WorldWideScience

Sample records for conjugative dna processing

  1. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2018-05-15

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  2. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  3. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander

    2014-01-01

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...

  4. [Role of proton-motive force in the conjugative DNA transport in Staphylococci].

    Science.gov (United States)

    Gavriliuk, V G; Vinnikov, A I

    1997-01-01

    Sensitivity of the conjugative process in staphylococci to the action of uncouplers of oxidative phosphorylation and inhibitors of electron transport systems have been proved, that testifies to the energy-dependent character of conjugative transport of DNA. Proceeding of the conjugation process depends upon the generation of delta microH+ on the membrane of both the donor and recipient cells. contribution of protonmotive forces to providing for the transfer of plasmids during conjugation to staphylococci has been defined.

  5. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures......Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...

  6. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  7. Selective Covalent Conjugation of Phosphorothioate DNA Oligonucleotides with Streptavidin

    Directory of Open Access Journals (Sweden)

    Christof M. Niemeyer

    2011-08-01

    Full Text Available Protein-DNA conjugates have found numerous applications in the field of diagnostics and nanobiotechnology, however, their intrinsic susceptibility to DNA degradation by nucleases represents a major obstacle for many applications. We here report the selective covalent conjugation of the protein streptavidin (STV with phosphorothioate oligonucleotides (psDNA containing a terminal alkylthiolgroup as the chemically addressable linking unit, using a heterobifunctional NHS-/maleimide crosslinker. The psDNA-STV conjugates were synthesized in about 10% isolated yields. We demonstrate that the terminal alkylthiol group selectively reacts with the maleimide while the backbone sulfur atoms are not engaged in chemical conjugation. The novel psDNA-STV conjugates retain their binding capabilities for both biotinylated macromolecules and the complementary nucleic acid. Moreover, the psDNA-STV conjugate retained its binding capacity for complementary oligomers even after a nuclease digestion step, which effectively degrades deoxyribonucleotide oligomers and thus the binding capability of regular DNA-STV conjugates. The psDNA-STV therefore hold particular promise for applications e.g. in proteome research and novel biosensing devices, where interfering endogenous nucleic acids need to be removed from analytes by nuclease digestion.

  8. Site-Selective Conjugation of Native Proteins with DNA

    DEFF Research Database (Denmark)

    Trads, Julie Brender; Tørring, Thomas; Gothelf, Kurt Vesterager

    2017-01-01

    Conjugation of DNA to proteins is increasingly used in academia and industry to provide proteins with tags for identification or handles for hybridization to other DNA strands. Assay technologies such as immuno-PCR and proximity ligation and the imaging technology DNA-PAINT require DNA-protein....... The introduction of a bioorthogonal handle at a specific position of a protein by recombinant techniques provides an excellent approach to site-specific conjugation, but for many laboratories and for applications where several proteins are to be labeled, the expression of recombinant proteins may be cumbersome...... conjugates. In DNA nanotechnology, the DNA handle is exploited to precisely position proteins by self-assembly. For these applications, site-selective conjugation is almost always desired because fully functional proteins are required to maintain the specificity of antibodies and the activity of enzymes...

  9. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    Directory of Open Access Journals (Sweden)

    Anja Henning-Knechtel

    2016-07-01

    Full Text Available DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.

  10. Bifunctional Rhodium Intercalator Conjugates as Mismatch-Directing DNA Alkylating Agents

    OpenAIRE

    Schatzschneider, Ulrich; Barton, Jacqueline K.

    2004-01-01

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covale...

  11. A conserved helicase processivity factor is needed for conjugation and replication of an integrative and conjugative element.

    Directory of Open Access Journals (Sweden)

    Jacob Thomas

    Full Text Available Integrative and conjugative elements (ICEs are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT by the ICE-encoded relaxase and transfer of the nicked single strand of ICE DNA. For ICEBs1 of Bacillus subtilis, nicking of oriT by the ICEBs1 relaxase NicK also initiates rolling circle replication. This autonomous replication of ICEBs1 is critical for stability of the excised element in growing cells. We found a conserved and previously uncharacterized ICE gene that is required for conjugation and replication of ICEBs1. Our results indicate that this gene, helP (formerly ydcP, encodes a helicase processivity factor that enables the host-encoded helicase PcrA to unwind the double-stranded ICEBs1 DNA. HelP was required for both conjugation and replication of ICEBs1, and HelP and NicK were the only ICEBs1 proteins needed for replication from ICEBs1 oriT. Using chromatin immunoprecipitation, we measured association of HelP, NicK, PcrA, and the host-encoded single-strand DNA binding protein Ssb with ICEBs1. We found that NicK was required for association of HelP and PcrA with ICEBs1 DNA. HelP was required for association of PcrA and Ssb with ICEBs1 regions distal, but not proximal, to oriT, indicating that PcrA needs HelP to progress beyond nicked oriT and unwind ICEBs1. In vitro, HelP directly stimulated the helicase activity of the PcrA homologue UvrD. Our findings demonstrate that HelP is a helicase processivity factor needed for efficient unwinding of ICEBs1 for conjugation and replication. Homologues of HelP and PcrA-type helicases are encoded on many known and putative ICEs. We propose that these factors are essential for ICE conjugation, replication, and genetic stability.

  12. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    Science.gov (United States)

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  13. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Shiraz University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy (Iran, Islamic Republic of)

    2016-05-15

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and {sup 1}H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol{sub 40 %}) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  14. DNA-templated antibody conjugation for targeted drug delivery to cancer cells

    DEFF Research Database (Denmark)

    Liu, Tianqiang

    2016-01-01

    -templated organic synthesis due to the wide existence of the 3-histidine cluster in most wild-type proteins. In this thesis, three projects that relate to targeted drug delivery to cancer cells based on the DTPC method is described. The first project was a delivery system which uses transferrin as the targeting....... The study shows that DNA is a highly useful tool for the assembly of proteins with potential therapeutic applications. The DNA-templated protein conjugation shows a promising application in constructing antibody-toxin conjugates or antibody-drug conjugates. In addition, DNA strands used for antibody...... either antibody engineering or special expression systems and are both time and labor consuming. To avoid the drawbacks caused by conventional chemical modification and recombinant methodologies, an ideal site specific conjugation technique would use natural amino acid residues to the protein by a new...

  15. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    Science.gov (United States)

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (Pdendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  16. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Science.gov (United States)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  17. Testing possibilities for establishing nanodiamond-DNA-conjugates

    Science.gov (United States)

    Pohl, A.; Joch, S.; Michael, J.; Boschke, E.; Quenzel, P.; Schreiber, J.; Lapina, V.; Opitz, J.

    2011-07-01

    We report on the biofunctionalization of nanodiamond surfaces in a two step procedure: chemical modification, resulting in homogeneous and defined surface coating, with following addition of ssDNA. Carboxylation, thymidine coupling and amination methods for chemical modification of diamond surfaces for further functionalization experiments were applied. To enable the coupling process, biomolecules were also chemically modified with functional groups (-NH2). FTIR spectroscopy, fluorescence microscopy and gel electrophoresis were applied for characterizing modified ND particles and bioconjugates and for controlling the coupling success.

  18. Functionalization of Fatty Acid Vesicles through Newly Synthesized Bolaamphiphile-DNA Conjugates

    DEFF Research Database (Denmark)

    Wamberg, M. C.; Wieczorek, R.; Brier, S. B.

    2014-01-01

    The surface functionalization of fatty acid vesicles will allow their use as nanoreactors for complex chemistry. In this report, the tethering of several DNA conjugates to decanoic acid vesicles for molecular recognition and synthetic purposes was explored. Due to the highly dynamic nature......), and consists of a single hydrocarbon chain of 20 carbons having on one end a triazole group linked to the S'-phosphate of the nucleic acid and on the other side a hydroxyl-group. Its insertion was so effective that a fluorescent label on the DNA complementary to the conjugate could be used to visualize fatty...... acid structures....

  19. Sequence-specific DNA alkylation by tandem Py-Im polyamide conjugates.

    Science.gov (United States)

    Taylor, Rhys Dylan; Kawamoto, Yusuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2014-09-01

    Tandem N-methylpyrrole-N-methylimidazole (Py-Im) polyamides with good sequence-specific DNA-alkylating activities have been designed and synthesized. Three alkylating tandem Py-Im polyamides with different linkers, which each contained the same moiety for the recognition of a 10 bp DNA sequence, were evaluated for their reactivity and selectivity by DNA alkylation, using high-resolution denaturing gel electrophoresis. All three conjugates displayed high reactivities for the target sequence. In particular, polyamide 1, which contained a β-alanine linker, displayed the most-selective sequence-specific alkylation towards the target 10 bp DNA sequence. The tandem Py-Im polyamide conjugates displayed greater sequence-specific DNA alkylation than conventional hairpin Py-Im polyamide conjugates (4 and 5). For further research, the design of tandem Py-Im polyamide conjugates could play an important role in targeting specific gene sequences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DNA photocleavage by DNA and DNA-LNA amino acid-dye conjugates

    Czech Academy of Sciences Publication Activity Database

    Biton, A.; Ezra, A.; Kašpárková, Jana; Brabec, Viktor; Yavin, E.

    2010-01-01

    Roč. 21, č. 4 (2010), s. 616-621 ISSN 1043-1802 R&D Projects: GA AV ČR(CZ) IAA400040803 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * photocleavage * triplex forming oligonucleotides Subject RIV: BO - Biophysics Impact factor: 5.002, year: 2010

  1. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells.

    Science.gov (United States)

    Agasti, Sarit S; Liong, Monty; Peterson, Vanessa M; Lee, Hakho; Weissleder, Ralph

    2012-11-14

    DNA barcoding is an attractive technology, as it allows sensitive and multiplexed target analysis. However, DNA barcoding of cellular proteins remains challenging, primarily because barcode amplification and readout techniques are often incompatible with the cellular microenvironment. Here we describe the development and validation of a photocleavable DNA barcode-antibody conjugate method for rapid, quantitative, and multiplexed detection of proteins in single live cells. Following target binding, this method allows DNA barcodes to be photoreleased in solution, enabling easy isolation, amplification, and readout. As a proof of principle, we demonstrate sensitive and multiplexed detection of protein biomarkers in a variety of cancer cells.

  2. Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts

    International Nuclear Information System (INIS)

    Guengerich, F.P.; Peterson, L.A.; Cmarik, J.L.; Koga, N.; Inskeep, P.B.

    1987-01-01

    Ethylene dibromide (1,2-dibromoethane, EDB) can be activated to electrophilic species by either oxidative metabolism or conjugation with glutathione. Although conjugation is generally a route of detoxication, in this case it leads to genetic damage. The major DNA adduct has been identified as S-[2-(N 7 -guanyl)ethyl]glutathione, which is believed to arise via half-mustard and episulfonium ion intermediates. The adduct has a half-life of about 70 to 100 hr and does not appear to migrate to other DNA sites. Glutathione-dependent DNA damage by EDB was also demonstrated in human hepatocyte preparations. The possible relevance of this DNA adduct to genetic damage is discussed

  3. Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.

    Science.gov (United States)

    Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L

    2015-05-21

    We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.

  4. Cu(II) complexes of glyco-imino-aromatic conjugates in DNA binding ...

    Indian Academy of Sciences (India)

    Abstract. Binding of metal complexes of C2-glucosyl conjugates with DNA has been established by absorp- ... Metal complexes have shown toxicity to the HeLa and MCF–7 .... ber with 5% CO2. ..... ing/reducing agent or laser/UV–visible light.

  5. Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

    Science.gov (United States)

    Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E

    2015-01-01

    Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

    International Nuclear Information System (INIS)

    Gong Peijun; Peng Zheyang; Wang Yao; Qiao Ru; Mao Weixing; Qian Haisheng; Zhang Mengya; Li Congcong; Shi Shenyuan

    2013-01-01

    In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe 3 O 4 nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products (∼27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg −1 when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative ζ-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

  7. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    Science.gov (United States)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate

  8. Template-directed covalent conjugation of DNA to native antibodies, transferrin and other metal-binding proteins

    Science.gov (United States)

    Rosen, Christian B.; Kodal, Anne L. B.; Nielsen, Jesper S.; Schaffert, David H.; Scavenius, Carsten; Okholm, Anders H.; Voigt, Niels V.; Enghild, Jan J.; Kjems, Jørgen; Tørring, Thomas; Gothelf, Kurt V.

    2014-09-01

    DNA-protein conjugates are important in bioanalytical chemistry, molecular diagnostics and bionanotechnology, as the DNA provides a unique handle to identify, functionalize or otherwise manipulate proteins. To maintain protein activity, conjugation of a single DNA handle to a specific location on the protein is often needed. However, preparing such high-quality site-specific conjugates often requires genetically engineered proteins, which is a laborious and technically challenging approach. Here we demonstrate a simpler method to create site-selective DNA-protein conjugates. Using a guiding DNA strand modified with a metal-binding functionality, we directed a second DNA strand to the vicinity of a metal-binding site of His6-tagged or wild-type metal-binding proteins, such as serotransferrin, where it subsequently reacted with lysine residues at that site. This method, DNA-templated protein conjugation, facilitates the production of site-selective protein conjugates, and also conjugation to IgG1 antibodies via a histidine cluster in the constant domain.

  9. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water

    NARCIS (Netherlands)

    García-Fernández, Almudena; Megens, Rik P.; Villarino, Lara; Roelfes, Gerard

    2016-01-01

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a

  10. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  11. Conjugation of Organic Molecules to DNA and Their Application in DNA Nanotechnology

    DEFF Research Database (Denmark)

    Olsen, Eva Maria

    2012-01-01

    Denne PhD afhandling præsenterer fire kapitler, som omhandler det videnskabelige område DNA nanoteknologi. Kapitel 1 er en general introduktion til DNA nanoteknologi, som først beskriver opbygningen af DNA og efter flere underkapitler slutter med en gennemgang af nogle fantastiske dynamiske DNA s...

  12. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    Science.gov (United States)

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site

  13. Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer.

    Science.gov (United States)

    McLeod, Sarah M; Burrus, Vincent; Waldor, Matthew K

    2006-08-01

    The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. In the absence of IHF, V. cholerae displayed a modest defect for serving as an SXT recipient. Surprisingly, SXT integration into or excision from the V. cholerae chromosome, which requires an SXT-encoded integrase related to lambda integrase, did not require IHF. Therefore, the defect in SXT transmission in the V. cholerae IHF mutant is probably not related to IHF's ability to promote DNA recombination. The V. cholerae IHF mutant was also highly impaired as a donor of RP4, a broad-host-range conjugative plasmid. Thus, the V. cholerae IHF mutant appears to have a general defect in conjugation. Escherichia coli IHF mutants were not impaired as donors or recipients of SXT or RP4, indicating that IHF is a V. cholerae-specific conjugation factor.

  14. Sequestering HMGB1 via DNA-Conjugated Beads Ameliorates Murine Colitis

    Science.gov (United States)

    Antoine, Daniel J.; Dancho, Meghan; Tsaava, Teá; Li, Jianhua; Lu, Ben; Levine, Yaakov A.; Stiegler, Andrew; Tamari, Yehuda; Al-Abed, Yousef; Roth, Jesse; Tracey, Kevin J.; Yang, Huan

    2014-01-01

    Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD. PMID:25127031

  15. Inhibition of DNA binding of Sox2 by the SUMO conjugation

    International Nuclear Information System (INIS)

    Tsuruzoe, Shu; Ishihara, Ko; Uchimura, Yasuhiro; Watanabe, Sugiko; Sekita, Yoko; Aoto, Takahiro; Saitoh, Hisato; Yuasa, Yasuhito; Niwa, Hitoshi; Kawasuji, Michio; Baba, Hideo; Nakao, Mitsuyoshi

    2006-01-01

    Sox2 is a member of the high mobility group (HMG) domain DNA-binding proteins for transcriptional control and chromatin architecture. The HMG domain of Sox2 binds the DNA to facilitate transactivation by the cooperative transcription factors such as Oct3/4. We report that mouse Sox2 is modified by SUMO at lysine 247. Substitution of the target lysine to arginine lost the sumoylation but little affected transcriptional potential or nuclear localization of Sox2. By contrast with the unmodified form, Sox2 fused to SUMO-1 did not augment transcription via the Fgf4 enhancer in the presence of Oct3/4. Further, SUMO-1-conjugated Sox2 at the lysine 247 or at the carboxyl terminus reduced the binding to the Fgf4 enhancer. These indicate that Sox2 sumoylation negatively regulates its transcriptional role through impairing the DNA binding

  16. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.

    Science.gov (United States)

    Kékedy-Nagy, László; Shipovskov, Stepan; Ferapontova, Elena E

    2016-08-16

    Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.

  17. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    Science.gov (United States)

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  18. Selective alkylation of T-T mismatched DNA using vinyldiaminotriazine-acridine conjugate.

    Science.gov (United States)

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato; Nagatsugi, Fumi

    2018-02-16

    The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T-T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)-acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T-T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T-T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT-acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1.

  19. Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA

    Directory of Open Access Journals (Sweden)

    Keiichi Motoyama

    2009-08-01

    Full Text Available We have evaluated the potential use of various polyamidoamine (PAMAM dendrimer [dendrimer, generation (G 2-4] conjugates with cyclodextrins (CyDs as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3 conjugate with α-CyD having an average degree of substitution (DS of 2.4 [α-CDE (G3, DS2] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2] was found to possess asialoglycoprotein receptor (AgpR-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol-appended α-CDE [Fol-PαC (G3] and revealed that Fol-PαC (G3 imparted folate receptor (FR-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.

  20. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors.

    Science.gov (United States)

    Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter

    2012-05-14

    Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand

  1. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira [Naresuan University, Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science (Thailand); Vilaivan, Tirayut [Chulalongkorn University, Department of Chemistry, Organic Synthesis Research Unit, Faculty of Science (Thailand); Nakkuntod, Maliwan [Naresuan University, Department of Biology, Faculty of Science (Thailand); Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Naresuan University, Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science (Thailand)

    2016-09-15

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly(N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size (D{sub h}) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV–visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.Graphical Abstract.

  2. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    International Nuclear Information System (INIS)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-01-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly(N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size (D h ) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV–visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.Graphical Abstract

  3. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration.

    Science.gov (United States)

    Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T

    2018-01-15

    Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.

  4. Metabolic fate of endogenous molecular damage: Urinary glutathione conjugates of DNA-derived base propenals as markers of inflammation.

    Science.gov (United States)

    Jumpathong, Watthanachai; Chan, Wan; Taghizadeh, Koli; Babu, I Ramesh; Dedon, Peter C

    2015-09-01

    Although mechanistically linked to disease, cellular molecules damaged by endogenous processes have not emerged as significant biomarkers of inflammation and disease risk, due in part to poor understanding of their pharmacokinetic fate from tissue to excretion. Here, we use systematic metabolite profiling to define the fate of a common DNA oxidation product, base propenals, to discover such a biomarker. Based on known chemical reactivity and metabolism in liver cell extracts, 15 candidate metabolites were identified for liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS) quantification in urine and bile of rats treated with thymine propenal (Tp). Analysis of urine revealed three metabolites (6% of Tp dose): thymine propenoate and two mercapturate derivatives of glutathione conjugates. Bile contained an additional four metabolites (22% of Tp dose): cysteinylglycine and cysteine derivatives of glutathione adducts. A bis-mercapturate was observed in urine of untreated rats and increased approximately three- to fourfold following CCl4-induced oxidative stress or treatment with the DNA-cleaving antitumor agent, bleomycin. Systematic metabolite profiling thus provides evidence for a metabolized DNA damage product as a candidate biomarker of inflammation and oxidative stress in humans.

  5. Side Chain Engineering in Solution-Processable Conjugated Polymers

    KAUST Repository

    Mei, Jianguo; Bao, Zhenan

    2014-01-01

    Side chains in conjugated polymers have been primarily utilized as solubilizing groups. However, these side chains have roles that are far beyond. We advocate using side chain engineering to tune a polymer's physical properties, including absorption

  6. Sequence-specific DNA alkylation targeting for Kras codon 13 mutation by pyrrole-imidazole polyamide seco-CBI conjugates.

    Science.gov (United States)

    Taylor, Rhys Dylan; Asamitsu, Sefan; Takenaka, Tomohiro; Yamamoto, Makoto; Hashiya, Kaori; Kawamoto, Yusuke; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2014-01-27

    Hairpin N-methylpyrrole-N-methylimidazole polyamide seco-CBI conjugates 2-6 were designed for synthesis by Fmoc solid-phase synthesis, and their DNA-alkylating activities against the Kras codon 13 mutation were compared by high-resolution denaturing gel electrophoresis with 225 base pair (bp) DNA fragments. Conjugate 5 had high reactivity towards the Kras codon 13 mutation site, with alkylation occurring at the A of the sequence 5'-ACGTCACCA-3' (site 2), including minor 1 bp-mismatch alkylation against wild type 5'-ACGCCACCA-3' (site 3). Conjugate 6, which differs from conjugate 5 by exchanging one Py unit with a β unit, showed high selectivity but only weakly alkylated the A of 5'-ACGTCACCA-3' (site 2). The hairpin polyamide seco-CBI conjugate 5 thus alkylates according to Dervan's pairing rule with the pairing recognition which β/β pair targets T-A and A-T pairs. SPR and a computer-minimized model suggest that 5 binds to the target sequence with high affinity in a hairpin conformation, allowing for efficient DNA alkylation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules

    Science.gov (United States)

    Srivithya, Vellampatti; Roun, Heo; Sekhar Babu, Mitta; Hyung, Park Jae; Ha, Park Sung

    2018-03-01

    Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)˗conjugated DNA nano˗ring intercalated with doxorubicin (DNRA˗DOX) as potential therapeutics for breast cancer. DNRA˗DOX exhibited significantly higher cytotoxicity to the MCF˗7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano˗ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA˗DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.

  8. Chalcone-imidazolone conjugates induce apoptosis through DNA damage pathway by affecting telomeres

    Directory of Open Access Journals (Sweden)

    Kamal Ahmed

    2011-04-01

    Full Text Available Abstract Background Breast cancer is one of the most prevalent cancers in the world and more than one million women are diagnosed leading to 410,000 deaths every year. In our previous studies new chalcone-imidazolone conjugates were prepared and evaluated for their anticancer activity in a panel of 53 human tumor cell lines and the lead compounds identified were 6 and 8. This prompted us to investigate the mechanism of apoptotic event. Results Involvement of pro-apoptotic protein (Bax, active caspase-9 and cleavage of retinoblastoma protein was studied. Interestingly, the compounds caused upregulation of p21, check point proteins (Chk1, Chk2 and as well as their phosphorylated forms which are known to regulate the DNA damage pathway. Increased p53BP1 foci by immunolocalisation studies and TRF1 suggested the possible involvement of telomere and associated proteins in the apoptotic event. The telomeric protein such as TRF2 which is an important target for anticancer therapy against human breast cancer was extensively studied along with proteins involved in proper functioning of telomeres. Conclusions The apoptotic proteins such as Bax, active caspase-9 and cleaved RB are up-regulated in the compound treated cells revealing the apoptotic nature of the compounds. Down regulation of TRF2 and upregulation of the TRF1 as well as telomerase assay indicated the decrease in telomeric length revealing telomeric dysfunction and thereby controlling the rapid rate of cell proliferation. In summary, chalcone-imidazolone conjugates displayed significant DNA damage activity particularly at telomeres and caused both apoptosis and senescence-like growth arrest which suggested that these compounds have potential activity against breast carcinoma.

  9. Side Chain Engineering in Solution-Processable Conjugated Polymers

    KAUST Repository

    Mei, Jianguo

    2014-01-14

    Side chains in conjugated polymers have been primarily utilized as solubilizing groups. However, these side chains have roles that are far beyond. We advocate using side chain engineering to tune a polymer\\'s physical properties, including absorption, emission, energy level, molecular packing, and charge transport. To date, numerous flexible substituents suitable for constructing side chains have been reported. In this Perspective article, we advocate that the side chain engineering approach can advance better designs for next-generation conjugated polymers. © 2013 American Chemical Society.

  10. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA.

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Yeom

    Full Text Available Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.

  11. Processing of free radical damaged DNA bases

    International Nuclear Information System (INIS)

    Wallace, S.

    2003-01-01

    Free radicals produced during the radiolysis of water gives rise to a plethora of DNA damages including single strand breaks, sites of base loss and a wide variety of purine and pyrimidine base lesions. All these damages are processed in cells by base excision repair. The oxidative DNA glycosylases which catalyze the first step in the removal of a base damage during base excision repair evolved primarily to protect the cells from the deleterious mutagenic effects of single free radical-induced DNA lesions arising during oxidative metabolism. This is evidenced by the high spontaneous mutation rate in bacterial mutants lacking the oxidative DNA glycosylases. However, when a low LET photon transverses the DNA molecule, a burst of free radicals is produced during the radiolysis of water that leads to the formation of clustered damages in the DNA molecule, that are recognized by the oxidative DNA glycosylases. When substrates containing two closely opposed sugar damages or base and sugar damages are incubated with the oxidative DNA glycosylases in vitro, one strand is readily incised by the lyase activity of the DNA glycosylase. Whether or not the second strand is incised depends on the distance between the strand break resulting from the incised first strand and the remaining DNA lesion on the other strand. If the lesions are more than two or three base pairs apart, the second strand is readily cleaved by the DNA glycosylase, giving rise to a double strand break. Even if the entire base excision repair system is reconstituted in vitro, whether or not a double strand break ensues depends solely upon the ability of the DNA glycosylase to cleave the second strand. These data predicted that cells deficient in the oxidative DNA glycosylases would be radioresistant while those that overproduce an oxidative DNA glycosylase would be radiosensitive. This prediction was indeed borne in Escherichia coli that is, mutants lacking the oxidative DNA glycosylases are radioresistant

  12. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer.

    Science.gov (United States)

    Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans

    2014-01-01

    Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes

  13. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex.

    Science.gov (United States)

    Xu, Weichen; Lu, Yi

    2011-05-07

    We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011

  14. Preparation of carboxyl group-modified palladium nanoparticles in an aqueous solution and their conjugation with DNA

    Science.gov (United States)

    Wang, Zhifei; Li, Hongying; Zhen, Shuang; He, Nongyue

    2012-05-01

    The use of nanomaterials in biomolecular labeling and their corresponding detection has been attracting much attention, recently. There are currently very few studies on palladium nanoparticles (Pd NPs) due to their lack of appropriate surface functionalities for conjugation with DNA. In this paper, we thus firstly present an approach to prepare carboxyl group-modified Pd NPs (with an average size of 6 nm) by the use of 11-mercaptoundecanoic acid (MUDA) as a stabilizer in the aqueous solution. The effect of the various reducing reaction conditions on the morphology of the Pd NPs was investigated. The particles were further characterized by TEM, UV-vis, FT-IR and XPS techniques. DNA was finally covalently conjugated to the surface of the Pd NPs through the activation of the carboxyl group, which was confirmed by agarose gel electrophoresis and fluorescence analysis. The resulting Pd NPs-DNA conjugates show high single base pair mismatch discrimination capabilities. This work therefore sets a good foundation for further applications of Pd NPs in bio-analytical research.

  15. Dibenzotetraaza[14]annulene-adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences.

    Science.gov (United States)

    Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Grabar, Marina; Smrečki, Vilko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2013-06-28

    Among three novel DBTAA derivatives only the DBTAA-propyl-adenine conjugate showed recognition of the consecutive oligo dT sequence by increased affinity and specific induced chirooptical response in comparison to other single stranded RNA and DNA; whereby of particular importance is the up until now unique efficient differentiation between dT and rU. At variance, its close analogue DBTAA-hexyl-adenine did not reveal any selectivity between ss-DNA/RNA pointing out the important role of steric factors (linker length); moreover non-selectivity of the reference compound (, lacking adenine) stressed the importance of adenine interactions in the selectivity.

  16. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Cai-Xia Zhuo

    2016-11-01

    Full Text Available Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO, thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.

  17. Plasmid fermentation process for DNA immunization applications.

    Science.gov (United States)

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  18. Antibody Drug Conjugates Differentiate Uptake and DNA Alkylation of Pyrrolobenzodiazepines in Tumors from Organs of Xenograft Mice.

    Science.gov (United States)

    Ma, Yong; Khojasteh, S Cyrus; Hop, Cornelis E C A; Erickson, Hans K; Polson, Andrew; Pillow, Thomas H; Yu, Shang-Fan; Wang, Hong; Dragovich, Peter S; Zhang, Donglu

    2016-12-01

    Pyrrolobenzodiazepine (PBD)-dimer is a DNA minor groove alkylator, and its CD22 THIOMAB antibody drug conjugate (ADC) demonstrated, through a disulfide linker, an efficacy in tumor reduction for more than 7 weeks with minimal body weight loss in xenograft mice after a single 0.5-1 mg/kg i.v. dose. The DNA alkylation was investigated here in tumors and healthy organs of mice to understand the sustained efficacy and tolerability. The experimental procedures included the collection of tumors and organ tissues of xenograft mice treated with the ADC followed by DNA isolation/hydrolysis/quantitation and payload recovery from reversible DNA alkylation. PBD-dimer formed a considerable amount of adducts with tissue DNA, representing approximately 98% (at 24 hours), and 99% (at 96 hours) of the total PBD-dimer in tumors, and 78-89% in liver and lung tissues, suggesting highly efficient covalent binding of the released PBD-dimer to tissue DNA. The amount of PBD-DNA adducts in tumor tissues was approximately 24-fold (at 24 hours) and 70-fold (at 96 hours) greater than the corresponding amount of adducts in liver and lung tissues. In addition, the DNA alkylation levels increased 3-fold to 4-fold from 24 to 96 hours in tumors [41/10 6 base pairs (bp) at 96 hours] but remained at the same level (1/10 6 bp) in livers and lungs. These results support the typical target-mediated cumulative uptake of ADC into tumors and payload release that offers an explanation for its sustained antitumor efficacy. In addition, the low level of DNA alkylation in normal tissues is consistent with the tolerability observed in mice. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Genomic signal processing for DNA sequence clustering.

    Science.gov (United States)

    Mendizabal-Ruiz, Gerardo; Román-Godínez, Israel; Torres-Ramos, Sulema; Salido-Ruiz, Ricardo A; Vélez-Pérez, Hugo; Morales, J Alejandro

    2018-01-01

    Genomic signal processing (GSP) methods which convert DNA data to numerical values have recently been proposed, which would offer the opportunity of employing existing digital signal processing methods for genomic data. One of the most used methods for exploring data is cluster analysis which refers to the unsupervised classification of patterns in data. In this paper, we propose a novel approach for performing cluster analysis of DNA sequences that is based on the use of GSP methods and the K-means algorithm. We also propose a visualization method that facilitates the easy inspection and analysis of the results and possible hidden behaviors. Our results support the feasibility of employing the proposed method to find and easily visualize interesting features of sets of DNA data.

  20. Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification

    International Nuclear Information System (INIS)

    Fang, Xian; Jiang, Wei; Han, Xiaowei; Zhang, Yuzhong

    2013-01-01

    We describe a highly sensitive and selective molecular beacon-based electrochemical impedance biosensor for the sequence-specific detection of DNA. DNA-capped conjugates between gold nanoparticles (Au-NPs) and streptavidin are used for signal amplification. The molecular beacon was labeled with a thiol at its 5′ end and with biotin at its 3′ end, and then immobilized on the surface of a bare gold electrode through the formation of Au-S bonds. Initially, the molecular beacon is present in the “closed” state, and this shields the biotin from being approached by streptavidin due to steric hindrance. In the presence of the target DNA, the target DNA molecules hybridize with the loop and cause a conformational change that moves the biotin away from the surface of the electrode. The biotin thereby becomes accessible for the reporter (the DNA-streptavidin capped Au-NPs), and this results in a distinct increase in electron transfer resistance. Under optimal conditions, the increase in resistance is linearly related to the logarithm of the concentration of complementary target DNA in the range from 1.0 fM to 0.1 μM, with a detection limit of 0.35 fM (at an S/N of 3). This biosensor exhibits good selectivity, and acceptable stability and reproducibility. (author)

  1. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    Science.gov (United States)

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates

    Directory of Open Access Journals (Sweden)

    Igor V. Alabugin

    2011-06-01

    Full Text Available Hybrid molecules combining photoactivated aryl acetylenes and a dicationic lysine moiety cause the most efficient double-strand (ds DNA cleavage known to date for a small molecule. In order to test the connection between the alkylating ability and the DNA-damaging properties of these compounds, we investigated the photoreactivity of three isomeric aryl–tetrafluoropyridinyl (TFP alkynes with amide substituents in different positions (o-, m-, and p- toward a model π-system. Reactions with 1,4-cyclohexadiene (1,4-CHD were used to probe the alkylating properties of the triplet excited states in these three isomers whilst Stern–Volmer quenching experiments were used to investigate the kinetics of photoinduced electron transfer (PET. The three analogous isomeric lysine conjugates cleaved DNA with different efficiencies (34, 15, and 0% of ds DNA cleavage for p-, m-, and o-substituted lysine conjugates, respectively consistent with the alkylating ability of the respective acetamides. The significant protecting effect of the hydroxyl radical and singlet oxygen scavengers to DNA cleavage was shown only with m-lysine conjugate. All three isomeric lysine conjugates inhibited human melanoma cell growth under photoactivation: The p-conjugate had the lowest CC50 (50% cell cytotoxicity value of 1.49 × 10−7 M.

  3. Effect of deoxycholate conjugation on stability of pDNA/polyamidoamine-diethylentriamine (PAM-DET) polyplex against ionic strength.

    Science.gov (United States)

    Jeong, Yunseong; Jin, Geun-Woo; Choi, Eunjung; Jung, Ji Hyuk; Park, Jong-Sang

    2011-11-28

    Polyplexes formed from cationic polymer/pDNA have been known to be vulnerable to external ionic strength. To improve polyplex stability against ionic strength, we attempted the chemical conjugation of the hydrophobic deoxycholate (DC) moiety to the polyamidoamine-diethylenetriamine (PAM-DET) dendrimer. Dynamic light scattering studies showed that the tolerance of the resulting PAM-DET-DC against ionic strength is higher than that of PAM-DET. In addition, we confirmed that the stability of polyplex has a strong relationship with the degree of conjugation of the DC moiety to the PAM-DET dendrimer and the charge ratio of PAM-DET-DC. Furthermore, the transfection efficiency of the PAM-DET-DC polyplex is higher than that of PAM-DET but its cytotoxicity remains the same. Therefore, the chemical conjugation of DC is a safe and effective method for increasing the stability of supramolecules formed from electrostatic interaction. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Processing of Nonconjugative Resistance Plasmids by Conjugation Nicking Enzyme of Staphylococci

    Energy Technology Data Exchange (ETDEWEB)

    Pollet, Rebecca M.; Ingle, James D.; Hymes, Jeff P.; Eakes, Thomas C.; Eto, Karina Yui; Kwong, Stephen M.; Ramsay, Joshua P.; Firth, Neville; Redinbo, Matthew R. (Curtin U.); (Sydney); (UNC)

    2016-01-04

    Antimicrobial resistance inStaphylococcus aureuspresents an increasing threat to human health. This resistance is often encoded on mobile plasmids, such as pSK41; however, the mechanism of transfer of these plasmids is not well understood. In this study, we first examine key protein-DNA interactions formed by the relaxase enzyme, NES, which initiates and terminates the transfer of the multidrug resistance plasmid pSK41. Two loops on the NES protein, hairpin loops 1 and 2, form extensive contacts with the DNA hairpin formed at theoriTregion of pSK41, and here we establish that these contacts are essential for proper DNA cleavage and religation by the full 665-residue NES proteinin vitro. Second, pSK156 and pCA347 are nonconjugativeStaphylococcus aureusplasmids that contain sequences similar to theoriTregion of pSK41 but differ in the sequence predicted to form a DNA hairpin. We show that pSK41-encoded NES is able to bind, cleave, and religate theoriTsequences of these nonconjugative plasmidsin vitro. Although pSK41 could mobilize a coresident plasmid harboring its cognateoriT, it was unable to mobilize plasmids containing the pSK156 and pCA347 variantoriTmimics, suggesting that an accessory protein like that previously shown to confer specificity in the pWBG749 system may also be involved in transmission of plasmids containing a pSK41-likeoriT. These data indicate that the conjugative relaxase intransmechanism recently described for the pWBG749 family of plasmids also applies to the pSK41 family of plasmids, further heightening the potential significance of this mechanism in the horizontal transfer of staphylococcal plasmids.

