenAIRE

    Chernyuk, Artem Mikhaylovich; Egorov, Оleksii Borisovich; Budanov, Pavlo Feofanovch; Bykova, Viktoriya Sergeyevna

    2015-01-01

    The analysis of methods of decline of mass and size indexes of synchronous generators and increase of their tecnik and economic descriptions is conducted in the article. Possible changes are certain in the modes of operations of machine as a result of change of its массо-габаритных indexes. Dependence of dynamic stability of work of machine as function of moment of inertia of its rotor is shown. Descriptions of speed of change of corner of ä of synchronous generator are got depending on the m...

  6. Synchronous dual-wavelength pulse generation in coaxial pumping scheme and its application in terahertz difference frequency generation

    Science.gov (United States)

    Liu, Yang; Zhong, Kai; Mei, Jialin; Jin, Shuo; Ge, Meng; Xu, Degang; Yao, Jianquan

    2018-02-01

    A compact and flexible dual-wavelength laser with combined two laser crystals (a-cut and c-cut Nd:YLF) as the gain media under coaxially laser-diode (LD) end-pumping configuration was demonstrated and μW-level THz wave was generated based on difference frequency generation (DFG) in a GaSe crystal. The dynamics of coaxial pumping dualwavelength laser was theoretically investigated, showing that the power ratio and pulse interval for both wavelengths could be tuned by balancing the gains at both wavelengths via tuning pump focal position. Synchronized orthogonal 1047/1053 nm laser pulses were obtained and optimal power ratio was realized with the total output power of 2.92W at 5 kHz pumped by 10-W LD power. With an 8-mm-long GaSe crystal, 0.93 μW THz wave at 1.64 THz (182 μm) was generated. Such coaxially LD end-pumped lasers can be extended to various combinations of neodymium doped laser media to produce different THz wavelengths for costless and portable applications.

  7. Facilitate generation connections on Orkney by automatic distribution network management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of a study assessing the capability and limitations of the Orkney Network under a variety of conditions of demand, generation connections, network configuration, and reactive compensation). A conceptual active management scheme (AMS) suitable for the conditions on Orkney is developed and evaluated. Details are given of a proposed framework for the design and evaluation of future active management schemes, logic control sequences for managed generation units, and a proposed evaluation method for the active management scheme. Implications of introducing the proposed AMS are examined, and the commercial aspects of an AMS and system security are considered. The existing Orkney network is described; and an overview of the SHEPDL (Scottish Hydro Electric Power Distribution Ltd.) SCADA system is presented with a discussion of AMS identification, selection, and development.

  8. Simulation of Photovoltaic generator Connected To a Grid

    Directory of Open Access Journals (Sweden)

    F. Slama

    2014-03-01

    Full Text Available This paper presents the mathematical and the total Matlab-simulink model of the various components, of the photovoltaic power station connected to a network, (PSCN, namely the model of the photovoltaic generator. It is a comprehensive behavioural study which performed according to varying conditions of solar insulation and temperature. The photovoltaic generator and the inverter of single-phase current are modeled. The former by using a mathematical model that gives the values of maximum power according to the variation of the weather conditions, and the latter by a source of voltage controlled by voltage in order to inject a sinusoidal current and to estimate or predict the energy injected monthly or annually into the network.

  9. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    Science.gov (United States)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  10. Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Luna, Alvaro; Rocabert, J.; Candela, I.

    2015-01-01

    on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters of distributed generation plants, have contributed to enhance their response under faulty and distorted scenarios and, hence, to fulfill these requirements. In order to achieve satisfactory......The actual grid code requirements for the grid connection of distributed generation systems, mainly wind and PV systems, are becoming very demanding. The Transmission System Operators (TSOs) are especially concerned about the Low Voltage Ride Through requirements. Solutions based...

  11. Comparison of Wind Power Converter Reliability with Low-Speed and Medium-Speed Permanent-Magnet Synchronous Generators

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2015-01-01

    of the turbine to the current and voltage loading of the each power semiconductor is achieved based on the synchronous generator modeling. Afterwards, a simplified approach to calculate the loss profile and the thermal profile is used to determine the most stressed power semiconductors in the converter. Finally...

  12. A research technique for the effect of higher harmonic voltages on the operating parameters of a permanent magnet synchronous generator

    Directory of Open Access Journals (Sweden)

    Hasanova L. H.

    2017-12-01

    Full Text Available Nowadays permanent magnet synchronous machines those frequency-controlled from stator side with frequency inverters made on the basis of power transistors or fully controlled thyristors, are widely used as motors and generators. In future they are also promising a good application in transport, including marine. Modern frequency inverters are equipped with a control system based on sine-shaped pulse width modulation. While shaping the voltage in the output of the inverter, in addition to the fundamental harmonic, higher harmonic components are also included in the voltage shape, which certainly affect the operating parameters of the generator (electromagnetic torque, power, currents. To determine this effect the modeling and investigation technique of higher harmonic voltages in the "electric network – frequency converter – synchronous machine with permanent magnets" system has been developed. The proposed equations of a frequency-controlled permanent magnet synchronous machine allow relatively simply reproduce the harmonic composition of the voltage in the output of a frequency inverter equipped with the control system based on a sinusoidal pulse width modulation. The developed research technique can be used for inverters with any number and composition of voltage harmonic components feeding a stator winding of a permanent magnet synchronous machine. On a particular case, the efficiency of the research technique of the higher harmonics influence on the operating parameters of the generator has been demonstrated. At the same time, the study has been carried out taking into account the shape of the voltage curve feeding the windings of the synchronous machine containing in addition to the fundamental harmonic the 8, 10, 11, 13, 14 and 16-th harmonic components, and the rated active power of the synchronous machine has been equal to 1 500 kW.

  13. Computer electric design of synchronous generators; Diseno electrico de generadores sincronos por computadora

    Energy Technology Data Exchange (ETDEWEB)

    Patlan Frausto, Jose O; Acosta Aradillas, Juan [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    In this article are presented, in a conceptual manner the main elements that participate in the electric design of synchronous generators. Also, other options are presented for computers utilization as a design support. Afterwards, a computer program developed by the Instituto de Investigaciones Electricas (IIE) for the electric design of projecting poles generators is presented, oriented towards obtaining their electro-magnetic dimensioning. Finally, with the purpose of validating this program, the results obtained in a specific case, are presented. [Espanol] En este articulo se presentan, de manera conceptual, los principales elementos que participan en el proceso de diseno electrico de generadores sincronos. Tambien se plantean otras opciones para utilizar las computadoras como apoyo de diseno. Posteriormente, se describe un programa de computo desarrollado en el Instituto de Investigaciones Electricas (IIE) para el diseno electrico de generadores de polos salientes, orientado a obtener su dimensionamiento electromagnetico. Por ultimo, con el proposito de validar este programa, se presentan los resultados obtenidos en un caso particular.

  14. Computer electric design of synchronous generators; Diseno electrico de generadores sincronos por computadora

    Energy Technology Data Exchange (ETDEWEB)

    Patlan Frausto, Jose O.; Acosta Aradillas, Juan [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    In this article are presented, in a conceptual manner the main elements that participate in the electric design of synchronous generators. Also, other options are presented for computers utilization as a design support. Afterwards, a computer program developed by the Instituto de Investigaciones Electricas (IIE) for the electric design of projecting poles generators is presented, oriented towards obtaining their electro-magnetic dimensioning. Finally, with the purpose of validating this program, the results obtained in a specific case, are presented. [Espanol] En este articulo se presentan, de manera conceptual, los principales elementos que participan en el proceso de diseno electrico de generadores sincronos. Tambien se plantean otras opciones para utilizar las computadoras como apoyo de diseno. Posteriormente, se describe un programa de computo desarrollado en el Instituto de Investigaciones Electricas (IIE) para el diseno electrico de generadores de polos salientes, orientado a obtener su dimensionamiento electromagnetico. Por ultimo, con el proposito de validar este programa, se presentan los resultados obtenidos en un caso particular.

  15. System frequency support of permanent magnet synchronous generator-based wind power plant

    Science.gov (United States)

    Wu, Ziping

    With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based

  16. Effect of Extended State Observer and Automatic Voltage Regulator on Synchronous Machine Connected to Infinite Bus Power System

    Science.gov (United States)

    Angu, Rittu; Mehta, R. K.

    2018-04-01

    This paper presents a robust controller known as Extended State Observer (ESO) in order to improve the stability and voltage regulation of a synchronous machine connected to an infinite bus power system through a transmission line. The ESO-based control scheme is implemented with an automatic voltage regulator in conjunction with an excitation system to enhance the damping of low frequency power system oscillations, as the Power System Stabilizer (PSS) does. The implementation of PSS excitation control techniques however requires reliable information about the entire states, though they are not always directly measureable. To address this issue, the proposed ESO provides the estimate of system states as well as disturbance state together in order to improve not only the damping but also compensates system efficiently in presence of parameter uncertainties and external disturbances. The Closed-Loop Poles (CLPs) of the system have been assigned by the symmetric root locus technique, with the desired level of system damping provided by the dominant CLPs. The performance of the system is analyzed through simulating at different operating conditions. The control method is not only capable of providing zero estimation error in steady-state, but also shows robustness in tracking the reference command under parametric variations and external disturbances. Illustrative examples have been provided to demonstrate the effectiveness of the developed methodology.

  17. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    Science.gov (United States)

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to

  18. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    Science.gov (United States)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  19. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    Science.gov (United States)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  20. Chaos Suppression in Fractional order Permanent Magnet Synchronous Generator in Wind Turbine Systems

    Science.gov (United States)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash

    2017-06-01

    In this paper we investigate the control of three-dimensional non-autonomous fractional-order uncertain model of a permanent magnet synchronous generator (PMSG) via a adaptive control technique. We derive a dimensionless fractional order model of the PMSM from the integer order presented in the literatures. Various dynamic properties of the fractional order model like eigen values, Lyapunov exponents, bifurcation and bicoherence are investigated. The system chaotic behavior for various orders of fractional calculus are presented. An adaptive controller is derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the robust controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results derived through which we show that for the derived adaptive controller and the parameter update law, the origin of the system for any bounded initial conditions is asymptotically stable.

  1. Modelling and Design of a 3 kW Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

    Directory of Open Access Journals (Sweden)

    Acharya Parash

    2016-01-01

    Full Text Available This paper presents the modeling and design of a 3 kW Permanent Magnet Synchronous Generator (PMSG used for a variable speed wind turbine. Initially, the PMSG is modeled in the d-q reference frame. Different optimized parameters of the generator are extracted from the design and used in simulation of the PMSG. The generator output power is matched with the power of the turbine such that the generator is not either over-sized or under-sized.

  2. Voltage Spectral Structure as a Parameter of System Technical Diagnostics of Ship Diesel Engine-Synchronous Generators

    Directory of Open Access Journals (Sweden)

    Gasparjans Aleksandrs

    2015-07-01

    Full Text Available A method of technical diagnostics of ship diesel engine – generator installation – is proposed. Spectral-power diagnostic parameters of the synchronous generator voltage and currents are used. The electric machine in this case is the multipurpose sensor of diagnostic parameters. A judgment on the quality of the operational processes in diesel engine cylinders and its technical condition is possible on the basis of these parameters. This method is applicable to piston compressor installations with electric drive. On the basis of such parameters as rotating torque, angular speed and angular acceleration it is possible to estimate the quality of the operating process in the cylinders of a diesel engine, the condition of its cylinder-piston group and the crank gear mechanism. The investigation was realized on the basis of a diesel-generator with linear load. The generator operation was considered for the case of constant RL load. Together with the above mentioned, the condition of bearings of synchronous machines, uniformity of the air gap, windings of the electric machine were estimated during the experiments as well. The frequency spectrum of the stator current of the generator was researched and analyzed. In this case the synchronous machine is becoming a rather exact multipurpose diagnostic sensor. The signal of non-uniformity in the operation process of diesel engine cylinders and its technical condition is the increasing of the amplitudes of typical frequencies.

  3. Analysis of temperature changes on three-phase synchronous generator using infrared: comparison between balanced and unbalanced load

    Science.gov (United States)

    Amien, S.; Yoga, W.; Fahmi, F.

    2018-02-01

    Synchronous generators are a major tool in an electrical energy generating systems, the load supplied by the generator is unbalanced. This paper discusses the effect of synchronous generator temperature on the condition of balanced load and unbalanced load, which will then be compared with the measurement result of both states of the generator. Unbalanced loads can be caused by various asymmetric disturbances in the power system and the failure of load forecasting studies so that the load distribution in each phase is not the same and causing the excessive heat of the generator. The method used in data collection was by using an infrared thermometer and resistance calculation method. The temperature comparison result between the resistive, inductive and capacitive loads in the highest temperature balance occured when the generator is loaded with a resistive load, where T = 31.9 ° C and t = 65 minutes. While in a state of unbalanced load the highest temperature occured when the generator is loaded with a capacitive load, where T = 40.1 ° C and t = 60 minutes. By understanding this behavior, we can maintain the generator for longer operation life.

  4. Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)

    2010-10-15

    The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)

  5. Integration of permanent magnet synchronous generator wind turbines into power grid

    Science.gov (United States)

    Abedini, Asghar

    , integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.

  6. Suppression of synchronous resonance for VSGs

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wu, Heng; Wang, Xiongfei

    2017-01-01

    The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability of the po......The virtual synchronous generator (VSG) is an attractive interfacing technique for high-penetration renewable generation. By incorporating the inertia control, the grid-connected voltage-source converter can behave in a similar way with the SGs, which is helpful to enhance the stability...... of the power system. However, it is reported that the synchronous frequency resonance (SFR) can be aroused in the VSG due to the resonance peaks in the power control loops at the fundamental frequency. By modelling the power control loop in the dq domain, the mechanism underlying the SFR is studied. It reveals...

  7. Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation

    Science.gov (United States)

    Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.

    2017-11-01

    This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.

  8. Design of reactive power regulator of synchronous generators by considering grid impedance angle for characteristic index objectives

    DEFF Research Database (Denmark)

    Raboni, Pietro; Chaudhary, Sanjay K.; Chen, Zhe

    2016-01-01

    functions are formulated on the basis of the integral of an error. This difference makes them suitable for the cases where the entire step-response data series are unavailable. The performances of differently tuned regulators are compared considering a test system including a 100 kW Diesel Generator Set......Effects of low reactance to resistance ratio in distribution networks are widely studied but little work dealing with the tuning of voltage and reactive power regulators of small synchronous generators has been reported. This study endeavours the design of a proportional integral controller...

  9. An approach to the conversion of the power generated by an offshore wind power farm connected into seawave power generator

    Energy Technology Data Exchange (ETDEWEB)

    Franzitta, Vicenzo; Messineo, Antonio; Trapanese, Marco

    2011-07-01

    The development of renewable energy systems has been undergoing for the past decades but sea wave's energy resource has been under-utilized. This under-utilization has several reasons: the energy concentration is low in sea waves, extraction of this energy requires leading edge technologies and conversion of the energy into electrical energy is difficult. This study compares two different methods to connect the sea waves' generator to the network and to the offshore wind power farm. The first method consists in a decentralized approach: each generator is connected to the grid through an AC converter. The second method is a partially centralized approach: a rectifier is connected to each generator, all of the generators are then connected together to a common DC bus and power is then converted in AC to be connected to the grid. This study has shown that the partially centralized approach is more reliable and efficient than the decentralized approach.

  10. Fast Self-Synchronization between LowVoltage Microgrid and Inverter using Virtual Synchronous Converter

    Directory of Open Access Journals (Sweden)

    Md Ruhul Amin

    2017-12-01

    Full Text Available In this paper, a fast self-synchronization known as virtual synchronous converter (VSCon between single-phase microgrid and inverter in low-voltage microgrid, has been developed in Matlab/Simulink. The idea is to any phase locked loop (PLL circuit for inverter-microgrid synchronization in order to improve the synchronization time. As known, it is difficult and lengthy process to tune the PLL gain parameters to reach suitable performance for synchronizing among the voltage, phase-angle and frequency between them. Due to this problem, a fast self synchronization technique is needed in order to minimize the time losses at the microgrid connection. Therefore, the VSCon has been developed which is based on the synchronous generator mathematical model but in virtual environment representation. It has been applied in the inverter control for generating switching pattern to the inverter switches in order to respond to the grid voltage for improve the synchronization. For a prove of concept, several simulation tests in MATLAB models have been conducted, in order to see the effectiveness of this VSCon. First test has been conducted, when a 240V, 50Hz frequency grid source is used for observing the self-synchronization the system with the power flows output. Furthermore, the next test is conducted when the grid frequency is changed from the rated frequency at 50Hz to 51Hz and the result shows the VSCon in inverter control takes nearly 40ms to synchronize to this new frequency value. The test on grid phase-angle delay also been tested when ac grid voltage has 150 phase delay. As from all the results, the improved inverter control with VSCon structure is able to have fast and self-synchronized between the invertergrid connection before the power from the inverter can be transferred.

  11. Generation of a new spectral format, the lifetime synchronous spectrum (LiSS), using phase-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Shaver, J.M.; McGown, L.B.

    1994-01-01

    A new fluorescence spectral format is introduced in which fluorescence lifetime is shown as a function of synchronously scanned wavelength to generate a Lifetime Synchronous Spectrum (LiSS). Lifetimes are determined in the frequency domain with the use of Phase-Resolved Fluorescence Spectroscopy (PRFS) to obtain the phase of the fluorescence signal. Theory and construction of the LiSS are presented and experimental results are shown for solutions of single components and simple binary and ternary mixtures. These results show how the lifetime information in the LiSS augments the steady-state intensity information of a standard synchronous spectrum, providing unique information for identification of components and resolution of overlapping spectral peaks. The LiSS technique takes advantage of noise reduction inherent in the extraction of lifetime from PRFS in addition to standard spectral smoothing techniques. The precision of phase determination through PRFS is found to be comparable to that of direct phase measurements at normal fluorescence intensities and superior for low-intensity signals

  12. Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review

    DEFF Research Database (Denmark)

    Ali, Zunaib; Christofides, Nicholas; Hadjidemetriou, Lenos

    2018-01-01

    The increasing penetration of distributed renewable energy sources (RES) requires appropriate control techniques in order to remain interconnected and contribute in a proper way to the overall grid stability, whenever disturbances occur. In addition, the disconnection of RES due to synchronization...

  13. Connected vehicle insights : fourth generation wireless - vehicle and highway gateways to the cloud.

    Science.gov (United States)

    2011-12-01

    This paper examines next generation wide-area cellular such as fourth generation (4G) will be able to support vehicular applications, and how transportation infrastructure may mesh with wireless networks. : This report is part of the Connected Vehicl...

  14. Connecting the Generations: Memory, Magic, and Harry Potter.

    Science.gov (United States)

    Radigan, Winifred M.

    2001-01-01

    Explains that the author reads the Harry Potter books because of their impact on middle-school-age kids and their appeal to children ages 9 to 15. Explains also that she works in professional development, especially literacy, and that she connects kids and teachers to the books. Admits that she reads the books because "they are wonderful." (SG)

  15. 3D electromagnetic design and electrical characteristics analysis of a 10-MW-class hightemperature superconducting synchronous generator for wind power

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Le, T. D.; Kim, H. M.

    2014-01-01

    In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

  16. Use of Three-Level Power Converters in Wind-Driven Permanent-Magnet Synchronous Generators with Unbalanced Loads

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2015-06-01

    Full Text Available This paper describes the design and implementation of three-level power converters for wind-driven permanent-magnet synchronous generators with unbalanced loads. To increase voltage stress and reduce current harmonics in the electrical power generated by a wind generator, a three-phase, three-level rectifier is used. Because a synchronous rotating frame is used on the AC-input side, the use of a neutral-point-clamped controller is proposed to increase the power factor to unity and reduce current harmonics. Furthermore, a novel six-leg inverter is proposed for transferring energy from the DC voltage to a three-phase, four-wire AC source with a constant voltage and a constant frequency. The power converters also contain output transformers and filters for power buffering and filtering, respectively. All three output phase voltages are fed back to control the inverter output during load variations. A digital signal processor is used as the core control device for implementing a 1.5 kV, 75 kW drive system. Experimental data show that the power factor is successfully increased to unity and the total current harmonic distortion is 3.2% on the AC-input side. The entire system can attain an efficiency of 91%, and the voltage error between the upper and lower capacitors is approximately zero. Experimental results that confirm the high performance of the proposed system are presented.

  17. Efficient generation of connectivity in neuronal networks from simulator-independent descriptions

    Directory of Open Access Journals (Sweden)

    Mikael eDjurfeldt

    2014-04-01

    Full Text Available Simulator-independent descriptions of connectivity in neuronal networks promise greater ease of model sharing, improved reproducibility of simulation results, and reduced programming effort for computational neuroscientists. However, until now, enabling the use of such descriptions in a given simulator in a computationally efficient way has entailed considerable work for simulator developers, which must be repeated for each new connectivity-generating library that is developed.We have developed a generic connection generator interface that provides a standard way to connect a connectivity-generating library to a simulator, such that one library can easily be replaced by another, according to the modeller's needs. We have used the connection generator interface to connect C++ and Python implementations of the connection-set algebra to the NEST simulator. We also demonstrate how the simulator-independent modelling framework PyNN can transparently take advantage of this, passing a connection description through to the simulator layer for rapid processing in C++ where a simulator supports the connection generator interface and falling-back to slower iteration in Python otherwise. A set of benchmarks demonstrates the good performance of the interface.

  18. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  19. Skype interviewing: The new generation of online synchronous interview in qualitative research

    Directory of Open Access Journals (Sweden)

    Roksana Janghorban

    2014-04-01

    Full Text Available The most commonly used method for data collection in qualitative research is interviewing. With technology changes over the last few decades, the online interview has overcome time and financial constraints, geographical dispersion, and physical mobility boundaries, which have adversely affected onsite interviews. Skype as a synchronous online service offers researchers the possibility of conducting individual interviews as well as small focus groups, comparable to onsite types. This commentary presents the characteristics of the Skype interview as an alternative or supplemental choice to investigators who want to change their conventional approach of interviewing.

  20. Skype interviewing: the new generation of online synchronous interview in qualitative research.

    Science.gov (United States)

    Janghorban, Roksana; Latifnejad Roudsari, Robab; Taghipour, Ali

    2014-01-01

    The most commonly used method for data collection in qualitative research is interviewing. With technology changes over the last few decades, the online interview has overcome time and financial constraints, geographical dispersion, and physical mobility boundaries, which have adversely affected onsite interviews. Skype as a synchronous online service offers researchers the possibility of conducting individual interviews as well as small focus groups, comparable to onsite types. This commentary presents the characteristics of the Skype interview as an alternative or supplemental choice to investigators who want to change their conventional approach of interviewing.