    IMPORTANCEUnderstanding the

  5. Part-per-trillion level detection of estradiol by competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels.

    Science.gov (United States)

    Zhu, Shengchao; Zhang, Qin; Guo, Liang-Hong

    2008-08-22

    Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17beta-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17beta-estradiol is 1.9 pg mL(-1), which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.

  6. Conjugated Quantum Dots Inhibit the Amyloid β (1–42 Fibrillation Process

    Directory of Open Access Journals (Sweden)

    Garima Thakur

    2011-01-01

    Full Text Available Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA capped CdSe/ZnS quantum dots (QDs of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM and atomic force microscopy (AFM were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42 (Aβ (1–42 is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.

  7. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  8. Requirement for Vibrio cholerae Integration Host Factor in Conjugative DNA Transfer

    OpenAIRE

    McLeod, Sarah M.; Burrus, Vincent; Waldor, Matthew K.

    2006-01-01

    The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. I...

  9. Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins.

    Science.gov (United States)

    Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian; Sodroski, Joseph; Yang, Zhongqiang; Liu, Dongsheng; Mao, Youdong

    2018-02-19

    Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Ma, Liang; Fu, Peter P

    2016-01-01

    Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.

  11. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    Science.gov (United States)

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  12. Polyelectrolyte Complexes of a Cationic All Conjugated Fluorene Thiophene Diblock Copolymer with Aqueous DNA

    DEFF Research Database (Denmark)

    Knaapila, Matti; Costa, Telma; Garamus, Vasil M.

    2015-01-01

    TMAHT repeat units; x = 0.5 equals the nominal charge neutralization. PF2/6-P3TMAHT forms 20–40 nm sized particles with PF2/6 core and hydrated P3TMAHT exterior. The polymer particles form loose one-dimensional chains giving micrometer long branched chains (0.19 ≤ x ≤ 0.76) and subsequently randomly......We report on the structural and colorimetric effects of interaction of aqueous ∼0.06–1% poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-6-trimethylammoniumhexyl)thiophene] bromide (PF2/6-P3TMAHT) with double-stranded DNA to form PF2/6-P3TMAHT(DNA)x where x is the molar ratio of DNA base pairs to P3...

  13. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    Conjugated polymers have found several applications in recent years, in energy conversion and storage devices such as organic light emitting diodes, solar cells, batteries, and super capacitors. Thin films of polymers used for these applications need to be mechanically and thermally stable to withstand the harsh operating conditions. Although there is significant information on the optoelectronic properties of many of these polymers, there are only few studies on their mechanical properties. There is little information in the literature on how processing of these films influence mechanical properties. In the first part of this study, poly(p-phenylene vinylene) (PPV) films were prepared by thermolytic conversion of poly[p -phenylene (tetrahydrothiophenium)ethylene chloride] precursor films, at different temperatures and the kinetics of reaction was investigated using thermogravimetry and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties of the films, studied using nanoindentation, showed a dependence on the extent of conversion and chemical composition of the films. The presence of chemical defects (e.g., carbonyl groups, detected using FTIR spectroscopy), was also found to have a noticeable effect on the modulus and hardness of the films. The storage modulus, E', and plasticity decreased with an increase in conversion, whereas the loss modulus, E", showed the opposite trend. Both the precursor and the fully-converted PPV films were found to have significantly lower E" than E', consistent with the glassy nature of the polymers at room temperature. In the second part of the study, polyacetylene films were synthesized by acid-catalyzed dehydration reaction of poly(vinyl alcohol) (PVA) precursor films. The kinetics of this reaction was monitored by thermogravimetry. The chemical structure of the conjugated polymer films was characterized by Raman and IR spectroscopy. Polyacetylene films incorporated with 1-propyl-3-methylimidazolium ionic liquid

  14. 7-N-Acetylcysteine-pyrrole conjugate-A potent DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Ma, Liang; Xia, Qingsu; Fu, Peter P

    2016-10-01

    Plants containing pyrrolizidine alkaloids (PAs) are widespread throughout the world and are the most common poisonous plants affecting livestock, wildlife, and humans. PAs require metabolic activation to form reactive dehydropyrrolizidine alkaloids (dehydro-PAs) that are capable of alkylating cellular DNA and proteins, form (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA and DHP-protein adducts, and lead to cytotoxicity, genotoxicity, and tumorigenicity. In this study, we determined that the metabolism of riddelliine and monocrotaline by human and rat liver microsomes in the presence of N-acetylcysteine both produced 7-N-acetylcysteine-DHP (7-NAC-DHP) and DHP. Reactions of 7-NAC-DHP with 2'-deoxyguanosine (dG), 2'-deoxyadenosine (dA), and calf thymus DNA in aqueous solution followed by enzymatic hydrolysis yielded DHP-dG and/or DHP-dA adducts. These results indicate that 7-NAC-DHP is a reactive metabolite that can lead to DNA adduct formation. Copyright © 2016. Published by Elsevier B.V.

  15. Missing value imputation in DNA microarrays based on conjugate gradient method.

    Science.gov (United States)

    Dorri, Fatemeh; Azmi, Paeiz; Dorri, Faezeh

    2012-02-01

    Analysis of gene expression profiles needs a complete matrix of gene array values; consequently, imputation methods have been suggested. In this paper, an algorithm that is based on conjugate gradient (CG) method is proposed to estimate missing values. k-nearest neighbors of the missed entry are first selected based on absolute values of their Pearson correlation coefficient. Then a subset of genes among the k-nearest neighbors is labeled as the best similar ones. CG algorithm with this subset as its input is then used to estimate the missing values. Our proposed CG based algorithm (CGimpute) is evaluated on different data sets. The results are compared with sequential local least squares (SLLSimpute), Bayesian principle component analysis (BPCAimpute), local least squares imputation (LLSimpute), iterated local least squares imputation (ILLSimpute) and adaptive k-nearest neighbors imputation (KNNKimpute) methods. The average of normalized root mean squares error (NRMSE) and relative NRMSE in different data sets with various missing rates shows CGimpute outperforms other methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. DNA-Catalytically Active Gold Nanoparticle Conjugates-Based Colorimetric Multidimensional Sensor Array for Protein Discrimination.

    Science.gov (United States)

    Wei, Xiangcong; Chen, Zhengbo; Tan, Lulu; Lou, Tianhong; Zhao, Yan

    2017-01-03

    A series of single-strand oligonucleotides functionalized catalytically active gold nanoparticle (AuNPs) as nonspecific receptors have been designed to build a protein sensing array. We take advantage of the correlation between the catalytic activity and the exposed surface area of AuNPs, i.e., DNA-proteins interactions mask the surface area of AuNPs, leading to poor catalytic performance of AuNPs. As the number of DNA-bound proteins increases, the surfaces of AuNPs become more masked; thus, the time of 4- nitrophenol/NaBH 4 reaction for color change (yellow → colorless) of the solution increases. Taking advantage of three nonspecific SH-labeled DNA sequences (A15, C15, and T15) as array sensing elements and the color-change time (CCT) of the solution as signal readout, colorimetric response patterns can be obtained on the array and identified via linear discriminant analysis (LDA). Eleven proteins have been completely distinguished with 100% accuracy with the naked eye at the 30 nM level. Remarkably, two similar proteins (bovine serum albumin and human serum albumin), two different proteins (bovine serum albumin and concanavalin) at the same concentration, and the mixtures of the two proteins with different molar ratios have been discriminated with 100%. The practicability of this sensor array is further validated by high accuracy (100%) identification of 11 proteins in human serum samples.

  17. A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

    Science.gov (United States)

    Gogoi, Khirud; Mane, Meenakshi V.; Kunte, Sunita S.; Kumar, Vaijayanti A.

    2007-01-01

    The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products. PMID:17981837

  18. Conjugation of Benzylvanillin and Benzimidazole Structure Improves DNA Binding with Enhanced Antileukemic Properties

    Science.gov (United States)

    Al-Mudarris, Ban A.; Chen, Shih-Hsun; Liang, Po-Huang; Osman, Hasnah; Jamal Din, Shah Kamal Khan; Abdul Majid, Amin M. S.

    2013-01-01

    Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the

  19. The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker.

    Science.gov (United States)

    Marvania, Bhavin; Kakadiya, Rajesh; Christian, Wilson; Chen, Tai-Lin; Wu, Ming-Hsi; Suman, Sharda; Tala, Kiran; Lee, Te-Chang; Shah, Anamik; Su, Tsann-Long

    2014-08-18

    We synthesized a series of phenyl N-mustard-4-anilinoquinoline conjugates to study their antitumorigenic effects. These agents were prepared by the condensation of 4-[N,N-bis(2-chloroethyl)amino]phenyl isocyanate with 6-amino-4-methylamino or 4-anilinoquinolines. The structure-activity relationship (SAR) studies revealed that the C2-methylquinoline derivatives (18a-o) were generally more cytotoxic than the C2-phenylquinoline conjugates (23a-d) in inhibiting the cell growth of various human tumor cell lines in vitro. However, the methylamino or aniline substituents at C4 of quinoline did not influence the cytotoxic effects. The title conjugates were capable of inducing DNA cross-linking and promoting cell-cycle arrest at the G2/M phase. This study demonstrates that phenyl N-mustard-4-anilinoquinoline conjugates are generally more potent than phenyl N-mustard-4-anilinoquinazoline conjugates against the cell growth of various tumor cell-lines. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Assessment of DNA quality in processed tuna muscle tissues

    Directory of Open Access Journals (Sweden)

    Zora Piskatá

    2016-06-01

    Full Text Available Authentication of tuna fish products is necessary to assure consumers of accurate labelling of food products. The quality of species specific DNA crucially affects the efficiency of amplification during the subsequent PCR. The problem in DNA detection in canned products lies in the possibility of the fragmentation of DNA during the processing technologies and the use of ingredients (oil, salt, spice, that may inhibit the PCR reaction. In this study three DNA extraction methods were compared: DNeasy Blood and Tissue Kit, DNeasy mericon Food Kit and Chemagic DNA tissue 10 Kit. The quantity and quality of DNA were evaluated by measuring DNA concentration and ratios A260/A280. Several parameters were estimated: the effect of whole and mechanically treated muscle, sterilization procedure used in canned process (high temperature in combination with high pressure and addition of raw materials. The highest DNA concentrations were observed in non-processed muscle that is not influenced by the sterilization process. Canned whole muscle demonstrated lower DNA yield, and furthermore, the mechanical treatment (canned ground resulted in lower values of DNA concentration that was registered by using all three types of DNA extraction kits. DNeasy mericon Food Kit produced DNA of higher concentration in non-processed sample, Chemagic DNA tissue 10 Kit delivered higher DNA yields than kits DNeasy Blood and Tissue Kit and DNeasy mericon Food Kit in canned samples, although the purity was lower, but still within the range 1.7 - 2.0. DNA was considered to be satisfactorily pure in all three types of samples and using all three types of DNA isolation. In case of the samples enriched of ingredients and treated with sterilization process as whole or ground muscle Chemagic DNA tissue 10 Kit produced in all samples (whole and ground muscle the highest values of DNA concentration, but almost all values of A260/A280 were lower than 1.7. Therefore DNeasy mericon Food Kit

  1. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    Science.gov (United States)

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  2. DNA-conjugated gold nanoparticles based colorimetric assay to assess helicase activity: a novel route to screen potential helicase inhibitors

    Science.gov (United States)

    Deka, Jashmini; Mojumdar, Aditya; Parisse, Pietro; Onesti, Silvia; Casalis, Loredana

    2017-03-01

    Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.

  3. Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves In The Predicting Process

    Science.gov (United States)

    Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy

    2017-12-01

    Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.

  4. Molecular Orientation of Conjugated Polymer Chains in Nanostructures and Thin Films: Review of Processes and Application to Optoelectronics

    Directory of Open Access Journals (Sweden)

    Varun Vohra

    2017-01-01

    Full Text Available Semiconducting polymers are composed of elongated conjugated polymer backbones and side chains with high solubility and mechanical properties. The combination of these two features results in a high processability and a potential to orient the conjugated backbones in thin films and nanofibers. The thin films and nanofibers are usually composed of highly crystalline (high charge transport and amorphous parts. Orientation of conjugated polymer can result in enhanced charge transport or optical properties as it induces increased crystallinity or preferential orientation of the crystallites. After summarizing the potential strategies to exploit molecular order in conjugated polymer based optoelectronic devices, we will review some of the fabrication processes to induce molecular orientation. In particular, we will review the cases involving molecular and interfacial interactions, unidirectional deposition processes, electrospinning, and postdeposition mechanical treatments. The studies presented here clearly demonstrate that process-controlled molecular orientation of the conjugated polymer chains can result in high device performances (mobilities over 40 cm2·V−1·s−1 and solar cells with efficiencies over 10%. Furthermore, the peculiar interactions between molecularly oriented polymers and polarized light have the potential not only to generate low-cost and low energy consumption polarized light sources but also to fabricate innovative devices such as solar cell integrated LCDs or bipolarized LEDs.

  5. TopBP1-mediated DNA processing during mitosis.

    Science.gov (United States)

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  6. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  7. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  8. Development of a free-solution SERS-based assay for point-of-care oral cancer biomarker detection using DNA-conjugated gold nanoparticles

    Science.gov (United States)

    Han, Sungyub; Locke, Andrea K.; Oaks, Luke A.; Cheng, Yi-Shing Lisa; Coté, Gerard L.

    2018-02-01

    It is estimated that the number of new cases of oral cancers worldwide is 529,000 and more than 300,000 deaths each year. The five-year survival rate remains about 50%, and the low survival rate is believed to be due to delayed detection. The primary detection method is through a comprehensive clinical examination by a dentist followed by a biopsy of suspicious lesions. Systematic review and meta-analysis have revealed that clinical examination alone may not be sufficient to cause the clinician to perform a biopsy or refer for biopsy for early detection of OSCC. Therefore, a non-invasive, point-of-Care (POC) detection with high sensitivity and specificity for early detection would be urgently needed, and using salivary biomarkers would be an ideal technology for it. S100 calcium binding protein P (S100P) mRNA presenting in saliva is a potential biomarker for detection of oral cancer. Further, surface enhanced Raman spectroscopy (SERS) has been shown to be a promising POC diagnostic technique. In this research, a SERS-based assay using oligonucleotide strains was developed for the sensitive and rapid detection of S100P. Gold nanoparticles (AuNPs) as a SERS substrate were used for the conjugation with one of two unique 24 base pair oligonucleotides, referred to as left and right DNA probes. A Raman reporter molecule, malachite green isothiocyanate (MGITC), was bound to left-probe-conjugated AuNPs. UV-vis spectroscopy was employed to monitor the conjugation of DNA probes to AuNPs. The hybridization of S100P target to DNA-conjugated AuNPs in sandwich-assay format was confirmed by Raman spectroscopy and shown to yield and R2 of 0.917 across the range of 0-200 nM and a limit of detection of 3 nM.

  9. DNA Uptake by Transformable Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  10. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  11. Visualization of DNA in highly processed botanical materials.

    Science.gov (United States)

    Lu, Zhengfei; Rubinsky, Maria; Babajanian, Silva; Zhang, Yanjun; Chang, Peter; Swanson, Gary

    2018-04-15

    DNA-based methods have been gaining recognition as a tool for botanical authentication in herbal medicine; however, their application in processed botanical materials is challenging due to the low quality and quantity of DNA left after extensive manufacturing processes. The low amount of DNA recovered from processed materials, especially extracts, is "invisible" by current technology, which has casted doubt on the presence of amplifiable botanical DNA. A method using adapter-ligation and PCR amplification was successfully applied to visualize the "invisible" DNA in botanical extracts. The size of the "invisible" DNA fragments in botanical extracts was around 20-220 bp compared to fragments of around 600 bp for the more easily visualized DNA in botanical powders. This technique is the first to allow characterization and visualization of small fragments of DNA in processed botanical materials and will provide key information to guide the development of appropriate DNA-based botanical authentication methods in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a non-chlorinated solvent

    NARCIS (Netherlands)

    Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R.A.J.; Li, W.W.

    2016-01-01

    Newly designed asymmetric diketopyrrolopyrrole conjugated polymers with two different aromatic substituents possess a hole mobility of 12.5 cm2 V−1 s−1 in field-effect transistors and a power conversion efficiency of 6.5% in polymer solar cells, when solution processed from a nonchlorinated

  13. RPA homologs and ssDNA processing during meiotic recombination.

    Science.gov (United States)

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  14. Using Ancient DNA to Understand Evolutionary and Ecological Processes

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Cooper, Alan

    2014-01-01

    Ancient DNA provides a unique means to record genetic change through time and directly observe evolutionary and ecological processes. Although mostly based on mitochondrial DNA, the increasing availability of genomic sequences is leading to unprecedented levels of resolution. Temporal studies of ...

  15. Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing

    KAUST Repository

    Botiz, Ioan

    2014-04-09

    We show here that treatment of thin films of conjugated polymers by illumination with light leads to an increase of the intensity of their photoluminescence by up to 42%. The corresponding enhancement of absorbance was much less pronounced. We explain this significant enhancement of photoluminescence by a planarization of the conjugated polymer chains induced by photoexcitations even below the glass transition temperature, possibly due to an increased conjugation length. Interestingly, the photoluminescence remains at the enhanced level for more than 71 h after treatment of the films by illumination with light, likely due to the fact that below the glass transition temperature no restoring force could return the conjugated chains into their initial conformational state. © 2014 American Chemical Society.

  16. The application of projected conjugate gradient solvers on graphical processing units

    International Nuclear Information System (INIS)

    Lin, Youzuo; Renaut, Rosemary

    2011-01-01

    Graphical processing units introduce the capability for large scale computation at the desktop. Presented numerical results verify that efficiencies and accuracies of basic linear algebra subroutines of all levels when implemented in CUDA and Jacket are comparable. But experimental results demonstrate that the basic linear algebra subroutines of level three offer the greatest potential for improving efficiency of basic numerical algorithms. We consider the solution of the multiple right hand side set of linear equations using Krylov subspace-based solvers. Thus, for the multiple right hand side case, it is more efficient to make use of a block implementation of the conjugate gradient algorithm, rather than to solve each system independently. Jacket is used for the implementation. Furthermore, including projection from one system to another improves efficiency. A relevant example, for which simulated results are provided, is the reconstruction of a three dimensional medical image volume acquired from a positron emission tomography scanner. Efficiency of the reconstruction is improved by using projection across nearby slices.

  17. The application of projected conjugate gradient solvers on graphical processing units

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Youzuo [Los Alamos National Laboratory; Renaut, Rosemary [ARIZONA STATE UNIV.

    2011-01-26

    Graphical processing units introduce the capability for large scale computation at the desktop. Presented numerical results verify that efficiencies and accuracies of basic linear algebra subroutines of all levels when implemented in CUDA and Jacket are comparable. But experimental results demonstrate that the basic linear algebra subroutines of level three offer the greatest potential for improving efficiency of basic numerical algorithms. We consider the solution of the multiple right hand side set of linear equations using Krylov subspace-based solvers. Thus, for the multiple right hand side case, it is more efficient to make use of a block implementation of the conjugate gradient algorithm, rather than to solve each system independently. Jacket is used for the implementation. Furthermore, including projection from one system to another improves efficiency. A relevant example, for which simulated results are provided, is the reconstruction of a three dimensional medical image volume acquired from a positron emission tomography scanner. Efficiency of the reconstruction is improved by using projection across nearby slices.

  18. Momentum-dependent excitation processes in crystalline and amorphous films of conjugated oligomers

    International Nuclear Information System (INIS)

    Zojer, E.; Knupfer, M.; Shuai, Z.; Fink, J.; Bredas, J.L.; Hoerhold, H.-H.; Grimme, J.; Scherf, U.; Benincori, T.; Leising, G.

    2000-01-01

    The electronic structure of periodic materials is usually described on the basis of band-structure models, in which each state is not only characterized by its energy but also by the corresponding electron momentum. In this paper we present investigations of momentum-dependent excitation processes in a number of molecular crystals and amorphous thin films. For our studies we have chosen ladder-type quinquephenyl (5LP), distyrylbenzene (3PV), a substituted quinquephenylenevinylene (5PV), and a bridged quarterthienyl (4TB). These substances are representative for several classes of conjugated organic materials. Their physical properties are dominated by the molecular building blocks. The investigated films, however, also allow us to study differences in the characteristics of crystalline (3PV and 4TB), partly amorphous (5LP) and fully amorphous (5PV) systems. Momentum-dependent excitations are induced by inelastic electron scattering in electron-energy-loss spectroscopy (EELS) experiments. The experimental data are compared to molecule based post-Hartree-Fock quantum-chemical simulations performed with the intermediate neglect of differential overlap (INDO) approach coupled to a configuration interaction (CI) technique applying the proper momentum-dependent transition matrix elements. Our results show that even in relatively small systems the molecular electronic states can be characterized by an associated range in momentum space. In addition, differences between inelastic electron scattering spectra for low values of momentum transfer and the optical data obtained for the crystalline samples underline the strong impact of light propagation on the absorption characteristics of highly anisotropic crystalline materials

  19. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  20. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells.

    Science.gov (United States)

    Khan, Selina; Bijker, Martijn S; Weterings, Jimmy J; Tanke, Hans J; Adema, Gosse J; van Hall, Thorbald; Drijfhout, Jan W; Melief, Cornelis J M; Overkleeft, Hermen S; van der Marel, Gijsbert A; Filippov, Dmitri V; van der Burg, Sjoerd H; Ossendorp, Ferry

    2007-07-20

    Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam(3)CysSK(4) (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG approximately conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam approximately conjugated peptides were likewise internalized independently of the expression of cell surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-dependent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG approximately conjugates was independent of clathrin-coated pits but partly dependent on caveolae formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8(+) T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen

  1. Cellular processing and destinies of artificial DNA nanostructures.

    Science.gov (United States)

    Lee, Di Sheng; Qian, Hang; Tay, Chor Yong; Leong, David Tai

    2016-08-07

    Since many bionanotechnologies are targeted at cells, understanding how and where their interactions occur and the subsequent results of these interactions is important. Changing the intrinsic properties of DNA nanostructures and linking them with interactions presents a holistic and powerful strategy for understanding dual nanostructure-biological systems. With the recent advances in DNA nanotechnology, DNA nanostructures present a great opportunity to understand the often convoluted mass of information pertaining to nanoparticle-biological interactions due to the more precise control over their chemistry, sizes, and shapes. Coupling just some of these designs with an understanding of biological processes is both a challenge and a source of opportunities. Despite continuous advances in the field of DNA nanotechnology, the intracellular fate of DNA nanostructures has remained unclear and controversial. Because understanding its cellular processing and destiny is a necessary prelude to any rational design of exciting and innovative bionanotechnology, in this review, we will discuss and provide a comprehensive picture relevant to the intracellular processing and the fate of various DNA nanostructures which have been remained elusive for some time. We will also link the unique capabilities of DNA to some novel ideas for developing next-generation bionanotechnologies.

  2. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    Science.gov (United States)

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample

  3. Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates.

    Science.gov (United States)

    Xu, Shi

    2015-11-01

    This review discusses the molecular mechanism involved in the targeting and delivery of antibody-drug conjugates (ADCs), the new class of biopharmaceuticals mainly designed for targeted cancer therapy. this review goes over major progress in preclinical and clinical studies of ADCs, in the past 5 years. The pharmacokinetics and pharmacodynamics of ADCs involve multiple mechanisms, including internalization of ADCs by target cells, intracellular trafficking, release of conjugated drugs, and payload. These mechanisms actually jointly determine the efficacy of ADCs. Therefore, the optimization of ADCs should take them as necessary rationales.

  4. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    OpenAIRE

    Davidson, John F.; Fox, Richard; Harris, Dawn D.; Lyons-Abbott, Sally; Loeb, Lawrence A.

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  5. Implication of conjugate faulting in the earthquake brewing and originating process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.M. (Massachusetts Inst. of Tech., Cambridge); Deng, Q.; Jiang, P.

    1980-03-01

    The earthquake sequence, precursory and geologo-structural background of the Haicheng, Tangshan, Songpan-Pingwu earthquakes are discussed in this article. All of these earthquakes occurred in a seismic zone controlled by the main boundary faults of an intraplate fault block. However, the fault plane of a main earthquake does not consist of the same faults, but is rather a related secondary fault. They formed altogether a conjugate shearing rupture zone under the action of a regional tectonic stress field. As to the earthquake sequence, the foreshocks and aftershocks might occur on the conjugate fault planes within an epicentral region rather than be limited to the fault plane of a main earthquake, such as the distribution of foreshocks and aftershocks of the Haicheng earthquake. The characteristics of the long-, medium-, and imminent-term earthquake precursory anomalies of the three mentioned earthquakes, especially the character of well-studies anomaly phenomena in electrical resistivity, radon emission, groundwater and animal behavior, have been investigated. The studies of these earthquake precursors show that they were distributed in an area rather more extensive than the epicentral region. Some fault zones in the conjugate fault network usually appeared as distributed belts or concentrated zones of earthquake precursory anomalies, and can be traced in the medium-long term precursory field, but seem more distinct in the short-imminent term precursory anomalous field. These characteristics can be explained by the rupture and sliding originating along the conjugate shear network and the concentration of stress in the regional stress field.

  6. Social behaviour and decision making in bacterial conjugation

    Directory of Open Access Journals (Sweden)

    Günther eKoraimann

    2014-04-01

    Full Text Available Bacteria frequently acquire novel genes by HGT (horizontal gene transfer. HGT through the process of bacterial conjugation is highly efficient and depends on the presence of conjugative plasmids (CPs or integrated conjugative elements (ICEs that provide the necessary genes for DNA transmission. This review focuses on recent advancements in our understanding of ssDNA transfer systems and regulatory networks ensuring timely and spatially controlled DNA transfer (tra gene expression. As will become obvious by comparing different systems, by default, tra genes are shut off in cells in which conjugative elements are present. Only when conditions are optimal, donor cells – through epigenetic alleviation of negatively acting roadblocks and direct stimulation of DNA transfer genes – become transfer competent. These transfer competent cells have developmentally transformed into specialized cells capable of secreting ssDNA via a T4S (type IV secretion complex directly into recipient cells. Intriguingly, even under optimal conditions, only a fraction of the population undergoes this transition, a finding that indicates specialization and cooperative, social behavior. Thereby, at the population level, the metabolic burden and other negative consequences of tra gene expression are greatly reduced without compromising the ability to horizontally transfer genes to novel bacterial hosts. This undoubtedly intelligent strategy may explain why conjugative elements – CPs and ICEs – have been successfully kept in and evolved with bacteria to constitute a major driving force of bacterial evolution.

  7. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    Science.gov (United States)

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  8. Fluorescent strategy based on cationic conjugated polymer fluorescence resonance energy transfer for the quantification of 5-(hydroxymethyl)cytosine in genomic DNA.

    Science.gov (United States)

    Hong, Tingting; Wang, Tianlu; Guo, Pu; Xing, Xiwen; Ding, Fei; Chen, Yuqi; Wu, Jinjun; Ma, Jingwei; Wu, Fan; Zhou, Xiang

    2013-11-19

    DNA methylation is dynamically reprogrammed during early embryonic development in mammals. It can be explained partially by the discovery of 5-(hydroxymethyl)cytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), which are identified as key players involved in both active and passive demethylation pathways. As one of the ten-eleven translocation oxidation products, 5-hmC was found relatively abundant in neuron cells and embryonic stem cells. Herein we report a new method for 5-hmC quantification in genomic DNA based on CCP-FRET (cationic conjugated polymers act as the energy donor and induce fluorescence resonance energy transfer) assay combined with KRuO4 oxidation. 5-hmC in genomic DNA can be selectively transformed into 5-fC by the oxidation of KRuO4 and then labeled with hydroxylamine-BODIPY (BODIPY = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore through the reaction between 5-fC and hydroxylamine-BODIPY. After the fluorescently labeled DNA was captured by CCP through electrostatic interactions, a significant FRET between CCP and hydroxylamine-BODIPY fluorophore was observed. This CCP-FRET-based assay benefits from light-harvesting, large Stokes shift, and optical signal amplification properties of the CCP. Furthermore, this CCP-FRET-based assay was quite successfully demonstrated for the 5-hmC quantification in three types of cells (mESc, HeLa, HEK 293T), providing a much more convenient choice for 5-hmC quantification in genomic DNA.

  9. Multicomponent domino processes based on the organocatalytic generation of conjugated acetylides: efficient synthetic manifolds for diversity-oriented molecular construction.

    Science.gov (United States)

    Tejedor, David; González-Cruz, David; Santos-Expósito, Alicia; Marrero-Tellado, Jose Juan; de Armas, Pedro; García-Tellado, Fernando

    2005-06-06

    The organocatalytic generation of a strong base by the action of a good nucleophile is the base for the in situ catalytic generation of conjugated acetylides in the presence of aldehydes or activated ketones. The method is affordable in a multicomponent, domino format able to generate a chemically diverse set of multifunctionalized adducts that are very well suited for diversity-oriented molecular construction. The domino process involves a nucleophile as catalyst and a terminal conjugated alkyne (H-C[triple chemical bond]C-Z) and an aldehyde or activated ketone as building blocks. The chemical outcome of this process changes dramatically as a function of the nucleophile (tertiary amine or phosphine), temperature, stoichiometry, and solvent. These multicomponent domino processes achieve molecular construction with good atom economy and, very importantly, with an exquisite chemo-differentiating incorporation of identical starting units into the products (nondegenerated chemical output). These properties convert the H-C[triple chemical bond]C-Z unit into a specific building block for diversity-oriented molecular construction. Applications to the modular and diversity-oriented synthesis of relevant heterocycles are discussed. A protocol involving two coupled domino processes linked in a one-pot manner will be discussed as an efficient synthetic manifold for the modular and diversity-oriented construction of multisubstituted nitrogen-containing heterocycles.

  10. Capturing Snapshots of APE1 Processing DNA Damage

    Science.gov (United States)

    Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.

    2015-01-01

    DNA apurinic-apyrimidinic (AP) sites are prevalent non-coding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive due in part to limited structural information. We report multiple high-resolution human APE1:DNA structures that divulge novel features of the APE1 reaction, including the metal binding site, nucleophile, and arginine clamps that mediate product release. We also report APE1:DNA structures with a T:G mismatch 5′ to the AP-site, representing a clustered lesion occurring in methylated CpG dinucleotides. These reveal that APE1 molds the T:G mismatch into a unique Watson-Crick like geometry that distorts the active site reducing incision. These snapshots provide mechanistic clarity for APE1, while affording a rational framework to manipulate biological responses to DNA damage. PMID:26458045

  11. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  12. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  13. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion

    Science.gov (United States)

    Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise

    2016-01-01

    Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587

  14. Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate.

    Science.gov (United States)

    Chen, Qi; Yoo, Si-Youl; Chung, Yong-Ho; Lee, Ji-Young; Min, Junhong; Choi, Jeong-Woo

    2016-10-01

    Various bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure. DNA structure, in turn, was dependent on the components (organic materials) and the input signal (pH). Independent electrochemical signals from two different logic units containing QDs were merged into a single analog-type logic gate, which was controlled by two inputs. We applied this electrochemical biodevice to a simple logic system and achieved various logic functions from the controlled pH input sets. This could be further improved by choosing QDs, ionic conditions, or DNA sequences. This research provides a feasible method for fabricating an artificial intelligence system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modeling DNA structure and processes through animation and kinesthetic visualizations

    Science.gov (United States)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  16. Dynamics of a photorefractive response and competition of nonlinear processes in self-pumping double phase-conjugate mirrors

    International Nuclear Information System (INIS)

    Mogaddam, Mehran Wahdani; Shuvalov, Vladimir V

    2005-01-01

    The dynamics of formation of a nonlinear response of a double phase-conjugate (PC) BaTiO 3 mirror is calculated. It is shown that because of competition between processes of different types (related to the presence of several PC channels, the local and nonlocal components of the photorefractive nonlinearity), the transient and dynamic lasing regimes for this mirror can be substantially different. It is found that the development of lasing begins with the successive formation and phasing of dynamic holograms of two different types (two PC channels). It is shown that even under optimal conditions, the lasing regime is not stationary due to competition between processes of different types, and the parameters of output fields fluctuate in time in a nontrivial way (due to the presence of the in-phase and out-of-phase components). Several scenarios of transition to the dynamic chaos are described. (nonlinear optical phenomena)

  17. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Science.gov (United States)

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Zaichun You

    2015-12-01

    Full Text Available Here we provide raw and processed data and methods behind mTOR siRNA loaded DNA nanotubes (siRNA-DNA-NTs in the growth of pulmonary arterial smooth muscle cells (PASMCs under both normoxic and hypoxic condition, and also related to (You et al., Biomaterials, 2015, 67:137–150, [1]. The MTT analysis, Semi-quantitative RT-PCR data presented here were used to probe cytotoxicity of mTOR siRNA-DNA-NT complex in its TAE-Mg2+ buffer. siRNA-DNA-NTs have a lower cytotoxicity and higher transfection efficiency and can, based on inhibition of mTOR expression, decrease PASMCs growth both hypoxic and normal condition.

  19. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    International Nuclear Information System (INIS)

    Ke, Hanzhong; Ma, Wanpeng; Wang, Hongda; Cheng, Guoe; Yuan, Han; Wong, Wai-Kwok; Kwong, Daniel W.J.; Tam, Hoi-Lam; Cheah, Kok-Wai; Chan, Chi-Fai; Wong, Ka-Leung

    2014-01-01

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by 1 H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ 2 =391 GM). • The TTP–Ru exhibits a substantial 1 O 2 quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent

  20. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  1. A new structural framework for integrating replication protein A into DNA processing machinery

    Energy Technology Data Exchange (ETDEWEB)

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  2. Time as a Quantum Observable, Canonically Conjugated to Energy, and Foundations of Self-Consistent Time Analysis of Quantum Processes

    Directory of Open Access Journals (Sweden)

    V. S. Olkhovsky

    2009-01-01

    Full Text Available Recent developments are reviewed and some new results are presented in the study of time in quantum mechanics and quantum electrodynamics as an observable, canonically conjugate to energy. This paper deals with the maximal Hermitian (but nonself-adjoint operator for time which appears in nonrelativistic quantum mechanics and in quantum electrodynamics for systems with continuous energy spectra and also, briefly, with the four-momentum and four-position operators, for relativistic spin-zero particles. Two measures of averaging over time and connection between them are analyzed. The results of the study of time as a quantum observable in the cases of the discrete energy spectra are also presented, and in this case the quasi-self-adjoint time operator appears. Then, the general foundations of time analysis of quantum processes (collisions and decays are developed on the base of time operator with the proper measures of averaging over time. Finally, some applications of time analysis of quantum processes (concretely, tunneling phenomena and nuclear processes are reviewed.

  3. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    Science.gov (United States)

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  4. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  5. A MapReduce Framework for DNA Sequencing Data Processing

    Directory of Open Access Journals (Sweden)

    Samy Ghoneimy

    2016-12-01

    Full Text Available Genomics and Next Generation Sequencers (NGS like Illumina Hiseq produce data in the order of ‎‎200 billion base pairs in a single one-week run for a 60x human genome coverage, which ‎requires modern high-throughput experimental technologies that can ‎only be tackled with high performance computing (HPC and specialized software algorithms called ‎‎“short read aligners”. This paper focuses on the implementation of the DNA sequencing as a set of MapReduce programs that will accept a DNA data set as a FASTQ file and finally generate a VCF (variant call format file, which has variants for a given DNA data set. In this paper MapReduce/Hadoop along with Burrows-Wheeler Aligner (BWA, Sequence Alignment/Map (SAM ‎tools, are fully utilized to provide various utilities for manipulating alignments, including sorting, merging, indexing, ‎and generating alignments. The Map-Sort-Reduce process is designed to be suited for a Hadoop framework in ‎which each cluster is a traditional N-node Hadoop cluster to utilize all of the Hadoop features like HDFS, program ‎management and fault tolerance. The Map step performs multiple instances of the short read alignment algorithm ‎‎(BoWTie that run in parallel in Hadoop. The ordered list of the sequence reads are used as input tuples and the ‎output tuples are the alignments of the short reads. In the Reduce step many parallel instances of the Short ‎Oligonucleotide Analysis Package for SNP (SOAPsnp algorithm run in the cluster. Input tuples are sorted ‎alignments for a partition and the output tuples are SNP calls. Results are stored via HDFS, and then archived in ‎SOAPsnp format. ‎ The proposed framework enables extremely fast discovering somatic mutations, inferring population genetical ‎parameters, and performing association tests directly based on sequencing data without explicit genotyping or ‎linkage-based imputation. It also demonstrate that this method achieves comparable

  6. A specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity

    Science.gov (United States)

    Rodríguez, Irene; Lázaro, José M.; Blanco, Luis; Kamtekar, Satwik; Berman, Andrea J.; Wang, Jimin; Steitz, Thomas A.; Salas, Margarita; de Vega, Miguel

    2005-01-01

    Recent crystallographic studies of φ29 DNA polymerase have provided structural insights into its strand displacement and processivity. A specific insertion named terminal protein region 2 (TPR2), present only in protein-primed DNA polymerases, together with the exonuclease, thumb, and palm subdomains, forms two tori capable of interacting with DNA. To analyze the functional role of this insertion, we constructed a φ29 DNA polymerase deletion mutant lacking TPR2 amino acid residues Asp-398 to Glu-420. Biochemical analysis of the mutant DNA polymerase indicates that its DNA-binding capacity is diminished, drastically decreasing its processivity. In addition, removal of the TPR2 insertion abolishes the intrinsic capacity of φ29 DNA polymerase to perform strand displacement coupled to DNA synthesis. Therefore, the biochemical results described here directly demonstrate that TPR2 plays a critical role in strand displacement and processivity. PMID:15845765

  7. Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT.

    Science.gov (United States)

    Gray, Todd A; Derbyshire, Keith M

    2018-04-18

    This review discusses a novel form of horizontal gene transfer (HGT) found in mycobacteria called Distributive Conjugal Transfer (DCT). While satisfying the criteria for conjugation, DCT occurs by a mechanism so distinct from oriT-mediated conjugation that it could be considered a fourth category of HGT. DCT involves the transfer of chromosomal DNA between mycobacteria and, most significantly, generates transconjugants with mosaic genomes of the parental strains. Multiple segments of donor chromosomal DNA can be co-transferred regardless of their location or the genetic selection and, as a result, the transconjugant genome contains many donor-derived segments; hence the name DCT. This distinguishing feature of DCT separates it from the other known mechanisms of HGT, which generally result in the introduction of a single, defined segment of DNA into the recipient chromosome (Fig. ). Moreover, these mosaic progeny are generated from a single conjugal event, which provides enormous capacity for rapid adaptation and evolution, again distinguishing it from the three classical modes of HGT. Unsurprisingly, the unusual mosaic products of DCT are generated by a conjugal mechanism that is also unusual. Here, we will describe the unique features of DCT and contrast those to other mechanisms of HGT, both from a mechanistic and an evolutionary perspective. Our focus will be on transfer of chromosomal DNA, as opposed to plasmid mobilization, because DCT mediates transfer of chromosomal DNA and is a chromosomally encoded process. © 2018 John Wiley & Sons Ltd.

  8. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide

    2017-11-28

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient transport of electronic charge via the conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  9. Streptavidin-conjugated CdSe/ZnS quantum dots impaired synaptic plasticity and spatial memory process

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiaoyan [Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (Germany); Tang Mingliang [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Li Zhifeng; Zha Yingying [University of Science and Technology of China, CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences (China); Cheng Guosheng [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Yin Shuting [Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (Germany); Chen Jutao; Ruan Diyun; Chen Lin; Wang Ming, E-mail: wming@ustc.edu.cn [University of Science and Technology of China, CAS Key Laboratory of Brain Function and Disease, and School of Life Sciences (China)

    2013-04-15

    Studies reported that quantum dots (QDs), as a novel probe, demonstrated a promising future for in vivo imaging, but also showed potential toxicity. This study is mainly to investigate in vivo response in the central nervous system (CNS) after exposure to QDs in a rat model of synaptic plasticity and spatial memory. Adult rats were exposed to streptavidin-conjugated CdSe/ZnS QDs (Qdots 525, purchased from Molecular Probes Inc.) by intraperitoneal injection for 7 days, followed by behavioral, electrophysiological, and biochemical examinations. The electrophysiological results show that input/output (I/O) functions were increased, while the peak of paired-pulse reaction and long-term potentiation were decreased after QDs insult, indicating synaptic transmission was enhanced and synaptic plasticity in the hippocampus was impaired. Meanwhile, behavioral experiments provide the evidence that QDs could impair rats' spatial memory process. All the results present evidences of interference of synaptic transmission and plasticity in rat hippocampal dentate gyrus area by QDs insult and suggest potential adverse issues which should be considered in QDs applications.

  10. Streptavidin-conjugated CdSe/ZnS quantum dots impaired synaptic plasticity and spatial memory process

    Science.gov (United States)

    Gao, Xiaoyan; Tang, Mingliang; Li, Zhifeng; Zha, Yingying; Cheng, Guosheng; Yin, Shuting; Chen, Jutao; Ruan, Di-yun; Chen, Lin; Wang, Ming

    2013-04-01

    Studies reported that quantum dots (QDs), as a novel probe, demonstrated a promising future for in vivo imaging, but also showed potential toxicity. This study is mainly to investigate in vivo response in the central nervous system (CNS) after exposure to QDs in a rat model of synaptic plasticity and spatial memory. Adult rats were exposed to streptavidin-conjugated CdSe/ZnS QDs (Qdots 525, purchased from Molecular Probes Inc.) by intraperitoneal injection for 7 days, followed by behavioral, electrophysiological, and biochemical examinations. The electrophysiological results show that input/output ( I/ O) functions were increased, while the peak of paired-pulse reaction and long-term potentiation were decreased after QDs insult, indicating synaptic transmission was enhanced and synaptic plasticity in the hippocampus was impaired. Meanwhile, behavioral experiments provide the evidence that QDs could impair rats' spatial memory process. All the results present evidences of interference of synaptic transmission and plasticity in rat hippocampal dentate gyrus area by QDs insult and suggest potential adverse issues which should be considered in QDs applications.

  11. Streptavidin-conjugated CdSe/ZnS quantum dots impaired synaptic plasticity and spatial memory process

    International Nuclear Information System (INIS)

    Gao Xiaoyan; Tang Mingliang; Li Zhifeng; Zha Yingying; Cheng Guosheng; Yin Shuting; Chen Jutao; Ruan Diyun; Chen Lin; Wang Ming

    2013-01-01

    Studies reported that quantum dots (QDs), as a novel probe, demonstrated a promising future for in vivo imaging, but also showed potential toxicity. This study is mainly to investigate in vivo response in the central nervous system (CNS) after exposure to QDs in a rat model of synaptic plasticity and spatial memory. Adult rats were exposed to streptavidin-conjugated CdSe/ZnS QDs (Qdots 525, purchased from Molecular Probes Inc.) by intraperitoneal injection for 7 days, followed by behavioral, electrophysiological, and biochemical examinations. The electrophysiological results show that input/output (I/O) functions were increased, while the peak of paired-pulse reaction and long-term potentiation were decreased after QDs insult, indicating synaptic transmission was enhanced and synaptic plasticity in the hippocampus was impaired. Meanwhile, behavioral experiments provide the evidence that QDs could impair rats’ spatial memory process. All the results present evidences of interference of synaptic transmission and plasticity in rat hippocampal dentate gyrus area by QDs insult and suggest potential adverse issues which should be considered in QDs applications.

  12. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study.

    Science.gov (United States)

    Muley, Abhijeet B; Chaudhari, Sandeep A; Singhal, Rekha S

    2017-09-01

    Cutinase, a member of α/β-fold hydrolase family possess potentially diverse applications in several industrial processes and products. The present work aims towards thermo-stabilization of cutinase from novel source Fusarium sp. ICT SAC1 via non-covalent interaction with polysaccharides. Although all six polysaccharides chosen for study enhanced the thermal stability, pectin was found to be most promising. The interaction protocol for cutinase with pectin was optimized sequentially with respect to the ratio of enzyme to pectin, solution pH, and buffer strength. Cutinase-pectin conjugate under optimized conditions (1:12, pH-6.5, 50mM) showed enhanced thermal stability as evident from lower inactivation rate constant, higher half-life and D-value within the 40-55°C. A slender rise in K m and V max values and enhanced thermodynamic parameters of cutinase-pectin conjugate were observed after non-covalent interaction. Entropy values were 1.5-fold higher for cutinase-pectin conjugate at each temperature suggesting an upsurge in number of protein molecules in a transition activated state. Positive values of entropy for both forms of cutinase suggested a rise in disordered conformation. Noticeable conformational changes in cutinase after conjugation with pectin were confirmed by FTIR as well as fluorescence emission spectra. An increment in helix to turn conversion was observed in complexed cutinase vis-à-vis free cutinase. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. DNA-Enabled Integrated Molecular Systems for Computation and Sensing

    Science.gov (United States)

    2014-05-21

    Computational devices can be chemically conjugated to different strands of DNA that are then self-assembled according to strict Watson − Crick binding rules... DNA -Enabled Integrated Molecular Systems for Computation and Sensing Craig LaBoda,† Heather Duschl,† and Chris L. Dwyer*,†,‡ †Department of...guided folding of DNA , inspired by nature, allows designs to manipulate molecular-scale processes unlike any other material system. Thus, DNA can be

  14. Antigen processing of glycoconjugate vaccines; the polysaccharide portion of the pneumococcal CRM(197) conjugate vaccine co-localizes with MHC II on the antigen processing cell surface.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2009-05-21

    Pneumococcal (Pn) polysaccharides (PS) are T-independent (TI) antigens and do not induce immunological memory or antibodies in infants. Conjugation of PnPS to the carrier protein CRM(197) induces PS-specific antibody in infants, and memory similar to T-dependent (Td) antigens. Conjugates have improved immunogenicity via antigen processing and presentation of carrier protein with MHC II and recruitment of T cell help, but the fate of the PS attached to the carrier is unknown. To determine the location of the PS component of PnPS-CRM(197) in the APC, we separately labeled PS and protein and tracked their location. The PS of types 14-CRM(197) and 19F-CRM(197) was specifically labeled by Alexa Fluor 594 hydrazide (red). The CRM(197) was separately labeled red in a reaction that did not label PS. Labeled antigens were incubated with APC which were fixed, permeabilized and incubated with anti-MHC II antibody labeled green by Alexa Fluor 488, followed by confocal microscopy. Labeled CRM(197) was presented on APC surface and co-localized with MHC II (yellow). Labeled unconjugated 14 or 19F PS did not go to the APC surface, but PS labeled 14-CRM(197) and 19F-CRM(197) was internalized and co-localized with MHC II. Monoclonal antibody to type 14 PS bound to intracellular type 14 PS and PS-CRM(197). Brefeldin A and chloroquine blocked both CRM(197) and PS labeled 14-CRM(197) and 19F-CRM(197) from co-localizing with MHC II. These data suggest that the PS component of the CRM(197) glycoconjugate enters the endosome, travels with CRM(197) peptides to the APC surface and co-localizes with MHC II.

  15. Development of identification process for insect group using radiation marker DNA

    International Nuclear Information System (INIS)

    Muraji, M.; Tamura, T.

    2004-01-01

    Detection of a band pattern for insect groups was tried by using radiation marked DNA clone. A rapid segregation process for poly-type DNA segment was investigated. A band pattern of silkworm was detected by analysis using DNA type transposon, K1.4. The exon regions on genes of hemiptera insect were segregated by in vitro cloning. Band patterns of the silkworm and the other insects were detected by identification process of DNA clone and radiation marker. Family singularity mutation existed in the inserted position of transposon. The family of insect was identified easily by the difference of the detection band patterns. Effective band pattern for family discrimination were obtained by analysis for a part of mitochondria DNA and ribosomal DNA. DNA segregation process was investigated by using the enriched library, also. (M. Suetake)

  16. The shear flow processing of controlled DNA tethering and stretching for organic molecular electronics.

    Science.gov (United States)

    Yu, Guihua; Kushwaha, Amit; Lee, Jungkyu K; Shaqfeh, Eric S G; Bao, Zhenan

    2011-01-25

    DNA has been recently explored as a powerful tool for developing molecular scaffolds for making reproducible and reliable metal contacts to single organic semiconducting molecules. A critical step in the process of exploiting DNA-organic molecule-DNA (DOD) array structures is the controlled tethering and stretching of DNA molecules. Here we report the development of reproducible surface chemistry for tethering DNA molecules at tunable density and demonstrate shear flow processing as a rationally controlled approach for stretching/aligning DNA molecules of various lengths. Through enzymatic cleavage of λ-phage DNA to yield a series of DNA chains of various lengths from 17.3 μm down to 4.2 μm, we have investigated the flow/extension behavior of these tethered DNA molecules under different flow strengths in the flow-gradient plane. We compared Brownian dynamic simulations for the flow dynamics of tethered λ-DNA in shear, and found our flow-gradient plane experimental results matched well with our bead-spring simulations. The shear flow processing demonstrated in our studies represents a controllable approach for tethering and stretching DNA molecules of various lengths. Together with further metallization of DNA chains within DOD structures, this bottom-up approach can potentially enable efficient and reliable fabrication of large-scale nanoelectronic devices based on single organic molecules, therefore opening opportunities in both fundamental understanding of charge transport at the single molecular level and many exciting applications for ever-shrinking molecular circuits.

  17. Metaphors of DNA: a review of the popularisation processes

    Directory of Open Access Journals (Sweden)

    Sergi Cortiñas Rovira

    2008-03-01

    Full Text Available This article offers a 1953-present day review of the models that have popularised DNA, one of the fundamental molecules of biochemistry. DNA has become an iconic concept over the 20th century, overcoming the boundaries of science and spreading into literature, painting, sculpture or religion. This work analyses the reasons why DNA has penetrated society so effectively and examines some of the main metaphors used by the scientists and scientific popularisers. Furthermore, this article, taken from the author's PhD thesis, describes some recent popularisation models for this molecule.

  18. Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms

    Directory of Open Access Journals (Sweden)

    Olga A. Kladova

    2018-03-01

    Full Text Available Endonuclease III (Endo III or Nth is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tCO, a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5–37 °C. Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van’t Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU recognition and desolvation-accompanied entropy-driven adjustment of the enzyme–substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme–DNA complex formation.

  19. DNA repair processes and their impairment in some human diseases

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1977-01-01

    Some human diseases show enhanced sensitivity to the action of environmental mutagens, and among these several are known which are defective in the repair of damaged DNA. Xeroderma pigmentosum (XP) is mainly defective in excision repair of a large variety of damaged DNA bases caused by ultraviolet light and chemical mutagens. XP involves at least 6 distinct groups, some of which may lack cofactors required for excising damage from chromatin. As a result of these defects the sensitivity of XP cells to many mutagens is increased 5- to 10-fold. Ataxia telangiectasia and Fanconi's anemia may similarly involve defects in repair of certain DNA base damage or cross-links, respectively. But most of these and other mutagen-sensitive diseases only show increases of about 2-fold in sensitivity to mutagens, and the biochemical defects in the diseases may be more complex and less directly involved in DNA repair than in XP. (Auth.)

  20. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...

  1. New modulated design, docking and synthesis of carbohydrate-conjugate heterobimetallic CuII-SnIV complex as potential topoisomerase II inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines.

    Science.gov (United States)

    Tabassum, Sartaj; Afzal, Mohd; Arjmand, Farukh

    2014-03-03

    New carbohydrate-conjugate heterobimetallic complexes [C₂₂H₅₀N₆O₁₃CuSnCl₂] (3) and [C₂₂H₅₈N₆O₁₇NiSnCl₂] (4) were synthesized from their monometallic analogs [C₂₂H₅₂N₆O₁₃Cu] (1) and [C₂₂H₆₀N₆O₁₇Ni] (2) containing N-glycoside ligand (L). In vitro DNA binding studies of L and complexes (1-4) with CT DNA were carried out by employing various biophysical and molecular docking techniques which revealed that heterobimetallic complex 3 strongly binds to DNA in comparison to 4, monometallic complexes (1 and 2) and the free ligand. Complex 3 cleaves pBR322 DNA via hydrolytic pathway (confirmed by T4 DNA ligase assay) and inhibited Topo-II activity in a dose-dependent manner. Furthermore, complex 3 was docked into the ATPase domain of human-Topo-II in order to probe the possible mechanism of inhibition. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Cell sensitivity to irradiation and DNA repair processes. II

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1984-01-01

    A new model of DNA single-strand break (SSB) and double-strand break (DSB) induction by radiations of different linear energy transfer (LET) has been developed. Utilizing quadratic dependence of the dose that delta-electrons depart in the track of heavy particles the fraction of heavy particle energy deposited in the target of DNA dimensions has been calculated. SSBs arise from energy depositions in one strand of DNA, direct DSBs arise from two SSBs on opposite strands of DNA in the track of one particle. It is concluded that DSB's induced by γ-radiation are mostly of enzymatic origin, meanwhile DSB's induced by high-LET radiation are direct DSB's. The dependence of radiosensitivity D 0 -1 on LET (L) for isogenic mutants of E. coli with different sensitivity to γ-radiation has been determined on the bases of the model and considering microscopic energy fluctuations. The shape of D 0 -1 (L) function is formed both by physical characteristics of radiation and by the ability of cells to repair some types of DNA damage. The model provides a basis for further investigation. (author)

  3. Involvement of DNA methylation in memory processing in the honey bee.

    Science.gov (United States)

    Lockett, Gabrielle A; Helliwell, Paul; Maleszka, Ryszard

    2010-08-23

    DNA methylation, an important and evolutionarily conserved epigenetic mechanism, is implicated in learning and memory processes in vertebrates, but its role in behaviour in invertebrates is unknown. We examined the role of DNA methylation in memory in the honey bee using an appetitive Pavlovian olfactory discrimination task, and by assessing the expression of DNA methyltransferase3, a key driver of epigenetic reprogramming. Here we report that DNA methyltransferase inhibition reduces acquisition retention and alters the extinction depending on treatment time, and DNA methyltransferase3 is upregulated after training. Our findings add to the understanding of epigenetic mechanisms in learning and memory, extending known roles of DNA methylation to appetitive and extinction memory, and for the first time implicate DNA methylation in memory in invertebrates.

  4. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  5. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification.

    NARCIS (Netherlands)

    J. van Klaveren; J. de Wit (Jan); C.G. van Gurp; M.H.M. Koken (Marcel); M. Vermey; J.H. van Roijen (Jan Herman); J.T.M. Vreeburg (Jan); W.M. Baarends (Willy); D. Bootsma (Dirk); J.A. Grootegoed (Anton); J.H.J. Hoeijmakers (Jan); H.P. Roest (Henk)

    1996-01-01

    textabstractThe ubiquitin-conjugating yeast enzyme RAD6 and its human homologs hHR6A and hHR6B are implicated in postreplication repair and damage-induced mutagenesis. The yeast protein is also required for sporulation and may modulate chromatin structure via histone ubiquitination. We report the

  6. The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends

    DEFF Research Database (Denmark)

    Weterings, Eric; Verkaik, Nicole S; Keijzers, Guido

    2008-01-01

    Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) an......Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA......-PK(CS)) and the XRCC4/ligase IV complex. Activation of the DNA-PK(CS) serine/threonine kinase requires an interaction with Ku70/80 and is essential for NHEJ-mediated DSB repair. In contrast to previous models, we found that the carboxy terminus of Ku80 is not absolutely required for the recruitment and activation...... was phosphorylated to normal levels. This resulted in severely reduced levels of Artemis nuclease activity in vivo and in vitro. We therefore conclude that the Ku80 carboxy terminus is important to support DNA-PK(CS) autophosphorylation at specific sites, which facilitates DNA end processing by the Artemis...

  7. Challenges in Simulating Light-Induced Processes in DNA

    Directory of Open Access Journals (Sweden)

    Philipp Marquetand

    2016-12-01

    Full Text Available In this contribution, we give a perspective on the main challenges in performing theoretical simulations of photoinduced phenomena within DNA and its molecular building blocks. We distinguish the different tasks that should be involved in the simulation of a complete DNA strand subject to UV irradiation: (i stationary quantum chemical computations; (ii the explicit description of the initial excitation of DNA with light; (iii modeling the nonadiabatic excited state dynamics; (iv simulation of the detected experimental observable; and (v the subsequent analysis of the respective results. We succinctly describe the methods that are currently employed in each of these steps. While for each of them, there are different approaches with different degrees of accuracy, no feasible method exists to tackle all problems at once. Depending on the technique or combination of several ones, it can be problematic to describe the stacking of nucleobases, bond breaking and formation, quantum interferences and tunneling or even simply to characterize the involved wavefunctions. It is therefore argued that more method development and/or the combination of different techniques are urgently required. It is essential also to exercise these new developments in further studies on DNA and subsystems thereof, ideally comprising simulations of all of the different components that occur in the corresponding experiments.

  8. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  9. A DNA Mini-Barcoding System for Authentication of Processed Fish Products.

    Science.gov (United States)

    Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad

    2015-10-30

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.

  10. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  11. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies

    DEFF Research Database (Denmark)

    Dufva, Martin; Petersen, Jesper; Poulsen, Lena

    2009-01-01

    DNA microarrays have for a decade been the only platform for genome-wide analysis and have provided a wealth of information about living organisms. DNA microarrays are processed today under one condition only, which puts large demands on assay development because all probes on the array need to f...

  13. Impairment of the DNA synthesis in roots of γ-irradiated seedlings, and the restorative processes

    International Nuclear Information System (INIS)

    Golikova, O.P.; Mironyuk, T.J.

    1976-01-01

    Degradation of a prelabelled H 3 -DNA and post-irradiation incorporation of 2-C 14 -thymidine into root DNA of mung beans, peas, and horse beans, have been studied as a function of a radiation dose. A marked dose-dependent decrease in the activity of H 3 -DNA has been detected in γ-irradiated roots. As the radiation dose increases, the specific activity of 2-C 14 -DNA also increases in roots of beans and mung beans. A maximum increase is registered at a dose of 1500 rads. The effects observed are thought to be due to the restorative processes

  14. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  15. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  16. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    International Nuclear Information System (INIS)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-01-01

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process

  17. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    Energy Technology Data Exchange (ETDEWEB)

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet, E-mail: ahmetkoc@iyte.edu.tr

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  18. Resident enhanced repair: novel repair process action on plasmid DNA transformed into Escherichia coli K-12

    International Nuclear Information System (INIS)

    Strike, P.; Roberts, R.J.

    1982-01-01

    The survival of UV-irradiated DNA of plasmid NTP16 was monitored after its transformation into recipient cells containing an essentially homologous undamaged plasmid, pLV9. The presence of pLV9 resulted in a substantial increase in the fraction of damaged NTP16 molecules which survived in the recipient cells. This enhanced survival requires the host uvrA + and uvrB + gene products, but not the host recA + gene product. The requirement for both homologous DNA and the uvrA + gene products suggests that a novel repair process may act on plasmid DNA. Possible mechanisms for this process are considered

  19. The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends.

    Science.gov (United States)

    Weterings, Eric; Verkaik, Nicole S; Keijzers, Guido; Florea, Bogdan I; Wang, Shih-Ya; Ortega, Laura G; Uematsu, Naoya; Chen, David J; van Gent, Dik C

    2009-03-01

    Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) and the XRCC4/ligase IV complex. Activation of the DNA-PK(CS) serine/threonine kinase requires an interaction with Ku70/80 and is essential for NHEJ-mediated DSB repair. In contrast to previous models, we found that the carboxy terminus of Ku80 is not absolutely required for the recruitment and activation of DNA-PK(CS) at DSBs, although cells that harbored a carboxy-terminal deletion in the Ku80 gene were sensitive to ionizing radiation and showed reduced end-joining capacity. More detailed analysis of this repair defect showed that DNA-PK(CS) autophosphorylation at Thr2647 was diminished, while Ser2056 was phosphorylated to normal levels. This resulted in severely reduced levels of Artemis nuclease activity in vivo and in vitro. We therefore conclude that the Ku80 carboxy terminus is important to support DNA-PK(CS) autophosphorylation at specific sites, which facilitates DNA end processing by the Artemis endonuclease and the subsequent joining reaction.

  20. The Ku80 Carboxy Terminus Stimulates Joining and Artemis-Mediated Processing of DNA Ends▿

    Science.gov (United States)

    Weterings, Eric; Verkaik, Nicole S.; Keijzers, Guido; Florea, Bogdan I.; Wang, Shih-Ya; Ortega, Laura G.; Uematsu, Naoya; Chen, David J.; van Gent, Dik C.

    2009-01-01

    Repair of DNA double-strand breaks (DSBs) is predominantly mediated by nonhomologous end joining (NHEJ) in mammalian cells. NHEJ requires binding of the Ku70-Ku80 heterodimer (Ku70/80) to the DNA ends and subsequent recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PKCS) and the XRCC4/ligase IV complex. Activation of the DNA-PKCS serine/threonine kinase requires an interaction with Ku70/80 and is essential for NHEJ-mediated DSB repair. In contrast to previous models, we found that the carboxy terminus of Ku80 is not absolutely required for the recruitment and activation of DNA-PKCS at DSBs, although cells that harbored a carboxy-terminal deletion in the Ku80 gene were sensitive to ionizing radiation and showed reduced end-joining capacity. More detailed analysis of this repair defect showed that DNA-PKCS autophosphorylation at Thr2647 was diminished, while Ser2056 was phosphorylated to normal levels. This resulted in severely reduced levels of Artemis nuclease activity in vivo and in vitro. We therefore conclude that the Ku80 carboxy terminus is important to support DNA-PKCS autophosphorylation at specific sites, which facilitates DNA end processing by the Artemis endonuclease and the subsequent joining reaction. PMID:19103741

  1. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  2. Different domains of P21Cip1/waf1 regulate DNA replication and DNA repair-associated processes after UV

    International Nuclear Information System (INIS)

    Soria, Gaston; Speroni, Juliana; Podhajcer, Osvaldo L.; Gottifredi, Vanesa; Prives, Carol

    2007-01-01

    Full text: Many genotoxic insults result in p21 up-regulation and p21-dependent cell cycle arrest but UV irradiation triggers p21 proteolysis. The significance of the increased p21 turnover is unclear and might be associated to DNA repair. While the role of p21 in Nucleotide Excision Repair (NER) remains controversial, two recent reports explore its effect on Translesion DNA Synthesis (TLS), a process that avoids replication blockage during S phase. The first report shows that p21 degradation is required for efficient PCNA ubiquitination, a post transcriptional modification that is relevant for TLS. The second report demonstrates that p21 (-/-) cells have increased TLS-associated mutagenic rates. Herein we analyze the effect of p21 on different PCNA-driven processes including DNA replication, NER and TLS. Whereas only the CDK binding domain of p21 is required for cell cycle arrest in unstressed cells; neither the CDK- nor the PCNA-binding domains of p21 are able to block early and late steps of NER. Intriguingly, through its PCNA binding domain, p21 inhibited recruitment of the TLS-polymerase, polη to PCNA foci after UV. Moreover, this obstruction correlates with accumulation of γH2AX and increased apoptosis. Taking together, our data emphasizes the link between p21 turnover and efficient TLS. This might also suggest a potential effect of p21 on other activities of polζ, a DNA polymerase with central roles in other biological scenarios such as genetic conversion, homologous recombination and modulation of the cellular response to genotoxic agents [es

  3. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  4. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  5. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  6. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  7. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    International Nuclear Information System (INIS)

    Manera, M G; Spadavecchia, J; Taurino, A; Rella, R

    2010-01-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV–vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA–Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA–DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T) 15 ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality

  8. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  9. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate.

    Science.gov (United States)

    Keil, Kimberly P; Vezina, Chad M

    2015-01-01

    Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.

  10. Degradation of transgene DNA in genetically modified herbicide-tolerant rice during food processing.

    Science.gov (United States)

    Song, Shangxin; Zhou, Guanghong; Gao, Feng; Zhang, Wei; Qiu, Liangyan; Dai, Sifa; Xu, Xinglian; Xiao, Hongmei

    2011-12-01

    In order to assess the effect of food processing on the degradation of exogenous DNA components in sweet rice wine and rice crackers made from genetically modified (GM) rice (Oryza sativa L.), we developed genomic DNA extraction methods and compared the effect of different food processing procedures on DNA degradation. It was found that the purity, quantity and quality of DNA by alkaline lysis method were higher than by CTAB (cetyltrimethylammonium bromide) method. For sweet rice wine, CAMV35S (cauliflower mosaic virus 35S) promoter and NOS (nopaline synthase) terminator were degraded by the third day, whereas the exogenous gene Bar (bialaphos resistance) remained unaffected. For rice crackers, boiling, drying and microwaving contributed to the initial degradations of DNA. Baking resulted in further degradations, and frying led to the most severe changes. These results indicated that the stability of DNA in GM rice was different under different processing conditions. For sweet rice wine, Bar was most stable, followed by NOS, CAMV35S, and SPS. For rice crackers, CAMV35S was most stable, followed by SPS, NOS, and Bar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  12. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  13. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F......) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity....

  14. Effect of DNA extraction in the Rosa canina L. identification under different processing temperature

    Directory of Open Access Journals (Sweden)

    Jana Žiarovská

    2017-01-01

    Full Text Available Rosa canina, L. is widely used for medicinal purposes as well as in food industry where it is a valuable source, bioactive compounds and natural colorants. Actually, no specific method is recommended as suitable one for DNA extraction from rose hips. The aim of the study was to compare three commercial and three non-commercial methods to extract total genomic DNA from rose hips hyphanthium. Four methods are based on the precipitation in principle and two methods are based on resin-binding. Extracted DNA was proved for the effectivity in following PCR. In total, six different DNA isolations was performed for differently heat processes rose hips - fresh hyphanthium, 2-weeks frozen hyphanthium, dried hyphanthium (50 °C and boiled hyphanthium (100 °C. The amplification parameters of 500 bp chloroplast gene amplicon were evaluated. Obtained amounts of extracted DNA was very variable not only for every individual method used but for individual treatment of samples, too. In general, non-commercial method provided higher amount of extracted DNA, but the A260/280 ratio was lower. When regarding the processing treatment of the samples, high differences were found among the samples untreated by heat and those that were dried or boiled for three of the used extraction methods. All the samples were positive for amplification, but different amounts of amplified product were obtained. The comparison of data for concentrations of extracted DNA and concentrations of amplified product showed large differences when regarding the achieved purity of DNA in extraction.

  15. Defective processing of methylated single-stranded DNA by E. coli alkB mutants

    Science.gov (United States)

    Dinglay, Suneet; Trewick, Sarah C.; Lindahl, Tomas; Sedgwick, Barbara

    2000-01-01

    Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agent N-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. A recA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells. PMID:10950872

  16. PFGE analysis of DNA double-strand breaks and DNA repair process in human osteosarcoma cells irradiated by X-ray

    International Nuclear Information System (INIS)

    Cao Jianping; Majima, H.; Yamaguchi, C.

    2000-01-01

    Objective: To study the induction of DNA double-strand breaks (DSBs) in human osteosarcoma cells irradiated by X-ray, the DNA DSBs repair process and the tumour cell radiosensitivity. Methods: Two cell lines of human osteosarcoma, Rho0 and 143. B were used. Initial DNA damage of DSBs by X-ray irradiation was measured using clamped homogeneous electrical field (CHEF) electrophoresis. Results: X-ray-induced DNA DSBs of human osteosarcoma cells after CHEF-electrophoresis increased linearly with the irradiation dose between 0 and 50 Gy. The repair of DNA DSBs in human osteosarcoma cells increased with the post-irradiation incubation time. In contrast to 14.3B cell line at the same dose point, much more DNA DSBs were induced in Rho0 cell line after X-ray irradiation. Conclusion: CHEF pulsed-field gel electrophoresis (PEGE) is a sensitive method for the determination of radiation-induced DNA DSBs in high molecular weight DNA of human osteosarcoma cells. Radiation-induced DNA DSBs of osteosarcoma increase with the dose in a linear manner. After incubation, both Rho0 cell line and 143. B cell line can repair the DNA DSBs. Between two cell lines of human osteosarcoma, Rho0 and 143.B, Rho0 cell line is more sensitive to ionizing radiation than 143.B line

  17. Pharmacokinetics and Toxicity in Rats and Monkeys of coDbait: A Therapeutic Double-stranded DNA Oligonucleotide Conjugated to Cholesterol

    Directory of Open Access Journals (Sweden)

    Anne Schlegel

    2012-01-01

    Full Text Available Increased DNA repair activity in cancer cells is one of their primary mechanisms of resistance to current radio- and chemotherapies. The molecule coDbait is the first candidate in a new class of drugs that target the double-strand DNA break repair pathways with the aim of overcoming these resistances. coDbait is a 32-base pair (bp double-stranded DNA molecule with a cholesterol moiety covalently attached to its 5′-end to facilitate its cellular uptake. We report here the preclinical pharmacokinetic and toxicology studies of subcutaneous coDbait administration in rodents and monkeys. Maximum plasma concentration occurred between 2 to 4 hours in rats and at 4 hours in monkeys. Increase in mean AUC0–24h was linear with dose reaching 0.5 mg·h/ml for the highest dose injected (32 mg for both rats and monkeys. No sex-related differences in maximum concentration (Cmax nor AUC0–24h were observed. We extrapolated these pharmacokinetic results to humans as the subcutaneous route has been selected for evaluation in clinical trials. Tri-weekly administration of coDbait (from 8 to 32 mg per dose for 4 weeks was overall well tolerated in rats and monkeys as no morbidity/mortality nor changes in clinical chemistry and histopathology parameters considered to be adverse effects have been observed.