  1. Modeling and Maximum Power Point Tracking Control of Wind Generating Units Equipped with Permanent Magnet Synchronous Generators in Presence of Losses

    Directory of Open Access Journals (Sweden)

    Andrea Bonfiglio

    2017-01-01

    Full Text Available This paper focuses on the modeling of wind turbines equipped with direct drive permanent magnet synchronous generators for fundamental frequency power system simulations. Specifically, a procedure accounting for the system active power losses to initialize the simulation starting from the load flow results is proposed. Moreover, some analytical assessments are detailed on typical control schemes for fully rated wind turbine generators, thereby highlighting how active power losses play a fundamental role in the effectiveness of the wind generator control algorithm. Finally, the paper proposes analytical criteria to design the structure and the parameters of the regulators of the wind generator control scheme. Simulations performed with Digsilent Power Factory validated the proposed procedure, highlighting the impact of active power losses on the characterization of the initial steady state and that the simplifying assumptions done in order to synthesize the controllers are consistent with the complete modeling performed by the aforementioned power system simulator.

  2. The Impact of Connecting Distributed Generation to the Distribution System

    Directory of Open Access Journals (Sweden)

    E. V. Mgaya

    2007-01-01

    Full Text Available This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV technologies, have led to increased interest in the application of these generation devices as distributed generation (DG units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could  improve the effective capacity of the system. 

  3. Technical guide to the connection of generation to the distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Jarrett, K.; Hedgecock, J.; Gregory, R.; Warham, T.

    2003-07-01

    This guide provides a 'route map' of the processes of getting a generation scheme connected to the network and is intended to help developers of any form of distributed generation connected to the UK's local electricity networks, eg: renewable energy schemes; waste-to-energy schemes; on-site generation and combined heat and power (CHP) schemes; and peak lopping schemes using back-up generators. Where necessary, the guide distinguishes between arrangements that apply in Scotland and those that apply in England and Wales. The guide aims to: provide background information about the electricity industry; highlight common technical issues that arise during connection negotiation and their implications for distribution network operators (DNOs) and developers; examine the main factors affecting connection costs and timescales for achieving connections; and identify the different types of contracts relating to connection. The report considers the connection process, the connection application process and timescales, costs and charges, competition in connection, the structure of the UK electricity industry, the statutory framework, the effects of distributed generation of the distribution system, earthing and protection design, safety issues and DNO network information. It includes a glossary, checklists, useful contact details and information about standards and other useful documents.

  4. Fractional order nonlinear variable speed and current regulation of a permanent magnet synchronous generator wind turbine system

    Directory of Open Access Journals (Sweden)

    Anitha Karthikeyan

    2018-03-01

    Full Text Available In this paper we derived the fractional order model of the Permanent Magnet Synchronous Generator (PMSG from its integer model. The PMSG was employing a shaft sensor for the speed sensing and control. But this sensor would increase the hardware complexity as well as the cost of the system. Hence we have developed a Fractional order Nonlinear adaptive control method for speed and current tracking of the PMSG. The objective of an adaptive controller is to first define a virtual control state and force it to become a stabilizing function in accordance with a corresponding error dynamics. In order to study the Lyapunov exponents of the fractional order controller, we proposed a new method which would remove the complexity of finding the sign of the Lyapunov first derivative. The Fractional order control scheme is implemented in LabVIEW for simulation results. The simulation results indicated that the estimated rotor position and speed correspond to their actual values well. Keywords: Chaos suppression, Fractional order systems, Permanent magnet synchronous generator, Speed and current control, Lyapunov stability

  5. Double-layer rotor magnetic shield performance analysis in high temperature superconducting synchronous generators under short circuit fault conditions

    Science.gov (United States)

    Hekmati, Arsalan; Aliahmadi, Mehdi

    2016-12-01

    High temperature superconducting, HTS, synchronous machines benefit from a rotor magnetic shield in order to protect superconducting coils against asynchronous magnetic fields. This magnetic shield, however, suffers from exerted Lorentz forces generated in light of induced eddy currents during transient conditions, e.g. stator windings short-circuit fault. In addition, to the exerted electromagnetic forces, eddy current losses and the associated effects on the cryogenic system are the other consequences of shielding HTS coils. This study aims at investigating the Rotor Magnetic Shield, RMS, performance in HTS synchronous generators under stator winding short-circuit fault conditions. The induced eddy currents in different circumferential positions of the rotor magnetic shield along with associated Joule heating losses would be studied using 2-D time-stepping Finite Element Analysis, FEA. The investigation of Lorentz forces exerted on the magnetic shield during transient conditions has also been performed in this paper. The obtained results show that double line-to-ground fault is of the most importance among different types of short-circuit faults. It was revealed that when it comes to the design of the rotor magnetic shields, in addition to the eddy current distribution and the associated ohmic losses, two phase-to-ground fault should be taken into account since the produced electromagnetic forces in the time of fault conditions are more severe during double line-to-ground fault.

  6. FEM Based Multi-Criterion Design and Implementation of a PM Synchronous Wind Generator by Fully Coupled Co-Simulation

    Directory of Open Access Journals (Sweden)

    OCAK, C.

    2018-02-01

    Full Text Available This study deals with analyzing, designing and fabricating of a 1 kW PM synchronous generator for gearless and direct drive off-grid wind turbines. Performance characteristics of this generator have been calculated analytically in collaboration with dynamic transient coupled-field analysis. All specifications of the PMSG have been investigated and optimized by using finite element method and parametric multi-criterion design approach. At the end of research, a prototype has been fabricated based on the optimized dimensions. Furthermore, the analytical calculations present along with experimental studies carried out for different shaft speeds and load levels. The comparative experimental studies have verified effectiveness of the optimized designing and dynamic co-simulations.

  7. Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines

    International Nuclear Information System (INIS)

    Nasiri, M.; Milimonfared, J.; Fathi, S.H.

    2014-01-01

    Highlights: • Small signal modeling of PMSG wind turbine with two controllers are introduced. • Poles and zeroes analyzing of OTC and TSR methods is performed. • Generator output power with varying wind speed in PMSG wind turbine is studied. • MPPT capability of OTC and TSR methods to wind speed variations are compared. • Power smoothing capability and reducing mechanical stress of both methods are studied. - Abstract: This paper presents a small signal modeling of a direct-driven permanent magnet synchronous generator (PMSG) based on wind turbine which is connected to the grid via back-to-back converters. The proposed small signal model includes two maximum power point tracking (MPPT) controllers: tip speed ratio (TSR) control and optimal torque control (OTC). These methods are analytically compared to illustrate MPPT and power smoothing capability. Then, to compare the MPPT and power smoothing operation of the mentioned methods, simulations are performed in MATLAB/Simulink software. From the simulation results, OTC is highly efficient in power smoothing enhancement and has clearly good performance to extract maximum power from wind; however, TSR control has definitely fast responses to wind speed variations with the expense of higher fluctuations due to its non-minimum phase characteristic

  8. Grid-connected solar power generation a utility's view

    International Nuclear Information System (INIS)

    Weiner, D.; Meron, G.; Fisher, D.

    1994-01-01

    The purpose of this paper is to analyze these new means of production from the electric utility point of view. This analysis will take into account the experience gained by Israel Electric Corporation while operating three demonstration plants. In addition, a techno-economic evaluation photovoltaic and thermal systems is presented and compared to that of conventional generation

  9. Increased Efficiency of a Permanent Magnet Synchronous Generator through Optimization of NdFeB Magnet Arrays

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2014-03-01

    The United States is currently dependent on fossil fuels for the majority of its energy needs, which has many negative consequences such as climate change. Wind turbines present a viable alternative, with the highest energy return on investment among even fossil fuel generation. Traditional commercial wind turbines use an induction generator for energy conversion. However, induction generators require a gearbox to increase the rotational speed of the drive shaft. These gearboxes increase the overall cost of the wind turbine and account for about 35 percent of reported wind turbine failures. Direct drive permanent magnet synchronous generators (PMSGs) offer an alternative to induction generators which eliminate the need for a gearbox. Yet, PMSGs can be more expensive than induction generators at large power output due to their size and weight. To increase the efficiency of PMSGs, the geometry and configuration of NdFeB permanent magnets were investigated using finite element techniques. The optimized design of the PMSG increases flux density and minimizes cogging torque with NdFeB permanent magnets of a reduced volume. These factors serve to increase the efficiency and reduce the overall cost of the PMSG. This work is supported by a National Science Foundation IGERT fellowship and the Barbara and James Palmer Endowment at the Department of Electrical and Computer Engineering of Iowa State University.

  10. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering

    2004-07-01

    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  11. Issues and regulatory requirements for the connection of wind generation

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez Alvarez, J.M. [National University of San Juan (Argentina)], E-mail: jgimenez@unsj.edu.ar; Gomez Targarona, J.C. [National University of Rio Cuarto, Cordoba (Argentina). Electric Power Systems Protection Institute (IPSEP)], E-mail: jcgomez@ing.unrc.edu.ar

    2009-07-01

    Pollution problems such as greenhouse effect as well as the high value and volatility of fuel prices have forced and accelerated the development and use of renewable energy sources. In this work a complete revision of wind generation is presented. In the first part a brief history of the wind energy developments is detailed. Next, some commentaries related to the present and future state are made. Then, a revision of the modern structures of wind generation is realized. In fourth place it is included a brief comparison between small and big size turbines. Then, different types of energy storage are mentioned. Finally regulatory aspects are discussed, respect to the treatment of the technical problems. (author)

  12. Special issue on advancing grid-connected renewable generation systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2017-01-01

    Renewables are heavily involved in power generation, as an essential component for today’s energy paradigm. Energy structure—both national and international—has been undergoing significant changes over the past few decades. For instance, in Denmark, power generation is shifting from fossil......-fuel-based to renewable-based in terms of energy sources, from centralized to decentralized in terms of architectures, and from sole to miscellaneous in terms of energy varieties [1]. In this energy evolution, the power electronic technology plays an enabling role in the integration and advancements of renewables......—such as wind turbine, photovoltaics, fuel cells, and other emerging energy systems. At the same time, various control strategies are necessary to guide the energy integration (i.e., to enhance the energy transition), and on the other hand, to flexibly, reliably, and efficiently utilize the energy. Tremendous...

  13. Economic aspects of grid connected solar electricity generation

    International Nuclear Information System (INIS)

    Pharabod, F.

    1993-01-01

    Experience gained with available solar thermal technologies enlighten on options for research and development on solar electricity generation. The proposed analysis of new solar technologies concerns market, costs and profit viewpoint: - Systems under development have to fit with consumers' needs and utilities' specifications, technology is not the only item to study. - Expense headings depend on technological options and operation procedures such as size of the plant, solar only or hybrid concept. - Anticipation of revenues highly depends on direct insolation quality and on local conditions for introducing the electric power generated into the network: daily direct insolation measurements and annual local load curve are prerequisite data. Strategic advantages regarding environment and sustainable development are to be pointed out, specially in industrialized countries or for projects including financing institutions. As far as generating electric power on the grid is a major challenge in the development of a number of countries in the sun belt, cooperation between industrialized and developing countries, under the auspices of international organization, has to be promoted. (Author) 12 refs

  14. Modelling, Analysis, and Design of a Frequency-Droop-Based Virtual Synchronous Generator for Microgrid Applications

    DEFF Research Database (Denmark)

    Du, Yan; Guerrero, Josep M.; Chang, Liuchen

    2013-01-01

    In this paper, a power-frequency (P–ω) controller is presented for voltage source converters (VSC). The approach is intended for multiple parallel VSCs forming a microgrid operating in both grid-connected and islanded modes. The proposed controller allows a VSC to mimic the operation of a synchro......In this paper, a power-frequency (P–ω) controller is presented for voltage source converters (VSC). The approach is intended for multiple parallel VSCs forming a microgrid operating in both grid-connected and islanded modes. The proposed controller allows a VSC to mimic the operation...

  15. DESIGN AND OPTIMIZATION OF PERMANENT MAGNET SYNCHRONOUS GENERATOR FOR USE IN HYDRODYNAMIC RENEWABLE ENERGY BY APPLYING ACO AND FEA

    Directory of Open Access Journals (Sweden)

    Amir Nikbakhsh

    2017-12-01

    Full Text Available One of the most important ways to reduce fossil fuel consumption and consequently reduce greenhouse gases and environmental pollution is the use of renewable energies such as water, sun, wind, etc. One of the most efficient ways to take advantages of the shallow flowing waters such as rivers and fountains in electrical power generation is the use of hydrodynamic screw in the direction of water flow. The design of the generator for this application results in environmental dangers decrease. On the other hand, it provides some part of electrical energy required for human beings. Generators in hydrodynamic renewable energy system ought to have features such as high efficiency, power density and reliability as well as low volume. Among various generators, the permanent magnet synchronous generator (PMSG meets these requirements very well. In this paper, first, analytical calculations and the design process of PMSG were explained. Then, the ant colony optimization (ACO was used for the optimization of design quantities. PMSG design optimization increased in efficiency and decreased in volume. By improving these two parameters in the designed PMSG, it gets very suitable to be used in hydrodynamic renewable energy system. Finally, the results of the optimized design of PMSG were validated through simulation of it in Maxwell software and applying finite element analysis (FEA. Also the final results have been compared to similar experimental researches results.

  16. Control-oriented modeling of the energy-production of a synchronous generator in a nuclear power plant

    International Nuclear Information System (INIS)

    Fodor, Attila; Magyar, Attila; Hangos, Katalin M.

    2012-01-01

    Nuclear Power Plant (Hungary) is developed in this paper based on first engineering principles that is able to describe the time-varying active and reactive power output of the generator. These generators are required to take part in the reactive power support of the power grid following the demand of a central dispatch center, and also contribute to the frequency control of the grid. The developed model has been verified under the usual controlled operating conditions when the frequency and the active power are controlled. Static and dynamic sensitivity analysis has been applied to determine the model parameters to be estimated. The model parameters have been estimated applying the asynchronous parallel pattern search method using real measured data from the nuclear power plant. The confidence regions in the parameter space have been analyzed by investigating the geometry of the estimation error function. The developed model can serve as a basis for controlling the optimal energy production of the generator using both the active and reactive power components. -- Highlights: ► A dynamic model of a synchronous generator in a Nuclear Power Plant is developed. ► The model has been verified under the usual controlled operating conditions. ► The sensitivity analysis has been applied to determine the model parameters. ► The parameters have been estimated applying the APPS method using measured data. ► The model serves as a basis for controlling the optimal energy production of the generator.

  17. Control strategies for gas turbine generators for grid connected and islanding operations

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    fine while a DG is connected to a grid, might not work as desired while it is islanded and vise versa. This paper presents a strategy to operate distribution systems with a small gas turbine generator (GTG), which is capable of supplying local loads, in both islanding and grid connected conditions...

  18. A New Way of Controlling Parallel-Connected Inverters by Using Synchronous-Reference-Frame Virtual Impedance Loop

    DEFF Research Database (Denmark)

    Guan, Yajuan; Guerrero, Josep M.; Zhao, Xin

    2016-01-01

    A novel simple and effective autonomous current-sharing controller for parallel three-phase inverters is proposed in this paper. The proposed controller provides faster response and better accuracy in contrast to the conventional droop control, since this novel approach does not require any active...... or reactive power calculations. Instead, a synchronous-reference-frame (SRF) virtual impedance loop and an SRF-based phase-locked loop are used. Stationary analysis is provided in order to identify the inherent mechanism of the direct and quadrature output currents in relation to the voltage amplitude...... from a setup with three parallel 2.2 kW inverters verify the effectiveness of the proposed control strategy in different scenarios....

  19. Multi-pole permanent magnet synchronous generator wind turbines' grid support capability in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.

    2009-01-01

    Emphasis in this paper is on the fault ride-through and grid support capabilities of multi-pole permanent magnet synchronous generator (PMSG) wind turbines with a full-scale frequency converter. These wind turbines are announced to be very attractive, especially for large offshore wind farms...... and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a PMSG wind farm equipped with an additional voltage control can help a nearby active stall wind farm....... A control strategy is presented, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. Its design has special focus on power converters' protection and voltage control aspects. The performance of the presented control strategy is assessed...

  20. An improved efficiency of fuzzy sliding mode control of permanent magnet synchronous motor for wind turbine generator pumping system

    International Nuclear Information System (INIS)

    Benchabane, F.; Titaouine, A.; Guettaf, A.; Yahia, K.; Taibi, D.; Bennis, O.

    2012-01-01

    This paper presents an analysis by which the dynamic performances of a permanent magnet synchronous motor (PMSM) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the wind turbine pumping drive system with (PI) and a fuzzy sliding mode (FSM) speed controllers are presented. In order to optimize the overall system efficiency, a maximum power point tracker is also used. Simulation is carried out by formatting the mathematical model for wind turbine generator, motor and pump load. The results for such complicated and nonlinear system, with fuzzy sliding mode speed controller show improvement in transient response of the PMSM drive over conventional PI. The effectiveness of the FSM controller is also demonstrated. (author)

  1. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  2. Investigation of local load effect on damping characteristics of synchronous generator using transfer-function block-diagram model

    Directory of Open Access Journals (Sweden)

    Pichai Aree

    2005-07-01

    Full Text Available The transfer-function block-diagram model of single-machine infinite-bus power system has been a popular analytical tool amongst power engineers for explaining and assessing synchronous generator dynamic behaviors. In previous studies, the effects of local load together with damper circuit on generator damping have not yet been addressed because neither of them was integrated into this model. Since the model only accounts for the generator main field circuit, it may not always yield a realistic damping assessment due to lack of damper circuit representation. This paper presents an extended transfer-function block-diagram model, which includes one of the q-axis damper circuits as well as local load. This allows a more realistic investigation of the local load effect on the generator damping. The extended model is applied to assess thegenerator dynamic performance. The results show that the damping power components mostly derived from the q-axis damper and the field circuits can be improved according to the local load. The frequency response method is employed to carry out the fundamental analysis.

  3. Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelrahem

    2016-12-01

    Full Text Available Currently, the electric power production by wind energy conversion systems (WECSs has increased significantly. Consequently, wind turbine (WT generators are requested to fulfill the grid code (GC requirements stated by network operators. In case of grid faults/voltage dips, a mismatch between the generated active power from the wind generator and the active power delivered to the grid is produced. The conventional approach is using a braking chopper (BC in the DC-link to dissipate this active power. This paper proposes a fault-ride through (FRT strategy for variable-speed WECSs based on permanent magnet synchronous generators (PMSGs. The proposed strategy exploits the rotor inertia of the WECS (inertia of the WT and PMSG to store the surplus active power during the grid faults/voltage dips. Thus, no additional hardware components are requested. Furthermore, a direct model predictive control (DMPC scheme for the PMSG is proposed in order to enhance the dynamic behavior of the WECS. The behavior of the proposed FRT strategy is verified and compared with the conventional BC approach for all the operation conditions by simulation results. Finally, the simulation results confirm the feasibility of the proposed FRT strategy.

  4. Synchronization on effective networks

    International Nuclear Information System (INIS)

    Zhou Tao; Zhao Ming; Zhou Changsong

    2010-01-01

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  5. Synchronization on effective networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou Changsong, E-mail: cszhou@hkbu.edu.h [Department of Physics, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-04-15

    The study of network synchronization has attracted increasing attentionrecently. In this paper, we strictly define a class of networks, namely effective networks, which are synchronizable and orientable networks. We can prove that all the effective networks with the same size have the same spectra, and are of the best synchronizability according to the master stability analysis. However, it is found that the synchronization time for different effective networks can be quite different. Further analysis shows that the key ingredient affecting the synchronization time is the maximal depth of an effective network: the larger depth results in a longer synchronization time. The secondary factor is the number of links. The increasing number of links connecting nodes in the same layer (horizontal links) will lead to longer synchronization time, whereas the increasing number of links connecting nodes in neighboring layers (vertical links) will accelerate the synchronization. Our analysis of the relationship between the structure and synchronization properties of the original and effective networks shows that the purely directed effective network can provide an approximation of the original weighted network with normalized input strength. Our findings provide insights into the roles of depth, horizontal and vertical links in the synchronizing process, and suggest that the spectral analysis is helpful yet insufficient for the comprehensive understanding of network synchronization.

  6. Distributed cooperative synchronization strategy for multi-bus microgrids

    DEFF Research Database (Denmark)

    Sun, Yao; Zhong, Chaolu; Hou, Xiaochao

    2017-01-01

    Microgrids can operate in both grid-connected mode and islanded mode. In order to smooth transfer from islanded mode to grid-connected mode, it is necessary to synchronize the point of common coupling (PCC) with main utility grid (UG) in voltage frequency, phase and amplitude. Conventional...... synchronization methods based on centralized communication are very costly and not suitable for multi-bus microgrids that have a large number of distributed generators (DGs). To address this concern, this study presents an active synchronization control strategy based on distributed cooperation technology...... for multi-bus microgrids. The proposed method can reconnect the microgrid in island to UG seamlessly with sparse communication channels. Synchronization correction signals are generated by a voltage controller, which are only transmitted to the leader DGs. Meanwhile, each DG exchanges information with its...

  7. Fault ride-through and voltage support of permanent magnet synchronous generator wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Michalke, G.; Hartkopf, T. [Darmstadt Technical Univ., Dept. of Renewable Energies (Germany); Hansen, A.D. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark)

    2007-11-15

    This paper presents a control strategy of direct driven multipole PMSG wind turbines, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. A dynamic simulation model of the turbine is implemented in the simulation software DIgSILENT. Simulation results approve the effectiveness of the developed control strategy. It is shown that PMSG wind turbines equipped with such control even enable nearby connected conventional wind turbines to ride-through grid faults. (au)

  8. Real Time Synchronization of Live Broadcast Streams with User Generated Content and Social Network Streams

    NARCIS (Netherlands)

    Stokking, H.M.; Kaptein, A.M.; Veenhuizen, A.T.; Spitters4, M.M.; Niamut, O.A.

    2013-01-01

    This paper describes the work in the FP7 STEER project on augmenting a live broadcast with live user generated content. This user generated content consists of both video content, captured with mobile devices, and social network content, such as Facebook or Twitter messages. To enable multi-source

  9. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  10. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiuping, E-mail: yangxiuping-1990@163.com; Min, Lequan, E-mail: minlequan@sina.com; Wang, Xue, E-mail: wangxue-20130818@163.com [Schools of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-05-15

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2{sup 1345}. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  11. Power Extraction Control of Variable Speed Wind Turbine Systems Based on Direct Drive Synchronous Generator in All Operating Regimes

    Directory of Open Access Journals (Sweden)

    Youssef Errami

    2018-01-01

    Full Text Available Due to the increased penetration of wind energy into the electrical power systems in recent years, the turbine controls are actively occupied in the research. This paper presents a nonlinear backstepping strategy to control the generators and the grid sides of a Wind Farm System (WFS based Direct Drive Synchronous Generator (DDSG. The control objectives such as Tracking the Maximum Power (TMP from the WFS, pitch control, regulation of dc-link voltage, and reactive and active power generation at varying wind velocity are included. To validate the proposed control strategy, simulation results for 6-MW-DDSG based Wind Farm System are carried out by MATLAB-Simulink. Performance comparison and evaluation with Vector Oriented Control (VOC are provided under a wide range of functioning conditions, three-phase voltage dips, and the probable occurrence of uncertainties. The proposed control strategy offers remarkable characteristics such as excellent dynamic and steady state performance under varying wind speed and robustness to parametric variations in the WFS and under severe faults of grid voltage.