  18. Relationship between DNA repair and cell recovery: Importance of competing biochemical and metabolic processes

    International Nuclear Information System (INIS)

    Van Ankeren, S.C.; Wheeler, K.T.; Kansas Univ., Lawrence

    1985-01-01

    The relationship between the inhibition of repair of radiation-induced DNA damage and the inhibition of recovery from radiation-induced potentially lethal damage (PLD) by hypertonic treatment was compared in 9L/Ro rat brain tumor cells. Fed plateau phase cultures were γ-irradiated with 1500 rad and then immediately treated for 20 min with a 37 0 C isotonic (0.15 M) or hypertonic (0.50 M) salt solution. The kinetics of repair of radiation-induced DNA damage as assayed using alkaline filter elution were compared to those of recovery from radiation-induced PLD as assayed by colony formation. hypertonic treatment of unirradiated cells produced neither DNA damage nor cell kill. Post-irradiation hypertonic treatment inhibited both DNA repair and PLD recovery, while post-irradiation istonic treatment inhibited neither phenomenon. However, by 2 h after irradiation, the amount of DNA damage remaining after a 20 min hypertonic treatment was equivalent to that remaining after a 20 min isotonic treatment. In contrast, cell survival after hypertonic treatment remained 2 logs lower than after isotonic treatment even at times up to 24 h. These results suggest that the repair of radiation-induced DNA damage per per se is not causally related to recovery from radiation-induced PLD. However, the data are consistent with the time of DNA repair as an important parameter in determining cell survival and, therefore, tend to support the hypothesis that imbalances in sets of competing biochemical or metabolic processes determine survival rather than the presence of a single class of unrepaired DNA lesions. (orig.)

  19. The effect of heat and radiation on the initiation and elongation processes of DNA synthesis

    International Nuclear Information System (INIS)

    Davies, R.C.; Bowden, G.T.; Cress, A.E.

    1983-01-01

    The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation in synchronized Chinese hamster ovary cells. The initiation and elongation processes of DNA synthesis were radioresistant at the G 1 /S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G 1 /S boundary could be inhibited by a hyperthermia treatment (43 0 C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis. (author)

  20. Hypothetical physicochemical mechanisms of some intracellular processes: The hydrate hypothesis of mitosis and DNA replication

    International Nuclear Information System (INIS)

    Kadyshevich, E.A.; Ostrovskii, V.E.

    2007-01-01

    A DNA replication, mitosis, and binary fission hydrate hypothesis (MRH hypothesis) allowing non-trivial explanations for the physicochemical mechanisms of some intracellular processes is proposed. The hypothesis has a thermodynamic basis and is initiated by original experimental calorimetric and kinetic studies of the behavior of functional organic polymer and monomer substances in highly concentrated aqueous solutions. Experimental data demonstrating the occurrence of a short-range ordering in concentrated aqueous solutions of such substances are included. Hypothetical simple non-enzymatic unified mechanisms for the natural processes of DNA local unwinding preceding the start of duplication, DNA replication, formation and disappearance of the protein bonds between sister chromatids in the centromere region of eukaryotic DNA and in the centromere-like region of prokaryotic DNA, moving of daughter chromosomes apart to the opposite sides of cells in late anaphase, and formation of the nuclear envelopes in telophase and intracellular membranes between the newly formed nuclei in cytokinesis are formulated. The nature of a number of other intracellular phenomena is discussed

  1. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  2. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...

  3. A Eu(III) doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu(II) and sulfide.

    Science.gov (United States)

    Weng, Han; Yan, Bing

    2017-10-02

    In this paper, Bio-MOF-1 is prepared as reported and then Eu 3+ is introduced into it via cation exchange method. A FAM-labeled ssDNA is chosen to fabricate with the obtained Eu 3+ @Bio-MOF-1. A luminescent hybrid material is assembled, which can exhibit the fluorescence of Eu 3+ and FAM simultaneously by adjusting the ratio of FAM-ssDNA and Eu 3+ @Bio-MOF-1. The sample is then used for the detecting of metal ions, results shows which has good selectively for Cu 2+ (LOD = 0.14 μM, 0-250 μM). The introduction of Cu 2+ can quench the fluorescence of FAM while the luminescent intensity of Eu 3+ enhancing. After the detection of Cu 2+ , the Cu 2+ involved hybrid system can then be further employed for the detection of S 2- (LOD = 1.3 μM, 0-50 μM). Low concentration of S 2- can make the luminescent intensity of Eu 3+ decrease gradually while high concentration of S 2- can further recover the luminescent of FAM, which is quenched by Cu 2+ . Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    Science.gov (United States)

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  5. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation.

    Science.gov (United States)

    Miguel-Arribas, Andrés; Hao, Jian-An; Luque-Ortega, Juan R; Ramachandran, Gayetri; Val-Calvo, Jorge; Gago-Córdoba, César; González-Álvarez, Daniel; Abia, David; Alfonso, Carlos; Wu, Ling J; Meijer, Wilfried J J

    2017-01-01

    Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer ( oriT ), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis . We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1 LS20 and aux2 LS20 , and which we show are essential for conjugation. Both Aux1 LS20 and Aux2 LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1 LS20 and Aux2 LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriT LS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1 LS20 and/or Aux2 LS20 are located upstream of almost 400 relaxase genes of the Rel LS20 family (MOB L ) of relaxases. Thus, Aux1 LS20 and Aux2 LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

  6. The Bacillus subtilis Conjugative Plasmid pLS20 Encodes Two Ribbon-Helix-Helix Type Auxiliary Relaxosome Proteins That Are Essential for Conjugation

    Directory of Open Access Journals (Sweden)

    Andrés Miguel-Arribas

    2017-11-01

    Full Text Available Bacterial conjugation is the process by which a conjugative element (CE is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT, where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20, and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20, although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

  7. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  8. UvrD in Deinococcus radiodurans is optimized for processing G-quadruplex DNA

    International Nuclear Information System (INIS)

    Das, Anubrata; Misra, H.S.

    2015-01-01

    Deinococcus radiodurans R1 is a radiation resistant Gram-positive bacterium capable of tolerating very high doses of DNA-damaging agents such as gamma radiation (D10 ∼ 12kGy) desiccation (∼ 5% relative humidity), UVC radiation (D10 ∼ 800J/m 2 ) and hydrogen peroxide (40 mM). It achieves this by using a complex regulatory mechanism and novel proteins. Recently bioinformatic analysis showed several stretches of guanine runs in D.radiodurans genome, which could form G-quartets. The role of G-quartets in regulatory processes is well documented in various organisms. The presence of G -quartets in D. radiodurans means that there are regulatory or structural proteins which would bind to these elements. Several proteins are known to bind G-quartets. Finding the proteins which would bind to G4 DNA is difficult as no specific motifs are available for binding these elements. Also most of the known proteins that are shown to bind to G-quadruplex DNA are of eukaryotic nature. To overcome these challenges we defined a set of known G-quadruplex binding proteins and used a smith-waterman algorithm with our own scoring matrix to homologs of G-quadruplex binding proteins in D.radiodurans. Using bioinformatics analysis, we showed that UvrD (DR 1775) of D. radiodurans has ability to bind/translocate along G-quadruplex DNA, a novel feature in prokaryotes. The translocase activity of DR1775 is ATP specific and this ATPase activity is attenuated by ssDNA. Data supporting UvrD of D. radiodurans as a G-quadruplex DNA metabolizing proteins would be presented. (author)

  9. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1

    Science.gov (United States)

    Zhou, Jiehua; Lazar, Daniel; Li, Haitang; Xia, Xin; Satheesan, Sangeetha; Charlins, Paige; O'Mealy, Denis; Akkina, Ramesh; Saayman, Sheena; Weinberg, Marc S.; Rossi, John J.; Morris, Kevin V.

    2018-01-01

    Gene-based therapies represent a promising therapeutic paradigm for the treatment of HIV-1, as they have the potential to maintain sustained viral inhibition with reduced treatment interventions. Such an option may represent a long-term treatment alternative to highly active antiretroviral therapy. Methods: We previously described a therapeutic approach, referred to as transcriptional gene silencing (TGS), whereby small noncoding RNAs directly inhibit the transcriptional activity of HIV-1 by targeting sites within the viral promoter, specifically the 5' long terminal repeat (LTR). TGS differs from traditional RNA interference (RNAi) in that it is characterized by concomitant silent-state epigenetic marks on histones and DNA. To deliver TGS-inducing RNAs, we developed functional RNA conjugates based on the previously reported dual function of the gp120 (A-1) aptamer conjugated to 27-mer Dicer-substrate anti-HIV-1 siRNA (dsiRNA), LTR-362. Results: We demonstrate here that high levels of processed guide RNAs localize to the nucleus in infected T lymphoblastoid CEM cell line and primary human CD4+ T-cells. Treatment of the aptamer-siRNA conjugates induced TGS with an ~10-fold suppression of viral p24 levels as measured at day 12 post infection. To explore the silencing efficacy of aptamer-siRNA conjugates in vivo, HIV-1-infected humanized NOD/SCID/IL2 rγnull mice (hu-NSG) were treated with the aptamer-siRNA conjugates. Systemic delivery of the A-1-stick-LTR-362 27-mer siRNA conjugates suppressed HIV-1 infection and protected CD4+ T cell levels in viremia hu-NSG mice. Principle conclusions: Collectively these data suggest that the gp120 aptamer-dsiRNA conjugate design is suitable for systemic delivery of small RNAs that can be used to suppress HIV-1. PMID:29556342

  10. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    OpenAIRE

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    We report a neutral salt water based battery which uses p-type and n-type solution processed polymer films as the cathode and the anode of the cell. The specific capacity of the electrodes (approximately 30 mAh cm-3) is achieved via formation of bipolarons in both the p-type and n-type polymers. By engineering ethylene glycol and zwitterion based side chains attached to the polymer backbone we facilitate rapid ion transport through the non-porous polymer films. This, combined with efficient t...

  11. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  12. Validation of a DNA IQ-based extraction method for TECAN robotic liquid handling workstations for processing casework.

    Science.gov (United States)

    Frégeau, Chantal J; Lett, C Marc; Fourney, Ron M

    2010-10-01

    A semi-automated DNA extraction process for casework samples based on the Promega DNA IQ™ system was optimized and validated on TECAN Genesis 150/8 and Freedom EVO robotic liquid handling stations configured with fixed tips and a TECAN TE-Shake™ unit. The use of an orbital shaker during the extraction process promoted efficiency with respect to DNA capture, magnetic bead/DNA complex washes and DNA elution. Validation studies determined the reliability and limitations of this shaker-based process. Reproducibility with regards to DNA yields for the tested robotic workstations proved to be excellent and not significantly different than that offered by the manual phenol/chloroform extraction. DNA extraction of animal:human blood mixtures contaminated with soil demonstrated that a human profile was detectable even in the presence of abundant animal blood. For exhibits containing small amounts of biological material, concordance studies confirmed that DNA yields for this shaker-based extraction process are equivalent or greater to those observed with phenol/chloroform extraction as well as our original validated automated magnetic bead percolation-based extraction process. Our data further supports the increasing use of robotics for the processing of casework samples. Crown Copyright © 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  13. [Event-related brain potentials when Russian verbs being conjugated: to the problem of language processing modularity].

    Science.gov (United States)

    Dan'ko, S G; Boĭtsova, Iu A; Solov'eva, M L; Chernigovskaia, T V; Medvedev, S V

    2014-01-01

    In the light of alternative conceptions of "two-system" and "single-system" models of language processing the efforts have been undertaken to study brain mechanisnis for generation of regular and irregular forms of Russian verbs. The 19 EEG channels of evoked activity were registered along with casual alternations of speech morphology operations to be compared. Verbs of imperfective aspect in the form of an infinitive, belonging either to a group of productive verbs (default, conventionally regular class), or toan unproductive group of verbs (conventionally irregular class) were presented to healthy subjects. The subjects were requested to produce first person present time forms of these verbs. Results of analysis of event related potentials (ERP) for a group of 22 persons are presented. Statistically reliable ERP amplitude distinctions between the verb groups are found onlyin the latencies 600-850 ms in central and parietal zones of the cortex. In these latencies ERP values associated with a presentation of irregular verbs are negative in relation to ERP values associated with the presentation of regular verbs. The received results are interpreted as a consequence of various complexity of mental work with verbs of these different groups and presumably don't support a hypothesis of universality of the "two-system" brain mechanism for processing of the regular and irregular language forms.

  14. Application of Conjugate Simulation for Determination of Temperature and Stress Distributions During Curing Process of Pre-Impregnated Composite Fibers

    Directory of Open Access Journals (Sweden)

    Golewski P.

    2017-12-01

    Full Text Available The composites made of continuous fibers in the form of unidirectional and fabric prepregs are widely used in many fields of engineering for the production of lightweight and durable parts or whole structures. To achieve this, we not only need to possess knowledge of the composite mechanics, but also have to master the technology. In most cases, particularly for parts with advanced geometric shapes, autoclaving technique is used. The success of the carried out process occurs when the prepreg reaches the proper temperature throughout its volume in the specified time, where there are no overheated or unheated zones as well as when the prepreg is correctly pressed against the mold. In order to ensure adequate stiffness, the mold has much greater thickness than formed composite and the stiffening ribs. The result is that the time required for prepreg heating is greatly extended. To prevent this, the appropriate electric heaters embedded in the silicone grips are used.

  15. The Role of XPG in Processing (CAGn/(CTGn DNA Hairpins

    Directory of Open Access Journals (Sweden)

    Hou Caixia

    2011-03-01

    Full Text Available Abstract Background During DNA replication or repair, disease-associated (CAGn/(CTGn expansion can result from formation of hairpin structures in the repeat tract of the newly synthesized or nicked DNA strand. Recent studies identified a nick-directed (CAGn/(CTGn hairpin repair (HPR system that removes (CAGn/(CTGn hairpins from human cells via endonucleolytic incisions. Because the process is highly similar to the mechanism by which XPG and XPF endonucleases remove bulky DNA lesions during nucleotide excision repair, we assessed the potential role of XPG in conducting (CAGn/(CTGn HPR. Results To determine if the XPG endonuclease is involved in (CAGn/(CTGn hairpin removal, two XPG-deficient cell lines (GM16024 and AG08802 were examined for their ability to process (CAGn/(CTGn hairpins in vitro. We demonstrated that the GM16024 cell line processes all hairpin substrates as efficiently as HeLa cells, and that the AG08802 cell line is partially defective in HPR. Analysis of repair intermediates revealed that nuclear extracts from both XPG-deficient lines remove CAG/CTG hairpins via incisions, but the incision products are distinct from those generated in HeLa extracts. We also show that purified recombinant XPG protein greatly stimulates HPR in XPG-deficient extracts by promoting an incision 5' to the hairpin. Conclusions Our results strongly suggest that 1 human cells possess multiple pathways to remove (CAGn/(CTGn hairpins located in newly synthesized (or nicked DNA strand; and 2 XPG, although not essential for (CAGn/(CTGn hairpin removal, stimulates HPR by facilitating a 5' incision to the hairpin. This study reveals a novel role for XPG in genome-maintenance and implicates XPG in diseases caused by trinucleotide repeat expansion.

  16. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.

    Science.gov (United States)

    McGee, C F; Byrne, H; Irvine, A; Wilson, J

    2017-01-01

    Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.

  17. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    Science.gov (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. DNA remodelling by Strict Partial Endoreplication in orchids, an original process in the plant kingdom.

    Science.gov (United States)

    Brown, Spencer C; Bourge, Mickaël; Maunoury, Nicolas; Wong, Maurice; Bianchi, Michele Wolfe; Lepers-Andrzejewski, Sandra; Besse, Pascale; Siljak-Yakovlev, Sonja; Dron, Michel; Satiat-Jeunemaître, Béatrice

    2017-04-13

    DNA remodelling during endoreplication appears to be a strong developmental characteristic in orchids. In this study, we analysed DNA content and nuclei in 41 species of orchids to further map the genome evolution in this plant family. We demonstrate that the DNA remodelling observed in 36 out of 41 orchids studied corresponds to strict partial endoreplication. Such process is developmentally regulated in each wild species studied. Cytometry data analyses allowed us to propose a model where nuclear states 2C, 4E, 8E, etc. form a series comprising a fixed proportion, the euploid genome 2C, plus 2 to 32 additional copies of a complementary part of the genome. The fixed proportion ranged from 89% of the genome in Vanilla mexicana down to 19% in V. pompona, the lowest value for all 148 orchids reported. Insterspecific hybridisation did not suppress this phenomenon. Interestingly, this process was not observed in mass-produced epiphytes. Nucleolar volumes grow with the number of endocopies present, coherent with high transcription activity in endoreplicated nuclei. Our analyses suggest species-specific chromatin rearrangement. Towards understanding endoreplication, V. planifolia constitutes a tractable system for isolating the genomic sequences that confer an advantage via endoreplication from those that apparently suffice at diploid level. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. DNA Processing and Reassembly on General Purpose FPGA-based Development Boards

    Directory of Open Access Journals (Sweden)

    SZÁSZ Csaba

    2017-05-01

    Full Text Available The great majority of researchers involved in microelectronics generally agree that many scientific challenges in life sciences have associated with them a powerful computational requirement that must be solved before scientific progress can be made. The current trend in Deoxyribonucleic Acid (DNA computing technologies is to develop special hardware platforms capable to provide the needed processing performance at lower cost. In this endeavor the FPGA-based (Field Programmable Gate Arrays configurations aimed to accelerate genome sequencing and reassembly plays a leading role. This paper emphasizes benefits and advantages using general purpose FPGA-based development boards in DNA reassembly applications beside the special hardware architecture solutions. An original approach is unfolded which outlines the versatility of high performance ready-to-use manufacturer development platforms endowed with powerful hardware resources fully optimized for high speed processing applications. The theoretical arguments are supported via an intuitive implementation example where the designer it is discharged from any hardware development effort and completely assisted in exclusive concentration only on software design issues providing greatly reduced application development cycles. The experiments prove that such boards available on the market are suitable to fulfill in all a wide range of DNA sequencing and reassembly applications.

  20. Mono- and Di-Alkylation Processes of DNA Bases by Nitrogen Mustard Mechlorethamine.

    Science.gov (United States)

    Larrañaga, Olatz; de Cózar, Abel; Cossío, Fernando P

    2017-12-06

    The reactivity of nitrogen mustard mechlorethamine (mec) with purine bases towards formation of mono- (G-mec and A-mec) and dialkylated (AA-mec, GG-mec and AG-mec) adducts has been studied using density functional theory (DFT). To gain a complete overview of DNA-alkylation processes, direct chloride substitution and formation through activated aziridinium species were considered as possible reaction paths for adduct formation. Our results confirm that DNA alkylation by mec occurs via aziridine intermediates instead of direct substitution. Consideration of explicit water molecules in conjunction with polarizable continuum model (PCM) was shown as an adequate computational method for a proper representation of the system. Moreover, Runge-Kutta numerical kinetic simulations including the possible bisadducts have been performed. These simulations predicted a product ratio of 83:17 of GG-mec and AG-mec diadducts, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes].

    Science.gov (United States)

    Kitagawa, Mamiko; Nakamura, Kosuke; Kondo, Kazunari; Ubukata, Shoji; Akiyama, Hiroshi

    2014-01-01

    The contamination of processed vegetable foods with genetically modified tomatoes was investigated by the use of qualitative PCR methods to detect the cauliflower mosaic virus 35S promoter (P35S) and the kanamycin resistance gene (NPTII). DNA fragments of P35S and NPTII were detected in vegetable juice samples, possibly due to contamination with the genomes of cauliflower mosaic virus infecting juice ingredients of Brassica species and soil bacteria, respectively. Therefore, to detect the transformation construct sequences of GM tomatoes, primer pairs were designed for qualitative PCR to specifically detect the border region between P35S and NPTII, and the border region between nopaline synthase gene promoter and NPTII. No amplification of the targeted sequences was observed using genomic DNA purified from the juice ingredients. The developed qualitative PCR method is considered to be a reliable tool to check contamination of products with GM tomatoes.

  2. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  3. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    Science.gov (United States)

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Optical phase conjugation

    CERN Document Server

    Fisher, Robert A

    1983-01-01

    This book appears at a time of intense activity in optical phase conjugation. We chose not to await the maturation of the field, but instead to provide this material in time to be useful in its development. We have tried very hard to elucidate and interrelate the various nonlinear phenomena which can be used for optical phase conjugation.

  5. DNA Damages and White Blood Cell Death Processes in Victims with Severe Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2014-01-01

    Full Text Available Objective. To study the mechanisms of posttraumatic changes in the blood cells, by investigating DNA damages associat ed with hypoxia caused by massive blood loss (BL in severe injury.Subjects and methods. Ninetyfive patients aged 40.6±16.5 years (from 20 to 79 years who had sustained severe mechanical injury with different BL volumes (BLV (from 100 to 4000 ml and hemodynamic disorders were examined to study DNA damages and white blood cell necrotic and apop totic processes. In terms of the victims' weight, the mean BL was 21.5±16.5 ml/kg (from 1.4 to 61.5 ml/kg. The victimswere divided into 4 groups according to BLV: 1 26 victims whose BLV was less than 750 ml (5.93±2.41 ml/kg (grade I BL; 2 23 victims whose BLV was 750—1500 ml (11.5±1.5 ml/kg (grade 2 BL; 3 23 victims whose BLV was 1500—2000 ml (23.8±4.0 ml/kg (grade 3 BL; 4 23 victims whose BLV was over 2000 ml (45.6±10.1 ml/kg (grade 4 BL, according to the type of injury: 1 severe skeletal injury (SSI (n=17; 2 brain injury (BI (n=43; 3 a concurrence of SSI and BI (SSI+BI (n=35; according to the development of infectious complications: 1 69 victims who developed infectious com plications on days 5—7 postinjury; 2 26 victims who did not. To evaluate the impact of hypoxia on DNA damages, white blood cell apoptotic and necrotic processes, the victims were divided into 2 groups: 1 hypoxia (18 of the 95 victims who had 4 altered indicators, such as capillary blood pO2, plasma lactate levels, pH, and BE; 2 no hypoxia (10 of the 95 victims whose indicators were within the normal range. DNA damages and necrotic and apoptotic changes in the white blood cells were assessed by the DNA comet assay. The plasma concentration of extracellular DNA was fluorometrically determined using a QuantiTTM HS DNA Assay Kit (Invitrogen, USA. That of 8hydroxy2deoxyguanosine was estimated by enzyme immunoassay employing an 8hydroxy2deoxyGuanosine EIA Kit (Cayman Chemical, USA. The levels of cas

  6. Conjugal gene transfer between bacteria in soil and rhizosphere

    NARCIS (Netherlands)

    Smit, E.

    1994-01-01

    The extent of possible conjugal transfer of recombinant DNA present in genetically engineered microorganisms (GEMs) was studied. Occurrence of transfer of recombinant DNA is only one of the concerns regarding the use of GEMs (Chapter 2). Other potential hazards preventing the application of

  7. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  8. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  9. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  10. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    Science.gov (United States)

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG).

    Science.gov (United States)

    Lee, Chun-Yue I; Delaney, James C; Kartalou, Maria; Lingaraju, Gondichatnahalli M; Maor-Shoshani, Ayelet; Essigmann, John M; Samson, Leona D

    2009-03-10

    The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known epsilonA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with epsilonA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N(2)-ethenoguanine (1,N(2)-epsilonG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both epsilonA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.

  12. Amplified Self-replication of DNA Origami Nanostructures through Multi-cycle Fast-annealing Process

    Science.gov (United States)

    Zhou, Feng; Zhuo, Rebecca; He, Xiaojin; Sha, Ruojie; Seeman, Nadrian; Chaikin, Paul

    We have developed a non-biological self-replication process using templated reversible association of components and irreversible linking with annealing and UV cycles. The current method requires a long annealing time, up to several days, to achieve the specific self-assembly of DNA nanostructures. In this work, we accomplished the self-replication with a shorter time and smaller replication rate per cycle. By decreasing the ramping time, we obtained the comparable replication yield within 90 min. Systematic studies show that the temperature and annealing time play essential roles in the self-replication process. In this manner, we can amplify the self-replication process to a factor of 20 by increasing the number of cycles within the same amount of time.

  13. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Heravi, Mitra [Department of Human Genetics, McGill University, Montreal (Canada); Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada); Kumala, Slawomir [Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada); Rachid, Zakaria; Jean-Claude, Bertrand J. [Cancer Drug Research Laboratory, McGill University Health Center, Montreal (Canada); Radzioch, Danuta [Department of Human Genetics, McGill University, Montreal (Canada); Muanza, Thierry M., E-mail: tmuanza@yahoo.com [Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada)

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  14. Identification of processed Chinese medicinal materials using DNA mini-barcoding.

    Science.gov (United States)

    Song, Ming; Dong, Gang-Qiang; Zhang, Ya-Qin; Liu, Xia; Sun, Wei

    2017-07-01

    Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psbA-trnH, rbcL, matK, trnL (UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL (UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%-20% of the processed samples, while the amplification rates of the trnL (UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL (UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  16. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Science.gov (United States)

    Fields, Andrew T; Abercrombie, Debra L; Eng, Rowena; Feldheim, Kevin; Chapman, Demian D

    2015-01-01

    There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran) in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias). Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins"). Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples).

  17. Effect of processed and red meat on endogenous nitrosation and DNA damage.

    Science.gov (United States)

    Joosen, Annemiek M C P; Kuhnle, Gunter G C; Aspinall, Sue M; Barrow, Timothy M; Lecommandeur, Emmanuelle; Azqueta, Amaya; Collins, Andrew R; Bingham, Sheila A

    2009-08-01

    Haem in red meat (RM) stimulates the endogenous production of mutagenic nitroso compounds (NOC). Processed (nitrite-preserved red) meat additionally contains high concentrations of preformed NOC. In two studies, of a fresh RM versus a vegetarian (VEG) diet (six males and six females) and of a nitrite-preserved red meat (PM) versus a VEG diet (5 males and 11 females), we investigated whether processing of meat might increase colorectal cancer risk by stimulating nitrosation and DNA damage. Meat diets contained 420 g (males) or 366 g (females) meat/per day. Faecal homogenates from day 10 onwards were analysed for haem and NOC and associated supernatants for genotoxicity. Means are adjusted for differences in male to female ratios between studies. Faecal NOC concentrations on VEG diets were low (2.6 and 3.5 mmol/g) but significantly higher on meat diets (PM 175 +/- 19 nmol/g versus RM 185 +/- 22 nmol/g; P = 0.75). The RM diet resulted in a larger proportion of nitrosyl iron (RM 78% versus PM 54%; P meat diets (P Meats cured with nitrite have the same effect as fresh RM on endogenous nitrosation but show increased FW-induced oxidative DNA damage.

  18. A novel mini-DNA barcoding assay to identify processed fins from internationally protected shark species.

    Directory of Open Access Journals (Sweden)

    Andrew T Fields

    Full Text Available There is a growing need to identify shark products in trade, in part due to the recent listing of five commercially important species on the Appendices of the Convention on International Trade in Endangered Species (CITES; porbeagle, Lamna nasus, oceanic whitetip, Carcharhinus longimanus scalloped hammerhead, Sphyrna lewini, smooth hammerhead, S. zygaena and great hammerhead S. mokarran in addition to three species listed in the early part of this century (whale, Rhincodon typus, basking, Cetorhinus maximus, and white, Carcharodon carcharias. Shark fins are traded internationally to supply the Asian dried seafood market, in which they are used to make the luxury dish shark fin soup. Shark fins usually enter international trade with their skin still intact and can be identified using morphological characters or standard DNA-barcoding approaches. Once they reach Asia and are traded in this region the skin is removed and they are treated with chemicals that eliminate many key diagnostic characters and degrade their DNA ("processed fins". Here, we present a validated mini-barcode assay based on partial sequences of the cytochrome oxidase I gene that can reliably identify the processed fins of seven of the eight CITES listed shark species. We also demonstrate that the assay can even frequently identify the species or genus of origin of shark fin soup (31 out of 50 samples.

  19. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters

    International Nuclear Information System (INIS)

    Qiao Min; Chen Ying; Wang Chunxia; Wang Zijian; Zhu Yongguan

    2007-01-01

    In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ BaP ), the saturation dose in the dose-response curve was about 10 ng TEQ BaP g -1 soil (dw). - A non-linear dose-response relationship exists between earthworm DNA damage, measured with comet assay, and total PAHs levels in soils irrigated by wastewaters

  20. Qualidade conjugal: mapeando conceitos

    Directory of Open Access Journals (Sweden)

    Clarisse Mosmann

    2006-12-01

    Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.

  1. Conjugate Gaze Palsies

    Science.gov (United States)

    ... version Home Brain, Spinal Cord, and Nerve Disorders Cranial Nerve Disorders Conjugate Gaze Palsies Horizontal gaze palsy Vertical ... Version. DOCTORS: Click here for the Professional Version Cranial Nerve Disorders Overview of the Cranial Nerves Internuclear Ophthalmoplegia ...

  2. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  3. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  4. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    Energy Technology Data Exchange (ETDEWEB)

    Pinak, Miroslav [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD ({approx} +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT ({approx} -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  5. Molecular dynamics of formation of TD lesioned DNA complexed with repair enzyme - onset of the enzymatic repair process

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-12-01

    To describe the first step of the enzymatic repair process (formation of complex enzyme-DNA), in which the thymine dimer (TD) part is removed from DNA, the 500 picosecond (ps) molecular dynamics (MD) simulation of TD lesioned DNA and part of repair enzyme cell (inclusive of catalytic center - Arg-22, Glu-23, Arg-26 and Thr-2) was performed. TD is UV originated lesion in DNA and T4 Endonuclease V is TD specific repair enzyme. Both molecules were located in the same simulation cell and their relative movement was examined. During the simulation the research was focused on the role of electrostatic energy in formation of complex enzyme-DNA. It is found, that during the first 100 ps of MD, the part of enzyme approaches the DNA surface at the TD lesion, interacts extensively by electrostatic and van der Walls interactions with TD part of DNA and forms complex that lasts stabile for 500 ps of MD. In the beginning of MD, the positive electrostatic interaction energy between part of enzyme and TD (∼ +10 kcal/mol) drives enzyme towards the DNA molecule. Water-mediated hydrogen bonds between enzyme and DNA help to keep complex stabile. As a reference, the MD simulation of the identical system with native DNA molecule (two native thymines (TT) instead of TD) was performed. In this system the negative electrostatic interaction energy between part of enzyme and TT (∼ -11 kcal/mol), in contrary to the positive one in the system with TD, doesn't drive enzyme towards DNA and complex is not formed. (author)

  6. Damage to cellular DNA from particulate radiations, the efficacy of its processing and the radiosensitivity of mammalian cells. Emphasis on DNA double strand breaks and chromatin breaks

    Science.gov (United States)

    Lett, J. T.

    1992-01-01

    For several years, it has been evident that cellular radiation biology is in a necessary period of consolidation and transition (Lett 1987, 1990; Lett et al. 1986, 1987). Both changes are moving apace, and have been stimulated by studies with heavy charged particles. From the standpoint of radiation chemistry, there is now a consensus of opinion that the DNA hydration shell must be distinguished from bulk water in the cell nucleus and treated as an integral part of DNA (chromatin) (Lett 1987). Concomitantly, sentiment is strengthening for the abandonment of the classical notions of "direct" and "indirect" action (Fielden and O'Neill 1991; O'Neill 1991; O'Neill et al. 1991; Schulte-Frohlinde and Bothe 1991 and references therein). A layer of water molecules outside, or in the outer edge of, the DNA (chromatin) hydration shell influences cellular radiosensitivity in ways not fully understood. Charge and energy transfer processes facilitated by, or involving, DNA hydration must be considered in rigorous theories of radiation action on cells. The induction and processing of double stand breaks (DSBs) in DNA (chromatin) seem to be the predominant determinants of the radiotoxicity of normally radioresistant mammalian cells, the survival curves of which reflect the patterns of damage induced and the damage present after processing ceases, and can be modelled in formal terms by the use of reaction (enzyme) kinetics. Incongruities such as sublethal damage are neither scientifically sound nor relevant to cellular radiation biology (Calkins 1991; Lett 1990; Lett et al. 1987a). Increases in linear energy transfer (LET infinity) up to 100-200 keV micron-1 cause increases in the extents of neighboring chemical and physical damage in DNA denoted by the general term DSB. Those changes are accompanied by decreasing abilities of cells normally radioresistant to sparsely ionizing radiations to process DSBs in DNA and chromatin and to recover from radiation exposure, so they make

  7. Inherited DNA repair defects in H. sapiens: their relation to uv-associated processes in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Robbins, J.H.; Kraemer, K.H.; Andrews, A.D.

    1976-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive disease in which patients develop pigmentation abnormalities and numerous malignancies on areas of skin exposed to sunlight. Some XP patients have neurological abnormalities in addition to their cutaneous pathology. Genetic defects in DNA repair have now been found in all studied XP patients. Here, we shall review and present studies relating the different inherited DNA repair defects of XP to several uv-associated processes. Peripheral blood lymphocytes and skin fibroblasts obtained from patients were cultured and the uv-induced thymidine incorporation in DNA was measured by autoradiography or by scintillation spectroscopy

  8. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Wenfang; Li, Huan; Hallstrøm, Søren

    2013-01-01

    -adjacent motif (PAM)-dependent DNA targeting activity and mature CRISPR RNA (crRNA) production in this organism, mutants deleting individual genes of the type IA system or removing each of other Cas modules were constructed. Characterization of these mutants revealed that Cas7, Cas5, Cas6, Cas3' and Cas3......" are essential for PAM-dependent DNA targeting activity, whereas Csa5, along with all other Cas modules, is dispensable for the targeting in the crenarchaeon. Cas6 is implicated as the only enzyme for pre-crRNA processing and the crRNA maturation is independent of the DNA targeting activity. Importantly, we show...

  9. mtSSB may sequester UNG1 at mitochondrial ssDNA and delay uracil processing until the dsDNA conformation is restored

    DEFF Research Database (Denmark)

    Wollen Steen, Kristian; Doseth, Berit; westbye, Marianne

    2012-01-01

    Single-strand DNA binding proteins protect DNA from nucleolytic damage, prevent formation of secondary structures and prevent premature reannealing of DNA in DNA metabolic transactions. In eukaryotes, the nuclear single-strand DNA binding protein RPA is essential for chromosomal DNA replication...

  10. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.

    Science.gov (United States)

    Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-02-01

    Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.

  11. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging.

    Science.gov (United States)

    Ghosh, Shampa; Sinha, Jitendra Kumar; Raghunath, Manchala

    2016-09-01

    DNA damage caused by various sources remains one of the most researched topics in the area of aging and neurodegeneration. Increased DNA damage causes premature aging. Aging is plastic and is characterised by the decline in the ability of a cell/organism to maintain genomic stability. Lifespan can be modulated by various interventions like calorie restriction, a balanced diet of macro and micronutrients or supplementation with nutrients/nutrient formulations such as Amalaki rasayana, docosahexaenoic acid, resveratrol, curcumin, etc. Increased levels of DNA damage in the form of double stranded and single stranded breaks are associated with decreased longevity in animal models like WNIN/Ob obese rats. Erroneous DNA repair can result in accumulation of DNA damage products, which in turn result in premature aging disorders such as Hutchinson-Gilford progeria syndrome. Epigenomic studies of the aging process have opened a completely new arena for research and development of drugs and therapeutic agents. We propose here that agents or interventions that can maintain epigenomic stability and facilitate the DNA repair process can slow down the progress of premature aging, if not completely prevent it. © 2016 IUBMB Life, 68(9):717-721, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  12. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  13. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes

    Science.gov (United States)

    Seeds of Momordica charantia (bitter melon) produce high levels of eleostearic acid, an unusual conjugated fatty acid with industrial value. Deep sequencing of non-normalized and normalized cDNAs from developing bitter melon seeds was conducted to uncover key genes required for biotechnological tran...

  14. The portal protein plays essential roles at different steps of the SPP1 DNA packaging process

    International Nuclear Information System (INIS)

    Isidro, Anabela; Henriques, Adriano O.; Tavares, Paulo

    2004-01-01

    A large number of viruses use a specialized portal for entry of DNA to the viral capsid and for its polarized exit at the beginning of infection. These families of viruses assemble an icosahedral procapsid containing a portal protein oligomer in one of its 12 vertices. The viral ATPase (terminase) interacts with the portal vertex to form a powerful molecular motor that translocates DNA to the procapsid interior against a steep concentration gradient. The portal protein is an essential component of this DNA packaging machine. Characterization of single amino acid substitutions in the portal protein gp6 of bacteriophage SPP1 that block DNA packaging identified sequential steps in the packaging mechanism that require its action. Gp6 is essential at early steps of DNA packaging and for DNA translocation to the capsid interior, it affects the efficiency of DNA packaging, it is a central component of the headful sensor that determines the size of the packaged DNA molecule, and is essential for closure of the portal pore by the head completion proteins to prevent exit of the DNA encapsidated. Functional regions of gp6 necessary at each step are identified within its primary structure. The similarity between the architecture of portal oligomers and between the DNA packaging strategies of viruses using portals strongly suggests that the portal protein plays the same roles in a large number of viruses

  15. Programmed Switching of Single Polymer Conformation on DNA Origami

    DEFF Research Database (Denmark)

    Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach

    2016-01-01

    -molecule conjugated polymer. The polymer is functionalized with short single-stranded (ss) DNA strands that extend from the backbone of the polymer and serve as handles. The DNA polymer conjugate can be aligned on DNA origami in three well-defined geometries (straight line, left-turned, and right-turned pattern......) by DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold...

  16. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B.

    Directory of Open Access Journals (Sweden)

    Monica K Akre

    Full Text Available Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80-90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.

  17. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste.

    Science.gov (United States)

    Liu, Qiang; Cao, Jia; Li, Ke Qiu; Miao, Xu Hong; Li, Guang; Fan, Fei Yue; Zhao, Yong Cheng

    2009-05-01

    were significantly higher than in the control group (P = 0.000). The percentage of DNA in the comet tail, tail moment, and Olive tail moment detected by comet assay showed that there was a significant difference in DNA damage in the exposure group (P = 0.000). The chromosome aberration, micronucleus rate, and DNA damage observed in women were significantly higher than those in men. Chromosome aberration and micronuclear rates of both smokers and non-smokers in the exposure group are obviously higher than that in the control group (P = 0.000). The use of outdated (and unsafe) ways to deal with E-wastes can lead to exposure to a variety of substances harmful to human health. The components of pollution may enter the human body through the air, drinking water, and food chain to damage human genetic material, resulting in genomic instability. The rates of chromosomal aberration, micronucleus formation, and the degree of DNA damage in women in the group exposed to electronic waste were significantly higher than in men. The reason for this may be concerned with the traditional lifestyle of the local residents or the difference of sensitivity to the exposure to E-wastes or any others. Further investigations are needed to provide evidence to demonstrate this. Here, we report the obviously cytogenetic toxicity to the exposure population by the E-waste pollution for the first time. E-waste pollution may be a potential agent of genetic mutation, and may induce cytogenetic damage within the general population exposed to the pollution. These findings need to be considered, and steps should be taken to protect the current population and future generations from the effects of pollution with E-wastes. The above results remind us that the impact of E-waste recycling on environmental quality of Jinghai should be evaluated soon. Moreover, it is urgent for the government to prohibit E-waste import and its processing by outdated ways. The future studies such as pollutant details of

  18. Application of the microbiological method DEFT/APC and DNA comet assay to detect ionizing radiation processing of minimally processed vegetables

    International Nuclear Information System (INIS)

    Araujo, Michel Mozeika

    2008-01-01

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent healthy. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and inactivation of food-borne pathogens, Its combination with minimal processing could improve the safety and quality of MPV. Two different food irradiation detection methods, a biological, the DEFT/APC, and another biochemical, the DNA Comet Assay were applied to MPV in order to test its applicability to detect irradiation treatment. DEFT/APC is a microbiological screening method based on the use of the direct epi fluorescent filter technique (DEFT) and the aerobic plate count (APC). DNA Comet Assay detects DNA damage due to ionizing radiation. Samples of lettuce, chard, watercress, dandelion, kale, chicory, spinach, cabbage from retail market were irradiated O.5 kGy and 1.0 kGy using a 60 Co facility. Irradiation treatment guaranteed at least 2 log cycle reduction for aerobic and psychotropic microorganisms. In general, with increasing radiation doses, DEFT counts remained similar independent of irradiation processing while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. DNA Comet Assay allowed distinguishing non-irradiated samples from irradiated ones, which showed different types of comets owing to DNA fragmentation. Both DEFT/APC method and DNA Comet Assay would be satisfactorily used as a screening method for indicating irradiation processing. (author)

  19. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    Science.gov (United States)

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  20. Photoluminescence Enhancement of Poly(3-methylthiophene Nanowires upon Length Variable DNA Hybridization

    Directory of Open Access Journals (Sweden)

    Jingyuan Huang

    2018-01-01

    Full Text Available The use of low-dimensional inorganic or organic nanomaterials has advantages for DNA and protein recognition due to their sensitivity, accuracy, and physical size matching. In this research, poly(3-methylthiophene (P3MT nanowires (NWs are electrochemically prepared with dopant followed by functionalization with probe DNA (pDNA sequence through electrostatic interaction. Various lengths of pDNA sequences (10-, 20- and 30-mer are conjugated to the P3MT NWs respectively followed with hybridization with their complementary target DNA (tDNA sequences. The nanoscale photoluminescence (PL properties of the P3MT NWs are studied throughout the whole process at solid state. In addition, the correlation between the PL enhancement and the double helix DNA with various lengths is demonstrated.

  1. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  2. Guanidinylated polyethyleneimine-polyoxypropylene-polyoxyethylene conjugates as gene transfection agents.

    Science.gov (United States)

    Bromberg, Lev; Raduyk, Svetlana; Hatton, T Alan; Concheiro, Angel; Rodriguez-Valencia, Cosme; Silva, Maite; Alvarez-Lorenzo, Carmen

    2009-05-20

    Conjugates of linear and branched polyethyleneimine (PEI) and monoamine polyether Jeffamine M-2070 (PO/EO mol ratio 10/31, 2000 Da) were synthesized through polyether activation by cyanuric chloride followed by attachment to PEI and guanidinylation by 1H-pyrazole-carboxamidine hydrochloride. The resulting guanidinylated PEI-polyether conjugates (termed gPEI-Jeffamine) efficiently complexed plasmid DNA, and their polyplexes possessed enhanced colloidal stability in the presence of serum proteins. In vitro studies with mammalian CHO-1, 3T3, and Cos-7 cell lines demonstrated improved transfection efficiency of the pCMVbeta-gal plasmid/gPEI-Jeffamine polyplexes. The guanidinylation of the amino groups of PEI and the conjugation of PEI with the Jeffamine polyether enhanced the conjugates' interaction with genetic material and reduced the cytotoxicity of the polyplexes in experiments with the L929 cell line.

  3. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively

    NARCIS (Netherlands)

    Burnham, D.R.; Nijholt, B.; de Vlaminck, I.; Quan, Jinhua; Yusufzai, Timur; Dekker, C.

    2017-01-01

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing

  4. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A

    2012-01-01

    /ATR/DNA-PK target consensus motif, suggesting an important role of downstream kinases in amplifying DDR signals. We show that the splicing-regulator phosphatase PPM1G is recruited to sites of DNA damage, while the splicing-associated protein THRAP3 is excluded from these regions. Moreover, THRAP3 depletion causes...

  5. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a

    NARCIS (Netherlands)

    Swarts, Daan C.; Oost, van der John; Jinek, Martin

    2017-01-01

    The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both

  6. Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA.

    Science.gov (United States)

    Lada, Artem G; Waisertreiger, Irina S-R; Grabow, Corinn E; Prakash, Aishwarya; Borgstahl, Gloria E O; Rogozin, Igor B; Pavlov, Youri I

    2011-01-01

    Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G), restricts retroviruses, and Activation Induced Deaminase (AID) generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the "hit and run" single base substitution events observed in yeast. Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.

  7. Replication protein A (RPA hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA.

    Directory of Open Access Journals (Sweden)

    Artem G Lada

    Full Text Available Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G, restricts retroviruses, and Activation Induced Deaminase (AID generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA, the eukaryotic single-stranded DNA (ssDNA binding protein, severely inhibits the deamination activity and processivity of A3G.We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the "hit and run" single base substitution events observed in yeast.Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.

  8. Role of apoptosis-inducing factor (AIF in programmed nuclear death during conjugation in Tetrahymena thermophila

    Directory of Open Access Journals (Sweden)

    Endoh Hiroshi

    2010-02-01

    Full Text Available Abstract Background Programmed nuclear death (PND, which is also referred to as nuclear apoptosis, is a remarkable process that occurs in ciliates during sexual reproduction (conjugation. In Tetrahymena thermophila, when the new macronucleus differentiates, the parental macronucleus is selectively eliminated from the cytoplasm of the progeny, concomitant with apoptotic nuclear events. However, the molecular mechanisms underlying these events are not well understood. The parental macronucleus is engulfed by a large autophagosome, which contains numerous mitochondria that have lost their membrane potential. In animals, mitochondrial depolarization precedes apoptotic cell death, which involves DNA fragmentation and subsequent nuclear degradation. Results We focused on the role of mitochondrial apoptosis-inducing factor (AIF during PND in Tetrahymena. The disruption of AIF delays the normal progression of PND, specifically, nuclear condensation and kilobase-size DNA fragmentation. AIF is localized in Tetrahymena mitochondria and is released into the macronucleus prior to nuclear condensation. In addition, AIF associates and co-operates with the mitochondrial DNase to facilitate the degradation of kilobase-size DNA, which is followed by oligonucleosome-size DNA laddering. Conclusions Our results suggest that Tetrahymena AIF plays an important role in the degradation of DNA at an early stage of PND, which supports the notion that the mitochondrion-initiated apoptotic DNA degradation pathway is widely conserved among eukaryotes.

  9. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. WRN Exonuclease Structure, Molecular Mechanism, and DNA EndProcessing Role

    Energy Technology Data Exchange (ETDEWEB)

    Perry, J. Jefferson P.; Yannone, Steven M.; Holden, Lauren G.; Hitomi, Chiharu; Asaithamby, Aroumougame; Han, Seungil; Cooper, PriscillaK.; Chen, David J.; Tainer, John A.

    2006-02-15

    WRN is unique among the five human RecQ DNA helicases by having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end-joining. Metal ion complex structures, active site mutations and activity assays reveal a two-metal-ion mediated nuclease mechanism. The DNA end-binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end-joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ family replicative proofreading exonucleases, with WRN-specific adaptations consistent with dsDNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support analogous proof-reading activities that are stimulated by Ku70/80 with implications for WRN functions in age related pathologies and maintenance of genomic integrity.

  11. The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.

    Science.gov (United States)

    Williams, Jessica S; Gehle, Daniel B; Kunkel, Thomas A

    2017-05-01

    Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication. Published by Elsevier B.V.

  12. Molecular design of sequence specific DNA alkylating agents.

    Science.gov (United States)

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  13. Metaphors of DNA: a review of the popularisation processes (Spanish original version

    Directory of Open Access Journals (Sweden)

    Sergi Cortiñas Rovira

    2008-03-01

    Full Text Available This article offers a 1953-present day review of the models that have popularised DNA, one of the fundamental molecules of biochemistry. DNA has become an iconic concept over the 20th century, overcoming the boundaries of science and spreading into literature, painting, sculpture or religion. This work analyses the reasons why DNA has penetrated society so effectively and examines some of the main metaphors used by the scientists and scientific popularisers. Furthermore, this article, taken from the author's PhD thesis, describes some recent popularisation models for this molecule.

  14. Signalign: An Ontology of DNA as Signal for Comparative Gene Structure Prediction Using Information-Coding-and-Processing Techniques.

    Science.gov (United States)

    Yu, Ning; Guo, Xuan; Gu, Feng; Pan, Yi

    2016-03-01

    Conventional character-analysis-based techniques in genome analysis manifest three main shortcomings-inefficiency, inflexibility, and incompatibility. In our previous research, a general framework, called DNA As X was proposed for character-analysis-free techniques to overcome these shortcomings, where X is the intermediates, such as digit, code, signal, vector, tree, graph network, and so on. In this paper, we further implement an ontology of DNA As Signal, by designing a tool named Signalign for comparative gene structure analysis, in which DNA sequences are converted into signal series, processed by modified method of dynamic time warping and measured by signal-to-noise ratio (SNR). The ontology of DNA As Signal integrates the principles and concepts of other disciplines including information coding theory and signal processing into sequence analysis and processing. Comparing with conventional character-analysis-based methods, Signalign can not only have the equivalent or superior performance, but also enrich the tools and the knowledge library of computational biology by extending the domain from character/string to diverse areas. The evaluation results validate the success of the character-analysis-free technique for improved performances in comparative gene structure prediction.

  15. Physiological differences and changes in global DNA methylation levels in Agave angustifolia Haw. albino variant somaclones during the micropropagation process.

    Science.gov (United States)

    Duarte-Aké, Fátima; Castillo-Castro, Eduardo; Pool, Felipe Barredo; Espadas, Francisco; Santamaría, Jorge M; Robert, Manuel L; De-la-Peña, Clelia

    2016-12-01

    Global DNA methylation changes caused by in vitro conditions are associated with the subculturing and phenotypic variation in Agave angustifolia Haw. While the relationship between the development of albinism and in vitro culture is well documented, the role of epigenetic processes in this development leaves some important questions unanswered. During the micropropagation of Agave angustifolia Haw., we found three different phenotypes, green (G), variegated (V) and albino (A). To understand the physiological and epigenetic differences among the somaclones, we analyzed several morphophysiological parameters and changes in the DNA methylation patterns in the three phenotypes during their in vitro development. We found that under in vitro conditions, the V plantlets maintained their CAM photosynthetic capacity, while the A variant showed no pigments and lost its CAM photosynthetic ability. Epigenetic analysis revealed that global DNA methylation increased in the G phenotype during the first two subcultures. However, after that time, DNA methylation levels declined. This hypomethylation correlated with the appearance of V shoots in the G plantlets. A similar correlation occurred in the V phenotype, where an increase of 2 % in the global DNA methylation levels was correlated with the generation of A shoots in the V plantlets. This suggests that an "epigenetic stress memory" during in vitro conditions causes a chromatin shift that favors the generation of variegated and albino shoots.

  16. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Min [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Chen Ying [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang Chunxia [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang Zijian [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)]. E-mail: wangzj@rcees.ac.cn; Zhu Yongguan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2007-07-15

    In this study, DNA damage to earthworms (Eisenia fetida) after in vivo exposure to contaminated soils was measured by detecting DNA strand breakages (DSBs) and causality was analyzed through fractionation based bioassays. A non-linear dose-response relationship existed between DNA damage and total soil PAHs levels. DNA damage, measured with the comet assay, and its repair process, were observed. To identify the chemical causality, an in vitro comet assay using coelomocytes was subsequently performed on the fractionated organic extracts from soils. The results showed that the PAHs in the soils were responsible for the exerting genotoxic effects on earthworms. When normalized to benzo(a)pyrene toxic equivalent (TEQ{sub BaP}), the saturation dose in the dose-response curve was about 10 ng TEQ{sub BaP} g{sup -1} soil (dw). - A non-linear dose-response relationship exists between earthworm DNA damage, measured with comet assay, and total PAHs levels in soils irrigated by wastewaters.

  17. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. II. Isothermal signal amplification in process of DNA analysis by minisequencing].

    Science.gov (United States)

    Dmitrienko, E V; Khomiakova, E A; Pyshnaia; Bragin, A G; Vedernikov, V E; Pyshnyĭ, D V

    2010-01-01

    The isothermal amplification of reporter signal via limited probe extension (minisequencing) upon hybridization of nucleic acids has been studied. The intensity of reporter signal has been shown to increase due to enzymatic labeling of multiple probes upon consecutive hybridization with one DNA template both in homophase and heterophase assays using various kinds of detection signal: radioisotope label, fluorescent label, and enzyme-linked assay. The kinetic scheme of the process has been proposed and kinetic parameters for each step have been determined. The signal intensity has been shown to correlate with physicochemical characteristics of both complexes: probe/DNA and product/DNA. The maximum intensity has been observed at minimal difference between the thermodynamic stability of these complexes, provided the reaction temperature has been adjusted near their melting temperature values; rising or lowering the reaction temperature reduces the amount of reporting product. The signal intensity has been shown to decrease significantly upon hybridization with the DNA template containing single-nucleotide mismatches. Limited probe extension assay is useful not only for detection of DNA template but also for its quantitative characterization.

  18. Model studies of radiation induced oxidation and reduction processes in DNA

    International Nuclear Information System (INIS)

    Hole, E.O.

    1992-01-01

    The papers presented in this thesis represent the major part of a systematic study of primary and secondary radiation induced damages in DNA. The magnetic resonance techniques EPR, ENDOR and FSE have been the experimental methods used. The study of radical formation in isolated DNA components under different environmental conditions demonstrates certain characteristics of the DNA components which are important in the study of DNA. It has been clearly demonstrated that the electrostatic environment, in particular the hydrogen bond pattern, is a vital factor for the secondary reaction scheme. Even radicals which are found in all related systems seem to be formed by different reaction pathways, depending upon the specific matrix. 92 refs., 2 figs., 6 tabs

  19. DNA-based techniques for authentication of processed food and food supplements.

    Science.gov (United States)

    Lo, Yat-Tung; Shaw, Pang-Chui

    2018-02-01

    Authentication of food or food supplements with medicinal values is important to avoid adverse toxic effects, provide consumer rights, as well as for certification purpose. Compared to morphological and spectrometric techniques, molecular authentication is found to be accurate, sensitive and reliable. However, DNA degradation and inclusion of inhibitors may lead to failure in PCR amplification. This paper reviews on the existing DNA extraction and PCR protocols, and the use of small size DNA markers with sufficient discriminative power for molecular authentication. Various emerging new molecular techniques such as isothermal amplification for on-site diagnosis, next-generation sequencing for high-throughput species identification, high resolution melting analysis for quick species differentiation, DNA array techniques for rapid detection and quantitative determination in food products are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synthesis of nano-bio conjugates for drug delivery systems using gas-liquid interfacial discharge plasmas

    International Nuclear Information System (INIS)

    Kaneko, Toshiro; Chen, Qiang; Hatakeyama, Rikizo

    2012-01-01

    Size-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized by using a pulse driven gas-liquid interfacial discharge plasma (GLIDP) to reduce an aqueous solution of chloroauric acid trihydrate with DNA. The size and the assembly of the AuNPs are found to be easily controlled by changing the DNA concentration in the aqueous solution. The synthesized AuNP-DNA conjugates are forced to be encapsulated into double-walled carbon nanotubes (DWNTs) by superimposing a positive DC voltage on the pulse voltage. The AuNP-DNA-conjugate encapsulated DWNTs can be utilized in drug delivery systems when DNA is used as a drug molecule.

  1. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    Science.gov (United States)

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  2. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  3. Women experiencing the intergenerationality of conjugal violence

    Directory of Open Access Journals (Sweden)

    Gilvânia Patrícia do Nascimento Paixão

    2015-10-01

    Full Text Available Objective: to analyze the family relationship, in childhood and adolescence, of women who experience conjugal violence.Method: qualitative study. Interviews were held with 19 women, who were experiencing conjugal violence, and who were resident in a community in Salvador, Bahia, Brazil. The project was approved by the Research Ethics Committee (N. 42/2011.Results: the data was organized using the Discourse of the Collective Subject, identifying the summary central ideas: they witnessed violence between their parents; they suffered repercussions from the violence between their parents: they were angry about the mother's submission to her partner; and they reproduced the conjugal violence. The discourse showed that the women witnessed, in childhood and adolescence, violence between their parents, and were injured both physically and psychologically. As a result of the mother's submission, feelings of anger arose in the children. However, in the adult phase of their own lives, they noticed that their conjugal life resembled that of their parents, reproducing the violence.Conclusion: investment is necessary in strategies designed to break inter-generational violence, and the health professionals are important in this process, as it is a phenomenon with repercussions in health. Because they work in the Family Health Strategy, which focuses on the prevention of harm and illness, health promotion and interdepartmentality, the nurses are essential in the process of preventing and confronting this phenomenon.

  4. Differential Processing of Low and High LET Radiation Induced DNA Damage: Investigation of Switch from ATM to ATR Signaling

    Science.gov (United States)

    Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.

    2011-01-01

    The members of the phosphatidylinositol kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are directly responsible for the maintenance of genomic integrity by mounting DDR through signaling and facilitating the recruitment of repair factors at the sites of DNA damage along with coordinating the deployment of cell cycle checkpoints to permit repair by phosphorylating Checkpoint kinase Chk1, Chk2 and p53. High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of protons and high energy and charged (HZE) particles from SPE (Solar Particle Event) pose a major health risk for astronauts on their space flight missions. The determination of these risks and the design of potential safeguards require sound knowledge of the biological consequences of lesion induction and the capability of the cells to counter them. We here strive to determine the coordination of ATM and ATR kinases at the break sites directly affecting checkpoint signaling and DNA repair and whether differential processing of breaks induced by low and high LET radiation leads to possible augmentation of swap of these damage sensors at the sites of DNA damage. Exposure of cells to IR triggers rapid autophosphorylation of serine-1981 that causes dimer dissociation and initiates monomer formation of ATM. ATM kinase activity depends on the disruption of the dimer, which allows access and phosphorylation of downstream ATM substrates like Chk2. Evidence suggests that ATM is activated by the alterations in higher-order chromatin structure although direct binding of ATM to DSB ends may be a crucial step in its activation. On the other hand, in case of ATR, RPA (replication protein A)-coated ssDNA (single-stranded DNA) generated as a result of stalled DNA replication or during processing of chromosomal lesions is crucial for the localization of ATR to sites of DNA damage in association with ATR-interacting protein (ATRIP). Although the

  5. Intergenic and intragenic conjugal transfer of multiple antibiotic ...

    African Journals Online (AJOL)

    Conjugation process was conducted to determine the means of transferring ... In this study, it was surprisingly observed that tetracycline resistant gene was ... among pathogenic bacteria, particularly since antibiotics are indiscriminately used in ...

  6. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.

    Science.gov (United States)

    Burnham, Daniel R; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur; Dekker, Cees

    2017-05-05

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments

    Science.gov (United States)

    Focke, Maximilian; Mark, Daniel; Stumpf, Fabian; Müller, Martina; Roth, Günter; Zengerle, Roland; von Stetten, Felix

    2011-06-01

    Two microfluidic cartridges intended for upgrading standard laboratory instruments with automated liquid handling capability by use of centrifugal forces are presented. The first microfluidic cartridge enables purification of DNA from human whole blood and is operated in a standard laboratory centrifuge. The second microfluidic catridge enables genotyping of pathogens by geometrically multiplexed real-time PCR. It is operated in a slightly modified off-the-shelf thermal cycler. Both solutions aim at smart and cost-efficient ways to automate work flows in laboratories. The DNA purification cartridge automates all liquid handling steps starting from a lysed blood sample to PCR ready DNA. The cartridge contains two manually crushable glass ampoules with liquid reagents. The DNA yield extracted from a 32 μl blood sample is 192 +/- 30 ng which corresponds to 53 +/- 8% of a reference extraction. The genotyping cartridge is applied to analyse isolates of the multi-resistant Staphyloccus aureus (MRSA) by real-time PCR. The wells contain pre-stored dry reagents such as primers and probes. Evaluation of the system with 44 genotyping assays showed a 100% specificity and agreement with the reference assays in standard tubes. The lower limit of detection was well below 10 copies of DNA per reaction.

  8. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  9. Acceleration of incubation processes in DNA bio chips by magnetic particles

    International Nuclear Information System (INIS)

    Heer, Rudolf; Eggeling, Moritz; Schotter, Joerg; Noehammer, Christa; Pichler, Rudolf; Mansfeld, Markus; Brueckl, Hubert

    2007-01-01

    In classical DNA chip analysis, the target DNA moves by diffusion and Brownian motion only. We introduce a system for enhancing the signals and reducing the hybridization times of bio chips. It allows active agitation within the hybridization buffer by controlled movement of magnetic particles within the analyte solution. First results show that the system easily achieves specific fluorescent signals about four times higher than the ones obtained by a referencing standard procedure within the same hybridization time, while unspecific signals remain unchanged. The device can easily be applied to existing bio chip applications and allows universal operation in the field of molecular diagnostics

  10. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    Directory of Open Access Journals (Sweden)

    Sujiet Puthenveetil

    Full Text Available Antibody drug conjugates (ADCs are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  11. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate.

    Science.gov (United States)

    Puthenveetil, Sujiet; He, Haiyin; Loganzo, Frank; Musto, Sylvia; Teske, Jesse; Green, Michael; Tan, Xingzhi; Hosselet, Christine; Lucas, Judy; Tumey, L Nathan; Sapra, Puja; Subramanyam, Chakrapani; O'Donnell, Christopher J; Graziani, Edmund I

    2017-01-01

    Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.

  12. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    Directory of Open Access Journals (Sweden)

    Mentovich Elad D

    2012-05-01

    Full Text Available Abstract Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC, which creates an all-organic engineered network.

  13. DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.

    Science.gov (United States)

    Mentovich, Elad D; Livanov, Konstantin; Prusty, Deepak K; Sowwan, Mukules; Richter, Shachar

    2012-05-30

    One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.

  14. Synthesis of titanium oxide nanoparticles using DNA-complex as template for solution-processable hybrid dielectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.C. [Center for Sustainable Materials Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, OR (United States); Mejia, I.; Murphy, J.; Quevedo, M. [Department of Materials Science and Engineering, University of Texas at Dallas, Dallas, TX (United States); Garcia, P.; Martinez, C.A. [Engineering and Technology Institute, Autonomous University of Ciudad Juarez, Ciudad Juarez, Chihuahua (Mexico)

    2015-09-15

    Highlights: • We developed a synthesis method to produce TiO{sub 2} nanoparticles using a DNA complex. • The nanoparticles were anatase phase (~6 nm diameter), and stable in alcohols. • Composites showed a k of 13.4, 4.6 times larger than the k of polycarbonate. • Maximum processing temperature was 90 °C. • Low temperature enables their use in low-voltage, low-cost, flexible electronics. - Abstract: We report the synthesis of TiO{sub 2} nanoparticles prepared by the hydrolysis of titanium isopropoxide (TTIP) in the presence of a DNA complex for solution processable dielectric composites. The nanoparticles were incorporated as fillers in polycarbonate at low concentrations (1.5, 5 and 7 wt%) to produce hybrid dielectric films with dielectric constant higher than thermally grown silicon oxide. It was found that the DNA complex plays an important role as capping agent in the formation and suspension stability of nanocrystalline anatase phase TiO{sub 2} at room temperature with uniform size (∼6 nm) and narrow distribution. The effective dielectric constant of spin-cast polycarbonate thin-films increased from 2.84 to 13.43 with the incorporation of TiO{sub 2} nanoparticles into the polymer host. These composites can be solution processed with a maximum temperature of 90 °C and could be potential candidates for its application in low-cost macro-electronics.

  15. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    Science.gov (United States)

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  16. Peritoneal Cell-free DNA: an innovative method for determining acute cell damage in peritoneal membrane and for monitoring the recovery process after peritonitis.

    Science.gov (United States)

    Virzì, Grazia Maria; Milan Manani, Sabrina; Brocca, Alessandra; Cantaluppi, Vincenzo; de Cal, Massimo; Pastori, Silvia; Tantillo, Ilaria; Zambon, Roberto; Crepaldi, Carlo; Ronco, Claudio

    2016-02-01

    Cell-free DNA (cfDNA) is present in the peritoneal effluent of stable peritoneal dialysis (PD) patients, but there are no data on cfDNA in PD patients with peritonitis. We investigated the variation of peritoneal cfDNA levels subsequent to peritonitis in PD patients. We enrolled 53 PD patients: 30 without any history of systemic inflammation or peritonitis in the last 3 months (group A) and 23 with acute peritonitis (group B). CfDNA was quantified in the peritoneal effluent. Peritoneal samples on days 1, 3, 10, 30 and until day 120 from the start of peritonitis were collected for white blood cells (WBC) count and cfDNA evaluation in group B. Quantitative analysis of cfDNA showed significantly higher levels in group B on day 1, 3, 10 and 30 compared with group A (p peritoneal cfDNA levels tended to progressively decline during follow-up of peritonitis. From this decreasing curve, we estimated that 49 days are necessary to reach the value of 51 genome equivalents (GE)/ml (75th percentile in controls) and 63 days to reach 31 GE/ml (median). Our results demonstrate that cfDNA increases in peritoneal effluent of PD patients with peritonitis and tends to progressively decline in step with peritonitis resolution and membrane repair process. Peritoneal cfDNA quantification could be an innovative method to determine acute damage and an inverse index of the repair process.

  17. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  18. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer.

    Science.gov (United States)

    Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V

    2017-08-04

    Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  20. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  1. A Novel Property of DNA – As a Bioflotation Reagent in Mineral Processing

    Science.gov (United States)

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed. PMID:22768298

  2. A novel property of DNA - as a bioflotation reagent in mineral processing.

    Science.gov (United States)

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2012-01-01

    Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  3. A novel property of DNA - as a bioflotation reagent in mineral processing.

    Directory of Open Access Journals (Sweden)

    Balasubramanian Vasanthakumar

    Full Text Available Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species. The key constituent primarily responsible for the flotation of sphalerite has been identified as DNA, which functions as a bio-collector. Furthermore, using reconstitution studies, the obligatory need for the presence of non-DNA components as bio-depressants for galena has been demonstrated. A probable model involving these entities in the selective flotation of sphalerite from the mineral mixture has been discussed.

  4. Cruciform structures are a common DNA feature important for regulating biological processes

    Czech Academy of Sciences Publication Activity Database

    Brázda, Václav; Laister, R.C.; Jagelská, Eva; Arrowsmith, Ch.

    2011-01-01

    Roč. 12, č. 33 (2011), s. 1-16 ISSN 1471-2199 R&D Projects: GA ČR(CZ) GAP301/10/1211; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cruciform structure * inverted repeat * protein- DNA binding Subject RIV: BO - Biophysics Impact factor: 2.857, year: 2011

  5. DNA damage by X-rays and their impact on replication processes

    International Nuclear Information System (INIS)

    Parplys, Ann Christin; Petermann, Eva; Petersen, Cordula; Dikomey, Ekkehard; Borgmann, Kerstin

    2012-01-01

    Background: Replication-dependent radiosensitization of tumors ranks among the most promising tools for future improvements in tumor therapy. However, cell cycle checkpoint signaling during S phase is a key for maintaining genomic stability after ionizing irradiation allowing DNA damage repair by stabilizing replication forks, inhibiting new origin firing and recruiting DNA repair proteins. As the impact of the different types of DNA damage induced by ionizing radiation on replication fork functionality has not been investigated, this study was performed in tumor cells treated with various agents that induce specific DNA lesions. Methods: U2OS cells were exposed to methyl methanesulfonate (MMS) to induce base damage, low or high concentrations of hydrogen peroxide for the induction of SSBs, Topotecan to induce DSBs at replication, Mitomycin C (MMC) to induce interstrand cross-links or ionizing irradiation to analyze all damages. Chk1 phosphorylation, origin firing and replication fork progression, and cell cycle distribution were analyzed. Results: In our system, the extent of Chk1 phosphorylation was dependent on the type of damage induced and prolonged Chk1 phosphorylation correlated with the inhibition of replication initiation. Ionizing radiation, high concentrations of hydrogen peroxide, and Topotecan affected replication elongation much more strongly that the other agents. Almost all agents induced a slight increase in the S phase population but subsequent G2 arrest was only observed in response to those agents that strongly inhibited replication elongation and caused prolonged Chk1 phosphorylation. Conclusions: Our data suggest that to improve radiotherapy, radiosensitivity in S phase could be increased by combining irradiation with agents that induce secondary DSB or inhibit checkpoint signaling, such as inhibitors of PARP or Chk1.

  6. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  7. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    Science.gov (United States)

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  8. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El‐Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-01-01

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  9. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    Directory of Open Access Journals (Sweden)

    Jana Sachsenröder

    Full Text Available BACKGROUND: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2 with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9% and mammalian viruses (23.9%; 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV, represents a novel pig virus. CONCLUSION: The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures

  10. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    Science.gov (United States)

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  11. Conjugation in Escherichia coli

    Science.gov (United States)

    Boyer, Herbert

    1966-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905

  12. Electrochromic in conjugated polymers

    International Nuclear Information System (INIS)

    Picado Valenzuela, Alfredo

    2007-01-01

    This revision considered object the description of one of the materials with the greatest potential in the field of electrochromic (mainly in the visible region): the conjugated polymers (CP), area of enormous potential both now and in a short time ahead. The CP are insulating materials and organic semiconductors in a state not doped. They can be doped positively or negatively being observed a significant increase in the conductivity and being generated a color change in these materials. The understanding of how optical properties vary based on the chemical structure of the polymer or its mixtures and more precisely of the alternatives that can be entered into the conjugated system or π system to obtain a material that besides to be flexible, environmentally stable, presents the colored states. The revision was centred chiefly in the polypyrrole (Ppy), the polythiophene (PTh) and their derivatives such as poly (3.4-ethylenedioxythiophene) (PEDOT). The advantage of using monomers with variable structure, to adjust the composition of the copolymer, or to blend with the PC, allows to obtain a variety of colored states that can be modulated through the visible spectrum and even with applications to wavelengths outside of this region. Because the PC presented at least two different colored states can be varied continuously as a function of the voltage applied. In some cases, they may submit multicoloured statements, which offers a range of possibilities for their application in flexible electronic devices type screens and windows. Applications include smart windows, camouflage clothing and data screens. This type of material is emerging as one of the substitutes of the traditional inorganic semiconductor, with the advantage of its low cost, high flexibility and the possibility to generate multiple colors through the handling of the monomers in the structure and control of energy of his band gap. (author) [es

  13. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Czech Academy of Sciences Publication Activity Database

    Reshetnikov, R.V.; Šponer, Jiří; Rassokhina, O.I.; Kopylov, A.M.; Tsvetkov, P.O.; Makarov, A.A.; Golovin, A.V.