  12. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  13. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption.

    Science.gov (United States)

    Yang, Xiuping; Min, Lequan; Wang, Xue

    2015-05-01

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2(1345). As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  14. Real time testing of intelligent relays for synchronous distributed generation islanding detection

    Science.gov (United States)

    Zhuang, Davy

    As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.

  15. Solar photovoltaic systems and their use as grid-connected generators in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Munro, D K; Hacker, R J; Thornycroft, J M [Halcrow Gilbert Associates Ltd., Swindon (United Kingdom)

    1995-10-01

    There is an increasing interest in the use of building-integrated solar photovoltaic generators as grid-connected generators. This paper discusses the experience with this technology in Europe. Typical systems and their integration into domestic and non-domestic buildings are described. Information is provided on the energy output that can be expected from the systems and the economics of their use. The paper provides an overview of the requirements for photovoltaic systems as grid-connected generation plant in the United Kingdom. (Author)

  16. ASP - Grid connections of large power generating units; ASP - Anslutning av stoerre produktionsanlaeggningar till elnaetet

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aake; Larsson, Richard [Vattenfall Power Consultants, Stockholm (Sweden)

    2006-12-15

    Grid connections of large power generating units normally require more detailed studies compared to small single units. The required R and D-level depends on the specific characteristics of the production units and the connecting grid. An inquiry for a grid connection will raise questions for the grid owner regarding transmission capability, losses, fault currents, relay protection, dynamic stability etc. Then only a few larger wind farms have been built, the experiences from these types of grid connections are limited and for that reason it can be difficult to identify issues appropriate for further studies. To ensure that electric power generating units do not have unacceptable impact on the grid, directions from the Swedish TSO (Svenska Kraftnaet) have been stated. The directions deal, for example, with power generation in specific ranges of voltage level and frequency and the possibility to remain connected to the grid when different faults occur. The requirements and the consequences of these directions are illustrated. There are three main issues that should be considered: Influence on the power flow from generating units regarding voltage level, currents, losses etc.; Different types of electric systems in generating units contribute to different levels of fault currents. For that reason the resulting fault current levels have to be studied; It is required that generating units should remain connected to the grid at different modes of operation and faults. These modes have to be verified. Load flow and dynamic studies normally demand computer models. Comprehensive models, for instance of wind farms, can bee difficult to design and normally large computer capacity is required. Therefore simplified methods to perform relevant studies are described. How to model an electric power generating unit regarding fault currents and dynamic stability is described. An inquiry for a grid connection normally brings about a discussion concerning administration. To make it

  17. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...

  18. Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller

    Directory of Open Access Journals (Sweden)

    Bingzhang Li

    2017-03-01

    Full Text Available Two-stage single-phase grid-connected converters are widely used in renewable energy applications. Due to the presence of a second harmonic ripple across the DC bus voltage, it is very challenging to design the DC bus voltage control scheme in single-phase grid-connected inverters. The DC bus voltage controller must filter the ripple and balance a tradeoff between low harmonic distortion and high bandwidth. This paper presents a fast DC bus voltage controller, which uses a second order digital finite impulse response (FIR notch filter in conjunction with input power feedforward scheme to ensure the steady-state and dynamic performance. To gain the input power without extra hardware, a Kalman filter is incorporated to estimate the DC bus input current. At the same time, a modulation compensation strategy is implemented to eliminate the nonlinearity of the grid current control loop, which is caused by the DC bus voltage ripple. Moreover, a novel synchronous frame current controller for single-phase systems is also introduced, and its equivalent model in stationary frame has been derived. Simulation and experimental results are provided to verify the effective of the proposed control scheme.

  19. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  20. Full-load converter connected asynchronous generators for MW class wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav

    2005-06-15

    Wind turbines equipped with full-load converter-connected asynchronous generators are a known concept. These have rating up to hundreds of kW and are a feasible concept for MW class wind turbines and may have advantages when compared to conventional wind turbines with directly connected generators. The concept requires the use of full-scale frequency converters, but the mechanical gearbox is smaller than in conventional wind turbines of the same rating. Application of smaller gearbox may reduce the no-load losses in the wind turbines, which is why such wind turbines with converter connected generators may start operation at a smaller wind speed. Wind turbines equipped with such converted connected asynchronous generators are pitch-controlled and variable-speed. This allows better performance and control. The converter control may be applied to support the grid voltage at short-circuit faults and to improve the fault-ride-through capability of the wind turbines, which makes the concepts relevant for large wind farms. The Danish transmission system operator Energinet-DK has implemented the general model of wind turbines equipped with converter connected asynchronous generators with the simulation tool Powerfactory (DlgSilent). The article presents Energinet-DK's experience of modeling this feasible wind turbine concept. (Author)

  1. Generating Virtual Eye Contacts Through Online Synchronous Communications in Virtual Classroom Applications

    OpenAIRE

    T. Volkan YUZER

    2007-01-01

    The Internet usage has been increasing among persons in the worldwide. This situation highlights that the number of potential distance learners has been increasing in the Internet society. Besides, the terms and concepts of the Internet environments become to be spread out in this society like virtual reality. It is also possible to explain the characters of the Internet clearly via generating relatively new terms or concepts. “Virtual eye contact” concept is one of these. In this article, th...

  2. Performance comparison of LOE protection of synchronous generator in the presence of UPFC

    Directory of Open Access Journals (Sweden)

    Seyed Yaser Ebrahimi

    2016-03-01

    Full Text Available Generator loss of excitation (LOE protection is a principal protection of power system which operate based on impedance measurement. This relay calculates impedance by measuring voltage and current at the generator terminal. On the other hand, the presence of unified power flow controller (UPFC in transmission lines changes measured voltage and current signals during loss of excitation. In this paper, the impact of UPFC on the performance of LOE protection has been analytically investigated. Afterwards, using modeling results, it has been attained that the presence of UPFC leads to the drastic delay on the performance of LOE relay. This delay results to the overloading and damaging of armature winding of generator. It is also shown that in partial LOE presence of UPFC causes under-reach of the relay. Finally, the phasor measurement units (PMUs based method has been proposed to reduce the effect of UPFC on the LOE protection. The results indicate that using this new method, the delay of LOE relay has been reduced. In the surveys conducted, various conditions of the power system have been considered.

  3. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke.

    Science.gov (United States)

    Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna

    2017-01-01

    transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3-F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric "alpha flow" within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric "alpha flow" represented a permanent consequence of the "hidden" stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Our study indicates slower EEG alpha generation, synchronization and "flow" as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.

  4. Slower EEG alpha generation, synchronization and “flow”—possible biomarkers of cognitive impairment and neuropathology of minor stroke

    Directory of Open Access Journals (Sweden)

    Jelena Petrovic

    2017-09-01

    . Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3–F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric “alpha flow” within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric “alpha flow” represented a permanent consequence of the “hidden” stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Discussion Our study indicates slower EEG alpha generation, synchronization and “flow” as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.

  5. Research on simulated devices for Solar photovoltaic grid-connected generation system

    Directory of Open Access Journals (Sweden)

    quan-zhu Zhang

    2017-01-01

    Full Text Available On the standpoint of energy conservation and emission reduction, one device simulated photovoltaic grid-connected generation system based on SPWM was designed in the paper. And DC/AC inverter could transduce efficiently direct current to alternating current. The MCU(Micro-Control-Unit, in this system could achieve the control method for maximum-power-point and tracking for frequency and phase. Moreover, the MCU could implement PWM (Plus-Width Modulating through programming. The system showed clearly the whole photovoltaic grid-connected generation system using simulated methods and ways.

  6. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A novel islanding detection scheme for synchronous distributed generation using rate of change of exciter voltage over reactive power at DG-Side

    DEFF Research Database (Denmark)

    Rostami, Ali; Bagheri, Marzieh; Naderi, Seyed Behzad

    2017-01-01

    , the reactive power at DG-side and exciter voltage parameters are selected. The performance of the proposed method is investigated in MATLAB/Simulink software on a sample network in the presence of synchronous diesel-generator. The simulation results indicate that the proposed method is capable to detect all......Penetration of distributed generation (DG) in distribution networks is rapidly increasing. DGs' application enhances system's reliability and power quality. However, along their benefits, there are some issues. One of the most important issues of DGs' application is the islanding. This paper...... of the synchronous generator. Therefore, due to lack of inertia, response of these parameters to small changes is faster than the other passive parameters such as frequency. However, the sensitivity of reactive power at the DG-side and the exciter voltage is much more than reactive power and voltage of the load. So...

  8. An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC of direct-driven permanent magnet synchronous generator (PMSG-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.

  9. The challenges of connecting generation to distribution systems: a utility perspective

    International Nuclear Information System (INIS)

    Kropp, F.

    2004-01-01

    'Full text:' This presentation discusses the technical, financial and regulatory barriers to connecting generation to Distribution Systems in Ontario. Case studies will be used to provide examples of the operational and technical challenges that impact the utility as well as a discussion on the site-specific advantages and disadvantages (to the utility) of the generation connections. These studies will include discussions on the problems and lessons learned with respect to the overall project implementation and the contractual agreements. The case studies will be complemented by an explanation of the financial constraints (both short term and long term) associated with the connections, and the regulatory issues that impact the financial recovery models including net and gross load billing. (author)

  10. Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller

    International Nuclear Information System (INIS)

    Alizadeh, Mojtaba; Kojori, Shokrollah Shokri

    2015-01-01

    Offering substantial features, PMSG (permanent magnet synchronous generator) based WECS (wind energy conversion system) is definitely one of the most reliable and efficient ways of extracting electrical power from the wind. Like other WECSs, PMSG-based WECS (PMSG WECS) encompasses two main control loops, each equipped with PI (proportional integral) controller, to control speed and currents of the system. This work develops a virtually adaptive PI controller to enhance the performance of both main control loops of a PMSG WECS. A WNN (wavelet neural network) is proposed to be added to each closed control loop in series with PI controller. Due to having a cascade connection, the transfer function of the WNN, which is a pure gain in each time step, is multiplied by PI gains. Therefore, the value of transfer function of the WNN, and consequently, both parameters of PI controller can be changed in each time step by online training of the WNN, resulting in a virtually adaptive PI controller. The performance of the proposed controller in improving efficacy of both current and speed control loops is evaluated by simulation studies and is also compared to that of PI controller, WNNC (wavelet neural network controller), and QNNC (quantum neural network controller). - Highlights: • To propose a virtually adaptive PI controller to be used in a PMSG WECS. • Both parameters of PI controller can be changed in each time step. • The proposed controller can be used as both current or speed controller. • The plant data is not required for offline training of proposed current controller.

  11. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  12. Online Energy Management System for Distributed Generators in a Grid-Connected Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises

    2015-01-01

    A microgrid is an energy subsystem composed of generation units, energy storage, and loads that requires power management in order to supply the load properly according to defined objectives. This paper proposes an online energy management system for a storage based grid-connected microgrid...

  13. Three-Phase Grid-Connected of Photovoltaic Generator Using Nonlinear Control

    DEFF Research Database (Denmark)

    Yahya, A.; El Fadil, H.; Guerrero, Josep M.

    2014-01-01

    This paper proposes a nonlinear control methodology for three phase grid connected of PV generator. It consists of a PV arrays; a voltage source inverter, a grid filter and an electric grid. The controller objectives are threefold: i) ensuring the Maximum power point tracking (MPPT) in the side...... stability analysis and simulation results that the proposed controller meets all the objectives....

  14. Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Andrade, Fabio

    2015-01-01

    Grid-connected microgrids with storage systems are reliable configurations for critical loads which can not tolerate interruptions of energy supply. In such cases, some of the energy resources should be scheduled in order to coordinate optimally the power generation according to a defined objective...

  15. Connection and Commitment: Exploring the Generation and Experience of Emotion in a Participatory Drama

    Science.gov (United States)

    Dunn, Julie; Bundy, Penny; Stinson, Madonna

    2015-01-01

    Emotion is a complex and important aspect of participatory drama experience. This is because drama work of this kind provokes emotional responses to both actual and dramatic worlds. This paper identifies two key features of participatory drama that influence the generation and experience of emotion: commitment and connection. These features are…

  16. Looking Deeper Into Hydrologic Connectivity and Streamflow Generation: A Groundwater Hydrologist's Perspective.

    Science.gov (United States)

    Gardner, W. P.

    2016-12-01

    In this presentation the definition of hydraulic connection will be explored with a focus on the role of deep groundwater in streamflow generation and its time and space limits. Regional groundwater flow paths can be important sources of baseflow and potentially event response in surface water systems. This deep groundwater discharge plays an important role in determining how the watershed responds to climatic forcing, whether watersheds are a carbon source or sink and can be significant for watershed geochemistry and nutrient loading. These flow paths potentially "connect" to surface water systems and saturated soil zones at large distances, and over long time scales. However, these flow paths are challenging to detect, especially with hydraulic techniques. Here we will discuss some of the basic physical processes that affect the hydraulic signal along a groundwater flow path and their implications for the definition of hydrologic connection. Methods of measuring hydraulic connection using groundwater head response and their application in detecting regional groundwater discharge will be discussed. Environmental tracers are also a powerful method for identifying connected flowpaths in groundwater systems, and are commonly used to determine flow connection and flow rates in groundwater studies. Isotopic tracer methods for detecting deep, regional flow paths in watersheds will be discussed, along with observations of deep groundwater discharge in shallow alluvial systems around the world. The goal of this talk is to discuss hydraulic and hydrologic connection from a groundwater hydrologist's perspective, spark conversation on the meaning of hydrologic connection, the processes which govern hydraulic response and methods to measure flow connections and flux.

  17. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  18. Decentralized electricity generation by using photovoltaic grid-connected solar system

    International Nuclear Information System (INIS)

    Tyutyundziev, N.; Vitanov, P.; Radkov, R.; Grottke, M.

    2006-01-01

    AcadPV is the first demonstration installation connected permanently to LV grid in Sofia, Bulgaria aiming at assessment of PV efficiencies and cost-effectiveness. A thorough analysis has been carried out in order to select PV system site, supporting construction design and orientation. The PV generator is divided to 3 PV subfields equipped by 3 SUNPOWER inverters connected to 3 separated phases of the grid. The performance of 10kWp PV system has been evaluated during the first year of operation and compared to PV simulation software results

  19. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker.

    Science.gov (United States)

    Hu, Guoqing; Pan, Yingling; Zhao, Xin; Yin, Siyao; Zhang, Meng; Zheng, Zheng

    2017-12-01

    The evolution from asynchronous to synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser is experimentally investigated by tailoring the intracavity dispersion. Through tuning the intracavity-loss-dependent gain profile and the birefringence-induced filter effect, asynchronous dual-wavelength soliton pulses can be generated until the intracavity anomalous dispersion is reduced to ∼8  fs/nm. The transition from asynchronous to synchronous pulse generation is then observed at an elevated pump power in the presence of residual anomalous dispersion, and it is shown that pulses are temporally synchronized at the mode-locker in the cavity. Spectral sidelobes are observed and could be attributed to the four-wave-mixing effect between dual-wavelength pulses at the carbon nanotube mode-locker. These results could provide further insight into the design and realization of such dual-wavelength ultrafast lasers for different applications such as dual-comb metrology as well as better understanding of the inter-pulse interactions in such dual-comb lasers.

  20. Connecting the Members of Generation Y to Destination Brands: A Case Study of the CUBIS Project

    Directory of Open Access Journals (Sweden)

    Ralf Bochert

    2017-07-01

    Full Text Available There is direct correlation between building powerful destination brands and the degree to which tourists and locals share the brands values. The massive penetration of the active population by Generation Y has generated a major shift in tourism marketing, based on the profile of this cohort. The members of Generation Y are very different from previous generations. The so-called “digital natives” share high technological proficiency; they like to share their skills; they are disloyal consumers; and they are affected by trends. In order to connect with members of Generation Y and to actively involve them into the life of tourist destinations, viral, participative, interactive, networked and versatile marketing techniques should be employed. This article introduces the Intelligent Solution for Brand Culturalization (CUBIS Project, which is a collaborative research initiative that offers to Destination Management Organizations an innovative idea of how to connect the members of Generation Y with destination brands using information and communication technologies (ICT. The CUBIS Project aims to create emotional attachment with the brand values and supports the adoption of the brand by young locals and tourists. The CUBIS idea is flexible and highly adaptable to other destinations. The article uses exploratory qualitative research in the form of a case study.

  1. Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation

    Directory of Open Access Journals (Sweden)

    Christian Nowke

    2018-06-01

    Full Text Available Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed.

  2. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  3. The many-body content of quantum gauge theories and its connection to mass generation mechanisms

    International Nuclear Information System (INIS)

    Natoli, C.R.; Palumbo, F.

    1985-01-01

    The aim of the paper is to get more knowledge about many-body systems and their properties, about many-body content of quantum gauge theories and its connection with mass generation mechanisms. The way to achieve this is to perform the galilean limit of the relativistic theory by sending the speed of light c to infinity. This limiting process exposes the low energy behaviour of the relativistic theory

  4. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  5. Research on grid connection control technology of double fed wind generator

    Science.gov (United States)

    Ling, Li

    2017-01-01

    The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.

  6. Impact of Rural Grid-Connected Photovoltaic Generation Systems on Power Quality

    Directory of Open Access Journals (Sweden)

    Rita Pinto

    2016-09-01

    Full Text Available Photovoltaic (PV generation systems have been increasingly used to generate electricity from renewable sources, attracting a growing interest. Recently, grid connected PV micro-generation facilities in individual homes have increased due to governmental policies as well as greater attention by industry. As low voltage (LV distribution systems were built to make energy flow in one direction, the power feed-in of PV generation in rural low-voltage grids can influence power quality (PQ as well as facility operation and reliability. This paper presents results on PQ analysis of a real PV generation facility connected to a rural low-voltage grid. Voltage fluctuations and voltage harmonic contents were observed. Statistical analysis shows a negative impact on PQ produced by this PV facility and also that only a small fraction of the energy available during a sunny day is converted, provoking losses of revenue and forcing the converter to work in an undesirable operating mode. We discuss the disturbances imposed upon the grid and their outcome regarding technical and economic viability of the PV system, as well as possible solutions. A low-voltage grid strengthening has been suggested and implemented. After that a new PQ analysis shows an improvement in the impact upon PQ, making this facility economically viable.

  7. Computational package for the dynamic analysis of synchronous generators and their controls; Paquete computacional para el analisis de generadores sincronos y sus controles

    Energy Technology Data Exchange (ETDEWEB)

    Perez Guillen, Jesus Artemio

    1997-12-31

    This thesis presents a computational package for the dynamic analysis of synchronous generators and their controls in a machine - infinite bus system. The package is integrated by a graphic interface for Windows environment and several models for the different components of the generation system. The development of the graphic interface was carried out with object oriented programming under Windows environment, available from Borland C++, which generates a group of menus that integrates an environment of interactive and versatile simulation. The package contains mathematical models of third, fourth, fifth and sixth order for synchronous generators of round and salient poles. Several mathematical models for the excitation systems DC1A, AC1A and ST1A, according to the IEEE classification, are included. Models for thermal and hydraulic turbines with governor of speed are also included, as well as a mathematical model for the power system stabilizer and magnetic saturation on synchronous generators. Numerical methods like Euler, Modified Euler and Runge Kutta of second and fourth order are used to solve the characteristics differential equations of the system under study. Algorithms for graphic generation includes phasor diagram, capability and saturation curves for synchronous machine. Computer models are validated and sensitivity analysis is carried out in order to assess the ef ect of type of model for synchronous machine, excitation systems, power system stabilizer, magnetic saturation in the synchronous generator and different numerical methods of integration. The computational package is useful in teaching and research on the dynamic response of synchronous machines and their controls. [Espanol] En este trabajo se presenta el desarrollo de un paquete computacional para el analisis dinamico de generadores sincronos y sus controles en el esquema de una unidad de generacion - bus infinito. El paquete esta integrado por una interfaz grafica para ambiente Windows y un

  8. High-sweeping-speed optically synchronized dual-channel terahertz-signal generator for driving a superconducting tunneling mixer and its application to active gas sensing.

    Science.gov (United States)

    Oh, Kyoung-Hwan; Shimizu, Naofumi; Kohjiro, Satoshi; Kikuchi, Ken'ichi; Wakatsuki, Atsushi; Kukutsu, Naoya; Kado, Yuichi

    2009-10-12

    We propose a high-sweeping-speed optically synchronized dual-channel terahertz (THz) signal generator for an active gas-sensing system with a superconductor-insulator-superconductor (SIS) mixer. The generator can sweep a frequency range from 200 to 500 GHz at a speed of 375 GHz/s and a frequency resolution of 500 MHz. With the developed gas-sensing system, a gas-absorption-line measurement was successfully carried out with N(2)O gas in that frequency range.

  9. Neural Synchronization and Cryptography

    Science.gov (United States)

    Ruttor, Andreas

    2007-11-01

    Neural networks can synchronize by learning from each other. In the case of discrete weights full synchronization is achieved in a finite number of steps. Additional networks can be trained by using the inputs and outputs generated during this process as examples. Several learning rules for both tasks are presented and analyzed. In the case of Tree Parity Machines synchronization is much faster than learning. Scaling laws for the number of steps needed for full synchronization and successful learning are derived using analytical models. They indicate that the difference between both processes can be controlled by changing the synaptic depth. In the case of bidirectional interaction the synchronization time increases proportional to the square of this parameter, but it grows exponentially, if information is transmitted in one direction only. Because of this effect neural synchronization can be used to construct a cryptographic key-exchange protocol. Here the partners benefit from mutual interaction, so that a passive attacker is usually unable to learn the generated key in time. The success probabilities of different attack methods are determined by numerical simulations and scaling laws are derived from the data. They show that the partners can reach any desired level of security by just increasing the synaptic depth. Then the complexity of a successful attack grows exponentially, but there is only a polynomial increase of the effort needed to generate a key. Further improvements of security are possible by replacing the random inputs with queries generated by the partners.

  10. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity.

    Science.gov (United States)

    Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail

    2016-01-01

    With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework.

  11. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is governed by a local nonlinear oscillator for each node of the network and interactions connecting different nodes via the links of the network. We consider existence and stability conditions for both single- and multi-cluster ...

  12. Power Quality Improvement Utilizing Photovoltaic Generation Connected to a Weak Grid

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tumbelaka, Hanny H. [Petra Christian University; Gao, Wenzhong [UNiversity of Denver

    2017-11-07

    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtained.

  13. Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator

    DEFF Research Database (Denmark)

    Li, H.; Zhao, B.; Yang, C.

    2011-01-01

    based on normal form theory is proposed. The transient models of the wind turbine generation system including the flexible drive train model are derived based on the direct transient stability estimation method. A method of critical clearing time (CCT) calculation is developed for the transient......Increasing levels of wind energy in modern electrical power system is initiating a need for accurate analysis and estimation of transient stability of wind turbine generation systems. This paper investigates the transient behaviors and possible direct methods for transient stability evaluation...... of a grid-connected wind turbine with squirrel cage induction generator (SCIG). Firstly, by using an equivalent lump mass method, a three-mass wind turbine equivalent model is proposed considering both the blades and the shaft flexibility of the wind turbine drive train system. Combined with the detailed...