    2011-01-01

    Roč. 39, č. 22 (2011), s. 9789-9802 ISSN 0305-1048 R&D Projects: GA AV ČR(CZ) IAA400040802; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GAP208/11/1822; GA MŠk(CZ) LC06030 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : QM/MM * quadruplex DNA * molecular dynamics simulation Subject RIV: BO - Biophysics Impact factor: 8.026, year: 2011

  14. How a Small Family of Yeast IDPs Control Complicated Processes Related to DNA Replication

    DEFF Research Database (Denmark)

    Marabini, Riccardo

    Ribonucleotide reductase (RNR) and proliferating cell nuclear antigen (PCNA) are two essential proteins involved in DNA replication. RNR catalyzes the last and rate limiting step of the deoxyribonucleotide biosynthetic pathway. The dysregulation of RNR has been related to higher mutation rate...... characterized in budding and fission yeast. Within this protein family Dif1 (from S. cerevisiae) and Spd1 (from S. pombe) were analyzed in this study. These proteins were previously found to interact with and regulate the activity of RNR and Spd1 was also linked to PCNA dependent signaling for degradation...

  15. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    Science.gov (United States)

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  16. Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Erkan T., E-mail: erkantur@metu.edu.tr; Tuzlakoglu, Kadriye, E-mail: kadriye@dep.uminho.pt; Mano, Joao F., E-mail: jmano@dep.uminho.pt; Reis, Rui L., E-mail: rgreis@dep.uminho.pt

    2012-08-01

    The objective of this study was to investigate the influence of silk fibroin and oxidized starch conjugation on the enzymatic degradation behavior and the cytocompatability of chitosan based biomaterials. The tensile stress of conjugate membranes, which was at 50 Megapascal (MPa) for the lowest fibroin and starch composition (10 weight percent (wt.%)), was decreased significantly with the increased content of fibroin and starch. The weight loss of conjugates in {alpha}-amylase was more notable when the starch concentration was the highest at 30 wt.%. The conjugates were resistant to the degradation by protease and lysozyme except for the conjugates with the lowest starch concentration. After 10 days of cell culture, the proliferation of osteoblast-like cells (SaOS-2) was stimulated significantly by higher fibroin compositions and the DNA synthesis on the conjugate with the highest fibroin (30 wt.%) was about two times more compared to the native chitosan. The light microscopy and the image analysis results showed that the cell area and the lengths were decreased significantly with higher fibroin/chitosan ratio. The study proved that the conjugation of fibroin and starch with the chitosan based biomaterials by the use of non-toxic reductive alkylation crosslinking significantly improved the cytocompatibility and modulated the biodegradation, respectively. - Highlights: Black-Right-Pointing-Pointer Silk fibroin, starch and chitosan conjugates were prepared by reductive alkylation. Black-Right-Pointing-Pointer The enzymatic biodegradation and the cytocompatibility of conjugates were tested. Black-Right-Pointing-Pointer The conjugate with 30% starch composition was degraded by {alpha}-amylase significantly. Black-Right-Pointing-Pointer Higher starch composition in conjugates prevented protease and lysozyme degradation. Black-Right-Pointing-Pointer Fibroin incorporation effectively increased the cell proliferation of conjugates.

  17. Integration of G-quadruplex and DNA-templated Ag NCs for nonarithmetic information processing.

    Science.gov (United States)

    Gao, Ru-Ru; Yao, Tian-Ming; Lv, Xiao-Yan; Zhu, Yan-Yan; Zhang, Yi-Wei; Shi, Shuo

    2017-06-01

    To create sophisticated molecular logic circuits from scratch, you may not believe how common the building blocks can be and how diverse and powerful such circuits can be when scaled up. Using the two simple building blocks of G-quadruplex and silver nanoclusters (Ag NCs), we experimentally construct a series of multifunctional, label-free, and multi-output logic circuits to perform nonarithmetic functions: a 1-to-2 decoder, a 4-to-2 encoder, an 8-to-3 encoder, dual transfer gates, a 2 : 1 multiplexer, and a 1 : 2 demultiplexer. Moreover, a parity checker which is capable of identifying odd and even numbers from natural numbers is constructed conceptually. Finally, a multi-valued logic gate (ternary inhibit gate) is readily achieved by taking this DNA/Ag NC system as a universal platform. All of the above logic circuits share the same building blocks, indicating the great prospects of the assembly of nanomaterials and DNA for biochemical logic devices. Considering its biocompatibility, the novel prototypes developed here may have potential applications in the fields of biological computers and medical diagnosis and serve as a promising proof of principle in the not-too-distant future.

  18. Block-conjugate-gradient method

    International Nuclear Information System (INIS)

    McCarthy, J.F.

    1989-01-01

    It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum

  19. Discovery of a conjugative megaplasmid in Bifidobacterium breve.

    Science.gov (United States)

    Bottacini, Francesca; O'Connell Motherway, Mary; Casey, Eoghan; McDonnell, Brian; Mahony, Jennifer; Ventura, Marco; van Sinderen, Douwe

    2015-01-01

    Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Discovery of a Conjugative Megaplasmid in Bifidobacterium breve

    Science.gov (United States)

    Bottacini, Francesca; O'Connell Motherway, Mary; Casey, Eoghan; McDonnell, Brian; Mahony, Jennifer; Ventura, Marco

    2014-01-01

    Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains. PMID:25326305

  1. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Science.gov (United States)

    Poulin-Laprade, Dominic; Carraro, Nicolas; Burrus, Vincent

    2015-01-01

    Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs) of the SXT/R391 family (SRIs) and IncA/C conjugative plasmids (ACPs) are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e., SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs) that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  2. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids.

    Directory of Open Access Journals (Sweden)

    Dominic ePoulin-Laprade

    2015-08-01

    Full Text Available Nowadays, healthcare systems are challenged by a major worldwide drug resistance crisis caused by the massive and rapid dissemination of antibiotic resistance genes and associated emergence of multidrug resistant pathogenic bacteria, in both clinical and environmental settings. Conjugation is the main driving force of gene transfer among microorganisms. This mechanism of horizontal gene transfer mediates the translocation of large DNA fragments between two bacterial cells in direct contact. Integrative and conjugative elements (ICEs of the SXT/R391 family (SRIs and IncA/C conjugative plasmids (ACPs are responsible for the dissemination of a broad spectrum of antibiotic resistance genes among diverse species of Enterobacteriaceae and Vibrionaceae. The biology, diversity, prevalence and distribution of these two families of conjugative elements have been the subject of extensive studies for the past 15 years. Recently, the transcriptional regulators that govern their dissemination through the expression of ICE- or plasmid-encoded transfer genes have been described. Unrelated repressors control the activation of conjugation by preventing the expression of two related master activator complexes in both types of elements, i.e. SetCD in SXT/R391 ICEs and AcaCD in IncA/C plasmids. Finally, in addition to activating ICE- or plasmid-borne genes, these master activators have been shown to specifically activate phylogenetically unrelated mobilizable genomic islands (MGIs that also disseminate antibiotic resistance genes and other adaptive traits among a plethora of pathogens such as Vibrio cholerae and Salmonella enterica.

  3. Conjugated Polymers for Flexible Energy Harvesting and Storage.

    Science.gov (United States)

    Zhang, Zhitao; Liao, Meng; Lou, Huiqing; Hu, Yajie; Sun, Xuemei; Peng, Huisheng

    2018-03-01

    Since the discovery of conjugated polymers in the 1970s, they have attracted considerable interest in light of their advantages of having a tunable bandgap, high electroactivity, high flexibility, and good processability compared to inorganic conducting materials. The above combined advantages make them promising for effective energy harvesting and storage, which have been widely studied in recent decades. Herein, the key advancements in the use of conjugated polymers for flexible energy harvesting and storage are reviewed. The synthesis, structure, and properties of conjugated polymers are first summarized. Then, their applications in flexible polymer solar cells, thermoelectric generators, supercapacitors, and lithium-ion batteries are described. The remaining challenges are then discussed to highlight the future direction in the development of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    Science.gov (United States)

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.

  5. Processing of UV-induced DNA damage in diverse biological systems

    International Nuclear Information System (INIS)

    Galloway, A.M.

    1992-01-01

    A novel protocol has been developed allowing direct evaluation and accurate quantitation of UV lesions contained with both genomic DNA and the small oligonucleotides excised by a living cell during nucleotide excision repair. Using this methodology, the repair capacity of normal and UV-sensitive cells of human, Chinese hamster, and Escherichia coli origin, has been assessed. Several conclusions have been reached: (1) severage of the interpyrimidine phosphodiester linkage of cyclobutane dimers appears to be an evolutionarily conserved phenomenon; (2) the kinetics of cyclobutane dimer repair differ markedly from both (6-4) photoproduct and TA* lesion removal; (3) the ability to excise cyclobutane dimers is independent of (6-4) photoproduct repair capacity, suggesting that the lesions are not repaired/recognized by identical mechanisms; (4) fibroblast strains representing the eight xeroderma pigmentosum complementation groups each show a unique proficiency/deficiency to repair the different photolesions under study, implicating that a defect in a different locus underlies each genetic form of this disease; (5) the repair deficiency in UV-sensitive strains of trichothiodystrophy appears to be completely unrelated to that of non-complementing XP-D cells. To allow direct assessment of an IDP-altered photoproduct, substrates have been constructed which contain, at a defined dithymidine site, no lesion, a conventional cyclobutane dimer, or a cyclobutane dimer modified by severage of the intradimer phosphodiester bond. Bacteriophage T4 UV endonuclease has no activity towards a modified lesion, questioning the interpretation of experiments which utilize the strand-incising activity of this enzyme to monitor repair. Furthermore, although this altered lesion acts as a block to E. coli DNA polymerase I, it allows SP6 RNA polymerase to bypass the otherwise RNA polymerase-blocking lesion

  6. Entanglements in Conjugated Polymers

    Science.gov (United States)

    Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph

    Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.

  7. Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Huss, Hans Henrik; Ojeniyi, B.

    2001-01-01

    and environment could not be excluded. Contamination of the product occurred in specific areas (the brining and slicing areas). In plant I, the same RAPD type (RAPD type 12) was found over a 4-year period, indicating that an established in-house flora persisted and was not eliminated by routine hygienic......, monocytogenes). A total of 429 strains of L. monocytogenes were subsequently compared by random amplified polymorphic DNA (RAPD) profiling, and 55 different RAPD types were found. The RAPD types detected on the products were identical to types found on the processing equipment and in the processing environment...... procedures. In plant II, where the prevalence of L, monocytogenes was much tower, no RAPD type persisted over long periods of time, and several different L, monocytogenes RAPD types were isolated. This indicates that persistent strains may be avoided by rigorous cleaning and sanitation; however, due...

  8. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  9. Recombinogenic engineering of conjugative plasmids with fluorescent marker cassettes

    DEFF Research Database (Denmark)

    Reisner, A.; Molin, Søren; Zechner, E.L.

    2002-01-01

    An efficient approach for the insertion of fluorescent marker genes with sequence specificity into conjugative plasmids in Escherichia coli is described. For this purpose, homologous recombination of linear double-stranded targeting DNA was mediated by the bacteriophage lambda recombination...... resistance genes and fluorescent markers. The choice of 5' non-homologous extensions in primer pairs used for amplifying the marker cassettes determines the site specificity of the targeting DNA. This methodology is applicable to the modification of all plasmids that replicate in E coli and is not restricted...

  10. Structural Determinants of Photoreactivity of Triplex Forming Oligonucleotides Conjugated to Psoralens

    Science.gov (United States)

    Krishnan, Rajagopal; Oh, Dennis H.

    2010-01-01

    Triplex-forming oligonucleotides (TFOs) with both DNA and 2′-O-methyl RNA backbones can direct psoralen photoadducts to specific DNA sequences. However, the functional consequences of these differing structures on psoralen photoreactivity are unknown. We designed TFO sequences with DNA and 2′-O-methyl RNA backbones conjugated to psoralen by 2-carbon linkers and examined their ability to bind and target damage to model DNA duplexes corresponding to sequences within the human HPRT gene. While TFO binding affinity was not dramatically affected by the type of backbone, psoralen photoreactivity was completely abrogated by the 2′-O-methyl RNA backbone. Photoreactivity was restored when the psoralen was conjugated to the RNA TFO via a 6-carbon linker. In contrast to the B-form DNA of triplexes formed by DNA TFOs, the CD spectra of triplexes formed with 2′-O-methyl RNA TFOs exhibited features of A-form DNA. These results indicate that 2′-O-methyl RNA TFOs induce a partial B-to-A transition in their target DNA sequences which may impair the photoreactivity of a conjugated psoralen and suggest that optimal design of TFOs to target DNA damage may require a balance between binding ability and drug reactivity. PMID:20725628

  11. Repercussions of imprisonment for conjugal violence: discourses of men

    Directory of Open Access Journals (Sweden)

    Anderson Reis de Sousa

    Full Text Available ABSTRACT Objective: to know the consequences that men experience related to incarceration by conjugal violence. Methods: qualitative study on 20 men in jail and indicted in criminal processes related to conjugal violence in a Court specialized in Family and Domestic Violence against women. The interviews were classified based on Collective Subject Discourse method, using NVIVO(r software. Results: the collective discourse shows that the experience of preventive imprisonment starts a process of family dismantling, social stigma, financial hardship and psycho-emotional symptoms such as phobia, depression, hypertension, and headaches. Conclusion: due to the physical, mental and social consequences of the conjugal violence-related imprisonment experience, it is urgent to look carefully into the somatization process as well as to the prevention strategies regarding this process.

  12. Designer DNA Architectures: Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Arun Richard Chandrasekaran

    2016-04-01

    Full Text Available DNA has been used as a material for the construction of nanoscale objects. These nanostructures are programmable and allow the conjugation of biomolecular guests to improve their functionality. DNA nanostructures display a wide variety of characteristics, such as cellular permeabil‐ ity, biocompatibility and stability, and responsiveness to external stimuli, making them excellent candidates for applications in nanomedicine.

  13. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  14. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  15. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication.

    Science.gov (United States)

    Demirhan, Yasemin; Ulca, Pelin; Senyuva, Hamide Z

    2012-03-01

    A commercially available real-time PCR, based on a multi-copy target cytochrome b (cyt b) using porcine specific primers, has been validated for the Halal/Kosher authentication of gelatine. Extraction and purification of DNA from gelatine were successfully achieved using the SureFood® PREP Animal system, and real-time PCR was carried out using SureFood® Animal ID Pork Sens kit. The minimum level of adulteration that could be detected was 1.0% w/w for marshmallows and gum drops. A small survey was undertaken of processed food products such as gum drops, marshmallows and Turkish delight, believed to contain gelatine. Of fourteen food products from Germany, two samples were found to contain porcine gelatine, whereas of twenty-nine samples from Turkey twenty-eight were negative. However, one product from Turkey contained porcine DNA and thus was not Halal, and neither was the use of porcine gelatine indicated on the product label. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Synthesis and evaluation of sequence-specific DNA alkylating agents: effect of alkylation subunits.

    Science.gov (United States)

    Shimizu, Tatsuhiko; Sasaki, Shunta; Minoshima, Masafumi; Shinohara, Ken-ichi; Bando, Toshikazu; Sugiyama, Hiroshi

    2006-01-01

    We have demonstrated that hairpin pyrrole (Py)- imidazole (Im) polyamide-CBI conjugates selectively alkylate predetermined sequences. In this study, we investigated the effect of alkylation subunits, for example conjugates 1-4 with three types of DNA alkylating units, and Py-Im polyamides with indole linker. Conjugate 3 and 4 selectively alkylated the predetermined sequences as described previously, while conjugates 1 and 2 alkylate at mismatched sites.

  17. Chemical de-conjugation for investigating the stability of small molecule drugs in antibody-drug conjugates.

    Science.gov (United States)

    Chen, Tao; Su, Dian; Gruenhagen, Jason; Gu, Christine; Li, Yi; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-05

    Antibody-drug conjugates (ADCs) offer new therapeutic options for advanced cancer patients through precision killing with fewer side effects. The stability and efficacy of ADCs are closely related, emphasizing the urgency and importance of gaining a comprehensive understanding of ADC stability. In this work, a chemical de-conjugation approach was developed to investigate the in-situ stability of the small molecule drug while it is conjugated to the antibody. This method involves chemical-mediated release of the small molecule drug from the ADC and subsequent characterization of the released small molecule drug by HPLC. The feasibility of this technique was demonstrated utilizing a model ADC containing a disulfide linker that is sensitive to the reducing environment within cancer cells. Five reducing agents were screened for use in de-conjugation; tris(2-carboxyethyl) phosphine (TCEP) was selected for further optimization due to its high efficiency and clean impurity profile. The optimized de-conjugation assay was shown to have excellent specificity and precision. More importantly, it was shown to be stability indicating, enabling the identification and quantification of the small molecule drug and its degradation products under different formulation pHs and storage temperatures. In summary, the chemical de-conjugation strategy demonstrated here offers a powerful tool to assess the in-situ stability of small molecule drugs on ADCs and the resulting information will shed light on ADC formulation/process development and storage condition selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    The application of capillary gas chromatography-mass spectrometry (GC-MS) to the chemical characterization of radiation-induced base products of calf thymus DNA is presented. Samples of calf thymus DNA irradiated in N 2 O-saturated aqueous solution were hydrolyzed with HCOOH, trimethylsilylated, and subjected to GC-MS analysis using a fused-silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC properties and easily interpretable mass spectra; an intense molecular ion (M+.) and a characteristic (M-CH 3 )+ ion were observed. The complementary use of t-butyldimethylsilyl derivatives was also demonstrated. These derivatives provided an intense characteristic (M-57)+ ion, which appeared as either the base peak or the second most intense ion in the spectra. All mass spectra obtained are discussed

  19. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  20. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  1. Morphological Priming by Itself: A Study of Portuguese Conjugations

    Science.gov (United States)

    Verissimo, Joao; Clahsen, Harald

    2009-01-01

    Does the language processing system make use of abstract grammatical categories and representations that are not directly visible from the surface form of a linguistic expression? This study examines stem-formation processes and conjugation classes, a case of "pure" morphology that provides insight into the role of grammatical structure in…

  2. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    Science.gov (United States)

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  3. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  4. Systemic aspects of conjugal resilience in couples with a child facing cancer and marrow transplantation.

    Science.gov (United States)

    Martin, Julie; Péloquin, Katherine; Vachon, Marie-France; Duval, Michel; Sultan, Serge

    The negative impact of paediatric cancer on parents is well known and is even greater when intensive treatments are used. This study aimed to describe how couples whose child has received a transplant for the treatment of leukaemia view conjugal resilience and to evaluate the role of we-ness as a precursor of conjugal adjustment. Four parental couples were interviewed. Interviews were analysed in two ways: inductive thematic analysis and rating of verbal content with the We-ness Coding Scale . Participants report that conjugal resilience involves the identification of the couple as a team and cohesion in the couple. Being a team generates certain collaborative interactions that lead to conjugal resilience. A sense of we-ness in parents is associated with fluctuation in the frequency of themes. Participants' vision of conjugal resilience introduced novel themes. The sense of we-ness facilitates cohesion and the process of conjugal resilience.

  5. Systemic aspects of conjugal resilience in couples with a child facing cancer and marrow transplantation

    Directory of Open Access Journals (Sweden)

    Julie Martin

    2016-09-01

    Full Text Available Introduction: The negative impact of paediatric cancer on parents is well known and is even greater when intensive treatments are used. This study aimed to describe how couples whose child has received a transplant for the treatment of leukaemia view conjugal resilience and to evaluate the role of we-ness as a precursor of conjugal adjustment. Methods: Four parental couples were interviewed. Interviews were analysed in two ways: inductive thematic analysis and rating of verbal content with the We-ness Coding Scale. Results: Participants report that conjugal resilience involves the identification of the couple as a team and cohesion in the couple. Being a team generates certain collaborative interactions that lead to conjugal resilience. A sense of we-ness in parents is associated with fluctuation in the frequency of themes. Discussion: Participants’ vision of conjugal resilience introduced novel themes. The sense of we-ness facilitates cohesion and the process of conjugal resilience.

  6. Design and biological activity of β-sheet breaker peptide conjugates

    International Nuclear Information System (INIS)

    Rocha, Sandra; Cardoso, Isabel; Boerner, Hans; Pereira, Maria Carmo; Saraiva, Maria Joao; Coelho, Manuel

    2009-01-01

    The sequence LPFFD (iAβ 5 ) prevents amyloid-β peptide (Aβ) fibrillogenesis and neurotoxicity, hallmarks of Alzheimer's disease (AD), as previously demonstrated. In this study iAβ 5 was covalently linked to poly(ethylene glycol) (PEG) and the activity of conjugates was assessed and compared to the activity of the peptide alone by in vitro studies. The conjugates were characterized by MALDI-TOF. Competition binding assays established that conjugates retained the ability to bind Aβ with similar strength as iAβ 5 . Transmission electron microscopy analysis showed that iAβ 5 conjugates inhibited amyloid fibril formation, which is in agreement with binding properties observed for the conjugates towards Aβ. The conjugates were also able to prevent amyloid-induced cell death, as evaluated by activation of caspase 3. These results demonstrated that the biological activity of iAβ 5 is not affected by the pegylation process.

  7. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    Science.gov (United States)

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    Light-harvesting complexes collect light energy and deliver it by a cascade of energy and electron transfer processes to the reaction center where charge separation leads to storage as chemical energy. The design of artificial light-harvesting assemblies faces enormous challenges because several antenna chromophores need to be kept in close proximity but self-quenching needs to be avoided. Double stranded DNA as a supramolecular scaffold plays a promising role due to its characteristic structural properties. Automated DNA synthesis allows incorporation of artificial chromophore-modified building blocks, and sequence design allows precise control of the distances and orientations between the chromophores. The helical twist between the chromophores, which is induced by the DNA framework, controls energy and electron transfer and thereby reduces the self-quenching that is typically observed in chromophore aggregates. This Account summarizes covalently multichromophore-modified DNA and describes how such multichromophore arrays were achieved by Watson-Crick-specific and DNA-templated self-assembly. The covalent DNA systems were prepared by incorporation of chromophores as DNA base substitutions (either as C-nucleosides or with acyclic linkers as substitutes for the 2'-deoxyribofuranoside) and as DNA base modifications. Studies with DNA base substitutions revealed that distances but more importantly relative orientations of the chromophores govern the energy transfer efficiencies and thereby the light-harvesting properties. With DNA base substitutions, duplex stabilization was faced and could be overcome, for instance, by zipper-like placement of the chromophores in both strands. For both principal structural approaches, DNA-based light-harvesting antenna could be realized. The major disadvantages, however, for covalent multichromophore DNA conjugates are the poor yields of synthesis and the solubility issues for oligonucleotides with more than 5-10 chromophore

  8. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Tokuyama, Yuka; Terato, Hiroaki; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira

    2015-01-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm -1 , respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. (author)

  9. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    Science.gov (United States)

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be

  10. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate......, prior to assaying for the residual presence of the handler's DNA. Surprisingly, although our results suggest that a large proportion of the teeth were contaminated with multiple sources of human DNA prior to our investigation, we were unable to contaminate the samples with further human DNA. One...

  11. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins.

    Science.gov (United States)

    Johnson, E M; Schnabelrauch, L S; Sears, B B

    1991-01-01

    Immunoblotting of a chloroplast mutant (pm7) of Oenothera showed that three proteins, cytochrome f and the 23 kDa and 16 kDa subunits of the oxygen-evolving subcomplex of photosystem II, were larger than the corresponding mature proteins of the wild type and, thus, appear to be improperly processed in pm7. The mutant is also chlorotic and has little or no internal membrane development in the plastids. The improperly processed proteins, and other proteins that are completely missing, represent products of both the plastid and nuclear genomes. To test for linkage of these defects, a green revertant of pm7 was isolated from cultures in which the mutant plastids were maintained in a nuclear background homozygous for the plastome mutator (pm) gene. In this revertant, all proteins analyzed co-reverted to the wild-type condition, indicating that a single mutation in a plastome gene is responsible for the complex phenotype of pm7. These results suggest that the defect in pm7 lies in a gene that affects a processing protease encoded in the chloroplast genome.

  12. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  13. Principles of ubiquitin and SUMO modifications in DNA repair

    NARCIS (Netherlands)

    Bergink, Steven; Jentsch, Stefan

    2009-01-01

    With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are

  14. Unique Helicase Determinants in the Essential Conjugative TraI Factor from Salmonella enterica Serovar Typhimurium Plasmid pCU1

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Krystle J.; Nash, Rebekah P.; Redinbo, Mathew R. (UNC)

    2014-06-16

    The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.

  15. An Inquiry-Based Laboratory Module to Promote Understanding of the Scientific Method and Bacterial Conjugation

    Directory of Open Access Journals (Sweden)

    Melanie B. Berkmen

    2014-08-01

    Full Text Available Students are engaged and improve their critical thinking skills in laboratory courses when they have the opportunity to design and conduct inquiry-based experiments that generate novel results. A discovery-driven project for a microbiology, genetics, or multidisciplinary research laboratory course was developed to familiarize students with the scientific method. In this multi-lab module, students determine whether their chosen stress conditions induce conjugation and/or cell death of the model BSL-1 Gram-positive bacterium Bacillus subtilis. Through consultation of the primary literature, students identify conditions or chemicals that can elicit DNA damage, the SOS response, and/or cellular stress.  In groups, students discuss their selected conditions, develop their hypotheses and experimental plans, and formulate their positive and negative controls. Students then subject the B. subtilis donor cells to the stress conditions, mix donors with recipients to allow mating, and plate serial dilutions of the mixtures on selective plates to measure how the treatments affect conjugation frequency and donor cell viability.  Finally, students analyze and discuss their collective data in light of their controls. The goals of this module are to encourage students to be actively involved in the scientific process while contributing to our understanding of the conditions that stimulate horizontal gene transfer in bacteria.

  16. Conjugated Polymers Atypically Prepared in Water

    Science.gov (United States)

    Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.

    2010-01-01

    Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869

  17. Four-wave mixing and phase conjugation in plasmas

    International Nuclear Information System (INIS)

    Federici, J.F.

    1989-01-01

    Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma

  18. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam.

    Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  19. Optical observations geomagnetically conjugate to sprite-producing lightning discharges

    Directory of Open Access Journals (Sweden)

    R. A. Marshall

    2005-09-01

    Full Text Available Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP was deployed at the South African Astronomical Observatory (SAAO, near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam. Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques

  20. Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging.

    Science.gov (United States)

    Wang, Wenjuan; Cai, Guangyan; Chen, Xiangmei

    2017-09-13

    Dietary restriction (DR) has multiple and essential effects in protecting against DNA damage in model organisms. Persistent DNA damage plays a central role in the process of aging. Senescence-associated secretory phenotype (SASP), as a product of cellular aging, can accelerate the process of cellular senescence as a feedback. In this study, we directly observed whether a DR of 30% for 6months in aged rats could retard SASP by delaying the progression of DNA damage and also found the specific mechanism. The results revealed that a 30% DR could significantly improve renal pathology and some metabolic characteristics. The biomarkers and products of DNA damage were decreased in the process of renal aging on a 30% DR. A series of SASP, notably cytokine, chemokine, and growth factor, were obviously reduced by DR during renal aging. The phosphorylation levels of NF-κB and IκBα in aged kidneys of DR group were markedly reduced. These findings suggest that a 30% DR for 6months can delay renal aging and reduce the accumulation of SASP by retarding the progression of DNA damage and decreasing the transcription activity of NF-κB, thus providing a target to delay renal aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Detection of genetically modified DNA in fresh and processed foods sold in Kuwait.

    Science.gov (United States)

    Al-Salameen, Fadila; Kumar, Vinod; Al-Aqeel, Hamed; Al-Hashash, Hanadi; Hejji, Ahmed Bin

    2012-01-01

    Developments in genetic engineering technology have led to an increase in number of food products that contain genetically engineered crops in the global market. However, due to lack of scientific studies, the presence of genetically modified organisms (GMOs) in the Kuwaiti food market is currently ambiguous. Foods both for human and animal consumption are being imported from countries that are known to produce GM food. Therefore, an attempt has been made to screen foods sold in the Kuwaiti market to detect GMOs in the food. For this purpose, samples collected from various markets in Kuwait have been screened by SYBR green-based real time polymerase chain reaction (RT-PCR) method. Further confirmation and GMO quantification was performed by TaqMan-based RT-PCR. Results indicated that a significant number of food commodities sold in Kuwait were tested positive for the presence of GMO. Interestingly, certain processed foods were tested positive for more than one transgenic events showing complex nature of GMOs in food samples. Results of this study clearly indicate the need for well-defined legislations and regulations on the marketing of approved GM food and its labeling to protect consumer's rights.

  2. Applications of the Galton-Watson process to human DNA evolution and demography

    CERN Document Server

    Neves, A G M

    2005-01-01

    We show that the problem of existence of a mitochondrial Eve can be understood as an application of the Galton--Watson process and presents interesting analogies with critical phenomena in Statistical Mechanics. In the approximation of small survival probability, and assuming limited progeny, we are able to find for a genealogic tree the maximum and minimum survival probabilities over all probability distributions for the number of children per woman constrained to a given mean. As a consequence, we can relate existence of a mitochondrial Eve to quantitative demographic data of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the mean number of children per woman $\\overline N$ is constrained to a small range depending on the probability $p$ that a child is a female. Assuming that the value $p \\approx 0.488$ valid nowadays has remained fixed for thousands of generations, the range where a mitochondrial Eve occurs with sizeable p...

  3. Inferring the demographic history from DNA sequences: An importance sampling approach based on non-homogeneous processes.

    Science.gov (United States)

    Ait Kaci Azzou, S; Larribe, F; Froda, S

    2016-10-01

    In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history. Copyright © 2016. Published by Elsevier Inc.

  4. Conjugal Pairing in Escherichia Coli

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...

  5. Orderings for conjugate gradient preconditionings

    Science.gov (United States)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  6. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  7. REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy ...

    African Journals Online (AJOL)

    REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy. AOK Johnson. Abstract. Conjugated hyperbilirubinaemia exists when the conjugated serum bilirubin level is more than 2 mg/dl or more than 20 per cent of the total serum bilirubin. It is always pathological in early infancy. The causes are many and diverse ...

  8. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  9. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1.

    Science.gov (United States)

    Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A

    2012-08-01

    In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.

  10. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  11. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan.

    Science.gov (United States)

    Zhang, Guiqiang; Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Wang, Zhuo A; Du, Yuguang

    2018-05-04

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin⁻chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide⁻polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.

  12. Conjugation of colloidal clusters and chains by capillary condensation.

    Science.gov (United States)

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  13. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    Science.gov (United States)

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  14. Preparation of conjugated polymer suspensions by using ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kazuya, E-mail: tada@eng.u-hyogo.ac.jp; Onoda, Mitsuyoshi

    2010-11-30

    The electrophoretic deposition is a method useful to prepare conjugated polymer films for electronic devices. This method provides high material recovery rate on the substrate from the suspension, in contrast to the conventional spin-coating in which most of the material placed on the substrate is blown away. Although manual reprecipitation technique successfully yields suspensions of various conjugated polymers including polyfluorene derivatives, it is favorable to control the preparation process of suspensions. In this context, this paper reports preliminary results on the preparation of suspension of conjugated polymer by using an ultrasonic atomizer. While the resultant films do not show particular difference due to the preparation methods of the suspension, the electric current profiles during the electrophoretic deposition suggests that the ultrasonic atomization of polymer solution prior to be mixed with poor solvent results in smaller and less uniform colloidal particles than the conventional manual pouring method.

  15. Damage to plasmid DNA produced by 60Co-gamma radiation and subsequent repair processes in E. coli with and without SOS induction

    International Nuclear Information System (INIS)

    Bien, M.

    1986-01-01

    This study was carried out to provide information on the question as to whether radiation-induced separation of double-stranded DNA in E. coli is followed by repair processes leading to the formation of replicable material. For the detection of those double-strand breaks, E. coli was first transformed using enzymatically linearised dBR 322-DNA. This served as a reference standard to compare the transformations using radiated DNA. DNA was either exposed to increasing doses of 60 Co-gamma radiation or separated into one oc-fraction and one lin-fraction following exposure to 30 Gy. The DNA samples thus obtained were then used to transform three different strains of E. coli (wild strain, SFX, SFXrecA - ). In order to improve the repair yield, the cells were additionally SOS-induced using ultraviolet radiation. The mutation rates were a measure of the number of errors occurring during the various repair processes. Restriction analysis was carried out to characterise the resulting mutants in greater detail. (orig./MG) [de

  16. Combination is the dominant free radical process initiated in DNA by ionizing radiation: an overview based on solid-state EPR studies

    International Nuclear Information System (INIS)

    Bernhard, W.A.; Mroczka, N.; Barnes, J.

    1994-01-01

    An overview of the early processes initiated in DNA by ionizing radiation is given from the perspective of studies done by solid-state EPR with the focus on radical combination. Comparisons with free radical formation and trapping in crystalline pyrimidines (1-methylcytosine, thymine, 1-methylthymine, 1-methyluracil, and cytosine monohydrate) provide insight into the processes occurring in DNA. Between 25 and 50% of low LET ionizations in fully hydrated DNA at 4 K lead to trapped free radicals, the remaining unobserved radicals are assumed to have combined. The majority of the radicals trapped in DNA at 4 K (G ∼ 0.3 μmol/J) are believed to be in clusters. Based on the value of G, it is argued that the range of holes and bound electrons in DNA at 4 K are, in the main, limited to within the cluster diameter, ∼ 4 nm. Proton transfer across hydrogen bonds promotes radical trapping and inhibits combination but is thermally reversible. Warming to room temperature mobilizes the reversibly trapped radicals and gives additional combination (50-80% of those trapped at 4 K). The yield of free radicals, after anneal, is sufficient to account for the yield of single-strand breaks produced by direct effects. (Author)

  17. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  18. Quantum dots–DNA bioconjugates: synthesis to applications

    Science.gov (United States)

    2016-01-01

    Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD–DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology. PMID:27920898

  19. The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events

    Science.gov (United States)

    Todd, Matthew A M; Huh, Michael S; Picketts, David J

    2016-01-01

    Ribosomal RNA synthesis occurs in the nucleolus and is a tightly regulated process that is targeted in some developmental diseases and hyperactivated in multiple cancers. Subcellular localization and immunoprecipitation coupled mass spectrometry demonstrated that a proportion of plant homeodomain (PHD) finger protein 6 (PHF6) protein is localized within the nucleolus and interacts with proteins involved in ribosomal processing. PHF6 sequence variants cause Börjeson–Forssman–Lehmann syndrome (BFLS, MIM#301900) and are also associated with a female-specific phenotype overlapping with Coffin–Siris syndrome (MIM#135900), T-cell acute lymphoblastic leukemia (MIM#613065), and acute myeloid leukemia (MIM#601626); however, very little is known about its cellular function, including its nucleolar role. HEK 293T cells were treated with RNase A, DNase I, actinomycin D, or 5,6-dichloro-β-D-ribofuranosylbenzimadole, followed by immunocytochemistry to determine PHF6 sub-nucleolar localization. We observed RNA-dependent localization of PHF6 to the sub-nucleolar fibrillar center (FC) and dense fibrillar component (DFC), at whose interface rRNA transcription occurs. Subsequent ChIP-qPCR analysis revealed strong enrichment of PHF6 across the entire rDNA-coding sequence but not along the intergenic spacer (IGS) region. When rRNA levels were quantified in a PHF6 gain-of-function model, we observed an overall decrease in rRNA transcription, accompanied by a modest increase in repressive promoter-associated RNA (pRNA) and a significant increase in the expression levels of the non-coding IGS36RNA and IGS39RNA transcripts. Collectively, our results demonstrate a role for PHF6 in carefully mediating the overall levels of ribosome biogenesis within a cell. PMID:27165002

  20. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.