  14. Reliability Oriented Design Tool For the New Generation of Grid Connected PV-Inverters

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Blaabjerg, Frede; Wang, Huai

    2015-01-01

    is achieved and is further used as an input to the lifetime model. The proposed reliability-oriented design tool is used to study the impact of mission profile (MP) variation and device degradation (aging) in the PV inverter lifetime. The obtained results indicate that the MP of the field where the PV...... inverter is operating has an important impact (up to 70%) on the converter lifetime expectation, and it should be considered in the design stage to better optimize the converter design margin. In order to have correct lifetime estimation, it is crucial to consider also the device degradation feedback (in......This paper introduces a reliability-oriented design tool for a new generation of grid-connected photovoltaic (PV) inverters. The proposed design tool consists of a real field mission profile (RFMP) model (for two operating regions: USA and Denmark), a PV panel model, a grid-connected PV inverter...

  15. Modified Grid-Connected CSI for Hybrid PV/Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    D. Amorndechaphon

    2012-01-01

    Full Text Available The principle of a power conditioning unit for hybrid PV/wind power generation system is proposed. The proposed power conditioner is based on the current source inverter (CSI topology. All energy sources are connected in parallel with a DC-bus through the modified wave-shaping circuits. To achieve the unity power factor at the utility grid, the DC-link current can be controlled via the wave-shaping circuits with the sinusoidal PWM scheme. In this work, the carrier-based PWM scheme is also proposed to minimize the utility current THD. The power rating of the proposed system can be increased by connecting more PV/wind modules through their wave-shaping circuits in parallel with the other modules. The details of the operating principles, the system configurations, and the design considerations are described. The effectiveness of the proposed CSI is demonstrated by simulation results.

  16. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    Science.gov (United States)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  17. Artificial Bee Colony Algorithm for Transient Performance Augmentation of Grid Connected Distributed Generation

    Science.gov (United States)

    Chatterjee, A.; Ghoshal, S. P.; Mukherjee, V.

    In this paper, a conventional thermal power system equipped with automatic voltage regulator, IEEE type dual input power system stabilizer (PSS) PSS3B and integral controlled automatic generation control loop is considered. A distributed generation (DG) system consisting of aqua electrolyzer, photovoltaic cells, diesel engine generator, and some other energy storage devices like flywheel energy storage system and battery energy storage system is modeled. This hybrid distributed system is connected to the grid. While integrating this DG with the onventional thermal power system, improved transient performance is noticed. Further improvement in the transient performance of this grid connected DG is observed with the usage of superconducting magnetic energy storage device. The different tunable parameters of the proposed hybrid power system model are optimized by artificial bee colony (ABC) algorithm. The optimal solutions offered by the ABC algorithm are compared with those offered by genetic algorithm (GA). It is also revealed that the optimizing performance of the ABC is better than the GA for this specific application.

  18. Control and Modulation Techniques for a Centralized PV Generation System Grid Connected via an Interleaved Inverter

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2016-09-01

    Full Text Available In the context of grid connected photovoitaic (PV generation systems, there are two paramount aspects regarding the Maximum Power Point Tracking (MPPT of the photovoltaic units and the continuity of the service. The most diffused MPPT algorithms are based on either perturb and observe, or on an incremental conductance approach and need both PV current and voltage measurements. Several topology reconfigurable converters are also associated with the PV plants, guaranteeing fault-tolerant features. The generation continuity can also be assured by interleaved inverters, which keep the system operating at reduced maximum power in case of failure. In this paper, an evolution of a hysteresis based MPPT algorithm is presented, based on the measurement of only one voltage, together with a novel space vector modulation suitable for a two-channel three-phase grid connected interleaved inverter. The proposed MMPT algorithm and modulation technique are tested by means of several numerical analyses on a PV generation system of about 200 kW maximum power. The results testify the validity of the proposed strategies, showing good performance, even during a fault occurrence and in the presence of deep shading conditions.

  19. Generation-Side Power Scheduling in a Grid-Connected DC Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Meng, Lexuan

    2015-01-01

    In this paper, a constrained mixed-integer programming model for scheduling the active power supplied by the generation units in storage-based DC microgrids is presented. The optimization problem minimizes operating costs taking into account a two-stage mode operation of the energy storage system...... so that a more accurate model for optimization of the microgrid operation can be obtained. The model is used in a particular grid-connected DC microgrid that includes two renewable energy sources and an energy storage system which supply a critical load. The results of the scheduling process...

  20. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    DEFF Research Database (Denmark)

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions....... It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method...... is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed...

  1. Integration of a finite element generator model into a simulated HVDC connected system

    Energy Technology Data Exchange (ETDEWEB)

    Preston, T W; Sturgess, J P [GEC Alsthom Engineering Research Center, Stafford (United Kingdom)

    1994-12-31

    Within most system analysis programs generators and motors are represented by an equivalent circuit model either a 2-axis model for both stators and rotor or a three-phase model of the stator and a two-axis model of the rotor. This may be adequate under certain operating conditions such as steady-state or some symmetrical faults but for inverter-fed motors or generators feeding into a rectified load a more rigorous model of the machine is required. This paper describes the theory and development of such a model, its integration with the power electronics and application to 6-pulse and 12-pulse converters, the latter being appropriate in systems similar to HVDC unit connection. (author) 5 refs., 16 figs.

  2. Analysis and Design of a Permanent-Magnet Outer-Rotor Synchronous Generator for a Direct-Drive Vertical-Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    H. A. Lari

    2014-12-01

    Full Text Available In Permanent-Magnet Synchronous Generators (PMSGs the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.

  3. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  4. Evaluation of tube to collector connection by hydraulic expansion method in PGV-1000 steam generators

    International Nuclear Information System (INIS)

    Dashti, H.G.; Hashemi, B.; Jahromi, S.A.

    2011-01-01

    Research highlights: → The produced residual stresses in the collector body due to hydraulic expansion method have been compared with explosive method. → The residual stresses were obtained using two methods of FEM and strain gauging tests. → The effect of clearance between tube and collector on the residual stresses was investigated. → The contact stresses between the tube and collector interface were modeled and the required connection strength between tube and collector is estimated based on ASME rules and compared with FE results. - Abstract: Investigations on steam generators failure due to cracking in collector ligaments at perforated parts determined that connection process of the tubes to collector could be one of the main breakdown causes. The stability and strength of tube to collector joint is dependent to the geometry of tube and collector, the joining process and the operational conditions. In this research hydraulic expansion method has been considered as connection method of tube to collector. The Finite Element Method (FEM) was used to simulate the hydraulic expansion process and determine stress condition of the joints. The contact stresses between the tube and collector interface were modeled using contact elements of ANSYS program. Furthermore, the effect of clearance between tube and collector on the residual stresses around of joints was investigated. Some specimens from collector and tube materials were tested at various temperatures and their results were used at rate-independent multi-linear Mises plasticity model for FE analysis. Required connection strength between tube and collector is estimated based on ASME rules and compared with FE results. The results show that the residual tensile stresses could be greatly increased by decreasing of initial clearance. The highest value of residual stresses was observed around of collector holes nevertheless it was considerably lesser than obtained residual stresses in explosive method. The

  5. Virtual instrumentation of a laboratory synchronous generator with LabVIEW; Instrumentacion virtual de un generador sincrono de laboratorio con LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Uribe Fernandez, Uriel

    2003-07-01

    On this work measurement algorithms for variables from a synchronous generator are developed and implemented, in open architecture by means of virtual instrument in real time with the Laboratory Virtual Instrument Engineering Workbench (LabBIEW) that it is a development atmosphere based on the graphic programming. The main program menu of the virtual instrumentation has three options of measurement: The first option is a program that carries out the three phase measurement of: tension RMS, current RMS, magnitude, phase angle, power factor, apparent, active and reactive power and the graphic of these signals. The second option is a program that carries out the measurement of load angle from the synchronous generator. This measurement is made through the Fast Fourier Transformed (FFT), obtaining the voltage terminal, magnitude and phase angle with respect to the rotor position reference. This measurement varies from synchronous generator, operation conditions. The speed angle measurement is obtained from the load angle changes. These measurements are presented in graphic form in the time, with a virtual instrument type needle and in digital form. The range of load angle is +/- 180 degrees. The third option is a program that carries out the measurement of the load angle against active power (curve d-W), from the synchronous machine. [Spanish] En este trabajo se desarrollan e implementan algoritmos de medicion para variables de un generador sincrono, en arquitectura abierta, por medio de la instrumentacion virtual en tiempo real con el uso del Laboratory Virtual Instrument Engineering Workbench (LabVIEW) que es un ambiente de desarrollo basado en la programacion grafica. El programa principal menu de la instrumentacion virtual tiene tres opciones de medicion: La primera opcion es un programa que realiza la medicion trifasica de tension RMS, corriente RMS, magnitud, angulo de fase, factor de potencia, potencia aparente, activa y reactiva, y la graficacion de estas

  6. Response of MV-connected Doubly-Fed Induction Generator Wind Turbines and CHP plants to Grid Disturbances

    NARCIS (Netherlands)

    Karaliolios, P.; Slootweg, J.G.; Kling, W.L.

    2010-01-01

    Notwithstanding the positive environmental impact, the increasing penetration of Distributed Generation (DG) units connected to the distribution network raises new topics concerning the expected response of these during outages. Grid disturbances especially at the transmission level can cause the

  7. Assessment of the cost-effectiveness and clinical outcomes of a fourth-generation synchronous telehealth program for the management of chronic cardiovascular disease.

    Science.gov (United States)

    Ho, Yi-Lwun; Yu, Jiun-Yu; Lin, Yen-Hung; Chen, Ying-Hsien; Huang, Ching-Chang; Hsu, Tse-Pin; Chuang, Pao-Yu; Hung, Chi-Sheng; Chen, Ming-Fong

    2014-06-10

    Telehealth programs are a growing field in the care of patients. The evolution of information technology has resulted in telehealth becoming a fourth-generation synchronous program. However, long-term outcomes and cost-effectiveness analysis of fourth-generation telehealth programs have not been reported in patients with chronic cardiovascular diseases. We conducted this study to assess the clinical outcomes and cost-effectiveness of a fourth-generation synchronous telehealth program for patients with chronic cardiovascular diseases. We retrospectively analyzed 575 patients who had joined a telehealth program and compared them with 1178 patients matched for sex, age, and Charlson comorbidity index. The program included: (1) instant transmission of biometric data, (2) daily telephone interview, and (3) continuous decision-making support. Data on hospitalization, emergency department (ED) visits, and medical costs were collected from the hospital's database and were adjusted to the follow-up months. The mean age was 64.5 years (SD 16.0). The mean number of monthly ED visits (mean 0.06 SD 0.13 vs mean 0.09 SD 0.23, P<.001), hospitalizations (mean 0.05 SD 0.12 vs mean 0.11 SD 0.21, P<.001), length of hospitalization (mean 0.77 days SD 2.78 vs mean 1.4 SD 3.6, P<.001), and intensive care unit admissions (mean 0.01 SD 0.07 vs mean 0.036 SD 0.14, P<.001) were lower in the telehealth group. The monthly mean costs of ED visits (mean US$20.90 SD 66.60 vs mean US$37.30 SD 126.20, P<.001), hospitalizations (mean US$386.30 SD 1424.30 vs mean US$878.20 SD 2697.20, P<.001), and all medical costs (mean US$587.60 SD 1497.80 vs mean US$1163.60 SD 3036.60, P<.001) were lower in the telehealth group. The intervention costs per patient were US$224.80 per month. Multivariate analyses revealed that age, telehealth care, and Charlson index were the independent factors for ED visits, hospitalizations, and length of hospitalization. A bootstrap method revealed the dominant cost

  8. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  9. Operational characteristic analysis of PV generation system for grid connection by using a senseless MPPT control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-J.; Kim, K.-H.; Park, H.-Y.; Seo, H.-R.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    In photovoltaics, the sun's light energy is captured to create electricity. One of the key issues about a photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional maximum power point tracking (MPPT) control method, both voltage and current coming out from PV array require feedback. The system may fail to track the MPP of a PV array when unexpected weather conditions happen. This paper proposed a novel PV output senseless (POS) control method to solve the problem. The proposed POS MPPT control method only had one factor to consider, the load current. To verify this theory, a POS MPPT control was applied to a manufactured PV generation system, and the results of the the simulated and experimental data under real weather conditions were compared and analyzed. Several tables and diagrams were presented, including the circuit diagram of a manufactured PV generation system connected to grid as well as the the specifications of the PV array and PCS used for the experiment. Reasonable results were obtained in this study. In addition, the scheme was found to be very useful in maximizing power from PV array to load with feedback of only the load current. 8 refs., 3 tabs., 15 figs.

  10. A report on the performance of a grid connected photovoltaic power generation system

    International Nuclear Information System (INIS)

    Mohd Azhar Abdul Rahman; Mohd Surif Abdul Wahab; Azmi Omar

    2000-01-01

    Malaysia is located almost on the equator and is blessed with an abundance of sunlight almost all year round. So obviously, with the right planning and strategies that are coupled to the right technology and development in the market, the potential for photovoltaic system as an alternative source of power in this country looks promising and is constantly gaining ground and popularity. Sunlight is free and the photovoltaic system is also emission and pollution free which is a guest boost to the current worldwide effort to reduce the global environmental problems. Utility giant Tenaga Nasional Berhad is in line with the Government aspiration to promote the development of solar photovoltaic in the country, who believe in the success and acceptance potential of the photovoltaic system as an alternative source of power generation for long term energy option. In March 1998, a contract was awarded by Tenaga Nasional Berhad to its research subsidiary, Tenaga Nasional Research and Development Sdn. Bhd. to undertake a pilot research project on the development of a grid connected photovoltaic system. This research project is co-funded by the Electric Supply Industry Trust fund. One of the main objective of this research project is to seek the best approach to popularize the Grid Connected Photovoltaic System for domestic as well as suitable commercial premises in this country. This paper will report the initial findings of the project in terms of technical capability and commercial liability. (Author)

  11. Generation of connectivity-preserving surface models of multiple sclerosis lesions.

    Science.gov (United States)

    Meruvia-Pastor, Oscar; Xiao, Mei; Soh, Jung; Sensen, Christoph W

    2011-01-01

    Progression of multiple sclerosis (MS) results in brain lesions caused by white matter inflammation. MS lesions have various shapes, sizes and locations, affecting cognitive abilities of patients to different extents. To facilitate the visualization of the brain lesion distribution, we have developed a software tool to build 3D surface models of MS lesions. This tool allows users to create 3D models of lesions quickly and to visualize the lesions and brain tissues using various visual attributes and configurations. The software package is based on breadth-first search based 3D connected component analysis and a 3D flood-fill based region growing algorithm to generate 3D models from binary or non-binary segmented medical image stacks.

  12. Facilitating efficient augmentation of transmission networks to connect renewable energy generation: the Australian experience

    International Nuclear Information System (INIS)

    Wright, Glen

    2012-01-01

    Australia is heavily dependent on coal for electricity generation. The Renewable Energy Target has spurred growth in the utilization of renewable energy sources, with further growth expected into the future. Australia's strongest renewable energy sources are generally distant from the transmission network in resource ‘basins’. Investment is needed to augment the transmission network to enable delivery of electricity from these sources to consumers. Considerable economies of scale flow from anticipating the connection of numerous generators in an area over time and sizing augmentations accordingly. Following a lengthy rulemaking process, the National Electricity Rules were recently amended by a new rule, designed to facilitate the construction of such efficiently sized augmentations. However, the new rule is more conservative than initially envisaged, making little substantive change to the current frameworks for augmentation and connection. This paper outlines these frameworks and the rulemaking process and identifies the key debates surrounding the rule change are identified. This paper then provides a detailed analysis of the new rule, concluding that it is defective in a number of respects and is unlikely to result in the efficient and timely augmentation of the network needed to unlock the potential of Australia's strongest renewable energy resources. - Highlights: ► Remoteness of renewable energy sources is a barrier to greater renewable energy utilization. ► Significant economies of scale flow from efficiently-sized transmission network augmentation. ► Current frameworks in Australia do not incentivise efficiently-sized network augmentations. ► The lack of property rights in an augmentation is particularly problematic. ► The new Scale Efficient Network Extensions rule is not apt to facilitate efficiently-sized network augmentations.

  13. Study of the modifications on the synchronous generators, heavy water pumps and condenser batteries of the RA reactor - Annex 17; Prilog 17 - Elaborat o izmenama u semama sinhronih generatora, teskovodnih pumpi i kondenzatorskih baterija reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    Modifications done on the synchronous generators are related to the emergency power supply system, meaning one of the most important devices responsible for reactor safety. Without reducing the efficiency of the heavy water pumps the improved stability of generators operation was achieved by reducing the possibility of errors and simplifying manipulation. Condensator batteries were improved in order to decrease the leakage currents.

  14. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  15. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  16. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    International Nuclear Information System (INIS)

    Minati, Ludovico

    2014-01-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties

  17. Development of a Laser Driven Photocathode Injector and Femtosecond Scale Laser Electron Synchronization for Next Generation Light Sources

    CERN Document Server

    Le Sage, G P; Ditmire, T R; Rosenzweig, J

    2000-01-01

    A high brightness photoinjector has been developed at LLNL. This injector combined with the 100 TW FALCON laser and the LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements, based on Thomson scattering. Short pulse x-rays enable time-resolved characterization of shock dynamics, and examination of materials under extremes of pressure and temperature. Examples include Equation of State characterization on high-density materials, Crystal disorganization and re-growth in shocked and heated materials, and measurement of short time scale phase transition phenomena. Single shot evaluation, requiring high peak flux, is important for complex experiments such as probing of laser shocked actinides. A low emittance electron beam synchronized with femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This project will lead development of ultrafast x-ray dynamics research on ...

  18. Simulating climate with a synchronization-based supermodel

    Science.gov (United States)

    Selten, Frank M.; Schevenhoven, Francine J.; Duane, Gregory S.

    2017-12-01

    The SPEEDO global climate model (an atmosphere model coupled to a land and an ocean/sea-ice model with about 250.000 degrees of freedom) is used to investigate the merits of a new multi-model ensemble approach to the climate prediction problem in a perfect model setting. Two imperfect models are generated by perturbing parameters. Connection terms are introduced that synchronize the two models on a common solution, referred to as the supermodel solution. A synchronization-based learning algorithm is applied to the supermodel through the introduction of an update rule for the connection coefficients. Connection coefficients cease updating when synchronization errors between the supermodel and solutions of the "true" equations vanish. These final connection coefficients define the supermodel. Different supermodel solutions, but with equivalent performance, are found depending on the initial values of the connection coefficients during learning. The supermodels have a climatology and a climate response to a CO2 increase in the atmosphere that is closer to the truth as compared to the imperfect models and the standard multi-model ensemble average, showing the potential of the supermodel approach to improve climate predictions.

  19. The Idea to Synchronize Measuring Paths for Two Different Current Generators Operated as Position-Voltage Converters

    Directory of Open Access Journals (Sweden)

    Gębura Andrzej

    2016-08-01

    Full Text Available The study deals with the issue how to apply two different types of current generators at the same time, namely a three-phase AC generator and a DC generator of commutator type. What is more interesting, the two generators would be able to collaborate both during the phase of electromechanical sampling and the phase of electronic sampling. It will enable structural improvement of sensitivity and resolution parameters and shall open new opportunities to investigate new types if mechanical phenomena (that have not been already tracked by means of the FAM-C and FDM-A methods, such as torsion of torque transmission shafts.

  20. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  1. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  2. General Theory of the Double Fed Synchronous Machine. Ph.D. Thesis - Swiss Technological Univ., 1950

    Science.gov (United States)

    El-Magrabi, M. G.

    1982-01-01

    Motor and generator operation of a double-fed synchronous machine were studied and physically and mathematically treated. Experiments with different connections, voltages, etc. were carried out. It was concluded that a certain degree of asymmetry is necessary for the best utilization of the machine.

  3. Design Criteria for DC Link Filters in a Synchronous Generator-Phase Controlled Rectifier-Filter-Load System

    National Research Council Canada - National Science Library

    Greseth, Gregory

    1999-01-01

    .... The proposed Navy DC Zonal Electrical Distribution System (DC ZEDS) being designed for the new DD-21 utilizes a rectified ac generator output which is filtered and stepped to usable voltages by local dc-dc converters...

  4. Voltage Control Scheme with Distributed Generation and Grid Connected Converter in a DC Microgrid

    Directory of Open Access Journals (Sweden)

    Jong-Chan Choi

    2014-10-01

    Full Text Available Direct Current (DC microgrids are expected to become larger due to the rapid growth of DC energy sources and power loads. As the scale of the system expends, the importance of voltage control will be increased to operate power systems stably. Many studies have been performed on voltage control methods in a DC microgrid, but most of them focused only on a small scale microgrid, such as a building microgrid. Therefore, a new control method is needed for a middle or large scale DC microgrid. This paper analyzes voltage drop problems in a large DC microgrid and proposes a cooperative voltage control scheme with a distributed generator (DG and a grid connected converter (GCC. For the voltage control with DGs, their location and capacity should be considered for economic operation in the systems. Accordingly, an optimal DG allocation algorithm is proposed to minimize the capacity of a DG for voltage control in DC microgrids. The proposed methods are verified with typical load types by a simulation using MATLAB and PSCAD/EMTDC.

  5. Evaluation small scale, grid connected wind and solar distributed generation systems in Jordan

    International Nuclear Information System (INIS)

    Naji, G. J.; Tahboub, K. K.; Jalham, I. S.

    2011-01-01

    In this paper, the potential of utilizing wind and solar Private Distributed Generation (PDG) for utility interactive systems is investigated for 11 selected stations (sites) in Jordan. Six customer categories are considered: residential, office, commercial mall, school, hospital and hotel. The main goal of this study was to evaluate the potential of utilizing different grid connected PDG under different conditions such as their location, size, served building category, number of people who share and own the equipment and system type whether wind, solar or hybrid based. It was found that solar systems are still not attractive for all location due to their associated high cost, while wind systems would vary widely depending on the customer category, location and the size of the equipment. Based on the Benefit to Cost ratio criterion, the most attractive sites for installing wind PDGS for residential communities are Ras Muneef, Mafraq, Aqaba, Irbid and H5, while it doesn't seem attractive at Amman,Shoubak, Ghor Essafi, Deir Alla, Maan and H4. On the other hand, the wind on-grid PDGS is very attractive at Ras Muneef, mafraq and Aqaba for commercial buildings, less attractive at H5 and irbid, while it's not attractive at the other sites. The attraction for hybrid PDG systems is closer to those of wind systems alone. (authors).

  6. Design of DC-DC Converter and its Control for a Wind Generation System Connected to an Isolated Load

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available A method to design a Buck converter and its control, which are associated to a wind generation system that is feeding an isolated load, is presented in this paper. To design the converter a Thevenin equivalent is deduced, which represents the behavior of the wind turbine, the permanent magnet synchronous generator, and the rectifier. The design of the converter elements guarantees input/output voltages and inductor current ripples of 5 % or less. The output voltage control is developed with a proportional-integral-derivative controller and as design criteria a damping of 0,707 and cutoff frequency of 1/5 converter commutation frequency are selected. The designed controller regulates the output voltage faced load perturbations and wind speed variations. 

  7. Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven Brushless Doubly-Fed Reluctance Generator.

    Science.gov (United States)

    Mousa, Mohamed G; Allam, S M; Rashad, Essam M

    2018-01-01

    This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Design of High-Efficiency and Low-Cost Six-Phase Permanent Magnet Synchronous Generator for Direct-Drive Small-Scale Wind Power Application

    Directory of Open Access Journals (Sweden)

    M. E. Moazzen

    2017-06-01

    Full Text Available Permanent magnet synchronous generators (PMSG have a huge potential for direct-drive wind power applications. Therefore, optimal design of these generators is necessary to maximize their efficiency and to reduce their manufacturing cost and total volume. In this paper, an optimal design of a six-phase 3.5 KW direct-drive PMSG to generate electricity for domestic needs is performed. The aim of optimal design is to reduce the manufacturing cost, losses and total volume of PMSG. To find the best design, single/multi-objective design optimization is carried out. Cuckoo optimization algorithm (COA is adopted to solve the optimization problem. Comparison between the results of the single-objective and multi-objective models shows that simultaneous optimization of manufacturing cost, losses and total volume leads to more suitable design for PMSG. Finally, finite-element method (FEM is employed to validate the optimal design, which show a good agreement between the theoretical work and simulation results.

  9. A chimeric path to neuronal synchronization

    Science.gov (United States)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  10. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  11. A chimeric path to neuronal synchronization

    International Nuclear Information System (INIS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  12. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  13. Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, L.M.; Garcia, C.A. [Department of Electrical Engineering, University of Cadiz, EPS Algeciras, Avda. Ramon Puyol s/n,11202 Algeciras (Cadiz) (Spain); Jurado, F. [Department of Electrical Engineering, University of Jaen, EPS Linares, C/ Alfonso X n . 28, 23700 Linares (Jaen) (Spain)

    2010-06-15

    This paper describes the modelling and control system of a direct-drive PMSG wind turbine for effective active and reactive power generation control and voltage control at the grid connection point. This study focuses on the maximum power capability of the wind turbine, which is limited by its generator and power converter. The ability of this model and control strategy are assessed by means of simulations and discussed at length. The results of our study show that a PMSG wind turbine is able to actively participate in grid operation because it can independently control active and reactive power production (operating as a PQ node) or the active power and voltage at the connection node (operating as a PV node). (author)

  14. Connection of leak detectors for duplex tube plates of modular steam generator

    International Nuclear Information System (INIS)

    Banovec, J.; Konarik, M.; Vytopil, O.

    1985-01-01

    The sensors are connected to common line and column conductors. This connection significantly reduces the number of evaluation points and thus also the required number of evaluation unit channels. The reliability of the instrument is increased by each sensor being connected to two separate group conductors. Even upon failure of one of the conductors, the group of tube plates can be identified where a leak occurred. (J.B.)

  15. Analysis of remote synchronization in complex networks

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks.

  16. Development of a synchronous subset of AADL

    DEFF Research Database (Denmark)

    Filali, Mamoun; Lawall, Julia

    2010-01-01

    We study the definition and the mapping of an AADL subset: the so called synchronous subset. We show that the data port protocol used for delayed and immediate connections between periodic threads can be interpreted in a  synchronous way. In this paper, we formalize this interpretation and study ...... the development of its mapping such that the original synchronous semantics is preserved. For that purpose, we use refinements through the Event B method....

  17. IEEE standard for type test of class 1E electric cables, field splices, and connections for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The Institute of Electrical and Electronics Engineers has generated this document to provide guidance for developing a program to type test cables, field splices, and connections and obtain specific type test data. It supplements IEEE Std 323-1974 Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations, which describes basic requirements for equipment qualification. It is the integrated performance of the structures, fluid systems, the electrical systems, the instrumentation systems of the station, and in particular, the plant protection system, that limits the consequences of accidents. Seismic effects on installed cable systems are not within the scope of this document. Section 2 of this guide is an example of type tests. It is the purpose of this guide to deal with cable and connections; however, at the time of issue, detailed examples of tests for connections were not available

  18. Effect of wind generation system types on Micro-Grid (MG) fault performance during both standalone and grid connected modes

    International Nuclear Information System (INIS)

    Kamel, Rashad M.

    2014-01-01

    Highlights: • This paper evaluated the effects of different wind system types on fault performance of Micro-Grid. • Both standalone and grid connected modes are considered. • The MG earthing system configuration is taken in consideration. - Abstract: Recently, there are three wind generation (WG) system types. The first type is called Fixed Speed Wind Generation (FSWG) system, which employs squirrel cage induction generators. Double Fed Induction Generator (DFIG) is utilized in the second type. The third type is called Full Converter Wind Generation (FCWG) system, which is interfaced with Micro-Grid (MG) through a back to back converter. During fault occurrence, each WG has its performance and characteristics which are determined by the generator physical characteristics and the MG earthing system configuration. For some WG types, the fault current depends also on the control algorithm of the power converter. The main target of this paper is to investigate and estimate how the fault performance of MG during both standalone and grid-connected modes is influenced by the type of WG. It is found during standalone mode that the type of the employed WG has a dominant impact on the MG performance under fault disturbance. On the contrary, the type of the employed WG has a negligible effect on the MG fault performance during grid-connected mode. This is because the main grid contributes most of the fault current. Effects of earthing system type on MG performance are highlighted

  19. Flapping foil power generator performance enhanced with a spring-connected tail

    Science.gov (United States)

    Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-12-01

    The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.

  20. Renewable Energy Jobs. Status, prospects and policies. Biofuels and grid-connected electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, H; Ferroukhi, R [et al.; IRENA Policy Advisory Services and Capacity Building Directorate, Abu Dhabi (United Arab Emirates)

    2012-01-15

    Over the past years, interest has grown in the potential for the renewable energy industry to create jobs. Governments are seeking win-win solutions to the dual challenge of high unemployment and climate change. By 2010, USD 51 billion had been pledged to renewables in stimulus packages, and by early 2011 there were 119 countries with some kind of policy target and/or support policy for renewable energy, such as feed-in tariffs, quota obligations, favourable tax treatment and public loans or grants, many of which explicitly target job creation as a policy goal. Policy-makers in many countries are now designing renewable energy policies that aim to create new jobs, build industries and benefit particular geographic areas. But how much do we know for certain about the job creation potential for renewable energy? This working paper aims to provide an overview of current knowledge on five questions: (1) How can jobs in renewable energy be characterised?; (2) How are they shared out across the technology value chain and what skill levels are required?; (3) How many jobs currently exist and where are they in the world?; (4) How many renewable energy jobs could there be in the future?; and (5) What policy frameworks can be used to promote employment benefits from renewable energy? This paper focuses on grid-connected electricity generation technologies and biofuels. Since the employment potential of off-grid applications is large, it will be covered by a forthcoming study by IRENA on job creation in the context of energy access, based on a number of case studies.

  1. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    Science.gov (United States)

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  2. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  3. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected ...

  4. WTG Energy Systems' MP1-200 200 kilowatt wind turbine generator. [a fixed pitch rotor configuration driving a synchronous generator

    Science.gov (United States)

    Spaulding, A. P., Jr.

    1979-01-01

    The preliminary design criteria of the MP1-200 wind turbine are given along with a brief description of the wind turbine generator. Performance and operational experience and cost factors are included. Recommendations for additional research are listed.

  5. A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2014-01-01

    Full Text Available A development of the direct Lyapunov method for the analysis of transient stability of a system of synchronous generators based on the determination of non- stable equilibria on a multidimensional sphere.We consider the problem of transient stability analysis for a system of synchronous generators under the action of strong perturbations. The aim of our work is to develop methods to analyze a transient stability of the system of synchronous generators, which allow getting trustworthy results on reserve transient stability under different perturbations. For the analysis of transient stability, we use the direct Lyapunov method.One of the problems for this method application is to find the Lypunov function that well reflects the properties of a parallel system of synchronous generators. The most reliable results were obtained when the analysis of transient stability was performed with a Lyapunov function of energy type. Another problem for application of the direct Lyapunov method is to determine the critical value of the Lyapunov function, which requires finding the non-stable equilibria of the system. Determination of the non-stable equilibria requires studying the Lyapunov function in a multidimensional space in a neighborhood of a stable equilibrium for the post-breakdown system; this is a complicated non-linear problem.In the paper, we propose a method for determination of the non-stable equilibria on a multidimensional sphere. The method is based on a search of a minimum of the Lyapunov function on a multidimensional sphere the center of which is a stable equilibrium. Our method allows, comparing with the other, e.g., gradient methods, reliable finding a non-stable equilibrium and calculating the critical value. The reliability of our method is proved by numerical experiments. The developed methods and a program realized in a MATLAB package can be recommended for design of a post-breakdown control system of synchronous generators or as a

  6. Modeling and Control of Grid Side Converter in Wind Power Generation System Based on Synchronous VFDPC with PLL

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2011-01-01

    Virtual flux oriented direct power control (VFDPC) is combined space vector modulation (SVM) with PI of DC-link voltage, active power and reactive power to control the grid side converter in wind power generation system in this paper. VFDPC has reached good performances with PLL (phase lock loop......, LCL filter, transformer grid, and control parts, such as PI controllers of DC-link voltage, active power, reactive power, and SVM, and so on. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage...

  7. Fuzzy controller of speed-power of a synchronous micro generator; Controlador difuso de velocidad-potencia de un microgenerador sincrono

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Alvarado, Raziel

    2002-11-01

    This thesis shows the design and implementation of a speed-power fuzzy-logic controller. The controller implementation was carried out on the Schrage motor-synchronous generator set. The synchronous alternator is rated 7 kVA, 220 V, 1800 rpm, 60 Hz. Two PI like fuzzy-logic controllers were developed with 9 and 25 rules. The controllers use the speed or power error and its integral as input variables and as an output the control signal from the brush-positioner of the Schrage motor. At the controller design stage, the anfis (adaptive-network-based fuzzy inference system) learning and structure procedure was used for tuning up parameters of the membership functions used on the designed fuzzy controllers. These controllers are first-order Sugeno-type. The designed controllers were tested on the motor-generator set under loaded and no-loaded conditions. It was found that PI-9 rules fuzzy-logic controller had better performance on both operating conditions. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion de un controlador difuso de velocidad-potencia, para un grupo motor Schrage-generador sincrono de 7 kVA, 220 V, 1800 rpm, 60 Hz. Se implementaron controladores difusos del tipo PI de 9 y 25 reglas. Estos controladores utilizan como variables de entrada el error y la integral del error, de velocidad o potencia segun corresponda, y como variable de salida la senal de control del posicionador de las escobillas del motor Schrage. En la etapa de diseno de los controladores, se utilizo la estructura y el procedimiento de aprendizaje anfis (Sistema de Inferencia Difuso Basado en Redes Adaptables, por sus siglas en ingles) para sintonizar los parametros de las funciones de membresia de los controladores difusos, los cuales son del tipo Sugeno de primer orden. Con la finalidad de validar los controladores disenados, se realizaron pruebas experimentales al grupo motor-generador en condiciones de vacio y carga. Se encontro que el controlador difuso tipo

  8. The excitation system of 727.5 MVA synchronous generator of the unit B1 in TPP 'Nikola Tesla B'

    Directory of Open Access Journals (Sweden)

    Ćirić Zoran

    2013-01-01

    Full Text Available This paper presents a technical solution for the replacement of the excitation system of the unit B1 in TPP 'Nikola Tesla B' as a part of the maintenance service in 2012. Since the generators of TPP 'Nikola Tesla B' have the greatest power in the power system of Serbia, it was necessary to achieve high reliability of the excitation system so that the process of producing electricity is not endangered Considering this, the implemented excitation system uses modern technology with redundancy both in the power and control blocks, which resulted in an increase in the hot reserve by 100%. In addition, it was necessary to adjust the excitation system to increased generator power and performance from 618MW to 667.5MW. In this paper, the main parameters of the excitation system are given: the power, the excitation system control, the thyristor ignition system, the event recorder system, the digital relay protection, as well as the measuring and signaling functions.

  9. Amplification through chaotic synchronization in spatially extended beam-plasma systems

    Science.gov (United States)

    Moskalenko, Olga I.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-12-01

    In this paper, we have studied the relationship between chaotic synchronization and microwave signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of electron pattern formation. We have shown the significant gain of microwave oscillation power in coupled beam-plasma media being in the different regimes of generation. The discovered effect has a close connection with the chaotic synchronization phenomenon, so we have observed that amplification appears after the onset of the complete time scale synchronization regime in the analyzed coupled spatially extended systems. We have also provided the numerical study of physical processes in the chain of beam-plasma systems leading to the chaotic synchronization and the amplification of microwave oscillations power, respectively.

  10. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  11. Connecting device for external ends of steam generator anti-vibration bars

    International Nuclear Information System (INIS)

    Boula, G.; Roinjard, J.P.

    1990-01-01

    The connexion device comprises a support that is fixed over the external end of an antivibration bar with a tap aperture and a connexion arm fixed to it on one extremity and one the other end to a sleeve with a connecting screw. The connecting screw engages through the bore of the sleeve into an opening in the adjacent support fixed over a second antivibration bar [fr

  12. Rotor Speed Control of a Direct-Driven Permanent Magnet Synchronous Generator-Based Wind Turbine Using Phase-Lag Compensators to Optimize Wind Power Extraction

    Directory of Open Access Journals (Sweden)

    Ester Hamatwi

    2017-01-01

    Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.

  13. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    Science.gov (United States)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  14. A Novel Method to Magnetic Flux Linkage Optimization of Direct-Driven Surface-Mounted Permanent Magnet Synchronous Generator Based on Nonlinear Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Qian Xie

    2016-07-01

    Full Text Available This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG. A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.

  15. On Synchronization Primitive Systems.

    Science.gov (United States)

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  16. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  17. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  18. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Yüksel Oğuz

    2013-01-01

    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  19. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Science.gov (United States)

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  20. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  1. An optimal reactive power control strategy for a DFIG-based wind farm to damp the sub-synchronous oscillation of a power system

    DEFF Research Database (Denmark)

    Zhao, Bin; Li, Hui; Wang, Mingyu

    2014-01-01

    This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...

  2. Adaptive Droop Control Applied to Distributed Generation Inverters Connected to the Grid

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Vásquez, Juan C.

    2008-01-01

    This paper proposes a novel control for voltage source inverters connected to the grid. The control scheme is based on the droop method, and it uses some estimated variables from the grid such as the voltage and the frequency, and the magnitude and angle of the grid impedance. Hence, the inverter...

  3. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...

  4. Type test of Class 1E electric cables, field splices, and connections for nuclear power generating stations - 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class 1E Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices

  5. Investigation of a Unified Chaotic System and Its Synchronization by Simulations

    International Nuclear Information System (INIS)

    Qing-Chu, Wu; Xin-Chu, Fu; Small, Michael

    2010-01-01

    We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent. (general)

  6. Synchronization of metronomes

    Science.gov (United States)

    Pantaleone, James

    2002-10-01

    Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

  7. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity.

    Science.gov (United States)

    Lamy, T; Jarne, P; Laroche, F; Pointier, J-P; Huth, G; Segard, A; David, P

    2013-09-01

    An increasing number of studies are simultaneously investigating species diversity (SD) and genetic diversity (GD) in the same systems, looking for 'species- genetic diversity correlations' (SGDCs). From negative to positive SGDCs have been reported, but studies have generally not quantified the processes underlying these correlations. They were also mostly conducted at large biogeographical scales or in recently degraded habitats. Such correlations have not been looked for in natural networks of connected habitat fragments (metacommunities), and the underlying processes remain elusive in most systems. We investigated these issues by studying freshwater snails in a pond network in Guadeloupe (Lesser Antilles). We recorded SD and habitat characteristics in 232 ponds and assessed GD in 75 populations of two species. Strongly significant and positive SGDCs were detected in both species. Based on a decomposition of SGDC as a function of variance-covariance of habitat characteristics, we showed that connectivity (opportunity of water flow between a site and the nearest watershed during the rainy season) has the strongest contribution on SGDCs. More connective sites received both more alleles and more species through immigration resulting in both higher GD and higher SD. Other habitat characteristics did not contribute, or contributed negatively, to SGDCs. This is true of the desiccation frequency of ponds during the dry season, presumably because species markedly differ in their ability to tolerate desiccation. Our study shows that variation in environmental characteristics of habitat patches can promote SGDCs at metacommunity scale when the studied species respond homogeneously to these environmental characteristics. © 2013 John Wiley & Sons Ltd.

  8. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    Science.gov (United States)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  9. Modular networks with delayed coupling: Synchronization and frequency control

    Science.gov (United States)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  10. Facility-wide synchronization of standard FAIR equipment controllers

    International Nuclear Information System (INIS)

    Rauch, S.; Terpstra, W.; Panschow, W.; Thieme, M.; Prados, C.; Zweig, M.; Kreider, M.; Beck, D.; Bär, R.

    2012-01-01

    The standard equipment controller under development for the new FAIR accelerator facility is the Scalable Control Unit (SCU). It is designed to synchronize and control the actions of up to 12 purpose-built slave cards, connected in a proprietary crate by a parallel backplane. Inter-crate coordination and facility-wide synchronization are a core FAIR requirement and thus precise timing of SCU slave actions is of vital importance. The SCU consists primarily of two components, an x86 COM Express daughter board and a carrier board with an Altera Arria II GX FPGA, interconnected by PCI Express. The x86 receives configuration and set values with which it programs the real-time event-condition-action (ECA) unit in the FPGA. The ECA unit receives event messages via the timing network, which also synchronizes the clocks of all SCUs in the facility using White Rabbit. Matching events trigger actions on the SCU slave cards such as: ramping magnets, triggering kickers, etc. Timing requirements differ depending on the action taken. For softer real-time actions, an interrupt can be generated for complex processing on the x86. Alternatively, the FPGA can directly fire a pulse out a LEMO output or an immediate SCU bus operation. The delay and synchronization achievable in each case differs and this paper examines the timing performance of each to determine which approach is appropriate for the required actions. (author)

  11. Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity.

    Science.gov (United States)

    Fame, Ryann M; MacDonald, Jessica L; Dunwoodie, Sally L; Takahashi, Emi; Macklis, Jeffrey D

    2016-06-15

    The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within

  12. Generation and detection of spin polarization in parallel coupled double quantum dots connected to four terminals

    International Nuclear Information System (INIS)

    An, Xing-Tao; Mu, Hui-Ying; Li, Yu-Xian; Liu, Jian-Jun

    2011-01-01

    A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.

  13. Laser Megajoule synchronization system

    International Nuclear Information System (INIS)

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  14. Generation and Demand Scheduling for a Grid-Connected Hybrid Microgrid Considering Price-based Incentives

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi

    2017-01-01

    Microgrids rely on energy management levels to optimally schedule their components. Conventionally, the research in this field has been focused on the optimal formulation of the generation or the demand side management separately without considering real case scenarios and validated only...... by simulation. This paper presents the power scheduling of a real site microgrid under a price-based demand response program defined in Shanghai, China managing generation and demand simultaneously. The proposed optimization problem aims to minimize operating cost by managing renewable energy sources as well...

  15. A connection of the steam generator feedwater section of WWER type nuclear power plants

    International Nuclear Information System (INIS)

    Matal, O.; Sadilek, J.

    1989-01-01

    In the feedwater piping of each steam generator, a plate for additional water pressure reduction is inserted before the first closing valve. During a steady water flow, the plate gives rise to a constant hydraulic resistance, bringing about steady reduction of the feedwater pressure; this also contributes to a stabilization of the feedwater flow rate into the steam generator. The control valve thus is stressed by minimal hydrodynamic forces. In this manner its load is decreased, its vibrations are damped, and the frequency of failures - and thereby the frequency of the nuclear power plant unit outages -is reduced. (J.P.). 1 fig

  16. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  17. SynUTC - high precision time synchronization over ethernet networks

    CERN Document Server

    Höller, R; Horauer, M; Kerö, N; Schmid, U; Schossmaier, K

    2002-01-01

    This article describes our SynUTC (Synchronized Universal Time Coordinated) technology, which enables high-accuracy distribution of GPS time and time synchronization of network nodes connected via standard Ethernet LANs. By means of exchanging data packets in conjunction with moderate hardware support at nodes and switches, an overall worst-case accuracy in the range of some 100 ns can be achieved, with negligible communication overhead. Our technology thus improves the 1 ms-range accuracy achievable by conventional, software-based approaches like NTP by 4 orders of magnitude. Applications can use the high-accuracy global time provided by SynUTC for event timestamping and event generation both at hardware and software level. SynUTC is based upon inserting highly accurate time information into dedicated data packets at the media-independent interface (MII) between the physical layer transceiver and the network controller upon packet transmission and reception, respectively. As a consequence, every node has acc...

  18. Overview of Cell Synchronization.

    Science.gov (United States)

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  19. Modeling and simulation of grid connected permanent magnet generator based small wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Arifujjaman, Md.

    2011-07-01

    In order to recover the maximum energy from small scale wind turbine systems many parameters have to be controlled. The aim of this paper is to propose a control strategy for the grid connected PMG-based small wind turbine systems. A mathematical model of small wind turbine systems was developed and the system simulated. Results show demonstrated that the control strategy is highly efficient. Sure enough it reduces the dependence on system variables, diminishes the system complexity, its furling and maximum power point controllers are efficient and it provides a stable operation for multiple wind speeds. This study developed a modeling and control strategy which was proved to be feasible by simulation results.

  20. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2018-01-01

    strategies based on: 1) a power control method (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...... of the presented CPG strategies is also conducted on a 3-kW single-phase grid-connected PV system. Comparisons reveal that either the P-CPG or I-CPG strategies can achieve fast dynamics and satisfactory steady-state performance. In contrast, the P&O-CPG algorithm is the most suitable solution in terms of high...

  1. QCD in a nonsimply connected spacetime: The topological origin of flavours and topological gluon mass generation

    International Nuclear Information System (INIS)

    Goncharov, Yu.P.

    1982-01-01

    In a spacetime having a nontrivial topology QCD may have properties which are absent for QCD in Minkowski spacetime. Two new possibilities for QCD are discussed by the example of spacetime with topology R x (S 1 ) 3 and flat metric: the topological origin of flavours and topological gluon mass generation. (orig.)

  2. Optimising generators

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, E.J.; Garcia, A.O.; Graffigna, F.M.; Verdu, C.A. (IMPSA (Argentina). Generators Div.)