    2014-09-23

    Conjugative plasmids have been identified in a wide variety of different bacteria, ranging from proteobacteria to firmicutes, and conjugation is one of the most efficient routes for horizontal gene transfer. The most widespread mechanism of plasmid conjugation relies on different variants of the type IV secretion pathway. Here, we describe the identification of a novel type of conjugative plasmid that seems to be unique for mycobacteria. Interestingly, while this plasmid is efficiently exchanged between different species of slow-growing mycobacteria, including Mycobacterium tuberculosis, it could not be transferred to any of the fast-growing mycobacteria tested. Genetic analysis of the conjugative plasmid showed the presence of a locus containing homologues of three type IV secretion system components and a relaxase. In addition, a new type VII secretion locus was present. Using transposon insertion mutagenesis, we show that in fact both these secretion systems are essential for conjugation, indicating that this plasmid represents a new class of conjugative plasmids requiring two secretion machineries. This plasmid could form a useful new tool to exchange or introduce DNA in slow-growing mycobacteria. IMPORTANCE: Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of

  1. Performance of Identifiler Direct and PowerPlex 16 HS on the Applied Biosystems 3730 DNA Analyzer for processing biological samples archived on FTA cards.

    Science.gov (United States)

    Laurin, Nancy; DeMoors, Anick; Frégeau, Chantal

    2012-09-01

    Direct amplification of STR loci from biological samples collected on FTA cards without prior DNA purification was evaluated using Identifiler Direct and PowerPlex 16 HS in conjunction with the use of a high throughput Applied Biosystems 3730 DNA Analyzer. In order to reduce the overall sample processing cost, reduced PCR volumes combined with various FTA disk sizes were tested. Optimized STR profiles were obtained using a 0.53 mm disk size in 10 μL PCR volume for both STR systems. These protocols proved effective in generating high quality profiles on the 3730 DNA Analyzer from both blood and buccal FTA samples. Reproducibility, concordance, robustness, sample stability and profile quality were assessed using a collection of blood and buccal samples on FTA cards from volunteer donors as well as from convicted offenders. The new developed protocols offer enhanced throughput capability and cost effectiveness without compromising the robustness and quality of the STR profiles obtained. These results support the use of these protocols for processing convicted offender samples submitted to the National DNA Data Bank of Canada. Similar protocols could be applied to the processing of casework reference samples or in paternity or family relationship testing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Lack of Detection of Bt Sugarcane Cry1Ab and NptII DNA and Proteins in Sugarcane Processing Products Including Raw Sugar

    Directory of Open Access Journals (Sweden)

    Adriana Cheavegatti-Gianotto

    2018-03-01

    Full Text Available Brazil is the largest sugarcane producer and the main sugar exporter in the world. The industrial processes applied by Brazilian mills are very efficient in producing highly purified sugar and ethanol. Literature presents evidence of lack of DNA/protein in these products, regardless of the nature of sugarcane used as raw material. Recently CTNBio, the Brazilian biosafety authority, has approved the first biotechnology-derived sugarcane variety for cultivation, event CTC175-A, which expresses the Cry1Ab protein to control the sugarcane borer (Diatraea saccharalis. The event also expresses neomycin-phosphotransferase type II (NptII protein used as selectable marker during the transformation process. Because of the high purity of sugar and ethanol produced from genetically modified sugarcane, these end-products should potentially be classified as “pure substances, chemically defined,” by Brazilian Biosafety Law No. 11.105. If this classification is to be adopted, these substances are not considered as “GMO derivatives” and fall out of the scope of Law No. 11.105. In order to assess sugar composition and quality, we evaluate Cry1Ab and NptII expression in several sugarcane tissues and in several fractions from laboratory-scale processing of event CTC175-A for the presence of these heterologous proteins as well as for the presence of traces of recombinant DNA. The results of these studies show that CTC175-A presents high expression of Cry1Ab in leaves and barely detectable expression of heterologous proteins in stalks. We also evaluated the presence of ribulose-1,5-bisphosphate carboxylase/oxygenase protein and DNA in the fractions of the industrial processing of conventional Brazilian sugarcane cultivars. Results from both laboratory and industrial processing were concordant, demonstrating that DNA and protein are not detected in the clarified juice and downstream processed fractions, including ethanol and raw sugar, indicating that protein

  3. Solar multi-conjugate adaptive optics performance improvement

    Science.gov (United States)

    Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie

    2015-08-01

    In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.

  4. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  5. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  6. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  7. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.

    1999-01-01

    Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...... of polymer transistors in logic circuits(5) and active-matrix displays(4,6)....

  8. Molecular and biochemical analysis of conjugation and adolescence in Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Rogers, M.B.

    1986-01-01

    A previously unrecognized stage in the development of sexual maturity in Tetrahymena thermophila, adolescence, has been described. When the progeny of successfully mated cells are grown logarithmically, they are unable to form mating pairs for about 65 generations. This period is known as immaturity. During the next stage, adolescence, the progeny pair with mature cells but not with other adolescent cells despite the presence of complementary mating types. Adolescence persists for 20-25 generations before the cells attain maturity (the ability to mate with any cell of different mating type). Once paired with mature cells, adolescents successfully complete conjugation was shown genetically. Mating pairs formed between adolescent and mature cells are indistinguishable from those formed between mature cells by the criteria of cytology and two-dimensional gel electrophoresis of proteins extracted from mating pairs pulse-labelled with [ 35 S]methionine. An analysis of proteins induced during the first ten hours of conjugation was carried out using two-dimensional gel electrophoresis. The protein patterns obtained from all controls were similar. The synthesis of numerous large and basic proteins were induced during conjugation. The majority of the proteins were detected during meiosis and none were mating type specific. A library of micronuclear DNA was constructed in the plasmic PUC18. The library was screened by differential colony hybridization using cDNA complementary to polyA + RNA isolated from conjugating and control cells. Eight recombinant clones were isolated which contain sequences transcriptionally induced in conjugating cells

  9. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  10. Cyclodextrin-peptide conjugates for sequence specific DNA binding

    Czech Academy of Sciences Publication Activity Database

    García, Y. R.; Zelenka, Jan; Pabon, Y. V.; Iyer, A.; Buděšínský, Miloš; Kraus, Tomáš; Smith, C. I. E.; Madder, A.

    2015-01-01

    Roč. 13, č. 18 (2015), s. 5273-5278 ISSN 1477-0520 R&D Projects: GA MŠk LD12019 Institutional support: RVO:61388963 Keywords : crystal structure * inclusion complex * click chemistry Subject RIV: CC - Organic Chemistry Impact factor: 3.559, year: 2015

  11. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  12. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke

    2008-01-01

    A series of pi(п) conjugated oligomers containing 1 to 6 monomer units were studied by absorption and photoluminescence spectroscopies. The results are discussed and examined with regard to the variation of the optical properties with the increase of effective conjugation length. It was found that there was a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length. The relationships are in good agreement with the si...

  13. A fast, preconditioned conjugate gradient Toeplitz solver

    Science.gov (United States)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  14. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Pankaj; Marshall, Thomas I. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom); Currell, Frederick J. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom); Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, Belfast (United Kingdom); Kacperek, Andrzej [Douglas Cyclotron, Clatterbridge Cancer Centre, Bebbington, Wirral (United Kingdom); Schettino, Giuseppe, E-mail: giuseppe.schettino@npl.co.uk [National Physical Laboratory, Teddington (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast (United Kingdom)

    2016-05-01

    Purpose: To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials: Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results: A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions: The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions.

  15. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  16. Novel ?-cyclodextrin?eosin conjugates

    OpenAIRE

    Benkovics, G?bor; Afonso, Damien; Darcsi, Andr?s; B?ni, Szabolcs; Conoci, Sabrina; Fenyvesi, ?va; Szente, Lajos; Malanga, Milo; Sortino, Salvatore

    2017-01-01

    Eosin B (EoB) and eosin Y (EoY), two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy an...

  17. Test of charge conjugation invariance

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Prakhov, S.; Gaardestig, A.; Clajus, M.; Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J.W.; Starostin, A.; Tippens, W.B.; Allgower, C.E.; Spinka, H.; Bekrenev, V.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lopatin, I.; Briscoe, W.J.; Shafi, A.; Comfort, J.R.

    2005-01-01

    We report on the first determination of upper limits on the branching ratio (BR) of η decay to π 0 π 0 γ and to π 0 π 0 π 0 γ. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(η→π 0 π 0 γ) -4 at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(η→π 0 π 0 π 0 γ) -5 at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions

  18. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  19. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.

    Science.gov (United States)

    Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas

    2004-07-08

    D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.

  20. A nanodiamond-fluorescein conjugate for cell studies

    Science.gov (United States)

    Pedroso-Santana, Seidy; Fleitas-Salazar, Noralvis; Sarabia-Sainz, Andrei; Silva-Campa, Erika; Burgara-Estrella, Alexel; Angulo-Molina, Aracely; Melendrez, Rodrigo; Pedroza-Montero, Martin; Riera, Raul

    2018-03-01

    The use of nanodiamonds in studies with living systems generally involves the modification of their surfaces with functional groups. Fluorescent molecules can be attached to these groups, so that one can know the exact position of the particles in each moment of the interaction with the cells. Here we modify the surface of detonation nanodiamonds and nitrogen-vacancy center nanodiamonds using carboxylation and hydroxylation procedures. Subsequent reactions with silicates and cysteine, before addition of fluorescein allow to obtain fluorescent nano-conjugates. We used confocal microscopy to observe the position of nanodiamonds interacting with HeLa cells. At 3 h post-incubation the green fluorescence is localized in extracellular rounded like-vesicles assemblies while at 24 h the conjugates can be observed inside the cells. The measurement of the fluorescence emitted by both conjugates allowed to find an enhanced emission of fluorescein isothiocyanate (FITC) when the nitrogen-vacancy center is present. We propose the existence of a fluorescence enhancement by electron transference process. The procedure described in this work allows the functionalization of nanodiamonds with FITC and other molecules using functional surface groups and small size mediators. Also, as was proved in our work, the nanodiamond-fluorescein conjugates can be used to track nanoparticles position within the cell. Localization studies are particularly important for drug delivery applications of nanodiamonds.

  1. Fast and reliable DNA extraction protocol for identification of species in raw and processed meat products sold on the commercial market

    Directory of Open Access Journals (Sweden)

    Alvarado Pavel Espinoza

    2017-08-01

    Full Text Available In this work a protocol for the extraction of DNA from the meat of different animals (beef, pork, and horse was established. The protocol utilized TE lysis buffer with varying concentrations of phenol and chloroform as a base reagent. Reactions were carried out for verying time periods and under differing temperatures. All samples analyzed were obtained from commercial grade meat sourced from the local region. 12 samples were used for methodological optimization with 30 repetitions per sample. Once optimized, purity results for the three species were 1.7 with a concentration (determined spectrophotometrically at 260 nm of 100 μl/ml of DNA. The protocol was tested using 465 different meat samples from different animal species. All meat used was fresh and processed. Results showed a purity of 1.35 ± 0.076 and a DNA concentration of 70 ± 0.31 μl for a time duration of 1.5 hours. These results were tested by polymerase chain reaction (PCR as reported by several authors. The extracts were tested using different PCR reactions using specific primers for horses. Results suggest that there was 39 positive samples. The proposed methodology provides an efficient way to detect DNA concentration and purity, suitable for amplification with PCR.

  2. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  3. Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli.

    Science.gov (United States)

    Hu, Jian-Hua; Wang, Feng; Liu, Chun-Zhao

    2015-04-01

    An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-β-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5% in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5% under the controlled dissolved oxygen concentration of 30% in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.

  4. Process optimisation for anion exchange monolithic chromatography of 4.2kbp plasmid vaccine (pcDNA3F).

    Science.gov (United States)

    Ongkudon, Clarence M; Danquah, Michael K

    2010-10-15

    Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400nm pore size of monolith in 0.7M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0M at 3%B/min. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes

    Czech Academy of Sciences Publication Activity Database

    Francis, Z.; Incerti, S.; Capra, R.; Mascialino, B.; Montarou, G.; Štěpán, Václav; Villagrasa, C.

    2011-01-01

    Roč. 69, č. 1 (2011), s. 220-226 ISSN 0969-8043 R&D Projects: GA MŠk OC09012 Institutional research plan: CEZ:AV0Z10480505 Keywords : Monte Carlo * Geant4 * Geant4 DNA * microdosimetry * cross sections Subject RIV: BO - Biophysics Impact factor: 1.172, year: 2011

  6. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    DEFF Research Database (Denmark)

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA repli...

  7. Conjugated polymers developed from alkynes

    Institute of Scientific and Technical Information of China (English)

    Yajing Liu; Jacky W.Y.Lam; Ben Zhong Tang

    2015-01-01

    The numerous merits of conjugated polymers(CPs) have encouraged scientists to develop a variety of synthetic routes to CPs with diverse structures and functionalities. Among the large scope of substrates,alkyne plays an important role in constructing polymers with conjugated backbones. In addition to some well-developed reactions including Glaser–Hay and Sonogashira coupling, azide/thiol-yne click reaction and cyclotrimerization, some novel alkyne-based reactions have also been explored such as oxidative polycoupling, decarbonylative polycoupling and multicomponent tandem polymerizations. his review focuses on the recent progress on the synthetic methodology of CPs in the last ive years using monomers with two or more triple bonds and some of their high-technological applications. Selected examples of materials properties of these CPs are given in this review, such as luorescence response to chemical or physical stimuli, magnetism, white light emission, cell imaging and bioprobing. Finally, a short perspective is raised in regard to the outlook of the preparation methodologies, functionalities as well as potential applications of CPs in the future.

  8. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  9. Subgap absorption in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.

  10. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  11. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels

    International Nuclear Information System (INIS)

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco

    2005-01-01

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF Skp2 ubiquitin ligase has been reported to mediate p27 Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27 Kip1 , and prevent cellular proliferation. Elevation of p27 Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27 Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF Skp2 ubiquitin ligase substrate p27 Kip1 , but has no concomitant effect on the level of IkBα and β-catenin, which are known substrates of a closely related SCF ligase

  12. Preconditioning the modified conjugate gradient method ...

    African Journals Online (AJOL)

    In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.

  13. DENDRIMER CONJUGATES FOR SELECTIVE OF PROTEIN AGGREGATES

    DEFF Research Database (Denmark)

    2004-01-01

    Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...

  14. Tetrafullerene conjugates for all-organic photovoltaics

    NARCIS (Netherlands)

    Fernández, G.; Sánchez, L.; Veldman, D.; Wienk, M.M.; Atienza, C.M.; Guldi, D.M.; Janssen, R.A.J.; Martin, N.

    2008-01-01

    The synthesis of two new tetrafullerene nanoconjugates in which four C60 units are covalently connected through different -conjugated oligomers (oligo(p-phenylene ethynylene) and oligo(p-phenylene vinylene)) is described. The photovoltaic (PV) response of these C60-based conjugates was evaluated by

  15. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  16. The Conjugate Acid-Base Chart.

    Science.gov (United States)

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  17. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  18. Class, Kinship Density, and Conjugal Role Segregation.

    Science.gov (United States)

    Hill, Malcolm D.

    1988-01-01

    Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…

  19. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories

    International Nuclear Information System (INIS)

    Li Mengnan; Zheng Guanghong; Wang Lei; Xiao Wei; Fu Xiaohua; Le Yiquan; Ren Daming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or 'gene pollution'. Heating at 100 deg. C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 deg. C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 deg. C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion

  20. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories.

    Science.gov (United States)

    Li, Meng-Nan; Zheng, Guang-Hong; Wang, Lei; Xiao, Wei; Fu, Xiao-Hua; Le, Yi-Quan; Ren, Da-Ming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or "gene pollution". Heating at 100 degrees C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 degrees C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 degrees C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion.

  1. Misonidazole-glutathione conjugates in CHO cells

    International Nuclear Information System (INIS)

    Varghese, A.J.; Whitmore, G.F.

    1984-01-01

    Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate

  2. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  3. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  4. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  5. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    Peptide nucleic acid (PNA) is potentially an attractive antisense and antigene agent for which more efficient cellular delivery systems are still warranted. The cationic polymer polyethylenimine (PEI) is commonly used for cellular transfection of DNA and RNA complexes, but is not readily applicable...... moiety) and further reacted this with a cysteine PNA. The level of modification was determined spectrophotometrically with high accuracy, and the PNA transfection efficiency of the conjugates was evaluated in an antisense luciferase splice-correction assay using HeLa pLuc705 cells. We find that PEI...... is an efficient vector for PNA delivery yielding significantly higher (up to 10-fold) antisense activity than an analogous PNA-octaarginine conjugate, even in the presence of chloroquine, which only slightly enhances the PEI-PNA activity. The PEI-PEG conjugates are preferred due to lower acute cellular toxicity...

  6. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  7. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    Science.gov (United States)

    2010-01-01

    Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Methods Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1) orthogonal uniqueness, (2) low level formatting, (3) high level formatting and (4) translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Results Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT) during high level formatting of the computer hard drive and the subsequent loading of an operating system (OS). Biological

  8. A comparative approach for the investigation of biological information processing: an examination of the structure and function of computer hard drives and DNA.

    Science.gov (United States)

    D'Onofrio, David J; An, Gary

    2010-01-21

    The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1) orthogonal uniqueness, (2) low level formatting, (3) high level formatting and (4) translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT) during high level formatting of the computer hard drive and the subsequent loading of an operating system (OS). Biological systems do not have an

  9. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    Directory of Open Access Journals (Sweden)

    D'Onofrio David J

    2010-01-01

    Full Text Available Abstract Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Methods Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1 orthogonal uniqueness, (2 low level formatting, (3 high level formatting and (4 translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Results Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT during high level formatting of the computer hard drive and the subsequent loading of an operating

  10. Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers

    DEFF Research Database (Denmark)

    Takahashi, Hiroshi; Møller, Peter Rask; Shedko, Sergei V.

    2016-01-01

    Pungitius is a highly diversified genus of sticklebacks (Gasterosteidae) occurring widely in northern parts of the Northern Hemisphere. Several ecologically and genetically divergent types that are largely isolated reproductively but occasionally hybridize in sympatry have been discovered...... of hybridization and mtDNA introgression among distinct species. Our results highlight that the marginal seas of Northeast Asia played a key role as barriers to or facilitators of gene flow in the evolution of species diversity of Pungitius concentrated in this region...

  11. Thermal Stability of siRNA Modulates Aptamer- conjugated siRNA Inhibition

    Directory of Open Access Journals (Sweden)

    Alexey Berezhnoy

    2012-01-01

    Full Text Available Oligonucleotide aptamer-mediated in vivo cell targeting of small interfering RNAs (siRNAs is emerging as a useful approach to enhance the efficacy and reduce the adverse effects resulting from siRNA-mediated genetic interference. A current main impediment in aptamer-mediated siRNA targeting is that the activity of the siRNA is often compromised when conjugated to an aptamer, often requiring labor intensive and time consuming design and testing of multiple configurations to identify a conjugate in which the siRNA activity has not been significantly reduced. Here, we show that the thermal stability of the siRNA is an important parameter of siRNA activity in its conjugated form, and that siRNAs with lower melting temperature (Tm are not or are minimally affected when conjugated to the 3′ end of 2′F-pyrimidine-modified aptamers. In addition, the configuration of the aptamer-siRNA conjugate retains activity comparable with the free siRNA duplex when the passenger strand is co-transcribed with the aptamer and 3′ overhangs on the passenger strand are removed. The approach described in this paper significantly reduces the time and effort necessary to screening siRNA sequences that retain biological activity upon aptamer conjugation, facilitating the process of identifying candidate aptamer-siRNA conjugates suitable for in vivo testing.

  12. Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradien

    OpenAIRE

    Mahmudah, Dewi Erla; Naf'an, Muhammad Zidny

    2017-01-01

    In this paper we focus on solution of 2D Poisson equation numerically. 2D Poisson equation is a partial differential equation of second order elliptical type. This equation is a particular form or non-homogeneous form of the Laplace equation. The solution of 2D Poisson equation is performed numerically using Gauss Seidel method and Conjugate Gradient method. The result is the value using Gauss Seidel method and Conjugate Gradient method is same. But, consider the iteration process, the conver...

  13. A single thiazole orange molecule forms an exciplex in a DNA i-motif.

    Science.gov (United States)

    Xu, Baochang; Wu, Xiangyang; Yeow, Edwin K L; Shao, Fangwei

    2014-06-18

    A fluorescent exciplex of thiazole orange (TO) is formed in a single-dye conjugated DNA i-motif. The exciplex fluorescence exhibits a large Stokes shift, high quantum yield, robust response to pH oscillation and little structural disturbance to the DNA quadruplex, which can be used to monitor the folding of high-order DNA structures.

  14. Convergent Synthesis of Piperidines by the Union of Conjugated Alkynes with Imines: A Unique Regioselective Bond Construction for Heterocycle Synthesis

    Science.gov (United States)

    Chen, Ming Z.; Micalizio, Glenn C.

    2009-01-01

    A two-step process is described for the union of aromatic imines, conjugated alkynes and aldehydes that results in a stereoselective synthesis of highly substituted piperidines. This synthetic process has been made possible by defining a unique regioselective functionalization of conjugated alkynes that establishes a suitably functionalized substrate for subsequent heterocycle-forming cationic annulation. Given the flexibility of the coupling process, heterocycles can be accessed through a process that establishes up to four stereogenic centers and four fused rings. PMID:19817447

  15. Formation of primary sperm conjugates in a haplogyne spider (Caponiidae, Araneae) with remarks on the evolution of sperm conjugation in spiders.

    Science.gov (United States)

    Lipke, Elisabeth; Michalik, Peter

    2012-11-01

    Sperm conjugation, where two or more sperm are physically united, is a rare but widespread pheno-menon across the animal kingdom. One group well known for its different types of sperm conjugation are spiders. Particularly, haplogyne spiders show a high diversity of sperm traits. Besides individual cleistospermia, primary (synspermia) and secondary (coenospermia, "spermatophore") sperm conjugation occurs. However, the evolution of sperm conjugates and sperm is not understood in this group. Here, we look at how sperm are transferred in Caponiidae (Haplogynae) in pursuit of additional information about the evolution of sperm transfer forms in spiders. Additionally, we investigated the male reproductive system and spermatozoa using light- and transmission electron-microscopy and provide a 3D reconstruction of individual as of well as conjugated spermatozoa. Mature spermatozoa are characterized by an extremely elongated, helical nucleus resulting in the longest spider sperm known to date. At the end of spermiogenesis, synspermia are formed by complete fusion of four spermatids. Thus, synspermia might have evolved early within ecribellate Haplogynae. The fused sperm cells are surrounded by a prominent vesicular area. The function of the vesicular area remains still unknown but might be correlated with the capacitation process inside the female. Further phylogenetic and functional implications of the spermatozoa and sperm conjugation are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice.

    Science.gov (United States)

    Schipler, Agnes; Iliakis, George

    2013-09-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.

  17. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  18. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  19. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    Science.gov (United States)

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  20. Efficacy of the core DNA barcodes in identifying processed and poorly conserved plant materials commonly used in South African traditional medicine

    Directory of Open Access Journals (Sweden)

    Ledile Mankga

    2013-12-01

    Full Text Available Medicinal plants cover a broad range of taxa, which may be phylogenetically less related but morphologically very similar. Such morphological similarity between species may lead to misidentification and inappropriate use. Also the substitution of a medicinal plant by a cheaper alternative (e.g. other non-medicinal plant species, either due to misidentification, or deliberately to cheat consumers, is an issue of growing concern. In this study, we used DNA barcoding to identify commonly used medicinal plants in South Africa. Using the core plant barcodes, matK and rbcLa, obtained from processed and poorly conserved materials sold at the muthi traditional medicine market, we tested efficacy of the barcodes in species discrimination. Based on genetic divergence, PCR amplification efficiency and BLAST algorithm, we revealed varied discriminatory potentials for the DNA barcodes. In general, the barcodes exhibited high discriminatory power, indicating their effectiveness in verifying the identity of the most common plant species traded in South African medicinal markets. BLAST algorithm successfully matched 61% of the queries against a reference database, suggesting that most of the information supplied by sellers at traditional medicinal markets in South Africa is correct. Our findings reinforce the utility of DNA barcoding technique in limiting false identification that can harm public health.

  1. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme

  2. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme. (ERB)

  3. Identification of a Single Strand Origin of Replication in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Laurel D Wright

    2015-10-01

    Full Text Available We identified a functional single strand origin of replication (sso in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Integrative and conjugative elements (ICEs, also known as conjugative transposons are DNA elements typically found integrated into a bacterial chromosome where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICEs become activated and excise from the host chromosome and can transfer to neighboring cells via the element-encoded conjugation machinery. Activated ICEBs1 undergoes autonomous rolling circle replication that is needed for the maintenance of the excised element in growing and dividing cells. Rolling circle replication, used by many plasmids and phages, generates single-stranded DNA (ssDNA. In many cases, the presence of an sso enhances the conversion of the ssDNA to double-stranded DNA (dsDNA by enabling priming of synthesis of the second DNA strand. We initially identified sso1 in ICEBs1 based on sequence similarity to the sso of an RCR plasmid. Several functional assays confirmed Sso activity. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. We found that Sso activity was important for two key aspects of the ICEBs1 lifecycle: 1 maintenance of the plasmid form of ICEBs1 in cells after excision from the chromosome, and 2 stable acquisition of ICEBs1 following transfer to a new host. We identified sequences similar to known plasmid sso's in several other ICEs. Together, our results indicate that many other ICEs contain at least one single strand origin of replication, that these ICEs likely undergo autonomous replication, and that replication contributes to the stability and spread of these elements.

  4. DNA-Based Applications in Nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Khalid M. Abu-Salah

    2010-01-01

    Full Text Available Biological molecules such as deoxyribonucleic acid (DNA have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.

  5. Development of unidentified dna-specific hif 1α gene of lizard (hemidactylus platyurus) which plays a role in tissue regeneration process

    Science.gov (United States)

    Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.

    2018-03-01

    Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.

  6. Novel Aflatoxin Derivatives and Protein Conjugates

    Directory of Open Access Journals (Sweden)

    Reinhard Niessner

    2007-03-01

    Full Text Available Aflatoxins, a group of structurally related mycotoxins, are well known for their toxic and carcinogenic effects in humans and animals. Aflatoxin derivatives and protein conjugates are needed for diverse analytical applications. This work describes a reliable and fast synthesis of novel aflatoxin derivatives, purification by preparative HPLC and characterisation by ESI-MS and one- and two-dimensional NMR. Novel aflatoxin bovine serum albumin conjugates were prepared and characterised by UV absorption and MALDI-MS. These aflatoxin protein conjugates are potentially interesting as immunogens for the generation of aflatoxin selective antibodies with novel specificities.

  7. Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review

    Directory of Open Access Journals (Sweden)

    Hsing-Ju Wang

    2014-03-01

    Full Text Available Polythiophene (PT is one of the widely used donor materials for solution-processable polymer solar cells (PSCs. Much progress in PT-based PSCs can be attributed to the design of novel PTs exhibiting intense and broad visible absorption with high charge carrier mobility to increase short-circuit current density (Jsc, along with low-lying highest occupied molecular orbital (HOMO levels to achieve large open circuit voltage (Voc values. A promising strategy to tailor the photophysical properties and energy levels via covalently attaching electron donor and acceptor pendants on PTs backbone has attracted much attention recently. The geometry, electron-donating capacity, and composition of conjugated pendants are supposed to be the crucial factors in adjusting the conformation, energy levels, and photovoltaic performance of PTs. This review will go over the most recent approaches that enable researchers to obtain in-depth information in the development of PTs comprising conjugated pendants for PSCs.

  8. Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces

    DEFF Research Database (Denmark)

    Koch, T.; Jacobsen, N.; Fensholdt, J.

    2000-01-01

    Ligand immobilization on solid surfaces is an essential step in fields such as diagnostics, bio sensor manufacturing, and new material sciences in general. In this paper a photochemical approach based on anthraquinone as the chromophore is presented. Photochemical procedures offer special...... advantages as they are able to generate highly reactive species in an orientation specific manner. As presented here, anthraquinone (AQ) mediated covalent DNA immobilization appears to be superior to currently known procedures. A synthetic procedure providing AQ-phosphoramidites is presented. These reagents...... facilitate AQ conjugation during routine DNA synthesis, thus enabling the AQ-oligonucleotides to be immobilized in a very convenient and efficient manner. AQ-conjugated PCR primers can be used directly in PCR. When the PCR is performed in solution, the amplicons can be immobilized after the PCR. Moreover...

  9. Noncanonical substrate preference of lambda exonuclease for 5'-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction.

    Science.gov (United States)

    Wu, Tongbo; Yang, Yufei; Chen, Wei; Wang, Jiayu; Yang, Ziyu; Wang, Shenlin; Xiao, Xianjin; Li, Mengyuan; Zhao, Meiping

    2018-04-06

    Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5' non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5' side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π-π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids.

  10. Noncanonical substrate preference of lambda exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction

    Science.gov (United States)

    Yang, Yufei; Chen, Wei; Wang, Jiayu; Yang, Ziyu; Wang, Shenlin; Xiao, Xianjin; Li, Mengyuan

    2018-01-01

    Abstract Lambda exonuclease (λ exo) plays an important role in the resection of DNA ends for DNA repair. Currently, it is also a widely used enzymatic tool in genetic engineering, DNA-binding protein mapping, nanopore sequencing and biosensing. Herein, we disclose two noncanonical properties of this enzyme and suggest a previously undescribed hydrophobic interaction model between λ exo and DNA substrates. We demonstrate that the length of the free portion of the substrate strand in the dsDNA plays an essential role in the initiation of digestion reactions by λ exo. A dsDNA with a 5′ non-phosphorylated, two-nucleotide-protruding end can be digested by λ exo with very high efficiency. Moreover, we show that when a conjugated structure is covalently attached to an internal base of the dsDNA, the presence of a single mismatched base pair at the 5′ side of the modified base may significantly accelerate the process of digestion by λ exo. A detailed comparison study revealed additional π–π stacking interactions between the attached label and the amino acid residues of the enzyme. These new findings not only broaden our knowledge of the enzyme but will also be very useful for research on DNA repair and in vitro processing of nucleic acids. PMID:29490081

  11. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977-October 31, 1980

    International Nuclear Information System (INIS)

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. More specifically, mutant strains will be selected which are deficient in various DNA repair pathways. These strains will be studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. The results to date include progress in the following areas: (1) determination of optimum conditions for growth and maintenance of cells and for quantitative measurement of various cellular parameters; (2) investigation of the effect of holding mutagenized cells for various periods in a density inhibited state on survival and on mutation and transformation frequencies; (3) examination of the repair capabilities of BHK cells, as compared to repair-proficient and repair-deficient human cells and excision-deficient mouse cells, as measured by the reactivation of Herpes simplex virus (HSV) treated with radiation and ethylmethane sulfonate (EMS); (4) initiation of host cell reactivation viral sucide enrichment and screening of survivors of the enrichment for sensitivity to ionizing radiation; and (5) investigation of the toxicity, mutagenicity, and carcinogenicity of various metabolites of 4-nitroquinoline-1-oxide (4-NQO)

  12. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  13. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  14. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  15. Evaluation of iodovinyl antibody conjugates: Comparison with a p-iodobenzoyl conjugate and direct radioiodination

    International Nuclear Information System (INIS)

    Hadley, S.W.; Wilbur, D.S.

    1990-01-01

    The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate

  16. Conjugate descent formulation of backpropagation error in ...

    African Journals Online (AJOL)

    nique of backpropagation was popularized in a paper by Rumelhart, et al. ... the training of a multilayer neural network using a gradient descent approach applied to a .... superior convergence of the conjugate descent method over a standard ...

  17. Forensic DNA testing.

    Science.gov (United States)

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  18. Application of multivariate curve resolution for the study of folding processes of DNA monitored by fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Kumar, Praveen; Kanchan, Kajal; Gargallo, Raimundo; Chowdhury, Shantanu

    2005-01-01

    The study described in the present article used fluorescence resonance energy transfer (FRET) to monitor the folding of a 31-mer cytosine-rich DNA segment, from the promoter region of the human c-myc oncogene. Spectroscopic FRET data recorded during experiments carried out in different experimental conditions were individually and simultaneously analyzed by multivariate curve resolution. The simultaneous analysis of several data matrices allowed the resolution of the system, removing most of the ambiguities related to factor analysis. From the results obtained, we report the evidence of the formation of two ordered conformations in acidic and neutral pH values, in addition to the disordered structure found at high temperatures. These ordered conformations could be related to cytosine-tetraplex structures showing different degrees of protonation in cytosine bases

  19. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Directory of Open Access Journals (Sweden)

    Chuan Hong

    2014-12-01

    Full Text Available Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  20. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Science.gov (United States)

    Hong, Chuan; Oksanen, Hanna M; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H; Chiu, Wah

    2014-12-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  1. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  2. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke; Lynch, Patrick; McNamara, Mary

    2005-01-01

    A series of π conjugated oligomers were studied by absorption and photoluminescence spectroscopy. A linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Sto...

  3. Diffeomorphisms Holder conjugate to Anosov diffeomorphisms

    OpenAIRE

    Gogolev, Andrey

    2008-01-01

    We show by means of a counterexample that a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is not necessarily Anosov. The counterexample can bear higher smoothness up to $C^3$. Also we include a result from the 2006 Ph.D. thesis of T. Fisher: a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is Anosov itself provided that Holder exponents of the conjugacy and its inverse are sufficiently large.

  4. Rapid modification of retroviruses using lipid conjugates

    International Nuclear Information System (INIS)

    Mukherjee, Nimisha G; Le Doux, Joseph M; Andrew Lyon, L

    2009-01-01

    Methods are needed to manipulate natural nanoparticles. Viruses are particularly interesting because they can act as therapeutic cellular delivery agents. Here we examine a new method for rapidly modifying retroviruses that uses lipid conjugates composed of a lipid anchor (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a polyethylene glycol chain, and biotin. The conjugates rapidly and stably modified retroviruses and enabled them to bind streptavidin. The implication of this work for modifying viruses for gene therapy and vaccination protocols is discussed.

  5. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  6. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation.

    Science.gov (United States)

    Rai, Krishna Kumar; Rai, Nagendra; Rai, Shashi Pandey

    2018-07-01

    Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Dual Recognition of Human Telomeric G-quadruplex by Neomycin-anthraquinone Conjugate

    Science.gov (United States)

    Ranjan, Nihar; Davis, Erik; Xue, Liang

    2013-01-01

    The authors report the recognition of a G-quadruplex formed by four repeat human telomeric DNA with aminosugar intercalator conjugates. The recognition of G-quadruplex through dual binding mode ligands significantly increased the affinity of ligands for G-quadruplex. One such example is a neomycin-anthraquinone 2 which exhibited nanomolar affinity for the quadruplex, and the affinity of 2 is nearly 1000 fold higher for human telomeric G-quadruplex DNA than its constituent units, neomycin and anthraquinone. PMID:23698792

  8. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing.

    Science.gov (United States)

    Anantharaman, Vivek; Iyer, Lakshminarayan M; Aravind, L

    2012-10-30

    The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages, has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprising phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria

  9. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  10. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin.

    Science.gov (United States)

    Manova, Vasilissa; Singh, Satyendra K; Iliakis, George

    2012-08-22

    Mammalian cells employ at least two subpathways of non-homologous end-joining for the repair of ionizing radiation induced DNA double strand breaks: The canonical DNA-PK-dependent form of non-homologous end-joining (D-NHEJ) and an alternative, slowly operating, error-prone backup pathway (B-NHEJ). In contrast to D-NHEJ, which operates with similar efficiency throughout the cell cycle, B-NHEJ operates more efficiently in G2-phase. Notably, B-NHEJ also shows strong and as of yet unexplained dependency on growth activity and is markedly compromised in serum-deprived cells, or in cells that enter the plateau-phase of growth. The molecular mechanisms underpinning this response remain unknown. Since chromatin structure or changes in chromatin structure are prime candidate-B-NHEJ-modulators, we study here the role of chromatin hyperacetylation, either by HDAC2 knockdown or treatment with the HDAC inhibitor TSA, on the repair by B-NHEJ of IR-induced DSBs. siRNA-mediated knockdown of HDAC2 fails to provoke histone hyperacetylation in Lig4-/- MEFs and has no detectable effect on B-NHEJ function. Treatment with TSA that inhibits multiple HDACs causes efficient, reversible chromatin hyperacetylation in Lig4-/- MEFs, as well as in human HCT116 Lig4-/- cells and the human glioma cell line M059K. The IR yield of DSBs in TSA-treated cells remains similar to that of untreated cells despite the expected chromatin relaxation. In addition, chromatin hyperacetylation leaves unchanged repair of DSBs by B-NHEJ in irradiated exponentially growing, or plateau-phase cells. Notably, under the experimental conditions employed here, chromatin hyperacetylation fails to detectably modulate B-NHEJ in M059K cells as well. In summary, the results show that chromatin acetylation or deacetylation does not affect the kinetics of alternative NHEJ in all types of cells examined both in exponentially growing and serum deprived cultures. We conclude that parameters beyond chromatin acetylation determine B

  11. Quantification of residual solvents in antibody drug conjugates using gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Medley, Colin D., E-mail: medley.colin@gene.com [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States); Kay, Jacob [Research Pharmaceutical Services, 520 Virginia Dr. Fort, Washington, PA (United States); Li, Yi; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P. [Genentech Inc., Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080 (United States)

    2014-11-19

    Highlights: • Sensitive residual solvents detection in ADCs. • 125 ppm QL for common conjugation solvents. • Generic and validatable method. - Abstract: The detection and quantification of residual solvents present in clinical and commercial pharmaceutical products is necessary from both patient safety and regulatory perspectives. Head-space gas chromatography is routinely used for quantitation of residual solvents for small molecule APIs produced through synthetic processes; however residual solvent analysis is generally not needed for protein based pharmaceuticals produced through cultured cell lines where solvents are not introduced. In contrast, antibody drug conjugates and other protein conjugates where a drug or other molecule is covalently bound to a protein typically use solvents such as N,N-dimethylacetamide (DMA), N,N‑dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or propylene glycol (PG) to dissolve the hydrophobic small molecule drug for conjugation to the protein. The levels of the solvent remaining following the conjugation step are therefore important to patient safety as these parental drug products are introduced directly into the patients bloodstream. We have developed a rapid sample preparation followed by a gas chromatography separation for the detection and quantification of several solvents typically used in these conjugation reactions. This generic method has been validated and can be easily implemented for use in quality control testing for clinical or commercial bioconjugated products.

  12. Bayesian estimation for quantification by real-time polymerase chain reaction under a branching process model of the DNA molecules amplification process

    NARCIS (Netherlands)

    Lalam, N.; Jacob, C.

    2007-01-01

    The aim of Quantitative Polymerase Chain Reaction is to determine the initial amount X0 of specific nucleic acids from an observed trajectory of the amplification process, the amplification being achieved through successive replication cycles. This process depends on the efficiency fpngn of

  13. Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation.

    Science.gov (United States)

    Koskela, Katja A; Mattinen, Laura; Kalin-Mänttäri, Laura; Vergnaud, Gilles; Gorgé, Olivier; Nikkari, Simo; Skurnik, Mikael

    2015-11-01

    The clustered regularly interspaced short palindromic repeat - CRISPR-associated genes (CRISPR-Cas) system is used by bacteria and archaea against invading conjugative plasmids or bacteriophages. Central to this immunity system are genomic CRISPR loci that contain fragments of invading DNA. These are maintained as spacers in the CRISPR loci between direct repeats and the spacer composition in any bacterium reflects its evolutionary history. We analysed the CRISPR locus sequences of 335 Yersinia pseudotuberculosis complex strains. Altogether 1902 different spacer sequences were identified and these were used to generate a database for the spacer sequences. Only ∼10% of the spacer sequences found matching sequences. In addition, surprisingly few spacers were shared by Yersinia pestis and Y. pseudotuberculosis strains. Interestingly, 32 different protospacers were present in the conjugative plasmid pYptb32953. The corresponding spacers were identified from 35 different Y. pseudotuberculosis strains indicating that these strains had encountered pYptb32953 earlier. In conjugation experiments, pYptb32953-specific spacers generally prevented conjugation with spacer-positive and spacer-free strains. However, some strains with one to four spacers were invaded by pYptb32953 and some spacer-free strains were fully resistant. Also some spacer-positive strains were intermediate resistant to conjugation. This suggests that one or more other defence systems are determining conjugation efficiency independent of the CRISPR-Cas system. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals

    Science.gov (United States)

    Naderi, Saeid; Rezaei, Hamid-Reza; Pompanon, François; Blum, Michael G. B.; Negrini, Riccardo; Naghash, Hamid-Reza; Balkız, Özge; Mashkour, Marjan; Gaggiotti, Oscar E.; Ajmone-Marsan, Paolo; Kence, Aykut; Vigne, Jean-Denis; Taberlet, Pierre

    2008-01-01

    The emergence of farming during the Neolithic transition, including the domestication of livestock, was a critical point in the evolution of human kind. The goat (Capra hircus) was one of the first domesticated ungulates. In this study, we compared the genetic diversity of domestic goats to that of the modern representatives of their wild ancestor, the bezoar, by analyzing 473 samples collected over the whole distribution range of the latter species. This partly confirms and significantly clarifies the goat domestication scenario already proposed by archaeological evidence. All of the mitochondrial DNA haplogroups found in current domestic goats have also been found in the bezoar. The geographic distribution of these haplogroups in the wild ancestor allowed the localization of the main domestication centers. We found no haplotype that could have been domesticated in the eastern half of the Iranian Plateau, nor further to the east. A signature of population expansion in bezoars of the C haplogroup suggests an early domestication center on the Central Iranian Plateau (Yazd and Kerman Provinces) and in the Southern Zagros (Fars Province), possibly corresponding to the management of wild flocks. However, the contribution of this center to the current domestic goat population is rather low (1.4%). We also found a second domestication center covering a large area in Eastern Anatolia, and possibly in Northern and Central Zagros. This last domestication center is the likely origin of almost all domestic goats today. This finding is consistent with archaeological data identifying Eastern Anatolia as an important domestication center. PMID:19004765

  15. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    Science.gov (United States)

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  16. Self-Assembly and Crystallization of Conjugated Block Copolymers

    Science.gov (United States)

    Davidson, Emily Catherine

    . These results emphasize that targeting curved morphologies with majority conjugated polymer - even when the conjugated polymer is fairly flexible, as is the case with P3EHT - will continue to be an important challenge. The detailed balance between the unique properties of conjugated polymer crystallization and diblock copolymer self-assembly in these materials is illuminated by examining the crystallite orientation and the response of microdomains to crystallization. A critical parameter is found to be the P3EHT drive for extended-chain crystals. It is found that under all probed conditions in lamellar P3EHT-b-PMA, P3EHT chains crystallize with their chains perpendicular to the diblock interface. Further, in P3EHT- b-PMA with a deformable amorphous block, P3EHT drives domain expansion during crystallization despite increasing P3EHT density. This expansion corresponds to the formation of extended-chain crystallites. This resulting conformation is not necessarily expected to be favorable, given that it induces a stretching penalty in the coupled amorphous block. However, this expansion appears to be not only preferred but necessary: crystallization in lamellar confinement with a glassy PS matrix suppresses not only domain extension but also P3EHT crystallization. Interestingly, in cylindrical confinement, it is shown that this drive for extended chain crystals results in local deformation of the cylindrical domains themselves. Finally, the relationship between the detailed crystallization process and the diblock structure is examined. The degree of crystalline perfection of P3EHT can be controlled in confinement by controlling the crystallization temperature (Tc) or, alternatively, via re-crystallization at temperatures below the melting temperature. Surprisingly, in P3EHT-b-PMA increasing the crystallization temperature both improves the crystalline perfection and results in less domain extension. By tracking the changes in domain structure during melting, three distinct

  17. ASKGene, a system for automate DNA processing - DOI: 10.3395/reciis.v1i2.Sup.100en

    Directory of Open Access Journals (Sweden)

    Eden Cardim

    2007-12-01

    Full Text Available Computational resources have become essential for genome project development. Distributed systems managing complex structures integrating graphical user interfaces, expensive data processing, data mining and large databases, have been proposed. Most consolidated sequencing laboratories have developed their own bioinformatics solutions. However, a portable and scalable system integrating all these aspects is not yet available to the scientific community. In this report, we present the prototype of such a system in open development at http://sourceforge.net/projects/askgene. It allows for the (i accessibility of data and processes all along the data flow, (ii data representation and ontology, (iii workflow tuning, (iv system architecture and documentation, (v corporate development, (vi manual annotation, (vii bogus data processing, (viii process parallelization and distribution, (ix portability and scalability.

  18. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    Science.gov (United States)

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Miniaturized bead-beating device to automate full DNA sample preparation processes for gram-positive bacteria.

    Science.gov (United States)

    Hwang, Kyu-Youn; Kwon, Sung Hong; Jung, Sun-Ok; Lim, Hee-Kyun; Jung, Won-Jong; Park, Chin-Sung; Kim, Joon-Ho; Suh, Kahp-Yang; Huh, Nam

    2011-11-07

    We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 μL or 20 μL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system. This journal is © The Royal Society of Chemistry 2011

  20. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  1. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    Science.gov (United States)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry

  2. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  3. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation.

    Science.gov (United States)

    Hsieh, Meng-Lun; James, Tamara D; Knipling, Leslie; Waddell, M Brett; White, Stephen; Hinton, Deborah M

    2013-09-20

    Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.

  4. Synthesis and biological evaluation of novel conjugates of camptothecin and 5-Flurouracil as cytotoxic agents

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: yqliu@lzu.edu.c [Lanzhou Jiaotong University (China). Environmental and Municipal Engineering School; Chun-Yan Zhaob; Ying-Qian Liu [Lanzhou University (China). School of Pharmacy

    2011-07-01

    A series of novel conjugates of camptothecin and 5-fluorouracil were first synthesized and their cytotoxic activities against two human tumor cell lines (SGC-7901 and A-549) as well as in vitro pharmacokinetic determination of lactone stability were studied. Among these compounds, most tested conjugates showed comparable or superior cytotoxic activities to 2, but less potent compared with 1. Particularly, conjugates 10b and 10d were highly active against A-549 with IC{sub 50} values of 0.45 and 0.38 {mu}mol L{sup -1}, respectively. Also, the in vitro pharmacokinetic determination of lactone levels of representative compound 10b showed that the biological life span of their lactone forms in human and mouse plasma significantly increased compared with their mother compound 1. Quantitative structure-activity relationship (QSAR) method was then applied for developing linear models to predict the cytotoxic activities of these derivatives that have not yet been synthesized or experimentally tested. In addition, molecular docking was used to clarify the binding mode of these derivatives to human DNA topoisomerase I. The important hydrogen-bonding interactions were observed between these derivatives and their receptor. The results from molecular modeling and QSAR study can guide the design of novel conjugates with higher antitumor activity. (author)

  5. Role of exonucleolytic processing and polymerase-DNA association in bypass of lesions during replication in vitro. Significance for SOS-targeted mutagenesis

    International Nuclear Information System (INIS)

    Shwartz, H.; Shavitt, O.; Livneh, Z.

    1988-01-01

    The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level, inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected

  6. The Use of Novel PET Tracers to Image Breast Cancer Biologic Processes Such as Proliferation, DNA Damage and Repair, and Angiogenesis.

    Science.gov (United States)

    Kenny, Laura

    2016-02-01

    The balance between proliferation and cell death is pivotal to breast tumor growth. Because of a combination of environmental and genetic factors leading to activation of oncogenes or inactivation of tumor suppressor genes, these processes become deregulated in cancer. PET imaging of proliferation, angiogenesis, and DNA damage and repair offers the opportunity to monitor therapeutic efficacy to detect changes in tumor biology that may precede physical size reduction and simultaneously allows the study of intratumoral and intertumoral heterogeneity.This review examines recent developments in breast cancer imaging using novel probes. The probes discussed here are not licensed for routine use and are at various stages of development ranging from preclinical development (e.g., the DNA repair marker γH2AX) to clinical validation in larger studies (such as the proliferation probe 3'-deoxy-3'-(18)F-fluorothymidine [(18)F-FLT]). In breast cancer, most studies have focused on proliferation imaging mainly based on (18)F-labeled thymidine analogs. Initial studies have been promising; however, the results of larger validation studies are necessary before being incorporated into routine clinical use. Although there are distinct advantages in using process-specific probes, properties such as metabolism need careful consideration, because high background uptake in the liver due to glucuronidation in the case of (18)F-FLT may limit utility for imaging of liver metastases.Targeting angiogenesis has had some success in tumors such as renal cell carcinoma; however, angiogenesis inhibitors have not been particularly successful in the clinical treatment of breast cancer. This could be potentially attributed to patient selection due to the lack of validated predictive and responsive biomarkers; the quest for a successful noninvasive biomarker for angiogenesis could solve this challenge. Finally, we look at cell death including apoptosis and DNA damage and repair probes, the most well

  7. Analytical characterization of polymer-drug conjugates

    International Nuclear Information System (INIS)

    Rizzo, V.; Gigli, M.; Pinciroli, V.

    1998-01-01

    A few polymeric conjugates of antitumor drugs have been recently developed in view of possible therapeutic advantages: solubilization of sparingly soluble drugs in water, improvement of therapeutic index, organ targeting through a second chemical species bound to the same polymeric chain. In this article it's described the analytical approach used in the characterization of the conjugates for chemical identity, purity and strength of the contained active ingredient. The techniques are: high field NMR and size exclusion chromatography with non-aqueous mobile phase for identity; selective hydrolysis and HPLC for strength and purity. A complete and reliable picture is thus obtained both for qualitative and for quantitative aspects. This is an important step forward in the direction of further development and marketing of polymer-drug conjugates [it

  8. Nonlinear conjugate gradient methods in micromagnetics

    Directory of Open Access Journals (Sweden)

    J. Fischbacher

    2017-04-01

    Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.

  9. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Science.gov (United States)

    Miller, Jacqueline M.; Mesaros, Narcisa; Van Der Wielen, Marie; Baine, Yaela

    2011-01-01

    Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT) designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles. PMID:21991444

  10. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  11. 125I Radioimmunoassay of serum ursodeoxycholyl conjugates

    International Nuclear Information System (INIS)

    Hill, A.; Ross, P.E.; Bouchier, I.A.D.

    1983-01-01

    A radioimmunoassay for serum ursodeoxycholic conjugates using an iodine-125 ligand has been developed. The bile acid was present in normal fasting serum (0.19 +- SD 0.19 μmol/l, n=24) and 2-hour post-prandial serum (0.8 +- SD 0.8 μmol/l, n=16). Gallstone patients undergoing oral ursodeoxycholic acid therapy had significantly higher post-prandial serum levels (21.5 +- SD 14.0 μmol/l, n=15) by radioimmunoassay. Gas liquid chromatography analysis indicated that in normal serum ursodeoxycholic acid was totally conjugated, whereas sera from gallstone patients contained a proportion as the free bile acid (10.2 +- SD 8.1 μmol/l, n=15). Following an oral dose of ursodeoxycholic acid, both unconjugated and conjugated forms of the bile acid appeared in the serum of healthy individuals. (Auth.)

  12. Novel β-cyclodextrin–eosin conjugates

    Directory of Open Access Journals (Sweden)

    Gábor Benkovics

    2017-03-01

    Full Text Available Eosin B (EoB and eosin Y (EoY, two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin–EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin–EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.

  13. Novel β-cyclodextrin-eosin conjugates.

    Science.gov (United States)

    Benkovics, Gábor; Afonso, Damien; Darcsi, András; Béni, Szabolcs; Conoci, Sabrina; Fenyvesi, Éva; Szente, Lajos; Malanga, Milo; Sortino, Salvatore

    2017-01-01

    Eosin B (EoB) and eosin Y (EoY), two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy and mass spectrometry. Preliminary spectroscopic investigations showed that the β-cyclodextrin-EoY conjugate retains both the fluorescence properties and the capability to photogenerate singlet oxygen of the unbound chromophore. In contrast, the corresponding β-cyclodextrin-EoB conjugate did not show either relevant emission or photosensitizing activity probably due to aggregation in aqueous medium, which precludes any response to light excitation.

  14. Conjugate gradient algorithms using multiple recursions

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  15. Optically degradable dendrons for temporary adhesion of proteins to DNA.

    Science.gov (United States)

    Kostiainen, Mauri A; Kotimaa, Juha; Laukkanen, Marja-Leena; Pavan, Giovanni M

    2010-06-18

    Experimental studies and molecular dynamics modeling demonstrate that multivalent dendrons can be used to temporarily glue proteins and DNA together with high affinity. We describe N-maleimide-cored polyamine dendrons that can be conjugated with free cysteine residues on protein surfaces through 1,4-conjugate addition to give one-to-one protein-polymer conjugates. We used a genetically engineered cysteine mutant of class II hydrophobin (HFBI) and a single-chain Fragment variable (scFv) antibody as model proteins for the conjugation reactions. The binding affinity of the protein-dendron conjugates towards DNA was experimentally assessed by using the ethidium bromide displacement assay. The binding was found to depend on the generation of the dendron, with the second generation having a stronger affinity than the first generation. Thermodynamic parameters of the binding were obtained from molecular dynamics modeling, which showed that the high binding affinity for each system is almost completely driven by a strong favorable binding enthalpy that is opposed by unfavorable binding entropy. A short exposure to UV (lambda approximately 350 nm) can cleave the photolabile o-nitrobenzyl-linked binding ligands from the surface of the dendron, which results in loss of the multivalent binding interactions and triggers the release of the DNA and protein. The timescale of the release is very rapid and the binding partners can be efficiently released after 3 min of UV exposure.

  16. Data on atherosclerosis specific antibody conjugation to nanoemulsions

    Directory of Open Access Journals (Sweden)

    Geoffrey Prévot

    2017-12-01

    Full Text Available This article present data related to the publication entitled “Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging” (Prévot et al., 2017 [1]. Herein we describe the engineering in the baculovirus-insect cell system and purification processes of the human scFv-Fc TEG4-2C antibody, specific of platelets within the atheroma plaque. For molecular targeting purpose, atheroma specific antibody was conjugated to nanoemulsions (NEs using a heterobifunctional linker (DSPE-PEG-maleimide. Atheroma labelling was assayed by immunochemistry on arterial sections from rabbits.

  17. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  18. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  19. One-Step Protein Conjugation to Upconversion Nanoparticles.

    Science.gov (United States)

    Lu, Jie; Chen, Yinghui; Liu, Deming; Ren, Wei; Lu, Yiqing; Shi, Yu; Piper, James; Paulsen, Ian; Jin, Dayong

    2015-10-20

    The emerging upconversion nanoparticles offer a fascinating library of ultrasensitive luminescent probes for a range of biotechnology applications from biomarker discovery to single molecule tracking, early disease diagnosis, deep tissue imaging, and drug delivery and therapies. The effective bioconjugation of inorganic nanoparticles to the molecule-specific proteins, free of agglomeration, nonspecific binding, or biomolecule deactivation, is crucial for molecular recognition of target molecules or cells. The current available protocols require multiple steps which can lead to low probe stability, specificity, and reproducibility. Here we report a simple and rapid protein bioconjugation method based on a one-step ligand exchange using the DNAs as the linker. Our method benefits from the robust DNA-protein conjugates as well as from multiple ions binding capability. Protein can be preconjugated via an amino group at the 3' end of a synthetic DNA molecule, so that the 5' end phosphoric acid group and multiple phosphate oxygen atoms in the phosphodiester bonds are exposed to replace the oleic acid ligands on the surface of upconversion nanoparticles due to their stronger chelating capability to lanthanides. We demonstrated that our method can efficiently pull out the upconversion nanoparticles from organic solvent into an aqueous phase. The upconversion nanoparticles then become hydrophilic, stable, and specific biomolecules recognition. This allows us to successfully functionalize the upconversion nanoparticles with horseradish peroxidise (HRP) for catalytic colorimetric assay and for streptavidin (SA)-biotin immunoassays.

  20. Conjugated Polymers as Actuators: Modes of Actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2004-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  1. Conjugated polymers as actuators: modes of actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2007-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  2. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  3. Enzymatic synthesis of tRNA-peptide conjugates and spectroscopic studies of fluorine-modified RNA

    International Nuclear Information System (INIS)

    Graber, D.

    2010-01-01

    possess the naturally occurring nucleoside modifications. Hence, an alternative process for access to 5'-fragments containing these modifications was needed. Starting from wild-type tRNA, a DNA-enzyme mediated position-specific cleavage at the desired cleavage site was elaborated. For quantitative cleavage, the introduction of repeated temperature cycles was inevitable. Dephosphorylation of the so obtained 2',3'-cyclophosphate cleavage products had to be performed prior to ligating the wild-type 5'-fragment by T4 RNA ligase to the chimeric 3'-fragment yielding the fully modified tRNA-peptide conjugate. The broad applicability of that approach was demonstrated by successful ligation of various tRNA, and tRNA from different species. In the second part of this thesis fluorinated nucleic acids were applied to 19F NMR spectroscopic investigations. One subproject concerned fluorinated nucleic acids for probing secondary structures. For that reason, a 2,4-difluorotoluyl-ribofuranose phosphoramidite was synthesized and site-specifically incorporated into oligonucleotides. As a proof of principle, the differentiation between monomolecular and bimolecular melting transitions was demonstrated by monitoring the temperature dependent alterations in the chemical shift signatures. It was also shown that oligonucleotides of self-complementary sequences - which simultaneously adopt different secondary structures - can be analyzed in terms of quantification of the coexisting populations. Moreover, melting temperatures determined by 19F NMR spectroscopy were in excellent accordance with those found using traditional UV-techniques. In another subproject, the interaction of tRNA pseudouridine synthase (TruB) with its TΨC loop tRNA substrate was studied using 19F NMR spectroscopy. So far, published contributions have focused on 5-fluorouridine substrate/enzyme reactions which were expected to result in a stable covalently linked RNA-enzyme complex. However, the enzyme was capable of

  4. Multistage model for the action of cytotoxic T lymphocytes in multicellular conjugates

    International Nuclear Information System (INIS)

    Macken, C.A.; Perelson, A.S.

    1984-01-01

    The authors propose a multistage stochastic model to explain data on the kinetics of target cell lysis by cytotoxic T lymphocytes in multicellular conjugates. A novel feature of this model is that the authors explicitly consider both the lethal hitting stage and the target cell disintegration stage of the cytolytic process. Further, the authors allow for the possibility that target cell disintegration is itself a complex process composed of many events. The comparison of this model with the data of other investigators suggests that cytotoxic T cells deliver lethal hits at random to undamage target cells. Having received a lethal hit, the target cell disintegrates over a variable length of time. The disintegration times of target cells from different conjugates appear to be randomly distributed and to be consistent with a model in which disintegration occurs by at least two major, sequential, rate-limiting events. For conjugates containing one lymphocyte and multiple target cells, the mean rate at which a lethally hit target cell disintegrates is found to be independent of the total number of target cells in the conjugate. This model predicts that in such multicellular conjugates, individual target cells lyse one by one, on average at approximately 30-min intervals, thus agreeing closely with previously reported experimental observations. 35 references, 3 figures, 2 tables

  5. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    Science.gov (United States)

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Repercussions of imprisonment for conjugal violence: discourses of men.

    Science.gov (United States)

    Sousa, Anderson Reis de; Pereira, Álvaro; Paixão, Gilvânia Patrícia do Nascimento; Pereira, Nadirlene Gomes; Campos, Luana Moura; Couto, Telmara Menezes

    2016-12-08

    to know the consequences that men experience related to incarceration by conjugal violence. qualitative study on 20 men in jail and indicted in criminal processes related to conjugal violence in a Court specialized in Family and Domestic Violence against women. The interviews were classified based on Collective Subject Discourse method, using NVIVO(r) software. the collective discourse shows that the experience of preventive imprisonment starts a process of family dismantling, social stigma, financial hardship and psycho-emotional symptoms such as phobia, depression, hypertension, and headaches. due to the physical, mental and social consequences of the conjugal violence-related imprisonment experience, it is urgent to look carefully into the somatization process as well as to the prevention strategies regarding this process. conhecer as repercussões da prisão por violência conjugal para os homens. estudo qualitativo com 20 homens que foram presos e respondem a processo criminal por violência conjugal em uma Vara de Violência Doméstica e Familiar contra a Mulher. As entrevistas foram categorizadas com base no método do Discurso do Sujeito Coletivo, com auxílio do software NVIVO(r). o discurso coletivo revela que a vivência da prisão preventiva desencadeia desagregação familiar, estigma social, dificuldades financeiras e sintomatologia de caráter psicoemocional, como fobia, depressão, hipertensão e cefaleia. diante das repercussões físicas, mentais e sociais de experienciar a prisão em decorrência de violência conjugal, urge um olhar acerca do processo de somatização do vivido, da mesma maneira que estratégias de prevenção do fenômeno. conocer las repercusiones de prisión, por violencia conyugal, en los hombres. estudio cualitativo con 20 hombres que fueron presos y responden por caso criminal de violencia conyugal, en una Juzgado de Violencia Doméstica y Familiar contra la Mujer. Las entrevistas fueron categorizadas con base en el m

  7. Study of conjugation and radiolabeling of monoclonal antibody rituximab for use in radionuclide therapy

    International Nuclear Information System (INIS)

    Massicano, Adriana Vidal Fernandes

    2011-01-01

    Lymphomas are tumors originated from the transformation of a lymphocyte in the lymphatic system. The most common lymphoma is the Non-Hodgkin Lymphoma (NHL). Advances in immunology and molecular biology have been improving NHL's detection and treatment strategies development, such as Radioimmunotherapy (RIT). Rituximab is an anti-CD20 monoclonal antibody used as immunotherapeutic to treat refractory or relapsed NHL. The goal of the present work was to conjugate this antibody to DOTA-NHS-ester bifunctional chelator and to radiolabel it with 177 Lu radioisotope in order to develop a radio immunotherapeutic agent for NHL's treatment. Different rituximab to DOTA molar ratios (1:5, 1:10, 1:20, 1:50, 1:250, 1:500 and 1:1000) were evaluated in order to determine the best condition for obtaining the highest radiochemical purity of radio immunotherapeutic. The stability of the unlabeled immuno conjugated was evaluated by high performance liquid chromatography (HPLC) for up to 240 days in different storage conditions. The stability of the labeled preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C. The binding to serum proteins was also determined. In vivo studies were performed in healthy Swiss mice, in order to characterize the biological properties of labeled conjugate. Finally, preliminary studies of radio immuno conjugated competitive binding to CD20 positive Raji cells were carried out in order to analyze if the process of conjugation and radiolabeling compromises the immunoreactivity of the antibody. The conjugation applying lower antibody to chelator molar ratios (1:5, 1:10 and 1:20) showed high stability when stored for up to 240 days in different conditions. The HPLC analysis showed that the monoclonal antibody conjugated in molar ratio 1:50 was labeled with higher radiochemical purity (> 95%) when purified in PD-10 column. This conjugate showed reasonable stability at 2-8 degree C. The analysis of the

  8. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  9. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    International Nuclear Information System (INIS)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-01

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC 50 =25±0.38) when compared to reference compound PTER (IC 50 =65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene

  10. Conformation-dependent DNA attraction

    Science.gov (United States)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by

  11. Synchronization of DNA array replication kinetics

    Science.gov (United States)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  12. Identification of a Novel Conjugative Plasmid in Mycobacteria That Requires Both Type IV and Type VII Secretion

    KAUST Repository

    Ummels, R.; Abdallah, A. M.; Kuiper, V.; Aajoud, A.; Sparrius, M.; Naeem, R.; Spaink, H. P.; van Soolingen, D.; Pain, Arnab; Bitter, W.

    2014-01-01

    Conjugative plasmids play an important role in horizontal gene transfer between different bacteria and, as such, in their adaptation and evolution. This effect is most obvious in the spread of antibiotic resistance genes. Thus far, conjugation of natural plasmids has been described only rarely for mycobacterial species. In fact, it is generally accepted that M. tuberculosis does not show any recent sign of horizontal gene transfer. In this study, we describe the identification of a new widespread conjugative plasmid that can also be efficiently transferred to M. tuberculosis. This plasmid therefore poses both a threat and an opportunity. The threat is that, through the acquisition of antibiotic resistance markers, this plasmid could start a rapid spread of antibiotic resistance genes between pathogenic mycobacteria. The opportunity is that we could use this plasmid to generate new tools for the efficient introduction of foreign DNA in slow-growing mycobacteria.

  13. Fiscal 1998 R and D project on global environmental industrial technology. Research result report on DNA analysis and information processing technology for photosynthesis microorganisms (Development of CO{sub 2} fixation and effective use technology by using bacteria and algae); 1998 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo. Kogosei biseibutsu nado DNA kaiseki joho shori gijutsu no kenkyu (saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 research result on DNA analysis and information processing technology for photosynthesis microorganisms. On the study on DNA analysis technology by triple-strand formation method, as the comparison study result of a READ method, stable triple- strand formation method and hairpin method, a READ method showed the highest triple-strand formation efficiency for target DNA. On the study on accurate separation technology of specific genes, establishment of protocols was promoted for solid-phase probe technology, subtract technology and leveling technology. On the study on DNA microarray analysis technology by high-efficiency hybridization method, the analysis technology of genes by hybridization method using DNA chips is under investigation. In addition, the high- efficiency analysis technology of specific DNA segments by using an affinity sensor, and the high-accuracy cloning technology for DNA with altered primary structure were also studied. (NEDO)

  14. DNA: Polymer and molecular code

    Science.gov (United States)

    Shivashankar, G. V.

    1999-10-01

    gene expression a prime example of a biological code. We developed a novel method of making DNA micro- arrays, the so-called DNA chip. Using the optical tweezer concept, we were able to pattern biomolecules on a solid substrate, developing a new type of sub-micron laser lithography. A laser beam is focused onto a thin gold film on a glass substrate. Laser ablation of gold results in local aggregation of nanometer scale beads conjugated with small DNA oligonucleotides, with sub-micron resolution. This leads to specific detection of cDNA and RNA molecules. We built a simple micro-array fabrication and detection in the laboratory, based on this method, to probe addressable pools (genes, proteins or antibodies). We have lately used molecular beacons (single stranded DNA with a stem-loop structure containing a fluorophore and quencher), for the direct detection of unlabelled mRNA. As a first step towards a study of the dynamics of the biological code, we have begun to examine the patterns of gene expression during virus (T7 phage) infection of E-coli bacteria.

  15. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA

    NARCIS (Netherlands)

    Etson, Candice M.; Hamdan, Samir M.; Richardson, Charles C.; Oijen, Antoine M. van; Richardson, Charles C.

    2010-01-01

    The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 1:1 complex with

  16. Conformation-dependent DNA attraction.

    Science.gov (United States)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-06-21

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.

  17. Development and preclinical evaluation of new 124I-folate conjugates for PET imaging of folate receptor-positive tumors

    International Nuclear Information System (INIS)

    AlJammaz, I.; Al-Otaibi, B.; Al-Rumayan, F.; Al-Yanbawi, S.; Amer, S.; Okarvi, S.M.

    2014-01-01

    In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers, we have synthesized [ 124 I]-SIB- and [ 124 I]-SIP-folate conjugates using a straightforward and two-step simple reactions. Radiochemical yields for [ 124 I]-SIB- and [ 124 I]-SIP-folate conjugates were greater than 90 and 60% respectively, with total synthesis time of 30–40 min. Radiochemical purities were always greater than 98% without HPLC purification. These synthetic approaches hold considerable promise as rapid and simple method for 124 I-folate conjugate preparation with high radiochemical yield in short synthesis time. In vitro tests on KB cell line showed that the significant amounts of the radioconjugates were associated with cell fractions. In vivo characterization in normal Balb/c mice revealed rapid blood clearance of these radioconjugates and favorable biodistribution profile for [ 124 I]-SIP-folate conjugate over [ 124 I]-SIB-folate conjugate. Biodistribution studies of [ 124 I]-SIP-folate conjugate in nude mice bearing human KB cell line xenografts, demonstrated significant tumor uptake. The uptake in the tumors was blocked by excess injection of folic acid, suggesting a receptor-mediated process. These results demonstrate that [ 124 I]-SIP-folate conjugate may be useful as a molecular probe for detecting and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis as well as monitoring tumor response to treatment

  18. Enhancement of Gene Silencing Effect and Membrane Permeability by Peptide-Conjugated 27-Nucleotide Small Interfering RNA

    Directory of Open Access Journals (Sweden)

    Toshio Seyama

    2012-09-01

    Full Text Available Two different sizes of siRNAs, of which one type was 21-nucleotide (nt siRNA containing 2-nt dangling ends and the other type was 27-nt siRNA with blunt ends, were conjugated with a nuclear export signal peptide of HIV-1 Rev at the 5′-sense end. Processing by Dicer enzyme, cell membrane permeability, and RNAi efficiency of the peptide-conjugated siRNAs were examined. Dicer cleaved the peptide-conjugated 27-nt siRNA leading to the release of 21-nt siRNA, whereas the peptide-conjugated 21-nt siRNA was not cleaved. High membrane permeability and cytoplasmic localization was found in the conjugates. Moreover, the peptide-conjugated 27-nt siRNA showed increased potency of RNAi in comparison with the nonmodified 21-nt and 27-nt siRNAs, whereas the peptide-conjugated 21-nt siRNA showed decreased RNAi efficacy. This potent RNAi efficacy is probably owing to acceleration of RISC through recognition by Dicer, as well as to the improvement of cell membrane permeability and intracellular accumulation.

  19. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  20. Functions and Dynamics of DNA Repair Proteins in Mitosis and Meiosis

    NARCIS (Netherlands)

    E.J. Uringa

    2005-01-01

    textabstractMy PhD project encompassed studies on the functions of several different proteins, all involved in DNA repair, in somatic and germ-line cells. Hr6b and Rad18Sc are involved in a