    1994-11-01

    A new computer tool, the ARGEN program, has been developed for dimensioning large hydroelectric generators. This results in better designs, and reduces calculation time for engineers. ARGEN performs dimensional tailoring of salient pole synchronous machines in generators, synchronous condensers, and generator-motors. The operation and uses of ARGEN are explained and its advantages are listed in this article. (UK)

  3. Phase-only SLM Generating Variable Patterns Applied in Optical Connection

    International Nuclear Information System (INIS)

    Liu, B H; Wu, L Y; Zhang, J

    2006-01-01

    An adaptive optical communication system is proposed. The system sends spatial information by emitting multiple variable laser beams generated from a programmable diffractive optical element (DOE): phase-only liquid crystal Spatial Light Modulator (SLM). Laser beams carrying signals are programmable by an optimal algorithm based on an iterative Fourier transformation algorithm. The system has the advantage in redundancy of signal by the means of broadcast. It can adaptively seek position and transmit information in parallel

  4. The formation of synchronization cliques during the development of modular neural networks

    International Nuclear Information System (INIS)

    Fuchs, Einat; Ayali, Amir; Ben-Jacob, Eshel; Boccaletti, Stefano

    2009-01-01

    Modular organization is a special feature shared by many biological and social networks alike. It is a hallmark for systems exhibiting multitasking, in which individual tasks are performed by separated and yet coordinated functional groups. Understanding how networks of segregated modules develop to support coordinated multitasking functionalities is the main topic of the current study. Using simulations of biologically inspired neuronal networks during development, we study the formation of functional groups (cliques) and inter-neuronal synchronization. The results indicate that synchronization cliques first develop locally according to the explicit network topological organization. Later on, at intermediate connectivity levels, when networks have both local segregation and long-range integration, new synchronization cliques with distinctive properties are formed. In particular, by defining a new measure of synchronization centrality, we identify at these developmental stages dominant neurons whose functional centrality largely exceeds the topological one. These are generated mainly in a few dominant clusters that become the centers of the newly formed synchronization cliques. We show that by the local synchronization properties at the very early developmental stages, it is possible to predict with high accuracy which clusters will become dominant in later stages of network development

  5. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  6. A solar PV augmented hybrid scheme for enhanced wind power generation through improved control strategy for grid connected doubly fed induction generator

    Directory of Open Access Journals (Sweden)

    Adikanda Parida

    2016-12-01

    Full Text Available In this paper, a wind power generation scheme using a grid connected doubly fed induction generator (DFIG augmented with solar PV has been proposed. A reactive power-based rotor speed and position estimation technique with reduced machine parameter sensitivity is also proposed to improve the performance of the DFIG controller. The estimation algorithm is based on model reference adaptive system (MRAS, which uses the air gap reactive power as the adjustable variable. The overall generation reliability of the wind energy conversion system can be considerably improved as both solar and wind energy can supplement each other during lean periods of either of the sources. The rotor-side DC-link voltage and active power generation at the stator terminals of the DFIG are maintained constant with minimum storage battery capacity using single converter arrangement without grid-side converter (GSC. The proposed scheme has been simulated and experimentally validated with a practical 2.5 kW DFIG using dSPACE CP1104 module which produced satisfactory results.

  7. Ecumenical movement for millennials: A generation connected but not yet united

    Directory of Open Access Journals (Sweden)

    Yolanda Pantou

    2017-11-01

    Full Text Available In this article the notion ‘ecumenism’ is defined as a connecting movement of reconciling diversity, and the focus is on young people, referred to as ‘millennials’ living in the present-day global village. It addresses the youth’s interests or disinterests in the ‘institutionalised’ ecumenical movement. The following aspects are reflected upon: how ecumenism speaks to the youth; how ecumenism does not speak to the youth; and how to make ecumenism great again for the youth. It discusses young people’s perspectives on the world with regard to religion and tradition, sources of authority, issues of segregation and discrimination, ‘nomadic’ and a mentality which causes that one cannot expect them to stay in one church from baptism until death. The article reflects on the youth’s disposition to human realities concerning aspects such as the ecological crisis, global inequality, religious fundamentalism, violence and oppression, and the lack of a sense of belonging. The article concludes with some initiatives of the World Council of Churches to which young people can make a contribution.

  8. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators.

    Science.gov (United States)

    Manonmani, N; Subbiah, V; Sivakumar, L

    2015-01-01

    The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs) supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs). The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  9. Differential Evolution Based IDWNN Controller for Fault Ride-Through of Grid-Connected Doubly Fed Induction Wind Generators

    Directory of Open Access Journals (Sweden)

    N. Manonmani

    2015-01-01

    Full Text Available The key objective of wind turbine development is to ensure that output power is continuously increased. It is authenticated that wind turbines (WTs supply the necessary reactive power to the grid at the time of fault and after fault to aid the flowing grid voltage. At this juncture, this paper introduces a novel heuristic based controller module employing differential evolution and neural network architecture to improve the low-voltage ride-through rate of grid-connected wind turbines, which are connected along with doubly fed induction generators (DFIGs. The traditional crowbar-based systems were basically applied to secure the rotor-side converter during the occurrence of grid faults. This traditional controller is found not to satisfy the desired requirement, since DFIG during the connection of crowbar acts like a squirrel cage module and absorbs the reactive power from the grid. This limitation is taken care of in this paper by introducing heuristic controllers that remove the usage of crowbar and ensure that wind turbines supply necessary reactive power to the grid during faults. The controller is designed in this paper to enhance the DFIG converter during the grid fault and this controller takes care of the ride-through fault without employing any other hardware modules. The paper introduces a double wavelet neural network controller which is appropriately tuned employing differential evolution. To validate the proposed controller module, a case study of wind farm with 1.5 MW wind turbines connected to a 25 kV distribution system exporting power to a 120 kV grid through a 30 km 25 kV feeder is carried out by simulation.

  10. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China

    International Nuclear Information System (INIS)

    Hou, Guofu; Sun, Honghang; Jiang, Ziying; Pan, Ziqiang; Wang, Yibo; Zhang, Xiaodan; Zhao, Ying; Yao, Qiang

    2016-01-01

    Graphical abstract: Comparison of life cycle GHG emissions of various power sources. - Highlights: • The LCA study of grid-connected PV generation with silicon solar modules in China has been performed. • The energy payback times range from 1.6 to 2.3 years. • The GHG emissions are in the range of 60.1–87.3 g-CO_2,eq/kW h. • The PV manufacturing process occupied about 85% or higher of total energy usage and total GHG emission. • The SoG-Si production process accounted for more than 35% of total energy consumption and GHG emissions. - Abstract: The environmental impacts of grid-connected photovoltaic (PV) power generation from crystalline silicon (c-Si) solar modules in China have been investigated using life cycle assessment (LCA). The life cycle inventory was first analyzed. Then the energy consumption and greenhouse gas (GHG) emission during every process were estimated in detail, and finally the life-cycle value was calculated. The results showed that the energy payback time (T_E_P_B_T) of grid-connected PV power with crystalline silicon solar modules ranges from 1.6 to 2.3 years, while the GHG emissions now range from 60.1 to 87.3 g-CO_2,eq/kW h depending on the installation methods. About 84% or even more of the total energy consumption and total GHG emission occupied during the PV manufacturing process. The solar grade silicon (SoG-Si) production is the most energy-consuming and GHG-emitting process, which accounts for more than 35% of the total energy consumption and the total GHG emission. The results presented in this study are expected to provide useful information to enact reasonable policies, development targets, as well as subsidies for PV technology in China.

  11. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  12. Serially-Connected Compensator for Eliminating the Unbalanced Three-Phase Voltage Impact on Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Hsu, P.; Muljadi, E.; Gao, W.

    2015-04-06

    Untransposed transmission lines, unbalanced tap changer operations, and unbalanced loading in weak distribution lines can cause unbalanced-voltage conditions. The resulting unbalanced voltage at the point of interconnection affects proper gird integration and reduces the lifetime of wind turbines due to power oscillations, torque pulsations, mechanical stresses, energy losses, and uneven and overheating of the generator stator winding. This work investigates the dynamic impact of unbalanced voltage on the mechanical and electrical components of integrated Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine generation systems (WTGs) of Type 1 (squirrel-cage induction generator) and Type 3 (doubly-fed induction generator). To alleviate this impact, a serially-connected compensator for a three-phase power line is proposed to balance the wind turbine-side voltage. Dynamic simulation studies are conducted in MATLAB/Simulink to compare the responses of these two types of wind turbine models under normal and unbalanced-voltage operation conditions and demonstrate the effectiveness of the proposed compensator.

  13. Design of large permanent magnetized synchronous electric machines: Low speed, high torque machines - generator for direct driven wind turbine - motor for rim driven thruster

    Energy Technology Data Exchange (ETDEWEB)

    Kroevel, Oeystein

    2011-02-15

    This work presents the design of two prototype permanent magnetized electric machines for two different applications where large permanent magnet machines might be used. Existing technology have been used as the fundament for new design and adapted to new applications, contributing, hopefully, to the development of better and more environmental friendly energy conversion. The first application presented is represented with a prototype made in cooperation with the industry in which a PM-motor is integrated into a propeller unit. Both because of the industrial connection, and the integration between the PM-motor and the propeller, the choices made for the PM-motor are conservative trying to reduce the risk. The direct rim driven thruster prototype includes a surface mounted radial flux permanent magnet machine (SM RFPM) with fractional slot winding with a q around 1. Other engineering features were introduced to make the integration of propeller and motor feasible, but without the PM-machine the thruster would not have reached the performance demand. An important part of the project was to show that the SM RFPM enables this solution, providing high performance with a large air gap. The prototype has been tested in sea, under harsh conditions, and even though the magnets have been exposed directly to sea water and been visible corroded, the electric motor still performs well within the specifications. The second application is represented with a prototype PM-generator for wind turbines. This is an example of a new, very low speed high torque machine. The generator is built to test phenomena regarding concentrated coils, and as opposed to the first application, being a pure academic university project, its success is not connected to its performance, but with the prototype's ability to expose the phenomena in question. The prototype, or laboratory model, of the generator for direct driven wind turbines features SM RFPM with concentrated coils (CC). An opportunity

  14. The PWM strategies of grid-connected distributed generation active NPC inverters

    DEFF Research Database (Denmark)

    Ma, Lin; Xinmin, Jin; Kerekes, Tamas

    2009-01-01

    The Neutral Point Clamped topology due to high efficiency, low leakage current and EMI, its integration is widely used in the distributed generation (DG) systems. However the main disadvantage of the NPC inverter is given by an unequal distribution of the losses in the semiconductor devices, which...... leads to an unequal distribution of temperature. By using the Active NPC topology, the power losses distribution problem is alleviated. The modulation strategy is a key issue for losses distribution in this topology. In this paper two known strategies are discussed and a new proposed PWM strategy......, namely the Adjustable Losses Distribution (ALD) PWM strategy is proposed for better losses distribution in the Active NPC (ANPC) topology. Simulations using Simulink and the PLECS toolbox have been done for evaluating efficiency of different NPC topologies and some experimental results are presented...

  15. The contribution to distribution network fault levels from the connection of distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the findings of a study investigating the potential impact of distributed generation (DG) on the UK distribution network fault levels up to the year 2010, and examining ways of managing the fault levels so that they do not become a barrier to increased penetration of DG. The project focuses on the circumstances and scenarios that give rise to the fault levels. The background to the study is traced, and a technical review is presented covering the relationship between DG and fault levels, and the likely impact in the period to 2010. Options for managing increased fault levels, and fault level management and costs are outlined, and a case study is given. The measurement and calculation of fault level values are described along with constraints to DG penetration due to fault level limitations, characteristics of DG machines, and long term perspectives to 2020-2030.

  16. Stages of chaotic synchronization.

    Science.gov (United States)

    Tang, D. Y.; Dykstra, R.; Hamilton, M. W.; Heckenberg, N. R.

    1998-09-01

    In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (c) 1998 American Institute of Physics.

  17. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    Science.gov (United States)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  18. Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn

    Science.gov (United States)

    Zeyghami, Samane; Bode-Oke, Ayodeji T.; Dong, HaiBo

    2017-01-01

    This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn flights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV's).

  19. Connecting small ligands to generate large tubular metal-organic architectures

    International Nuclear Information System (INIS)

    Goforth, Andrea M.; Su, Cheng-Yong; Hipp, Rachael; Macquart, Rene B.; Smith, Mark D.; Loye, Hans-Conrad zur

    2005-01-01

    The new metal-organic framework materials, ZnF(Am 2 TAZ).solvents and ZnF(TAZ).solvents (Am 2 TAZ=3,5-diamino-1,2,4-triazole, TAZ=1,2,4-triazole), have been synthesized solvothermally and structurally characterized by either Rietveld refinement from powder XRD data or by single crystal X-ray diffraction. The three-dimensional structures of the compounds display open-ended, tubular channels, which are constituted of covalently bonded hexanuclear metallamacrocycles (Zn 6 F 6 (ligand) 6 ). The tubular channels are subsequently covalently joined into a honeycomb-like hexagonal array to generate the three-dimensional porous framework. In the case of ZnF(Am 2 TAZ).solvents, hydrophilic -NH 2 groups point into the channels, effectively reducing their inner diameter relative to ZnF(TAZ).solvents. The present compounds are isostructural to one another and to the previously reported ZnF(AmTAZ).solvents (AmTAZ=3-amino-1,2,4-triazole), illustrative of the fact that the internal size and chemical properties of the framework may be altered by modification of the small, heterocyclic ligand. In addition to demonstrating the ability to modify the basic framework, ZnF(TAZ).solvents and ZnF(Am 2 TAZ).solvents are two of the most thermally stable coordination frameworks known to date. - Graphical abstract: Top view of the open-ended, honeycomb tubular architecture of ZnF(Am 2 TAZ)

  20. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    Science.gov (United States)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  1. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  2. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  3. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  4. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  5. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2014-01-01

    Full Text Available Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  6. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    Science.gov (United States)

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  7. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Science.gov (United States)

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  8. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power......Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial...... density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community...

  9. Dynamic voltage stability of a distribution system with high penetration of grid-connected photovoltaic type solar generators

    Directory of Open Access Journals (Sweden)

    Zetty Adibah Kamaruzzaman

    2016-06-01

    Full Text Available This paper presents the impact of grid-connected photovoltaic (PV generator on dynamic voltage stability of a power distribution system by considering solar intermittency, PV penetration level, and contingencies such as line outage and load increase. The IEEE 13 node test feeder is used as a test system, and a solar PV of 0.48 kV/0.5 MVA is integrated into the test system. Test results show that system voltage is stable at high PV penetration levels. Increase in load causes voltage instability, in which voltage drops below its allowable operating limit. Thus, increase in PV penetration level does not improve system voltage stability because the system experiences voltage collapse during line outage.

  10. Synchronization of Multipoint Hoists

    Science.gov (United States)

    A contractor has conceived an electrohydraulic feedback system that will provide position synchronization of four aircraft cargo hoists. To... synchronized hoist system. Test results show that the feedback system concept provides adequate synchronization control; i.e., the platform pitch and roll

  11. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  12. Mesoporous generation-inspired ultrahigh capacitive deionization performance by sono-assembled activated carbon/inter-connected graphene network architecture

    International Nuclear Information System (INIS)

    Song, Haiou; Wu, Yifan; Zhang, Shupeng; Li, Wentao; Wang, Baijun; Wang, Changming; Gao, Juanjuan; Li, Aimin

    2016-01-01

    Highlights: • 3D AC/inter-connected graphene network architecture has been constructed for CDI application. • Generated mesoporous structures can inspire ultrahigh capacitive deionization performance. • Usage of the smaller amounts (5 wt%) of functionalized graphene reduce the secondary pollution. • Inter-connected graphene network as the conductive bridge can decrease the aggregation of AC. • The environmental and economical composite electrode is suitable for practical CDI application. - Abstract: Capacitive deionization (CDI) is an emerging technology that supplies deionized water to resolve the fresh water shortage. CDI electrodes are mainly made up of carbon materials, of which the deionization performance is closely related to their physical properties and structures. Hence, a rational design of electrode material structure is essentially significant. Functionalized graphene (fG) in particular has recently been regarded as characteristic CDI electrode material. However, preparation of fG based on graphene oxide usually results in serious secondary pollution due to usage of highly poisonous chemicals, and thus still cannot meet the demand of practical application. It is feasible that environmentally-friendly activated carbon (AC) and small amounts of fGs can be combined rationally, and used as CDI electrodes. Here, sono-assembled AC/m-phenylenediamine (mPEA) or p-phenylenediaminefG inter-connected network architecture has been constructed for the first time successfully. The specific capacitances of the AC/fG composites were found to be significantly higher than that of the AC electrode owing to mesoporous generation. Also, among all the samples, the AC composite with 5 wt % mPEA-fG exhibited an ultrahigh electrosorption capacity of 12.58 mg/g (or 0.22 mmol/g) in NaCl solution. These observations indicate that fG can serve as an efficient conductive bridge to decrease the aggregation of AC particles, and improve the electron transfer with the

  13. Active and Reactive Power Control Strategy for Grid-Connected Six-Phase Generator by Using Multi-Modular Matrix Converters

    Directory of Open Access Journals (Sweden)

    David Caballero

    2016-12-01

    Full Text Available This paper proposes an active and reactive power control strategy based on predictive control approaches applied to gridconnected renewable energy systems. To accomplish this a multi-modular matrix converter topologies are used in combination with a simple but efficient grid synchronization strategy. The theoretical performance analysis is performed considering a six-phase wind energy generator system interconnected with the grid. Results based on a MATLAB/Simulink simulation environment are discussed and the most relevant characteristics of the proposed control technique are highlighted considering the total harmonic distortion and the mean squared error as a parameters of performance.

  14. Time and data synchronization methods in competition monitoring systems

    OpenAIRE

    Kerys, Julijus

    2005-01-01

    Information synchronization problems are analyzed in this thesis. Two aspects are being surveyed – clock synchronization, algorithms and their use, and data synchronization and maintaining the functionality of software at the times, when connection with database is broken. Existing products, their uses, cons and pros are overviewed. There are suggested models, how to solve these problems, which were implemented in “Distributed basketball competition registration and analysis software system”,...

  15. Synchronization of Phase Oscillators in Networks with Certain Frequency Sequence

    International Nuclear Information System (INIS)

    Feng Yuan-Yuan; Wu Liang; Zhu Shi-Qun

    2014-01-01

    Synchronization of Kuramoto phase oscillators arranged in real complex neural networks is investigated. It is shown that the synchronization greatly depends on the sets of natural frequencies of the involved oscillators. The influence of network connectivity heterogeneity on synchronization depends particularly on the correlation between natural frequencies and node degrees. This finding implies a potential application that inhibiting the effects caused by the changes of network structure can be balanced out nicely by choosing the correlation parameter appropriately. (general)

  16. Integration of Hybrid PV/Wind Generation System Using Fuzzy MPPT in Grid Connected System for Remote Area

    Directory of Open Access Journals (Sweden)

    Soedibyo

    2016-01-01

    Full Text Available Photovoltaic and wind are renewable energy resources that widely used and grow rapidly in fulfilling electricity demand. Powers from both technologies depend on sunlight intensity and wind speed. For small scale power generation, DC voltage from both technologies is low and requires step-up converter to raise DC voltage ratio before converted into AC voltage. To optimize this system, step-up converter must have high ratio and efficiency to a distance of wide voltage input. This paper proposed an operation simulation and arrangement of DC-DC converter along with DC-AC from hybrid source PV-Wind which integrated to grid utilities without using storage device. High Gain Integrated Cascade Boost (HGICB is DC-DC converter that has quadratic voltage ratio and used in this research. Then DC link connected to Voltage Source Inverter (VSI which interconnected with utility grid and controlled by current control method. The total installed capacity of hybrid source is 4.4 kW. Wind turbine uses PMSG along with full bridge rectifier. To maximize and stabilize the generated power, MPPT fuzzy is used. Result from the simulation shows that converter capable to maintain maximum power whether from PV and wind turbine which canalized to utility grid in various irradiation condition, wind speed, and grid load alteration.

  17. Synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-01-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators

  18. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  19. Generation connected with images

    Directory of Open Access Journals (Sweden)

    Adriana RECAMÁN PAYO

    2011-12-01

    Full Text Available 0 0 1 197 1086 Instituto Universitario de Ciencias de la Educación 9 2 1281 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} In learning contexts studying the image as a focus of sensitive knowledge and formative purposes is crucial to achieve high levels of quality and educational excellence. As Renobell (2005 stated, image analysis encourages the development of critical capacity and contributes to developing a personal style for the gradual acquisition of a visual culture. Images educate and consequently, their presence in the field of education should not be a mere accompaniment to the text. They should not be limited to adorn or illustrate a linguistic content but to complement and deepen it, activating the thought and the reflection of the reader. In Internet culture, image as a focus of knowledge, of shared use, of social content and educational purposes, contribute to explain the implications and vivacity around this technological environment, which plays a leading role in the current social changes and movements. The culture of the network has changed our perceptual sensitivity to interpret images, which are now more complex, integrated, multidimensional and dynamic than ever. The interactivity, the strong relationship with the text content, the graphic sequentiality, the associated sound effects or the iconical text design reveal the importance of image in the net culture.

  20. ANALYSIS OF MONTE CARLO SIMULATION SAMPLING TECHNIQUES ON SMALL SIGNAL STABILITY OF WIND GENERATOR- CONNECTED POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    TEMITOPE RAPHAEL AYODELE

    2016-04-01

    Full Text Available Monte Carlo simulation using Simple Random Sampling (SRS technique is popularly known for its ability to handle complex uncertainty problems. However, to produce a reasonable result, it requires huge sample size. This makes it to be computationally expensive, time consuming and unfit for online power system applications. In this article, the performance of Latin Hypercube Sampling (LHS technique is explored and compared with SRS in term of accuracy, robustness and speed for small signal stability application in a wind generator-connected power system. The analysis is performed using probabilistic techniques via eigenvalue analysis on two standard networks (Single Machine Infinite Bus and IEEE 16–machine 68 bus test system. The accuracy of the two sampling techniques is determined by comparing their different sample sizes with the IDEAL (conventional. The robustness is determined based on a significant variance reduction when the experiment is repeated 100 times with different sample sizes using the two sampling techniques in turn. Some of the results show that sample sizes generated from LHS for small signal stability application produces the same result as that of the IDEAL values starting from 100 sample size. This shows that about 100 sample size of random variable generated using LHS method is good enough to produce reasonable results for practical purpose in small signal stability application. It is also revealed that LHS has the least variance when the experiment is repeated 100 times compared to SRS techniques. This signifies the robustness of LHS over that of SRS techniques. 100 sample size of LHS produces the same result as that of the conventional method consisting of 50000 sample size. The reduced sample size required by LHS gives it computational speed advantage (about six times over the conventional method.

  1. I-F starting method with smooth transition to EMF based motion-sensorless vector control of PM synchronous motor/generator

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Fatu, M.

    2008-01-01

    This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents with the r......This paper proposes a novel hybrid motion- sensorless control system for permanent magnet synchronous motors (PMSM) using a new robust start-up method called I-f control, and a smooth transition to emf-based vector control. The I-f method is based on separate control of id, iq currents......-adaptive compensator to eliminate dc-offset and phase-delay. Digital simulations for PMSM start-up with full load torque are presented for different initial rotor-positions. The transitions from I-f to emf motion-sensorless vector control and back as well, at very low-speeds, are fully validated by experimental...

  2. A Deterministic Approach to the Synchronization of Cellular Automata

    OpenAIRE

    Garcia, J.; Garcia, P.

    2011-01-01

    In this work we introduce a deterministic scheme of synchronization of linear and nonlinear cellular automata (CA) with complex behavior, connected through a master-slave coupling. By using a definition of Boolean derivative, we use the linear approximation of the automata to determine a function of coupling that promotes synchronization without perturbing all the sites of the slave system.

  3. Building Multicultural Awareness in University Students Using Synchronous Technology

    Science.gov (United States)

    Stork, Michele Garabedian; Zhang, Jingshun; Wang, Charles Xiaoxue

    2018-01-01

    To explore the potential for building multicultural awareness in university students using synchronous technology, faculty members from an American regional state university and a Chinese regional university collaborated to find appropriate ways to integrate synchronous technology (e.g., Adobe Connect) into a teacher education program in the…

  4. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    International Nuclear Information System (INIS)

    Bellato, M; Isocrate, R; Rampazzo, G; Bazzacco, D; Bortolato, D; Triossi, A; Chavas, J; Mengoni, D; Recchia, F

    2013-01-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors

  5. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    Science.gov (United States)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  6. Implementation of the laser-based femtosecond precision synchronization system at FLASH

    International Nuclear Information System (INIS)

    Schulz, Sebastian

    2011-05-01

    FLASH, the high-gain free-electron laser (FEL) in Hamburg, enables the generation of light pulses with wavelengths in the soft X-ray region and durations down to a few femtoseconds. To fully exploit this capability in time-resolved pump-probe experiments, and for the projected externally seeded operation, the critical components of the accelerator and several external laser systems have to be synchronized with a temporal accuracy at least in the same order of magnitude. This can not be realized purely with established RF-based systems and therefore, an optical, laser-based synchronization system is required. In this thesis, the optical synchronization system of FLASH has been, based on previous successful proof-of-principle experiments, massively extended. One major topic is the comprehensive characterization of the timing reference of the system and a comparison of different types of such master laser oscillators, as well as studies on their short- and long-term stability. Similar investigations have been carried out for the upgraded and newly installed length-stabilized fiber links, which connect the remote locations at the accelerator to the optical timing reference. The successful demonstration of an all-optical synchronization of a Ti:sapphire oscillator with sub-10 femtosecond timing jitter and the connection of the photo injector laser system to the synchronization system mark further important key experiments of this thesis. The robustness of the actual implementations played a key role, as the synchronization system forms the basis for the future, operator-friendly arrival time feedback.

  7. Grid Connected WECS with A Five Level DCMLI using PID Controller

    Directory of Open Access Journals (Sweden)

    G.Balaji

    2014-07-01

    Full Text Available This paper deals with the analysis, modeling and control system for permanent magnet synchronous generator (PMSG based wind turbine connected to the grid. A wind energy conversion using DC-DC Buck- Boost Converter for permanent magnet synchronous generator (PMSG based variable speed wind energy conversion system (WECS has been proposed which is integrated with grid using five-level diode clamped multilevel (DCMLI inverter. In this work the instantaneous values of input side current and voltage of DC-DC buck-boost converter are utilized for implementing the PID controller. The proposed work is verified by the simulation in Powersim.

  8. Equivalent circuit modeling of a superconducting synchronous generator with double electromagnetic shields. Part II. Equivalent circuit model and estimation of its constants for design examples

    International Nuclear Information System (INIS)

    Muta, I.; Magarikaji, N.

    1980-01-01

    Operational impedances of synchronous machine are very important in the study of dynamic and transient stability. In recent years, it has become possible to analyze the transient behavior of operational impedance by the direct Fourier transformation of frequency response characteristics of operational impedance. It is desired very much to derive the equivalent circuit based on exact operational impedances. In this paper, we calculate the frequency characteristics of operational impedances which are derived in a companion paper. Also, we analyze the effects of various parameters on the equivalent circuit constants. Approximate expressions for sub-subtransient, subtransient and transient reactances are derived from the theoretical expressions for operational impedances. The validity of theoretical calculations is confirmed by comparison with experimental results

  9. Improved direct torque control of an induction generator used in a wind conversion system connected to the grid.

    Science.gov (United States)

    Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm

    2013-07-01

    This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Synchronization of Concurrent Processes

    Science.gov (United States)

    1975-07-01

    Pettersen Stanford Ur.iversity Artificial Intelligence Laboratory ABSTRACT Th oaoer gives an overview of commonly used synchronization primitives and...wr.ters . ut.l.z.ng the DroDo4d synchronization primitive . The solution is simpler and shorter than other known S’ms The first sections of the paper...un reicr»» side il nrcttaary and Identity by block number) Scheduling, process scheduling, synchronization , mutual exclusion, semaphores , critical

  11. Adaptive Backoff Synchronization Techniques

    Science.gov (United States)

    1989-07-01

    Percentage of synchronization and non- synchronisation references that cause invalidations in directory schemes with 2, 3, 4, 5, and 64 pointers...processors to arrive. The slight relative increase of synchronisation overhead in all cases when going from two to five pointers is because synchronization ...MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS q~JU VLSI Memo No. 89-547 It July 1989 Adaptive Backoff Synchronization Techniques Anant

  12. Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks

    DEFF Research Database (Denmark)

    Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio

    2015-01-01

    reductions in the data connectivity interruption time at each handover, no need for random access in the target cell, and reduced overall handover execution time. Laboratory handover measurement results, using commercial LTE equipment, are presented and analyzed to justify the latency benefits......Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant...

  13. OMEGA SYSTEM SYNCHRONIZATION.

    Science.gov (United States)

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  14. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  15. Synchronicity and Leadership

    NARCIS (Netherlands)

    Merry, Philip

    2017-01-01

    LAY SUMMARY SYNCHRONICITY AND LEADERSHIP TILBURG PHD DISSERTATION, PHILIP MERRY World’s First PhD to Research Synchronicity And Leadership Using Grounded Theory OUT OF THE BLUE COINCIDENCES: research topic Most people have had the experience of thinking of someone and then, almost magically have

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  17. RUN LENGTH SYNCHRONIZATION TECHNIQUES

    Science.gov (United States)

    An important aspect of digital communications is the problem of determining efficient methods for acquiring block synchronization . In this paper we...utilizes an N-digit sync sequence as prefix to the data blocks. The results of this study show that this technique is a practical method for acquiring block synchronization .

  18. A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  19. Chaos synchronization basing on symbolic dynamics with nongenerating partition.

    Science.gov (United States)

    Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen

    2009-06-01

    Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.

  20. Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling

    International Nuclear Information System (INIS)

    Jian-Rui, Chen; Li-Cheng, Jiao; Jian-She, Wu; Xiao-Hua, Wang

    2009-01-01

    A new general network model for two complex networks with time-varying delay coupling is presented. Then we investigate its synchronization phenomena. The two complex networks of the model differ in dynamic nodes, the number of nodes and the coupling connections. By using adaptive controllers, a synchronization criterion is derived. Numerical examples are given to demonstrate the effectiveness of the obtained synchronization criterion. This study may widen the application range of synchronization, such as in chaotic secure communication. (general)

  1. Synchronization Experiments With A Global Coupled Model of Intermediate Complexity

    Science.gov (United States)

    Selten, Frank; Hiemstra, Paul; Shen, Mao-Lin

    2013-04-01

    In the super modeling approach an ensemble of imperfect models are connected through nudging terms that nudge the solution of each model to the solution of all other models in the ensemble. The goal is to obtain a synchronized state through a proper choice of connection strengths that closely tracks the trajectory of the true system. For the super modeling approach to be successful, the connections should be dense and strong enough for synchronization to occur. In this study we analyze the behavior of an ensemble of connected global atmosphere-ocean models of intermediate complexity. All atmosphere models are connected to the same ocean model through the surface fluxes of heat, water and momentum, the ocean is integrated using weighted averaged surface fluxes. In particular we analyze the degree of synchronization between the atmosphere models and the characteristics of the ensemble mean solution. The results are interpreted using a low order atmosphere-ocean toy model.

  2. Chaos synchronization of coupled neurons with gap junctions

    International Nuclear Information System (INIS)

    Wang Qingyun; Lu Qishao; Chen Guanrong; Guo Dinghui

    2006-01-01

    Based on the asymptotic stability theory of dynamical systems and matrix theory, a general criterion of synchronization stability of N coupled neurons with symmetric configurations is established in this Letter. Especially, three types of connection styles (that is, chain, ring and global connections) are considered. As an illustration, complete synchronization of four coupled identical chaotic Chay neurons is investigated. The maximal conditional Lyapunov exponent is calculated and used to determine complete synchronization. As a result, complete synchronization of four coupled identical chaotic Chay neurons can be achieved when the coupling strength is above a critical value, which is dependent on the specific connection style. Numerical simulation is in good agreement with the theoretical analysis

  3. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  4. Detection of generalized synchronization using echo state networks

    OpenAIRE

    Ibáñez-Soria, D.; García Ojalvo, Jordi; Soria Frisch, Aureli; Ruffini, G.

    2018-01-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences i...

  5. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  6. Synchronization of networks

    Indian Academy of Sciences (India)

    We study the synchronization of coupled dynamical systems on networks. The dynamics is .... Such a time-varying topology can occur in social networks, computer networks, WWW ... This has the effect of reducing the spread of the transverse ...

  7. Blending Online Asynchronous and Synchronous Learning

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2014-04-01

    Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.

  8. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  9. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  10. Traffic signal synchronization.

    Science.gov (United States)

    Huang, Ding-wei; Huang, Wei-neng

    2003-05-01

    The benefits of traffic signal synchronization are examined within the cellular automata approach. The microsimulations of traffic flow are obtained with different settings of signal period T and time delay delta. Both numerical results and analytical approximations are presented. For undersaturated traffic, the green-light wave solutions can be realized. For saturated traffic, the correlation among the traffic signals has no effect on the throughput. For oversaturated traffic, the benefits of synchronization are manifest only when stochastic noise is suppressed.

  11. Electronic Power Transformer Control Strategy in Wind Energy Conversion Systems for Low Voltage Ride-through Capability Enhancement of Directly Driven Wind Turbines with Permanent Magnet Synchronous Generators (D-PMSGs

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2014-11-01

    Full Text Available This paper investigates the use of an Electronic Power Transformer (EPT incorporated with an energy storage system to smooth the wind power fluctuations and enhance the low voltage ride-through (LVRT capability of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs. The decoupled control schemes of the system, including the grid side converter control scheme, generator side converter control scheme and the control scheme of the energy storage system, are presented in detail. Under normal operating conditions, the energy storage system absorbs the high frequency component of the D-PMSG output power to smooth the wind power fluctuations. Under grid fault conditions, the energy storage system absorbs the redundant power, which could not be transferred to the grid by the EPT, to help the D-PMSG to ride through low voltage conditions. This coordinated control strategy is validated by simulation studies using MATLAB/Simulink. With the proposed control strategy, the output wind power quality is improved and the D-PMSG can ride through severe grid fault conditions.

  12. Communication and synchronization aspects of a mixed hardware control and data acquisition system

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Luchetta, A.; Manduchi, G.; Piacentini, I.E.; Vitturi, S.; Hemming, O.N.

    1989-01-01

    The paper deals with some specific aspects of the control and data acquisition system of the RFX nuclear fusion experiment, at present under construction in Padova, Italy. This system is built around a local area network which connects programmable controllers, minicomputers with CAMAC front-end, and personal computers as operator consoles. These three types of nodes use compatible software which contain a set of low level routines according to levels one to four of the ISO OSI recommendations. The paper describes in detail how the overall system synchronization is achieved. Another aspect described in the paper is the proposed solution for the precision timing and waveform generation (which uses commercial CAMAC hardware) and its integration with the overall system synchronization

  13. Spatial mapping of wind parks in Republic of Macedonia from aspect of power generation and connection to power grid

    International Nuclear Information System (INIS)

    Janchevska, Melita

    2012-01-01

    The master thesis “Spatial mapping of wind parks in Republic of Macedonia from aspect of power generation and connection to power grid” presents spatial aspects for setting of wind parks at favourable locations. The thesis presents a comprehensive analysis how to carry out the administrative procedures that are in force in Republic of Macedonia, a range of minimum allowed distances in setting of each of the wind plants within a wind parks, but also requirements for fulfilling the basic human rights in preserving quality of life of the people in rural areas where the wind parks are build. As a result, a compromise in setting of wind parks and a suitable solution of sustainable development should be reached. Therefore, the decision making process should be based on the following key factors: environmental, social and economic development of the area of concern. The production of wind power is strongly influenced by meteorological conditions and has an average factor of utilization of up to 30%. This low factor of utilization cannot be used for planning of the basic energy needs of the country, but it can contribute certainly towards the reduction of the participation of conventional power plants. Republic of Macedonia introduced feed-in tariffs as a subsiding mechanism for building and strong penetration of wind parks. Additional funding mechanisms include carbon financing and green-field credits, through development of projects in the framework of Clean Development Mechanism, which improves the economic feasibility of the project and increases the interest of the investors. The analysis of the relevant spatial aspects of setting wind parks in Republic of Macedonia based on balanced and sustainable spatial development is made with regards to the following thematic areas: exploiting the potential of wind energy, climate issues, geo morphological and geo seismically aspects, rational use of land, protection of agricultural land and forests, spatial allocation of

  14. Statistical analysis of simulation-generated time series : Systolic vs. semi-systolic correlation on the Connection Machine

    NARCIS (Netherlands)

    Dontje, T.; Lippert, Th.; Petkov, N.; Schilling, K.

    1992-01-01

    Autocorrelation becomes an increasingly important tool to verify improvements in the state of the simulational art in Latice Gauge Theory. Semi-systolic and full-systolic algorithms are presented which are intensively used for correlation computations on the Connection Machine CM-2. The

  15. IEEE Std 383-1974: IEEE standard for type test of Class IE electric cables, field splices, and connections for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard provides direction for establishing type tests which may be used in qualifying Class 1E electric cables, field splices, and other connections for service in nuclear power generating stations. General guidelines for qualifications are given in IEEE Std 323-1974, Standard for Qualifying Class IE Electric Equipment for Nuclear Power Generating Stations. Categories of cables covered are those used for power control and instrumentation services. Though intended primarily to pertain to cable for field installation, this guide may also be used for the qualification of internal wiring of manufactured devices. This guide does not cover cables for service within the reactor vessel

  16. Systems and methods for self-synchronized digital sampling

    Science.gov (United States)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  17. Evaluation of the Trajectory Sensitivity Analysis of the DFIG Control Parameters in Response to Changes in Wind Speed and the Line Impedance Connection to the Grid DFIG

    Directory of Open Access Journals (Sweden)

    Mehdi Fooladgar

    2015-01-01

    Full Text Available Economic and environmental conditions often make large stations and transmission lines, restrictions are placed. Small and medium-sized production units connected to existing systems as a strategy is in progress. These units are usually near the center of the load placed and distributed generators (DG famous are the DG are allowed types vary, such as induction generators rack squirrel-connected wind turbines, generators fed induction double mounted wind turbines, fuel cells connected to the system by power electronic converters or synchronous generator connected to the turbine combustion [10]. This way sensitivity analysis in systems of distributed generation (DG is assessed. It is shown that the method can detect the effect of control parameters listed wind turbine connected to a double-fed induction generator (DFIG Badoou the impedance of the changing the speed of on the stability of the transmission line useful system invested. The control parameters of the importance of influencing the behavior of DFIG are divided.

  18. Bursting synchronization in scale-free networks

    International Nuclear Information System (INIS)

    Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.

    2009-01-01

    Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.

  19. Robust Droop Control of Grid-Connected Inverters

    DEFF Research Database (Denmark)

    Elkayam, Moria; Kuperman, Alon; Guerrero, Josep M.

    2016-01-01

    The use of distributed generation in microgrid systems is becoming a popular way to provide a reliable source of electricity to critical loads. Droop control techniques are used in power systems for the synchronization of grid-connected inverters by local measurements of active and reactive powers....... Despite the benefits of distributed generation, the drawback is that large grid-side impedance steps can cause a system to become unstable. A robust control method based on disturbance observer is proposed in this paper. When the proposed robust controller is utilized, closed loop performance remains...

  20. Detection of generalized synchronization using echo state networks

    Science.gov (United States)

    Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.

    2018-03-01

    Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.

  1. A Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present an outline of a deductive proof of the correctness of the protocol. A model of the protocol was mechanically verified using the Symbolic Model Verifier (SMV) for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  2. Reversible thyristor converters of brushless synchronous compensators

    Directory of Open Access Journals (Sweden)

    А.М.Galynovskiy

    2013-12-01

    Full Text Available Behavior of models of three-phase-to-single-phase rotary reversible thyristor converters of brushless synchronous compensators in a circuit simulation system is analyzed. It is shown that combined control mode of opposite-connected thyristors may result in the exciter armature winding short circuits both at the thyristor feed-forward and lagging current delay angles. It must be taken into consideration when developing brushless compensator excitation systems.

  3. Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: an EEG graph theoretical analysis.

    Science.gov (United States)

    Vecchio, Fabrizio; Di Iorio, Riccardo; Miraglia, Francesca; Granata, Giuseppe; Romanello, Roberto; Bramanti, Placido; Rossini, Paolo Maria

    2018-04-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique able to modulate cortical excitability in a polarity-dependent way. At present, only few studies investigated the effects of tDCS on the modulation of functional connectivity between remote cortical areas. The aim of this study was to investigate-through graph theory analysis-how bipolar tDCS modulate cortical networks high-density EEG recordings were acquired before and after bipolar cathodal, anodal and sham tDCS involving the primary motor and pre-motor cortices of the dominant hemispherein 14 healthy subjects. Results showed that, after bipolar anodal tDCS stimulation, brain networks presented a less evident "small world" organization with a global tendency to be more random in its functional connections with respect to prestimulus condition in both hemispheres. Results suggest that tDCS globally modulates the cortical connectivity of the brain, modifying the underlying functional organization of the stimulated networks, which might be related to changes in synaptic efficiency of the motor network and related brain areas. This study demonstrated that graph analysis approach to EEG recordings is able to intercept changes in cortical functions mediated by bipolar anodal tDCS mainly involving the dominant M1 and related motor areas. Concluding, tDCS could be an useful technique to help understanding brain rhythms and their topographic functional organization and specificity.

  4. Hypothesis test for synchronization: twin surrogates revisited.

    Science.gov (United States)

    Romano, M Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf

    2009-03-01

    The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

  5. Method for protecting an electric generator

    Science.gov (United States)

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  6. Synchronization of Harb-Zohdy Chaotic System via Back-Stepping Design

    Directory of Open Access Journals (Sweden)

    M. R. Shamsyeh Zahedi∗

    2015-12-01

    Full Text Available This paper is concerned with the problem of synchronization of the Harb-Zohdy chaotic system using the back-stepping. Based on the stability theory, the control for the synchronization of chaotic systems Harb-Zohdy is considered without unknown parameters. Next, an adaptive back-stepping control law is derived to generate an error signal between the drive and response systems Harb-Zohdy with an uncertain parameter asymptotically synchronized. Finally, this method is extended to synchronize the system with two unknown parameters. Note that the method presented here needs only one controller to realize the synchronization. Numerical simulations indicate the effectiveness of the proposed chaos synchronization scheme

  7. Preservation of stability and synchronization in nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Anaya, G. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: guillermo.fernandez@uia.mx; Flores-Godoy, J.J. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: job.flores@uia.mx; Femat, R. [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055, Col. Lomas 4a. seccion, San Luis Potosi, San Luis Potosi 78216 (Mexico)], E-mail: rfemat@ipicyt.edu.mx; Alvarez-Ramirez, J.J. [Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico)], E-mail: jjar@xanum.uam.mx

    2007-11-12

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results.

  8. Preservation of stability and synchronization in nonlinear systems

    International Nuclear Information System (INIS)

    Fernandez-Anaya, G.; Flores-Godoy, J.J.; Femat, R.; Alvarez-Ramirez, J.J.

    2007-01-01

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results

  9. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  10. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  11. A Semantics of Synchronization.

    Science.gov (United States)

    1980-09-01

    suggestion of having very hungry philosophers. One can easily imagine the complexity of the equivalent implementation using semaphores . Synchronization types...Edinburgh, July 1978. [STAR79] Stark, E.W., " Semaphore Primitives and Fair Mutual Exclusion," TM-158, Laboratory for Computer Science, M.I.T., Cambridge...AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION .(U) .C SEP 80 C A SEAQUIST N00015-75

  12. Pulse Synchronization System (PSS)

    International Nuclear Information System (INIS)

    1977-06-01

    This document is intended to serve as an operations manual, as well as a documentation of the backup analyses pertinent to the design as delivered. A history of earlier unsuccessful versions of the Pulse Synchronization System (PSS) is not included. The function of the PSS is to synchronize the time of arrival at the fusion target of laser pulses that are propagated through the 20 amplifier chains of the SHIVA laser. The positional accuracy requirement is +-1.5 mm (+-5 psec), and is obtained by the PSS with a wide margin factor

  13. Changes in Functional Connectivity Associated with Direct Training and Generalization Effects of a Theory-Based Generative Naming Treatment

    Directory of Open Access Journals (Sweden)

    Swathi Kiran

    2014-04-01

    Nine PWA improved on the trained abstract words; seven PWA also showed generalization to concrete words in the same context-category. The region with the highest node degree in the trained abstract network across PWA was left inferior frontal gyrus pars triangularis (L IFGtri; while the highest node degree in the generalized concrete network was left precentral gyrus. Regions that showed increased connectivity for both training and generalization included L IFGtri, right middle frontal gyrus (MFG, and bilateral angular gyrus. Regions that showed increased connectivity regardless of whether or not treatment was given and whether or not treatment was successful included left MFG and bilateral superior frontal gyrus. Additionally, PWA who generalized showed more left than right hemisphere changes in both abstract and concrete networks; while PWA who improved on the trained abstract words, but did not generalize to concrete words showed more left than right hemisphere changes for the abstract network, but more right than left hemisphere changes for the concrete network. These results suggest that (a direct training and generalization are tapping into similar neural mechanisms, and (b changes in the left hemisphere coincide with better treatment outcomes.

  14. Synthesizing Modular Invariants for Synchronous Code

    Directory of Open Access Journals (Sweden)

    Pierre-Loic Garoche

    2014-12-01

    Full Text Available In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.

  15. Synchronicity and the meaning-making psyche.

    Science.gov (United States)

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. © 2011, The Society of Analytical Psychology.

  16. Method for emulation of synchronous machine

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to electric energy sources, such as a single wind power turbine or wind power plant, that are interfaced with the utility grid through power electronic converters. In particular, the present invention relates to specific techniques and methodologies for power...... electronic converters for stabilizing the utility grid during transient conditions and for providing similar stability mechanisms that are inherently present in electric synchronous generators while maintaining the possibility for fast and decoupled following of set points for generated active and...

  17. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  18. Robust chaos synchronization based on adaptive fuzzy delayed ...

    Indian Academy of Sciences (India)

    cations in secure communication, economics, signal generator design, chemical reaction, ... that may cause instability and poor performance. ... synchronization error system is asymptotically stable with a guaranteed H∞ norm bound.

  19. Connecting Network Properties of Rapidly Disseminating Epizoonotics

    Science.gov (United States)

    Rivas, Ariel L.; Fasina, Folorunso O.; Hoogesteyn, Almira L.; Konah, Steven N.; Febles, José L.; Perkins, Douglas J.; Hyman, James M.; Fair, Jeanne M.; Hittner, James B.; Smith, Steven D.

    2012-01-01

    Background To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure. Methods Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006), two models were compared: 1) ‘connectivity’, a model that integrated bio-physical concepts (the agent’s transmission cycle, road topology) into indicators designed to measure networks (‘nodes’ or infected sites with short- and long-range links), and 2) ‘contacts’, which focused on infected individuals but did not assess connectivity. Results The connectivity model showed five network properties: 1) spatial aggregation of cases (disease clusters), 2) links among similar ‘nodes’ (assortativity), 3) simultaneous activation of similar nodes (synchronicity), 4) disease flows moving from highly to poorly connected nodes (directionality), and 5) a few nodes accounting for most cases (a “20∶80″ pattern). In both epizoonotics, 1) not all primary cases were connected but at least one primary case was connected, 2) highly connected, small areas (nodes) accounted for most cases, 3) several classes of nodes were distinguished, and 4) the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads. Conclusions Geo-temporal constructs of Network Theory’s nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished

  20. Relaxation of synchronization on complex networks.

    Science.gov (United States)

    Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk

    2008-07-01

    We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

  1. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  2. Attention modulates hemispheric differences in functional connectivity : Evidence from MEG recordings

    NARCIS (Netherlands)

    Gootjes, L; Bouma, A; Van Strien, JW; Scheltens, P; Stam, CJ

    The present study examined intrahemispheric functional connectivity during rest and dichotic listening in 8 male and 9 female healthy Young adults measured with magnetoencephalography (MEG). Generalized synchronization within the separate hemispheres was estimated by means of the synchronization

  3. Heartbeat synchronized with ventilation

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Kurths, Jürgen; Abel, Hans-Henning

    1998-03-01

    It is widely accepted that cardiac and respiratory rhythms in humans are unsynchronised. However, a newly developed data analysis technique allows any interaction that does occur in even weakly coupled complex systems to be observed. Using this technique, we found long periods of hidden cardiorespiratory synchronization, lasting up to 20 minutes, during spontaneous breathing at rest.

  4. Synchronous, bilateral tonsillar carcinomas

    DEFF Research Database (Denmark)

    Nami Saber, Camelia; Grønhøj, Christian; Jensen, David Hebbelstrup

    2017-01-01

    INTRODUCTION: The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing, but data on the incidence of synchronous, bilateral tonsillar squamous cell carcinomas (BiTSCCs) is sparse. In this study, we report the incidence and tumour characteristics of BiTSCCs in a population-base...

  5. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG.......We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  6. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    Synchronized skating is a relatively new competitive sport and data about injuries in this discipline are lacking. Therefore the purpose of this study was to investigate the frequency and pattern of acute and overuse injuries in synchronized skaters. Before and during the World Synchronized Skating Championship 2004, a questionnaire inquiring about the frequency of injuries in this skating discipline was given to 23 participating teams. A total of 514 women and 14 men senior skaters completed the questionnaires (100 % response). Two hundred and eighteen (42.4 %) female and 6 (42.9 %) male skaters had suffered from acute injuries during their synchronized skating career. As some skaters had suffered from more than one injury, the total number of acute injuries in females was 398 and in males 14. In female skaters 19.8 % of acute injuries were head injuries, 7.1 % trunk, 33.2 % upper, and 39.9 % lower extremity injuries. In male skaters 14.3 % were head injuries, 28.6 % upper, and 57.1 % lower extremity injuries, with no report of trunk injuries. Sixty-nine female and 2 male skaters had low back problems and 112 female and 2 male skaters had one or more overuse syndromes during their skating career. Of 155 overuse injuries in female skaters, 102 (65.8 %) occurred during their figure skating career, while 53 injuries (34.2 %) only occurred when they skated in synchronized skating teams. In male skaters, out of 5 overuse injuries, 4 (80 %) occurred in their figure skating career, while 1 (20 %) occurred during their synchronized skating career. Out of the total of 412 injuries, 338 (82 %) occurred during on-ice practice, while 74 (18 %) happened during off-ice training. Ninety-one (26.9 %) acute injures occurred while practicing individual elements, and 247 (73.1 %) on-ice injuries occurred while practicing different team elements. We conclude that injuries in synchronized skating should be of medical concern due to an increasing number of acute injuries, especially

  7. Instructor's guide : - synchronized skating school

    OpenAIRE

    Mokkila, Eveliina

    2011-01-01

    The starting point to the Instructor’s guide for synchronized skating school was the situation that Turun Riennon Taitoluistelu figure skating club constantly struggles to get enough skaters to the Beginner team in synchronized skating. The guidebook was written to guide the skating school instructors towards providing more synchronized skating teaching in their lessons. As a result from introducing synchronized skating more in the skating school, it is expected to have more children conti...

  8. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  9. A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications

    International Nuclear Information System (INIS)

    Boukettaya, Ghada; Krichen, Lotfi

    2014-01-01

    A global supervisory strategy for a micro-grid power generation system that comprises wind and photovoltaic generation subsystems, a flywheel storage system, and domestic loads connected both to the hybrid power generators and to the grid, is developed in this paper. The objectives of the supervisor control are, firstly, to satisfy in most cases the load power demand and, secondly, to check storage and grid constraints to prevent blackout, to reduce energy costs and greenhouse gas emissions, and to extend the life of the flywheel. For these purposes, the supervisor determines online the operation mode of the different generation subsystems, switching from maximum power conversion to power regulation. Decision criteria for the supervisor based on actual variables are presented. Finally, the performance of the supervisor is extensively assessed through computer simulation using a comprehensive nonlinear model of the studied system. - Highlights: • We supervise a micro-grid power generation system with an objective to produce clipping grid consumption. • The supervisor switch online from maximum power conversion to power regulation. • We provide services both for domestic users and for the distribution network manager. • The developed algorithm is tested and validated for different scenarios

  10. A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Drif, M. [Grupo de Investigacion IDEA, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Jaen, Campus Las Lagunillas, 23071 Jaen (Spain); Centre de Developpement des Energies Renouvelables, BP 62, Route de l' Observatoire, 16340 Bouzareah, Algiers (Algeria); Perez, P.J.; Aguilera, J.; Aguilar, J.D. [Grupo de Investigacion IDEA, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Jaen, Campus Las Lagunillas, 23071 Jaen (Spain)

    2008-09-15

    A new method for estimating the irradiance on a partially shaded photovoltaic generator system is proposed. The basic principle of this method consists of two parts: firstly, an approximation of the obstacles' outline or the local horizon by a set of linear functions. Here, a survey of the surroundings is based on the reading of the topographic coordinates of the only significant points of all the objects surrounding the photovoltaic generator. Secondly, the irradiance on the photovoltaic plane is estimated using an accurate model such as the Perez et al. model and assuming that the shading affects both the direct radiation and a part of the diffuse component (circumsolar component). The aim of this paper is to present the principles of the proposed method and the algorithm used for calculating the irradiance on shaded planes. In addition, the results of the comparison between the simulated and measured values of this method are presented. (author)

  11. Synchronous behavior of two coupled electronic neurons

    International Nuclear Information System (INIS)

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-01-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society

  12. Optimisation of intense X-ray sources of Z-pinch type connected to the high intensity current generator SPHINX

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Grunenwald, J.; Zucchini, F.

    2010-01-01

    A new source of intense X-rays in the spectral range of the keV has been designed in the CEA facilities at Gramat (France). This Z-pinch source is based on the implosion of a cylinder of matter that has been ionized by the Lorentz force generated by the injection in the cylinder of an intense current pulse delivered by a HPP (High Pulsed Powers) generator named SPHINX. The cylinder of matter is made up of a few hundreds of thin metal wires (tungsten or aluminium) whose diameter is less than a few tenths of μm. The SPHINX generator is based on the LTD (Linear Transformer Driver) technology. SPHINX stores an energy of 2.2 MJ and delivers a current of 8 MA over a time of 1 μs. SPHINX does not use any technology of time compression, it is a robust, compact machine with reduced maintenance but the price to pay for this simplification is to maintain a high axial homogeneity of the implosion during the initiation phase, it means the pulse time of 1μs. The preliminary experiments that have been performed give the following results: -) for a tungsten cylinder (X ray 1 keV): 28 kJ, 0.6 TW and 25 ns

  13. The role of grid-connected, building-integrated photovoltaic generation in commercial building energy and power loads in a warm and sunny climate

    International Nuclear Information System (INIS)

    Braun, P.; Ruether, R.

    2010-01-01

    For large commercial buildings, power load delivery limits are contracted with the local electricity distribution utility, and are usually fixed at one or more levels over the year, according to the seasonal building loads, and depending on the specific country regulations. Especially in warm and sunny climates, solar electricity generation using building-integrated photovoltaics (BIPV) can assist in reducing commercial building loads, offering peak-shaving (power) benefits on top of the on-site generation of electricity (energy). This on-site power delivery capability gives these consumers the possibility of renegotiating demand contracts with their distribution utility. Commercial buildings that operate during daytime quite often have an energy consumption profile that is well matched by solar radiation availability, and depending on the building's available surface areas, BIPV can generate considerable portions of the energy requirements. In this work we present the role of grid-connected BIPV in reducing the load demands of a large and urban commercial building located in a warm climate in Brazil. The building and adjacent car parking lots can accommodate a 1 MWp BIPV generator, which closely matches the building's typical maximum power demands. Based on real solar radiation data and simultaneous building electricity demands for the year 2007, simulation of the annual solar generation profile of this on-site generator showed that the 1 MWp BIPV system could account for around 30% of the total building's energy consumption. In addition to the energy benefit, maximum power demands were reduced due to a good match between midday air-conditioning cooling loads and solar radiation availability on both a daily and seasonal basis. Furthermore, we have simulated the effect of this considerably large urban-sited generator on the local distribution network load, and have shown that the 1 MWp BIPV installation can also offer considerable benefits to the local utility in

  14. Emergent synchronous bursting of oxytocin neuronal network.

    Directory of Open Access Journals (Sweden)

    Enrico Rossoni

    2008-07-01

    Full Text Available When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

  15. KOVEC studies of radioisotope thermoelectric generator response (In connection with possible NASA space shuttle accident explosion scenarios)

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.; Weston, A.; Lee, E.

    1984-06-26

    The Department of Energy (DOE) commissioned a study leading to a final report (NUS-4543, Report of the Shuttle Transportation System (STS) Explosion Working Group (EWG), June 8, 1984), concerned with PuO/sub 2/ dispersal should the NASA space shuttle explode during the proposed Galileo and ISPN launches planned for 1986. At DOE's request, LLNL furnished appendices that describe hydrocode KOVEC calculations of potential damage to the Radioisotope Thermoelectric Generators, fueled by PuO/sub 2/, should certain explosion scenarios occur. These appendices are contained in this report.

  16. Synchronizing Strategies under Partial Observability

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Laursen, Simon; Srba, Jiri

    2014-01-01

    Embedded devices usually share only partial information about their current configurations as the communication bandwidth can be restricted. Despite this, we may wish to bring a failed device into a given predetermined configuration. This problem, also known as resetting or synchronizing words, has...... been intensively studied for systems that do not provide any information about their configurations. In order to capture more general scenarios, we extend the existing theory of synchronizing words to synchronizing strategies, and study the synchronization, short-synchronization and subset...

  17. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  18. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)

    2009-07-01

    In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)

  19. A survey of the ESI connection arrangements and scale of power benefits offered to embedded generators in England and Wales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In order to establish whether there is potential for a longer term future for renewable and other embedded generation in the UK, it is necessary to ensure that no undue bias exists which might inhibit the natural growth of this emerging industry. As a part of this process, it is necessary to examine the attitudes and policies of the Regional Electricity Companies (RECs) to these developments. Developers, operating on a 'level playing field' with the Electricity Supply Industry should have a reasonable expectation of: fair and reasonable terms for the concoction of their equipment to the REC network, the opportunity of negotiating a reasonable price with the REC Supply business for their product - having regard to the fact that the RECs are obliged by the terms of their licence, to make economic purchases of energy, and broadly similar treatment - one REC to another, accepting the fact that embedded energy might have different worth in different parts of the UK. West Green Associates were asked to systematically approach REC in England and Wales in order to establish the attitudes and policies of the RECs towards embedded generation. (author)

  20. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    2014-01-01

    Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.

  1. Implementation of IEEE-1588 timing and synchronization for ATCA control and data acquisition systems

    International Nuclear Information System (INIS)

    Correia, Miguel; Sousa, Jorge; Combo, Álvaro; Rodrigues, António P.; Carvalho, Bernardo B.; Batista, António J.N.; Gonçalves, Bruno; Correia, Carlos M.B.A.; Varandas, Carlos A.F.

    2012-01-01

    Highlights: ► IEEE-1588 over Ethernet protocol is implemented for the synchronization of all clock signals of an ATCA AMC carrier module. ► The ATCA hardware consists of an AMC quad-carrier main-board with PCI Express switching. ► IEEE-1588 is to be implemented on a Virtex-6 FPGA. ► Timing signals on the ATX-AMC4-PTP are managed and routed by a crosspoint-switch implemented on a Virtex-6 FPGA. ► Each clock signal source may be independently located (on each of the AMC cards, RTM or ATCA backplane). - Abstract: Control and data acquisition (C and DA) systems for Fusion experiments are required to provide accurate timing and synchronization (T and S) signals to all of its components. IPFN adopted PICMG's Advanced Telecommunications Computing Architecture (ATCA) industry standard to develop C and DA instrumentation. ATCA was chosen not only for its high throughput characteristics but also for its high availability (HA) features which become of greater importance in steady-state operation scenarios. However, the specified ATCA clock and synchronization interface may be too limited for the timing and synchronization needs in advanced Physics experiments. Upcoming specification extensions, developed by the “xTCA for Physics” workgroups, will contemplate, among others, a complementary timing specification, developed by the PICMG xTCA for Physics IO, Timing and Synchronization Technical Committee. The IEEE-1588 Precision Time Protocol (PTP) over Ethernet is one of the protocols, proposed by the Committee, aiming for precise synchronization of clocks in measurement and control systems, based on low jitter and slave-to-slave skew criteria. The paper presents an implementation of IEEE-1588 over Ethernet, in an ATCA hardware platform. The ATCA hardware consists of an Advanced Mezzanine Card (AMC) quad-carrier front board with PCI Express switching. IEEE-1588 is to be implemented on a Virtex-6 FPGA. Ethernet connectivity with the remote master clock is located on

  2. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach

    2004-01-01

    The increasing availability of XML-based data sources, e.g., for publishing data on the WWW, means that more and more applications (data consumers) rely on accessing and using XML data. Typically, the access is achieved by defining views over the XML data, and accessing data through these views....... However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  3. LHC synchronization test successful

    CERN Multimedia

    The synchronization of the LHC's clockwise beam transfer system and the rest of CERN's accelerator chain was successfully achieved last weekend. Tests began on Friday 8 August when a single bunch of a few particles was taken down the transfer line from the SPS accelerator to the LHC. After a period of optimization, one bunch was kicked up from the transfer line into the LHC beam pipe and steered about 3 kilometres around the LHC itself on the first attempt. On Saturday, the test was repeated several times to optimize the transfer before the operations group handed the machine back for hardware commissioning to resume on Sunday. The anti-clockwise synchronization systems will be tested over the weekend of 22 August.Picture:http://lhc-injection-test.web.cern.ch/lhc-injection-test/

  4. Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform

    Energy Technology Data Exchange (ETDEWEB)

    Ouhrouche, Mohand [Department of Applied Sciences, University of Quebec at Chicoutimi, Quebec, G7H2B1 (Canada)

    2009-03-15

    Due to its simple construction, ruggedness and low cost, the induction generator driven by a wind turbine and feeding power to the grid appears to be an attractive solution to the problem of growing energy demand in the context of environmental issues. This paper investigates the integration of such a system into the main utility using RT-Lab trademark (Trademark of Opal-RT Technologies) software package running on a simple off-the-shelf PC. This real-time simulation platform is now adopted by many high-tech industries as a real-time laboratory package for rapid control prototyping and for Hardware-in-the-Loop applications. Real-time digital simulation results obtained during contingencies, such as islanding and unbalanced faults are presented and analysed. (author)

  5. Programmable synchronous communications module

    International Nuclear Information System (INIS)

    Horelick, D.

    1979-10-01

    The functional characteristics of a programmable, synchronous serial communications CAMAC module with buffering in block format are described. Both bit and byte oriented protocols can be handled in full duplex depending on the program implemented. The main elements of the module are a Signetics 2652 Multi-Protocol Communications Controller, a Zilog Z-808 8 bit microprocessor with PROM and RAM, and FIFOs for buffering

  6. Dynamic effective connectivity of inter-areal brain circuits.

    Directory of Open Access Journals (Sweden)

    Demian Battaglia

    Full Text Available Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity, related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early

  7. Files synchronization from a large number of insertions and deletions

    Science.gov (United States)

    Ellappan, Vijayan; Kumari, Savera

    2017-11-01

    Synchronization between different versions of files is becoming a major issue that most of the applications are facing. To make the applications more efficient a economical algorithm is developed from the previously used algorithm of “File Loading Algorithm”. I am extending this algorithm in three ways: First, dealing with non-binary files, Second backup is generated for uploaded files and lastly each files are synchronized with insertions and deletions. User can reconstruct file from the former file with minimizing the error and also provides interactive communication by eliminating the frequency without any disturbance. The drawback of previous system is overcome by using synchronization, in which multiple copies of each file/record is created and stored in backup database and is efficiently restored in case of any unwanted deletion or loss of data. That is, to introduce a protocol that user B may use to reconstruct file X from file Y with suitably low probability of error. Synchronization algorithms find numerous areas of use, including data storage, file sharing, source code control systems, and cloud applications. For example, cloud storage services such as Drop box synchronize between local copies and cloud backups each time users make changes to local versions. Similarly, synchronization tools are necessary in mobile devices. Specialized synchronization algorithms are used for video and sound editing. Synchronization tools are also capable of performing data duplication.

  8. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  9. Symbolic dynamics and synchronization of coupled map networks with multiple delays

    International Nuclear Information System (INIS)

    Atay, Fatihcan M.; Jalan, Sarika; Jost, Juergen

    2010-01-01

    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.

  10. Model Checking a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period.

  11. Design, dimensioning and control of a synchronous motor/generator with homopolar excitation and coils inside the air gap for electromechanical energy accumulator; Conception, dimensionnement et commande d'un moteur/generateur synchrone a excitation homopolaire et a bobinages dans l'entrefer pour accumulateur electromecanique d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, N.

    2001-12-15

    A new axial field machine with armature and field windings fixed in the air-gap is studied. A double face printed winding is presented and a new tool, using a surface permeance model is developed. A simplified current control is proposed. Finally, considering the association synchronous machine-inverter the loss minimization problem is investigated, including both geometry and command parameters. (author)

  12. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  13. Radiosensitivity of Hela cells as a function of their position in the generation cycle

    International Nuclear Information System (INIS)

    Lepekhin, A.F.

    1975-01-01

    A cell population with a certain average duration of the phases of the generation cycle and synchronized by selection of karyokinetic cells is examined. A calculation is made of the distribution of cells throught the generation cycle, taking as a starting point the relative number of marked cells when DNA pulse marking takes place. An equation is established that connects the viability of a population irradiated with a fixed dose of weakly ionizing radiation at an arbitrary point in time after synchronization with the distribution of cells through the generation cycle and the viability of cells of different ages. The viability can be obtained as a solution of the equation for known values of population viability at several points in time after synchronization. Calculations are made for Helia cells. (author)

  14. Modeling and control of Type-2 wind turbines for sub-synchronous resonance damping

    International Nuclear Information System (INIS)

    Mancilla-David, Fernando; Domínguez-García, José Luis; De Prada, Mikel; Gomis-Bellmunt, Oriol; Singh, Mohit; Muljadi, Eduard

    2015-01-01

    Highlights: • Dynamic modeling of Type-2 wind turbines for sub-synchronous resonance studies. • Systematic design of a power system stabilizer for Type-2 wind turbines. • Assessment of Type-2 wind turbines to suppress sub-synchronous resonance events. - Abstract: The rapid increase of wind power penetration into power systems around the world has led transmission system operators to enforce stringent grid codes requiring novel functionalities from renewable energy-based power generation. For this reason, there exists a need to asses whether wind turbines (WTs) will comply with such functionalities to ensure power system stability. This paper demonstrates that Type-2 WTs may induce sub-synchronous resonance (SSR) events when connected to a series-compensated transmission line, and with proper control, they may also suppress such events. The paper presents a complete dynamic model tailored to study, via eigenanalysis, SSR events in the presence of Type-2 WTs, and a systematic procedure to design a power system stabilizer using only local and measurable signals. Results are validated through a case study based on the IEEE first benchmark model for SSR studies, as well as with transient computer simulations

  15. A deterministic, gigabit serial timing, synchronization and data link for the RHIC LLRF

    International Nuclear Information System (INIS)

    Hayes, T.; Smith, K.S.; Severino, F.

    2011-01-01

    A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To provide synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.

  16. Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.

    Science.gov (United States)

    Su, Shize; Lin, Zongli; Garcia, Alfredo

    2016-01-01

    This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.

  17. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  18. The research of SSR which can be restrained by photovoltaic grid connected

    Science.gov (United States)

    Li, Kuan; Liu, Meng; Zheng, Wei; Li, Yudun; Wang, Xin

    2018-02-01

    Utilization of photovoltaic power generation has attracted considerable attention, and it is growing rapidly due to its environmental benefits. The series capacitive compensation is needed to be introduced into the lines which could improve the transmission capacity. However, the series capacitive compensation may lead to sub-synchronous resonance(SSR). This paper proposes a method to restrain the SSR based on photovoltaic grid connected which is caused by series capacitive compensation. Sub-synchronous oscillation damping controller (SSDC) is designed based on complex torque coefficient approach, and the SSDC is added to the PV power station’s main controller to damp SSR. IEEE Second benchmark model is used as simulation model based on PSCAD/EMTDC. The results show that the designed SSDC could restrain SSR and improve stability in PV grid connected effectively.

  19. Connecting Architecture and Implementation

    Science.gov (United States)

    Buchgeher, Georg; Weinreich, Rainer

    Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.

  20. Electrotonic vascular signal conduction and nephron synchronization

    DEFF Research Database (Denmark)

    Marsh, D.J.; Toma, I.; Sosnovtseva, Olga

    2009-01-01

    Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF) and the ......Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF......) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5: 1 frequency ratio...... is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce...