WorldWideScience

Sample records for conjugating enzyme ube2g2

  1. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7)

    International Nuclear Information System (INIS)

    Arai, Ryoichi; Yoshikawa, Seiko; Murayama, Kazutaka; Imai, Yuzuru; Takahashi, Ryosuke; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-01-01

    The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way as UbcH7. The human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7) is involved in protein degradation, including a process known as endoplasmic reticulum-associated degradation (ERAD). The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The UBE2G2 structure comprises a single domain consisting of an antiparallel β-sheet with four strands, five α-helices and two 3 10 -helices. Structural comparison of human UBE2G2 with yeast Ubc7 indicated that the overall structures are similar except for the long loop region and the C-terminal helix. Superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way to UbcH7. In addition, the extra loop region of UBE2G2 may interact with the RING domain or its neighbouring region and may be involved in the binding specificity and stability

  2. High expression of ubiquitin-conjugating enzyme 2C (UBE2C) correlates with nasopharyngeal carcinoma progression

    International Nuclear Information System (INIS)

    Shen, Zhihua; Guo, Junli; Jie, Wei; Jiang, Xiaofan; Zeng, Chao; Zheng, Shaojiang; Luo, Botao; Zeng, Yumei; Ding, Ranran; Jiang, Hanguo; He, Qiyi

    2013-01-01

    Overexpression of ubiquitin-conjugating enzyme 2C (UBE2C) has been detected in many types of human cancers, and is correlated with tumor malignancy. However, the role of UBE2C in human nasopharyngeal carcinoma (NPC) is unclear. In this study, we investigated the role of aberrant UBE2C expression in the progression of human NPC. Immunohistochemical analysis was performed to detect UBE2C protein in clinical samples of NPC and benign nasopharyngeal tissues, and the association of UBE2C expression with patient clinicopathological characteristics was analyzed. UBEC2 expression profiles were evaluated in cell lines representing varying differentiated stages of NPC and immortalized nasopharyngeal epithelia NP-69 cells using quantitative RT-PCR, western blotting and fluorescent staining. Furthermore, UBE2C was knocked down using RNA interference in these cell lines and proliferation and cell cycle distribution was investigated. Immunohistochemical analysis revealed that UBE2C protein expression levels were higher in NPC tissues than in benign nasopharyngeal tissues (P<0.001). Moreover, high UBE2C protein expression was positively correlated with tumor size (P=0.017), lymph node metastasis (P=0.016) and distant metastasis (P=0.015) in NPC patients. In vitro experiments demonstrated that UBE2C expression levels were inversely correlated with the degree of differentiation of NPC cell lines, whereas UBE2C displayed low level of expression in NP-69 cells. Knockdown of UBE2C led to significant arrest at the S and G2/M phases of the cell cycle, and decreased cell proliferation was observed in poorly-differentiated CNE2Z NPC cells and undifferentiated C666-1 cells, but not in well-differentiated CNE1 and immortalized NP-69 cells. Our findings suggest that high expression of UBE2C in human NPC is closely related to tumor malignancy, and may be a potential marker for NPC progression

  3. Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses.

    Science.gov (United States)

    Zhao, Yi; Long, Marcus J C; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2018-02-28

    Posttranslational modifications (PTMs) are the lingua franca of cellular communication. Most PTMs are enzyme-orchestrated. However, the reemergence of electrophilic drugs has ushered mining of unconventional/non-enzyme-catalyzed electrophile-signaling pathways. Despite the latest impetus toward harnessing kinetically and functionally privileged cysteines for electrophilic drug design, identifying these sensors remains challenging. Herein, we designed "G-REX"-a technique that allows controlled release of reactive electrophiles in vivo. Mitigating toxicity/off-target effects associated with uncontrolled bolus exposure, G-REX tagged first-responding innate cysteines that bind electrophiles under true k cat / K m conditions. G-REX identified two allosteric ubiquitin-conjugating proteins-Ube2V1/Ube2V2-sharing a novel privileged-sensor-cysteine. This non-enzyme-catalyzed-PTM triggered responses specific to each protein. Thus, G-REX is an unbiased method to identify novel functional cysteines. Contrasting conventional active-site/off-active-site cysteine-modifications that regulate target activity, modification of Ube2V2 allosterically hyperactivated its enzymatically active binding-partner Ube2N, promoting K63-linked client ubiquitination and stimulating H2AX-dependent DNA damage response. This work establishes Ube2V2 as a Rosetta-stone bridging redox and ubiquitin codes to guard genome integrity.

  4. A novel UBE2A mutation causes X-linked intellectual disability type Nascimento.

    Science.gov (United States)

    Tsurusaki, Yoshinori; Ohashi, Ikuko; Enomoto, Yumi; Naruto, Takuya; Mitsui, Jun; Aida, Noriko; Kurosawa, Kenji

    2017-01-01

    X-linked intellectual disability (ID) type Nascimento (MIM #300860), also known as ubiquitin-conjugating enzyme E2 A (UBE2A) deficiency syndrome, is a congenital malformation syndrome characterized by moderate to severe ID, speech impairment, dysmorphic facial features, genital anomalies and skin abnormalities. Here, we report a Japanese patient with severe ID and congenital cataract. We identified a novel hemizygous mutation (c.76G>A, p.Gly26Arg) in UBE2A by whole-exome sequencing.

  5. Functional inhibition of Ubiquitin conjugating Enzyme (UBE2C) reduces proliferation and sensitizes cervical and breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole

    International Nuclear Information System (INIS)

    Bose, Mayil Vahanan; Rawat, Akhilesh; Gopisetty, Gopal; Thangarajan, Rajkumar; Ganesharaja, Selvaluxmy

    2014-01-01

    Cervical cancer is the second most common cancer in women, worldwide. About 80% of cervical cancer cases occur in developing countries. Breast cancer has overtaken cervical cancer in most of the urban centers in India. In recent years, interest in the role of Ubiquitin conjugating Enzyme E2C (UBE2C) in cancer has shown a dramatic increase. Several studies have reported UBE2C as a potential oncogene and therapeutic target. The objective of the study was to elucidate radiation and chemo-sensitivity in response to functional inhibition of UBE2C in cervical and breast cancer cell lines. Taqman Real time PCR was performed to measure UBE2C levels in cervical and breast cancer cell lines. A dominant negative form of UBE2C (DN-UBE2C) was used to functionally inhibit wild type UBE2C. Cell proliferation and anchorage independent growth were measured by colorimetric assay and soft agar assay respectively. Radiation and chemo response of cell lines were assessed by colorimetric assay and clonogenic assay. Difference in sensitivity to radiation was observed among the cervical cancer cell lines studied. The growth rate of SiHa and HeLa transfected with DN- UBE2C was significantly reduced compared to vector control. Further, DN-UBE2C mediated radio-sensitivity was correlated with a significant decrease in resistance to radiation by SiHa and HeLa cells after transfection when compared to control cultures. Similarly, both the growth rate and the anchorage independent growth of MCF7 and MDAMB231 cells transfected with DN-UBE2C were significantly reduced compared to cells transfected with vector alone. MCF7 and MDAMB231 cells expressing DN-UBE2C were significantly more sensitive to different doses of radiation and doxorubicin compared to controls. In addition, DN-UBE2C transfected MCF7 cells were more sensitive to inhibition by tamoxifen and letrozole compared to vector controls. These results suggest that UBE2C can be used as a potential therapeutic target for cervical and breast

  6. UBE2C Is a Transcriptional Target of the Cell Cycle Regulator FOXM1

    Directory of Open Access Journals (Sweden)

    Pedro Nicolau-Neto

    2018-03-01

    Full Text Available FOXM1 (forkhead box protein M1 is a transcription factor that participates in all stages of tumor development, mainly through the control of cell cycle and proliferation, regulating the expression of genes involved in G1/S and G2/M transition and M phase progression. The ubiquitin conjugating enzyme E2 (UBE2C is a member of the anaphase promoting complex/cyclosome, promoting the degradation of several target proteins along cell cycle progression, during metaphase/anaphase transition. FOXM1 and UBE2C have been found overexpressed in a wide range of different solid tumors. Therefore, the aim of this study was to investigate whether UBE2C is a transcriptional target of FOXM1, using esophageal squamous cell carcinoma (ESCC as a model, in addition to several cancer-deposited data. Our results show that FOXM1 and UBE2C expression present a positive correlation in normal tissues and in 25 distinct tumor types, including ESCC, where these genes are overexpressed. Moreover, FOXM1 binds to UBE2C promoter region in ESCC cell line and transcriptionally activates it, leading to UBE2C upregulation. In conclusion, this study provides evidences that FOXM1 transcriptionally regulates UBE2C expression in ESCC and their deregulation may be a general phenomenon in human neoplasias.

  7. Genetic and bibliographic information: UBE2N [GenLibi

    Lifescience Database Archive (English)

    Full Text Available UBE2N ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast) human Skin Neoplasms ...(MeSH) Neoplasms (C04) > Neoplasms by Site (C04.588) > Skin Neoplasms (C04.588.805) Skin and Connective Tissue Diseases (C17) > Skin... Diseases (C17.800) > Skin Neoplasms (C17.800.882) 03A0584544 ...

  8. UBE2S associated with OSCC proliferation by promotion of P21 degradation via the ubiquitin-proteasome system

    International Nuclear Information System (INIS)

    Yoshimura, Shusaku; Kasamatsu, Atsushi; Nakashima, Dai; Iyoda, Manabu; Kasama, Hiroki; Saito, Tomoaki; Takahara, Toshikazu; Endo-Sakamoto, Yosuke; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2017-01-01

    Ubiquitin-conjugating enzyme E2S (UBE2S), a family of E2 protein in the ubiquitin-proteasome system, is highly expressed in several types of cancers; however, its roles in oral squamous cell carcinoma (OSCC) have not yet been well elucidated. The purpose of this study was to clarify the functional activities of UBE2S in OSCCs. We analyzed the expression levels of UBE2S in nine OSCC cell lines and primary OSCC tissues by quantitative reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry (IHC). The correlations between UBE2S expression and clinical classifications of OSCCs were analyzed using the IHC scoring system. We also used UBE2S knockdown OSCC cells for functional assays (proliferation assay, flow cytometry, and Western blotting). UBE2S was overexpressed in OSCCs in vitro and in vivo and was correlated significantly (P < 0.05) with the primary tumoral size. The cellular growth was decreased and the cell-cycle was arrested in the G2/M phase in the UBE2S knockdown (shUBE2S) cells. The expression level of P21, a target of the ubiquitin-proteasome system, was increased in the shUBE2S cells because of lower anaphase activity that promotes complex subunit 3 (APC3), an E3 ubiquitin ligase, compared with shMock cells. These findings might promote the understanding of the relationship between UBE2S overexpression and oral cancer proliferation, indicating that UBE2S would be a potential biomarker of and therapeutic target in OSCCs. - Highlights: • UBE2S contributes to tumor progression in OSCCs. • UBE2S regulated the cell-cycle arrest at G2/M phase in OSCC cells. • UBE2S and APC3 co-regulate the expression level of P21 at G2/M check point via the ubiquitin-proteasome system. • P21 is one of the proliferation-regulating factors in OSCC. • UBE2S would be a potential therapeutic target for OSCCs.

  9. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  10. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  11. Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia

    Directory of Open Access Journals (Sweden)

    Kimberly A. Rickman

    2015-07-01

    Full Text Available Fanconi anemia (FA is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs. Mutations in 17 genes (FANCA-FANCS have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2, UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.

  12. Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia.

    Science.gov (United States)

    Rickman, Kimberly A; Lach, Francis P; Abhyankar, Avinash; Donovan, Frank X; Sanborn, Erica M; Kennedy, Jennifer A; Sougnez, Carrie; Gabriel, Stacey B; Elemento, Olivier; Chandrasekharappa, Settara C; Schindler, Detlev; Auerbach, Arleen D; Smogorzewska, Agata

    2015-07-07

    Fanconi anemia (FA) is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs). Mutations in 17 genes (FANCA-FANCS) have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2), UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection

    Science.gov (United States)

    Hodson, Charlotte; Purkiss, Andrew; Miles, Jennifer Anne; Walden, Helen

    2014-01-01

    Summary The combination of an E2 ubiquitin-conjugating enzyme with an E3 ubiquitin-ligase is essential for ubiquitin modification of a substrate. Moreover, the pairing dictates both the substrate choice and the modification type. The molecular details of generic E3-E2 interactions are well established. Nevertheless, the determinants of selective, specific E3-E2 recognition are not understood. There are ∼40 E2s and ∼600 E3s giving rise to a possible ∼24,000 E3-E2 pairs. Using the Fanconi Anemia pathway exclusive E3-E2 pair, FANCL-Ube2T, we report the atomic structure of the FANCL RING-Ube2T complex, revealing a specific and extensive network of additional electrostatic and hydrophobic interactions. Furthermore, we show that these specific interactions are required for selection of Ube2T over other E2s by FANCL. PMID:24389026

  15. A newly discovered ubiquitin-conjugating enzyme E2 correlated with the cryogenic autolysis of Volvariella volvacea.

    Science.gov (United States)

    Gong, Ming; Wang, Hong; Chen, Mingjie; Bao, Dapeng; Zhu, Qiuming; Tan, Qi

    2016-05-25

    In Volvariella volvacea, a species of edible mushroom, cryogenic autolysis is a typical part of abnormal metabolism. Previous functional annotation cluster analyses of cold-induced gene expression profiles have shown that the ubiquitin-conjugating enzyme E2 (UBE2), rather than the cyclin-like F-box domain alone, forms the functional cluster. In this study, analysis of gene expression profiling showed that only one type of UBE2 in V. volvacea (UBEV2) was significantly up-regulated. Further quantitative real-time PCR analysis confirmed that the expression of UBEV2 was significantly up-regulated (Pautolysis. The specific distribution of UBEV2 in recently diverged herb decay fungi indicated that UBEV2 was not evolutionarily correlated with early diverging fungi. Phylogenetic analysis indicated that UBEV2 was generated by horizontal gene transfer (HGT) from the ancestry of Selaginella moellendorffii UBE2. Further relative time estimation and detection of natural selection showed that there has been recent positive selection after HGT in UBEV2. Molecular modeling and logo analysis showed that the cysteine-cysteine motif is the characteristic of the UBEV2 family. These observations indicate that UBEV2 is a new type of UBE2 correlated with the cryogenic autolysis of V. volvacea. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.

    Directory of Open Access Journals (Sweden)

    Wenbo Wang

    Full Text Available The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3 as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1.

  17. The Level of Autoantibodies Targeting Eukaryote Translation Elongation Factor 1 α1 and Ubiquitin-Conjugating Enzyme 2L3 in Nondiabetic Young Adults

    Directory of Open Access Journals (Sweden)

    Eunhee G. Kim

    2016-01-01

    Full Text Available BackgroundThe prevalence of novel type 1 diabetes mellitus (T1DM antibodies targeting eukaryote translation elongation factor 1 alpha 1 autoantibody (EEF1A1-AAb and ubiquitin-conjugating enzyme 2L3 autoantibody (UBE2L3-AAb has been shown to be negatively correlated with age in T1DM subjects. Therefore, we aimed to investigate whether age affects the levels of these two antibodies in nondiabetic subjects.MethodsEEF1A1-AAb and UBE2L3-AAb levels in nondiabetic control subjects (n=150 and T1DM subjects (n=101 in various ranges of age (18 to 69 years were measured using an enzyme-linked immunosorbent assay. The cutoff point for the presence of each autoantibody was determined based on control subjects using the formula: [mean absorbance+3×standard deviation].ResultsIn nondiabetic subjects, there were no significant correlations between age and EEF1A1-AAb and UBE2L3-AAb levels. However, there was wide variation in EEF1A1-AAb and UBE2L3-AAb levels among control subjects <40 years old; the prevalence of both EEF1A1-AAb and UBE2L3-AAb in these subjects was 4.4%. When using cutoff points determined from the control subjects <40 years old, the prevalence of both autoantibodies in T1DM subjects was decreased (EEFA1-AAb, 15.8% to 8.9%; UBE2L3-AAb, 10.9% to 7.9% when compared to the prevalence using the cutoff derived from the totals for control subjects.ConclusionThere was no association between age and EEF1A1-AAb or UBE2L3-AAb levels in nondiabetic subjects. However, the wide variation in EEF1A1-AAb and UBE2L3-AAb levels apparent among the control subjects <40 years old should be taken into consideration when determining the cutoff reference range for the diagnosis of T1DM.

  18. An essential role for UBE2A/HR6A in learning and memory and mGLUR-dependent long-term depression.

    Science.gov (United States)

    Bruinsma, Caroline F; Savelberg, Sanne M C; Kool, Martijn J; Jolfaei, Mehrnoush Aghadavoud; Van Woerden, Geeske M; Baarends, Willy M; Elgersma, Ype

    2016-01-01

    UBE2A deficiency syndrome (also known as X-linked intellectual disability type Nascimento) is an intellectual disability syndrome characterized by prominent dysmorphic features, impaired speech and often epilepsy. The syndrome is caused by Xq24 deletions encompassing the UBE2A (HR6A) gene or by intragenic UBE2A mutations. UBE2A encodes an E2 ubiquitin-conjugating enzyme involved in DNA repair and female fertility. A recent study in Drosophila showed that dUBE2A binds to the E3 ligase Parkin, which is required for mitochondrial function and responsible for juvenile Parkinson's disease. In addition, these studies showed impairments in synaptic transmission in dUBE2A mutant flies. However, a causal role of UBE2A in of cognitive deficits has not yet been established. Here, we show that Ube2a knockout mice have a major deficit in spatial learning tasks, whereas other tested phenotypes, including epilepsy and motor coordination, were normal. Results from electrophysiological measurements in the hippocampus showed no deficits in synaptic transmission nor in the ability to induce long-term synaptic potentiation. However, a small but significant deficit was observed in mGLUR-dependent long-term depression, a pathway previously implied in several other mouse models for neurodevelopmental disorders. Our results indicate a causal role of UBE2A in learning and mGLUR-dependent long-term depression, and further indicate that the Ube2a knockout mouse is a good model to study the molecular mechanisms underlying UBE2A deficiency syndrome. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C

    DEFF Research Database (Denmark)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-01-01

    that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor...... contribution to SAC silencing in HCT116 cells. Strikingly in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E...

  20. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C.

    Science.gov (United States)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-10-15

    The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components. © 2016. Published by The Company of Biologists Ltd.

  1. Transcript Levels of Androgen Receptor Variant 7 and Ubiquitin-Conjugating Enzyme 2C in Hormone Sensitive Prostate Cancer and Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Lee, Chan Ho; Ku, Ja Yoon; Ha, Jung Min; Bae, Sun Sik; Lee, Jeong Zoo; Kim, Choung-Soo; Ha, Hong Koo

    2017-01-01

    This study is designed to identify the androgen receptor variant 7 (AR-V7) status, clinical significance of AR-V7 in hormone sensitive prostate cancer (HSPC). Then, we evaluated AR-V7 and changes of its target gene, ubiquitin-conjugating enzyme E2C (UBE2C) which is an anaphase-promoting complex/cyclosome (APC/C)-specific ubiquitin-conjugating enzyme, in castration-resistant prostate cancer (CRPC) in serial tumor biopsies from patients receiving androgen deprivation therapy. We used RT-PCR and Q-PCR assay to evaluate AR-V7, androgen receptor full length (AR-FL), and UBE2C in tumor biopsies from patients with HSPC and CRPC. We examined associations between mRNA expression of AR-V7 and clinicopathologic factors. Furthermore, to identify other potential genes involved in the development of CRPC, RNA sequencing was conducted, using paired prostate cancer (PCa) tissues obtained immediately prior to treatment and at the time of therapeutic resistance. A total of 13 HSPC patients and three CRPC patients were enrolled. Neither a high Gleason score (score of 8 and 9) nor a high risk of PCa (a high risk of locally advanced PCa according to NCCN guidelines) was correlated with mRNA expression of AR-V7 in HSPC (P = 0.153 and P = 0.215). The mRNA expression of AR-FL, but not AR-V7, was significantly associated with the mRNA expression of UBE2C level in HSPC (P = 0.007). However, increased expression of AR-V7, not AR-FL, paralleled increased expression of UBE2C in the CRPC specimens (P = 0.03). AR-V7 expression status before ADT was likely related to shorter CRPC development in patients treating ADT. The result of the RNA-sequencing analysis using serial samples from the same patient before and after castration demonstrated an increased level of the PI3K regulatory subunit 1 (P = 0.018). Our study revealed the role of UBE2C as a marker of the androgen signaling pathway in PCa. Differential gene expression analysis using serial samples from the same patient

  2. Effect of UBE2L3 genotype on regulation of the linear ubiquitin chain assembly complex in systemic lupus erythematosus.

    Science.gov (United States)

    Lewis, Myles; Vyse, Simon; Shields, Adrian; Boeltz, Sebastian; Gordon, Patrick; Spector, Timothy; Lehner, Paul; Walczak, Henning; Vyse, Timothy

    2015-02-26

    A single risk haplotype across UBE2L3 is strongly associated with systemic lupus erythematosus (SLE) and many other autoimmune diseases. UBE2L3 is an E2 ubiquitin-conjugating enzyme with specificity for RING-in-between-RING E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC), which has a pivotal role in inflammation, through crucial regulation of NF-κB. We aimed to determine whether UBE2L3 regulates LUBAC-mediated activation of NF-κB, and determine the effect of UBE2L3 genotype on NF-κB activation and B-cell differentiation. UBE2L3 genotype data from SLE genome-wide association studies was imputed by use of 1000 Genomes data. UBE2L3 function was studied in a HEK293-NF-κB reporter cell line with standard molecular biology techniques. p65 NF-κB translocation in ex-vivo B cells and monocytes from genotyped healthy individuals was quantified by imaging flow cytometry. B-cell subsets from healthy individuals and patients with SLE, stratified by UBE2L3 genotype, were determined by multicolour flow cytometry. rs140490, located at -270 base pairs of the UBE2L3 promoter, was identified as the most strongly associated single nucleotide polymorphism (p=8·6 × 10(-14), odds ratio 1·30, 95% CI 1·21-1·39). The rs140490 risk allele increased UBE2L3 expression in B cells and monocytes. Marked upregulation of NF-κB was observed with combined overexpression of UBE2L3 and LUBAC, but abolished by dominant-negative mutant UBE2L3 (C86S), or UBE2L3 silencing. The rs140490 genotype correlated with basal NF-κB activation in ex-vivo human B cells and monocytes, as well as NF-κB sensitivity to CD40 or tumour necrosis factor (TNF) stimulation. UBE2L3 expression was 3-4 times higher in circulating plasmablasts and plasma cells than in other B-cell subsets, with higher levels in patients with SLE than in controls. The rs140490 genotype correlated with increasing plasmablast and plasma cell differentiation in patients with SLE

  3. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  4. Nanoarmored Enzymes for Organic Enzymology: Synthesis and Characterization of Poly(2-Alkyloxazoline)-Enzyme Conjugates.

    Science.gov (United States)

    Leurs, Melanie; Tiller, Joerg C

    2017-01-01

    The properties of enzymes can be altered significantly by modification with polymers. Numerous different methods are known to obtain such polymer-enzyme conjugates (PECs). However, there is no universal method to render enzymes into PECs that are fully soluble in organic solvents. Here, we present a method, which achieves such high degree of modification of proteins that the majority of modified enzymes will be soluble in organic solvents. This is achieved by preparing poly(2-alkyloxazoline)s (POx) with an NH 2 end group and coupling this functional polymer via pyromellitic acid dianhydride onto the amino groups of the respective protein. The resulting PECs are capable of serving as surfactants for unmodified proteins, rendering the whole mixture organosoluble. Depending on the nature of the POx and the molecular weight and the nature of the enzyme, the PECs are soluble in chloroform or even toluene. Another advantage of this method is that the poly(2-alkyloxazoline) can be activated with the coupling agent and used for the enzyme conjugation without further purification. The POx-enzyme conjugates generated by this modification strategy show modulated catalytic activity in both, aqueous and organic, systems. © 2017 Elsevier Inc. All rights reserved.

  5. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    International Nuclear Information System (INIS)

    Imura, Yoshiyuki; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-01-01

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase

  6. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  7. Poly(2-oxazoline)-Antibiotic Conjugates with Penicillins.

    Science.gov (United States)

    Schmidt, Martin; Bast, Livia K; Lanfer, Franziska; Richter, Lena; Hennes, Elisabeth; Seymen, Rana; Krumm, Christian; Tiller, Joerg C

    2017-09-20

    The conjugation of antibiotics with polymers is rarely done, but it might be a promising alternative to low-molecular-weight derivatization. The two penicillins penicillin G (PenG) and penicillin V (PenV) were attached to the end groups of different water-soluble poly(2-oxazoline)s (POx) via their carboxylic acid function. This ester group was shown to be more stable against hydrolysis than the β-lactam ring of the penicillins. The conjugates are still antimicrobially active and up to 20 times more stable against penicillinase catalyzed hydrolysis. The antibiotic activity of the conjugates against Staphylococcus aureus in the presence of penicillinase is up to 350 times higher compared with the free antibiotics. Conjugates with a second antimicrobial function, a dodecyltrimethylammonium group (DDA-X), at the starting end of the PenG and PenV POx conjugates are more antimicrobially active than the conjugates without DDA-X and show high activity in the presence of penicillinase. For example, the conjugates DDA-X-PEtOx-PenG and DDA-X-PEtOx-PenV are 200 to 350 times more active against S. aureus in the presence of penicillinase and almost as effective as the penicillinase stable cloxacollin (Clox) under these conditions. These conjugates show even greater activity compared to cloxacollin without this enzyme present. Further, both conjugates kill Escherichia coli more effectively than PenG and Clox.

  8. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  9. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Ian R Kelsall

    Full Text Available The many proteins that function in the Fanconi anaemia (FA monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.

  10. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T

    International Nuclear Information System (INIS)

    Ramaekers, Chantal H.M.A.; Beucken, Twan van den; Meng, Alice; Kassam, Shaqil; Thoms, John; Bristow, Robert G.; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of the microenvironment of solid tumors which has been shown to promote malignancy and poor patient outcome through multiple mechanisms. The association of hypoxia with more aggressive disease may be due in part to recently identified links between hypoxia and genetic instability. For example, hypoxia has been demonstrated to impede DNA repair by down-regulating the homologous recombination protein RAD51. Here we investigated hypoxic regulation of UBE2T, a ubiquitin ligase required in the Fanconi anemia (FA) DNA repair pathway. Materials and methods: We analysed UBE2T expression by microarray, quantitative PCR and western blot analysis in a panel of cancer cell lines as a function of oxygen concentration. The importance of this regulation was assessed by measuring cell survival in response to DNA damaging agents under normoxia or hypoxia. Finally, HIF dependency was determined using knockdown cell lines and RCC4 cells which constitutively express HIF1α. Results: Hypoxia results in rapid and potent reductions in mRNA levels of UBE2T in a panel of cancer cell lines. Reduced UBE2T mRNA expression is HIF independent and was not due to changes in mRNA or protein stability, but rather reflected reduced promoter activity. Exposure of tumor cells to hypoxia greatly increased their sensitivity to treatment with the interstrand crosslinking (ICL) agent mitomycin C. Conclusions: Exposure to hypoxic conditions down-regulates UBE2T expression which correlates with an increased sensitivity to crosslinking agents consistent with a defective Fanconi anemia pathway. This pathway can potentially be exploited to target hypoxic cells in tumors.

  11. Deletion of UBE3A in brothers with Angelman syndrome at the breakpoint with an inversion at 15q11.2.

    Science.gov (United States)

    Kuroda, Yukiko; Ohashi, Ikuko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Wada, Takahito; Kurosawa, Kenji

    2014-11-01

    Angelman syndrome (AS) is characterized by severe intellectual disability with ataxia, epilepsy, and behavioral uniqueness. The underlining molecular deficit is the absence of the maternal copy of the imprinted UBE3A gene due to maternal deletions, which is observed in 70-75% of cases, and can be detected using fluorescent in situ hybridization (FISH) of the UBE3A region. Only a few familial AS cases have been reported with a complete deletion of UBE3A. Here, we report on siblings with AS caused by a microdeletion of 15q11.2-q12 encompassing UBE3A at the breakpoint of an inversion at 15q11.2 and 15q26.1. Karyotyping revealed an inversion of 15q, and FISH revealed the deletion of the UBE3A region. Array comparative genomic hybridization (CGH) demonstrated a 467 kb deletion at 15q11.2-q12, encompassing only UBE3A, SNORD115, and PAR1, and a 53 kb deletion at 15q26.1, encompassing a part of SLCO3A1. Their mother had a normal karyotype and array CGH detected no deletion of 15q11.2-q12, so we assumed gonadal mosaicism. This report describes a rare type of familial AS detected using the D15S10 FISH test. © 2014 Wiley Periodicals, Inc.

  12. Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3

    Science.gov (United States)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai

    2018-05-01

    Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.

  13. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia.

    Science.gov (United States)

    Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut

    2015-09-15

    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene. © The Author 2015. Published by Oxford University Press.

  14. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  15. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity.

    Science.gov (United States)

    Mural, Ravi V; Liu, Yao; Rosebrock, Tracy R; Brady, Jennifer J; Hamera, Sadia; Connor, Richard A; Martin, Gregory B; Zeng, Lirong

    2013-09-01

    The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase-deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63-linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63-linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63-linked ubiquitination.

  16. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation.

    NARCIS (Netherlands)

    Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; Deursen, J.M.A. van

    2010-01-01

    The anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase functions with the E2 ubiquitin-conjugating enzyme UbcH10 in the orderly progression through mitosis by marking key mitotic regulators for destruction by the 26-S proteasome. UbcH10 is overexpressed in many human cancer types and

  17. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity

    DEFF Research Database (Denmark)

    Wild, Thomas; Larsen, Marie Sofie Yoo; Narita, Takeo

    2016-01-01

    The anaphase-promoting complex/cyclosome (APC/C) and the spindle assembly checkpoint (SAC), which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin......-conjugating enzymes-UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial use of three E2s, namely UBE2C, UBE2S, and UBE2D. Genetic deletion of UBE2C and UBE2S, individually or in combination, leads to discriminative reduction in APC/C function and sensitizes cells to UBE2D...... depletion. Reduction of APC/C activity results in loss of switch-like metaphase-to-anaphase transition and, strikingly, renders cells insensitive to chemical inhibition of MPS1 and genetic ablation of MAD2, both of which are essential for the SAC. These results provide insights into the regulation of APC...

  18. The Ubiquitin-Conjugating Enzyme E2-EPF Is Overexpressed in Primary Breast Cancer and Modulates Sensitivity to Topoisomerase II Inhibition

    Directory of Open Access Journals (Sweden)

    Donato Tedesco

    2007-07-01

    Full Text Available We identified the ubiquitin-conjugating enzyme E2EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER negativity in breast cancer specimens and that its expression is cell cycleregulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER- MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G2/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G2 checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo II inhibitors etoposide and doxorubicin and also increased topo IIα protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness.

  19. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition.

    Science.gov (United States)

    Tedesco, Donato; Zhang, Jianhuan; Trinh, Lan; Lalehzadeh, Guita; Meisner, Rene; Yamaguchi, Ken D; Ruderman, Daniel L; Dinter, Harald; Zajchowski, Deborah A

    2007-07-01

    We identified the ubiquitin-conjugating enzyme E2-EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER) negativity in breast cancer specimens and that its expression is cell cycle-regulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2-EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER(-) MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G(2)/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G(2) checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo) II inhibitors etoposide and doxorubicin and also increased topo IIalpha protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness.

  20. The Tomato Fni3 Lysine-63–Specific Ubiquitin-Conjugating Enzyme and Suv Ubiquitin E2 Variant Positively Regulate Plant Immunity[C][W

    Science.gov (United States)

    Mural, Ravi V.; Liu, Yao; Rosebrock, Tracy R.; Brady, Jennifer J.; Hamera, Sadia; Connor, Richard A.; Martin, Gregory B.; Zeng, Lirong

    2013-01-01

    The activation of an immune response in tomato (Solanum lycopersicum) against Pseudomonas syringae relies on the recognition of E3 ligase–deficient forms of AvrPtoB by the host protein kinase, Fen. To investigate the mechanisms by which Fen-mediated immunity is regulated, we characterize in this study a Fen-interacting protein, Fni3, and its cofactor, S. lycoperiscum Uev (Suv). Fni3 encodes a homolog of the Ubc13-type ubiquitin-conjugating enzyme that catalyzes exclusively Lys-63–linked ubiquitination, whereas Suv is a ubiquitin-conjugating enzyme variant. The C-terminal region of Fen was necessary for interaction with Fni3, and this interaction was required for cell death triggered by overexpression of Fen in Nicotiana benthamiana leaves. Fni3 was shown to be an active E2 enzyme, but Suv displayed no ubiquitin-conjugating activity; Fni3 and Suv together directed Lys-63–linked ubiquitination. Decreased expression of Fni3, another tomato Ubc13 homolog, Sl-Ubc13-2, or Suv in N. benthamiana leaves diminished cell death associated with Fen-mediated immunity and cell death elicited by several other resistance (R) proteins and their cognate effectors. We also discovered that coexpression of Fen and other R proteins/effectors with a Fni3 mutant that is compromised for ubiquitin-conjugating activity diminished the cell death. These results suggest that Fni3/Sl-Ubc13-2 and Suv regulate the immune response mediated by Fen and other R proteins through Lys-63–linked ubiquitination. PMID:24076975

  1. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in cervical cancer and associates with tumor growth.

    Science.gov (United States)

    Liang, Jing; Nishi, Hirotaka; Bian, Mei-Lu; Higuma, Chinatsu; Sasaki, Toru; Ito, Hiroe; Isaka, Keiichi

    2012-10-01

    We found that the ubiquitin-conjugating enzyme E2-EPF mRNA is highly expressed in cervical squamous cancer relative to normal tissues and its expression levels positively correlate with clinical stage. Reduction of E2-EPF protein levels by >80% using shRNA decreases the expression levels of HIF-1α, and the proliferation, invasion and tumorigenicity of SiHa, a cervical squamous cancer cell line. E2-EPF knockdown also increases the chemosensitivity to topoisomerase I inhibitor (topotecan) and II (etoposide and doxorubicin). Our results suggest that E2-EPF is associated with the growth and aggressivity of cervical tumor cells. Targeting the E2-EPF pathway may have potential clinical applications for the treatment of cervical cancer.

  2. Touchscreen learning deficits in Ube3a, Ts65Dn and Mecp2 mouse models of neurodevelopmental disorders with intellectual disabilities.

    Science.gov (United States)

    Leach, P T; Crawley, J N

    2017-12-20

    Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. The Ubiquitin-Conjugating Enzyme E2-EPF Is Overexpressed in Primary Breast Cancer and Modulates Sensitivity to Topoisomerase II Inhibition1

    Science.gov (United States)

    Tedesco, Donato; Zhang, Jianhuan; Trinh, Lan; Lalehzadeh, Guita; Meisner, Rene; Yamaguchi, Ken D; Ruderman, Daniel L; Dinter, Harald; Zajchowski, Deborah A

    2007-01-01

    We identified the ubiquitin-conjugating enzyme E2-EPF mRNA as differentially expressed in breast tumors relative to normal tissues and performed studies to elucidate its putative role in cancer. We demonstrated that overexpression of E2-EPF protein correlated with estrogen receptor (ER) negativity in breast cancer specimens and that its expression is cell cycle-regulated, suggesting a potential function for E2-EPF in cell cycle progression. However, reduction of E2-EPF protein levels by > 80% using RNAi had no significant effects on the proliferation of HeLa cervical cancer cells or ER- MDA-MB-231 or MDA-MB-453 breast cancer cells. Because E2-EPF protein levels were elevated during the G2/M phase of the cell cycle and because E2-EPF mRNA in tumor specimens was frequently coexpressed with genes involved in cell cycle control, spindle assembly, and mitotic surveillance, the possibility that E2-EPF might have a function in the cellular response to agents that induce a G2 checkpoint or an M checkpoint was investigated. E2-EPF knockdown sensitized HeLa cells to the topoisomerase (topo) II inhibitors etoposide and doxorubicin and also increased topo IIα protein levels. These data suggest that combined administration of topo II-directed drugs and E2-EPF inhibitors may enhance their clinical effectiveness. PMID:17710163

  4. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    International Nuclear Information System (INIS)

    Shukla, Rameshwer; Thomas, Thommey P; Desai, Ankur M; Kotlyar, Alina; Park, Steve J; Baker, James R Jr

    2008-01-01

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket

  5. Profiling of Ubiquitination Pathway Genes in Peripheral Cells from Patients with Frontotemporal Dementia due to C9ORF72 and GRN Mutations

    Directory of Open Access Journals (Sweden)

    Maria Serpente

    2015-01-01

    Full Text Available We analysed the expression levels of 84 key genes involved in the regulated degradation of cellular protein by the ubiquitin-proteasome system in peripheral cells from patients with frontotemporal dementia (FTD due to C9ORF72 and GRN mutations, as compared with sporadic FTD and age-matched controls. A SABiosciences PCR array was used to investigate the transcription profile in a discovery population consisting of six patients each in C9ORF72, GRN, sporadic FTD and age-matched control groups. A generalized down-regulation of gene expression compared with controls was observed in C9ORF72 expansion carriers and sporadic FTD patients. In particular, in both groups, four genes, UBE2I, UBE2Q1, UBE2E1 and UBE2N, were down-regulated at a statistically significant (p < 0.05 level. All of them encode for members of the E2 ubiquitin-conjugating enzyme family. In GRN mutation carriers, no statistically significant deregulation of ubiquitination pathway genes was observed, except for the UBE2Z gene, which displays E2 ubiquitin conjugating enzyme activity, and was found to be statistically significant up-regulated (p = 0.006. These preliminary results suggest that the proteasomal degradation pathway plays a role in the pathogenesis of FTD associated with TDP-43 pathology, although different proteins are altered in carriers of GRN mutations as compared with carriers of the C9ORF72 expansion.

  6. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity.

    Science.gov (United States)

    Wild, Thomas; Larsen, Marie Sofie Yoo; Narita, Takeo; Schou, Julie; Nilsson, Jakob; Choudhary, Chunaram

    2016-03-01

    The anaphase-promoting complex/cyclosome (APC/C) and the spindle assembly checkpoint (SAC), which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin-conjugating enzymes-UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial use of three E2s, namely UBE2C, UBE2S, and UBE2D. Genetic deletion of UBE2C and UBE2S, individually or in combination, leads to discriminative reduction in APC/C function and sensitizes cells to UBE2D depletion. Reduction of APC/C activity results in loss of switch-like metaphase-to-anaphase transition and, strikingly, renders cells insensitive to chemical inhibition of MPS1 and genetic ablation of MAD2, both of which are essential for the SAC. These results provide insights into the regulation of APC/C activity and demonstrate that the essentiality of the SAC is imposed by the strength of the APC/C. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Uniaxial ferromagnetism of local uranium moments in hexagonal UBeGe

    Science.gov (United States)

    Gumeniuk, Roman; Yaresko, Alexander N.; Schnelle, Walter; Nicklas, Michael; Kvashnina, Kristina O.; Hennig, Christoph; Grin, Yuri; Leithe-Jasper, Andreas

    2018-05-01

    The new intermetallic uranium beryllium germanide UBeGe and its thorium analogon ThBeGe crystallize with the hexagonal ZrBeSi type of structure. Studies of magnetic, thermal, and transport properties were performed on polycrystalline samples between 1.8 and 750K. UBeGe is a uniaxial ferromagnet and there are indications for two magnetic transitions at TC(1 )≈160 K and TC(2 )≈150 K . The high paramagnetic effective moment μeff≈3.1 μB , x-ray absorption near-edge spectroscopy (XANES, 17-300 K), as well as theoretical DFT calculations indicate localized U 5 f2 states in UBeGe. ThBeGe is a diamagnetic metallic material with low density of states at the Fermi level.

  8. Production and characterization of anti-human IgG F(ab')2 antibody fragment.

    Science.gov (United States)

    Valedkarimi, Zahra; Nasiri, Hadi; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Esparvarinha, Mojghan; Majidi, Jafar

    2018-04-10

    In present study an optimized protocol for the separation of antibodies into antigen-binding fragments F(ab')2 using pepsin digestion was investigated. The production of these fragments is a consequential step in the development of medical research, treatment and diagnosis. For production of polyclonal antibody rabbit received antigen in four steps. The rabbit serum at 1/128000 dilution showed high absorbance in reaction with human IgG at the designed ELISA method. Rabbit IgG was purified by Ion-Exchange Chromatography (IEC) method. Purity was assessed by SDS-PAGE method. In non-reduced condition only one band was seen in about 150 kDa MW position and in reduced form, two bands were seen in 50 and 25 kDa MW positions. Rabbit IgG was digested by pepsin enzyme. The antibody fragments solution was applied to Gel filtration column to isolate the F(ab')2. Non-reduced SDS-PAGE for determining the purity of F(ab')2 fragment resulted in one band in 100 kDa corresponds to F(ab')2 fragment and a band in 150 kDa MW position corresponds to undigested IgG antibodies. The activities of FITC conjugated F(ab')2 fragment and commercial ones were compared using flowcytometry method. The activity results implied that the FITC conjugated- anti human F(ab')2 fragment worked as efficiently as the commercial one.

  9. Optimization of condition for conjugation of enrofloxacin to enzymes in chemiluminescence enzyme immunoassay

    Science.gov (United States)

    Yu, Songcheng; Yu, Fei; Zhang, Hongquan; Qu, Lingbo; Wu, Yongjun

    2014-06-01

    In this study, in order to find out a proper method for conjugation of enrofloxacin to label enzymes, two methods were compared and carbodiimide condensation was proved to be better. The results showed that the binding ratio of enrofloxacin and alkaline phosphatase (ALP) was 8:1 and that of enrofloxacin and horseradish peroxidase (HRP) was 5:1. This indicated that conjugate synthesized by carbodiimide condensation was fit for chemiluminescence enzyme immunoassay (CLEIA). Furthermore, data revealed that dialysis time was an important parameter for conjugation and 6 days was best. Buffer to dilute conjugate had little effect on CLEIA. The storage condition for conjugates was also studied and it was shown that the conjugate was stable at 4 °C with no additive up to 30 days. These data were valuable for establishing CLEIA to quantify enrofloxacin.

  10. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation.

    Science.gov (United States)

    Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter

    2011-01-10

    Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.

  11. UBE2A deficiency syndrome: Mild to severe intellectual disability accompanied by seizures, absent speech, urogenital, and skin anomalies in male patients.

    NARCIS (Netherlands)

    Leeuw, N. de; Bulk, S.; Green, A.; Jaeckle-Santos, L.; Baker, L.A.; Zinn, A.R.; Kleefstra, T.; Smagt, J.J. van der; Vianne Morgante, A.M.; Vries, L.B.A. de; Bokhoven, J.H.L.M. van; Brouwer, A.P.M. de

    2010-01-01

    We describe three patients with a comparable deletion encompassing SLC25A43, SLC25A5, CXorf56, UBE2A, NKRF, and two non-coding RNA genes, U1 and LOC100303728. Moderate to severe intellectual disability (ID), psychomotor retardation, severely impaired/absent speech, seizures, and urogenital anomalies

  12. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility.

    Science.gov (United States)

    Judson, Matthew C; Wallace, Michael L; Sidorov, Michael S; Burette, Alain C; Gu, Bin; van Woerden, Geeske M; King, Ian F; Han, Ji Eun; Zylka, Mark J; Elgersma, Ype; Weinberg, Richard J; Philpot, Benjamin D

    2016-04-06

    Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic accumulation of clathrin-coated vesicles (CCVs)-all without decreasing GABAergic inhibition onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    Science.gov (United States)

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. NMR-based metabolomics reveals that conjugated double bond content and lipid storage efficiency in HepG2 cells are affected by fatty acid cis/trans configuration and chain length

    DEFF Research Database (Denmark)

    Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.

    2011-01-01

    from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12...

  15. Influence of water-soluble conjugated/non-conjugated polyelectrolytes on electrodeposition of nanostructured MnO{sub 2} film for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Kyung; Shrestha, Nabeen K. [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Wonjoo [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Defense Ammunitions, Daeduk College, Daejeon 305-715 (Korea, Republic of); Cai, Gangri, E-mail: caigangri@naver.com [Department of Applied Chemistry, TianJin University of Technology, Tianjin 300384 (China); Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Department of Chemistry, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    Manganese dioxide (MnO{sub 2}) thin films are deposited electrochemically on an indium–tin-oxide (ITO) electrode using aqueous bath in presence of conjugated water soluble sulfonated polyaniline (SPAN) or a non-conjugated polyacrylic acid (PAA) polyelectrolyte surfactant. The surface morphology and nature of the electrodeposited MnO{sub 2} films are found to be influenced strongly by the amount and type of polyelectrolyte in the deposition bath. Increasing the SPAN concentration, a porous structure resulting from the reduction of voids between the MnO{sub 2} nano-flakes is obtained. In contrast, by increasing the PAA concentration, dense and spherical MnO{sub 2} nanostructures have been deposited. These results may be caused by initiation of different kinetics and orientation of nucleation of MnO{sub 2} deposits on ITO surface in presence of different types of polyelectrolytes. Cyclic voltammetry study of these films shows the supercapacitor behavior. The porous MnO{sub 2} films grown from the SPAN containing electrolyte demonstrates a specific capacitance of 368.53 F/g at scan rate of 10 mV/s, which is approximately 10 times higher (i.e., 30.29 F/g) than that of the spherical MnO{sub 2} dense films grown from PAA containing electrolyte. - Highlights: • Conjugated/non-conjugated polyelectrolytes were used in deposition of MnO{sub 2}. • The two kinds of MnO{sub 2} film showed entirely different morphology. • Conjugated polyelectrolyte worked as template and also affected the growth rate. • Non-conducting polyelectrolyte could work as template but hindered MnO{sub 2} growth. • The specific capacitance of MnO{sub 2}–S was 10 times higher than MnO{sub 2}–P.

  16. Lipid conjugated prodrugs for enzyme-triggered liposomal drug delivery to tumors

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    2011-01-01

    For some time we have been developing novel enzyme-triggered prodrugs for drug delivery targeting cancer. The liposomal prodrugs take advantage of the EPR effect to localize to tumors and of the local over-expression of secretory phospholipase A2 in tumors. Compared to conventional liposomal drug...... delivery systems, our prodrug-lipid conjugates have two main advantages: 1) the drugs are covalently linked to the lipids and thus leakage is circumvented and 2) the lipophilic bilayer of the formulated liposomes effectively shields the drugs from the aqueous environment in vivo. Consequently, the strategy...... targeting nuclear receptors and structural proteins. The presentation will highlight various strategies and recent progress towards improved systems, including chemical synthesis, enzyme activity and cytotoxicity....

  17. From UBE3A to Angelman syndrome: a substrate perspective

    Directory of Open Access Journals (Sweden)

    Gabrielle L Sell

    2015-09-01

    Full Text Available Angelman syndrome (AS is a debilitating neurodevelopmental disorder that is characterized by motor dysfunction, intellectual disability, speech impairment, seizures and common features of autism spectrum disorders (ASDs. Some of these AS related phenotypes can be seen in other neurodevelopmental disorders (Williams, 2011;Tan et al., 2014. AS patients commonly carry mutations that render the maternally inherited UBE3A gene nonfunctional. Duplication of the chromosomal region containing the UBE3A gene is associated with ASDs. Although the causative role for UBE3A gene mutations in AS is well established, a long-standing challenge in AS research has been to identify neural substrates of UBE3A, an E3 ubiquitin ligase. A prevailing hypothesis is that changes in UBE3A protein levels would alter the levels of a collection of protein substrates, giving rise to the unique phenotypic aspects of AS and possibly UBE3A associated ASDs. Interestingly, proteins altered in AS are linked to additional ASDs that are not previously associated with changes in UBE3A, indicating a possible molecular overlap underlying the broad-spectrum phenotypes of these neurogenetic disorders. This idea raises the possibility that there may exist a one-size-fits-all approach to the treatment of neurogenetic disorders with phenotypes overlapping AS. Furthermore, while a comprehensive list of UBE3A substrates and downstream affected pathways should be developed, this is only part of the story. The timing of when UBE3A protein functions, through either changes in UBE3A or possibly substrate expression patterns, appears to be critical for AS phenotype development. These data call for further investigation of UBE3A substrates and their timing of action relevant to AS phenotypes.

  18. Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists

    Directory of Open Access Journals (Sweden)

    Gao Zhan-Guo

    2010-05-01

    Full Text Available Abstract Background Quantum dots (QDs are crystalline nanoparticles that are compatible with biological systems to provide a chemically and photochemically stable fluorescent label. New ligand probes with fluorescent reporter groups are needed for detection and characterization of G protein-coupled receptors (GPCRs. Results Synthetic strategies for coupling the A2A adenosine receptor (AR agonist CGS21680 (2-[4-(2-carboxyethylphenylethylamino]-5'-N-ethylcarboxamidoadenosine to functionalized QDs were explored. Conjugates tethered through amide-linked chains and poly(ethyleneglycol (PEG displayed low solubility and lacked receptor affinity. The anchor to the dendron was either through two thiol groups of (R-thioctic acid or through amide formation to a commercial carboxy-derivatized QD. The most effective approach was to use polyamidoamine (PAMAM D5 dendrons as multivalent spacer groups, grafted on the QD surface through a thioctic acid moiety. In radioligand binding assays, dendron nucleoside conjugate 11 displayed a moderate affinity at the human A2AAR (Kiapp 1.02 ± 0.15 μM. The QD conjugate of increased water solubility 13, resulting from the anchoring of this dendron derivative, interacted with the receptor with Kiapp of 118 ± 54 nM. The fluorescence emission of 13 occurred at 565 nm, and the presence of the pendant nucleoside did not appreciably quench the fluorescence. Conclusions This is a feasibility study to demonstrate a means of conjugating to a QD a small molecular pharmacophore of a GPCR that is relatively hydrophobic. Further enhancement of affinity by altering the pharmacophore or the linking structures will be needed to make useful affinity probes.

  19. Characterization of KRAS Rearrangements in Metastatic Prostate Cancer

    Science.gov (United States)

    Wang, Xiao-Song; Shankar, Sunita; Dhanasekaran, Saravana M.; Ateeq, Bushra; Sasaki, Atsuo T.; Jing, Xiaojun; Robinson, Daniel; Cao, Qi; Prensner, John R.; Yocum, Anastasia K.; Wang, Rui; Fries, Daniel F.; Han, Bo; Asangani, Irfan A.; Cao, Xuhong; Li, Yong; Omenn, Gilbert S.; Pflueger, Dorothee; Gopalan, Anuradha; Reuter, Victor E.; Kahoud, Emily Rose; Cantley, Lewis C.; Rubin, Mark A.; Palanisamy, Nallasivam; Varambally, Sooryanarayana; Chinnaiyan, Arul M.

    2011-01-01

    Using an integrative genomics approach called Amplification Breakpoint Ranking and Assembly (ABRA) analysis, we nominated KRAS as a gene fusion with the ubiquitin-conjugating enzyme UBE2L3 in the DU145 cell line, originally derived from prostate cancer metastasis to the brain. Interestingly, analysis of tissues revealed that 2 of 62 metastatic prostate cancers harbored aberrations at the KRAS locus. In DU145 cells, UBE2L3-KRAS produces a fusion protein, specific knock-down of which, attenuates cell invasion and xenograft growth. Ectopic expression of the UBE2L3-KRAS fusion protein exhibits transforming activity in NIH 3T3 fibroblasts and RWPE prostate epithelial cells in vitro and in vivo. In NIH 3T3 cells, UBE2L3-KRAS attenuates MEK/ERK signaling, commonly engaged by oncogenic mutant KRAS, and instead signals via AKT and p38 MAPK pathways. This is the first report of a gene fusion involving Ras family suggesting that this aberration may drive metastatic progression in a rare subset of prostate cancers. PMID:22140652

  20. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Rathinaraj, Pierson; Lee, Kyubae; Choi, Yuri; Park, Soo-Young; Kwon, Oh Hyeong; Kang, Inn-Kyu

    2015-01-01

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  1. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaraj, Pierson [Auckland University of Technology, Institute of Biomedical Technologies (New Zealand); Lee, Kyubae; Choi, Yuri; Park, Soo-Young [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of); Kwon, Oh Hyeong [Kumoh National Institute of Technology, Department of Polymer Science and Engineering (Korea, Republic of); Kang, Inn-Kyu, E-mail: ikkang@knu.ac.kr [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of)

    2015-07-15

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  2. Nonlinear susceptibility: A direct test of the quadrupolar Kondo effect in UBe13

    International Nuclear Information System (INIS)

    Ramirez, A.P.; Chandra, P.; Coleman, P.; Fisk, Z.; Smith, J.L.; Ott, H.R.

    1994-01-01

    We present the nonlinear susceptibility as a direct test of the quadrupolar Kondo scenario for heavy fermion behavior, and apply it to the case of cubic crystal-field symmetry. Within a single-ion model we compute the nonlinear susceptibility resulting from low-lying Γ 3 (5f 2 ) and Kramers (5f 3 ) doublets. We find that nonlinear susceptibility measurements on single-crystal UBe 13 are inconsistent with a quadrupolar (5f 2 ) ground state of the uranium ion; the experimental data indicate that the low-lying magnetic excitations of UBe 13 are predominantly dipolar in character

  3. Influence of different chemical agents (H2O2, t-BHP and MMS) on the activity of antioxidant enzymes in human HepG2 and hamster V79 cells; relationship to cytotoxicity and genotoxicity.

    Science.gov (United States)

    Slamenova, D; Kozics, K; Melusova, M; Horvathova, E

    2015-01-01

    We investigated activities of antioxidant enzymes (AEs), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in human HepG2 and hamster V79 cells treated with a scale of concentrations of hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP) and methyl methanesulfonate (MMS). Cytotoxicity and genotoxicity of these substances were evaluated simultaneously. We have found out that H2O2, t-BHP and MMS predictably induce significant concentration-dependent increase of DNA lesions in both cell lines. Cytotoxicity detected in V79 cells with help of PE test was in a good conformity with the level of DNA damage. MTT test has proved unsuitable, except for MMS-treated V79 cells. Compared with human cells HepG2, hamster cells V79 manifested approximately similar levels of SOD and CAT but ten times higher activity of GPx. Across all concentrations tested the most significant increase of activity of the enzyme CAT was found in H2O2- and t-BHP-treated HepG2 cells, of the enzyme SOD in t-BHP- and MMS-treated V79 cells, and of the enzyme GPx in H2O2-treated V79 cells. We suggest that stimulation of enzyme activity by the relevant chemical compounds may result from transcriptional or post-transcriptional regulation of the expression of the genes CAT, SOD and GPx. Several authors suggest that moderate levels of toxic reactants can induce increase of AEs activities, while very high levels of reactants can induce their decrease, as a consequence of damage of the molecular machinery required to induce AEs. Based on a great amount of experiments, which were done and described within this paper, we can say that the above mentioned principle does not apply in general. Only the reactions of t-BHP affected HepG2 cells were consistent with this idea.

  4. Anomalous superconducting phase diagram in UBe13

    International Nuclear Information System (INIS)

    Matsuno, H; Morita, K; Kotegawa, H; Tou, H; Haga, Y; Yamamoto, E; Onuki, Y

    2015-01-01

    Surface impedance measurements Z s , where Z s consists of surface resistance R s and surface reactance X s , were carried out for a single crystal UBe 13 . R s exhibits unusual field dependence with a significant hump around the H * , which is nearly equal to 0.6H c2 . This behavior indicates that the strong vortex pinning occurs around H *

  5. Neisseria meningitidis Group A IgG1 and IgG2 Subclass Immune Response in African Children Aged 12–23 Months Following Meningococcal Vaccination

    Science.gov (United States)

    Holme, Daniel; Findlow, Helen; Sow, Samba O.; Idoko, Olubukola T.; Preziosi, Marie-Pierre; Carlone, George; Plikaytis, Brian D.; Borrow, Ray

    2015-01-01

    Background. A group A meningococcal conjugate vaccine, PsA-TT, was licensed in 2010 and was previously studied in a phase 2 clinical trial to evaluate its safety and immunogenicity in African children 12–23 months of age. Methods. Subjects received either PsA-TT; meningococcal group A, C, W, Y polysaccharide vaccine (PsACWY); or Haemophilus influenzae type b conjugate vaccine (Hib-TT). Forty weeks following primary vaccination, the 3 groups were further randomized to receive either PsA-TT, one-fifth dose of PsACWY, or Hib-TT. Group A–specific immunoglobulin G (IgG) subclass response was characterized using an enzyme-linked immunosorbent assay. Results. The predominant IgG subclass response, regardless of vaccine, was IgG1. One month following primary vaccination, the geometric mean concentrations (GMCs) of IgG1 and IgG2 in the PsA-TT group were 21.73 µg/mL and 6.27 µg/mL, whereas in the PsACWY group the mean GMCs were 2.01 µg/mL and 0.97 µg/mL, respectively (P Group A–specific IgG1 and IgG2 GMCs remained greater in the PsA-TT group than in the PsACWY group 40 weeks following primary vaccination (P vaccines. Conclusions. Vaccination of African children aged 12–24 months with either PsA-TT or PsACWY elicited a predominantly IgG1 response. The IgG1:IgG2 mean ratio decreased following successive vaccination with PsACWY, indicating a shift toward IgG2, suggestive of the T-cell–independent immune response commonly associated with polysaccharide antigens. Clinical Trials Registration. SRCTN78147026. PMID:26553689

  6. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  7. Two competitive enzyme immunoassays for the detection of IgG class antibodies to hepatitis a antigen

    Directory of Open Access Journals (Sweden)

    Claudia Lamarca Vitral

    1991-06-01

    Full Text Available Two competitive enzyme immunoassays (EIA techniques were developed: in the first (COMP-1, test sera were added together with HAV antigen on anti-HAV IgG-coated wells followed by an anti-HA VHRP conjugate; in the second (COMP-2, test sera and anti-HA VHRP conjugate competed for HAV epitopes previously adsorbed to anti-HA V IgG-coated wells. Both procedures used tetramethylbenzidine (TMB as a substrate. Both competitive tests were shown to be reproducible and suitable for routine diagnosis and research purposes.Foram desenvolvidos dois ensaios imunoenzimáticos (EIA competitivos: no primeiro (COMP-1 colocou-se numa placa sensibilizada com anti-HAVIgG as amostras teste juntamente como antígeno HA Vea seguir o conjugado anti-HA VHRP; no segundo (COMP-2, as amostras teste e o conjugado anti-HAV HRP competem pelos epitopos do antígeno HAV previamente absorvido na placa sensibilizada do anti-HAV IgG. O substrato utilizado foi tetrametilbenzidina (TMB. Ambas as técnicas mostraram ser produtíveis e aplicáveis para fins de diagnóstico e pesquisa.

  8. Some observations on heavy fermion superconductivity in UBe13

    International Nuclear Information System (INIS)

    Stewart, G.R.; Giorgi, A.L.

    1984-01-01

    Recently it has been discovered that very slight substitution of Cu for Be in UBe 13 depresses superconductivity below 0.050 K. We have measured the low-temperature specific heat of UBe/sub 12.94/ Cu/sub 0.06/ (T/sub c/ 13 appears unaltered in the copper-substituted material. Therefore, the presence of high-mass electrons is not directly correlated superconductivity in UBe 13

  9. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice.

    Science.gov (United States)

    Wallace, Michael L; van Woerden, Geeske M; Elgersma, Ype; Smith, Spencer L; Philpot, Benjamin D

    2017-07-01

    Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A Ube3a STOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a -deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a -deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS. NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS. Copyright © 2017 the American Physiological Society.

  10. O:2-CRM(197) conjugates against Salmonella Paratyphi A.

    Science.gov (United States)

    Micoli, Francesca; Rondini, Simona; Gavini, Massimiliano; Lanzilao, Luisa; Medaglini, Donata; Saul, Allan; Martin, Laura B

    2012-01-01

    Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197), using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197) as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  11. O:2-CRM(197 conjugates against Salmonella Paratyphi A.

    Directory of Open Access Journals (Sweden)

    Francesca Micoli

    Full Text Available Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2 of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197, using the terminus 3-deoxy-D-manno-octulosonic acid (KDO, thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197 as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  12. A Novel Polysaccharide Conjugate from Bullacta exarata Induces G1-Phase Arrest and Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    Science.gov (United States)

    Liao, Ningbo; Sun, Liang; Chen, Jiang; Zhong, Jianjun; Zhang, Yanjun; Zhang, Ronghua

    2017-03-01

    Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their biological activities have been carried out. However, little is known regarding the antitumor properties of polysaccharides from B. exarata , hence the polysaccharides from B. exarata have been investigated here. One polysaccharide conjugate BEPS-IA was isolated and purified from B. exarata . It mainly consisted of mannose and glucose in a molar ratio of 1:2, with an average molecular weight of 127 kDa. Thirteen general amino acids were identified to be components of the protein-bound polysaccharide. Methylation and NMR studies revealed that BEPS-IA is a heteropolysaccharide consisting of 1,4-linked-α-d-Glc, 1,6-linked-α-d-Man, 1,3,6-linked-α-d-Man, and 1-linked-α-d-Man residue, in a molar ratio of 6:1:1:1. In order to test the antitumor activity of BEPS-IA, we investigated its effect against the growth of human hepatocellular carcinoma cells HepG2 in vitro. The result showed that BEPS-IA dose-dependently exhibited an effective HepG2 cells growth inhibition with an IC 50 of 112.4 μg/mL. Flow cytometry analysis showed that BEPS-IA increased the populations of both apoptotic sub-G1 and G1 phase. The result obtained from TUNEL assay corroborated apoptosis which was shown in flow cytometry. Western blot analysis suggested that BEPS-IA induced apoptosis and growth inhibition were associated with up-regulation of p53, p21 and Bax, down-regulation of Bcl-2. These findings suggest that BEPS-IA may serve as a potential novel dietary agent for hepatocellular carcinoma.

  13. A Novel Polysaccharide Conjugate from Bullacta exarata Induces G1-Phase Arrest and Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Ningbo Liao

    2017-03-01

    Full Text Available Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their biological activities have been carried out. However, little is known regarding the antitumor properties of polysaccharides from B. exarata, hence the polysaccharides from B. exarata have been investigated here. One polysaccharide conjugate BEPS-IA was isolated and purified from B. exarata. It mainly consisted of mannose and glucose in a molar ratio of 1:2, with an average molecular weight of 127 kDa. Thirteen general amino acids were identified to be components of the protein-bound polysaccharide. Methylation and NMR studies revealed that BEPS-IA is a heteropolysaccharide consisting of 1,4-linked-α-d-Glc, 1,6-linked-α-d-Man, 1,3,6-linked-α-d-Man, and 1-linked-α-d-Man residue, in a molar ratio of 6:1:1:1. In order to test the antitumor activity of BEPS-IA, we investigated its effect against the growth of human hepatocellular carcinoma cells HepG2 in vitro. The result showed that BEPS-IA dose-dependently exhibited an effective HepG2 cells growth inhibition with an IC50 of 112.4 μg/mL. Flow cytometry analysis showed that BEPS-IA increased the populations of both apoptotic sub-G1 and G1 phase. The result obtained from TUNEL assay corroborated apoptosis which was shown in flow cytometry. Western blot analysis suggested that BEPS-IA induced apoptosis and growth inhibition were associated with up-regulation of p53, p21 and Bax, down-regulation of Bcl-2. These findings suggest that BEPS-IA may serve as a potential novel dietary agent for hepatocellular carcinoma.

  14. A sulfhydryl-reactive ruthenium (II complex and its conjugation to protein G as a universal reagent for fluorescent immunoassays.

    Directory of Open Access Journals (Sweden)

    Jing-Tang Lin

    Full Text Available To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2'-dipyridine Ruthenium bis (hexafluorophosphate. The synthesized Ru(II complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The emission peak wavelength of the Ru(II-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II complex, indicating that Ru(II-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG binding assay was conducted. The result showed that Ru(II-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays.

  15. The autoantigen Ro52 is an E3 ligase resident in the cytoplasm but enters the nucleus upon cellular exposure to nitric oxide

    International Nuclear Information System (INIS)

    Espinosa, Alexander; Oke, Vilija; Elfving, Ase; Nyberg, Filippa; Covacu, Ruxandra; Wahren-Herlenius, Marie

    2008-01-01

    Patients with the systemic autoimmune diseases Sjoegrens's syndrome and systemic lupus erythematosus often have autoantibodies against the intracellular protein Ro52. Ro52 is an E3 ligase dependent on the ubiquitin conjugation enzymes UBE2D1 and UBE2E1. While Ro52 and UBE2D1 are cytoplasmic proteins, UBE2E1 is localized to the nucleus. Here, we investigate how domains of human Ro52 regulate its intracellular localization. By expressing fluorescently labeled Ro52 and Ro52 mutants in HeLa cells, an intact coiled-coil domain was found to be necessary for the cytoplasmic localization of Ro52. The amino acids 381-470 of the B30.2 region were essential for translocation into the nucleus. Furthermore, after exposure of HeLa cells to the inflammatory mediator nitric oxide (NO), Ro52 translocated to the nucleus. A nuclear localization of Ro52 in inflamed tissue expressing inducible NO synthetase (iNOS) from cutaneous lupus patients was observed by immunohistochemistry and verified in NO-treated cultures of patient-derived primary keratinocytes. Our results show that the localization of Ro52 is regulated by endogenous sequences, and that nuclear translocation is induced by an inflammatory mediator. This suggests that Ro52 has both cytoplasmic and nuclear substrates, and that Ro52 mediates ubiquitination through UBE2D1 in the cytoplasm and through UBE2E1 in the nucleus

  16. Dual Recognition of Human Telomeric G-quadruplex by Neomycin-anthraquinone Conjugate

    Science.gov (United States)

    Ranjan, Nihar; Davis, Erik; Xue, Liang

    2013-01-01

    The authors report the recognition of a G-quadruplex formed by four repeat human telomeric DNA with aminosugar intercalator conjugates. The recognition of G-quadruplex through dual binding mode ligands significantly increased the affinity of ligands for G-quadruplex. One such example is a neomycin-anthraquinone 2 which exhibited nanomolar affinity for the quadruplex, and the affinity of 2 is nearly 1000 fold higher for human telomeric G-quadruplex DNA than its constituent units, neomycin and anthraquinone. PMID:23698792

  17. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells.

    Science.gov (United States)

    Pyo, Min Cheol; Yang, Sung-Yong; Chun, Su-Hyun; Oh, Nam Su; Lee, Kwang-Won

    2016-09-01

    Whey protein concentrate (WPC), which contains α-lactalbumin and β-lactoglobulin, is utilized widely in the food industry. The Maillard reaction is a complex reaction that produces Maillard reaction products (MRPs), which are associated with the formation of antioxidant compounds. In this study, the hepatoprotection activity of MRPs of WPC against oxidative stress through the nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant pathway in HepG2 cells was examined. Glucose-whey protein concentrate conjugate (Glc-WPC) was obtained from Maillard reaction between WPC and glucose. The fluorescence intensity of Glc-WPC increased after 7 d compared to native WPC, and resulted in loss of 48% of the free amino groups of WPC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of Glc-WPC showed the presence of a high-molecular-weight portion. Treatment of HepG2 cells with Glc-WPC increased cell viability in the presence of oxidative stress, inhibited the generation of intracellular reactive oxygen species by tert-butyl hydroperoxide (t-BHP), and increased the glutathione level. Nrf2 translocation and Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-quinone oxidoreductase 1 (NOQ1), heme oxygenase-1 (HO-1), glutamate-L-cysteine ligase (GCL)M and GCLC mRNA levels were increased by Glc-WPC. Also, Glc-WPC increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). The results of this study demonstrate that Glc-WPC activates the Nrf2-dependent pathway through the phosphorylation of ERK1/2 and JNK in HepG2 cells, and induces production of antioxidant enzymes and phase II enzymes.

  18. (UBE) in Nigeria

    African Journals Online (AJOL)

    Nekky Umera

    the effective management of Universal Basic Education in Akwa Ibom State of Nigeria. The hypotheses formulated ... administrators' literacy in financial management has no effect on the effective management of UBE. ... through free basic education schemes was held in Paris (Obanya, 2001,. 2002). Also, in April, 2002 in ...

  19. Vaccination with Shigella flexneri 2a conjugate induces type 2a and cross-reactive type 6 antibodies in humans but not in mice.

    Science.gov (United States)

    Farzam, Nahid; Ramon-Saraf, Reut; Banet-Levi, Yonit; Lerner-Geva, Liat; Ashkenazi, Shai; Kubler-Kielb, Joanna; Vinogradov, Evgeny; Robbins, John B; Schneerson, Rachel

    2017-09-05

    Shigella flexneri (S. flexneri) 6 has emerged as an important cause of shigellosis. Our efficacy study of Shigella sonnei and S. flexneri 2a O-specific polysaccharide (O-SP) conjugates in 1-4year-olds had too few S. flexneri 2a cases for efficacy evaluation but surprisingly showed protection of 3-4year-olds, S. flexneri 2a-recipients, from S. flexneri 6 infection. To investigate this cross-protection antibodies to both Shigella types were investigated in all sera remaining from previous studies. Twenty to 30% of 3-44year-old humans injected with S. flexneri 2a conjugate responded with ≥4-fold increases of IgG anti type 6, p<0.00001. The specificity of these antibodies was shown by inhibition studies. S. flexneri 6 infection of 2 children induced besides S. flexneri 6, also S. flexneri 2a antibodies, at levels of S. flexneri 2a vaccinees. S. flexneri 2a antibodies induced by S. flexneri 6 conjugates could not be studied since no such conjugate was assessed in humans and mice responded almost exclusively to the O-SP of the injected conjugate, with no cross-reactive antibodies. Our results indicate induction of cross-reactive protective antibodies. The O-acetylated disaccharide shared by S. flexneri 6 and 2a O-SPs, is the likely basis for their cross-reactivity. S. flexneri 6 O-SP conjugates, alone and in combination with S. flexneri 2a, merit further investigation for broad S. flexneri protection. Published by Elsevier Ltd.

  20. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    Science.gov (United States)

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  1. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    Science.gov (United States)

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-07-01

    Full Text Available Xi Liu,1–4 Yan Liu,1–4 Pengcheng Zhang,1–4 Xiaodong Jin,1–3 Xiaogang Zheng,1–4 Fei Ye,1–4 Weiqiang Chen,1–3 Qiang Li1–3 1Institute of Modern Physics, 2Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, 3Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 4School of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract: Reductive drug-functionalized gold nanoparticles (AuNPs have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ moiety, and then thioctyl TPZ (TPZs-modified AuNPs (TPZs-AuNPs were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. Keywords: AuNPs, radiation enhancement, synergistic effect, human hepatoma cells, hydroxyl radical production

  3. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  4. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  5. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    Science.gov (United States)

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  6. Main: 2AAK [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available Molecule: Ubiquitin Conjugating Enzyme; Chain: Null; Synonym: Ubc1; Engineered: Yes Ubiquitin Conjugation 6....TPARKRLMRDFKRLQQDPPAGISGAPQDNNIMLWNAVIFGPDDTPWDGGTFKLSLQFSEDYPNKPPTVRFVSRMFHPNIYADGSICLDILQNQWSPIYDVAAILTSIQSLLCDPNPNSPANSEAARMYSESKREYNRRVRDVVEQSWTAD arabi_2AAK.jpg ...

  7. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology.

    Science.gov (United States)

    Belle, Jad I; Nijnik, Anastasia

    2014-05-01

    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A sensitive progesterone enzyme immunoassay for cow, goat and llama plasma using a monoclonal antibody and Danazol (17-α-2,4-pregnadien-20-yno (2,3-D) isoxazol-17-ol) as a displacing agent

    International Nuclear Information System (INIS)

    Aba, M.A.; Carlsson, M.A.; Karlsson, A.; Forsberg, M.

    2001-01-01

    A sensitive progesterone enzyme immunoassay was developed for cow, goat and llama plasma using a monoclonal antibody and Danazol (17-α-2,4-pregnadien-20-yno (2,3-d) isoxazol-17-ol) as a displacing agent. The microtitration plates were first coated with progesterone 3 (o-carboxy-methyl) oxine: BSA conjugate. The immune reaction was performed by incubating overnight a mixture of 50 μL of plasma and 100 μL of first antibody. After washing, 100 μL of the second antibody (horse radish peroxidase conjugated anti-mouse IgG) were added. The plates were incubated for 1 hour and washed. Immediately the substrate solution was added and finally the reaction stopped and optical density measured. This assay allows accurate determination of progesterone in plasma from several species with good specificity, precision and accuracy, and is suitable for the rapid assessment of luteal function and reproductive status in both clinical and research situations. (author)

  9. silver nanoparticles on liver cancer cells (HepG2

    Directory of Open Access Journals (Sweden)

    Ahmed I. El-Batal

    2018-01-01

    Full Text Available This study demonstrates a novel approach for the synthesis of silver nanoparticles (AgNPs against human liver cancer cell line (HepG2 using prodigiosin pigment isolated from Serratia marcescens. It further investigates the influence of various parameters such as initial pH, temperature, silver nitrate (AgNO 3 concentration, and prodigiosin concentration on stability and optical properties of synthesized prodigiosin AgNPs. Highly stable, spherical prodigiosin-conjugated AgNPs were synthesized with a mean diameter of 9.98 nm using a rapid one-step method. The cytotoxic activity investigated in the present study indicated that prodigiosin and prodigiosin-conjugated AgNPs possessed a strong cytotoxic potency against human liver cancer. The In silico molecular docking results of prodigiosin and prodigiosin-conjugated AgNPs are congruent with the In vitro studies and these AgNPs can be considered as good inhibitors of mitogen-activated protein kinase 1 (MEK kinases. The study opened the possibility of using prodigiosin-conjugated AgNPs to increase the efficiency of liver cancer treatment.

  10. Dramatic loss of Ube3A expression during aging of the mammalian cortex

    Directory of Open Access Journals (Sweden)

    Kate Williams

    2010-05-01

    Full Text Available Neurobiological studies of aging are beginning to link functional changes with a loss of experience-dependent plasticity. In the visual system, age-related functional changes include decreases in visual acuity, orientation selectivity, motion perception, and ocular dominance plasticity. A recent paper has shown that Ube3A, an E3 ubiquitin ligase that is absent in Angelman's Syndrome, is required for experience-dependent plasticity during development of the visual cortex. Knocking out Ube3A during development leads to rigidity of ocular dominance plasticity that is strikingly similar to the reduced plasticity seen in older animals. Furthermore, ubiquitin ligases have been linked with age-related neurodegenerative disorders and longevity. Ubiquitin ligases selectively mark proteins for degradation, and a balance between synaptic proteins and their degradation is important for neural transmission and plasticity. This led us to ask whether normal aging is characterized by a loss of Ube3A in the cortex. We used Western blot analysis in order to quantify Ube3A expression across the life span of humans, macaque monkeys, and cats. We found that Ube3A expression declines across the lifespan in human, monkey, and cat cortex. The losses were substantial (50-80% in all areas studied which includes V1, V3, V4, frontal, and auditory cortex. In addition, when compared with other synaptic proteins there was a selective loss of Ube3A in human cortex. The progressive loss of Ube3A expression during cortical aging is an important new finding. Furthermore, the selective loss of Ube3A in human cortex highlights a specific vulnerability in human brain aging that may signify a dramatic shift in cortical function and plasticity.

  11. lemmingA encodes the Apc11 subunit of the APC/C in Drosophila melanogaster that forms a ternary complex with the E2-C type ubiquitin conjugating enzyme, Vihar and Morula/Apc2

    Directory of Open Access Journals (Sweden)

    Nagy Olga

    2012-03-01

    Full Text Available Abstract Background Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C plays a pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is, however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg mutants were used to study the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster. Results The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned by virtue of the lmg03424 P element insertion which is located in the 5' untranslated region. The lemming locus is transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite

  12. Spin gap in heavy fermion compound UBe13

    Science.gov (United States)

    Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.; Dosanjh, P.; Fisk, Z.; Smith, J. L.

    2016-08-01

    Heavy fermion (HF) compounds are well known for their unique properties, such as narrow bandwidths, loss of coherence in a metal, non-Fermi-liquid behaviour, unconventional superconductivity, huge magnetoresistance etc. While these materials have been known since the 1970s, there is still considerable uncertainty regarding the fundamental mechanisms responsible for some of these features. Here we report transverse-field muon spin rotation (μ +SR) experiments on the canonical HF compound UBe13 in the temperature range from 0.025 to 300 K and in magnetic fields up to 7 T. The μ +SR spectra exhibit a sharp anomaly at 180 K. We present a simple explanation of the experimental findings identifying this anomaly with a gap in the spin excitation spectrum of f-electrons opening near 180 K. It is consistent with anomalies discovered in heat capacity, NMR and optical conductivity measurements of UBe13, as well as with the new resistivity data presented here. The proposed physical picture may explain several long-standing mysteries of UBe13 (as well as other HF systems).

  13. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    Science.gov (United States)

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  14. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

    International Nuclear Information System (INIS)

    Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

    2010-01-01

    In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

  15. In vitro stability of EDTA and DTPA immunoconjugates of monoclonal antibody 2G3 labeled with indium-111

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, R.; Lee, N.; Houle, S. (The Toronto Hospital (Canada)); Law, J.; Marks, A. (Toronto Univ., ON (Canada))

    1992-08-01

    Monoclonal antibody 2G3 directed against a high molecular weight glycoprotein on breast and ovarian cancer cells was conjugated with bicyclic DTPA (or EDTA) anhydride or benzyl isothiocyanate DTPA (benzyl DTPA) and labeled with {sup 111}In. DTPA anhydride was more reactive with the antibody than benzyl DTPA, and kinetics of labeling with {sup 111}In were more rapid for DTPA substituted 2G3 than for benzyl DTPA substituted 2G3. On the other hand, {sup 111}In-2G3 conjugates prepared using DTPA anhydride were subject to more extensive dimerization and higher losses in immunoreactivity than those prepared using benzyl DTPA. On the basis of measurement of transchelation to transferrin, the stability of {sup 111}In-2G3 prepared using DTPA anhydride or benzyl DTPA did not differ during incubation in human plasma for 6 days at 37{sup o}C. These results suggest that an important advantage of benzyl DTPA over DTPA anhydride for preparing {sup 111}In-labeled antibodies is the prevention of intermolecular (and intramolecular) crosslinking during conjugation which ultimately leads to alterations in conformation and losses in immunoreactivity of the radioimmunoconjugate. (author).

  16. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  17. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    International Nuclear Information System (INIS)

    Jun, Hong Young; Yin, Hong Hua; Kim, Sun Hee; Park, Seong Hoon; Kim, Hun Soo; Yoon Kwon Ha Yoon

    2010-01-01

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  18. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Hong Young; Yin, Hong Hua; Kim, Sun Hee; Park, Seong Hoon; Kim, Hun Soo; Yoon Kwon Ha Yoon [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2010-08-15

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  19. Effects of π-conjugation attenuation on the photophysics and exciton dynamics of poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L. X.; Jager, W. J.; Niemczyk, M. P.; Wasielewski, M. R.

    1999-01-01

    The effect of π-conjugation attenuation on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 are examined in solution. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of polymers 1 and 2 were compared to those of the homopolymer, poly(2,5-bis(2'-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). A series of changes in the photophysics of polymers 1 and 2 were found as a result of π-conjugation attenuation. These changes include blue shifts in absorption and emission spectra, spectral diffusion in stimulated emission, enhancement in photoluminescence quantum yields and lifetimes, and increases in photoinduced absorption intensities and lifetimes. These changes are systematically more pronounced in polymer 1 than in polymer 2 and are correlated with π-conjugation attenuation in the polymers due to twisting of the 2,2'-bipyridine groups about the 2,2' single bond. An exciton dynamics model involving an ensemble of initial exciton states localized on oligomeric segments within the polymer with different conjugation lengths is proposed to describe the observed differences between polymers 1 and 2 and BEH-PPV. When the electronic coupling between these segments is strong, the polymer displays characteristics that are close to those of a one-dimensional semiconductor. However, when these couplings are weakened by groups, such as the 2,2'-bipyridine that attenuate π-conjugation, the polymer displays properties of an ensemble of oligomers

  20. Evaluation of Achievement of Universal Basic Education (UBE) in Delta State

    Science.gov (United States)

    Osadebe, P. U.

    2014-01-01

    The study evaluated the objectives of the Universal Basic Education (UBE) programme in Delta State. It considered the extent to which each objective was achieved. A research question on the extent to which the UBE objectives were achieved guided the study. Two hypotheses were tested. A sample of 300 students was randomly drawn through the use of…

  1. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  2. Up-converter nanophosphor Y2O2S:Er,Yb aminofunctionalized containing or not spherical silica conjugated with BSA

    International Nuclear Information System (INIS)

    Gelamos, Joao Paulo; Laranja, Marlon Larry; Alvino, Karla Cristina Lombardi; Camacho, Sabrina Alessio; Pires, Ana Maria

    2009-01-01

    This work reports on the study of the nanophosphor Y 2 O 2 S:Er(2%),Yb(1%) obtained from polymeric resin to be evaluated as fluorescent label with suitable features to conjugate with bio-molecules for bioassay up-converting phosphor technology (UPT) application. A conjugation protocol between bovine serum albumin (BSA) and the aminofunctionalized nanophosphor containing or not spherical silica was established. UV-vis results indicated an effective conjugation between nanophosphor particles and the protein. Up-conversion measurements under 980 nm excitation performed for samples before and after aminofunctionalization showed that nanophosphor particles luminescence features keep unchanged in all cases. All results suggest that the adapted protocol is feasible to provide a nanoparticle-protein effective conjugation preserving nanophosphor optical features. The presence of spherical silica can be considered advantageous to increase conjugation efficiency. Therefore, the developed procedure is applicable for future conjugations between the chosen nanophosphor and the streptavidin protein that takes part in the well known self-recognition system avidin-biotin.

  3. Identification and characterisation of a G-quadruplex forming sequence in the promoter region of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)

    Energy Technology Data Exchange (ETDEWEB)

    Waller, Zoë A.E., E-mail: z.waller@uea.ac.uk; Howell, Lesley A.; MacDonald, Colin J.; O’Connell, Maria A.; Searcey, Mark, E-mail: m.searcey@uea.ac.uk

    2014-04-25

    Highlights: • Discovery of a G-quadruplex forming sequence in the promoter sequence of Nrf2. • Characterisation of the G-quadruplex by UV, CD and NMR. • Conformational switching of G-quadruplex induced by 9-aminoacridine. - Abstract: The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates multiple antioxidants, Phase II detoxification enzymes and other cytoprotective enzymes in cells. Activation of Nrf2 is recognised as being of potential therapeutic benefit in inflammatory-diseases whereas more recently, it has become clear that the inhibition of Nrf2 may have benefit in the alleviation of resistance in some tumour types. A potential G-quadruplex forming sequence was identified in the promoter region of Nrf2, close to a number of putative transcription factor binding sites. Characterisation of the sequence 5’-d[GGGAAGGGAGCAAGGGCGGGAGGG]-3’ using CD spectroscopy, imino proton NMR resonances and UV melting experiments demonstrated the formation of a parallel intramolecular G-quadruplex in the presence of K{sup +} ions. Incubation with 9-aminoacridine ligands induced a switch from antiparallel to parallel forms. The presence of a G-quadruplex forming sequence in the promoter region of Nrf2 suggests an approach to targeting the production of the protein through stabilisation of the structure, thereby avoiding resistance to antitumour drugs.

  4. T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2

    International Nuclear Information System (INIS)

    Moridis, G.; Pruess, K.; Antunez, E.

    1994-03-01

    Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources

  5. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  6. Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Dylan Valleau

    2018-04-01

    Full Text Available Summary: Legionella pneumophila translocates the largest known arsenal of over 330 pathogenic factors, called “effectors,” into host cells during infection, enabling L. pneumophila to establish a replicative niche inside diverse amebas and human macrophages. Here, we reveal that the L. pneumophila effectors MavC (Lpg2147 and MvcA (Lpg2148 are structural homologs of cycle inhibiting factor (Cif effectors and that the adjacent gene, lpg2149, produces a protein that directly inhibits their activity. In contrast to canonical Cifs, both MavC and MvcA contain an insertion domain and deamidate the residue Gln40 of ubiquitin but not Gln40 of NEDD8. MavC and MvcA are functionally diverse, with only MavC interacting with the human E2-conjugating enzyme UBE2N (Ubc13. MavC deamidates the UBE2N∼Ub conjugate, disrupting Lys63 ubiquitination and dampening NF-κB signaling. Combined, our data reveal a molecular mechanism of host manipulation by pathogenic bacteria and highlight the complex regulatory mechanisms integral to L. pneumophila’s pathogenic strategy. : Legionella pneumophila, possessing the largest known arsenal of effectors, continues to reveal unique approaches to host cell control. Valleau et al. decrypt the functions of a trio of effectors, discovering a pair of ubiquitin-specific deamidases, their regulation by a neighboring dual-specificity protein inhibitor, and a mechanism of NF-κB suppression. Keywords: pathogen-host interaction, ubiquitination, Legionella, UBE2N/Ubc13, NF-κB signaling, Type IV secretion system, effectors, metaeffector, cycle inhibiting factor

  7. Co-conjugation vis-à-vis individual conjugation of α-amylase and glucoamylase for hydrolysis of starch.

    Science.gov (United States)

    Jadhav, Swati B; Singhal, Rekha S

    2013-10-15

    Two enzymes, α-amylase and glucoamylase have been individually and co-conjugated to pectin by covalent binding. Both the enzyme systems showed better thermal and pH stability over the free enzyme system with the complete retention of original activities. Mixture of individually conjugated enzymes showed lower inactivation rate constant with longer half life than the co-conjugated enzyme system. Individually conjugated enzymes showed an increase of 56.48 kJ/mole and 38.22 kJ/mole in activation energy for denaturation than the free enzymes and co-conjugated enzymes, respectively. Km as well as Vmax of individually and co-conjugated enzymes was found to be higher than the free enzymes. SDS-polyacrylamide gel electrophoresis confirmed the formation of conjugate and co-conjugate as evident by increased molecular weight. Both the enzyme systems were used for starch hydrolysis where individually conjugated enzymes showed highest release of glucose at 60 °C and pH 5.0 as compared to free and co-conjugated enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The mechanism of OTUB1-mediated inhibition of ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao; Wolberger, Cynthia (JHU)

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1

  9. In Vitro Evaluation of Third Generation PAMAM Dendrimer Conjugates

    Directory of Open Access Journals (Sweden)

    Mohammad Najlah

    2017-10-01

    Full Text Available The present study compares the use of high generation G3 and low generation G0 Polyamidoamine (PAMAM dendrimers as drug carriers of naproxen (NAP, a poorly water soluble drug. Naproxen was conjugated to G3 in different ratios and to G0 in a 1:1 ratio via a diethylene glycol linker. A lauroyl chain (L, a lipophilic permeability enhancer, was attached to G3 and G0 prodrugs. The G3 and G0 conjugates were more hydrophilic than naproxen as evaluated by the measurement of partitioning between 1-octanol and a phosphate buffer at pH 7.4 and pH 1.2. The unmodified surface PAMAM-NAP conjugates showed significant solubility enhancements of NAP at pH 1.2; however, with the number of NAP conjugated to G3, this was limited to 10 molecules. The lactate dehydrogenase (LDH assay indicated that the G3 dendrimer conjugates had a concentration dependent toxicity towards Caco-2 cells. Attaching naproxen to the surface of the dendrimer increased the IC50 of the resulting prodrugs towards Caco-2 cells. The lauroyl G3 conjugates showed the highest toxicity amongst the PAMAM dendrimer conjugates investigated and were significantly more toxic than the lauroyl-G0-naproxen conjugates. The permeability of naproxen across monolayers of Caco-2 cells was significantly increased by its conjugation to either G3 or G0 PAMAM dendrimers. Lauroyl-G0 conjugates displayed considerably lower cytotoxicity than G3 conjugates and may be preferable for use as a drug carrier for low soluble drugs such as naproxen.

  10. PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2), a computer program for solving ground-water flow equations

    Science.gov (United States)

    Hill, Mary C.

    1990-01-01

    This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.

  11. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  12. Field-orientation dependence of low-energy quasiparticle excitations in the heavy-electron superconductor UBe(13).

    Science.gov (United States)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige

    2015-04-10

    Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

  13. Expression Profiling of WSSV ORF 199 and Shrimp Ubiquitin Conjugating Enzyme in WSSV Infected

    Directory of Open Access Journals (Sweden)

    K. Jeena

    2012-08-01

    Full Text Available White spot syndrome virus (WSSV is one of the major viral pathogens affecting shrimp aquaculture. Four proteins, WSSV199, WSSV 222, WSSV 249 and WSSV 403, from WSSV are predicted to encode a RING-H2 domain, which in presence of ubiquitin conjugating enzyme (E2 in shrimp can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, a time course expression profile analysis of WSSV Open Reading Frame (ORF 199 and Penaeus monodon ubiquitin conjugating enzyme (PmUbc was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge by semi-quantitative RT-PCR as well as Real Time PCR. EF1α was used as reference control to normalize the expression levels. A significant increase in PmUbc expression at 24 h post infection (h.p.i was observed followed by a decline till 72 h.p.i. Expression of WSSV199 was observed at 24 h.p.i in WSSV infected P. monodon. Since the up-regulation of PmUbc was observed at 24 h.p.i where WSSV199 expression was detected, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. However, further studies need to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this chaos in the shrimp culture industry.

  14. Guanidinylated Neomycin Conjugation Enhances Intranasal Enzyme Replacement in the Brain.

    Science.gov (United States)

    Tong, Wenyong; Dwyer, Chrissa A; Thacker, Bryan E; Glass, Charles A; Brown, Jillian R; Hamill, Kristina; Moremen, Kelley W; Sarrazin, Stéphane; Gordts, Philip L S M; Dozier, Lara E; Patrick, Gentry N; Tor, Yitzhak; Esko, Jeffrey D

    2017-12-06

    Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  15. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Hall, Elizabeth A H

    2010-11-01

    An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.

  16. Development and Characterization of a Camelid Single Domain Antibody-Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Uger, Marni D; Wisniewski, Pawel; Chao, Heman

    2017-01-01

    Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MS E peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[( N -maleimidopropionamido)-diethyleneglycol] ester (SM(PEG) 2 ), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol

  17. Development and Characterization of a Camelid Single Domain Antibody–Urease Conjugate That Targets Vascular Endothelial Growth Factor Receptor 2

    Directory of Open Access Journals (Sweden)

    Baomin Tian

    2017-08-01

    Full Text Available Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs. In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21 and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody–urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MSE peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3 pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[(N-maleimidopropionamido-diethyleneglycol] ester (SM(PEG2, which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis

  18. 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections.

    Science.gov (United States)

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M

    2010-11-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to

  19. 2-Hexadecynoic Acid Inhibits Plasmodial FAS-II Enzymes and Arrest Erythrocytic and Liver Stage Plasmodium Infections

    Science.gov (United States)

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.

    2010-01-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty

  20. Radiation-induced G/sub 2/-arrest is reduced by inhibitors of poly(adenosine diphosphoribose) synthetase

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Experiments are in progress to test whether poly(adenosine diphosphoribose) synthesis is required for the induction of G/sub 2/-arrest in growing mammalian cells following X-irradiation. A variety of poly(ADPR) synthetase inhibitors have been tested to determine: 1) whether addition of an inhibitor to X-irradiated CHO cells reduces G/sub 2/-arrest; 2) whether compounds structurally similar to poly-(ADPR) synthetase inhibitors but inactive against this enzyme affect radiation-induced G/sub 2/-arrest and 3) whether the concentration dependence for poly(ADPR) synthetase inhibition matches that for G/sub 2/-arrest reduction. G/sub 2/-arrest was measured in X-irradiated (1.5 Gy) CHO cells using the mitotic cell selection technique. Poly(ADPR) synthetase activity was measured in permeabilized cells by /sup 3/H-NAD incorporation. The synthetase inhibitors used were 3-aminobenzamide, benzamide, nicotinamide, 4-acetyl pyridine, caffeine and theophylline. The inactive compounds used were 3-aminobenzoic acid, benzoic acid, nicotinic acid, adenine, adenosine and 3'-deoxyadenosine. Inhibitors of poly(ADPR) synthetase reduced G/sub 2/-arrest while related compounds which produced no enzyme inhibition did not. The concentration dependencies for G/sub 2/-arrest reduction and enzyme inhibition were similar only for methyl xanthines. Further analysis awaits the determination of intracellular drug concentrations

  1. Uncovering a Role for SK2 in Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    Sofia B. Lizarraga

    2015-07-01

    Full Text Available Angelman syndrome is a severe neurodevelopmental disorder caused by mutations in UBE3A. Sun et al. (2015 report SK2 as a UBE3A substrate and provide insight into the molecular mechanisms that might underlie impaired neuronal function in individuals affected by Angelman syndrome.

  2. Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo

    KAUST Repository

    Tong, Jing

    2013-01-07

    Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance the delivery of SOD1 across the blood-brain barrier (BBB) and in neurons the enzyme was conjugated with poly(2-oxazoline) (POx) block copolymers, P(MeOx-b-BuOx) or P(EtOx-b-BuOx), composed of (1) hydrophilic 2-methyl-2-oxazoline (MeOx) or 2-ethyl-2-oxazoline (EtOx) and (2) hydrophobic 2-butyl-2-oxazoline (BuOx) repeating units. The conjugates contained from 2 to 3 POx chains joining the protein amino groups via cleavable -(ss)- or noncleavable -(cc)- linkers at the BuOx block terminus. They retained 30% to 50% of initial SOD1 activity, were conformationally and thermally stable, and assembled in 8 or 20 nm aggregates in aqueous solution. They had little if any toxicity to CATH.a neurons and displayed enhanced uptake in these neurons as compared to native or PEGylated SOD1. Of the two conjugates, SOD1-(cc)-P(MeOx-b-BuOx) and SOD1-(cc)-P(EtOx-b-BuOx), compared, the latter was entering cells 4 to 7 times faster and at 6 h colocalized predominantly with endoplasmic reticulum (41 ± 3%) and mitochondria (21 ± 2%). Colocalization with endocytosis markers and pathway inhibition assays suggested that it was internalized through lipid raft/caveolae, also employed by the P(EtOx-b-BuOx) copolymer. The SOD activity in cell lysates and ability to attenuate angiotensin II (Ang II)-induced superoxide in live cells were increased for this conjugate compared to SOD1 and PEG-SOD1. Studies in mice showed that SOD1-POx had ca. 1.75 times longer half-life in blood than native SOD1 (28.4 vs 15.9 min) and after iv administration penetrated the BBB significantly faster than albumin to accumulate in brain parenchyma. The conjugate maintained high stability both in serum and in brain (77% vs 84% at 1 h postinjection). Its amount taken up by the brain

  3. A VAR2CSA:CSP conjugate capable of inducing dual specificity antibody responses

    DEFF Research Database (Denmark)

    Matondo, Sungwa; Thrane, Susan; Janitzek, Christoph Mikkel

    2017-01-01

    Catcher peptide. The covalent interaction between SpyTag/SpyCatcher enables the formation of DBL1x-DBL2x-ID2a:CSP conjugate vaccine. Immunogenicity and quality of antibody responses induced by the conjugate vaccine, as well as a control CSP-SpyCatcher vaccine, was tested in BALB/c mice.  Results: Serum samples...... obtained from mice immunized with the conjugate vaccine were able to recognize both untagged DBL1x-DBL2x-ID2a as well as CSP antigen. Moreover, the geometric mean anti-CSP antibody titer was 1.9-fold higher in serum (at day 35 and 55 post-first immunization) from mice immunized with the conjugate vaccine......, as compared to mice receiving the control vaccine.  Conclusion: The data obtained in this study serves as proof-of-concept for the simultaneous induction of antibodies directed against individual antigen components in a dual stage anti-malaria vaccine....

  4. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    Science.gov (United States)

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  5. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab

    Directory of Open Access Journals (Sweden)

    Ma P

    2015-03-01

    Full Text Available Pengkai Ma,1 Xuemei Zhang,1 Ling Ni,2 Jinming Li,2 Fengpu Zhang,1 Zheng Wang,1 Shengnan Lian,1 Kaoxiang Sun1 1School of Pharmacy, Yantai University, Yantai, Shandong Province, People’s Republic of China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People’s Republic of China Background: Antibody-dendrimer conjugates have the potential to improve the targeting and release of chemotherapeutic drugs at the tumor site while reducing adverse side effects caused by drug accumulation in healthy tissues. In this study, trastuzumab (TMAB, which binds to human epidermal growth factor receptor 2 (HER2, was used as a targeting agent in a TMAB-polyamidoamine (PAMAM conjugate carrying paclitaxel (PTX specifically to cells overexpressing HER2. Methods: TMAB was covalently linked to a PAMAM dendrimer via bifunctional polyethylene glycol (PEG. PTX was conjugated to PAMAM using succinic anhydride as a cross-linker, yielding TMAB-PEG-PAMAM-PTX. Dynamic light scattering and transmission electron microscopy were used to characterize the conjugates. The cellular uptake and in vivo biodistribution were studied by fluorescence microscopy, flow cytometry, and Carestream In Vivo FX, respectively. Results: Nuclear magnetic resonance spectroscopy demonstrated that PEG, PTX, fluorescein isothiocyanate, and cyanine7 were conjugated to PAMAM. Ultraviolet-visible spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that TMAB was conjugated to PEG-PAMAM. Dynamic light scattering and transmission electron microscopy measurements revealed that the different conjugates ranged in size between 10 and 35 nm and had a spherical shape. In vitro cellular uptake demonstrated that the TMAB-conjugated PAMAM was taken up by HER2-overexpressing BT474 cells more efficiently than MCF-7 cells that expressed lower levels of HER2. Co-localization experiments indicated that TMAB-conjugated PAMAM was

  6. Acetylornithine deacetylase, succinyldiaminopimelate desuccinylase and carboxypeptidase G2 are evolutionarily related.

    Science.gov (United States)

    Boyen, A; Charlier, D; Charlier, J; Sakanyan, V; Mett, I; Glansdorff, N

    1992-07-01

    The nucleotide (nt) sequence of the Escherichia coli argE gene, encoding the acetylornithine deacetylase (AO) subunit, has been established and corresponds to a 43-kDa (M(r) 42,320) polypeptide. The enzyme has been purified to near homogeneity and it appears to be a dimer consisting of two 43-kDa subunits. The amino acid sequence deduced from the nt sequence was compared to that of the subunit of E. coli succinyldiaminopimelate desuccinylase (the dapE gene product involved in the diaminopimelate pathway for lysine biosynthesis), since both enzymes share functional and biochemical features. Significant similarity covering the entire sequence allows us to infer a common origin for both deacylases. This homology extends to the Pseudomonas sp. G2 carboxypeptidase (G2CP); this or a functionally related enzyme may be responsible for the minor AO activity found in organisms relying on ornithine acetyltransferase for ornithine biosynthesis.

  7. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    Science.gov (United States)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  8. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage

    DEFF Research Database (Denmark)

    Thorslund, Tina; Ripplinger, Anita; Hoffmann, Saskia

    2015-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that trigger non-proteolytic ubiquitylation of adjacent chromatin areas to generate binding sites for DNA repair factors. This depends on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 (refs 1-6), and UBC13 (also...... known as UBE2N), an E2 ubiquitin-conjugating enzyme that specifically generates K63-linked ubiquitin chains. Whereas RNF168 is known to catalyse ubiquitylation of H2A-type histones, leading to the recruitment of repair factors such as 53BP1 (refs 8-10), the critical substrates of RNF8 and K63-linked...

  9. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    Science.gov (United States)

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-07

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cytotoxicity of S-conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (Compound A) in a human proximal tubular cell line

    International Nuclear Information System (INIS)

    Altuntas, T. Gul; Zager, Richard A.; Kharasch, Evan D.

    2003-01-01

    Fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE) is a fluorinated alkene formed by degradation of the volatile anesthetic sevoflurane in anesthesia machines. FDVE is nephrotoxic in rats but not humans. Rat FDVE nephrotoxicity is attributed to FDVE glutathione conjugation and bioactivation of subsequent FDVE-cysteine S-conjugates, in part by renal β-lyase. Although FDVE conjugation and metabolism occur in both rats and humans, the mechanism for selective toxicity in rats and lack of effect in humans is incompletely elucidated. This investigation measured FDVE S-conjugate cytotoxicity in cultured human proximal tubular HK-2 cells, and compared this with known cytotoxic S-conjugates. HK-2 cells were incubated with FDVE and its GSH, cysteine S-mercapturic acid, cysteine S-sulfoxide, and mercapturic acid sulfoxide conjugates (0.1-2.7 mM) for 24 h. Cytotoxicity was determined by lactate dehydrogenase (LDH) release, total LDH, and the ability of viable cells to reduce a tetrazolium-based compound (MTT). FDVE was cytotoxic only at concentrations ≥0.9 mM. No increase in LDH release was observed with either FDVE-GSH conjugate. The FDVE-cysteine conjugates S-(1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl)-L-cysteine (DFEC) and (Z)-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine ((Z)-FFVC) caused significant differences in LDH release and MTT reduction only at 2.7 mM; (Z)-FFVC was slightly more cytotoxic. Both S-(1,1-difluoro-2-fluoromethoxy-2-(trifluoromethyl) ethyl)-L-cysteine sulfoxide (DFEC-SO) and (Z)-N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine sulfoxide ((Z)-N-Ac-FFVC-SO) caused slightly greater changes in LDH release or total LDH than the corresponding equimolar DFEC and (Z)-N-acetyl-S-(1-fluoro-2-fluoromethoxy-2-(trifluoromethyl) vinyl)-L-cysteine ((Z)-N-Ac-FFVC) conjugates. In contrast to FDVE S-conjugates, S-(1,2-dichlorovinyl)-L-cysteine was markedly cytotoxic, at concentrations as low as 0

  11. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels

    International Nuclear Information System (INIS)

    Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco

    2005-01-01

    Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF Skp2 ubiquitin ligase has been reported to mediate p27 Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27 Kip1 , and prevent cellular proliferation. Elevation of p27 Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27 Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF Skp2 ubiquitin ligase substrate p27 Kip1 , but has no concomitant effect on the level of IkBα and β-catenin, which are known substrates of a closely related SCF ligase

  12. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL.

    Science.gov (United States)

    Miles, Jennifer A; Frost, Mark G; Carroll, Eilis; Rowe, Michelle L; Howard, Mark J; Sidhu, Ateesh; Chaugule, Viduth K; Alpi, Arno F; Walden, Helen

    2015-08-21

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    Science.gov (United States)

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  14. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    Science.gov (United States)

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with K s values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute -1 ) than CYP2A13 (∼0.02 minute -1 ) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute -1 ) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute -1 ) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute -1 ). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    Energy Technology Data Exchange (ETDEWEB)

    Lemak, Alexander; Yee, Adelinda [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology (United States); Dhe-Paganon, Sirano, E-mail: sirano.dhepaganon@utoronto.ca [University of Toronto, Structural Genomics Consortium (Canada); Arrowsmith, Cheryl H., E-mail: carrow@uhnresearch.ca [University of Toronto, and Northeast Structural Genomics Consortium, Ontario Cancer Institute, Campbell Family Cancer Research Institute and Department of Medical Biophysics (Canada)

    2011-09-15

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X{sub 4}-Cys-X{sub 4}-Cys-X{sub 28}-Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two {alpha}-helicies.

  16. Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A

    International Nuclear Information System (INIS)

    Lemak, Alexander; Yee, Adelinda; Bezsonova, Irina; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2011-01-01

    Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain adopts a novel Zn-binding fold we called AZUL (Amino-terminal Zn-finger of Ube3a Ligase). The AZUL domain has a helix-loop-helix architecture with a Zn ion coordinated by four Cys residues arranged in Cys-X 4 -Cys-X 4 -Cys-X 28 -Cys motif. Three of the Zn-bound residues are located in a 23-residue long and well structured loop that connects two α-helicies.

  17. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    International Nuclear Information System (INIS)

    Glukhov, S; Berestovoy, M; Nabiev, I; Sukhanova, A; Chames, P; Baty, D

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or 'nanobodies') conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD–sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis. (paper)

  18. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Science.gov (United States)

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD-sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  19. Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.

    Science.gov (United States)

    Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F

    1988-07-01

    The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested.

  20. Reagents for Astatination of Biomolecules. 5. Evaluation of hydrazone linkers in 211At- and 125I-labeled closo-decaborate(2-) conjugates of Fab′ as a means of decreasing kidney retention

    Science.gov (United States)

    Wilbur, D. Scott; Chyan, Ming-Kuan; Hamlin, Donald K.; Nguyen, Holly; Vessella, Robert L.

    2011-01-01

    Evaluation of monoclonal antibody (MAb) fragments (e.g. Fab′, Fab or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 (211At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the 211At label, generally a meta- or para-[211At]astatobenzoyl conjugate, on MAb Fab′ fragments can be dramatically improved by use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled MAb Fab′ conjugates appears to result in retention of the radioactivity in kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of acid-cleavable hydrazone between the Fab′ and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete polyethylene glycol (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole or methyl) to provide varying acid-sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated (125I or 131I), then conjugated with an anti-PSMA Fab′ (107-1A4 Fab′). Biodistributions of the five radioiodinated Fab′ conjugates were obtained in nude mice at 1, 4 and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab′ through a non-cleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver and spleen that were similar to those obtained with directly radioiodinated Fab′ (i.e. no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate

  1. Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General in Situ Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis.

    Science.gov (United States)

    Wang, Guang-Li; Yuan, Fang; Gu, Tiantian; Dong, Yuming; Wang, Qian; Zhao, Wei-Wei

    2018-02-06

    Herein we report a general and novel strategy for high-throughput photoelectrochemical (PEC) enzymatic bioanalysis on the basis of enzyme-initiated quinone-chitosan conjugation chemistry (QCCC). Specifically, the strategy was illustrated by using a model quinones-generating oxidase of tyrosinase (Tyr) to catalytically produce 1,2-bezoquinone or its derivative, which can easily and selectively be conjugated onto the surface of the chitosan deposited PbS/NiO/FTO photocathode via the QCCC. Upon illumination, the covalently attached quinones could act as electron acceptors of PbS quantum dots (QDs), improving the photocurrent generation and thus allowing the elegant probing of Tyr activity. Enzyme cascades, such as alkaline phosphatase (ALP)/Tyr and β-galactosidase (Gal)/Tyr, were further introduced into the system for the successful probing of the corresponding targets. This work features not only the first use of QCCC in PEC bioanalysis but also the separation of enzymatic reaction from the photoelectrode as well as the direct signal recording in a split-type protocol, which enables quite convenient and high-throughput detection as compared to previous formats. More importantly, by using numerous other oxidoreductases that involve quinones as reactants/products, this protocol could serve as a common basis for the development of a new class of QCCC-based PEC enzymatic bioanalysis and further extended for general enzyme-labeled PEC bioanalysis of versatile targets.

  2. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    Science.gov (United States)

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  3. Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradien

    OpenAIRE

    Mahmudah, Dewi Erla; Naf'an, Muhammad Zidny

    2017-01-01

    In this paper we focus on solution of 2D Poisson equation numerically. 2D Poisson equation is a partial differential equation of second order elliptical type. This equation is a particular form or non-homogeneous form of the Laplace equation. The solution of 2D Poisson equation is performed numerically using Gauss Seidel method and Conjugate Gradient method. The result is the value using Gauss Seidel method and Conjugate Gradient method is same. But, consider the iteration process, the conver...

  4. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells.

    Science.gov (United States)

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  5. Magnetic response in UBe13

    DEFF Research Database (Denmark)

    Coad, S.; Hiess, A.; McMorrow, D.F.

    2000-01-01

    Uranium-based heavy-fermion superconductors have attracted interest because of the opportunity to study the interplay between magnetism and superconductivity. All of these materials have been found to order antiferromagnetically with T-N > T-c with the exception of UBe13 in which no neutron...... evidence for static magnetism has been reported. In experiments on single crystals at Riso National Lab., we have observed antiferromagnetic short-range magnetic correlations situated at q = . Their breadth in q-space shows that the correlations are short range; while the absence of a signal...

  6. Connections between magnetism and superconductivity in UBe13 doped with thorium or boron

    International Nuclear Information System (INIS)

    Heffner, R.H.; Ott, H.R.; Schenck, A.; Mydosh, J.A.; MacLaughlin, D.E.

    1991-06-01

    Magnetism and superconductivity appear to be intimately connected in the heavy electron (HE) superconductors. For example, it has been conjectured but not proven that the exchange of antiferromagnetic spin fluctuations are responsible for pairing in HE superconductors. In this paper we review recent results in U 1-x Th x Be 13 , where specific heat, lower critical field and zero-field μSR measurements reveal another second-order phase transition to a state which possesses small-moment magnetic correlations for 0.019 ≤ x ≤ 0.043. We present a new phase diagram for (U,Th)Be 13 which indicates that the superconducting and magnetic order parameters are closely coupled. A discussion of the nature of the lower phase is presented, including the consideration of a possible magnetic superconducting state. When UBe 13 is doped with B (UBe 12.97 B 0.03 ) the Kondo temperature is decreased and the specific heat jump at the superconducting transition temperature is significantly enhanced. However, μSR measurements reveal no magnetic signature in UBe 12.97 B 0.03 , unlike the case for Th doping. The correlation between changes in the Kondo temperature and changes in the superconducting properties induced by B doping provide evidence for the importance of magnetic excitations in the superconducting pairing interaction in UBe 13

  7. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    Directory of Open Access Journals (Sweden)

    Bangjun Zhou

    2018-05-01

    Full Text Available In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2 with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  8. A quasi-parafermionic realization of G2 and Uq(G2)

    International Nuclear Information System (INIS)

    Frappat, L.

    1991-09-01

    A construction of the exceptional Lie algebra G 2 and of the corresponding quantum algebra U q (G 2 ) is presented, using quasi-parafermionic creation and annihilation operators and their quantum analogue. As a by-product, a new realization of U q (A 2 ) is found. (author) 7 refs

  9. Procyanidins from Wild Grape (Vitis amurensis Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Woo-Sik Jeong

    2012-01-01

    Full Text Available Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2 in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(PH:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  10. Endogenous protein and enzyme fragments induce immunoglobulin E-independent activation of mast cells via a G protein-coupled receptor, MRGPRX2.

    Science.gov (United States)

    Tatemoto, K; Nozaki, Y; Tsuda, R; Kaneko, S; Tomura, K; Furuno, M; Ogasawara, H; Edamura, K; Takagi, H; Iwamura, H; Noguchi, M; Naito, T

    2018-05-01

    Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through 2 main pathways, immunoglobulin E-dependent and E-independent activation. In the latter pathway, mast cells are activated by a diverse range of basic molecules (collectively known as basic secretagogues) through Mas-related G protein-coupled receptors (MRGPRs). In addition to the known basic secretagogues, here, we discovered several endogenous protein and enzyme fragments (such as chaperonin-10 fragment) that act as bioactive peptides and induce immunoglobulin E-independent mast cell activation via MRGPRX2 (previously known as MrgX2), leading to the degranulation of mast cells. We discuss the possibility that MRGPRX2 responds various as-yet-unidentified endogenous ligands that have specific characteristics, and propose that MRGPRX2 plays an important role in regulating inflammatory responses to endogenous harmful stimuli, such as protein breakdown products released from damaged or dying cells. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  11. alpha-Glucosidase-albumin conjugates: effect of chronic administration in mice

    International Nuclear Information System (INIS)

    Allen, T.M.; Murray, L.; Bhardwaj, D.; Poznansky, M.J.

    1985-01-01

    Enzyme albumin conjugates have been proposed as a means of increasing the efficacy of enzyme use in vivo and decreasing immune response to the enzyme. Particulate drug carriers, however, have a pronounced tendency to localize in the mononuclear phagocyte (reticuloendothelial) system. The authors have examined in mice the effect on phagocytic index, tissue distribution and organ size of continued administration of conjugates of alpha-glucosidase with either homologous or heterologous albumin. Mice received 10 X 2-mg injections of bovine serum albumin (BSA) or mouse serum albumin (MSA), either free, polymerized or conjugated with alpha-glucosidase. Experiments involving BSA had to be terminated before the end of the experiment because of anaphylaxis, but these reactions were less severe to the polymerized albumin than to free albumin. Free BSA, BSA polymer and BSA-enzyme conjugates all caused a decrease in phagocytic index after six injections. Mice receiving MSA showed no evidence of anaphylaxis, but mice receiving six or more injections of free MSA, MSA polymer or MSA-enzyme conjugate had significantly decreased phagocytic indices as compared to controls. Phagocytic indices had returned to normal by 7 days after the final injection. Tissue distribution of 125 I-labeled albumin preparations was determined in either naive or chronically injected mice

  12. [Optimizing synthesis of conjugates of superoxide dismutase and catalase with aldehyde dextrans in surfactant microemulsions in heptane].

    Science.gov (United States)

    Eremin, A N; Metelitsa, D I

    1997-01-01

    Stable microemulsions in heptane retaining considerable amounts of the polar phase were obtained by using Aerosol OT (AOT), Triton X-45, and catalase. Conjugates of superoxide dismutase (SOD) and catalase with aldehyde dextrans (AD) were synthesized in surfactant microemulsions in heptane. Effects of the reaction duration, the microemulsion polar phase volume, and concentrations of enzymes and modifiers on the properties of these conjugates were studied. The catalytic properties of conjugates depended on the nature of the surfactants used to stabilize the microemulsions, the initial concentration of protein in the reaction mixture, and the enzyme: modifier ratio. The degree of modification of the enzymes and the stabilities of their conjugates during isolation from microemulsions by a water-acetone solution depended on the concentration of the AD used. The catalytic properties of the conjugates synthesized were compared, and their stabilities in the presence of H2O2 were described. We suggested a simple method of transformation of whole kinetic curves of H2O2 conversion in coordinates 1/ln([H2O2]0/[H2O2]t - 1/t for simultaneous measurement of the constant of the catalase inactivation rate by H2O2 (Cin, S-1) and the rate constant of the catalase complex 1 interaction with the second H2O2 molecule (C2, M-1 S-1). This method was tested experimentally. Values C2 and Cin for catalase and its conjugates with ADs were compared, and these results were discussed.

  13. Synthesis and photocatalytic activity of TiO2/conjugated polymer complex nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Shi Xiong Min; Fang Wang; Lei Feng; Yong Chun Tong; Zi Rong Yang

    2008-01-01

    A photocatalyst of nanometer TiO2/conjugated polymer complex was successfully synthesized and characterized by spectroscopic methods and photocatalytic experiments. The complex photocatalyst could be activated by absorbing both ultraviolet and visible light (λ=190-800nm). Methylene blue (MB) could be degraded more efficiently on the complex photocatalyst than on the TiO2 under natural light. The conjugated polymer played a promoting role in the photocatalytic degradation of MB. The calcination temperature had an important effect in degradation of dye and could be summarized as 260℃>300℃>340℃>220℃>180℃.

  14. Development of Corn Starch-Neusilin UFL2 Conjugate as Tablet Superdisintegrant: Formulation and Evaluation of Fast Disintegrating Tablets

    Directory of Open Access Journals (Sweden)

    Prateek Juneja

    2014-01-01

    Full Text Available In the present study, corn Starch-Neusilin UFL2 conjugates were prepared by physical, chemical, and microwave methods with the aim of using the conjugates as tablet superdisintegrant. Various powder tests, namely, angle of repose, bulk density, tapped density, Hausner’s ratio, Carr’s index, swelling index, and powder porosity were conducted on the samples. The conjugates were characterized by ATR-FTIR, XRD, DSC, and SEM techniques. Heckel and Kawakita models were applied to carry out compression studies for the prepared conjugates. Fast disintegrating tablets of domperidone were prepared using corn starch and corn Starch-Neusilin UFL2 conjugates as tablet superdisintegrants in different concentrations. Conjugates were found to possess good powder flow and tabletting properties. Heckel analysis indicated that the conjugates prepared by microwave method showed the slowest onset of plastic deformation while Kawakita analysis indicated that the conjugates prepared by microwave method exhibited the highest amount of total plastic deformation. The study revealed that the corn Starch-Neusilin UFL2 conjugates possess improved powder flow properties and could be a promising superdisintegrant for preparing fast disintegrating tablet. Also, the results sugessted that the microwave method was found to be most effective for the preparation of corn Starch-Neusilin UFL2 conjugates.

  15. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors.

    Science.gov (United States)

    Ghorab, Mostafa M; Alsaid, Mansour S; Soliman, Aiten M; Al-Mishari, Abdullah A

    2018-12-01

    Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 5-19 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 5-19, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC 50 ranging from 0.009 to 0.026 µM for EGFR and 0.021 to 0.069 µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC 50 0.009 and 0.021 µM for EGFR and HER2, respectively.

  16. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.

    Science.gov (United States)

    Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-11-28

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.

  17. Implication of Xenobiotic Metabolizing Enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 Polymorphisms in Breast Carcinoma

    Directory of Open Access Journals (Sweden)

    Gabbouj Sallouha

    2008-04-01

    Full Text Available Abstract Background Xenobiotic Metabolizing Enzymes (XMEs contribute to the detoxification of numerous cancer therapy-induced products. This study investigated the susceptibility and prognostic implications of the CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 gene polymorphisms in breast carcinoma patients. Methods The authors used polymerase chain reaction and restriction enzyme digestion to characterize the variation of the CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 gene in a total of 560 unrelated subjects (246 controls and 314 patients. Results The mEH (C/C mutant and the NAT2 slow acetylator genotypes were significantly associated with breast carcinoma risk (p = 0.02; p = 0.01, respectively. For NAT2 the association was more pronounced among postmenopausal patients (p = 0.006. A significant association was found between CYP2D6 (G/G wild type and breast carcinoma risk only in postmenopausal patients (p = 0.04. Association studies of genetic markers with the rates of breast carcinoma specific overall survival (OVS and the disease-free survival (DFS revealed among all breast carcinoma patients no association to DFS but significant differences in OVS only with the mEH gene polymorphisms (p = 0.02. In addition, the mEH wild genotype showed a significant association with decreased OVS in patients with axillary lymph node-negative patients (p = 0.03 and with decreasesd DFS in patients with axillary lymph node-positive patients (p = 0.001. However, the NAT2 intermediate acetylator genotype was associated with decreased DFS in axillary lymph node-negative patients. Conclusion The present study may prove that polymorphisms of some XME genes may predict the onset of breast carcinoma as well as survival after treatment.

  18. The Drosophila melanogaster homolog of UBE3A is not imprinted in neurons.

    Science.gov (United States)

    Hope, Kevin A; LeDoux, Mark S; Reiter, Lawrence T

    2016-09-01

    In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a 15b ) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a 15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.

  19. Regulation of protein quality control by UBE4B and LSD1 through p53-mediated transcription.

    Directory of Open Access Journals (Sweden)

    Goran Periz

    2015-04-01

    Full Text Available Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B and lysine-specific demethylase 1 (LSD1, respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy.

  20. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis

    Science.gov (United States)

    Sutter, Thomas M.; Dickerson, Matthew B.; Creasy, Terry S.; Justice, Ryan S.

    2013-09-01

    A biologically inspired pneumatic pressure source was designed and sized to supply high pressure CO2(g) to power a rubber muscle actuator. The enzyme urease served to catalyze the hydrolysis of urea, producing CO2(g) that flowed into the actuator. The actuator’s power envelope was quantified by testing actuator response on a custom-built linear-motion rig. Reaction kinetics and available work density were determined by replacing the actuator with a double-action piston and measuring volumetric gas generation against a fixed pressure on the opposing piston. Under the conditions investigated, urease catalyzed the generation of up to 0.81 MPa (117 psi) of CO2(g) in the reactor headspace within 18 min, and the evolved gas produced a maximum work density of 0.65 J ml-1.

  1. Rubber muscle actuation with pressurized CO2 from enzyme-catalyzed urea hydrolysis

    International Nuclear Information System (INIS)

    Sutter, Thomas M; Dickerson, Matthew B; Creasy, Terry S; Justice, Ryan S

    2013-01-01

    A biologically inspired pneumatic pressure source was designed and sized to supply high pressure CO 2(g) to power a rubber muscle actuator. The enzyme urease served to catalyze the hydrolysis of urea, producing CO 2(g) that flowed into the actuator. The actuator’s power envelope was quantified by testing actuator response on a custom-built linear-motion rig. Reaction kinetics and available work density were determined by replacing the actuator with a double-action piston and measuring volumetric gas generation against a fixed pressure on the opposing piston. Under the conditions investigated, urease catalyzed the generation of up to 0.81 MPa (117 psi) of CO 2(g) in the reactor headspace within 18 min, and the evolved gas produced a maximum work density of 0.65 J ml −1 . (paper)

  2. An Amperometric Biosensor for the Determination of Bacterial Sepsis Biomarker, Secretory Phospholipase Group 2-IIA Using a Tri-Enzyme System

    Directory of Open Access Journals (Sweden)

    Nik Nurhanan Nik Mansor

    2018-02-01

    Full Text Available A tri-enzyme system consisting of choline kinase/choline oxidase/horseradish peroxidase was used in the rapid and specific determination of the biomarker for bacterial sepsis infection, secretory phospholipase Group 2-IIA (sPLA2-IIA. These enzymes were individually immobilized onto the acrylic microspheres via succinimide groups for the preparation of an electrochemical biosensor. The reaction of sPLA2-IIA with its substrate initiated a cascading enzymatic reaction in the tri-enzyme system that led to the final production of hydrogen peroxide, which presence was indicated by the redox characteristics of potassium ferricyanide, K3Fe(CN6. An amperometric biosensor based on enzyme conjugated acrylic microspheres and gold nanoparticles composite coated onto a carbon-paste screen printed electrode (SPE was fabricated and the current measurement was performed at a low potential of 0.20 V. This enzymatic biosensor gave a linear range 0.01–100 ng/mL (R2 = 0.98304 with a detection limit recorded at 5 × 10−3 ng/mL towards sPLA2-IIA. Moreover, the biosensor showed good reproducibility (relative standard deviation (RSD of 3.04% (n = 5. The biosensor response was reliable up to 25 days of storage at 4 °C. Analysis of human serum samples for sPLA2-IIA indicated that the biosensor has potential for rapid bacterial sepsis diagnosis in hospital emergency department.

  3. Growth responses of native chicken Sentul G-3 on diet containing high rice-bran supplemented with phytase enzyme and ZnO

    Directory of Open Access Journals (Sweden)

    Cecep Hidayat

    2014-10-01

    Full Text Available This study was conducted to determine the effect of phytase enzymes and ZnO supplementation on the performance of native chicken Sentul-G3 fed high rice-bran diet. Two hundred and seventy day old chicks (DOC native chicken Sentul-G3 from three different hatcheries were used in this study. Factorial randomized block design (3 x 3 was applied in this study. The first factor was the enzyme phytase supplementation levels (0; 1000; 2000 U/kg, the second factor was the level of supplementation of ZnO (0; 1.5; 3.2 g/kg, so that there are nine treatment given, namely R1 = 50% commercial diet : 50% rice bran; R2 = R1 + 1.5 g ZnO/kg; R3 = R1 + 3.2 g ZnO/kg; R4 = R1 + phytase enzyme 1000 U/kg; R5 = R1 + (phytase enzyme 1000 U/kg + 1.5 g ZnO/kg; R6 = R1 + (phytase enzyme 1000 U/kg + 3.2 g ZnO/kg; R7 = R1 + phytase enzyme 2000 U/kg; R8 = R1 + (phytase enzyme 2000 U/kg + 1.5 g ZnO/kg; R9 = R1 + (phytase enzyme 2000 U/kg + 3.2 g ZnO/kg. Each experimental unit consisted of 6 head unsexed native chicken Sentul-G3. The experimental diet was fed for 10 weeks. The variables measured were body weight, body weight gain, feed intake, feed conversion ratio, mortality, mineral deposition of Ca, P, Zn in the tibia bone, alkaline phosfatase enzyme activity in serum. Results showed that there was significant interaction (P 0.05 between phytase enzyme and ZnO supplementation on feed intake, mortality, alkaline phosphatase enzyme activity in serum, and deposition of calcium and phosphorus in the tibia bone. It was concluded that supplementation of phytase enzyme and ZnO were not able to increase the growth of native chicken Sentul-G3 on fed diet containing high rice bran.

  4. A novel conserved isoform of the ubiquitin ligase UFD2a/UBE4B is expressed exclusively in mature striated muscle cells.

    Directory of Open Access Journals (Sweden)

    Andrew L Mammen

    Full Text Available Yeast Ufd2p was the first identified E4 multiubiquitin chain assembly factor. Its vertebrate homologues later referred to as UFD2a, UBE4B or E4B were also shown to have E3 ubiquitin ligase activity. UFD2a function in the brain has been well established in vivo, and in vitro studies have shown that its activity is essential for proper condensation and segregation of chromosomes during mitosis. Here we show that 2 alternative splice forms of UFD2a, UFD2a-7 and -7/7a, are expressed sequentially during myoblast differentiation of C2C12 cell cultures and during cardiotoxin-induced regeneration of skeletal muscle in mice. UFD2a-7 contains an alternate exon 7, and UFD2a-7/7a, the larger of the 2 isoforms, contains an additional novel exon 7a. Analysis of protein or mRNA expression in mice and zebrafish revealed that a similar pattern of isoform switching occurs during developmental myogenesis of cardiac and skeletal muscle. In vertebrates (humans, rodents, zebrafish, UFD2a-7/7a is expressed only in mature striated muscle. This unique tissue specificity is further validated by the conserved presence of 2 muscle-specific splicing regulatory motifs located in the 3' introns of exons 7 and 7a. UFD2a interacts with VCP/p97, an AAA-type ATPase implicated in processes whose functions appear to be regulated, in part, through their interaction with one or more of 15 previously identified cofactors. UFD2a-7/7a did not interact with VCP/p97 in yeast 2-hybrid experiments, which may allow the ATPase to bind cofactors that facilitate its muscle-specific functions. We conclude that the regulated expression of these UFD2a isoforms most likely imparts divergent functions that are important for myogenisis.

  5. Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies

    International Nuclear Information System (INIS)

    Laznickova, A.; Biricova, V.; Laznicek, M.; Hermann, P.

    2014-01-01

    177 Lu radiolabeling of the first (G1-) or fourth (G4-) generation polyaminoamide (PAMAM) dendrimer conjugates with DOTA-like bifunctional chelator with one methylenepyridine-N-oxide pendant arm (DO3A-py NO-C ) stability of the radiolabeled species and their pharmacokinetic characteristics were evaluated in preclinical experiments. The results showed that the G1- and G4-dendrimer conjugates, modified in average with 7.5 or 57 DO3A-py NO-C chelating units, respectively, can also be labeled with 177 Lu with a high specific activity and radiochemical purity even at 37 °C. The radiolabeled species were stable for at least 24 h. Distribution profile of G1-dendrimer conjugate in organs and tissues of rats was more favorable than that of G4 one. On the other hand, the later dendrimer conjugate bears a substantially higher number of metal chelators per molecule enabling binding of a considerably larger number of radiometals. Our results indicate that an employment of dendrimer-chelate conjugates with bound radiometals might represent a prospective way for radiolabeling of biologically active target-specific macromolecules to obtain markedly high specific activity. - Highlights: • Chelation of DOTA-like ligands suitable for biomacromolecules modification. • Radiolabeling of modified PAMAM-dendrimers with 177 Lu. • Determination of stability of the labeled conjugates. • Pharmacokinetic characteristics evaluated in preclinical experiments

  6. Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells.

    Science.gov (United States)

    Khan, Selina; Weterings, Jimmy J; Britten, Cedrik M; de Jong, Ana R; Graafland, Dirk; Melief, Cornelis J M; van der Burg, Sjoerd H; van der Marel, Gijs; Overkleeft, Hermen S; Filippov, Dmitri V; Ossendorp, Ferry

    2009-03-01

    Covalent conjugation of synthetic Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides provides well-defined constructs that have significantly improved capacity to induce efficient priming of CD8(+) T lymphocytes in vivo. We have recently explored the cellular mechanisms underlying the efficient induction of a CD8(+) cytotoxic T lymphocyte response by such synthetic model vaccines [Khan, S., Bijker, M.S., Weterings, J.J., Tanke, H.J., Adema, G.J., van, H.T., Drijfhout, J.W., Melief, C.J., Overkleeft, H.S., van der Marel, G.A., Filippov, D.V., van der Burg, S.H., Ossendorp, F., 2007. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. J. Biol. Chem. 282, 21145-21159.]. In the current study we have investigated the behaviour of two diastereomers of the TLR-2 ligand Pam(3)CSK(4) (Pam) derivatives, namely the R- and S-epimers at C-2 of the glycerol moiety. Other studies have shown that the Pam(3)Cys based lipopeptides of R-configuration (Pam(R)) in the glycerol moiety enhanced macrophage and B-cell activation compared to those with S-configuration (Pam(S)). Here we report that Pam(R)-conjugates lead to better activation of dendritic cells than the Pam(S)-conjugates as judged by higher IL-12 secretion, upregulation of relevant markers for dendritic cell maturation. In contrast both epimers were internalized equally efficient in a clathrin-dependent manner indicating no qualitative difference in the uptake of the two stereoisomeric Pam-conjugates. We conclude that the enhanced DC activation is due to enhanced TLR-2 triggering by the Pam(R)-conjugate in contrast to the Pam(S)-conjugate. Importantly, induction of specific CD8(+) T-cells was significantly higher in mice injected with the Pam(R)-conjugates compared to mice injected with the Pam(S)-conjugate. In summary we show that the favourable effects of the Pam(R)-configuration of TLR-2 ligand can be attributed to

  7. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells.

    Science.gov (United States)

    Zhou, Chang-Xin; Zhang, Li-Sha; Chen, Fei-Fei; Wu, Hao-Shu; Mo, Jian-Xia; Gan, Li-She

    2017-09-01

    Thirty four terpenoids, including two new cadinane-type sesquiterpenoids containing conjugated aromatic-ketone moieties, curcujinone A (1) and curcujinone B (2), were isolated from 95% ethanol extract of the root tubers of Curcuma wenyujin. Their structures were determined by spectroscopic methods, especially 2D NMR and HRMS techniques. The relative and absolute configurations of 1 and 2 were identified by quantum chemical DFT and TDDFT calculations of the 13 C NMR chemical shifts, ECD spectra, and specific optical rotations. All compounds and extracts were evaluated for their anti-diabetic activities with a glucose consumption model on HepG2 Cells. The petroleum fraction CWP (10μg/mL) and compounds curcumenol (4), 7α,11α-epoxy-5β-hydroxy-9-guaiaen-8-one (5), curdione (17), (1S, 4S, 5S 10S)-germacrone (18), zederone (20), a mixture of curcumanolide A (25) and curcumanolide B (26), gajutsulactone B (27), and wenyujinin C (30) showed promising activities with over 45% increasing of glucose consumption at 10μM. Copyright © 2017. Published by Elsevier B.V.

  8. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues.

    Science.gov (United States)

    Sedlacek, Ondrej; Monnery, Bryn D; Mattova, Jana; Kucka, Jan; Panek, Jiri; Janouskova, Olga; Hocherl, Anita; Verbraeken, Bart; Vergaelen, Maarten; Zadinova, Marie; Hoogenboom, Richard; Hruby, Martin

    2017-11-01

    We designed and synthesized a new delivery system for the anticancer drug doxorubicin based on a biocompatible hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) carrier with linear architecture and narrow molar mass distribution. The drug is connected to the polymer backbone via an acid-sensitive hydrazone linker, which allows its triggered release in the tumor. The in vitro studies demonstrate successful cellular uptake of conjugates followed by release of the cytostatic cargo. In vivo experiments in EL4 lymphoma bearing mice revealed prolonged blood circulation, increased tumor accumulation and enhanced antitumor efficacy of the PEtOx conjugate having higher molecular weight (40 kDa) compared to the lower molecular weight (20 kDa) polymer. Finally, the in vitro and in vivo anti-cancer properties of the prepared PEtOx conjugates were critically compared with those of the analogous system based on the well-established PHPMA carrier. Despite the relatively slower intracellular uptake of PEtOx conjugates, resulting also in their lower cytotoxicity, there are no substantial differences in in vivo biodistribution and anti-cancer efficacy of both classes of polymer-Dox conjugates. Considering the synthetic advantages of poly(2-alkyl-2-oxazoline)s, the presented study demonstrates their potential as a versatile alternative to well-known PEO- or PHPMA-based materials for construction of drug delivery systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Toward a Broader View of Ube3a in a Mouse Model of Angelman Syndrome: Expression in Brain, Spinal Cord, Sciatic Nerve and Glial Cells.

    Directory of Open Access Journals (Sweden)

    Mark D Grier

    Full Text Available Angelman Syndrome (AS is a devastating neurodevelopmental disorder characterized by developmental delay, speech impairment, movement disorder, sleep disorders and refractory epilepsy. AS is caused by loss of the Ube3a protein encoded for by the imprinted Ube3a gene. Ube3a is expressed nearly exclusively from the maternal chromosome in mature neurons. While imprinting in neurons of the brain has been well described, the imprinting and expression of Ube3a in other neural tissues remains relatively unexplored. Moreover, given the overwhelming deficits in brain function in AS patients, the possibility of disrupted Ube3a expression in the infratentorial nervous system and its consequent disability have been largely ignored. We evaluated the imprinting status of Ube3a in the spinal cord and sciatic nerve and show that it is also imprinted in these neural tissues. Furthermore, a growing body of clinical and radiological evidence has suggested that myelin dysfunction may contribute to morbidity in many neurodevelopmental syndromes. However, findings regarding Ube3a expression in non-neuronal cells of the brain have varied. Utilizing enriched primary cultures of oligodendrocytes and astrocytes, we show that Ube3a is expressed, but not imprinted in these cell types. Unlike many other neurodevelopmental disorders, AS symptoms do not become apparent until roughly 6 to 12 months of age. To determine the temporal expression pattern and silencing, we analyzed Ube3a expression in AS mice at several time points. We confirm relaxed imprinting of Ube3a in neurons of the postnatal developing cortex, but not in structures in which neurogenesis and migration are more complete. This furthers the hypothesis that the apparently normal window of development in AS patients is supported by an incompletely silenced paternal allele in developing neurons, resulting in a relative preservation of Ube3a expression during this crucial epoch of early development.

  10. Hyperglycemia and anthocyanin inhibit quercetin metabolism in HepG2 cells

    Science.gov (United States)

    A high glucose (Glu) milieu promotes generation of reactive oxygen species, which may not only cause cellular damage, but also modulate phase II enzymes that are responsible for the metabolism of flavonoids. Thus, we examined the effect of a high Glu milieu on quercetin (Q) metabolism in HepG2 cells...

  11. Conjugation of 3, 4-benzpyrene and 1, 2-benzanthracene with plant peptides

    International Nuclear Information System (INIS)

    Durmishidze, A.S.V.; Chrikishvili, D.I.; Devdariani, T.A.

    1993-01-01

    It is known that one of the main pathways in the biotransformation of certain xenobiotics is their conjugation with endogenous compounds of the plant cell. This work presents the results on the establishment of pathway of conjugation of BP and BA with endogenous compounds of the cell. Ten-day corn and pea seedlings, grown under sterile conditions, were incubated in aqueous solutions of [7,10 14 C]-3,4-benzpyrene and [9 14 C]-1,2-benzanthracene. The specific radioactivity of aqueous solutions of [7,10 14 C]-BP and [9 14 C]-BA was 2112·10 4 and 2006·10 4 Bq/ml, respectively. Individual highly radioactive conversion products of BP and BA were subjected to acid hydrolysis and qualitative analysis of the radioactive and nonradioactive compounds of the hydrolysates. An analysis of the nonradioactive components showed that they are peptides with various amino acid compositions. Thus, the investigated conversion products are conjugation products of hydroxy derivatives of BP and BA with endogenous cell peptides. The conversion products of BP and BA were investigated to detect conjugates with endogenous carbohydrates. Despite careful searches, the conjugates of interest could not be detected

  12. Dual Role of Ancient Ubiquitous Protein 1 (AUP1) in Lipid Droplet Accumulation and Endoplasmic Reticulum (ER) Protein Quality Control

    Science.gov (United States)

    Klemm, Elizabeth J.; Spooner, Eric; Ploegh, Hidde L.

    2011-01-01

    Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets. PMID:21857022

  13. Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay

    International Nuclear Information System (INIS)

    Wu, Long; Li, Xuepu; Shao, Kang; Ye, Shiyi; Liu, Chen; Zhang, Chenjun; Han, Heyou

    2015-01-01

    Boosting the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is significant to the early clinical diagnosis of various diseases. Here, we developed a versatile immunosensor using silica nanospheres as carriers for sensitive detection of porcine circovirus type 2 (PCV2) antibody. With HRP enzyme covalently immobilized on the silica nanospheres and CdSe nanocrystals embedded inside, these signal probes were successfully utilized in the sensitive detection of PCV2 antibody by ELISA, fluorometry and square-wave voltammetry (SWV). To further demonstrate the performance of the immunosensor, Human IgG (HIgG) was used as a model analyte. Since more HRP and CdSe QDs were loaded, 5-, 200- and 400-fold enhancements in amplified ELISA, fluorometry and voltammetry responses for HIgG could be achieved compared to conventional ELISA. The respective detection limits of theses methods for HIgG were 3.9, 0.1 and 0.05 ng mL −1 with a RSD below 5% for amplified ELISA, fluorescence and SWV measurements. Additionally, a 100-fold improvement was obtained in the detection sensitivity for PCV2 antibody immunoassay. The versatile immunosensor exhibits good sensitivity, stability and reproducibility, suggesting its potential applications in clinical diagnostics. - Highlights: • A versatile ELISA-based immunoassay for PCV2 antibody was developed. • Enzyme and CdSe QDs modified SiO 2 particles were used to improve sensitivity. • The simultaneous three ELISA-based techniques enhanced the detection reliability. • The biosensors strategy could provide a new avenue to ELISA-based sensors

  14. Enhanced immunoassay for porcine circovirus type 2 antibody using enzyme-loaded and quantum dots-embedded shell–core silica nanospheres based on enzyme-linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long; Li, Xuepu; Shao, Kang; Ye, Shiyi; Liu, Chen; Zhang, Chenjun; Han, Heyou, E-mail: hyhan@mail.hzau.edu.cn

    2015-08-05

    Boosting the detection sensitivity of enzyme-linked immunosorbent assay (ELISA) is significant to the early clinical diagnosis of various diseases. Here, we developed a versatile immunosensor using silica nanospheres as carriers for sensitive detection of porcine circovirus type 2 (PCV2) antibody. With HRP enzyme covalently immobilized on the silica nanospheres and CdSe nanocrystals embedded inside, these signal probes were successfully utilized in the sensitive detection of PCV2 antibody by ELISA, fluorometry and square-wave voltammetry (SWV). To further demonstrate the performance of the immunosensor, Human IgG (HIgG) was used as a model analyte. Since more HRP and CdSe QDs were loaded, 5-, 200- and 400-fold enhancements in amplified ELISA, fluorometry and voltammetry responses for HIgG could be achieved compared to conventional ELISA. The respective detection limits of theses methods for HIgG were 3.9, 0.1 and 0.05 ng mL{sup −1} with a RSD below 5% for amplified ELISA, fluorescence and SWV measurements. Additionally, a 100-fold improvement was obtained in the detection sensitivity for PCV2 antibody immunoassay. The versatile immunosensor exhibits good sensitivity, stability and reproducibility, suggesting its potential applications in clinical diagnostics. - Highlights: • A versatile ELISA-based immunoassay for PCV2 antibody was developed. • Enzyme and CdSe QDs modified SiO{sub 2} particles were used to improve sensitivity. • The simultaneous three ELISA-based techniques enhanced the detection reliability. • The biosensors strategy could provide a new avenue to ELISA-based sensors.

  15. Cu(I)-catalyzed efficient synthesis of 2′-Triazolo-nucleoside conjugates

    DEFF Research Database (Denmark)

    Mathur, D.; Rana, N.; Olsen, Carl Erik

    2015-01-01

    -nucleoside conjugates, which can be evaluated for different biological activity for suitable drug development, were unambiguously identified on the basis of 1H NMR, 13C NMR, IR, and HRMS data analysis. These compounds have been synthesized for the first time and have not been reported in the literature earlier.......A small library of thirty-two 2′-triazolyl uridine and 2′-triazolyl-5-methyluridine has been synthesized by Cu(I)-catalyzed condensation of 2′-azido-2′-deoxyuridine and 2′-azido-2′-deoxy-5-methyluridine with different alkynes and aryl propargyl ethers in almost quantitative yields. Triazolo...

  16. Do serum angiopoietin-1, angiopoietin-2, and their receptor Tie-2 and 4G/5G variant of PAI-1 gene have a role in the pathogenesis of preeclampsia?

    Science.gov (United States)

    Kamal, Manal; El-Khayat, Waleed

    2011-10-01

    To evaluate whether serum angiogenesis markers such as angiopoietins (Ang-1, Ang-2) and their receptor (Tie-2) are altered in women with preeclampsia. We also performed genotyping to determine if the 4G/5G genotypes of -675 PAI-1 gene may play a role in the pathogenesis of preeclampsia. Sixty-eight pregnant women with preeclampsia were compared to 35 normotensive pregnant women and 24 normotensive nonpregnant women in a cross-sectional study. Using enzyme-linked immunosorbent assay, levels of serum Ang-1 and Ang-2, and Tie-2 were measured. A single base pair insertion/deletion 4G/5G polymorphism of the PAI-1 gene was determined by polymerase chain reaction. Serum levels of Ang-1 and Tie-2 were significantly different among the study groups (P = 0.001 and P = 0.025, respectively) being lower in the preeclamptic group. Positive significant correlation was found between Ang-2 and Tie-2, (r = 0.26, P = 0.024). The frequency of the genotypes (4G/5G, 4G/4G, and 5G/5G) differed among the groups (P = 0.001). Also, the mean of systolic and diastolic blood pressures differed significantly according to the PAI-1 genotype being higher in those bearing the 4G allele; P = 0.04 and P = 0.023, respectively. Sera Ang-1 and Ang-2, and Tie-2 as well as variants of 4G/5G of PAI-1 polymorphism have positive implications in the pathogenesis of preeclampsia.

  17. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    Science.gov (United States)

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  18. Polyamidoamine (PAMAM) Dendrimer Conjugates of Clickable Agonists of the A3 Adenosine Receptor and Coactivation of the P2Y14 Receptor by a Tethered Nucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Tosh, Dilip, K. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Yoo, Lena S. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Chinn, Moshe [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hong, Kunlun [ORNL; Kilbey, II, S Michael [ORNL; Barrett, Matthew O. [University of North Carolina School of Medicine; Fricks, Ingrid P. [University of North Carolina School of Medicine; Harden, T. Kendall [University of North Carolina School of Medicine; Jacobson, Kenneth A. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

    2010-01-01

    We previously synthesized a series of potent and selective A{sub 3} adenosine receptor (AR) agonists (North-methanocarba nucleoside 5{prime}-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed 'click' chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A{sub 3}AR activation was preserved in these multivalent conjugates, which bound with apparent Ki of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A{sub 3}AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A{sub 3} and P2Y{sub 14} receptors (via amide-linked uridine-5{prime}-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.

  19. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  20. Biochemical characterization of Arabidopsis thaliana starch branching enzyme 2.2 reveals an enzymatic positive cooperativity.

    Science.gov (United States)

    Wychowski, A; Bompard, C; Grimaud, F; Potocki-Véronèse, G; D'Hulst, C; Wattebled, F; Roussel, X

    2017-09-01

    Starch Branching Enzymes (SBE) catalyze the formation of α(1 → 6) branching points on starch polymers: amylopectin and amylose. SBEs are classified in two groups named type 1 and 2. Both types are present in the entire plant kingdom except in some species such as Arabidopsis thaliana that expresses two type 2 SBEs: BE2.1 and BE2.2. The present work describes in vitro enzymatic characterization of the recombinant BE2.2. The function of recombinant BE2.2 was characterized in vitro using spectrophotometry assay, native PAGE and HPAEC-PAD analysis. Size Exclusion Chromatography separation and SAXS experiments were used to identify the oligomeric state and for structural analysis of this enzyme. Optimal pH and temperature for BE2.2 activity were determined to be pH 7 and 25 °C. A glucosyl donor of at least 12 residues is required for BE2.2 activity. The reaction results in the transfer in an α(1 → 6) position of a glucan preferentially composed of 6 glucosyl units. In addition, BE2.2, which has been shown to be monomeric in absence of substrate, is able to adopt different active forms in presence of branched substrates, which affect the kinetic parameters. BE2.2 has substrate specificity similar to those of the other type-2 BEs. We propose that the different conformations of the enzyme displaying more or less affinity toward its substrates would explain the adjustment of the kinetic data to the Hill equation. This work describes the enzymatic parameters of Arabidopsis BE2.2. It reveals for the first time conformational changes for a branching enzyme, leading to a positive cooperative binding process of this enzyme. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Indirect semiquantitative determination of p34cdc2 levels in G1 and G2 cells of the carbohydrate-starved root meristems in Vicia faba var. minor

    Directory of Open Access Journals (Sweden)

    Justyna Polit

    2014-01-01

    Full Text Available In eukaryotes, the 34kDa kinase (p34 encoded by the cdc2 gene is a key regulator of both the onset of DNA synthesis (G1 to S phase transition and the onset of mitosis (G1 to M phase transition. Using mouse anti-human PSTAIRE and FITClabelled goat antibodies, indirect semiquantitative determination of p34cdc2 levels was performed in meristematic cells from the control (intact and excised, carbohydrate-starved main roots of Vicia faba var. minor. No evident differences in the intensity of fluorescence was found either between the G1 and G2 cells or between the control cells and the cells arrested at both Principal Control Points by carbohydrate starvation. It seems thus, that the cell cycle block induced in meristematic cells of V. faba var. minor is not correlated with the absolute level of the key cell cycle enzyme responsible for phosphory-lution of cellular proteins, but primarily with the altered activity of p34cdc2.

  2. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade.

    Directory of Open Access Journals (Sweden)

    Elena Papaleo

    Full Text Available The ubiquitin (Ub system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3. E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7, which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.

  3. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.

    Science.gov (United States)

    Njuma, Olive J; Davis, Ian; Ndontsa, Elizabeth N; Krewall, Jessica R; Liu, Aimin; Goodwin, Douglas C

    2017-11-10

    KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H 2 O 2 -induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H 2 O 2 to O 2 and H 2 O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H 2 O 2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting ( i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H 2 O 2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. In Vitro and In Vivo Evaluation of Alexa Fluor 680-Bombesin[7–14]NH2 Peptide Conjugate, a High-Affinity Fluorescent Probe with High Selectivity for the Gastrin-Releasing Peptide Receptor

    Directory of Open Access Journals (Sweden)

    Lixin Ma

    2007-05-01

    Full Text Available Gastrin-releasing peptide (GRP receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN, a 14–amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H2N-glycylglycylglycine-BBN[7–14]NH2 peptide with the following general sequence: H2N-G-G-G-Q-W-A-V-G-H-L-M-(NH2. This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7–14]NH2 conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H2N-G-G-G-BBN[7–14]NH2 in dimethylformamide (DMF. In vitro competitive binding assays, using 125I-Tyr4-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 ± 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7–14]NH2 in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  5. Synthesis of Novel C-2- or C-15-Labeled BODIPY—Estrone Conjugates

    Directory of Open Access Journals (Sweden)

    Ildikó Bacsa

    2018-04-01

    Full Text Available Novel BODIPY–estrone conjugates were synthesized via Cu(I-catalyzed azide–alkyne cycloaddition (CuAAC. Estrone-alkynes or an estrone-azide as starting compounds were synthesized via Michael addition or Sonogashira reaction as key steps. Fluorescent dyes based on BODIPY-core were provided by azide or alkyne functional groups. Fluorescent labeling of estrone was efficiently achieved at the C-2 or C-15 position. The newly-elaborated coupling procedures might have a broad applicability in the synthesis of fluorescent-labeled estrone conjugates suitable for biological assays.

  6. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation.

    Science.gov (United States)

    Gao, Tianshun; Liu, Zexian; Wang, Yongbo; Cheng, Han; Yang, Qing; Guo, Anyuan; Ren, Jian; Xue, Yu

    2013-01-01

    In this work, we developed a family-based database of UUCD (http://uucd.biocuckoo.org) for ubiquitin and ubiquitin-like conjugation, which is one of the most important post-translational modifications responsible for regulating a variety of cellular processes, through a similar E1 (ubiquitin-activating enzyme)-E2 (ubiquitin-conjugating enzyme)-E3 (ubiquitin-protein ligase) enzyme thioester cascade. Although extensive experimental efforts have been taken, an integrative data resource is still not available. From the scientific literature, 26 E1s, 105 E2s, 1003 E3s and 148 deubiquitination enzymes (DUBs) were collected and classified into 1, 3, 19 and 7 families, respectively. To computationally characterize potential enzymes in eukaryotes, we constructed 1, 1, 15 and 6 hidden Markov model (HMM) profiles for E1s, E2s, E3s and DUBs at the family level, separately. Moreover, the ortholog searches were conducted for E3 and DUB families without HMM profiles. Then the UUCD database was developed with 738 E1s, 2937 E2s, 46 631 E3s and 6647 DUBs of 70 eukaryotic species. The detailed annotations and classifications were also provided. The online service of UUCD was implemented in PHP + MySQL + JavaScript + Perl.

  7. Drug release from enzyme-mediated in situ-forming hydrogel based on gum tragacanth-tyramine conjugate.

    Science.gov (United States)

    Dehghan-Niri, Maryam; Tavakol, Moslem; Vasheghani-Farahani, Ebrahim; Ganji, Fariba

    2015-05-01

    In the present study, injectable hydrogels based on gum tragacanth-tyramine conjugate were prepared by enzymatic oxidation of tyramine radicals in the presence of hydrogen peroxide. Then, in vitro release of bovine serum albumin and insulin as model protein drugs from this polymeric network was investigated. Also, to improve the properties of this hydrogel, a blended hydrogel composed of tyramine-conjugated gelatin and tyramine-conjugated tragacanth was prepared. Experimental results showed that the gelation time ranged from 3 to 28 s depending on the polymer and enzyme concentrations. Results of morphological investigation of hydrogels indicated that the average pore size of hydrogels varied from 120 to 160 µm. Swelling degree of hydrogels and the rate of drug release decreased by increasing of hydrogen peroxide and polymer concentrations. The release profile of drug from hydrogels followed Higuchi and Fickian diffusion mechanism. Finally, it was shown that the swelling characteristics and drug release behavior of this polymeric network could be improved by blending it with tyramine-conjugated gelatin. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. A Model Study on the Possible Effects of an External Electrical Field on Enzymes Having Dinuclear Iron Cluster [2Fe-2S

    Directory of Open Access Journals (Sweden)

    Lemi Türker

    2012-01-01

    Full Text Available Hydrogenases which catalyze the H22H+ + 2e− reaction are metalloenzymes that can be divided into two classes, the NiFe and Fe enzymes, on the basis of their metal content. Iron-sulfur clusters [2Fe-2S] and [4Fe-4S] are common in ironhydrogenases. In the present model study, [2Fe-2S] cluster has been considered to visualize the effect of external electric field on various quantum chemical properties of it. In the model, all the cysteinyl residues are in the amide form. The PM3 type semiempirical calculations have been performed for the geometry optimization of the model structure in the absence and presence of the external field. Then, single point DFT calculations (B3LYP/6-31+G(d have been carried out. Depending on the direction of the field, the chemical reactivity of the model enzyme varies which suggests that an external electric field could, under proper conditions, improve the enzymatic hydrogen production.

  9. The metabolism of 2-trifluormethylaniline and its acetanilide in the rat by 19F NMR monitored enzyme hydrolysis and 1H/19F HPLC-NMR spectroscopy.

    Science.gov (United States)

    Tugnait, M; Lenz, E M; Hofmann, M; Spraul, M; Wilson, I D; Lindon, J C; Nicholson, J K

    2003-01-01

    The urinary excretion profile and identity of the metabolites of 2-trifluoromethyl aniline (2-TFMA) and 2-trifluoromethyl acetanilide (2-TFMAc), following i.p. administration to the rat at 50 mg kg(-1), were determined using a combination of 19F NMR monitored enzyme hydrolysis, SPEC-MS and 19F/1H HPLC-NMR. A total recovery of approximately 96.4% of the dose was excreted into the urine as seven metabolites. The major routes of metabolism were N-conjugation (glucuronidation), and ring-hydroxylation followed by sulphation (and to a lesser extent glucuronidation). The major metabolites excreted into the urine for both compounds were a labile N-conjugated metabolite (a postulated N-glucuronide) and a sulphated ring-hydroxylated metabolite (a postulated 4-amino-5-trifluoromethylphenyl sulphate) following dosing of 2-TFMA. These accounted for approximately 53.0 and 31.5% of the dose, respectively. This study identifies problems on sample component instability in the preparation and analysis procedures.

  10. Variation in antiviral 2',5'-oligoadenylate synthetase (2'5'AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, Vagn; Field, L Leigh; Lu, Shao

    2005-01-01

    It is likely that human genetic differences mediate susceptibility to viral infection and virus-triggered disorders. OAS genes encoding the antiviral enzyme 2',5'-oligoadenylate synthetase (2'5'AS) are critical components of the innate immune response to viruses. This enzyme uses adenosine......=.0044), but not spousal pairs, suggesting strong genetic control of basal activity. We next analyzed association between basal activity and 15 markers across the OAS gene cluster. Significant association was detected at multiple markers, the strongest being at an A/G single-nucleotide polymorphism...... at the exon 7 splice-acceptor site (AG or AA) of the OAS1 gene. At this unusual polymorphism, allele G had a higher gene frequency in persons with high enzyme activity than in those with low enzyme activity (0.44 vs. 0.20; P=3 x 10(-11)). Enzyme activity varied in a dose-dependent manner across the GG, GA...

  11. Geology of the Pan-African basement Complex in Ube-Wulko area ...

    African Journals Online (AJOL)

    The Ube-Wulko area of southeast Akwanga falls within the Pan-African remobilized Basement Complex of northcentral Nigeria. It consists of intensely multi-deformed high grade polymetamorphic basement rocks, predominantly composed of migmatitic gneisses and schists and subordinate quartzites, marbles, and ...

  12. Preliminary studies towards the preparation of reactive 3-pyrrolin-2-ones in conjugate addition reactions for the syntheses of potentially bioactive 2-pyrrolidinones and pyrrolidines

    International Nuclear Information System (INIS)

    Alves, Jose C.F.

    2007-01-01

    Pyrrolin-2-ones and 2-pyrrolidinones are moieties often found in the structure of several biologically active natural products and 3-pyrrolin-2-ones are valuable starting materials in organic synthesis due to their ability to react as acceptors in conjugate addition reactions. In this article we report the initial results about the performed study aiming at the syntheses of reactive 3-pyrrolin-2-ones in conjugate addition reactions and the preparation of a potential precursor for the synthesis of the nootropic (+/-)-nebracetam. (author)

  13. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  14. The CO{sub 2} cooling gas for the reactors G2/G3 (leaking, analysis, activity); Le CO{sub 2} de refroidissement des reacteurs G2/G3 (fuites, analyse, activite)

    Energy Technology Data Exchange (ETDEWEB)

    Meiffren, J; Dupay, F [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1965-07-01

    The main objective of this study is to publicise the data obtained during five years operation of the reactor G2 and G3 at Marcoule as far as the cooling gas is concerned, from storage of reserves up to its slow escape into the atmosphere, and including all the stages of its practical use, its chemical examination, its nuclear behaviour and its possible physicochemical transformation. This work can not only yield information about the operations carried out at Marcoule but can also provide useful suggestions for improving the sealing and for decreasing the activity of the pressurized gas circuits in reactors similar to G2/G3. (authors) [French] Le but principal de cette etude est de diffuser les connaissances acquises au cours de cinq annees d'exploitation des reacteurs G2 et G3 de Marcoule en ce qui concerne le gaz de refroidissement, depuis son stockage d'appoint jusqu'a son echappement lent dans l'atmosphere, en passant par tous les stades de son utilisation pratique, de son etude chimique, de son comportement nucleaire, eventuellement de ses transformations physico-chimiques. Cette etude peut, non seulement renseigner sur les operations effectuees couramment a Marcoule, mais egalement donner des suggestions interessantes pour l'amelioration de l'etancheite et la diminution de l'activite des circuits de gaz en pression dans des reacteurs analogues a G2/G3. (auteurs)

  15. Preparation, isolation and identification of non-conjugated C18:2 fatty acid isomers.

    Science.gov (United States)

    Fardin-Kia, Ali Reza

    2016-12-01

    Non-conjugated geometric/positional isomers of linoleic acid (c9,c12-18:2) are often present in processed foods and oils. The following work presents a simple addition/elimination reaction for preparation of non-conjugated 18:2 fatty acid isomers. A mixture containing positional and geometric isomers of C18:2 fatty acids was produced by addition of hydrobromic acid to the fatty acid double bonds, followed by its elimination with a strong sterically hindered base. Pure 8,12-, 8,13-, 9,12-, and 9,13-18:2 fatty acid methyl esters were isolated from the synthetic mixture by a combination of sub-ambient RP-HPLC and Ag + -HPLC. The determination of the double bond position was achieved by GC-MS using picolinyl esters derivatives. The determination of the fatty acid double bond geometric configuration was obtained by partial hydrogenation of the isolated isomer with hydrazine, followed by the GC-FID analysis. Published by Elsevier Ireland Ltd.

  16. Conjugated Fatty Acid Synthesis

    Science.gov (United States)

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  17. {sup 186}Re-maSGS-Z{sub HER2:342}, a potential affibody conjugate for systemic therapy of HER2-expressing tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Anna; Tran, Thuy A. [Uppsala University, Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Ekblad, Torun; Karlstroem, Amelie Eriksson [Royal Institute of Technology, School of Biotechnology, Division of Molecular Biotechnology, Stockholm (Sweden); Tolmachev, Vladimir [Uppsala University, Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Division of Nuclear Medicine, Department of Medical Sciences, Uppsala (Sweden)

    2010-02-15

    Affibody molecules are a novel class of tumour-targeting proteins, which combine small size (7 kDa) and picomolar affinities. The Affibody molecule Z{sub HER2:342} has been suggested for imaging of HER2 expression in order to select patients for trastuzumab therapy. When optimizing chelators for {sup 99m}Tc-labelling, we have found that synthetic Z{sub HER2:342} conjugated with mercaptoacetyl-glycyl-glycyl-glycyl (maGGG) and mercaptoacetyl-glycyl-seryl-glycyl (maGSG) chelators provides relatively low renal uptake of radioactivity and could be suitable for therapy. maGGG-Z{sub HER2:342} and maGSG-Z{sub HER2:342} were labelled with {sup 186}Re and their biodistribution was studied in normal mice. Dosimetric evaluation and tumour targeting to HER2-overexpressed xenografts (SKOV-3) by {sup 186}Re-maGSG-Z{sub HER2:342} were studied. Gluconate-mediated labelling of maGGG-Z{sub HER2:342} and maGSG-Z{sub HER2:342} with {sup 186}Re provided a yield of more than 95% within 60 min. The conjugates were stable and demonstrated specific binding to HER2-expressing SKOV-3 cells. Biodistribution in normal mice demonstrated rapid blood clearance, low accumulation of radioactivity in the kidney and other organs, accumulating free perrhenate. Both {sup 186}Re-maGGG-Z{sub HER2:342} and {sup 186}Re-maGSG-Z{sub HER2:342} demonstrated lower renal uptake than their {sup 99m}Tc-labelled counterparts. {sup 186}Re-maGSG-Z{sub HER2:342} provided the lowest uptake in healthy tissues. Biodistribution of {sup 186}Re-maGSG-Z{sub HER2:342} in nude mice bearing SKOV-3 xenografts showed specific targeting of tumours. Tumour uptake 24 h after injection (5.84{+-}0.54%ID/g) exceeded the concentration in blood by more than 500-fold, and uptake in kidneys by about 8-fold. Preliminary dosimetric evaluation showed that dose-to-tumour should exceed dose-to-kidney by approximately 5-fold. Optimization of chelators improves biodistribution properties of rhenium-labelled small scaffold proteins and enables

  18. Cholesterol-conjugated supramolecular assemblies of low generations polyamidoamine dendrimers for enhanced EGFP plasmid DNA transfection

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Nasim; Samani, Soliman Mohammadi; Tamaddon, Ali Mohammad, E-mail: amtamadon@gmail.com [Shiraz University of Medical Sciences, Department of Pharmaceutics, School of Pharmacy (Iran, Islamic Republic of)

    2016-05-15

    Aimed to prepare an enhanced gene delivery system with low cytotoxicity and high transfection efficiency, various cholesterol-conjugated derivates of low generation polyamidoamine (PAMAM) dendrimers were prepared. The conjugates were characterized by TNBS assay, FTIR, and {sup 1}H-NMR spectroscopy. Self-assembly of the dendrimer conjugates (G1-Chol, G2-Chol, and G3-Chol) was investigated by pyrene assay. Following formation of the complexes between enhanced green fluorescence protein plasmid and the dendrimer conjugates at various N (primary amine)/P (phosphate) mole ratios, plasmid condensation, biologic stability, cytotoxicity, and protein expression were investigated. The conjugates self-assembled into micellar dispersions with the critical micelle concentration values (<50 µg/ml) depending on the dendrimer generation and cholesterol/amine mole ratio. Cholesterol conjugation resulted in higher resistance of the condensed plasmid DNA in a competition assay with heparin sulfate. Also, the transfection efficiency was determined higher for the cholesterol conjugates than unmodified dendrimers in HepG2 cells, showing the highest for G2-Chol at 40 % degree of cholesterol modification (G2-Chol{sub 40 %}) among various dendrimer generations. Interestingly, such conjugate showed a complete protection of plasmid against serum nucleases. Our results confirmed that the cholesterol conjugation to PAMAM dendrimers of low generations bearing little cytotoxicity improves their several physicochemical and biological characteristics required for an enhanced delivery of plasmid DNA into cells.

  19. Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G)

    NARCIS (Netherlands)

    Elburg, M.A.; Vroon, P.Z.; van der Wagt, R.A.C.A.; Tchalikian, A.

    2005-01-01

    Sr isotopic compositions and Rb/Sr ratios of three USGS glasses (BHVO-2G, BIR-1G, BCR-2G) are identical to those of the original USGS reference materials. NKT-1G and TB-1G give values of 0.70351 and 0.70558, respectively. Pb isotopic ratios were measured by the standard-sample bracketing technique

  20. A novel theranostic nanobioconjugate. "1"2"5/"1"3"1I labeled phenylalanine conjugated boron nitride nanotubes

    International Nuclear Information System (INIS)

    Ozge Kozgus Guldu; Perihan Unak; Suna Timur

    2017-01-01

    Here we report the synthesis of boron nitride nanotubes (BNNTs) via a chemical vapor deposition method, as potential agents for boron neutron capture therapy. BNNTs were functionalized with PAMAM[G-2] dendrimer and then, conjugated with l-Phe using EDC/NHS. After that, BNNTs were radiolabeled with "1"2"5/"1"3"1I, which are commonly used for both therapy and diagnosis in clinical and pre-clinical studies. BNNTs were radiolabeled with a maximum yield with "1"2"5/"1"3"1I in compared with 4-borono-l-phenyalanine which is currently used as a commercial drug. Radiolabeling parameters were optimized with thin layer radiochromatography and high performance liquid radiochromatography. BNNTs are promising nanobioconjugates as new theranostic agents. (author)

  1. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    International Nuclear Information System (INIS)

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 from C. parapsilosis IFO 0708 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. The crystal belonged to space group P2 1 2 1 2 1 and diffracted X-rays to 1.7 Å resolution. Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 Å resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 Å. The Matthews coefficient (V M = 1.76 Å 3 Da −1 ) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit

  2. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    , the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines....... Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter...... the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the -2, -1, +1 and +2...

  3. Glycidyl methacrylate-co-N-vinyl-2-pyrrolidone coated polypropylene strips: Synthesis, characterization and standardization for dot-enzyme linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Charu; Tomar, Lomas [Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016 (India)], E-mail: tyagicharu11@rediffmail.com

    2009-01-26

    Glycidyl methacrylate and N-vinyl-2-pyrrolidone (GMA-co-NVP) copolymers with various GMA:NVP ratios were synthesized by solution polymerization technique in toluene using 2,2'-azobisisobutyronitrile (AIBN) as free radical initiator and dip coated onto polypropylene strips. The copolymer composition in polymeric coatings was confirmed by proton NMR spectroscopy. Various techniques like FTIR, SEM and contact angle were used for surface characterization of the polymer coatings. These polymer coated strips were evaluated and standardized for their application in dot-ELISA in two steps. In first step, specificity, sensitivity and reproducibility of the assay on developed polymer coated strips was evaluated through a model system using rabbit anti-goat IgG, goat anti-rabbit IgG and goat anti-rabbit IgG HRP (horseradish peroxidase)-conjugate. Polymer coating with GMA-NVP mol% ratio of 78:22 was able to detect rabbit anti-goat IgG antibody at a concentration as low as 2 ng mL{sup -1} with 1% BSA as blocking agent using antispecies IgG peroxidase conjugate diluted 1500 times. In the second step, the sensitivity and specificity of the developed system was established with human blood and finally used to identify the source of mosquito blood meal which is an important parameter in epidemiological studies, particularly in determining the role of mosquito in malaria transmission. The time duration of standardized assay with developed polymer coated strips was cut down to one hour compared to the 3-4 h required in usual dot-ELISA.

  4. Vitamin B2 content determination in liver paste by using acid and acid-enzyme hydrolysis

    Directory of Open Access Journals (Sweden)

    Basić Zorica

    2007-01-01

    the samples (r = 0.9994, and r = 0.99987. Hydrolysis procedures make a sample suitable for vitamin B2 determination. In the liver paste samples a high content of vitamin B2 was determined: 0.83 mg/100 g after acid hydrolysis, and 0.909 mg/100 g after acid-enzyme hydrolysis. There were statistically significantly higher values determined after the acid-enzyme hydrolysis (p < 0.05. Conclusion. Using acid-enzyme hydrolysis and separation instrument technique (liquid chromatography with a fluorescent detector as detection system, statistically significantly greater vitamin B2 quantities were determined than after using acid hydrolysis procedure. Vitamin B2 content determined in ten liver paste samples was high (0.881 − 0.936 mg/100g indicating that this meat product is a good vitamin B2 source.

  5. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    Science.gov (United States)

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-02

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Radiolabeled Antibody Fragment for Preparation of (177Lu-DOTAm-PAMAM G3.0-F(ab’2 trastuzumab as a Radiopharmaceutical for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    R.D. Haryuni

    2017-06-01

    Full Text Available Several radiolabeled monoclonal antibodies (mAbs have been used as radioimmunotherapy (RIT agents for cancer therapy. The use of mAbs as RIT agents is due to their ability to carry effectors, in the form of radionuclides which emit alpha (α particles, beta (β particles, or auger electrons, and bind specifically to cancer expressed receptor. This paper reports the preparation of radiolabelled trastuzumab in form of (177Lu-DOTAm-PAMAM G3-F(ab'2-trastuzumab, which will be expected as a potential RIT agent for therapy of breast cancer overexpressed human epidermal growth factor receptor 2 (HER2. Due to its reduced molecular weight, the use of F(ab'2-trastuzumab on the aforementioned RIT agent candidate is expected to reach its target much faster compared to the intact trastuzumab. Meanwhile, the role of PAMAM G3 is to increase the specific activity of the radiotherapeutic agent of Lu-177 due to the ability of its 32 –NH2 functional groups that are able to bind many DOTAs (£ 31 which in turn can bind a large number of 177Lu. The preparation was initiated by fragmentation of trastuzumab using pepsin enzyme in 0.02 M acetic acid buffer with a pH of 4.5 to produce F(ab'2-trastuzumab with a purity of 95 % after purification with PD-10 column. The F(ab'2-trastuzumab was then reacted with succinimidyl 4-(N-maleimidomethyl cyclohexane-1-carboxylate (SMCC to produce SMCC-F(ab'2-trastuzumab. The next reaction was to conjugate SMCC-F(ab'2-trastuzumab with DOTA-PAMAM G3.0-SH, which was prepared by reaction NHS-DOTA with PAMAM G3.0 and followed by reacting it with 2-iminothiolane to give (DOTAm-PAMAM G3.0-F(ab'2-trastuzumab. Finally, the (DOTAm-PAMAM G3.0-F(ab'2-trastuzumab was radiolabelled with 177Lu to produce (177Lu-DOTAm-PAMAM G3.0-F(ab'2-trastuzumab, resulting in a radiochemical purity of 98 % after purification with PD-10 column.Received: 31 October 2015; Revised: 30 June 2016; Accepted: 25 September 2016

  7. Conjugate Addition of Nucleophiles to the Vinyl Function of 2-Chloro-4-vinylpyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2010-03-01

    Full Text Available Conjugate addition reaction of various nucleophiles across the vinyl group of 2-chloro-4-vinylpyrimidine, 2-chloro-4-(1-phenylvinylpyrimidine and 2-chloro-4-vinylquinazoline provides the corresponding 2-chloro-4-(2-substituted ethylpyrimidines and 2-chloro-4-(2-substituted ethylquinazolines. Treatment of these products, without isolation, with N-methylpiperazine results in nucleophilic displacement of chloride and yields the corresponding 2,4-disubstituted pyrimidines and quinazolines.

  8. Preparación de un conjugado peroxidasa-anti IgG humana (cadena en conejo Preparation of a peroxidase-anti human IgG conjugate (chain g in rabbit

    Directory of Open Access Journals (Sweden)

    Julio C Merlín Linares

    2001-08-01

    Full Text Available Se preparó un conjugado con peroxidasa a partir de los anticuerpos específicos aislados de un suero de conejo anti cadenas g de la IgG humana. Los anticuerpos específicos se aislaron por cromatografía de afinidad, y el conjugado se preparó por el método de oxidación con peryodato. El conjugado obtenido presentó una relación molar IgG/peroxidasa de 1,07, un valor de RZ de 0,33 y resultó evaluado satisfactoriamente en cuanto a su especificidad y reactividad en los ensayos inmunoenzimáticos realizadosA peroxidase conjugate was prepared starting from the specific antibodies isolated from an anti-chain rabbit serum and from human IgG. The specific antibodies were isolated by affinity chromatography and the conjugate was prepared by the method of oxidation with periodate. The conjugate obtained presented a molar IgG/peroxidase relation of 1.07, a RZ value of 0.33 and it was satisfactorily evaluated as regards its specificity and reactivity in the immunoenzimatic assays carried out

  9. ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation.

    Science.gov (United States)

    Kolb, Ryan H; Greer, Patrick M; Cao, Phu T; Cowan, Kenneth H; Yan, Ying

    2012-01-01

    Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.

  10. Generation of monoclonal antibodies against peptidylarginine deiminase 2 (PAD2) and development of a PAD2-specific enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Damgaard, Dres; Palarasah, Yaseelan; Skjødt, Karsten

    2014-01-01

    The enzyme peptidylarginine deiminase 2 (PAD2) has been associated with inflammatory diseases, such as rheumatoid arthritis and neurodegenerative diseases including multiple sclerosis. To investigate the association of various diseases with extracellular PAD2, we raised monoclonal antibodies (m......Abs) against rabbit PAD2 and evaluated their cross-reactivity with human PAD2 by indirect enzyme-linked immunosorbent assay (ELISA), western blotting and immunohistological staining of inflamed synovial tissue. Moreover, we established a sandwich ELISA detecting human PAD2, based on two different monoclonal...... diseases....

  11. Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress

    Directory of Open Access Journals (Sweden)

    Meiyan Jin

    2017-07-01

    Full Text Available Glycolysis is upregulated under conditions such as hypoxia and high energy demand to promote cell proliferation, although the mechanism remains poorly understood. We find that hypoxia in Saccharomyces cerevisiae induces concentration of glycolytic enzymes, including the Pfk2p subunit of the rate-limiting phosphofructokinase, into a single, non-membrane-bound granule termed the “glycolytic body” or “G body.” A yeast kinome screen identifies the yeast ortholog of AMP-activated protein kinase, Snf1p, as necessary for G-body formation. Many G-body components identified by proteomics are required for G-body integrity. Cells incapable of forming G bodies in hypoxia display abnormal cell division and produce inviable daughter cells. Conversely, cells with G bodies show increased glucose consumption and decreased levels of glycolytic intermediates. Importantly, G bodies form in human hepatocarcinoma cells in hypoxia. Together, our results suggest that G body formation is a conserved, adaptive response to increase glycolytic output during hypoxia or tumorigenesis.

  12. Development of Targeted, Enzyme-Activated Nano-Conjugates for Hepatic Cancer Therapy

    Science.gov (United States)

    Kuruvilla, Sibu Philip

    Hepatocellular carcinoma (HCC) is the 5th most commonly-occurring cancer worldwide and the 2nd highest cause for cancer-related deaths globally. The current treatment strategy is the direct injection of a chemotherapeutic agent (e.g. doxorubicin; DOX) into the hepatic artery, through a process called hepatic arterial infusion (HAI). Unfortunately, HAI is severely hindered by limited therapeutic efficacy against the tumor and high systemic toxicity to surrounding organs (e.g. cardiotoxicity). This thesis focuses on the development of a targeted, nanoparticle-based drug delivery system aimed to improve the clinical treatment of HCC. In particular, we employ generation 5 (G5) poly(amido amine) (PAMAM) dendrimers targeted to hepatic cancer cells via N-acetylgalactosamine (NAcGal) ligands attached to the surface through a poly(ethylene glycol) (PEG) brush. DOX is attached to the G5 surface through two different enzyme-sensitive linkages, L3 or L4, to achieve controllable release of the drug inside hepatic cancer cells. The combination of NAcGal-PEG targeting branches with either L3- or L4-DOX linkages led to the development of P1 and P2 particles, respectively. In Part 1, we discuss the development of these particles and measure their ability to target and kill hepatic cancer cells in vitro. In Part 2, we investigate the antitumor activity of P1 and P2 particles in tumor-bearing mice in comparison to the free drug, and we measure the cardiac function of mice undergoing treatment to assess differences in DOX-induced cardiotoxicity. Finally, in Part 3, we explore multi-valent targeting of G5 dendrimers in pursuit of further improving their specificity to hepatic cancer cells. Ultimately, this thesis provides insight into the utility of nanoparticle-based drug delivery systems that can potentially be translated to the clinic to improve cancer therapy.

  13. Euler angles for G2

    International Nuclear Information System (INIS)

    Cacciatori, Sergio L.; Cerchiai, Bianca L.; Della Vedova, Alberto; Ortenzi, Giovanni; Scotti, Antonio

    2005-01-01

    We provide a simple coordinatization for the group G 2 , which is analogous to the Euler coordinatization for SU(2). We show how to obtain the general element of the group in a form emphasizing the structure of the fibration of G 2 with fiber SO(4) and base H, the variety of quaternionic subalgebras of octonions. In particular this allows us to obtain a simple expression for the Haar measure on G 2 . Moreover, as a by-product it yields a concrete realization and an Einstein metric for H

  14. Preparation of goat and rabbit anti-camel immunoglobulin G whole molecule labeled with horseradish peroxidase

    Directory of Open Access Journals (Sweden)

    Eman Hussein Abdel-Rahman

    2017-01-01

    Full Text Available Aim: As the labeled anti-camel immunoglobulins (Igs with enzymes for enzyme-linked immunosorbent assay (ELISA are unavailable in the Egyptian market, the present investigation was directed for developing local labeled anti-camel IgG with horseradish peroxidase (HRP to save hard curacy. Materials and Methods: For purification of camel IgG whole molecule, camel sera was preliminary precipitated with 50% saturated ammonium sulfate and dialyzed against 15 mM phosphate-buffered saline pH 7.2 then concentrated. This preparation was further purified by protein A sepharose affinity column chromatography. The purity of the eluted camel IgG was tested by sodium dodecyl sulfate polyacrylamide gel electrophoresi. Anti-camel IgG was prepared by immunization of goats and rabbits separately, with purified camel IgG. The anti-camel IgG was purified by protein A sepharose affinity column chromatography. Whole molecule anti-camel IgG was conjugated with HRP using glutraldehyde based assay. Sensitivity and specificity of prepared conjugated secondary antibodies were detected using positive and negative camel serum samples reacted with different antigens in ELISA, respectively. The potency of prepared conjugated antibodies was evaluated compared with protein A HRP. The stability of the conjugate at −20°C during 1 year was assessed by ELISA. Results: The electrophoretic profile of camel IgG showed four bands of molecular weight 63, 52, 40 and 33 kDa. The recorded sensitivity and specificity of the product are 100%. Its potency is also 100% compared to 58-75% of commercial protein A HRP. The conjugates are stable for 1 year at −20°C as proved by ELISA. Conclusion: Collectively, this study introduces goat and rabbit anti-camel IgG whole molecules with simple, inexpensive method, with 100% sensitivity, 100% specificity and stability up to 1 year at −20°C. The important facet of the current study is saving hard curacy. Future investigations are necessary for

  15. Dynamics simulation of a π-conjugated light-harvesting dendrimer II: phenylene-based dendrimer (phDG2)

    International Nuclear Information System (INIS)

    Kodama, Yasunobu; Ishii, Soh; Ohno, Kaoru

    2009-01-01

    We investigate the light-harvesting property of a π-conjugated dendrimer, phenylene-based dendrimer (phDG2), by carrying out a semi-classical Ehrenfest dynamics simulation based on the time-dependent density functional theory. Similar to our previous study of star-shaped stilbenoid phthalocyanine (SSS1Pc), phDG2 shows electron and hole transfer from the periphery to the core through a π-conjugated network when an electron is selectively excited in the periphery. The one-way electron and hole transfer occurs more easily in dendrimers with planar structure than in those with steric hindrance because π-conjugation is well maintained in the planar structure. The present results explain recent experiments by Akai et al (2005 J. Lumin. 112 449).

  16. Characterization and enzyme-conjugation of a specific anti-L1 nanobody.

    Science.gov (United States)

    Minaeian, Sara; Rahbarizadeh, Fatemeh; Zarkesh Esfahani, Sayyed Hamid; Ahmadvand, Davoud

    2012-01-01

    Persistent infection of the human papillomaviruses (HPV) has been shown to result in cervical cancer and intraepithelial neoplasia. Early detection and screening programs are essential strategies against cervical cancer. A nanobody is the smallest antigen-binding fragment known and is derived from a camelid heavy-chain antibody. This tiny protein shows high solubility and stability. It can be produced cost-effectively with high yield production. In this study, we enriched a nanobody library against the L1 protein of HPV. Several colons were selected from this enriched library using monoclonal phage-enzyme linked immunosorbent assay (phage-ELISA) and analyzed for identification of nanobody genes. The expression of nanobody fragments was performed in Rosetta gami2. The C74 nanobody that showed strong binding to the L1 protein of HPV16 was selected, purified, and characterized by Western blotting and ELISA. The selected nanobody was tested for sensitivity, specificity, and affinity. A nanobody conjugated to horseradish peroxidase (HRP) was selected and used for detection of L1 protein of HPV16. This study demonstrates that the C74-HRP, due to its specificity and good binding affinity for a specific viral antigen, is a potential diagnostic tool that can be used as a promising reagent for the new generation of HPV diagnosis approaches.

  17. Protective effect of NSAIDs on cancer and influence of COX-2 C-765G genotype

    NARCIS (Netherlands)

    C. Siemes (Claire); L.E. Visser (Loes); J.W.W. Coebergh (Jan Willem); A. Hofman (Albert); A.G. Uitterlinden (André); B.H.Ch. Stricker (Bruno)

    2008-01-01

    textabstractPurpose: Inhibition of COX-2 enzymes is a frequently suggested mechanism for the beneficial effects of NSAIDs on carcinogenesis. The aim of this study was to explore the role of cumulative NSAID use on four common non-skin related cancers and modification by COX-2 G-765C genotype.

  18. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  19. Novel photoluminescence enzyme immunoassay based on supramolecular host-guest recognition using L-arginine/6-aza-2-thiothymine-stabilized gold nanocluster.

    Science.gov (United States)

    Wang, Youmei; Lu, Minghua; Tang, Dianping

    2018-06-30

    A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B 1 (AFB 1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity. Based on this principle, a novel competitive-type immunoreaction was first carried out on AFB 1 -bovine serum albumin (AFB 1 -BSA) conjugate-coated microplate, using arginase-labeled anti-AFB 1 antibody as the competitor. Under the optimum conditions, the PL intensity increased with the increment of target AFB 1 , and allowed the detection of the analyte at concentrations as low as 3.2 pg mL -1 (ppt). Moreover, L-arginine-AAT-AuNC-based PL enzyme immunoassay afforded good reproducibility and acceptable specificity. In addition, the accuracy of this methodology, referring to commercial AFB 1 ELISA kit, was evaluated to analyze naturally contaminated or spiked peanut samples, giving well-matched results between two methods, thus representing a useful scheme for practical application in quantitative monitoring of mycotoxins in foodstuff. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Science.gov (United States)

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  1. Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1.

    Science.gov (United States)

    Lo, Yung-Chung; Huang, Chi-Yu; Cheng, Chieh-Lun; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Method of T2 spectrum inversion with conjugate gradient algorithm from NMR data

    International Nuclear Information System (INIS)

    Li Pengju; Shi Shangming; Song Yanjie

    2010-01-01

    Based on the optimization techniques, the T 2 spectrum inversion method of conjugate gradient that is easy to realize non-negativity constraint of T2 spectrum is proposed. The method transforms the linear mixed-determined problem of T2 spectrum inversion into the typical optimization problem of searching the minimum of objective function by building up the objective function according to the basic idea of geophysics modeling. The optimization problem above is solved with the conjugate gradient algorithm that has quick convergence rate and quadratic termination. The method has been applied to the inversion of noise free echo train generated from artificial spectrum, artificial echo train with signal-to-noise ratio (SNR)=25 and NMR experimental data of drilling core. The comparison between the inversion results of this paper and artificial spectrum or the result of software imported in NMR laboratory shows that the method can correctly invert T 2 spectrum from artificial NMR relaxation data even though SNR=25 and that inversion T 2 spectrum with good continuity and smoothness from core NMR experimental data accords perfectly with that of laboratory software imported, and moreover,the absolute error between the NMR porosity computed from T 2 spectrum and helium (He) porosity in laboratory is 0.65%. (authors)

  3. Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG.

    Science.gov (United States)

    Hui, James Z; Tsourkas, Andrew

    2014-09-17

    Antibody conjugates have been used in a variety of applications from immunoassays to drug conjugates. However, it is becoming increasingly clear that in order to maximize an antibody's antigen binding ability and to produce homogeneous antibody-conjugates, the conjugated molecule should be attached onto IgG site-specifically. We previously developed a facile method for the site-specific modification of full length, native IgGs by engineering a recombinant Protein Z that forms a covalent link to the Fc domain of IgG upon exposure to long wavelength UV light. To further improve the efficiency of Protein Z production and IgG conjugation, we constructed a panel of 13 different Protein Z variants with the UV-active amino acid benzoylphenylalanine (BPA) in different locations. By using this panel of Protein Z to cross-link a range of IgGs from different hosts, including human, mouse, and rat, we discovered two previously unknown Protein Z variants, L17BPA and K35BPA, that are capable of cross-linking many commonly used IgG isotypes with efficiencies ranging from 60% to 95% after only 1 h of UV exposure. When compared to existing site-specific methods, which often require cloning or enzymatic reactions, the Protein Z-based method described here, utilizing the L17BPA, K35BPA, and the previously described Q32BPA variants, represents a vastly more accessible and efficient approach that is compatible with nearly all native IgGs, thus making site-specific conjugation more accessible to the general research community.

  4. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  5. Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model.

    Directory of Open Access Journals (Sweden)

    Abraham Lin

    Full Text Available Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage, these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.

  6. G2 and G3 reactors design; Description des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Herreng,; Ertaud,; Pasquet, [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    'FRANCE ATOME' Manufacturers Party has been entrusted with the G2 and G3 reactors engineering by the french A.E.C., for the first-five-year french project. Although these reactors are essentially plutonium generators, everyone has been linked with a power station which is supposed to supply with 40 MW, 'Electricite de France' has taken the liability upon itself. The reactor core includes most of G1 reactor parts (central gap excluded): horizontal channels, graphite parallelepipedic bricks stacking, steel thermal shield. The cooling is provided with CO{sub 2} under a 15 atmospheres pressure. This pressure is kept steady in a press-stressed concrete packing-case which is a cylinder horizontally shaped. Steel strips tightened encircle the concrete cylinder; itself protected by sole-plates. The cylinder bottom has brought about unusual problems which have been solved by the choice of an hemispheric shape. Packing-case tightness is provided by a 30 mm iron-plate connected with the inner wall of concrete. One of the reactor's special characteristics is the possibility of loading and unloading while operating. On loading side, barrel locks, each weighting 50 tons, allow new cans, at a pressure of 15 atmospheres, to pass. The cans process almost in a steady way through the channel, and finally drop down through bent spouts, then through spiral toboggans into a new lock. The cooling CO{sub 2} flow is provided with 3 turbo-bellows, these are actuated by average pressure-steam, obtained from exchangers. Every reactor supplies 4 exchangers which have been very difficult to build and to set up. The secondary cycle is standard and contains 3 stages (pressure 10,3: 2 and 0,5 kg/cm{sup 2}). Steam can be condensed in the event of a group turbo-generator stopping, with no modifion for the normal operating conditions of the reactor. Auxiliary circuits have to assure the continuous purifying of cooling CO{sub 2}, its storage and drain. 49 boron carbide rods are used to control the

  7. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    Science.gov (United States)

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  8. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme.

    Directory of Open Access Journals (Sweden)

    Daishi Yui

    Full Text Available Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD model mice showed decreased insulin-degrading enzyme (IDE levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/- mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3; Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.

  9. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-01-01

    Highlights: ► We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. ► The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. ► The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. ► The OgUBC1 could protect disruption of plant cells by UV-B radiation. ► OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  10. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  11. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  12. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  13. IgG2 antibodies against a clinical grade Plasmodium falciparum CSP vaccine antigen associate with protection against transgenic sporozoite challenge in mice.

    Directory of Open Access Journals (Sweden)

    Robert Schwenk

    Full Text Available The availability of a highly purified and well characterized circumsporozoite protein (CSP is essential to improve upon the partial success of recombinant CSP-based malaria vaccine candidates. Soluble, near full-length, Plasmodium falciparum CSP vaccine antigen (CS/D was produced in E. coli under bio-production conditions that comply with current Good Manufacturing Practices (cGMP. A mouse immunogenicity study was conducted using a stable oil-in-water emulsion (SE of CS/D in combination with the Toll-Like Receptor 4 (TLR4 agonist Glucopyranosyl Lipid A (GLA/SE, or one of two TLR7/8 agonists: R848 (un-conjugated or 3M-051 (covalently conjugated. Compared to Alum and SE, GLA/SE induced higher CS/D specific antibody response in Balb/c mice. Subclass analysis showed higher IgG2:IgG1 ratio of GLA/SE induced antibodies as compared to Alum and SE. TLR synergy was not observed when soluble R848 was mixed with GLA/SE. Antibody response of 3M051 formulations in Balb/c was similar to GLA/SE, except for the higher IgG2:IgG1 ratio and a trend towards higher T cell responses in 3M051 containing groups. However, no synergistic enhancement of antibody and T cell response was evident when 3M051 conjugate was mixed with GLA/SE. In C57Bl/6 mice, CS/D adjuvanted with 3M051/SE or GLA/SE induced higher CSP repeat specific titers compared to SE. While, 3M051 induced antibodies had high IgG2c:IgG1 ratio, GLA/SE promoted high levels of both IgG1 and IgG2c. GLA/SE also induced more potent T-cell responses compared to SE in two independent C57/BL6 vaccination studies, suggesting a balanced and productive T(H1/T(H2 response. GLA and 3M-051 similarly enhanced the protective efficacy of CS/D against challenge with a transgenic P. berghei parasite and most importantly, high levels of cytophilic IgG2 antibodies were associated with protection in this model. Our data indicated that the cGMP-grade, soluble CS/D antigen combined with the TLR4-containing adjuvant GLA/SE warrants

  14. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    Science.gov (United States)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  15. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    Directory of Open Access Journals (Sweden)

    Kayla A Boortz

    Full Text Available Elevated fasting blood glucose (FBG has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln, rs149663725 (Gly114Arg and rs2232326 (Ser324Pro SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu, rs138726309 (His177Tyr, rs2232323 (Tyr207Ser rs374055555 (Arg293Trp, rs2232326 (Ser324Pro, rs137857125 (Pro313Leu and rs2232327 (Pro340Leu SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans.

  16. MMS2, Encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway

    International Nuclear Information System (INIS)

    Broomfield, S.; Chow, B.L.; Xiao, W.

    1998-01-01

    Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. and Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6 delta 1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6 delta 1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis

  17. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Siddiqui, Rafat A., E-mail: rsiddiqu@iuhealth.org [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Biology, Indiana University-Purdue University, Indianapolis, IN (United States); Department of Medicine, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  18. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-01-01

    Highlights: → 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. → DIP-DHA resulted in increased activation of caspase-3, and caspase-7. → DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  19. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications.

    Science.gov (United States)

    Iafisco, Michele; Varoni, Elena; Di Foggia, Michele; Pietronave, Stefano; Fini, Milena; Roveri, Norberto; Rimondini, Lia; Prat, Maria

    2012-02-01

    Inorganic nanosized drug carriers are a promising field in nanomedicine applied to cancer. Their conjugation with antibodies combines the properties of the nanoparticles themselves with the specific and selective recognition ability of the antibodies to antigens. Biomimetic carbonate-hydroxyapatite (HA) nanoparticles were synthesized and fully characterized; human IgGs, used as model antibodies, were coupled to these nanocrystals. The maximum loading amount, the interaction modelling, the preferential orientation and the secondary structure modifications were evaluated using theoretical models (Langmuir, Freundlich and Langmuir-Freundlich) spectroscopic (UV-Vis, Raman), calorimetric (TGA), and immunochemical techniques (ELISA, Western Blot). HA nanoparticles of about 30 nm adsorbed human IgGs, in a dose-dependent, saturable and stable manner with micromolar affinity and adsorption capability around 2.3 mg/m(2). Adsorption isotherm could be described by Langmuir-Freundlich model, and was due to both energetically homogeneous and heterogeneous binding sites on HA surface, mainly of electrostatic nature. Binding did not induce secondary structure modification of IgGs. A preferential IgG end-on orientation with the involvement of IgG Fc moiety in the adsorption seems most probable due to the steric hindrance of their Fab domains. Biomimetic HA nanocrystals are suitable substrates to produce nanoparticles which can be functionalized with antibodies for efficient targeted drug delivery to tumours. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal.

    Science.gov (United States)

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied.

  1. Prediction and identification of potential immunodominant epitopes in glycoproteins B, C, E, G, and I of herpes simplex virus type 2.

    Science.gov (United States)

    Pan, Mingjie; Wang, Xingsheng; Liao, Jianmin; Yin, Dengke; Li, Suqin; Pan, Ying; Wang, Yao; Xie, Guangyan; Zhang, Shumin; Li, Yuexi

    2012-01-01

    Twenty B candidate epitopes of glycoproteins B (gB2), C (gC2), E (gE2), G (gG2), and I (gI2) of herpes simplex virus type 2 (HSV-2) were predicted using DNAstar, Biosun, and Antheprot methods combined with the polynomial method. Subsequently, the biological functions of the peptides were tested via experiments in vitro. Among the 20 epitope peptides, 17 could react with the antisera to the corresponding parent proteins in the EIA tests. In particular, five peptides, namely, gB2(466-473) (EQDRKPRN), gC2(216-223) (GRTDRPSA), gE2(483-491) (DPPERPDSP), gG2(572-579) (EPPDDDDS), and gI2(286-295) (CRRRYRRPRG) had strong reaction with the antisera. All conjugates of the five peptides with the carrier protein BSA could stimulate mice into producing antibodies. The antisera to these peptides reacted strongly with the corresponding parent glycoproteins during the Western Blot tests, and the peptides reacted strongly with the antibodies against the parent glycoproteins during the EIA tests. The antisera against the five peptides could neutralize HSV-2 infection in vitro, which has not been reported until now. These results suggest that the immunodominant epitopes screened using software algorithms may be used for virus diagnosis and vaccine design against HSV-2.

  2. Inhibition of DNA binding of Sox2 by the SUMO conjugation

    International Nuclear Information System (INIS)

    Tsuruzoe, Shu; Ishihara, Ko; Uchimura, Yasuhiro; Watanabe, Sugiko; Sekita, Yoko; Aoto, Takahiro; Saitoh, Hisato; Yuasa, Yasuhito; Niwa, Hitoshi; Kawasuji, Michio; Baba, Hideo; Nakao, Mitsuyoshi

    2006-01-01

    Sox2 is a member of the high mobility group (HMG) domain DNA-binding proteins for transcriptional control and chromatin architecture. The HMG domain of Sox2 binds the DNA to facilitate transactivation by the cooperative transcription factors such as Oct3/4. We report that mouse Sox2 is modified by SUMO at lysine 247. Substitution of the target lysine to arginine lost the sumoylation but little affected transcriptional potential or nuclear localization of Sox2. By contrast with the unmodified form, Sox2 fused to SUMO-1 did not augment transcription via the Fgf4 enhancer in the presence of Oct3/4. Further, SUMO-1-conjugated Sox2 at the lysine 247 or at the carboxyl terminus reduced the binding to the Fgf4 enhancer. These indicate that Sox2 sumoylation negatively regulates its transcriptional role through impairing the DNA binding

  3. Serum IgG2 and tissue IgG2 plasma cell elevation in orbital IgG4-related disease (IgG4-RD): Potential use in IgG4-RD assessment.

    Science.gov (United States)

    Chan, Anita S Y; Mudhar, Hardeep; Shen, Sunny Yu; Lang, Stephanie S; Fernando, Malee; Hilmy, Maryam Hazly; Guppy, Naomi Jayne; Rennie, Ian; Dunkley, Lisa; Al Jajeh, Issam

    2017-11-01

    To determine the role of serum and tissue IgG2 in orbital biopsies with the histological features of IgG4-related disease (IgG4-RD) in comparison with non-IgG4-related orbital inflammatory disorders (OID), including autoimmune disorders. This is an international (Sheffield, UK, and Singapore) collaborative, retrospective case review of 69 patients (38 from Singapore National Eye Centre and 31 from Royal Hallamshire Hospital, Sheffield) with orbital inflammatory biopsies between 2002 and 2016. Clinical information and histology were reviewed and cases were classified into three groups: Group 1: IgG4-RD orbital inflammation (n=43); Group 2: idiopathic OID (n=12) and Group 3: autoimmune OID (n=14). Serum IgG1, IgG2, IgG3 and IgG4 levels were collated where available and immunohistochemistry (IHC) for tissue IgG2 plasma cells was performed. Dual IHC showed IgG2 plasma cells as a distinct population from IgG4 plasma cells. Significant (twofold) serum IgG2 elevation was noted among IgG4-RD (group 1), idiopathic (group 2) and autoimmune OID (group 3). Similarly, significant elevation of tissue IgG2 plasma cells was also seen among IgG4-RD (group 1), idiopathic and autoimmune OID (groups 2 and 3). Significant elevations of serum IgG2 and tissue IgG2 plasma cells are present in orbital IgG4-RD in comparison with non-IgG4 orbital inflammation (idiopathic and autoimmune OID), suggesting that IgG2 may play a role in IgG4-RD. A serum IgG2 cut-off >5.3 g/L was found to be 80% sensitive and 91.7% specific for orbital IgG4-RD, with an accuracy of 0.90. Tissue IgG2 and IgG4 subclass reporting may provide additional insight regarding the 'IgG4-RD' pathogenesis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Dynamics of some conjugated enzymes of aminonitrogen metabolism in the liver of the irradiated body

    International Nuclear Information System (INIS)

    Savitskij, V.I.

    1976-01-01

    Changes in the activity of five conjugated enzymes of the aminonitrogen metabolism in subcellular fractions of liver tissue have been studied on irradiated (450 R) rabbits during thirty days after exposure. These changes are peculiar for their manifestation in time, their depth and trend. It is suggested that in the early period of radiation damage, gluconeogenesis is enhanced, and in the later period, biosynthesis of pyrimidine bases is intensified

  5. Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines

    International Nuclear Information System (INIS)

    Brandon, Esther F.A.; Bosch, Tessa M.; Deenen, Maarten J.; Levink, Rianne; Wal, Everdina van der; Meerveld, Joyce B.M. van; Bijl, Monique; Beijnen, Jos H.; Schellens, Jan H.M.; Meijerman, Irma

    2006-01-01

    Human cell lines are often used for in vitro biotransformation and transport studies of drugs. In vivo, genetic polymorphisms have been identified in drug-metabolizing enzymes and ABC-drug transporters leading to altered enzyme activity, or a change in the inducibility of these enzymes. These genetic polymorphisms could also influence the outcome of studies using human cell lines. Therefore, the aim of our study was to pharmacogenotype four cell lines frequently used in drug metabolism and transport studies, HepG2, IGROV-1, CaCo-2 and LS180, for genetic polymorphisms in biotransformation enzymes and drug transporters. The results indicate that, despite the presence of some genetic polymorphisms, no real effects influencing the activity of metabolizing enzymes or drug transporters in the investigated cell lines are expected. However, this characterization will be an aid in the interpretation of the results of biotransformation and transport studies using these in vitro cell models

  6. Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a 2D diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Beaud, P; Frey, H M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Resonant Holographic Interferometry is a method based on the anomalous dispersion of light having a frequency close to an electronic transition of a molecule. We propose a novel single-laser, two-colour setup for recording resonant holograms and apply it to 2D species concentration measurements. The second colour is generated by optical phase-conjugation from Stimulated Brillouin scattering in a cell. Phase-Conjugate Resonant Holographic Interferometry (PCRHI) is demonstrated in a 2D NH{sub 3}/O{sub 2} flame yielding interferograms that contain information on the NH radical distribution in the flame. Experimental results are quantified by applying a numerical computation of the Voigt profiles. (author) 1 fig., 3 refs.

  7. Effects of dietary CLA supplementation, parity and different concentrate levels before calving on immunoglobulin G1, G2 and M concentrations in dairy cows.

    Science.gov (United States)

    Eger, Melanie; Horn, Jana; Hussen, Jamal; Schuberth, Hans-Joachim; Scharf, Maria; Meyer, Ulrich; Dänicke, Sven; Bostedt, Hartwig; Breves, Gerhard

    2017-10-01

    Peripartal dairy cows exhibit a higher susceptibility for infectious diseases, which might be linked to the negative energy balance occurring at the onset of lactation. A dietary supplementation of conjugated linoleic acids (CLA) may reduce milk fat yield and subsequently lower the energy deficit. The utilization of immunoglobulins (Ig) for colostrogenesis might impair humoral immunity in peripartal dairy cows; therefore this study investigated the effects of a CLA supplement, parity and different dietary energy levels on plasma and colostrum IgG1, IgG2 and IgM levels in dairy cows and their calves. Blood samples were collected from 64 cows from 21days before until 56days after parturition and colostrum samples for the first 3days of lactation. Plasma immunoglobulin concentrations of 19 calves were determined before colostrum uptake. Neither plasma IgG1, nor IgG2 levels were affected by CLA or dietary energy level. However, immunoglobulin levels were affected by parity. Heifers possessed the lowest IgG1 concentrations. IgG2 concentrations were highest in cows with 2 lactations prior to parturition and in heifers after parturition. Plasma IgM levels were characterized by a sharp decrease 3days prior to parturition and were scarcely affected by the feeding regimen or parity. Generally, immunoglobulin levels appear to be mostly independent from the peripartal energy balance of the cows and are not influenced by dietary CLA. However, pronounced differences among parities for IgG1 and IgG2 were revealed which should be further evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Production and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G

    OpenAIRE

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Kazemi, Tohid; Esparvarinha, Mojghan; Majidi, Jafar

    2017-01-01

    Antibodies are essential tools of biomedical and biochemical researches. Polyclonal antibodies are produced against different epitopes of antigens. Purified F(ab')2 can be used for animal’s immunization to produce polyclonal antibodies. Human immunoglobulin G (IgG) was purified by ion exchange chromatography method. In all stages verification method of the purified antibodies was sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purified IgG was digested by pepsin enzyme a...

  9. Exceptional confinement in G(2) gauge theory

    International Nuclear Information System (INIS)

    Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.

    2003-01-01

    We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature

  10. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    Science.gov (United States)

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  11. Evaluation of homologous, heterologous, and affinity conjugates for the serodiagnosis of Toxoplasma gondii and Neospora caninum in maned wolves (Chrysocyon brachyurus).

    Science.gov (United States)

    Silva, D A O; Vitaliano, S N; Mineo, T W P; Ferreira, R A; Bevilacqua, E; Mineo, J R

    2005-10-01

    Use of serological tests in the diagnosis of infectious diseases in wild animals has several limitations, primarily the difficulty of obtaining species-specific reagents. Wild canids, such as maned wolves (Chrysocyon brachyurus), are highly predisposed to infection by Toxoplasma gondii and, to a lesser extent, to Neospora caninum. The aim of the present study was to evaluate homologous, heterologous, and affinity conjugates in enzyme-linked immunosorbent assays (ELISAs) and indirect fluorescent antibody tests (IFATs) for detecting immunoglobulin (Ig) G antibodies against T. gondii and N. caninum in maned wolves. Serum samples were obtained from 59 captive animals in Brazil and tested by ELISA for T. gondii serology and IFAT for N. caninum serology using 3 different enzymatic and fluorescent conjugates: homologous (guinea pig anti-maned wolf IgG-peroxidase and -fluorescein isothiocyanate [FITC]), heterologous (rabbit anti-dog IgG-peroxidase and -FITC), and affinity (protein A-peroxidase and -FITC). Seropositivity to T. gondii was comparable among the homologous (69.5%), heterologous (74.6%), and affinity (71.2%) enzymatic conjugates. A significant positive correlation was found between the antibody levels determined by the 3 enzymatic conjugates. The highest mean antibody levels (ELISA index = 4.5) were observed with the protein A-peroxidase conjugate. The same seropositivity to N. caninum (8.5%) was found with the homologous and heterologous fluorescent conjugates, but protein A-FITC was not able to detect or confirm any positive samples with homologous or heterologous conjugates. Our results demonstrate that homologous, heterologous, and affinity conjugates might be used in ELISA for serological assays of T. gondii in wild canids, whereas for N. caninum infection, only the homologous or heterologous fluorescent conjugates have been shown to be useful.

  12. [POLYMORPHISM OF ALFA-AMYLASE AND CONJUGATION IN COMMON WHEAT ENZYME TYPES WITH QUANTITATIVE TRAITS OF PLANTS].

    Science.gov (United States)

    Netsvetaev, V P; Bondarenko, L S; Motorina, I P

    2015-01-01

    Using polymorphism of alpha-amylase in the winter common wheat studied inheritance isoenzymes and its conjugation enzyme types with germinating grain on the "vine", grain productivity, plant height and time of ear formation. It is shown that the polymorphism isoenzyme of alpha-amylase wheat is limited by the presence of different loci whose products are similar in electrophoretic parameters. In this regard, one component of the enzyme can be controlling at one or two or three genes. Identification of a locus controlling alpha-amylase isoenzyme in the fast moving part of the electrophoretogram, designated as α-Amy-B7. Determine the distance of the locus to factor α-Amy-B6.

  13. Energy conservation and fuel substitution in Ube Kosan

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    After describing various changes in the Ube Kosan of Japan, an account is given of the history of the energy changeover and conservation being promoted by this company, together with details of the results of these measures and the company structures involved. Topics mentioned include imports of coal, the changeover to coal as a heat source in the production of cement and for the company's private power generation, the establishment of a coal centre, the organization of the drive towards energy conservation, the adoption of the SAVE technique, feedstock substitution, and the state of development of new processes.

  14. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-02-24

    Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.

  15. Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition.

    Science.gov (United States)

    Chen, Min-Yan; Chen, Ze-Zhong; Wu, Ling-Ling; Tang, Hong-Wu; Pang, Dai-Wen

    2013-11-12

    We report an indirect method for cancer cell recognition using photostable fluorescent silica nanoprobes as biological labels. The dye-doped fluorescent silica nanoparticles were synthesized using the water-in-oil (W/O) reverse microemulsion method. The silica matrix was produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3·H2O). Fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate conjugated with dextran (RBITC-Dextran) was doped in silica nanoparticles (NPs) with a size of 60 ± 5 nm as a fluorescent signal element by covalent bonding and steric hindrance, respectively. The secondary antibody, goat anti-rabbit IgG, was conjugated on the surface of the PEG-terminated modified FITC-doped or RBITC-Dextran-doped silica nanoparticles (PFSiNPs or PBSiNPs) by covalent binding to the PEG linkers using the cyanogen bromide method. The concentrations of goat anti-rabbit IgG covering the nanoprobes were quantified via the Bradford method. In the proof-of-concept experiment, an epithelial cell adhesion molecule (EpCAM) on the human breast cancer SK-Br-3 cell surface was used as the tumor marker, and the nanoparticle functionalized with rabbit anti-EpCAM antibody was employed as the nanoprobe for cancer cell recognition. Compared with fluorescent dye labeled IgG (FITC-IgG and RBITC-IgG), the designed nanoprobes display dramatically increased stability of fluorescence as well as photostability under continuous irradiation.

  16. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway.

    Science.gov (United States)

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  17. Glucose 6-phosphate dehydrogenase variants in Japan.

    Science.gov (United States)

    Miwa, S

    1980-01-01

    Fifty-four cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency have so far been reported in Japan. Among them, 21 G6PD variants have been characterized. Nineteen out of the 21 variants were characterized in our laboratory and G6PD Heian and "Kyoto" by others. G6PD Tokyo, Tokushima, Ogikubo, Kurume, Fukushima, Yokohama, Yamaguchi, Wakayama, Akita, Heian and "Kyoto" were classified as Class 1, because all these cases showed chronic hemolytic anemia and severe enzyme deficiency. All these variants showed thermal instability. G6PD Mediterranean-like, Ogori, Gifu and Fukuoka were classified as Class 2, whereas G6PD Hofu, B(-) Chinese, Ube, Konan, Kamiube and Kiwa belonged to Class 3. All the 6 Class 3 variants were found as the results of the screening tests. The incidence of the deficiency in Japanese seems to be 0.1-0.5% but that of the cases which may slow drug-induced hemolysis would be much less. G6PD Ube and Konan appear to be relatively common in Japan.

  18. Identification, purification and partial characterisation of an oligonucleotide receptor in membranes of HepG2 cells

    OpenAIRE

    Diesbach, Philippe de; Berens, Catherine; N’Kuli, Francisca; Monsigny, Michel; Sonveaux, Etienne; Wattiez, Ruddy; Courtoy, Pierre J.

    2000-01-01

    The low and unpredictable uptake and cytosolic transfer of oligonucleotides (ODN) is a major reason for their limited benefit. Improving the ODN potential for therapy and research requires a better understanding of their receptor-mediated endocytosis. We have undertaken to identify a membrane ODN receptor on HepG2 cells by ligand blotting of cell extracts with [(125)I]ODN and by photolabelling of living cells with a [(125)I]ODN-benzophenone conjugate. A major band at 66 kDa was identified by ...

  19. Prediction and Identification of Potential Immunodominant Epitopes in Glycoproteins B, C, E, G, and I of Herpes Simplex Virus Type 2

    Directory of Open Access Journals (Sweden)

    Mingjie Pan

    2012-01-01

    Full Text Available Twenty B candidate epitopes of glycoproteins B (gB2, C (gC2, E (gE2, G (gG2, and I (gI2 of herpes simplex virus type 2 (HSV-2 were predicted using DNAstar, Biosun, and Antheprot methods combined with the polynomial method. Subsequently, the biological functions of the peptides were tested via experiments in vitro. Among the 20 epitope peptides, 17 could react with the antisera to the corresponding parent proteins in the EIA tests. In particular, five peptides, namely, gB2466–473 (EQDRKPRN, gC2216–223 (GRTDRPSA, gE2483–491 (DPPERPDSP, gG2572–579 (EPPDDDDS, and gI2286-295 (CRRRYRRPRG had strong reaction with the antisera. All conjugates of the five peptides with the carrier protein BSA could stimulate mice into producing antibodies. The antisera to these peptides reacted strongly with the corresponding parent glycoproteins during the Western Blot tests, and the peptides reacted strongly with the antibodies against the parent glycoproteins during the EIA tests. The antisera against the five peptides could neutralize HSV-2 infection in vitro, which has not been reported until now. These results suggest that the immunodominant epitopes screened using software algorithms may be used for virus diagnosis and vaccine design against HSV-2.

  20. NGR-peptide-drug conjugates with dual targeting properties.

    Directory of Open Access Journals (Sweden)

    Kata Nóra Enyedi

    Full Text Available Peptides containing the asparagine-glycine-arginine (NGR motif are recognized by CD13/aminopeptidase N (APN receptor isoforms that are selectively overexpressed in tumor neovasculature. Spontaneous decomposition of NGR peptides can result in isoAsp derivatives, which are recognized by RGD-binding integrins that are essential for tumor metastasis. Peptides binding to CD13 and RGD-binding integrins provide tumor-homing, which can be exploited for dual targeted delivery of anticancer drugs. We synthesized small cyclic NGR peptide-daunomycin conjugates using NGR peptides of varying stability (c[KNGRE]-NH2, Ac-c[CNGRC]-NH2 and the thioether bond containing c[CH2-CO-NGRC]-NH2, c[CH2-CO-KNGRC]-NH2. The cytotoxic effect of the novel cyclic NGR peptide-Dau conjugates were examined in vitro on CD13 positive HT-1080 (human fibrosarcoma and CD13 negative HT-29 (human colon adenocarcinoma cell lines. Our results confirm the influence of structure on the antitumor activity and dual acting properties of the conjugates. Attachment of the drug through an enzyme-labile spacer to the C-terminus of cyclic NGR peptide resulted in higher antitumor activity on both CD13 positive and negative cells as compared to the branching versions.

  1. Protein Modification with Amphiphilic Block Copoly(2-oxazoline)s as a New Platform for Enhanced Cellular Delivery

    KAUST Repository

    Tong, Jing; Luxenhofer, Robert; Yi, Xiang; Jordan, Rainer; Kabanov, Alexander V.

    2010-01-01

    Several homopolymers, random copolymers and block copolymers based on poly(2-oxazoline)s (POx) were synthesized and conjugated to horseradish peroxidase (HRP) using biodegradable and nonbiodegradable linkers. These conjugates were characterized by amino group titration, polyacrylamide gel electrophoresis (PAGE), isoelectric focusing, enzymatic activity assay and conformation analysis. The conjugates contained on average from about one to two polymer chains per enzyme. From 70% to 90% of enzymatic activity was retained in most cases. Circular dichroism (CD) analysis revealed that HRP modification affected the secondary structure of the apoprotein but did not affect the tertiary structure and heme environment. Enhanced cellular uptake was found in the conjugates of two block copolymers using both MDCK cells and Caco-2 cells, but not in the conjugates of random copolymer and homopolymer. Conjugation with a block copolymer of 2-methyl-2-oxazoline and 2-butyl-2-oxazoline led to the highest cellular uptake as compared to other conjugates. Our data indicates that modification with amphiphilic POx has the potential to modulate and enhance cellular delivery of proteins.

  2. Protein Modification with Amphiphilic Block Copoly(2-oxazoline)s as a New Platform for Enhanced Cellular Delivery

    KAUST Repository

    Tong, Jing

    2010-08-02

    Several homopolymers, random copolymers and block copolymers based on poly(2-oxazoline)s (POx) were synthesized and conjugated to horseradish peroxidase (HRP) using biodegradable and nonbiodegradable linkers. These conjugates were characterized by amino group titration, polyacrylamide gel electrophoresis (PAGE), isoelectric focusing, enzymatic activity assay and conformation analysis. The conjugates contained on average from about one to two polymer chains per enzyme. From 70% to 90% of enzymatic activity was retained in most cases. Circular dichroism (CD) analysis revealed that HRP modification affected the secondary structure of the apoprotein but did not affect the tertiary structure and heme environment. Enhanced cellular uptake was found in the conjugates of two block copolymers using both MDCK cells and Caco-2 cells, but not in the conjugates of random copolymer and homopolymer. Conjugation with a block copolymer of 2-methyl-2-oxazoline and 2-butyl-2-oxazoline led to the highest cellular uptake as compared to other conjugates. Our data indicates that modification with amphiphilic POx has the potential to modulate and enhance cellular delivery of proteins.

  3. Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

    Science.gov (United States)

    Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401

  4. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes

    Directory of Open Access Journals (Sweden)

    Alice Varghese

    2015-01-01

    Full Text Available Terminalia arjuna is a tree having an extensive medicinal potential in cardiovascular disorders. Triterpenoids are mainly responsible for cardiovascular properties. Alcoholic and aqueous bark extracts of T. arjuna, arjunic acid, arjunetin and arjungenin were evaluated for their potential to inhibit CYP3A4, CYP2D6 and CYP2C9 enzymes in human liver microsomes. We have demonstrated that alcoholic and aqueous bark extract of T. arjuna showed potent inhibition of all three enzymes in human liver microsomes with IC50 values less than 50 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP enzymes in human liver microsomes. Enzyme kinetics studies suggested that the extracts of arjuna showed reversible non-competitive inhibition of all the three enzymes in human liver microsomes. Our findings suggest strongly that arjuna extracts significantly inhibit the activity of CYP3A4, CYP2D6 and CYP2C9 enzymes, which is likely to cause clinically significant drug–drug interactions mediated via inhibition of the major CYP isozymes.

  5. Baculovirus-expressed constructs induce immunoglobulin G that recognizes VAR2CSA on Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Barfod, Lea; Nielsen, Morten A; Turner, Louise

    2006-01-01

    We raised specific antisera against recombinant VAR2CSA domains produced in Escherichia coli and in insect cells. All were reactive in enzyme-linked immunosorbent assay, but only insect cell-derived constructs induced immunoglobulin G (IgG) that was reactive with native VAR2CSA on the surface...

  6. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB.

    Science.gov (United States)

    Roussel, Benoit D; Newton, Timothy M; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E; Burr, Marian L; Lehner, Paul J; Crowther, Damian C; Marciniak, Stefan J; Lomas, David A

    2013-11-15

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.

  7. Relationship between symmetry of porphyrinic pi-conjugated systems and singlet oxygen (1Delta g) yields: low-symmetry tetraazaporphyrin derivatives.

    Science.gov (United States)

    Ishii, Kazuyuki; Itoya, Hatsumi; Miwa, Hideya; Fujitsuka, Mamoru; Ito, Osamu; Kobayashi, Nagao

    2005-07-07

    We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology

  8. Key enzymes of gluconeogenesis are dose-dependently reduced in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Weber, L.W.D.; Rozman, K. (Kansas Univ., Kansas City, KS (USA). Dept. of Pharmacology, Toxicology and Therapeutics Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF), Neuherberg (Germany, F.R.). Inst. fuer Toxikologie); Lebofsky, M. (Kansas Univ., Kansas City, KS (USA). Dept. of Pharmacology, Toxicology and Therapeutics); Greim, H. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF), Neuherberg (Germany, F.R.). Inst. fuer Toxikologie)

    1991-02-01

    Male Sprague-Dawley rats (240-245 g) were dosed ip with 5, 15, 25, or 125 {mu}g/kg -,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in corn oil. Ad libitum-fed and pair-fed controls received vehicle (4 ml/kg) alone. Two or 8 days after dosing five rats of each group were sacrificed, their livers removed and assayed for the activities of three gluconeogenic enzymes, (phosphoenol-pyruvate carboxykinase (PEPCK; EC 4.1.1.32), pyruvate carboxylase (PC; EC 6.4.1.1.), and glucose-6-phosphatase (G-6-Pase, EC 3.1.3.9)), and one glycolytic enzyme (pyruvate kinase (PK; EC 2.7.1.40)) by established procedures. The activity of PK was not affected by TCDD at either time point. The activity of G-6-Phase tended to be decreased in TCDD-treated animals, as compared to pair-fed controls, but the decrease was variable without an apparent dose-response. The activity of PEPCK was significantly decreased 2 days after dosing, but a clear dose-response was apparent only at the 8-day time point. Maximum loss of activity at the highest dose was 56% below pair-fed control levels. PC activity was slightly decreased 2 days after TCDD treatment and displayed statistically significant, dose-dependent reduction by 8 days after dosing with a 49% loss of enzyme activity after the highest dose. It is concluded that inhibition of gluconeogenesis by TCDD previously demonstrated in vivo is probably due to decreased activities of PEPCK and PC. The data also support the prevailing view that PEPCK and PC are rate-determining enzymes in gluconeogenesis. (orig.).

  9. Non-orthogonally transitive G2 spike solution

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2015-01-01

    We generalize the orthogonally transitive (OT) G 2 spike solution to the non-OT G 2 case. This is achieved by applying Geroch’s transformation on a Kasner seed. The new solution contains two more parameters than the OT G 2 spike solution. Unlike the OT G 2 spike solution, the new solution always resolves its spike. (fast track communication)

  10. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate.

    Science.gov (United States)

    Shi, Jia; Zhou, Songlei; Kang, Le; Ling, Hu; Chen, Jiepeng; Duan, Lili; Song, Yanzhi; Deng, Yihui

    2018-02-01

    Numerous studies have recently shown that vitamin K 2 (VK 2 ) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK 2 in vivo. The antitumor effects of VK 2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK 2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid-cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK 2 distribution to the tumor tissue. VK 2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK 2 nanoemulsions significantly suppressed the tumor growth. The VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate showed higher tumor growth suppression than the VK 2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK 2 exerted effective antitumor effects in vivo, and VK 2 nanoemulsions modified with sialic acid-cholesterol conjugate enhanced the antitumor activity, suggesting that these VK 2 may be promising agents for the prevention or treatment of tumor in patients.

  11. G 2 reactor project; Projet de pile a double fin: G 2

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, [Electricite de France (EDF), Dir. General des Etudes de Recherches, 75 - Paris (France); Taranger, P; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA actually constructs the G-2 reactor core working with natural uranium, which will use graphite as moderator, and gas under pressure as cooling fluid. This report presents the specificity of the new reactor: - the different elements of the reactor core, - the control and the security of the reactor, - the renewal of the fuel, - the biologic surrounding wall, - and the cooling circuit. (M.B.) [French] le Commissariat a l'Energie Atomique construit actuellement la pile G-2 a Uranium naturel, qui utilisera le graphite comme moderateur, et le gaz sous pression comme fluide de refroidissement. Ce rapport presente les specificite du nouveau reacteur: - les differents elements de la pile, - le controle et la securite du reacteur, - le renouvellement du combustible, - l'enceinte biologique, - et le circuit de refroidissement. (M.B.)

  12. Study on radiation grafting of NASI on sephadex and conjugation of the copolymer with BSA

    International Nuclear Information System (INIS)

    Yi Min; Li Jun; Wei Jinshan; Ha Hongfei

    1997-01-01

    N-acryloxysuccinimide (NASI) with a function ester group is grafted on Sephadex G75 and Sephadex G50 separately by radiation technology. The radiation grafting conditions including absorbed dose, dose rate, monomer concentration in solvent are investigated. The conjugation reactions between the grafted copolymers Sephadex G75-NASI, and bovine serum albumin (BSA) or Sephadex G50-NASI and bovine serum albumin (BSA) are followed. The experiment results show that the conjugate of Sephadex G75-NASI with larger holes and BSA (M r = 6.6 x 10 4 ) is obtained successfully, however, the Sephadex G50 with small holes can be only conjugated with neutral red (M r = 2.58 x 10 2 )

  13. Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus.

    Science.gov (United States)

    Kakitani, Yoshinori; Fujii, Ritsuko; Hayakawa, Yoshihiro; Kurahashi, Masahiro; Koyama, Yasushi; Harada, Jiro; Shimada, Keizo

    2007-06-19

    Rubrivivax gelatinosus having both the spheroidene and spirilloxanthin biosynthetic pathways produces carotenoids (Cars) with a variety of conjugated chains, which consist of different numbers of conjugated double bonds (n), including the C=C (m) and C=O (o) bonds. When grown under anaerobic conditions, the wild type produces Cars for which n = m = 9-13, whereas under semiaerobic conditions, it additionally produces Cars for which n = m + o = 10 + 1, 13 + 1, and 13 + 2. On the other hand, a mutant, in which the latter pathway is genetically blocked, produces only Cars for which n = 9 and 10 under anaerobic conditions and n = 9, 10, and 10 + 1 under semianaerobic conditions. Those Cars that were extracted from the LH2 complex (LH2) and the reaction center (RC), isolated from the wild-type and the mutant Rvi. gelatinosus, were analyzed by HPLC, and their structures were determined by mass spectrometry and 1H NMR spectroscopy. The selective binding of Cars to those pigment-protein complexes has been characterized as follows. (1) Cars with a shorter conjugated chain are selectively bound to LH2 whereas Cars with a longer conjugated chain to the RC. (2) Shorter chain Cars with a hydroxyl group are bound to LH2 almost exclusively. This rule holds either in the absence or in the presence of the keto group. The natural selection of shorter chain Cars by LH2 and longer chain Cars by the RC is discussed, on the basis of the results now available, in relation to the light-harvesting and photoprotective functions of Cars.

  14. Dynamics of anti-VAR2CSA immunoglobulin G response in a cohort of senegalese pregnant women

    DEFF Research Database (Denmark)

    Tuikue Ndam, N G; Salanti, A; Le-Hesran, J-Y

    2006-01-01

    demonstrated that a single P. falciparum infection was able to trigger a VAR2CSA-specific antibody response. Among women with infected placentas, women with high anti-VAR2CSA IgG levels at enrollment were more likely to present with a past infection than with an acute/chronic infection. CONCLUSIONS: Anti-VAR2...... (VSAPAM). Several studies have shown that 1 var gene, var2csa, is transcribed at high levels and expressed in CSA-binding Plasmodium falciparum parasites. METHODS: Plasma levels of anti-VAR2CSA immunoglobulin G (IgG) in Senegalese women were measured during pregnancy by enzyme-linked immunosorbent assay......, using 3 recombinant proteins representing 3 domains of the var2csa gene product. RESULTS: The 3 recombinant proteins were specifically recognized by plasma from pregnant women but not by control plasma. A parity-dependent recognition pattern was observed with 2 of the 3 VAR2CSA antigens. A kinetic study...

  15. Facile synthesis of a conjugation-grafted-TiO2 nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    Science.gov (United States)

    Guo, Yanru; Zhang, Min; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun

    2016-08-01

    A conjugation-grafted-TiO2 nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO2 through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO2 and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA's pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron-hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO2 nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  16. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708

    OpenAIRE

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    Conjugated polyketone reductase C2 from C. parapsilosis IFO 0708 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. The crystal belonged to space group P212121 and diffracted X-rays to 1.7 Å resolution.

  17. HepG2 human hepatocarcinomas cells sensitization by endogenous porphyrins

    Science.gov (United States)

    Vonarx-Coinsmann, Veronique; Foultier, Marie-Therese; de Brito, Leonor X.; Morlet, Laurent; Patrice, Thierry

    1995-03-01

    We assessed the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA and analyzed ALA-induced toxicity and phototoxicity on this cell line. ALA induced a slight dose-dependent dark toxicity, with 79 and 66% cell survival respectively for ALA 50 and 100 mg/ml after 3-h incubation. Whereas the same treatment followed by laser irradiation (l equals 632 nm, 25 J/sq cm) induced dose-dependent phototoxicity, with 54 and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3-h delay before light exposure was found optimal to reach a maximal phototoxicity. Photoproducts induced by porphyrin light irradiation absorbed light in the red spectral region at longer wavelengths than did the original porphyrins. The possible enhancement of PDT effects after ALA HepG2 cell incubation was investigated by irradiating cells successively with red light (l equals 632 nm) and light (l equals 650 nm). Total fluence was kept constant at 25 J/sq cm. Phototoxicity was lower when cells were irradiated for increased periods of l equals 650 nm light than with l equals 632 nm light alone. Any photoproducts involved had either a short life or were poorly photoreactive. HepG2 cells, synthesizing enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX-PDT.

  18. Conjugated nanoliposome with the HER2/neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model.

    Directory of Open Access Journals (Sweden)

    Atefeh Razazan

    Full Text Available One of the challenging issues in vaccine development is peptide and adjuvant delivery into target cells. In this study, we developed a vaccine and therapeutic delivery system to increase cytotoxic T lymphocyte (CTL response against a breast cancer model overexpressing HER2/neu. Gp2, a HER2/neu-derived peptide, was conjugated to Maleimide-mPEG2000-DSPE micelles and post inserted into liposomes composed of DMPC, DMPG phospholipids, and fusogenic lipid dioleoylphosphatidylethanolamine (DOPE containing monophosphoryl lipid A (MPL adjuvant (DMPC-DMPG-DOPE-MPL-Gp2. BALB/c mice were immunized with different formulations and the immune response was evaluated in vitro and in vivo. ELISpot and intracellular cytokine analysis by flow cytometry showed that the mice vaccinated with Lip-DOPE-MPL-GP2 incited the highest number of IFN-γ+ in CD8+ cells and CTL response. The immunization led to lower tumor sizes and longer survival time compared to the other groups of mice immunized and treated with the Lip-DOPE-MPL-GP2 formulation in both prophylactic and therapeutic experiments. These results showed that co-formulation of DOPE and MPL conjugated with GP2 peptide not only induces high antitumor immunity but also enhances therapeutic efficacy in TUBO mice model. Lip-DOPE-MPL-GP2 formulation could be a promising vaccine and a therapeutic delivery system against HER2 positive cancers and merits further investigation.

  19. Naphtho[1,2-b:5,6-b']dithiophene-Based Conjugated Polymers for Fullerene-Free Inverted Polymer Solar Cells.

    Science.gov (United States)

    Jiang, Zhaoyan; Li, Huan; Wang, Zhen; Zhang, Jianqi; Zhang, Yajie; Lu, Kun; Wei, Zhixiang

    2018-03-23

    Three novel copolymers based on zigzag naphthodithiophene (zNDT) with different aromatic rings as π bridges and different core side substitutions are designed and synthesized (PzNDT-T-1,3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione (BDD), PzNDT-TT-BDD, and PzNDTP-T-BDD, respectively). The 2D conjugation structure and molecular planarity of the polymers can be effectively altered through the modification of conjugated side chains and π-bridges. These alterations contribute to the variation in energy levels, light absorption capacity, and morphology compatibility of the polymers. When blended with the nonfullerene acceptor (2,2'-[(4,4,9,9-tetrahexyl-4,9-dihydro-sindaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)

  20. Prevalence of abnormal plasma liver enzymes in older people with Type 2 diabetes.

    Science.gov (United States)

    Morling, J R; Strachan, M W J; Hayes, P C; Butcher, I; Frier, B M; Reynolds, R M; Price, J F

    2012-04-01

    To determine the prevalence and distribution of abnormal plasma liver enzymes in a representative sample of older adults with Type 2 diabetes. Plasma concentrations of alanine aminotransferase, aspartate aminotransferase and γ-glutamyltransferase were measured in a randomly selected, population-based cohort of 1066 men and women aged 60-75 years with Type 2 diabetes (the Edinburgh Type 2 Diabetes Study). Overall, 29.1% (95% CI 26.1-31.8) of patients had one or more plasma liver enzymes above the upper limit of the normal reference range. Only 10.1% of these patients had a prior history of liver disease and a further 12.4% reported alcohol intake above recommended limits. Alanine aminotransferase was the most commonly raised liver enzyme (23.1% of patients). The prevalence of abnormal liver enzymes was significantly higher in men (odds ratio 1.40, 95% CI 1.07-1.83), in the youngest 5-year age band (odds ratio 2.02, 95% CI 1.44-2.84), in patients with diabetes duration enzyme abnormality. The prevalence of elevated liver enzymes in people with Type 2 diabetes is high, with only modest variation between clinically defined patient groups. Further research is required to determine the prognostic value of raised, routinely measured liver enzymes to inform decisions on appropriate follow-up investigations. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  1. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  2. Up-Regulation of CYP2C19 Expression by BuChang NaoXinTong via PXR Activation in HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available Cytochrome P450 2C19 (CYP2C19 is an important drug-metabolizing enzyme (DME, which is responsible for the biotransformation of several kinds of drugs such as proton pump inhibitors, platelet aggregation inhibitors and antidepressants. Previous studies showed that Buchang NaoXinTong capsules (NXT increased the CYP2C19 metabolic activity in vitro and enhanced the antiplatelet effect of clopidogrel in vivo. However, the underlying molecular mechanism remained unclear. In the present study, we examined whether Pregnane X receptor (PXR plays a role in NXT-mediated regulation of CYP2C19 expression.We applied luciferase assays, real-time quantitative PCR (qPCR, Western blotting and cell-based analysis of metabolic activity experiments to investigate the NXT regulatory effects on the CYP2C19 promoter activity, the mRNA/ protein expression and the metabolic activity.Our results demonstrated that NXT significantly increased the CYP2C19 promoter activity when co-transfected with PXR in HepG2 cells. Mutations in PXR responsive element abolished the NXT inductive effects on the CYP2C19 promoter transcription. Additionally, NXT incubation (150 and 250μg/mL also markedly up-regulated endogenous CYP2C19 mRNA and protein levels in PXR-transfected HepG2 cells. Correspondingly, NXT leaded to a significant enhancement of the CYP2C19 catalytic activity in PXR-transfected HepG2 cells.In summary, this is the first study to suggest that NXT could induce CYP2C19 expression via PXR activation.

  3. Measuring the performance of G2G services in Iran

    Science.gov (United States)

    Zarei, Behrouz; Safdari, Maryam

    To highlight the growth of e-government and the importance of its services it is essential to evaluate the performance of the service delivery to customers. Research indicates that traditional performance indexes are not suitable for this evaluation; moreover, it is noticeable that the e-government services are intangible and invisible. Among different e-government services, measurement of quality government to government (G2G) services has been less attractive for researchers while crucial for government policy-makers. This calls for a better understanding of the specific needs of users of these services in order to provide appropriate type and level of services that meets those needs. In this paper, the performance of the G2G services is measured in the Iranian context. For this purpose, SERVQUAL, which is a well-known method for assessing service quality, is employed. This study proposes and tests a five-factor of SERVQUAL instrument to explain user satisfaction and gap analysis, between expectations and perceptions of its customers, consisting thirty ministries and main governmental organizations. Based on a Chi-square test, factor analysis, gap analysis and correlations, it is concluded the gap between expectations and perceptions of G2G customers is significant and customer satisfaction of G2G services is at low level.

  4. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers.

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J; Sforazzini, Giuseppe; Anderson, Harry L; Pullerits, Tõnu; Scheblykin, Ivan G

    2015-10-19

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  5. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

    Science.gov (United States)

    Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2018-01-01

    The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bioavailability of Echinacea Constituents: Caco-2 Monolayers and Pharmacokinetics of the Alkylamides and Caffeic Acid Conjugates

    Directory of Open Access Journals (Sweden)

    R. Lehmann

    2005-10-01

    Full Text Available Many studies have been done over the years to assess the effectiveness of Echinacea as an immunomodulator. We have assessed the potential bioavailability of alkyl- amides and caffeic acid conjugates using Caco-2 monolayers and compared it to their actual bioavailability in a Phase I clinical trial. The caffeic acid conjugates permeated poorly through the Caco-2 monolayers. Alkylamides were found to diffuse rapidly through Caco-2 monolayers. Differences in diffusion rates for each alkylamide correlated to structural variations, with saturation and N-terminal methylation contributing to decreases in diffusion rates. Alkylamide diffusion is not affected by the presence of other constituents and the results for a synthetic alkylamide were in line with those for alkylamides found in an ethanolic Echinacea preparation. We examined plasma from healthy volunteers for 12 hours after ingestion of Echinacea tablets manufactured from an ethanolic liquid extract. Caffeic acid conjugates could not be identified in any plasma sample at any time after tablet ingestion. Alkylamides were detected in plasma 20 minutes after tablet ingestion and for each alkylamide, pharmacokinetic profiles were devised. The data are consistent with the dosing regimen of one tablet three times daily and supports their usage as the primary markers for quality Echinacea preparations.

  7. Direct Electrochemistry of Horseradish Peroxidase-Gold Nanoparticles Conjugate

    Directory of Open Access Journals (Sweden)

    Chanchal K. Mitra

    2009-02-01

    Full Text Available We have studied the direct electrochemistry of horseradish peroxidase (HRP coupled to gold nanoparticles (AuNP using electrochemical techniques, which provide some insight in the application of biosensors as tools for diagnostics because HRP is widely used in clinical diagnostics kits. AuNP capped with (i glutathione and (ii lipoic acid was covalently linked to HRP. The immobilized HRP/AuNP conjugate showed characteristic redox peaks at a gold electrode. It displayed good electrocatalytic response to the reduction of H2O2, with good sensitivity and without any electron mediator. The covalent linking of HRP and AuNP did not affect the activity of the enzyme significantly. The response of the electrode towards the different concentrations of H2O2 showed the characteristics of Michaelis Menten enzyme kinetics with an optimum pH between 7.0 to 8.0. The preparation of the sensor involves single layer of enzyme, which can be carried out efficiently and is also highly reproducible when compared to other systems involving the layer-by-layer assembly, adsorption or encapsulation of the enzyme. The immobilized AuNP-HRP can be used for immunosensor applications

  8. Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine

    International Nuclear Information System (INIS)

    Dekant, W.; Lash, L.H.; Anders, M.W.

    1987-01-01

    The bioactivation of S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFC) was studied with purified bovine kidney cysteine conjugate β-lyase and with N-dodecylpyridoxal bromide in cetyltrimethylammonium bromide micelles as a pyridoxal model system. The β-lyase and the pyridoxal model system converted CTFC to chlorofluoroacetic acid and inorganic fluoride, which were identified by 19 F NMR spectrometry. 2-Chloro-1,1,2-trifluoroethanethiol and chlorofluorothionoacetyl fluoride were formed as metabolites of CTFC and were trapped with benzyl bromide and diethylamine, respectively, to yield benzyl 2-chloro-1,1,2-trifluoroethyl sulfide and N,N-diethyl chlorofluorothioacetamide, which were identified by gas chromatography/mass spectrometry. The bioactivation mechanism of CTFC therefore involves the initial formation of the unstable thiol 2-chloro-1,1,2-trifluoroethanethiol, which loses hydrogen fluoride to form the acylating agent chlorofluorothionoacetyl fluoride; hydrolysis of the thionoacyl fluoride affords the stable, terminal metabolites chlorofluoroacetic acid and inorganic fluoride. The intermediate acylating agent and chlorofluoroacetic acid may contribute to the cytotoxic effects of CTFC

  9. Alkylated indacenodithieno[3,2-b]thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors

    KAUST Repository

    Lu, Rimei; Han, Yang; Zhang, Weimin; Zhu, Xiuxiu; Fei, Zhuping; Hodsden, Thomas; Anthopoulos, Thomas D.; Heeney, Martin

    2018-01-01

    We report the synthesis of a series of indacenodithieno[3,2-b]thiophene (IDTT) based conjugated polymers by copolymerization with three different electron rich co-monomers [thiophene (T), thieno[3,2-b]thiophene (TT) and dithieno[3,2-b:2',3'-d

  10. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  11. Aqueous slip casting of MgAl2O4 spinel powder

    Indian Academy of Sciences (India)

    The reaction proceeds by counter diffusion of the cations through the product layer, .... tain powders, such as Ube E10 silicon nitride Starck, B10 silicon carbide .... 779 kg/mm2 for a nanocrystalline dense MAS consolidated by aqueous slip ...

  12. Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay

    Directory of Open Access Journals (Sweden)

    Mayra Janeth Esparza-Araiza

    2015-12-01

    Full Text Available Clavibacter michiganensis subsp. michiganensis (Cmm causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI transcript in resistant S. peruvianum compared to susceptible S. lycopersicum following infection by Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of the gene from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS vector based on the geminivirus Tomato Mottle Virus (ToMoV. Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, which resulted in leaf bleaching. The ToMoV_SCEI construct resulted in approx. 61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. VIGS of SCEI in S. peruvianum resulted in unilateral wilting (15 dpi and subsequent death (20 dpi of the entire plant after Cmm inoculation, whereas empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. SCEI-silenced plants also showed higher Cmm colonization with an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of WRKY transcription factors, which may lead to expression of proteins involved in salicylic acid-dependent defense responses.

  13. PEG conjugates in clinical development or use as anticancer agents: an overview.

    Science.gov (United States)

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  14. Transmission of electric fields and photoelectron fluxes between conjugate ionospheric F2-regions

    International Nuclear Information System (INIS)

    Petelski, E.F.

    1975-01-01

    The dynamic behaviour of the ionospheric F2-layer requires considerable vertical transport of ionization. Possible causes of such transport are ambipolar diffusion, neutral air winds and electric fields. Here mid-latitude electric fields are investigated. Real height variations of the F2-layer indicate that the phases and amplitudes of these fields are similar at well conjugate points and that the field strengths can become unexpectedly high. It is further shown that photoelectrons can migrate between the two hemispheres along the geomagnetic field lines. (orig.) [de

  15. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pool-Zobel, Beatrice [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany)]. E-mail: b8pobe@uni-jena.de; Veeriah, Selvaraju [Department of Nutritional Toxicology, Institute for Nutrition, Friedrich Schiller University Jena, 07743 Jena (Germany); Boehmer, Frank-D. [Institute of Molecular Cell Biology, University Hospital, Friedrich Schiller University Jena, 07743 Jena (Germany)

    2005-12-11

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  16. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis

    International Nuclear Information System (INIS)

    Pool-Zobel, Beatrice; Veeriah, Selvaraju; Boehmer, Frank-D.

    2005-01-01

    There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens. Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance, frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereby reducing exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental animals to tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive response element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-like ECH associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap-Nrf2 complex, allowing Nrf2 to translocate to the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate, a product of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone acetylation. GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in cellular susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reducing cancer risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In the

  17. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Zaręba, Magdalena; Wałajtys-Rode, Elżbieta; Wołowiec, Stanisław

    2017-01-15

    In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G3 4B . The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G3 4B28gh or with one fluorescein equivalent (attached by reaction of G3 4B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G3 4B27gh1F . As a control the G3 substituted totally with 32 glucoheptoamide residues, G3 gh and its fluorescein labeled analogue G3 31gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1 H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G3 4B28gh1F' and G3 32ghF' , with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in

  18. Atomic force microscopy recognition of protein A on Staphylococcus aureus cell surfaces by labelling with IgG-Au conjugates.

    Science.gov (United States)

    Tatlybaeva, Elena B; Nikiyan, Hike N; Vasilchenko, Alexey S; Deryabin, Dmitri G

    2013-01-01

    The labelling of functional molecules on the surface of bacterial cells is one way to recognize the bacteria. In this work, we have developed a method for the selective labelling of protein A on the cell surfaces of Staphylococcus aureus by using nanosized immunogold conjugates as cell-surface markers for atomic force microscopy (AFM). The use of 30-nm size Au nanoparticles conjugated with immunoglobulin G (IgG) allowed the visualization, localization and distribution of protein A-IgG complexes on the surface of S. aureus. The selectivity of the labelling method was confirmed in mixtures of S. aureus with Bacillus licheniformis cells, which differed by size and shape and had no IgG receptors on the surface. A preferential binding of the IgG-Au conjugates to S. aureus was obtained. Thus, this novel approach allows the identification of protein A and other IgG receptor-bearing bacteria, which is useful for AFM indication of pathogenic microorganisms in poly-component associations.

  19. Presence of Tritium in the Cooling Circuits of the Reactors G2 and G3; Presence de tritium dans les circuits de refroidissement des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Estournel, R [Commissariat a l' Energie Atomique. Centre de Production de Plutonium de Marcoule, 30 - Chusclan (France)

    1962-07-01

    In a reactor of the G 2-G 3 type, tritium can be formed by the neutronic bombardment of many elements present in the core. Tritium was found to be present in the cooling circuits of the reactors G 2 and G 3 in the water coming from the regeneration of the CO{sub 2} dehydrating columns. (author) [French] Dans un reacteur du type G 2 - G 3, le tritium peut etre forme par le bombardement. neutronique de nombreux elements existant dans le c r. La presence de tritium dans les circuits de refroidissement des reacteurs G 2 - G 3 a ete mis en evidence dans l'eau provenant de la regeneration des colonnes de deshydratation du CO{sub 2}. (auteur)

  20. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2013-03-01

    Full Text Available The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.

  1. The Positive Correlation of the Enhanced Immune Response to PCV2 Subunit Vaccine by Conjugation of Chitosan Oligosaccharide with the Deacetylation Degree.

    Science.gov (United States)

    Zhang, Guiqiang; Cheng, Gong; Jia, Peiyuan; Jiao, Siming; Feng, Cui; Hu, Tao; Liu, Hongtao; Du, Yuguang

    2017-07-26

    Chitosan oligosaccharides (COS), the degraded products of chitosan, have been demonstrated to have versatile biological functions. In primary studies, it has displayed significant adjuvant effects when mixed with other vaccines. In this study, chitosan oligosaccharides with different deacetylation degrees were prepared and conjugated to porcine circovirus type 2 (PCV2) subunit vaccine to enhance its immunogenicity. The vaccine conjugates were designed by the covalent linkage of COSs to PCV2 molecules and administered to BALB/c mice three times at two-week intervals. The results indicate that, as compared to the PCV2 group, COS-PCV2 conjugates remarkably enhanced both humoral and cellular immunity against PCV2 by promoting lymphocyte proliferation and initiating a mixed T-helper 1 (Th1)/T-helper 2 (Th2) response, including raised levels of PCV2-specific antibodies and an increased production of inflammatory cytokines. Noticeably, with the increasing deacetylation degree, the stronger immune responses to PCV2 were observed in the groups with COS-PCV2 vaccination. In comparison with NACOS (chitin oligosaccharides)-PCV2 and LCOS (chitosan oligosaccharides with low deacetylation degree)-PCV2, HCOS (chitosan oligosaccharides with high deacetylation degree)-PCV2 showed the highest adjuvant effect, even comparable to that of PCV2/ISA206 (a commercialized adjuvant) group. In summary, COS conjugation might be a viable strategy to enhance the immune response to PCV2 subunit vaccine, and the adjuvant effect was positively correlated with the deacetylation degree of COS.

  2. Cytosolic phospholipase A2: a member of the signalling pathway of a new G protein α subunit in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2009-05-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus, the etiological agent of sporotrichosis, a lymphocutaneous disease that can remain localized or can disseminate, involving joints, lungs, and the central nervous system. Pathogenic fungi use signal transduction pathways to rapidly adapt to changing environmental conditions and S. schenckii is no exception. S. schenckii yeast cells, either proliferate (yeast cell cycle or engage in a developmental program that includes proliferation accompanied by morphogenesis (yeast to mycelium transition depending on the environmental conditions. The principal intracellular receptors of environmental signals are the heterotrimeric G proteins, suggesting their involvement in fungal dimorphism and pathogenicity. Identifying these G proteins in fungi and their involvement in protein-protein interactions will help determine their role in signal transduction pathways. Results In this work we describe a new G protein α subunit gene in S. schenckii, ssg-2. The cDNA sequence of ssg-2 revealed a predicted open reading frame of 1,065 nucleotides encoding a 355 amino acids protein with a molecular weight of 40.9 kDa. When used as bait in a yeast two-hybrid assay, a cytoplasmic phospholipase A2 catalytic subunit was identified as interacting with SSG-2. The sspla2 gene, revealed an open reading frame of 2538 bp and encoded an 846 amino acid protein with a calculated molecular weight of 92.62 kDa. The principal features that characterize cPLA2 were identified in this enzyme such as a phospholipase catalytic domain and the characteristic invariable arginine and serine residues. A role for SSPLA2 in the control of dimorphism in S. schenckii is suggested by observing the effects of inhibitors of the enzyme on the yeast cell cycle and the yeast to mycelium transition in this fungus. Phospholipase A2 inhibitors such as AACOCF3 (an analogue of archidonic acid and isotetrandrine (an inhibitor of G protein

  3. Protein surface labeling reactivity of N-hydroxysuccinimide esters conjugated to Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pirani, Parisa; Patil, Ujwal S.; Apsunde, Tushar Dattu; Trudell, Mark L.; Cai, Yang, E-mail: ycai@chnola-research.org; Tarr, Matthew A., E-mail: mtarr@uno.edu [University of New Orleans, Department of Chemistry (United States)

    2015-09-15

    The N-hydroxysuccinimide (NHS) ester moiety is one of the most widely used amine reactive groups for covalent conjugation of proteins/peptides to other functional targets. In this study, a cleave-analyze approach was developed to quantify NHS ester groups conjugated to silica-coated iron oxide magnetic nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs). The fluorophore dansylcadaverine was attached to Fe{sub 3}O{sub 4}@SiO{sub 2} magnetic nanoparticles (MNPs) via reaction with NHS ester groups, and then released from the MNPs by cleavage of the disulfide bond in the linker between the fluorophore and the MNPs moiety. The fluorophore released from Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs was fluorometrically measured, and the amount of fluorophore should be equivalent to the quantity of the NHS ester groups on the surface of Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs that participated in the fluorophore conjugation reaction. Another sensitive and semiquantitative fluorescence microscopic test was also developed to confirm the presence of NHS ester groups on the surface of Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs. Surface-conjugated NHS ester group measurements were primarily performed on Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs of 100–150 nm in diameter and also on 20-nm nanoparticles of the same type but prepared by a different method. The efficiency of labeling native proteins by NHS ester-coated Fe{sub 3}O{sub 4}@SiO{sub 2} MNPs was explored in terms of maximizing the number of MNPs conjugated per BSA molecule or maximizing the number of BSA molecules conjugated per each nanoparticle. Maintaining the amount of fresh NHS ester moieties in the labeling reaction system was essential especially when maximizing the number of MNPs conjugated per protein molecule. The methodology demonstrated in this study can serve as a guide in labeling the exposed portions of proteins by bulky multivalent labeling reagents.

  4. Inhibition of P-glycoprotein and multidrug resistance-associated protein 2 regulates the hepatobiliary excretion and plasma exposure of thienorphine and its glucuronide conjugate

    Directory of Open Access Journals (Sweden)

    Ling-Lei Kong

    2016-08-01

    Full Text Available Thienorphine (TNP is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic.

  5. 1,2,3-Triazole/MWCNT conjugates as filler for gelcoat nanocomposites: new active antibiofouling coatings for marine application

    International Nuclear Information System (INIS)

    Iannazzo, Daniela; Pistone, Alessandro; Visco, Annamaria; Galtieri, Giovanna; Galvagno, Signorino; Giofrè, Salvatore V; Romeo, Roberto; Romeo, Giovanni; Cappello, Simone; Bonsignore, Martina; Denaro, Renata

    2015-01-01

    A polyester-based gelcoat nanocomposite was synthesized by using as nanofiller multi-walled carbon nanotubes (MWCNTs) conjugated with a biocidal 1,2,3-triazole to be used as a new eco-friendly antibiofouling coating. 1,2,3-Triazole/MWCNT conjugates containing differently substituted 1,2,3-triazoles have been synthesized and characterized by physical, chemical, and morphological analyses. Ecotoxicological studies, performed on marine organisms belonging to different evolutive classes, provided information about the choice of the more interesting nanofiller. The synthesized gelcoat nanocomposite showed a significant improvement in the wet ability with respect to the Gelcoat alone. Preliminary biological tests performed on the nanocomposite revealed great biocidal properties, thus providing new opportunities to develop an effective antibiofouling coating. (paper)

  6. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    Science.gov (United States)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells. Electronic supplementary information (ESI) available: 13C NMR of DEX-CHO, 2D NMR spectra of DEX-CHO, 1H NMR of DEX-IM, 1H NMR of DEX-IM-DOX conjugated, absorbance spectra of DEX-IM-DOX conjugated, DLS, FE-SEM and TEM image of DEX-CHO-5, emission spectra of

  7. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification.

    NARCIS (Netherlands)

    J. van Klaveren; J. de Wit (Jan); C.G. van Gurp; M.H.M. Koken (Marcel); M. Vermey; J.H. van Roijen (Jan Herman); J.T.M. Vreeburg (Jan); W.M. Baarends (Willy); D. Bootsma (Dirk); J.A. Grootegoed (Anton); J.H.J. Hoeijmakers (Jan); H.P. Roest (Henk)

    1996-01-01

    textabstractThe ubiquitin-conjugating yeast enzyme RAD6 and its human homologs hHR6A and hHR6B are implicated in postreplication repair and damage-induced mutagenesis. The yeast protein is also required for sporulation and may modulate chromatin structure via histone ubiquitination. We report the

  8. Effect of prolonged intravenous glucose and essential amino acid infusion on nitrogen balance, muscle protein degradation and ubiquitin-conjugating enzyme gene expression in calves

    Directory of Open Access Journals (Sweden)

    Scaife Jes R

    2008-02-01

    Full Text Available Abstract Background Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose (to stimulate insulin and essential amino acids (EAA would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of

  9. The g-2 ring

    CERN Multimedia

    1974-01-01

    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  10. Small Ubiquitin-like Modifier (SUMO) Conjugation Impedes Transcriptional Silencing by the Polycomb Group Repressor Sex Comb on Midleg*

    OpenAIRE

    Smith, Matthew; Mallin, Daniel R.; Simon, Jeffrey A.; Courey, Albert J.

    2011-01-01

    The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-te...

  11. Fluorescence polarization measures energy funneling in single light-harvesting antennas—LH2 vs conjugated polymers

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J.; Sforazzini, Giuseppe; Anderson, Harry L.; Pullerits, Tõnu; Scheblykin, Ivan G.

    2015-10-01

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ɛ). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ɛ = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  12. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  13. On the Set of the Numbers of Conjugates of Noncyclic Proper Subgroups of Finite Groups

    DEFF Research Database (Denmark)

    Shi, Jiangtao; Zhang, Cui

    2013-01-01

    Let G be a finite group and (G) the set of the numbers of conjugates of noncyclic proper subgroups of G. We prove that (1) if |(G)| ≤ 2, then G is solvable, and (2) G is a nonsolvable group with |(G)| = 3 if and only if G≅PSL(2,5) or PSL(2,13) or SL(2,5) or SL(2,13)....

  14. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  15. Fluorescent Dansyl-Guanosine Conjugates that Bind c-MYC Promoter G-Quadruplex and Downregulate c-MYC Expression.

    Science.gov (United States)

    Pavan Kumar, Y; Saha, Puja; Saha, Dhurjhoti; Bessi, Irene; Schwalbe, Harald; Chowdhury, Shantanu; Dash, Jyotirmayee

    2016-03-02

    The four-stranded G-quadruplex present in the c-MYC P1 promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Small-molecule compounds capable of inhibiting the c-MYC promoter activity by stabilising the c-MYC G-quadruplex could potentially be used as anticancer agents. In this context, here we report the synthesis of dansyl-guanosine conjugates through one-pot modular click reactions. The dansyl-guanosine conjugates can selectively detect c-MYC G-quadruplex over other biologically relevant quadruplexes and duplex DNA and can be useful as staining reagents for selective visualisation of c-MYC G-quadruplex over duplex DNA by gel electrophoresis. NMR spectroscopic titrations revealed the preferential binding sites of these dansyl ligands to the c-MYC G-quadruplex. A dual luciferase assay and qRT-PCR revealed that a dansyl-bisguanosine ligand represses the c-MYC expression, possibly by stabilising the c-MYC G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fasting Serum Taurine-Conjugated Bile Acids Are Elevated in Type 2 Diabetes and Do Not Change With Intensification of Insulin

    Science.gov (United States)

    Wewalka, Marlene; Patti, Mary-Elizabeth; Barbato, Corinne; Houten, Sander M.

    2014-01-01

    Context: Bile acids (BAs) are newly recognized signaling molecules in glucose and energy homeostasis. Differences in BA profiles with type 2 diabetes mellitus (T2D) remain incompletely understood. Objective: The objective of the study was to assess serum BA composition in impaired glucose-tolerant, T2D, and normal glucose-tolerant persons and to monitor the effects of improving glycemia on serum BA composition in T2D patients. Design and Setting: This was a cross-sectional cohort study in a general population (cohort 1) and nonrandomized intervention (cohort 2). Patients and Interventions: Ninety-nine volunteers underwent oral glucose tolerance testing, and 12 persons with T2D and hyperglycemia underwent 8 weeks of intensification of treatment. Main Outcome Measures: Serum free BA and respective taurine and glycine conjugates were measured by HPLC tandem mass spectrometry. Results: Oral glucose tolerance testing identified 62 normal-, 25 impaired glucose-tolerant, and 12 T2D persons. Concentrations of total taurine-conjugated BA were higher in T2D and intermediate in impaired- compared with normal glucose-tolerant persons (P = .009). Univariate regression revealed a positive association between total taurine-BA and fasting glucose (R = 0.37, P fasting insulin (R = 0.21, P = .03), and homeostatic model assessment-estimated insulin resistance (R = 0.26, P = .01) and an inverse association with oral disposition index (R = −0.36, P fasting serum total BA or BA composition. Conclusion: Fasting taurine-conjugated BA concentrations are higher in T2D and intermediate in impaired compared with normal glucose-tolerant persons and are associated with fasting and postload glucose. Serum BAs are not altered in T2D in response to improved glycemia. Further study may elucidate whether this pattern of taurine-BA conjugation can be targeted to provide novel therapeutic approaches to treat T2D. PMID:24432996

  17. Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives.

    Science.gov (United States)

    Sahin, Zafer; Ertas, Merve; Berk, Barkın; Biltekin, Sevde Nur; Yurttas, Leyla; Demirayak, Seref

    2018-05-01

    Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects. Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition. In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC 50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC 50 :0.42 nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Anomalous magnetic torque in the heavy-fermion superconductor UBe13

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Fisk, Z.; Smith, J.L.

    1994-01-01

    Measurements of the magnetic torque acting upon a single crystal of the heavy-fermion superconductor UBe 13 have been made at temperatures from 0.5 K to 30.0 K and in magnetic fields to 23 T using a capacitive magnetometer. We find that a large, anomalous contribution to the magnetic torque appears in at low temperatures and in high fields. The anomalous torque coexists with the superconducting state at low temperature. We propose that the anomalous torque reflects the existence of a field-induced magnetic phase transition. (orig.)

  19. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  20. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... enhanced CO2 capture technology by identifying the potentials and limitations in lab and in pilot scale and benchmarking the process against proven technologies. The main goal was to derive a realistic process model for technical size absorbers with a wide range of validity incorporating a mechanistic...

  1. DICER-ARGONAUTE2 complex in continuous fluorogenic assays of RNA interference enzymes.

    Directory of Open Access Journals (Sweden)

    Mark A Bernard

    Full Text Available Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC have been hindered by lack of methods for continuous monitoring of enzymatic activity. "Quencherless" fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS and hypoxia-inducible factor 1-α subunit (HIF1A. Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (Km=74 nM with substrate inhibition kinetics (Ki=105 nM, demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER bound in the active site of DICER may undergo direct transfer (as AGO2 substrate to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29, suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a

  2. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-pei Tong

    2017-01-01

    Full Text Available In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf2.

  3. Selenocysteine vs Cysteine: Tuning the Derivatization on Benzenesulfonyl Moiety of a Triazole Linked Dansyl Connected Glycoconjugate for Selective Recognition of Selenocysteine and the Applicability of the Conjugate in Buffer, in Serum, on Silica Gel, and in HepG2 Cells.

    Science.gov (United States)

    Areti, Sivaiah; Verma, Surendra Kumar; Bellare, Jayesh; Rao, Chebrolu Pulla

    2016-07-19

    A dansyl derivatized triazole linked glucopyranosyl conjugate ((NO2)L) has been synthesized and characterized and was used in the present study. The conjugate (NO2)L releases a fluorescent product upon reaction by Cys-SeH in aqueous PBS buffer by exhibiting a ∼210-fold fluorescence enhancement even in the presence of 20 other amino acids with a minimum detection limit of (1.5 ± 0.2) × 10(-7) M. The selectivity of the Cys-SeH to (NO2)L was further proven by extending the fluorescence study to different other selenium compounds. The role of para-nitrobenzenesulfonyl (pNBS) center in (NO2)L in the selective recognition of Cys-SeH was confirmed when the fluorescence emission studies were carried out using five different derivatizations possessing two NO2, five fluoro, two fluoro, one fluoro, and no fluoro groups. The nucleophilic substitution reaction of Cys-SeH on (NO2)L has been clearly demonstrated on the basis of (1)H NMR, ESI-MS, and absorption spectroscopy, and the heat changes were monitored by isothermal titration calorimetry. The application potential of (NO2)L has been demonstrated by studying its selectivity toward Cys-SeH in aqueous PBS buffer, in bovine serum, and on the silica gel surface that lead to minimum detection limits of (25 ± 2), (80 ± 5), and (168 ± 16) ppb, respectively. The biological applicability of (NO2)L for Cys-SeH was further demonstrated in HepG2 cells by fluorescence microscopy. Thus, (NO2)L is aqueous soluble and a biologically acceptable probe for Cys-SeH.

  4. Reactions of small negative ions with O2(a 1[Delta]g) and O2(X 3[Sigma]g-)

    Science.gov (United States)

    Midey, Anthony; Dotan, Itzhak; Seeley, J. V.; Viggiano, A. A.

    2009-02-01

    The rate constants and product ion branching ratios were measured for the reactions of various small negative ions with O2(X 3[Sigma]g-) and O2(a 1[Delta]g) in a selected ion flow tube (SIFT). Only NH2- and CH3O- were found to react with O2(X) and both reactions were slow. CH3O- reacted by hydride transfer, both with and without electron detachment. NH2- formed both OH-, as observed previously, and O2-, the latter via endothermic charge transfer. A temperature study revealed a negative temperature dependence for the former channel and Arrhenius behavior for the endothermic channel, resulting in an overall rate constant with a minimum at 500 K. SF6-, SF4-, SO3- and CO3- were found to react with O2(a 1[Delta]g) with rate constants less than 10-11 cm3 s-1. NH2- reacted rapidly with O2(a 1[Delta]g) by charge transfer. The reactions of HO2- and SO2- proceeded moderately with competition between Penning detachment and charge transfer. SO2- produced a SO4- cluster product in 2% of reactions and HO2- produced O3- in 13% of the reactions. CH3O- proceeded essentially at the collision rate by hydride transfer, again both with and without electron detachment. These results show that charge transfer to O2(a 1[Delta]g) occurs readily if the there are no restrictions on the ion beyond the reaction thermodynamics. The SO2- and HO2- reactions with O2(a) are the only known reactions involving Penning detachment besides the reaction with O2- studied previously [R.S. Berry, Phys. Chem. Chem. Phys., 7 (2005) 289-290].

  5. The Small Rho GTPases Rac1 and Rac2 Are Important for T-Cell Independent Antigen Responses and for Suppressing Switching to IgG2b in Mice.

    Science.gov (United States)

    Gerasimčik, Natalija; He, Minghui; Dahlberg, Carin I M; Kuznetsov, Nikolai V; Severinson, Eva; Westerberg, Lisa S

    2017-01-01

    The Rho GTPases Cdc42, Rac1, and Rac2 coordinate receptor signaling to cell adhesion, migration, and proliferation. Deletion of Rac1 and Rac2 early during B cell development leads to failure in B cell entry into the splenic white pulp. Here, we sought to understand the role of Rac1 and Rac2 in B cell functionality and during the humoral antibody response. To circumvent the migratory deficiency of B cells lacking both Rac1 and Rac2, we took the approach to inducibly delete Rac1 in Rac2 -/- B cells in the spleen (Rac1 B Rac2 -/- B cells). Rac1 B Rac2 -/- mice had normal differentiation of splenic B cell populations, except for a reduction in marginal zone B cells. Rac1 B Rac2 -/- B cells showed normal spreading response on antibody-coated layers, while both Rac2 -/- and Rac1 B Rac2 -/- B cells had reduced homotypic adhesion and decreased proliferative response when compared to wild-type B cells. Upon challenge with the T-cell-independent antigen TNP-conjugated lipopolysaccharide, Rac1 B Rac2 -/- mice showed reduced antibody response. In contrast, in response to the T-cell-dependent antigen sheep red blood cells, Rac1 B Rac2 -/- mice had increased serum titers of IgG1 and IgG2b. During in vitro Ig class switching, Rac1 B Rac2 -/- B cells had elevated germline γ2b transcripts leading to increased Ig class switching to IgG2b. Our data suggest that Rac1 and Rac2 serve an important role in regulation of the B cell humoral immune response and in suppressing Ig class switching to IgG2b.

  6. Alkylated indacenodithieno[3,2-b]thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors

    KAUST Repository

    Lu, Rimei

    2018-01-29

    We report the synthesis of a series of indacenodithieno[3,2-b]thiophene (IDTT) based conjugated polymers by copolymerization with three different electron rich co-monomers [thiophene (T), thieno[3,2-b]thiophene (TT) and dithieno[3,2-b:2\\',3\\'-d]thiophene (DTT)] under Stille coupling conditions. The resulting all-donor polymers show very good solubility in common solvents and exhibit similar optical, thermal and electronic properties. However, the performance of these semiconductors in thin film transistor devices varied and was highly dependent on the nature of the co-monomer. All polymers exhibited unipolar p-type charge transport behaviour, with the mobility values following the trend of IDTT-TT>IDTT-DTT>IDTT-T. The peak saturation mobility value of IDTT-TT was extracted to be 1.1 cm2V-1s-1, amongst the highest mobility for all-donor conjugated polymers reported to date.

  7. Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods and beverages.

    Science.gov (United States)

    Lu, Yang; Peterson, Joshua Richard; Gooding, John Justin; Lee, Nanju Alice

    2012-06-01

    Enzyme-linked immunosorbent assays (ELISAs) are investigated in this work for the detection of bisphenol-A (BPA), a plastic monomer and a critical contaminant in food and environment. A series of polyclonal antibodies generated in vivo using BPA-butyrate-protein conjugate and BPA-valerate-protein conjugate were evaluated on direct and indirect competitive assay formats with five competing haptens (BPA-butyrate, BPA-valerate, BPA-crotonate, BPA-acetate, and BPA-2-valerate). Two indirect ELISAs and one direct ELISA exhibiting high sensitivity and specificity for BPA were developed. The 50 % inhibition of antibody binding (IC(50)) values were 0.78 ± 0.01-1.20 ± 0.26 μg L(-1), and the limits of detection as measured by the IC(20) values were 0.10 ± 0.03-0.20 ± 0.04 μg L(-1). The assays were highly specific to BPA, only displaying low cross-reactivity (3-8 % for the indirect assays and 26 % for the direct assay) for 4-cumylphenol (4-CP), at pH 7.2. The degree of cross-reaction of 4-CP was influenced by the antibody/hapten conjugate combination, assay conditions, and the assay format. The assays were optimized for the analysis of BPA in canned vegetables, bottled water and carbonated drinks. The limits of quantification for these three evaluated sample types, based on the spike and recovery data, were 0.5, 2.5, and 100 μg L(-1), respectively.

  8. Facile synthesis of a conjugation-grafted-TiO{sub 2} nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanru; Zhang, Min, E-mail: zm1012@henu.edu.cn; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun [Henan University, National and Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials (China)

    2016-08-15

    A conjugation-grafted-TiO{sub 2} nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO{sub 2} through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO{sub 2} and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA’s pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron–hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO{sub 2} nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  9. Link invariant and $G_2$ web space

    OpenAIRE

    Sakamoto, Takuro; Yonezawa, Yasuyoshi

    2017-01-01

    In this paper, we reconstruct Kuperberg’s $G_2$ web space [5, 6]. We introduce a new web diagram (a trivalent graph with only double edges) and new relations between Kuperberg’s web diagrams and the new web diagram. Using the web diagrams, we give crossing formulas for the $R$-matrices associated to some irreducible representations of $U_q(G_2)$ and calculate $G_2$ quantum link invariants for generalized twist links.

  10. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  11. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  12. Evaluation of Immunogenicity of Yersinia enterocolitica O:8 Oligopolysaccaride-DiphtheriaeToxoide Conjugate in Mice

    Directory of Open Access Journals (Sweden)

    SM Rezavian

    2015-06-01

    Full Text Available Background & objectives: Yersiniosis is created by Yersinia enterocolitica O:8 and causes problems in the world especialy in cold and mild countries. The purpose of this study is to evaluate the immunogenicity of Yersinia enterocolitica O:8 oligopolysaccaride (OPS conjugate to diphtheria toxoid (DT as a vaccine candidate.   Methods : After cultivation of bacteria, the LPS were isolated by modified hot phenol method. Then dialysis and concentration were done and the OPS were extracted by acetic acid 2%. To conjugate with diphtheria toxoid, ADH was used as a spacer molecule and EDAC as a linker. Conjugate was purified by gel filtration. Then 4 groups of female BALB/c mice were selected (15 mice in each group. Injection was performed intraperitoneally in three doses with two weeks interval. Then serum samples were collected and antibody response against OPS was measured by indirect ELISA method for detection of total IgG, IgA, IgM, IgG1, IgG2a, IgG2b and IgG3.   Results: After second and third doses, OPS-DT recieved group showed significant increase in all types of antibodies titer in anti-OPS in comparison to group that recived nonconjugated OPS. The increase in titer of antibodies was as: OPS-DT>OPS>DT. A remarkable increase was shown in total IgG and IgM titers (with total amount of 3204 and 670, respectively. In IgG1 subclass the amount was 920 and in other subclasses of IgG (IgG3, IgG2a and IgG2b the amounts were 910, 110, and 99, respectively.   Conclusion: The results shows that OPS of Yersinia enterocolitica O:8 increases the anti-OPS antibodies in the form of conjugate with diphtheria toxoid and could be considered as an appropriate vaccine candidate.

  13. Impurities in the heavy-fermion superconductor UBe13 (invited)

    International Nuclear Information System (INIS)

    Smith, J.L.; Fisk, Z.; Willis, J.O.; Batlogg, B.; Ott, H.R.

    1984-01-01

    Small amounts of Sc, Lu, Gd, Np, Ce, Th, La, and Ba have been substituted for uranium in UBe 13 to observe their effects on the superconducting and normal state properties. The thorium, which was the most complete study, resulted in an extremely unusual nonmonotonic depression of the transition temperature for a nonmagnetic impurity. This comes from an interplay that exists between the lowest temperature resistivity peak and the transition temperature, as the peak is depressed. These results suggest that heavy Fermion superconductivity is only one of the possible ground states for heavy mass electron systems. All of the impurities tested resulted in a transition temperature depression

  14. A Precise Measurement of the Spin Structure Functions G**P(2) G**D(2) from SLAC Experiment E155X

    Energy Technology Data Exchange (ETDEWEB)

    McNulty, D

    2003-12-18

    A precision measurement of the deep inelastic polarized structure functions g{sub 2}{sup p} (x, Q{sup 2}) and g{sub 2}{sup d} (x, Q{sup 2}) and the virtual photon asymmetries A{sub 2}{sup p}(x, Q{sup 2}) and A{sub 2}{sup d}(x, Q{sup 2}) has been made by the E155x collaboration in the ranges 0.02 < x < 0.8 and 0.7 (GeV/c){sup 2} < Q{sup 2} < 20 (GeV/c){sup 2}. The transverse asymmetry (A{sub {perpendicular}}) was measured at SLAC using 29.1 and 32.3 GeV longitudinally polarized electrons incident on transversely polarized target protons and deuterons; the scattered electrons were detected by three fixed angle spectrometers at 2.75{sup o}, 5.5{sup o}, and 10.5{sup o} from the beam line. g{sub 2} was extracted using the measured A{sub {perpendicular}}, an E155 phenomenological fit to g{sub 1}/F{sub 1}, and the SLAC fit to R(x, Q{sup 2}); the function F{sub 1} was obtained from the most recent NMC fit to F{sub 2}(x, Q{sup 2}). The errors on g{sub 2} for both proton and deuteron are more than three times smaller than those of the previously existing world data set, thus enabling the data to resolve clearly between g{sub 2}{sup ww} and zero as well as make distinctions between various models. In addition, the Burkhardt-Cottingham and Efremov-Leader-Teryaev sum rules were evaluated over the measured kinematic region, as well as the d{sub 2} twist-3 matrix element for the proton and neutron.

  15. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  16. First glycoside hydrolase family 2 enzymes from Thermus antranikianii and Thermus brockianus with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Carola eSchröder

    2015-06-01

    Full Text Available Two genes tagh2 and tbgh2 coding for enzymes with hydrolytic activity towards esculin were identified from the extreme thermophilic, aerobic bacteria Thermus antranikianii (Ta and T. brockianus (Tb. Shortened conserved domains predicted a membership of the enzymes of glycoside hydrolase (GH family 2. At present, β-galactosidase activity is found frequently in GH family 2 but β-glucosidase activity has not been reported in this family before. The enzymes TaGH2 and TbGH2 preferred hydrolysis of nitrophenol-linked β-D-glucopyranosides with specific activities of 3,966 U/mg and 660 U/mg, respectively. Residual activities of 40 % (TaGH2 and 51 % (TbGH2 towards 4-NP-β-D-galactopyranoside were observed. Furthermore, TaGH2 hydrolyzed cellobiose. TbGH2, however, showed no activity on cellobiose or lactose. The enzymes exhibited highest activity at 95 °C (TaGH2 and 90 °C (TbGH2 at pH 6.5. Both enzymes were extremely thermostable and thermal activation up to 250 % was observed at temperatures between 50 and 60 °C. Accordingly, the first thermoactive glycoside hydrolase family 2 enzymes with β glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to the enzymes of GH family 2.

  17. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2 and angiotensin receptors

    Directory of Open Access Journals (Sweden)

    Daniel eClayton

    2015-01-01

    Full Text Available Angiotensin converting enzyme 2 (ACE2 is a zinc carboxypeptidase involved in the renin angiotensin system (RAS and inactivates the potent vasopressive peptide angiotensin II (Ang II by removing the C-terminal phenylalanine residue to yield Ang1-7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R and angiotensin type 2 (AT2R receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here we further explore this region for the potential to modulate ligand specificity. In this study, 1 a library of forty-seven peptides derived from the C-terminal tetra-peptide sequence (-IHPF of Ang II was synthesised and assessed for ACE2 binding, 2 the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, 3 high affinity ACE2 binding chimeric AngII analogues were then synthesized and assessed, 4 the structure of the full-length Ang II analogues were assessed by circular dichroism, and 5 the Ang II analogues were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor

  18. Enzymic resolution of 2-substituted cyclohexanols through lipase-mediated esterification

    Czech Academy of Sciences Publication Activity Database

    Wimmer, Zdeněk; Skouridou, V.; Zarevúcka, Marie; Šaman, David; Kolisis, F. N.

    2004-01-01

    Roč. 15, - (2004), s. 3911-3917 ISSN 0957-4166 R&D Projects: GA MŠk ME 692 Institutional research plan: CEZ:AV0Z4055905 Keywords : enzymic resolution * 2-substituted cyclohexanols * lipase -mediated esterification Subject RIV: CC - Organic Chemistry Impact factor: 2.386, year: 2004

  19. Extracellular visfatin activates gluconeogenesis in HepG2 cells through the classical PKA/CREB-dependent pathway.

    Science.gov (United States)

    Choi, Y J; Choi, S-E; Ha, E S; Kang, Y; Han, S J; Kim, D J; Lee, K W; Kim, H J

    2014-04-01

    Adipokines reportedly affect hepatic gluconeogenesis, and the adipokine visfatin is known to be related to insulin resistance and type 2 diabetes. However, whether visfatin contributes to hepatic gluconeogenesis remains unclear. Visfatin, also known as nicotinamide phosphoribosyltransferase (NAMPT), modulates sirtuin1 (SIRT1) through the regulation of nicotinamide adenine dinucleotide (NAD). Therefore, we investigated the effect of extracellular visfatin on glucose production in HepG2 cells, and evaluated whether extracellular visfatin affects hepatic gluconeogenesis via an NAD+-SIRT1-dependent pathway. Treatment with visfatin significantly increased glucose production and the mRNA expression and protein levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in HepG2 cells in a time- and concentration-dependent manner. Knockdown of SIRT1 had no remarkable effect on the induction of gluconeogenesis by visfatin. Subsequently, we evaluated if extracellular visfatin stimulates the production of gluconeogenic enzymes through the classical protein kinase A (PKA)/cyclic AMP-responsive element (CRE)-binding protein (CREB)-dependent process. The phosphorylation of CREB and PKA increased significantly in HepG2 cells treated with visfatin. Additionally, knockdown of CREB and PKA inhibited visfatin-induced gluconeogenesis in HepG2 cells. In summary, extracellular visfatin modulates glucose production in HepG2 cells through the PKA/CREB pathway, rather than via SIRT1 signaling. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Bag1 Co-chaperone Promotes TRC8 E3 Ligase-dependent Degradation of Misfolded Human Ether a Go-Go-related Gene (hERG) Potassium Channels.

    Science.gov (United States)

    Hantouche, Christine; Williamson, Brittany; Valinsky, William C; Solomon, Joshua; Shrier, Alvin; Young, Jason C

    2017-02-10

    Cardiac long QT syndrome type 2 is caused by mutations in the human ether a go-go-related gene (hERG) potassium channel, many of which cause misfolding and degradation at the endoplasmic reticulum instead of normal trafficking to the cell surface. The Hsc70/Hsp70 chaperones assist the folding of the hERG cytosolic domains. Here, we demonstrate that the Hsp70 nucleotide exchange factor Bag1 promotes hERG degradation by the ubiquitin-proteasome system at the endoplasmic reticulum to regulate hERG levels and channel activity. Dissociation of hERG complexes containing Hsp70 and the E3 ubiquitin ligase CHIP requires the interaction of Bag1 with Hsp70, but this does not involve the Bag1 ubiquitin-like domain. The interaction with Bag1 then shifts hERG degradation to the membrane-anchored E3 ligase TRC8 and its E2-conjugating enzyme Ube2g2, as determined by siRNA screening. TRC8 interacts through the transmembrane region with hERG and decreases hERG functional expression. TRC8 also mediates degradation of the misfolded hERG-G601S disease mutant, but pharmacological stabilization of the mutant structure prevents degradation. Our results identify TRC8 as a previously unknown Hsp70-independent quality control E3 ligase for hERG. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. BPS states in N = 2 supersymmetric G2 and F4 models

    Science.gov (United States)

    Ahl Laamara, R.; Mellal, O.; Saidi, E. H.

    2017-07-01

    In BPS quiver theory of N = 2 supersymmetric pure gauge models with gauge invariance G, primitive BPS quivers Q0G are of two types: Q0ADE and Q0BCFG. In this study, we first show that Q0ADE have outer-automorphism symmetries inherited from the outer-automorphisms of the Dynkin diagrams of ADE Lie algebras. Then, we extend the usual folding operation of Dynkin diagrams ADE → BCFG to obtain the two following things: (i) relate Q0BCFG quivers and their mutations to the Q0ADE ones and their mutations; and (ii) link the BPS chambers of the N = 2ADE theories with the corresponding BCFG ones. As an illustration of this construction, we derive the BPS and anti-BPS states of the strong chambers QstgG2 and QstgF4 of the 4d N = 2 pure G2 and F4 gauge models.

  2. Phenolic constituents and modulatory effects of Raffia palm leaf (Raphia hookeri extract on carbohydrate hydrolyzing enzymes linked to type-2 diabetes

    Directory of Open Access Journals (Sweden)

    Felix A. Dada

    2017-10-01

    Full Text Available This study sought to investigate the effects of Raffia palm (Raphia hookeri leaf extract on enzymes linked to type-2 diabetes mellitus (T2DM and pro-oxidant induced oxidative stress in rat pancreas. The extract was prepared and its α-amylase and α-glucosidase inhibitory effects were determined. Radical [2,2-diphenyl-1-picrylhydrazyl (DPPH] scavenging and Fe2+-chelating abilities, and inhibition of Fe2+-induced lipid peroxidation in rat pancreas homogenate were assessed. Furthermore, total phenol and flavonoid contents, reducing property, and high performance liquid chromatography diode array detector (HPLC-DAD fingerprint of the extract were also determined. Our results revealed that the extract inhibited α-amylase (IC50 = 110.4 μg/mL and α-glucosidase (IC50 = 99.96 μg/mL activities in concentration dependent manners which were lower to the effect of acarbose (amylase: IC50 = 18.30 μg/mL; glucosidase: IC50 = 20.31 μg/mL. The extract also scavenged DPPH radical, chelated Fe2+ and inhibited Fe2+-induced lipid peroxidation in rat pancreas all in concentration dependent manners with IC50 values of 402.9 μg/mL, 108.9 μg/mL and 367.0 μg/mL respectively. The total phenol and flavonoid contents were 39.73 mg GAE/g and 21.88 mg QAE/g respectively, while the reducing property was 25.62 mg AAE/g. The HPLC analysis revealed the presence of chlorogenic acid (4.17 mg/g and rutin (5.11 mg/g as the major phenolic compounds in the extract. Therefore, the ability of the extract to inhibit carbohydrate hydrolyzing enzymes and protect against pancreatic oxidative damage may be an important mechanisms supporting its antidiabetic properties and could make Raffia palm leaf useful in complementary/alternative therapy for management of T2DM. However, further studies such as in vivo should be carried out.

  3. Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer.

    Science.gov (United States)

    Tian, Baomin; Wong, Wah Yau; Hegmann, Elda; Gaspar, Kim; Kumar, Praveen; Chao, Heman

    2015-06-17

    A novel immunoconjugate (L-DOS47) was developed and characterized as a therapeutic agent for tumors expressing CEACAM6. The single domain antibody AFAIKL2, which targets CEACAM6, was expressed in the Escherichia coli BL21 (DE3) pT7-7 system. High purity urease (HPU) was extracted and purified from Jack bean meal. AFAIKL2 was activated using N-succinimidyl [4-iodoacetyl] aminobenzoate (SIAB) as the cross-linker and then conjugated to urease. The activation and conjugation reactions were controlled by altering pH. Under these conditions, the material ratio achieved conjugation ratios of 8-11 antibodies per urease molecule, the residual free urease content was practically negligible (95%) L-DOS47 conjugate was produced using only ultradiafiltration to remove unreacted antibody and hydrolyzed cross-linker. L-DOS47 was characterized by a panel of analytical techniques including SEC, IEC, Western blot, ELISA, and LC-MS(E) peptide mapping. As the antibody-urease conjugate ratio increased, a higher binding signal was observed. The specificity and cytotoxicity of L-DOS47 was confirmed by screening in four cell lines (BxPC-3, A549, MCF7, and CEACAM6-transfected H23). BxPC-3, a CEACAM6-expressing cell line was found to be most susceptible to L-DOS47. L-DOS47 is being investigated as a potential therapeutic agent in human phase I clinical studies for nonsmall cell lung cancer.

  4. In vitro and in vivo imaging of prostate cancer angiogenesis using anti-vascular endothelial growth factor receptor 2 antibody-conjugated quantum dot

    International Nuclear Information System (INIS)

    Kwon, Haejin; Lee, Jiyeon; Song, Rita; Lee, Jung Han; Hwang, Sung Il; Lee, Hak Jong; Kim, Young Hwa

    2013-01-01

    Authors aimed to determine the targeting ability of vascular endothelial growth factor receptor 2 (VEGFR2)-conjugated quantum dots (QDs) in vitro, and apply it for a xenograft prostate cancer mouse model. Conjugation reaction of QDs was performed by using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and sulfo-(N-hydroxysulfosuccinimide) (Sulfo-NHS). The human umbilical vein cord endothelial cells (HUVECs) were incubated with QDs, conjugated with antiVGFR2, to see a specific binding in vitro. Fluorescent cell images were taken by a confocal microscope. The human prostate cancer cells (PC3) were injected to five nude mice on hind limbs to make the xenograft tumor model. QD-antiVEGFR2 antibody complex was injected into the tumor model and fluorescence measurements were performed at 1, 4, 9, 12, 15, and 24 hours after the injection. The specific interaction between HUVECs and QD-antiVEGFR2 antibody was clearly shown in vitro. The in vivo fluorescence image disclosed that there was an increased signal of tumor, 12 hours after the injection of QDs. By showing endothelial cells binding with QDs-antiVEGFR2 antibodyand an experimental application of the antibody for VEGFR2 imaging in the prostate cancer xenograft mouse model, we suggests that the antibody-conjugated QDs can be a potential imaging tool for angiogenesis of the cancer.

  5. A rapid approach for characterization of thiol-conjugated antibody-drug conjugates and calculation of drug-antibody ratio by liquid chromatography mass spectrometry.

    Science.gov (United States)

    Firth, David; Bell, Leonard; Squires, Martin; Estdale, Sian; McKee, Colin

    2015-09-15

    We present the demonstration of a rapid "middle-up" liquid chromatography mass spectrometry (LC-MS)-based workflow for use in the characterization of thiol-conjugated maleimidocaproyl-monomethyl auristatin F (mcMMAF) and valine-citrulline-monomethyl auristatin E (vcMMAE) antibody-drug conjugates. Deconvoluted spectra were generated following a combination of deglycosylation, IdeS (immunoglobulin-degrading enzyme from Streptococcus pyogenes) digestion, and reduction steps that provide a visual representation of the product for rapid lot-to-lot comparison-a means to quickly assess the integrity of the antibody structure and the applied conjugation chemistry by mass. The relative abundance of the detected ions also offer information regarding differences in drug conjugation levels between samples, and the average drug-antibody ratio can be calculated. The approach requires little material (<100 μg) and, thus, is amenable to small-scale process development testing or as an early component of a complete characterization project facilitating informed decision making regarding which aspects of a molecule might need to be examined in more detail by orthogonal methodologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Functional analysis of two PLA2G2A variants associated with secretory phospholipase A2-IIA levels.

    Directory of Open Access Journals (Sweden)

    Holly J Exeter

    Full Text Available Secretory phospholipase A2 group IIA (sPLA2-IIA has been identified as a biomarker of atherosclerosis in observational and animal studies. The protein is encoded by the PLA2G2A gene and the aim of this study was to test the functionality of two PLA2G2A non-coding SNPs, rs11573156 C>G and rs3767221 T>G where the rare alleles have been previously associated with higher and lower sPLA2-IIA levels respectively.Luciferase assays, electrophoretic mobility shift assays (EMSA, and RNA expression by RT-PCR were used to examine allelic differences. For rs3767221 the G allele showed ∼55% lower luciferase activity compared to the T allele (T = 62.1 (95% CI 59.1 to 65.1 G = 27.8 (95% CI 25.0 to 30.6, p = 1.22×10⁻³⁵, and stronger EMSA binding of a nuclear protein compared to the T-allele. For rs11573156 C >G there were no luciferase or EMSA allelic differences seen. In lymphocyte cell RNA, from individuals of known rs11573156 genotype, there was no allelic RNA expression difference for exons 5 and 6, but G allele carriers (n = 7 showed a trend to lower exon 1-2 expression compared to CC individuals. To take this further, in the ASAP study (n = 223, an rs11573156 proxy (r² = 0.91 showed ∼25% higher liver expression of PLA2G2A (1.67×10⁻¹⁷ associated with the G allele. However, considering exon specific expression, the association was greatly reduced for exon 2 (4.5×10⁻⁵ compared to exons 3-6 (10⁻¹⁰ to 10⁻²⁰, suggesting rs11573156 G allele-specific exon 2 skipping.Both SNPs are functional and provide useful tools for Mendelian Randomisation to determine whether the relationship between sPLA2-IIA and coronary heart disease is causal.

  7. Standortbasierte Online-Informationen vermitteln: cUBe, ein Projekt der Universitätsbibliothek Bern

    Directory of Open Access Journals (Sweden)

    Reto List

    2017-12-01

    Full Text Available Die Transformation der Bibliotheksangebote schreitet immer weiter voran. In vielen Bibliotheken wird der sichtbare Buchbestand mehr und mehr von Arbeitsplätzen und Gruppenräumen verdrängt, Bibliotheken unterliegen zunehmend Neudefinitionen unter dem Label von Lern- und Begegnungsorten. Daneben nimmt die Bedeutung von elektronischen Medienangeboten und webbasierten Dienstleistungen laufend zu. Gleichzeitig ist das umfangreiche elektronische Angebot, welches Bibliotheken teuer lizensieren oder kaufen, oft nicht in aller Breite und zielgruppenbezogen bekannt und erfährt keine adäquate Nutzung. Mit dem Projekt cUBe wurde in der im Frühsommer 2016 nach umfangreicher Sanierung neu eröffneten Bibliothek Münstergasse der Universitätsbibliothek Bern der Versuch unternommen, die reichhaltigen digitalen Nachweise und Bestände für das Bibliothekspublikum sichtbarer, besser zugänglich und damit bekannter zu machen. Dabei wurde auf Basis der neuen Technologien des physischen Webs die standortbasierte Verbindung von OnlineInformationen (Katalog, E-Medien, sonstige digitale Angebote mit den entsprechenden Räumen der Bibliothek und den vor Ort noch verfügbaren Beständen realisiert. The transformation of library services is constantly proceeding. In many libraries, print collections are replaced by space designated to learning. Increasingly, our libraries are defined by labels like learning or meeting space. In addition, the importance of electronic collections and web-based services is constantly growing. However, this extensive and expensive electronic material licenced or bought by libraries is often neither known in detail and to all target groups nor used appropriately. The project cUBe was launched in late spring 2016 after an extensive renovation of the newly opened Münstergasse Library. cUBe aims at improving visibility, access and publicity of the library’s comprehensive digital references and collections for its users. On the basis of

  8. Moving into advanced nanomaterials. Toxicity of rutile TiO{sub 2} nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bessa, Maria João, E-mail: mjbessa8@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); Costa, Carla, E-mail: cstcosta@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Reinosa, Julian, E-mail: jjreinosa@icv.csic.es [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, Calle de Kelson, 5, 28049 Madrid (Spain); Pereira, Cristiana, E-mail: cristianacostapereira@gmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Fraga, Sónia, E-mail: teixeirafraga@hotmail.com [Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto (Portugal); EPIUnit - Institute of Public Health, University of Porto, Rua das Taipas 135, 4050-600, Porto (Portugal); Fernández, José, E-mail: jfernandez@icv.csic.es [Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, Calle de Kelson, 5, 28049 Madrid (Spain); Bañares, Miguel A., E-mail: miguel.banares@csic.es [Catalytic Spectroscopy Laboratory, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid (Spain); and others

    2017-02-01

    Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO{sub 2} NPs), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO{sub 2}), constituted by rutile TiO{sub 2} NPs immobilized in nanokaolin (NK) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM and DLS analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO{sub 2} NPs, NK clay and C-TiO{sub 2} nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT, neutral red uptake, alamar blue (AB), LDH, and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO{sub 2} NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO{sub 2} NPs. - Highlights: • Only the MTT and AB assays were found to be suitable for cytotoxicity assessment. • Alkaline comet assay was also appropriate for genotoxicity evaluation

  9. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)(2) and chiral amino alcohols

    NARCIS (Netherlands)

    de Vries, A.H.M.; Feringa, B.L.

    1997-01-01

    Co(acac)(2) in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  10. Asymmetrically Substituted and π-Conjugated 2,2'-Bipyridine Derivatives: Synthesis, Spectroscopy, Computation, and Crystallography.

    Science.gov (United States)

    Bodapati, Ramakrishna; Sarma, Monima; Kanakati, Arunkumar; Das, Samar K

    2015-12-18

    A new series of monosubstituted styryl- and bistyryl-2,2'-bipyridine luminophores (compounds 16-23) have been synthesized via Horner-Wadsworth-Emmons reaction involving a monophosphonate and donor aromatic aldehydes. In the title chromophores, the amino donors are varied between acyclic and cyclic while the alkoxy donors are varied in terms of their number and position. The absorption maxima of these chromophores shift predominantly due to intramolecular charge transfer (ICT) between different donor and acceptor moieties. The title donor-acceptor molecules exhibit intense fluorescence in solution at room temperature, and their emissive behavior has been found to be highly sensitive to solvent polarity. The fluorescence spectra and quantum yields of all the chromophores were recorded in four different solvent media, and the chromophores 16, 17, 19, and 21 exhibit fluorescence in the solid state too. The influence of the nature and position of the donor functionalities in the conjugated backbone of the bipyridine moiety on the electronic absorption properties of the title chromophores (16-23) has been demonstrated, which has further been corroborated by DFT and TD-DFT computation both in gas phase and in solution phase. The crystal structure of compound 18 has been described as a representative member of the family (16-23).

  11. Expression, purification, crystallization and preliminary X-ray analysis of conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708.

    Science.gov (United States)

    Yamamura, Akihiro; Maruoka, Shintaro; Ohtsuka, Jun; Miyakawa, Takuya; Nagata, Koji; Kataoka, Michihiko; Kitamura, Nahoko; Shimizu, Sakayu; Tanokura, Masaru

    2009-11-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708 is a member of the NADPH-dependent aldo-keto reductase (AKR) superfamily and catalyzes the stereospecific reduction of ketopantoyl lactone to d-pantoyl lactone. A diffraction-quality crystal of recombinant CPR-C2 was obtained by the sitting-drop vapour-diffusion method using PEG 3350 as the precipitant. The crystal diffracted X-rays to 1.7 angstrom resolution on beamline NW12A of the Photon Factory-Advanced Ring (Tsukuba, Japan). The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 55.02, b = 68.30, c = 68.93 angstrom. The Matthews coefficient (V(M) = 1.76 angstrom(3) Da(-1)) indicated that the crystal contained one CPR-C2 molecule per asymmetric unit.

  12. Effect of TiO2 on conjugative transfer of RP4 plasmid

    International Nuclear Information System (INIS)

    Qian Di; Zhang Buchang; Yang Dong; Chen Zhaoli; Jin Min; Qiu Zhigang; Li Junwen

    2013-01-01

    Objective: To explore the effect and law of nano-titanium dioxide on the conjugative transfer of RP4 plasmid. Methods: Mating was conducted between Escherichia coli HB101 (RP4) and E. coli K12Rif in saline without stirring under certain conditions and the donor per recipient ratio was 1:1 constantly. The selective LB agar medium plates containing appropriate antibiotics were used to count the number of transconjugants and the conjugative transfer frequency. Results: Nano-titanium dioxide could promote the conjugative transfer of RP4. The nano-titanium dioxide concentration, bacterial concentration, mating temperature and mating time could affect the conjugative transfer of RP4. Conclusion: Nano-titanium dioxide can promote plasmid conjugal transfer in the liquid phase under certain conditions, which may pose a potential hazard to environmental and human health. (authors)

  13. Influence of TiO{sub 2} nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Petkovic, Jana; Zegura, Bojana; Filipic, Metka, E-mail: metka.filipic@nib.si [Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, SI-1000 Ljubljana (Slovenia)

    2011-07-06

    We investigated the effects of two types of TiO{sub 2} nanoparticles (<25 nm anatase, TiO{sub 2}-An; <100 nm rutile, TiO{sub 2}-Ru) on cellular antioxidant defense in HepG2 cells. We previously showed that in HepG2 cells, TiO{sub 2} nanoparticles are not toxic, although they induce oxidative DNA damage, production of intracellular reactive oxygen species, and up-regulation of mRNA expression of DNA-damage-responsive genes (p53, p21, gadd45{alpha} and mdm2). In the present study, we measured changes in mRNA expression of several antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, nitric oxide synthase, glutathione reductase and glutamate-cysteine ligase. As reduced glutathione has a central role in cellular antioxidant defense, we determined the effects of TiO{sub 2} nanoparticles on changes in the intracellular glutathione content. To confirm a role for glutathione in protection against TiO{sub 2}-nanoparticle-induced DNA damage, we compared the extent of TiO{sub 2}-nanoparticle-induced DNA damage in HepG2 cells that were glutathione depleted with buthionine-(S,R)-sulfoximine pretreatment and in nonglutathione-depleted cells. Our data show that both types of TiO{sub 2} nanoparticles up-regulate mRNA expression of oxidative-stress-related genes, with TiO{sub 2}-Ru being a stronger inducer than TiO{sub 2}-An. Both types of TiO{sub 2} nanoparticles also induce dose-dependent increases in intracellular glutathione levels, and in glutathione-depleted cells, TiO{sub 2}-nanoparticle-induced DNA damage was significantly greater than in nonglutathione-depleted cells. Interestingly, the glutathione content and the extent of DNA damage were significantly higher in TiO{sub 2}-An- than TiO{sub 2}-Ru-exposed cells. Thus, we show that TiO{sub 2} nanoparticles cause activation of cellular antioxidant processes, and that intracellular glutathione has a critical role in defense against this TiO{sub 2}-nanoparticle-induced DNA damage.

  14. ICT, Policy, Politics, and Democracy: An Integrated Framework for G2G Implementation

    Directory of Open Access Journals (Sweden)

    Iliana Mizinova

    2006-12-01

    Full Text Available This research approaches the issue of G2G digitization using an integrated policy dynamics model. The essence of the contradictions in the G2G integration discourse is followed by a description of two policy paradigms that are then incorporated into an integrated or synthetic framework to evaluate the specifics of the G2G implementation in DHS and HUD. Speculations are made about the implications of this study for the democratic principles of government rule.

  15. The H,G_1,G_2 photometric system with scarce observational data

    Science.gov (United States)

    Penttilä, A.; Granvik, M.; Muinonen, K.; Wilkman, O.

    2014-07-01

    The H,G_1,G_2 photometric system was officially adopted at the IAU General Assembly in Beijing, 2012. The system replaced the H,G system from 1985. The 'photometric system' is a parametrized model V(α; params) for the magnitude-phase relation of small Solar System bodies, and the main purpose is to predict the magnitude at backscattering, H := V(0°), i.e., the (absolute) magnitude of the object. The original H,G system was designed using the best available data in 1985, but since then new observations have been made showing certain features, especially near backscattering, to which the H,G function has troubles adjusting to. The H,G_1,G_2 system was developed especially to address these issues [1]. With a sufficient number of high-accuracy observations and with a wide phase-angle coverage, the H,G_1,G_2 system performs well. However, with scarce low-accuracy data the system has troubles producing a reliable fit, as would any other three-parameter nonlinear function. Therefore, simultaneously with the H,G_1,G_2 system, a two-parameter version of the model, the H,G_{12} system, was introduced [1]. The two-parameter version ties the parameters G_1,G_2 into a single parameter G_{12} by a linear relation, and still uses the H,G_1,G_2 system in the background. This version dramatically improves the possibility to receive a reliable phase-curve fit to scarce data. The amount of observed small bodies is increasing all the time, and so is the need to produce estimates for the absolute magnitude/diameter/albedo and other size/composition related parameters. The lack of small-phase-angle observations is especially topical for near-Earth objects (NEOs). With these, even the two- parameter version faces problems. The previous procedure with the H,G system in such circumstances has been that the G-parameter has been fixed to some constant value, thus only fitting a single-parameter function. In conclusion, there is a definitive need for a reliable procedure to produce

  16. Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT).

    Science.gov (United States)

    Francis, R J; Mather, S J; Chester, K; Sharma, S K; Bhatia, J; Pedley, R B; Waibel, R; Green, A J; Begent, R H J

    2004-08-01

    MFECP1 is a glycosylated recombinant fusion protein composed of MFE-23, a high-affinity anti-carcinoembryonic antigen (CEA) single chain Fv (scFv), fused to the enzyme carboxypeptidase G2 (CPG2), and has been constructed for use in antibody-directed enzyme pro-drug therapy (ADEPT). Radiolabelling of glycosylated MFECP1 with technetium-99m was developed for the purpose of determining tumour localisation of MFECP1 in a phase I ADEPT clinical study. The method used was 99mTc-carbonyl [99mTc(H2O)3(CO)3]+ (abbreviated to TcCO) mediated labelling of 99mTc to the hexahistidine (His) tag of MFECP1. MFECP1 fusion protein was labelled with TcCO under a variety of conditions, and this was shown to be a relatively simple and robust method. Tissue biodistribution was assessed in a CEA-expressing LS174T (human colon carcinoma) nude mouse xenograft model. Tissues were taken at 1, 4 and 6 h for assessment of distribution of radioactivity and for measurement of CPG2 enzyme levels. The amount of radioactivity retained by the tumour proved to be an accurate estimation of actual measured enzyme activity, indicating that this radiolabelling method does not appear to damage the antibody-antigen binding or the enzyme activity of MFECP1. However, correlation between CPG2 enzyme activity and measured radioactivity in liver, spleen and kidney was poor, indicating retention of radioactivity in non-tumour sites but loss of enzyme activity. The high retention of technetium radioisotope in normal tissues may limit the clinical applicability of this radiolabelling method for MFECP1; however, these results suggest that this technique does have applicability for measuring the biodistribution of His-tagged recombinant proteins.

  17. Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT)

    International Nuclear Information System (INIS)

    Francis, R.J.; Chester, K.; Sharma, S.K.; Bhatia, J.; Pedley, R.B.; Green, A.J.; Begent, R.H.J.; Mather, S.J.; Waibel, R.

    2004-01-01

    MFECP1 is a glycosylated recombinant fusion protein composed of MFE-23, a high-affinity anti-carcinoembryonic antigen (CEA) single chain Fv (scFv), fused to the enzyme carboxypeptidase G2 (CPG2), and has been constructed for use in antibody-directed enzyme pro-drug therapy (ADEPT). Radiolabelling of glycosylated MFECP1 with technetium-99m was developed for the purpose of determining tumour localisation of MFECP1 in a phase I ADEPT clinical study. The method used was 99m Tc-carbonyl [ 99m Tc(H 2 O) 3 (CO) 3 ] + (abbreviated to TcCO) mediated labelling of 99m Tc to the hexahistidine (His) tag of MFECP1. MFECP1 fusion protein was labelled with TcCO under a variety of conditions, and this was shown to be a relatively simple and robust method. Tissue biodistribution was assessed in a CEA-expressing LS174T (human colon carcinoma) nude mouse xenograft model. Tissues were taken at 1, 4 and 6 h for assessment of distribution of radioactivity and for measurement of CPG2 enzyme levels. The amount of radioactivity retained by the tumour proved to be an accurate estimation of actual measured enzyme activity, indicating that this radiolabelling method does not appear to damage the antibody-antigen binding or the enzyme activity of MFECP1. However, correlation between CPG2 enzyme activity and measured radioactivity in liver, spleen and kidney was poor, indicating retention of radioactivity in non-tumour sites but loss of enzyme activity. The high retention of technetium radioisotope in normal tissues may limit the clinical applicability of this radiolabelling method for MFECP1; however, these results suggest that this technique does have applicability for measuring the biodistribution of His-tagged recombinant proteins. (orig.)

  18. PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH REDSHIFTED CONJUGATE-SATELLITE OH LINES

    International Nuclear Information System (INIS)

    Kanekar, Nissim; Chengalur, Jayaram N.; Ghosh, Tapasi

    2010-01-01

    We report Westerbork Synthesis Radio Telescope and Arecibo Telescope observations of the redshifted satellite OH 18 cm lines at z ∼ 0.247 toward PKS 1413+135. The 'conjugate' nature of these lines, with one line in emission and the other in absorption, but with the same shape, implies that the lines arise in the same gas. The satellite OH 18 cm line frequencies also have different dependences on the fine structure constant α, the proton-electron mass ratio μ = m p /m e , and the proton gyromagnetic ratio g p . Comparisons between the satellite line redshifts in conjugate systems can hence be used to probe changes in α, μ, and g p , with few systematic effects. The technique yields the expected null result when applied to Cen.A, a nearby conjugate satellite system. For the z ∼ 0.247 system toward PKS 1413+135, we find, on combining results from the two telescopes, that (ΔG/G) = (-1.18 ± 0.46) x 10 -5 (weighted mean), where G = g p (μα 2 ) 1.85 ; this is tentative evidence (with 2.6 σ significance, or at 99.1% confidence) for a smaller value of α, μ, and/or g p at z ∼ 0.247, i.e., at a lookback time of ∼2.9 Gyr. If we assume that the dominant change is in α, this implies (Δα/α) = (-3.1 ± 1.2) x 10 -6 . We find no evidence that the observed offset might be produced by systematic effects, either due to observational or analysis procedures, or local conditions in the molecular cloud.

  19. A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level

    Directory of Open Access Journals (Sweden)

    Oostra Ben A

    2010-03-01

    Full Text Available Abstract Background Serum creatinine (SCR is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in SCR level is explicable by genetic factors. Methods We performed a meta-analysis of genome-wide association studies of SCR undertaken in five population isolates ('discovery cohorts', all of which are part of the European Special Population Network (EUROSPAN project. Genes showing the strongest evidence for an association with SCR (candidate loci were replicated in two additional population-based samples ('replication cohorts'. Results After the discovery meta-analysis, 29 loci were selected for replication. Association between SCR level and polymorphisms in the collagen type XXII alpha 1 (COL22A1 gene, on chromosome 8, and in the synaptotagmin-1 (SYT1 gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 × 10-6 and 1.7 × 10-4, respectively. Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (GABRR2 gene and the ubiquitin-conjugating enzyme E2-J1 (UBE2J1 gene (replication p value = 3.6 × 10-3. Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (UMOD gene and in the schroom family member 3 (SCHROOM3 gene were also replicated. Conclusions While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes SYT1 and GABRR2 corroborate previous findings that highlighted a possible role of the neurotransmitters GABAA receptors in the regulation of the glomerular basement membrane and a possible interaction between GABAAreceptors and synaptotagmin-I at the podocyte level.

  20. 12 CFR 563g.2 - Offering circular requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Offering circular requirement. 563g.2 Section 563g.2 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.2 Offering circular requirement. (a) General. No savings association shall offer or sell, directly...

  1. In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody

    International Nuclear Information System (INIS)

    Wang, Chung-Hao; Huang, Yao-Jhang; Chang, Chia-Wei; Peng, Ching-An; Hsu, Wen-Ming

    2009-01-01

    Despite aggressive multimodality therapy, most neuroblastoma-bearing patients relapse and survival rate remains poor. Exploration of alternative therapeutic modalities is needed. Carbon nanotubes (CNTs), revealing optical absorbance in the near-infrared region, warrant their merits in photothermal therapy. In order to specifically target disialoganglioside (GD2) overexpressed on the surface of neuroblastoma stNB-V1 cells, GD2 monoclonal antibody (anti-GD2) was conjugated to acidified CNTs. To examine the fate of anti-GD2 bound CNTs after incubation with stNB-V1 cells, rhodamine B was labeled on carboxylated CNTs functionalized with and without anti-GD2. Our results illustrated that anti-GD2-linked CNTs were extensively internalized by neuroblastoma cells via GD2-mediated endocytosis. In addition, we showed that anti-GD2 bound CNTs were not ingested by PC12 cells without GD2 expression. After anti-GD2 conjugated CNTs were incubated with neuroblastoma cells for 6 h and endocytosed by the cells, CNT-laden neuroblastoma cells were further irradiated with an 808 nm near-infrared (NIR) laser with intensity ramping from 0.6 to 6 W cm -2 for 10 min which was then maintained at 6 W cm -2 for an additional 5 min. Post-NIR laser exposure, and after being examined by calcein-AM dye, stNB-V1 cells were all found to undergo necrosis, while non-GD2 expressing PC12 cells all remained viable. Based on the in vitro study, CNTs bound with anti-GD2 have the potential to be utilized as a therapeutic thermal coupling agent that generates heat sufficient to selectively kill neuroblastoma cells under NIR laser light exposure.

  2. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres.

    Science.gov (United States)

    Saranya, T S; Rajan, V K; Biswas, Raja; Jayakumar, R; Sathianarayanan, S

    2018-04-15

    Curcumin is a diaryl heptanoid of curcuminoids class obtained from Curcuma longa. It possesses various biological activities like anti-inflammatory, hypoglycemic, antioxidant, wound-healing, and antimicrobial activities. Chitosan is a biocompatible, biodegradable and non-toxic natural polymer which enhances the adhesive property of the skin. Chemical conjugation will leads to sustained release action and to enhance the bioavailability. This study aims to synthesis and characterize biocompatible curcumin conjugated chitosan microspheres for bio-medical applications. The Schiff base reaction was carried out for the preparation of curcumin conjugated chitosan by microwave method and it was characterised using FTIR and NMR. Curcumin conjugated chitosan microspheres (CCCMs) were prepared by wet milling solvent evaporation method. SEM analysis showed these CCCMs were 2-5μm spherical particles. The antibacterial activities of the prepared CCCMs were studied against Staphylococcus aureus and Escherichia coli, the zone of inhibition was 28mm and 23mm respectively. Antioxidant activity of the prepared CCCMs was also studied by DPPH and H 2 O 2 method it showed IC 50 esteem value of 216μg/ml and 228μg/ml, and anti-inflammatory activity results showed that CCCMs having IC 50 value of 45μg/ml. The results conclude that the CCCMs having a good antibacterial, antioxidant and anti-inflammatory activities. This, the prepared CCCMs have potential application in preventing skin infections. Copyright © 2017. Published by Elsevier B.V.

  3. Conjugated oestrogen during the menstrual cycle measured by a direct radioimmunoassay with an antiserum prepared against oestradiol-17-glucosiduronate-(C-6)-BSA conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Honjo, H.; Otsubo, K.; Yasuda, J.; Kitawaki, J.; Okada, H. (Department of Obstetrics and Gynaecology, Kyoto Prefectural University of Medicine, Kyoto); Ohkubo, T.; Nambara, T. (Pharmaceutical Institute, Tohoku University, Sendai, Japan)

    1984-01-01

    Early morning and 24 h urine samples and serum were collected daily throughout the menstrual cycle in women. Urinary oestradiol-17-glucosiduronate (E/sub 2/-17G) was measured with a direct radioimmunoassay whose antiserum has been prepared against E/sub 2/-17-G-(C-6)-bovine serum albumin conjugate and was very specific. On the average, E/sub 2/-17-G in early morning and 24 h urine samples showed a prominent peak one day before the peak of urinary LH. The time relationship between these urinary E/sub 2/-17-G and serum E/sub 2/ levels and peaks was also investigated.

  4. Defective G2 repair in Down syndrome

    International Nuclear Information System (INIS)

    Pincheira, J.; Rodriguez, M.; Bravo, M.; Navarrete, M.H.; Lopez-Saez, J.F.

    1994-01-01

    Lymphocytes from both Down syndrome (DS) patients and age-matched control donors have been investigated to identify a possible disturbance in chromosomal G2 repair. Analyses of caffeine treatments during G2 have shown that the frequency of chromosomal aberrations is higher in DS lymphocytes than in normal lymphocytes. Likewise, G2 duration is longer in DS cells than in normal cells. In both control and DS lymphocytes, caffeine treatments increase the frequencies of chromatid breakages and decrease the average of G2 duration. The reversal of the caffeine potentiation effect by adenosine and niacinamide is higher in DS cells than in normal cells. Furthermore, ATP content per cell in DS lymphocytes is one third of that estimated in normal lymphocytes. The increase of ATP level produced by adenosine or niacinamide generally correlates with the reversal of the caffeine effect on chromosome aberrations. Under the experimental conditions tested, a good negative exponential correlation between ATP level and chromosome aberrations has been detected in both normal and DS lymphocytes which were or were not X-irradiated. Finally, we postulate a decrease in G2 repair capability of DS lymphocytes caused by a low availability of ATP and/or some other factor correlating with it. (au)

  5. Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO_2, CH_4, H_2 adsorptions and high CO_2/N_2 selectivity

    International Nuclear Information System (INIS)

    Modak, Arindam; Bhaumik, Asim

    2015-01-01

    Microporous carbon having Brunauer-Emmett-Teller (BET) surface area of 2186 m"2 g"−"1 and micropore volume of 0.85 cm"3 g"−"1 has been synthesized via KOH induced high temperature carbonization of a non-conjugated hypercrosslinked organic polymer. Owing to the templating and activation by KOH, we have succeeded in making a microporous carbon from this porous polymer and the resultant carbon material showed high uptake for CO_2 (7.6 mmol g"−"1) and CH_4 (2.4 mmol g"−"1) at 1 atm, 273 K together with very good selectivity for the CO_2/N_2 (30.2) separation. Furthermore, low pressure (1 atm) H_2 (2.6 wt%, 77 K) and water uptake (57.4 wt%, 298 K) ability of this polymer derived porous activated carbon is noteworthy. - Graphical abstract: Microporous carbon with BET surface area of 2186 m"2 g"−"1 has been synthesized via KOH activation of a porous organic polymer and it showed high uptake for CO_2 (7.6 mmol g"−"1), CH_4 (2.4 mmol g"−"1) and H_2 (2.6 wt%) at 1 atm together with very good selectivity for CO_2. - Highlights: • Porous carbon from hypercrosslinked organic polymer. • KOH activated carbon with BET surface area 2186 m"2 g"−"1. • High CO2 uptake (7.6 mmol g"−"1) and CO_2/N_2 selectivity (30.2). • Porous carbon also showed high H_2 (2.6 wt%) and H_2O (57.4 wt%) uptakes.

  6. Clostridium difficile Recombinant Toxin A Repeating Units as a Carrier Protein for Conjugate Vaccines: Studies of Pneumococcal Type 14, Escherichia coli K1, and Shigella flexneri Type 2a Polysaccharides in Mice

    Science.gov (United States)

    Pavliakova, Danka; Moncrief, J. Scott; Lyerly, David M.; Schiffman, Gerald; Bryla, Dolores A.; Robbins, John B.; Schneerson, Rachel

    2000-01-01

    Unlike the native protein, a nontoxic peptide (repeating unit of the native toxin designated rARU) from Clostridium difficile toxin A (CDTA) afforded an antigen that could be bound covalently to the surface polysaccharides of pneumococcus type 14, Shigella flexneri type 2a, and Escherichia coli K1. The yields of these polysaccharide-protein conjugates were significantly increased by prior treatment of rARU with succinic anhydride. Conjugates, prepared with rARU or succinylated (rARUsucc), were administered to mice by a clinically relevant dosage and immunization scheme. All conjugates elicited high levels of serum immunoglobulin G both to the polysaccharides and to CDTA. Conjugate-induced anti-CDTA had neutralizing activity in vitro and protected mice challenged with CDTA, similar to the rARU alone. Conjugates prepared with succinylated rARU, therefore, have potential for serving both as effective carrier proteins for polysaccharides and for preventing enteric disease caused by C. difficile. PMID:10722615

  7. High-Throughput Quantification of SH2 Domain-Phosphopeptide Interactions with Cellulose-Peptide Conjugate Microarrays.

    Science.gov (United States)

    Engelmann, Brett W

    2017-01-01

    The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.

  8. -765 G>C POLYMORPHISM OF THE COX-2 GENE AND GASTRIC CANCER RISK IN BRAZILIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Vanessa Maria de Lima Pazine CAMPANHOLO

    2014-04-01

    Full Text Available Context Genomic alterations play important roles in gastric cancer carcinogenesis. Cyclooxygenases (COX are important enzymes in the maintenance of mucosal integrity and in pathological processes, mainly in inflammation and cancer. The -765G>C COX-2 polymorphism has been implicated in gastric cancer risk. Objectives To evaluate the COX-2 gene polymorphism as a predictor of gastric cancer risk. Methods One hundred gastric cancer patients and 150 controls were enrolled from a Brazilian centre. Personal data regarding related risk factors, including alcohol consumption and smoking behavior, were collected via questionnaire. DNA was extracted from peripheral blood and the genotypes were analyzed using PCR-restriction fragment length polymorphism. Results G/G, G/C and C/C genotypes frequencies was 42.7%, 50% and 7.3%, respectively in controls and 59.0%, 34.0% and 7.0% in gastric cancer. The frequency of the genotypes differed between the groups (P = 0.033. A higher risk of gastric cancer was associated with COX-2 -765G/G genotype (P = 0.048; OR:1.98, 95% CI = 1.01-3.90. Alcohol consumption and smoking in patients with -765G/G genotype also increased the risk of gastric cancer. Conclusions The -765G/G genotype and the -765G allele had been associated with an increased risk for gastric cancer. The presence of smoking and alcohol consumption increased the risk for gastric cancer in subjects with -765G/G genotype compared with the control group. Polymorphism of COX-2 gene and gastric cancer risk.

  9. Multipole mixtures for (2γ+-2g+) transitions in nonspherical nuclei with N = 90-110

    International Nuclear Information System (INIS)

    Demidov, A.M.; Govor, L.I.; Kurkin, V.A.; Mikhajlov, I.V.

    1999-01-01

    The multipole mixture σ-sings for (2 γ + -2 g + ) transitions of nuclei with neutron number N = 90-110 are considered. It is found that the correlations of the σ-sings (σ γ + -2 g + ) and (4 γ + -4 g + ) transitions and also the anti-correlations of the σ-sings for (2 γ + -2 g + ) and (2 β + -2 g + ) transitions are observed in majority of cases. There are exclusions from these rules due to inter-cation between β- and γ-vibrational excitations, when they approach each other in energy, and as well due to the contribution given by the two-proton configuration of proton Nilsson orbits in the 2 γ + -level [ru

  10. Detection of radioactive gases in the CO{sub 2} cooling the reactors G 2 - G 3; Detection des gaz radioactifs dans le CO{sub 2} de refroidissement des piles G2 - G3

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, J; Rossi, J [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1968-07-01

    The carbon dioxide cooling the reactors G2 - G3 contains activation gases and fission gases. It is of interest to know their concentration, for example to be able to deduce rapidly the norms which would have to be applied in the case of an incident in the circuit. Gas-phase chromatography is applied daily for carrying out analyses. The chromatogram has separate peaks due to tritium, argon 41, krypton 85 and the 133 and 135 isotopes of xenon. By integrating each peak it is possible to calculate the specific activity of each product. The construction of an apparatus for carrying out continuous measurements is under consideration. (authors) [French] Le gaz carbonique, refroidissant les reacteurs G2 - G3, contient des gaz d'activation et des gaz de fission. Il est interessant de connaitre leur teneur par exemple pour etre en mesure de deduire rapidement les normes qu'il y aurait lieu d'appliquer en cas d'incidents sur le circuit. La methode de chromatographie en phase gazeuse est employee quotidiennement pour faire des analyses. Le chromatogramme se presente sous forme de pics distincts dus au tritium, a l'argon 41, au krypton 85 et aux isotopes 133 et 135 du xenon. L'integration de chaque pic permet de calculer l'activite specifique de chaque compose. Il est envisage de construire un appareil pour des mesures en continu. (auteurs)

  11. Modelling, Analysis and Performance Evaluation of Power Conversion Unit in G2V/V2G Application—A Review

    Directory of Open Access Journals (Sweden)

    María Garcés Quílez

    2018-04-01

    Full Text Available In response to climate change, which is caused by the increasing pollution of the environment and leads to the deterioration of human health, future electricity generations should reduce reliance on fossil fuels by growing the use of clean and renewable energy generation sources and by using clean vehicle technologies. Battery storage systems have been recognized as one of the most promising approaches for supporting the renewable energy generation sources and cleanly powering vehicles instead of burning gasoline and diesel fuel. However, the cost of batteries is still a prominent barrier for their use in stationary and traction applications. As a rule, the cost of batteries can be decreased by lowering material costs, enhancing process efficiencies, and increasing production volume. Another more effective solution is called Vehicle-to-grid (V2G application. In V2G application, the battery system can be used to support the grid services, whereas the battery is still in the vehicle. To make a battery system economically viable for V2G/G2V applications, an effective power-electronics converter should be selected as well. This converter should be supported by an advanced control strategy. Therefore, this article provides a detailed technical assessment and review of V2G/G2V concepts, in conjunction with various power-electronics converter topologies. In this paper, modeling and detailed control strategies are fully designed and investigated in terms of dynamic response and harmonics. Furthermore, an extensive design and analysis of charging systems for low-duty/high-duty vehicles are also presented.

  12. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  13. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  14. Inhibition of hematopoietic prostaglandin D2 synthase (H-PGDS) by an alkaloid extract from Combretum molle.

    Science.gov (United States)

    Moyo, Rejoice; Chimponda, Theresa; Mukanganyama, Stanley

    2014-07-05

    Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki' = 9.2 μg/ml. The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation.

  15. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation

    International Nuclear Information System (INIS)

    Sanga, Madhu; Younis, Islam R.; Tirumalai, Padma S.; Bland, Tina M.; Banaszewska, Monica; Konat, Gregory W.; Tracy, Timothy S.; Gannett, Peter M.; Callery, Patrick S.

    2006-01-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-β-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by human liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death

  16. 10 CFR 2.700 - Scope of subpart G.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Scope of subpart G. 2.700 Section 2.700 Energy NUCLEAR... Formal Adjudications § 2.700 Scope of subpart G. The provisions of this subpart apply to and supplement... authorization for high-level radioactive waste repository noticed under §§ 2.101(f)(8) or 2.105(a)(5...

  17. The Pyridoxal 5′-Phosphate (PLP-Dependent Enzyme Serine Palmitoyltransferase (SPT: Effects of the Small Subunits and Insights from Bacterial Mimics of Human hLCB2a HSAN1 Mutations

    Directory of Open Access Journals (Sweden)

    Ashley E. Beattie

    2013-01-01

    Full Text Available The pyridoxal 5′-phosphate (PLP-dependent enzyme serine palmitoyltransferase (SPT catalyses the first step of de novo sphingolipid biosynthesis. The core human enzyme is a membrane-bound heterodimer composed of two subunits (hLCB1 and hLCB2a/b, and mutations in both hLCB1 (e.g., C133W and C133Y and hLCB2a (e.g., V359M, G382V, and I504F have been identified in patients with hereditary sensory and autonomic neuropathy type I (HSAN1, an inherited disorder that affects sensory and autonomic neurons. These mutations result in substrate promiscuity, leading to formation of neurotoxic deoxysphingolipids found in affected individuals. Here we measure the activities of the hLCB2a mutants in the presence of ssSPTa and ssSPTb and find that all decrease enzyme activity. High resolution structural data of the homodimeric SPT enzyme from the bacterium Sphingomonas paucimobilis (Sp SPT provides a model to understand the impact of the hLCB2a mutations on the mechanism of SPT. The three human hLCB2a HSAN1 mutations map onto Sp SPT (V246M, G268V, and G385F, and these mutant mimics reveal that the amino acid changes have varying impacts; they perturb the PLP cofactor binding, reduce the affinity for both substrates, decrease the enzyme activity, and, in the most severe case, cause the protein to be expressed in an insoluble form.

  18. Cultivation of HepG2.2.15 on Cytodex-3

    DEFF Research Database (Denmark)

    Lupberger, Joachim; Mund, Andreas; Kock, Josef

    2006-01-01

    BACKGROUND/AIMS: Several novel systems are available to study human hepatitis B virus (HBV) replication in cell culture demanding for efficient cell culture based systems for HBV production. The aim was to enhance HBV production of the HBV stably producing cell line HepG2.2.15 by cultivation on s...

  19. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    Science.gov (United States)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  20. Evaluation of iodovinyl antibody conjugates: Comparison with a p-iodobenzoyl conjugate and direct radioiodination

    International Nuclear Information System (INIS)

    Hadley, S.W.; Wilbur, D.S.

    1990-01-01

    The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate

  1. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  2. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR

  3. The (2p, 2p) 11Δg state of 6Li2: Fourier transform spectrum of the 11Δg-B1IIu transition

    International Nuclear Information System (INIS)

    Linton, C.; Martin, F.; Crozet, P.; Ross, A.J.; Bacis, R.

    1993-01-01

    The 1 1 Δ g -B 1 II u transition of 6 Li 2 has been observed in collisionally induced fluorescence following single frequency optical-optical double resonance excitation of the F 1 Σ g + state using a ring dye laser with DCM dye. Spectra of the s and a symmetry levels were obtained separately, at high resolution, in the near-infrared region using a Fourier transform spectrometer. The molecular constants (Dunham coefficients) of the 1 1 Δ g state have been calculated. Comparison of the constants and dissociation energy with ab initio calculations has shown that the 1 1 Δ g state correlates with Li(2p) + Li(2p) and has a dissociation energy of 9,579 ± 1 cm -1 . The energy transfer process responsible for excitation of the 1 1 Δ g state is discussed

  4. Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    International Nuclear Information System (INIS)

    Perry Anthony; Arnold, R.G.; Todd Averett; Band, H.R.; Berisso, M.C.; Borel, H.; Peter Bosted; Stephen Bueltmann; M. Buenerd; T. Chupp; Steve Churchwell; G.R. Court; Donald Crabb; Donal Day; Piotr Decowski; P. DePietro; Robin D. Erbacher; R. Erickson; Andrew Feltham; Helene Fonvieille; Emil Frlez; R. Gearhart; V. Ghazikhanian; Javier Gomez; Keith Griffioen; C. Harris; M.A. Houlden; E.W. Hughes; Charles Hyde-Wright; G. Igo; Sebastien Incerti; John Jensen; J.K. Johnson; Paul King; Yu.G. Kolomensky; Sebastian Kuhn; Richard Lindgren; R.M. Lombard-Nelsen; Jacques Marroncle; James Mccarthy; Paul McKee; W. Meyer; Gregory Mitchell; Joseph Mitchell; Michael Olson; S. Penttila; Gerald Peterson; Gerassimos Petratos; R. Pitthan; Dinko Pocanic; R. Prepost; C. Prescott; Liming Qin; Brian Raue; D. Reyna; L.S. Rochester; Stephen Rock; Oscar Rondon-Aramayo; Franck Sabatie; Ingo Sick; T. Smith; L. Sorrell; F. Staley; S. St. Lorant; L.M. Stuart; Z. Szalata; Y. Terrien; William Tobias; Luminita Todor; T. Toole; S. Trentalange; Dieter Walz; Robert Welsh; Frank Wesselmann; T.R. Wright; C.C. Young; Markus Zeier; Hong Guo Zhu; Benedikt Zihlmann

    1999-01-01

    We have measured the spin structure functions g 2 p and g 2 d and the virtual photon asymmetries A 2 p and A 2 d over the kinematic range 0.02 2 (le) 30(GeV/c) 2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH 3 and 6 LiD targets.The absolute value of A 2 is significantly smaller than the √R positivity limit over the measured range, while g 2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d 2 p , d 2 d and d 2 n . The Burkhardt-Cottingham sum rule integral (g 2 (x)dx) is reported for the range 0.02 (le) x (le) 0.8

  5. Measurement of the Proton and Deuteron Spin Structure Functions G1 and G2

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, Al

    2003-04-02

    The SLAC experiment E155 was a deep-inelastic scattering experiment that scattered polarized electrons off polarized proton and deuteron targets in the effort to measure precisely the proton and deuteron spin structure functions. The nucleon structure functions g{sub 1} and g{sub 2} are important quantities that help test our present models of nucleon structure. Such information can help quantify the constituent contributions to the nucleon spin. The structure functions g{sub 1}{sup p} and G{sub 1}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.9 and 1 {le} Q{sup 2} {le} 40 GeV{sup 2} by scattering 48.4 GeV longitudinally polarized electrons off longitudinally polarized protons and deuterons. In addition, the structure functions g{sub 2}{sup p} and g{sub 2}{sup d} have been measured over the kinematic range 0.01 {le} x {le} 0.7 and 1 {le} Q{sup 2} {le} 17 GeV{sup 2} by scattering 38.8 GeV longitudinally polarized electrons off transversely polarized protons and deuterons. The measurements of g{sub 1} confirm the Bjorken sum rule and find the net quark polarization to be {Delta}{Sigma} = 0.23 {+-} 0.04 {+-} 0.6 while g{sub 2} is found to be consistent with the g{sub 2}{sup WW} model.

  6. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and

  7. AFA 2G and AFA 3G fuel rod performance analysis

    International Nuclear Information System (INIS)

    Lu Huaquan; Liu Tong; Jiao Yongjun; Pang Hua

    2002-01-01

    For 18-months fuel cycle strategy in GNPJVC DAYA BAY unit 1/2, by means of COCCINEL, the fuel rod performance for AFA 3G and AFA 2G in transition cycle is analyzed. The design criteria which should be respected in fuel rod design are included and the design methodology is introduced. All the criteria mentioned are verified and met

  8. Critical Elements of Vehicle-to-Grid (V2G) Economics

    Energy Technology Data Exchange (ETDEWEB)

    Steward, Darlene M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This report explores the critical elements of V2G economics. Section 2 summarizes the elements and costs of a V2G system. Section 3 describes V2G revenue-generating services and the business cases for providing these services. Section 4 notes real-world V2G applications. Section 5 lists concerns related to V2G. Section 6 concludes and summarizes V2G cost and revenue elements.

  9. Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK2.

    Directory of Open Access Journals (Sweden)

    Gregory A Johnson

    Full Text Available BACKGROUND/OBJECTIVES: Upon irradiation with visible light, the photosensitizer-peptide conjugate eosin-(KLAKLAK2 kills a broad spectrum of bacteria without damaging human cells. Eosin-(KLAKLAK2 therefore represents an interesting lead compound for the treatment of local infection by photodynamic bacterial inactivation. The mechanisms of cellular killing by eosin-(KLAKLAK2, however, remain unclear and this lack of knowledge hampers the development of optimized therapeutic agents. Herein, we investigate the localization of eosin-(KLAKLAK2 in bacteria prior to light treatment and examine the molecular basis for the photodynamic activity of this conjugate. METHODOLOGY/PRINCIPAL FINDINGS: By employing photooxidation of 3,3-diaminobenzidine (DAB, (scanning transmission electron microscopy ((STEM, and energy dispersive X-ray spectroscopy (EDS methodologies, eosin-(KLAKLAK2 is visualized at the surface of E. coli and S. aureus prior to photodynamic irradiation. Subsequent irradiation leads to severe membrane damage. Consistent with these observations, eosin-(KLAKLAK2 binds to liposomes of bacterial lipid composition and causes liposomal leakage upon irradiation. The eosin moiety of the conjugate mediates bacterial killing and lipid bilayer leakage by generating the reactive oxygen species singlet oxygen and superoxide. In contrast, the (KLAKLAK2 moiety targets the photosensitizer to bacterial lipid bilayers. In addition, while (KLAKLAK2 does not disrupt intact liposomes, the peptide accelerates the leakage of photo-oxidized liposomes. CONCLUSIONS/SIGNIFICANCE: Together, our results suggest that (KLAKLAK2 promotes the binding of eosin Y to bacteria cell walls and lipid bilayers. Subsequent light irradiation results in membrane damage from the production of both Type I & II photodynamic products. Membrane damage by oxidation is then further aggravated by the (KLAKLAK2 moiety and membrane lysis is accelerated by the peptide. These results therefore

  10. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer

    Science.gov (United States)

    Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang

    2014-05-01

    Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.

  11. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.

    Science.gov (United States)

    Yi, Jiang; Lam, Tina I; Yokoyama, Wallace; Cheng, Luisa W; Zhong, Fang

    2014-09-03

    Undesirable aggregation of nanoparticles stabilized by proteins may occur at the protein's isoelectric point when the particle has zero net charge. Stability against aggregation of nanoparticles may be improved by reacting free amino groups with reducing sugars by the Maillard reaction. β-Lactoglobulin (BLG)-dextran conjugates were characterized by SDS-PAGE and CD. Nanoparticles (60-70 nm diameter) of β-carotene (BC) encapsulated by BLG or BLG-dextran were prepared by the homogenization-evaporation method. Both BLG and BLG-dextran nanoparticles appeared to be spherically shaped and uniformly dispersed by TEM. The stability and release of BC from the nanoparticles under simulated gastrointestinal conditions were evaluated. Dextran conjugation prevented the flocculation or aggregation of BLG-dextran particles at pH ∼4-5 compared to very large sized aggregates of BLG nanoparticles. The released contents of BC from BLG and BLG-dextran nanoparticles under acidic gastric conditions were 6.2 ± 0.9 and 5.4 ± 0.3%, respectively. The release of BC from BLG-dextran nanoparticles by trypsin digestion was 51.8 ± 4.3% of total encapsulated BC, and that from BLG nanoparticles was 60.9 ± 2.9%. Neither BLG-BC nanoparticles nor the Maillard-reacted BLG-dextran conjugates were cytotoxic to Caco-2 cells, even at 10 mg/mL. The apparent permeability coefficient (Papp) of Caco-2 cells to BC was improved by nanoencapsulation, compared to free BC suspension. The results indicate that BC-encapsulated β-lactoglobulin-dextran-conjugated nanoparticles are more stable to aggregation under gastric pH conditions with good release and permeability properties.

  12. G16R single nucleotide polymorphism but not haplotypes of the ß2-adrenergic receptor gene alters cardiac output in humans

    DEFF Research Database (Denmark)

    Rokamp, Kim Z; Staalsø, Jonatan M; Gartmann, Martin

    2013-01-01

    Variation in genes encoding the ß2-adrenergic receptor (ADRB2) and angiotensin-converting enzyme (ACE) may influence Q¿ (cardiac output). The 46G>A (G16R) SNP (single nucleotide polymorphism) has been associated with ß2-mediated vasodilation, but the effect of ADRB2 haplotypes on Q¿ has not been...... studied. Five SNPs within ADRB2 (46G>A, 79C>G, 491C>T, 523C>A and 1053G>C by a pairwise tagging principle) and the I/D (insertion/deletion) polymorphism in ACE were genotyped in 143 subjects. Cardiovascular variables were evaluated by the Model flow method at rest and during incremental cycling exercise...... V¿O2 (oxygen uptake) in G16G subjects, but the increase was 0.5 (0.0-0.9) l/min lower in Arg16 carriers (P=0.035). A similar effect size was observed for the Arg16 haplotypes ACCCG and ACCCC. No interaction was found between ADRB2 and ACE polymorphisms. During exercise, the increase in Q¿ was 0...

  13. Enantioselective light switch effect of Δ- and Λ-[Ru(phenanthroline)2 dipyrido[3,2-a:2', 3'-c]phenazine]2+ bound to G-quadruplex DNA.

    Science.gov (United States)

    Park, Jin Ha; Lee, Hyun Suk; Jang, Myung Duk; Han, Sung Wook; Kim, Seog K; Lee, Young-Ae

    2018-06-01

    The interaction of Δ- and Λ-[Ru(phen) 2 DPPZ] 2+ (DPPZ = dipyrido[3,2-a:2', 3'-c]phenazine, phen = phenanthroline) with a G-quadruplex formed from 5'-G 2 T 2 G 2 TGTG 2 T 2 G 2-3 '(15-mer) was investigated. The well-known enhancement of luminescence intensity (the 'light-switch' effect) was observed for the [Ru(phen) 2 DPPZ] 2+ complexes upon formation of an adduct with the G-quadruplex. The emission intensity of the G-quadruplex-bound Λ-isomer was 3-fold larger than that of the Δ-isomer when bound to the G-quadruplex, which is opposite of the result observed in the case of double stranded DNA (dsDNA); the light switch effect is larger for the dsDNA-bound Δ-isomer. In the job plot of the G-quadruplex with Δ- and Λ-[Ru(phen) 2 DPPZ] 2+ , a major inflection point for the two isomers was observed at x ≈ .65, which suggests a binding stoichiometry of 2:1 for both enantiomers. When the G base at the 8th position was replaced with 6-methyl isoxanthopterin (6MI), a fluorescent guanine analog, the excited energy of 6-MI transferred to bound Δ- or Λ-[Ru(phen) 2 DPPZ] 2+ , which suggests that at least a part of both Ru(II) enantiomers is close to or in contact with the diagonal loop of the G-quadruplex. A luminescence quenching experiment using [Fe(CN) 6 ] 4- for the G-quadruplex-bound Ru(II) complex revealed downward bending curves for both enantiomers in the Stern-Volmer plot, which suggests the presence of Ru(II) complexes that are both accessible and inaccessible to the quencher and may be related to the 2:1 binding stoichiometry.

  14. Synchronous motor with HTS-2G wires

    Science.gov (United States)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  15. Photoinduced electron transfer in a Watson-Crick base-paired, 2-aminopurine:uracil-C60 hydrogen bonding conjugate.

    Science.gov (United States)

    D'Souza, Francis; Gadde, Suresh; Islam, D-M Shafiqul; Pang, Siew-Cheng; Schumacher, Amy Lea; Zandler, Melvin E; Horie, Rumiko; Araki, Yasuyaki; Ito, Osamu

    2007-02-07

    A fluorescent reporter molecule, 2-aminopurine was self-assembled via Watson-Crick base-pairing to a uracil appended fullerene to form a donor-acceptor conjugate; efficient photoinduced charge separation was confirmed by time-resolved emission and transient absorption spectral studies.

  16. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase.

    Science.gov (United States)

    Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik

    2016-05-15

    Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    Science.gov (United States)

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. G2 - G3 inventive properties, the first french nuclear plants; Caracteristiques generales et aspects originaux des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Pascal,; Horowitz,; Bussac,; Joatton,; de Meux, De Lagge; Martin, [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This paper points out the inventive properties of the frenchctors G2 and G3. These are dual purpose reactors, i.e. designed for the production of both plutonium and energy (30 electrical MW); in this respect, they can be considered as the start point of the french electrical energy produced from nuclear fuel. The following points are specially discussed in this paper: the choice of the prestressed concrete pressure vessel, the horizontal arrangement of the channels, the interest of neutron flux flattening, the advantages of the charging and discharging device working during pile operation. (author)Fren. [French] Les caracteres originaux des reacteurs fran is G2 et G3 sont decrits dans ce rapport. Ce sont des reacteurs a double fin, plutonigenes et aussi producteurs d'energie (30 MW electriques); ils constituent a ce titre le point de depart de la production fran ise d'electricite d'origine nucleaire. Sont discutes, en particulier, dans ce rapport: le choix du caisson en beton precontraint pour tenir la pression, la disposition horizontale des canaux, l'interet de l'aplatissement du flux neutronique, les avantages de l'appareil permettant le chargement et le dechargement du combustible sans arreter la pile. (auteur)

  19. Novel genetic approach to investigate the role of plasma secretory phospholipase A2 (sPLA2)-V isoenzyme in coronary heart disease: modified Mendelian randomization analysis using PLA2G5 expression levels.

    Science.gov (United States)

    Holmes, Michael V; Exeter, Holly J; Folkersen, Lasse; Nelson, Christopher P; Guardiola, Montse; Cooper, Jackie A; Sofat, Reecha; Boekholdt, S Matthijs; Khaw, Kay-Tee; Li, Ka-Wah; Smith, Andrew J P; Van't Hooft, Ferdinand; Eriksson, Per; Franco-Cereceda, Anders; Asselbergs, Folkert W; Boer, Jolanda M A; Onland-Moret, N Charlotte; Hofker, Marten; Erdmann, Jeanette; Kivimaki, Mika; Kumari, Meena; Reiner, Alex P; Keating, Brendan J; Humphries, Steve E; Hingorani, Aroon D; Mallat, Ziad; Samani, Nilesh J; Talmud, Philippa J

    2014-04-01

    Secretory phospholipase A2 (sPLA2) enzymes are considered to play a role in atherosclerosis. sPLA2 activity encompasses several sPLA2 isoenzymes, including sPLA2-V. Although observational studies show a strong association between elevated sPLA2 activity and CHD, no assay to measure sPLA2-V levels exists, and the only evidence linking the sPLA2-V isoform to atherosclerosis progression comes from animal studies. In the absence of an assay that directly quantifies sPLA2-V levels, we used PLA2G5 mRNA levels in a novel, modified Mendelian randomization approach to investigate the hypothesized causal role of sPLA2-V in coronary heart disease (CHD) pathogenesis. Using data from the Advanced Study of Aortic Pathology, we identified the single-nucleotide polymorphism in PLA2G5 showing the strongest association with PLA2G5 mRNA expression levels as a proxy for sPLA2-V levels. We tested the association of this SNP with sPLA2 activity and CHD events in 4 prospective and 14 case-control studies with 27 230 events and 70 500 controls. rs525380C>A showed the strongest association with PLA2G5 mRNA expression (P=5.1×10(-6)). There was no association of rs525380C>A with plasma sPLA2 activity (difference in geometric mean of sPLA2 activity per rs525380 A-allele 0.4% (95% confidence intervals [-0.9%, 1.6%]; P=0.56). In meta-analyses, the odds ratio for CHD per A-allele was 1.02 (95% confidence intervals [0.99, 1.04]; P=0.20). This novel approach for single-nucleotide polymorphism selection for this modified Mendelian randomization analysis showed no association between rs525380 (the lead single-nucleotide polymorphism for PLA2G5 expression, a surrogate for sPLA2-V levels) and CHD events. The evidence does not support a causal role for sPLA2-V in CHD.

  20. Comparison of two enzyme-linked immunosorbent assays and one rapid immunoblot assay for detection of herpes simplex virus type 2-specific antibodies in serum

    NARCIS (Netherlands)

    Groen, J; Van Dijk, G; Niesters, H G; Van Der Meijden, W I; Osterhaus, A D

    The sensitivities and specificities of three immunoassays for the detection of herpes simplex virus type 2 (HSV-2)-specific immunoglobulin G antibodies in serum, including the one-strip rapid immunoblot assay (RIBA; Chiron Corporation) and two indirect enzyme immunosorbent assays (EIA; Gull

  1. Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA

    Directory of Open Access Journals (Sweden)

    Keiichi Motoyama

    2009-08-01

    Full Text Available We have evaluated the potential use of various polyamidoamine (PAMAM dendrimer [dendrimer, generation (G 2-4] conjugates with cyclodextrins (CyDs as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3 conjugate with α-CyD having an average degree of substitution (DS of 2.4 [α-CDE (G3, DS2] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2] was found to possess asialoglycoprotein receptor (AgpR-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol-appended α-CDE [Fol-PαC (G3] and revealed that Fol-PαC (G3 imparted folate receptor (FR-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.

  2. The stereoselective sulfate conjugation of 4'-methoxyfenoterol stereoisomers by sulfotransferase enzymes.

    Science.gov (United States)

    Iyer, Lalitha V; Ramamoorthy, Anuradha; Rutkowska, Ewelina; Furimsky, Anna M; Tang, Liang; Catz, Paul; Green, Carol E; Jozwiak, Krzysztof; Wainer, Irving W

    2012-10-01

    The presystemic sulfate conjugation of the stereoisomers of 4'-methoxyfenoterol, (R,R')-MF, (S,S')-MF, (R,S')-MF, and (S,R')-MF, was investigated using commercially available human intestinal S9 fractions, a mixture of sulfotransferase (SULT) enzymes. The results indicate that the sulfation was stereospecific and that an S-configuration at the β-OH carbon of the MF molecule enhanced the maximal formation rates with (S,R')-MF  (S,S')-MF  (R,S')-MF ≈ (R,R')-MF, and competition studies demonstrated that (S,R')-MF is an effective inhibitor of (R,R')-MF sulfation (IC(50) = 60 μM). In addition, the results from a cDNA-expressed human SULT isoform screen indicated that SULT1A1, SULT1A3, and SULT1E1 can mediate the sulfation of all four MF stereoisomers. Previously published molecular models of SULT1A3 and SULT1A1 were used in docking simulations of the MF stereoisomers using Molegro Virtual Docker. The models of the MF-SULT1A3 and MF-SULT1A1 complexes indicate that each of the two chiral centers of MF molecule plays a role in the observed relative stabilities. The observed stereoselectivity is the result of multiple hydrogen bonding interactions and induced conformational changes within the substrate-enzyme complex. In conclusion, the results suggest that a formulation developed from a mixture of (R,R')-MF and (S,R')-MF may increase the oral bioavailability of (R,R')-MF. Copyright © 2012 Wiley Periodicals, Inc.

  3. BF3·Et2O promoted conjugate addition of ethanethiol to electron-deficient alkynes

    Institute of Scientific and Technical Information of China (English)

    Qing Fa Zhou; Xue Ping Chu; Shen Zhao; Tao Lu; Wei Fang Tang

    2012-01-01

    An effective method for the synthesis of vinyl thioethers through the conjugate addition of ethanethiol to electron-deficient alkynes promoted by BF3·Et2O has been developed.Electron-deficient internal alkynes react with ethanethiol in this system to yield mainly Z-isomer of vinyl thioether adducts,while electron-deficient terminal alkynes afford mainly E-isomer of vinyl thioether adducts.

  4. The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Stefan Poschner

    2017-10-01

    Full Text Available The beneficial effect of dietary soy food intake, especially for women diagnosed with breast cancer, is controversial, as in vitro data has shown that the soy isoflavones genistein and daidzein may even stimulate the proliferation of estrogen-receptor alpha positive (ERα+ breast cancer cells at low concentrations. As genistein and daidzein are known to inhibit key enzymes in the steroid metabolism pathway, and thus may influence levels of active estrogens, we investigated the impacts of genistein and daidzein on the formation of estrogen metabolites, namely 17β-estradiol (E2, 17β-estradiol-3-(β-D-glucuronide (E2-G, 17β-estradiol-3-sulfate (E2-S and estrone-3-sulfate (E1-S in estrogen-dependent ERα+ MCF-7 cells. We found that both isoflavones were potent inhibitors of E1 and E2 sulfation (85–95% inhibition at 10 μM, but impeded E2 glucuronidation to a lesser extent (55–60% inhibition at 10 μM. The stronger inhibition of E1 and E2 sulfation compared with E2 glucuronidation was more evident for genistein, as indicated by significantly lower inhibition constants for genistein [Kis: E2-S (0.32 μM < E1-S (0.76 μM < E2-G (6.01 μM] when compared with those for daidzein [Kis: E2-S (0.48 μM < E1-S (1.64 μM < E2-G (7.31 μM]. Concomitant with the suppression of E1 and E2 conjugation, we observed a minor but statistically significant increase in E2 concentration of approximately 20%. As the content of genistein and daidzein in soy food is relatively low, an increased risk of breast cancer development and progression in women may only be observed following consumption of high-dose isoflavone supplements. Further long-term human studies monitoring free estrogens and their conjugates are therefore highly warranted to evaluate the potential side effects of high-dose genistein and daidzein, especially in patients diagnosed with ERα+ breast cancer.

  5. Effects of long-term elevated CO2 on N2-fixing, denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-Qiang; HAN Shi-Jie; REN Fei-Rong; ZHOU Yu-Mei; ZHANG Yan

    2008-01-01

    A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province,northeastern China (42o24'N,128o06'E,and 738 m elevation).A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999.Changpai Scotch pine (Pinus sylvestris var.sylvestriformis seeds were sowed in May,1999 and CO2 fumigation treatments began after seeds germination.In each year,the exposure started at the end of April and stopped at the end of October.Soil samples were collected in June and August 2006 and in June 2007,and soil nitrifying,denitrifying and N2-fixing enzyme activities were measured.Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006,by 30.9% in August 2006 and by 11.3% in June 2007.Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007,and no significant changes in N2-fixing enzyme activity were found.This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.

  6. Incidência de fumonisina B1, aflatoxinas B1, B2, G1 e G2, ocratoxina A e zearalenona em produtos de milho Occurrence of fumonisin B1, aflatoxins B1, B2, G1, and G2, ochratoxin A and zearalenone in corn products

    Directory of Open Access Journals (Sweden)

    Luciane Mie Kawashima

    2006-09-01

    Full Text Available Levantamentos de ocorrência de micotoxinas em alimentos foram realizados nas últimas duas décadas nas regiões Sudeste e Sul do Brasil. Levantamentos em alimentos comercializados em outras regiões têm-se limitado a aflatoxinas em amendoim e castanhas do Brasil. O presente trabalho pesquisou a presença de fumonisina B1, aflatoxinas B1, B2, G1 e G2, ocratoxina A e zearalenona em 74 amostras de produtos a base de milho adquiridas no comércio da cidade de Recife, PE, durante o período de 1999 a 2001. Fumonisina B1 foi determinada por cromatografia líquida de alta eficiência com detecção por fluorescência e as demais toxinas foram determinadas por cromatografia em camada delgada. Fumonisina B1 foi encontrada em 94,6% das amostras em concentrações variando de 20 a 8600 µg/kg. Apenas 5 amostras continham aflatoxina B1 e o teor máximo encontrado foi 20 µg/kg. Duas amostras ultrapassaram o limite de 20 µg/kg para a somatória das aflatoxinas B1, B2, G1 e G2 (farinha de milho pré-cozida com 21,5 µg/kg e quirera (xerém com 23,3 µg/kg. As aflatoxinas G1 e G2, ocratoxina A e zearalenona não foram detectadas em nenhuma das amostras. Todas as amostras contaminadas com aflatoxinas também apresentaram fumonisina B1.Research concerning the presence of mycotoxin in food has been conducted in the Southwest and South regions of Brazil over the last two decades. Research in other regions has been limited to aflatoxin in peanuts and Brazil nuts. The aim of this work is to study the presence of fumonisin B1, aflatoxins B1, B2, G1, and G2, ochratoxin A and zearalenone in 74 samples of corn products acquired in shops and food markets in the city of Recife (PE from 1999 to 2001. Fumonisin B1 was determined by high performance liquid chromatography and fluorescence was detected. The other toxins were determined by thin layer chromatography. Fumonisin B1 was found in 94.6% of the samples in levels from 20 to 8600 µg/kg. Only 5 samples contained

  7. Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments

    Czech Academy of Sciences Publication Activity Database

    Korecká, L.; Bílková, Z.; Holčapek, M.; Královský, J.; Beneš, Milan J.; Lenfeld, Jiří; Minc, N.; Cecal, R.; Viovy, J.-L.; Przybylski, M.

    2004-01-01

    Roč. 808, č. 1 (2004), s. 15-24 ISSN 1570-0232. [International Symposium on Polymer Design for BioSeparation and Nanobiotechnology /8./. Compiegne, 27.11.2003-29.11.2003] Grant - others:GA ČR(CZ) GA203/02/0023 Program:GA Institutional research plan: CEZ:AV0Z4050913 Keywords : immobilized enzyme reactors * immunoglobulin G Subject RIV: CE - Biochemistry Impact factor: 2.176, year: 2004

  8. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue; Zhang, Shunfen [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Zhou, Tianyan [Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083 (China); Huang, Chaoqun; McLaughlin, Alicia [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Chen, Guangping, E-mail: guangping.chen@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  9. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway.

    Science.gov (United States)

    Hur, H G; Sadowsky, M J; Wackett, L P

    1994-11-01

    The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways.

  10. Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

    Science.gov (United States)

    Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S

    2001-12-01

    Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.

  11. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.

    Science.gov (United States)

    Wang, Yinfang; Zhang, Yahui; Qian, Hang; Lu, Juan; Zhang, Zhifeng; Min, Xinwen; Lang, Mingjian; Yang, Handong; Wang, Nanping; Zhang, Peng

    2013-01-01

    Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.

  12. Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: A systematic medicinal chemistry based computational approach.

    Science.gov (United States)

    Swain, Shasank S; Paidesetty, Sudhir K; Padhy, Rabindra N

    2017-03-01

    To develop 6 conjugate agents of the moribund antibiotic sulfamethoxazole (SMZ) joined to 6 individual monoterpenes, followed by protocols of medicinal chemistry as potent antibacterials, against multidrug resistant (MDR) human gruesome pathogenic bacteria. Antibacterial activities of the proposed conjugates were ascertained by the 'prediction of activity spectra of substances' (PASS) program. Drug-likeness parameters and toxicity profiles of conjugates were standardized with the Lipinski rule of five, using cheminformatic tools, Molsoft, molinspiration, OSIRIS and ProTox. Antibacterial activities of individual chemicals and conjugates were examined by targeting the bacterial folic acid biosynthesis enzyme, dihydropteroate synthases (DHPSs) of bacteria, Bacillus anthracis, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae and Mycobacterium tuberculosis, with 3D structures of DHPSs from protein data bank. According to the PASS program, biological spectral values of conjugate-2, conjugate-5 and conjugate-6 were ascertained effective with 'probably active' or 'Pa' value > 0.5, for anti-infective and antituberculosic activities. Using molecular docking against 5 cited bacterial DHPSs, effective docking scores of 6 monoterpenes in the specified decreasing order (kcal/mol): -9.72 (eugenol against B. anthracis), -9.61 (eugenol against S. pneumoniae), -9. 42 (safrol, against B. anthracis), -9.39 (thymol, against M. tuberculosis), -9.34 (myristicin, against S. pneumoniae) and -9.29 (thymol, against B. anthracis); whereas the lowest docking score of SMZ was -8.46kcal/mol against S. aureus DHPS. Similarly, effective docking scores of conjugates were as specified (kcal/mol.): -10.80 (conjugate-4 consisting SMZ+safrol, against M. tuberculosis), -10.78 (conjugate-5 consisting SMZ+thymol, against M. tuberculosis), -10.60 (conjugate-5 against B. anthracis), -10.26 (conjugate-2 consisting SMZ+ eugenol, against M. tuberculosis), -10.25 (conjugate-5, against S

  13. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  14. Optimization of chromatographic conditions for determination of aflatoxin B1, B2, G1 and G2 by using liquid chromatography-mass Spectrometry

    Science.gov (United States)

    Ramadhaningtyas, Dillani Putri; Aryana, Nurhani; Aristiawan, Yosi; Styarini, Dyah

    2017-11-01

    The optimization of instrument condition and chromatographic separation for analysis of aflatoxin B1, B2, G1 and G2 using liquid chromatography tandem with mass spectrometer detector was conducted in the aim to provide more accurate and reliable analysis results. The aflatoxin known to be serious threat for human health as it is classified as the carcinogenic compounds. The aflatoxin B1, B2, G1 and G2 were selected due to its extensive contamination in various agricultural commodities. The best chromatographic separation was obtained using C-18 column with gradient elution of solvent 5 mM ammonium acetate and 0.1% formic acid in methanol at 7 minutes runtime analysis. The linearity of the detector showed satisfied results as the coefficient determination found to be 0.9994, 0.9996, 0.9998 and 0.9987 for aflatoxin B1, G1, B2, and G2 respectively in the range concentration from 1 to 20 ng/g. The quantifier ion selected for the aflatoxin B1, B2, G1 and G2 was m/z 285.1, 259, 243 and 313 respectively. The instrument precision at these quantifier ions also showed satisfied result with %RSD was around 3.4 to 6.8%. The optimized method present in this study can be used for further sample analysis.

  15. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    International Nuclear Information System (INIS)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan

    2016-01-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and

  16. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model

    Energy Technology Data Exchange (ETDEWEB)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2016-09-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and

  17. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R; Pěnčík, Aleš; Novák, Ondřej; Rashed, Afaf; Holman, Tara; Wilson, Michael H; Voß, Ute; Bishopp, Anthony; King, John R; Ljung, Karin; Bennett, Malcolm J; Owen, Markus R

    2016-09-27

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.

  18. Effect of inhibition of microsomal Ca(2+)-ATPase on cytoplasmic calcium and enzyme secretion in pancreatic acini.

    Science.gov (United States)

    Metz, D C; Pradhan, T K; Mrozinski, J E; Jensen, R T; Turner, R J; Patto, R J; Gardner, J D

    1994-01-13

    We used thapsigargin (TG), 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ) and cyclopiazonic acid (CPA), each of which inhibits microsomal Ca(2+)-ATPase, to evaluate the effects of this inhibition on cytoplasmic free calcium ([Ca2+]i) and secretagogue-stimulated enzyme secretion in rat pancreatic acini. Using single-cell microspectrofluorimetry of fura-2-loaded acini we found that all three agents caused a sustained increase in [Ca2+]i by mobilizing calcium from inositol-(1,4,5)-trisphosphate-sensitive intracellular calcium stores and by promoting influx of extracellular calcium. Concentrations of all three agents that increased [Ca2+]i potentiated the stimulation of enzyme secretion caused by secretagogues that activate adenylate cyclase but inhibited the stimulation of enzyme secretion caused by secretagogues that activate phospholipase C. With BHQ, potentiation of adenylate cyclase-mediated enzyme secretion occurred immediately whereas inhibition of phospholipase C-mediated enzyme secretion occurred only after several min of incubation. In addition, the effects of BHQ and CPA on both [Ca2+]i and secretagogue-stimulated enzyme secretion were reversed completely by washing whereas the actions of TG could not be reversed by washing. Concentrations of BHQ in excess of those that caused maximal changes in [Ca2+]i inhibited all modes of stimulated enzyme secretion by a mechanism that was apparently unrelated to changes in [Ca2+]i. Finally, in contrast to the findings with TG and BHQ, CPA inhibited bombesin-stimulated enzyme secretion over a range of concentrations that was at least 10-fold lower than the range of concentrations over which CPA potentiated VIP-stimulated enzyme secretion.

  19. In vitro investigations of Cynara scolymus L. extract on cell physiology of HepG2 liver cells

    Directory of Open Access Journals (Sweden)

    Gesine Löhr

    2009-06-01

    Full Text Available The objective of this study was the investigation of a potential influence of artichoke leaf extract (ALE on the cell physiology and gene expression of phase I/II enzymes of human liver cells HepG2 and investigation on potential cell protective effects against ethanol-induced cell toxicity against HepG2 cells. Cell biological assays under in vitro conditions using HepG2 liver cells and investigation of mitochondrial activity (MTT test, proliferation assay (BrdU incorporation ELISA, LDH as toxicity marker, gene expression analysis by RT-PCR and enzyme activity of glutationtransferase. Artichocke extract, containing 27% caffeoylquinic acids and 7% flavonoids induced mitochondrial activity, proliferation and total protein content under in vitro conditions in human liver cells HepG2. These effects could not be correlated to the well-known artichoke secondary compounds cynarin, caffeic acid, chlorogenic acid, luteolin and luteolin-7-O-glucoside. The flavones luteolin and luteolin-7-O-glucoside had inhibitory effects at 100 µg/mL level on HepG2 cells, with luteolin being a significant stronger inhibitor compared to the respective glucoside. Artichoke leaf extract had minor stimulating effect on gene expression of CYP1A2, while CYP3A4, GGT, GPX2, GSR and GST were slightly inhibited. GST inhibition under in vitro conditions was also shown by quantification of GST enzyme activity. Induction of gene expression of CYP1A2 was shown to be supraadditive after simultaneous application of ethanol plus artichoke extract. Artichoke leaf extract exhibited cell protective effects against ethanol-induced toxicity within cotreatment under in vitro conditions. Also H2O2 damage was significantly inhibited by simultaneous artichoke incubation. Pre- and posttreatments did not exert protective effects. DMSO-induced toxicity was significantly reduced by pre-, post- and cotreatment with artichoke extract and especially with luteolin-7-O-glucoside, indicating a direct

  20. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  2. Supersymmetric M3-branes and G2 manifolds

    International Nuclear Information System (INIS)

    Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G 2 holonomy on (R 4 xS 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G 2 metric, and λ={-1,1} are related to this by an S 3 automorphism of the SU(2) 3 isometry group that acts on the S 3 xS 3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G 2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G 2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric

  3. Supersymmetric M3-branes and G2 manifolds

    Science.gov (United States)

    Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G2 holonomy on R4×S 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G2 metric, and λ={-1,1} are related to this by an S3 automorphism of the SU(2) 3 isometry group that acts on the S3× S3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  4. Health physics during work on the G. 2 and G. 3 reactor exchanges; La radioprotection des travaux sur les echangeurs des piles G. 2 et G. 3

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J; Chassany, J; Guillermin, P [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1965-07-01

    During this work and its preparation, which took place first at G. 2 and then at G. 3 over a period of 11 months, 15000 measurement results were obtained. Their analysis, together with a consideration of the organisation on the site and of the conclusions drawn from the experiment, shows the various factors which determine the importance of the radio-active dangers. (authors) [French] Au cours de ces travaux et de leur preparation, qui ont eu lieu successivement a G. 3 puis a G. 2, pendant 11 mois, 15 000 resultats de mesures ont ete obtenus. Leur etude, mise en parallele avec l'organisation du chantier et les enseignements tires de l'experience, met en evidence les divers facteurs conditionnant les niveaux de risques radioactifs. (auteurs)

  5. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies.

    Science.gov (United States)

    Andrews, Jessica L; Goodfellow, Frederic J; Matosin, Natalie; Snelling, Mollie K; Newell, Kelly A; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2017-07-01

    Gene expression analyses in post-mortem schizophrenia brains suggest that a number of ubiquitin proteasome system (UPS) genes are associated with schizophrenia; however the status of UPS proteins in the schizophrenia brain is largely unknown. Ubiquitin related proteins are inherently involved in memory, neuronal survival and morphology, which are processes implicated in neurodevelopmental disorders such as schizophrenia. We examined levels of five UPS proteins (Protein Inhibitor of Activated STAT2 [PIAS2], F-Box and Leucine rich repeat protein 21 [FBXL21], Mouse Double Minute 2 homolog [MDM2], Ubiquitin Carboxyl-Terminal Hydrolase-L1 [UCHL1] and Ubiquitin Conjugating Enzyme E2D1 [UBE2D1]) involved in these neuronal processes, within the dorsolateral prefrontal cortex of post-mortem schizophrenia subjects and matched controls (n = 30/group), in addition to across neurodevelopmental time-points (juvenile, adolescent and adult stages of life), utilizing a well-established neurodevelopmental phencyclidine (PCP) animal model of schizophrenia. We observed significant reductions in PIAS2, FBXL21 and MDM2 in schizophrenia subjects compared to controls (p-values ranging from 0.002 to 0.004). In our developmental PCP model, MDM2 protein was significantly reduced in adult PCP-treated rats compared to controls (p = 0.034). Additionally, FBXL21 (p = 0.022) and UCHL1 (p = 0.022) were significantly decreased, whilst UBE2D1 was increased (p = 0.022), in juvenile phencyclidine-treated rats compared to controls. This is the first study reporting alterations of UPS proteins in post-mortem human schizophrenia subjects and in a neurodevelopmental model of schizophrenia. The findings from this study provide strong support for a role of these UPS proteins in the pathology and development of schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

  7. Cdk2 is required for p53-independent G2/M checkpoint control.

    Directory of Open Access Journals (Sweden)

    Jon H Chung

    2010-02-01

    Full Text Available The activation of phase-specific cyclin-dependent kinases (Cdks is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G(2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G(2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G(2/M checkpoint activation.

  8. Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica

    International Nuclear Information System (INIS)

    Harmer, Nicholas J.; King, Jerry D.; Palmer, Colin M.; Preston, Andrew; Maskell, Duncan J.; Blundell, Tom L.

    2007-01-01

    The expression, purification, and crystallisation of the short-chain dehydrogenases WbmF, WbmG and WbmH from B. bronchiseptica are described. Native diffraction data to 1.5, 2.0, and 2.2 Å were obtained for the three proteins, together with complexes with nucleotides. The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, which are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 Å at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules

  9. Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli.

    Directory of Open Access Journals (Sweden)

    Muskan Jain

    Full Text Available The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG, which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI. It is a metalloenzyme which requires divalent metal ions for its activity. This divalent metal ion can be either Zn2+ as found in most of eukaryotes or Ni2+ as seen in prokaryotes. In the present study, we have found three active GLYI enzymes (AtGLYI2, AtGLYI3 and AtGLYI6 belonging to different metal activation classes coexisting in Arabidopsis thaliana. These enzymes have been found to efficiently complement the GLYI yeast mutants. These three enzymes have been characterized in terms of their activity, metal dependency, kinetic parameters and their role in conferring tolerance to multiple abiotic stresses in E. coli and yeast. AtGLYI2 was found to be Zn2+ dependent whereas AtGLYI3 and AtGLYI6 were Ni2+ dependent. Enzyme activity of Zn2+ dependent enzyme, AtGLYI2, was observed to be exceptionally high (~250-670 fold as compared to Ni2+ dependent enzymes, AtGLYI3 and AtGLYI6. The activity of these GLYI enzymes correlated well to their role in stress tolerance. Heterologous expression of these enzymes in E. coli led to better tolerance against various stress conditions. This is the first report of a higher eukaryotic species having multiple active GLYI enzymes belonging to different metal activation classes.

  10. Exceptional quantum subgroups for the rank two Lie algebras B2 and G2

    CERN Document Server

    Coquereaux, R.; Tahri, E.H.

    2010-01-01

    Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.

  11. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability.

    Directory of Open Access Journals (Sweden)

    Shrenik C Mehta

    2015-06-01

    Full Text Available The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2 emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the 'stability-function tradeoff' phenomenon. The high Tm of KPC-2 (66.5°C provides an evolutionary advantage as

  12. Metabolomic effects of CeO2, SiO2 and CuO metal oxide nanomaterials on HepG2 cells

    Science.gov (United States)

    To better assess potential hepatotoxicity of nanomaterials, human liver HepG2 cells were exposed for 3 days to five different CeO2 (either 30 or 100 μg/ml), 3 SiO2 based (30 μg/ml) or 1 CuO (3 μg/ml) nanomaterials with dry primary particle sizes ranging from 15 to 213 nm. Metabol...

  13. Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells.

    Science.gov (United States)

    Laureys, F; Dewitte, W; Witters, E; Van Montagu, M; Inzé, D; Van Onckelen, H

    1998-04-10

    The importance of N6-isoprenoid cytokinins in the G2-M transition of Nicotiana tabacum BY-2 cells was investigated. Both cytokinin biosynthesis and entry in mitosis were partially blocked by application at early or late G2 of lovastatin (10 microM), an inhibitor of mevalonic acid synthesis. LC-MS/MS quantification of endogenous cytokinins proved that lovastatin affects cytokinin biosynthesis by inhibiting HMG-CoA reductase. Out of eight different aminopurines and a synthetic auxin tested for their ability to override lovastatin inhibition of mitosis, only zeatin was active. Our data point to a key role for a well-defined cytokinin (here, zeatin) in the G2-M transition of tobacco BY-2 cells.

  14. Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration.

    Science.gov (United States)

    Shang, Hongyuan; Han, Dong; Ma, Min; Li, Sha; Xue, Wenting; Zhang, Aiping

    2017-12-01

    As a promising next-generation photodynamic therapy (PDT) photosensitizer, TiO 2 nanoparticles (NPs) has gained great attention due to its higher efficiency. Yet, its application in PDT is strongly limited by its UV light response range. In this work, TiO 2 NPs conjugated with reduced graphene oxide (RGO-TiO 2 ) composites were successfully prepared by hydrothermal reduction method. They were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). Superior adsorption and killing efficiency under UV-A light or visible light were achieved in the presence of the RGO rather than that of unmodified TiO 2 . The optimal photocatalytic activity was obtained when modified proportion was 0.2 (RGO:TiO 2 ). Dark cytotoxicity was observed using 0-500μgmL -1 RGO-TiO 2 during long incubation time. In parallel, following exposure of human hepatocellular carcinoma cell line (HepG2 cells) to RGO-TiO 2 and UV-A or visible light irradiation, a marked decrease in the ratio of the super-coiled DNA, mitochondrial membrane potential (MMP), and the oxidative damage effects, as well as increased the apoptosis rate and intracellular calcium concentration were observed. Moreover, photocatalytic RGO-TiO 2 composites killed the HepG2 cells by apoptosis pathway. The results suggested that RGO-TiO 2 composites were an excellent candidate as a PDT photosensitizer in the near future. Copyright © 2017. Published by Elsevier B.V.

  15. Quantitative measurement of ultraviolet-induced damage in cellular DNA by an enzyme immunodot assay

    International Nuclear Information System (INIS)

    Wakizaka, A.; Nishizawa, Y.; Aiba, N.; Okuhara, E.; Takahashi, S.

    1989-01-01

    A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells

  16. Production, purification and characterization of fibrinolytic enzyme from Serratia sp. KG-2-1 using optimized media.

    Science.gov (United States)

    Taneja, Kapila; Bajaj, Bijender Kumar; Kumar, Sandeep; Dilbaghi, Neeraj

    2017-07-01

    Intravascular thrombosis is one of the major causes of variety of cardiovascular disorders leading to high mortality worldwide. Fibrinolytic enzymes from microbial sources possess ability to dissolve these clots and help to circumvent these problems in more efficient and safer way. In the present study, fibrinolytic protease with higher fibrinolytic activity than plasmin was obtained from Serratia sp. KG-2-1 isolated from garbage dump soil. Response surface methodology was used to study the interactive effect of concentration of maltose, yeast extract + peptone (1:1), incubation time, and pH on enzyme production and biomass. Maximum enzyme production was achieved at 33 °C after 24 h at neutral pH in media containing 1.5% Maltose, 4.0% yeast extract + peptone and other trace elements resulting in 1.82 folds increased production. The enzyme was purified from crude extract using ammonium sulfate precipitation and DEAE-Sephadex chromatography resulting in 12.9 fold purification with 14.9% yield. The purified enzyme belongs to metalloprotease class and had optimal activity in conditions similar to physiological environment with temperature optima of 40 °C and pH optima of 8. The enzyme was found to be stable in various solvents and its activity was enhanced in presence of Na + , K + , Ba 2+ , Cu 2+ , Mn 2+ , Hg 2+ but inhibited by Ca 2+ and Fe 3+ . Hence, the obtained enzyme may be used as potential therapeutic agent in combating various thrombolytic disorders.

  17. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs.

    Science.gov (United States)

    Liu, Pengliang; Jin, Long; Zhao, Lirui; Long, Keren; Song, Yang; Tang, Qianzi; Ma, Jideng; Wang, Xun; Tang, Guoqing; Jiang, Yanzhi; Zhu, Li; Li, Xuewei; Li, Mingzhou

    2018-05-31

    Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition. Copyright © 2017. Published by Elsevier B.V.

  18. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    Science.gov (United States)

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.

    Science.gov (United States)

    Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas

    2004-07-08

    D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.

  20. Removal of Uranium and Associated Contaminants from Aqueous Solutions Using Functional Carbon Nanotubes-Sodium Alginate Conjugates

    Directory of Open Access Journals (Sweden)

    Hussein Allaboun

    2016-02-01

    Full Text Available Synthesis of hydrophilic/hydrophobic beads from functional carbon nanotubes (CNTs conjugated with sodium alginate was investigated. Glutaraldehyde was used as a coupling agent and Ca2+ as a crosslinking agent. The formed conjugate comprises two-dimensional sheets of sodium alginate bounded to long tufts of functional CNT tails of micro-size geometry. Detailed characterization of the conjugates was performed using thermogravimetric analysis (TGA and its first derivative (DTG, Fourier transform infrared (FTIR, and scanning electron microscope (SEM techniques. Different ratios of the conjugate were successfully prepared and used as biodegradable environmentally friendly sorbents. Removal of U6+, V3+, Cr3+, Mo3+, Pb2+, Mn2+, Cu2+, Ti4+ and Ni2+ from aqueous solutions using the synthesized biosorbent was experimentally demonstrated. Maximum metal uptake of 53 mg/g was achieved using the % Functional CNTs = 33 sample.

  1. Untapped Capabilities of 2G in Nigeria Telecom Space

    Directory of Open Access Journals (Sweden)

    Seyi Stephen OLOKEDE

    2009-07-01

    Full Text Available The advent of 3G wireless technologies is obviously relegating the 2G network, gradually pushing them into oblivion. The shortcomings of 2G are the platform that brought about the development of 3G but this does not justify it to be scrapped. This paper will analyze these shortcomings and try to bring out the potentials of the 2G system which can still be garnered. This analysis will be based on the technology used by the system, marketing and the consumers.

  2. π-Clamp-mediated cysteine conjugation

    Science.gov (United States)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  3. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Naoya Matsunaga

    2016-11-01

    Full Text Available Chronic kidney disease (CKD is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2 ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif ligand 2 (Ccl2 was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK, did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  4. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound

    International Nuclear Information System (INIS)

    Ohnuma, Tomokazu; Nakayama, Shinji; Anan, Eisaburo; Nishiyama, Takahito; Ogura, Kenichiro; Hiratsuka, Akira

    2010-01-01

    Under basal conditions, the interaction of the cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) with the transcription factor nuclear factor-E2-related factor 2 (Nrf2) results in a low level of expression of cytoprotective genes whose promoter region contains the antioxidant response element (ARE). In response to oxidants and electrophiles, Nrf2 is stabilized and accumulates in the nucleus. The mechanism for this effect has been proposed to involve thiol-dependent modulation of Keap1, leading to loss of its ability to negatively regulate Nrf2. We previously reported that falcarindiol (heptadeca-1,9(Z)-diene-4,6-diyne-3,8-diol), which occurs in Apiaceae and the closely related Araliaceae plants, causes nuclear accumulation of Nrf2 and induces ARE-regulated enzymes. Here, we report the mechanism of Nrf2 induction by falcarindiol. NMR analysis revealed that the conjugated diacetylene carbons of falcarindiol acted as electrophilic moieties to form adducts with a cysteine (Cys) thiol. In addition, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and circular dichroism spectroscopy, it was demonstrated that falcarindiol alkylated Cys residues in Keap1 and altered the Keap1 secondary structure. Transfection studies using the purified Keap1 protein, a luciferase reporter construct, and an Nrf2-expressing plasmid indicated that the intact Keap1 protein suppressed Nrf2-mediated ARE-luciferase activity. On the other hand, the falcarindiol-alkylated Keap1 protein did not suppress such activity. Treatment of HEK293 cells overexpressing Keap1 with falcarindiol generated a high molecular weight (HMW) form of Keap1. Furthermore, the Cys151 residue in Keap1 was found to be uniquely required for not only the formation of HMW Keap1 but also an increase in ARE-luciferase activity by falcarindiol. Our results demonstrate that falcarindiol having conjugated diacetylene carbons covalently modifies the Cys151 residue in Keap1 and that the

  5. 2-Phenylbenzothiazole conjugated with cyclopentadienyl tricarbonyl [CpM(CO)3] (M = Re, (99m)Tc) complexes as potential imaging probes for β-amyloid plaques.

    Science.gov (United States)

    Jia, Jianhua; Cui, Mengchao; Dai, Jiapei; Liu, Boli

    2015-04-14

    Technetium-99m-labeled cyclopentadienyl tricarbonyl complexes conjugated with the 2-phenylbenzothiazole binding motif were synthesized. The rhenium surrogates , , and were demonstrated to have moderate to high affinities for Aβ1-42 aggregates with Ki values of 142, 76, 64 and 24 nM, respectively. During the fluorescence staining of brain sections of transgenic mice and patients with Alzheimer's disease, these rhenium complexes demonstrated perfect and intense labeling of Aβ plaques. Moreover, in in vitro autoradiography, (99m)Tc-labeled complexes clearly detected β-amyloid plaques on sections of brain tissue from transgenic mice, which confirmed the sufficient affinity of these tracers for Aβ plaques. However, these compounds did not show desirable properties in vivo, especially showing poor brain uptake (below 0.5% ID g(-1)), which will hinder the further development of these tracers as brain imaging agents. Nonetheless, it is encouraging that these (99m)Tc-labeled complexes designed by a conjugate approach displayed sufficient affinities for Aβ plaques.

  6. Synthesis and stability test of radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab as SPECT-MRI molecular imaging agent for diagnosis of HER-2 positive breast cancer

    Directory of Open Access Journals (Sweden)

    Hardiani Rahmania

    2015-01-01

    Full Text Available Nonivasive diagnosis of cancer can be provided by molecular imaging using hybrid modality to obtain better sensitivity, specificity and depiction localization of the disease. In this study, we developed a new molecular imaging agent, radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab in the form of 147Gd-DOTA-PAMAM G3.0-trastuzumab, that can be both target-specific radiopharmaceutical in SPECT as well as targeted contrast agent in MRI for the purpose of diagnosis of HER-2 positive breast cancer. 147Gd radionuclide emits γ-rays that can be used in SPECT modality, but because of technical constraint, 147Gd radionuclide was simulated by its radioisotope, 153Gd. Gd-DOTA complex has also been known as good MRI contrast agent. PAMAM G3.0 is useful to concentrate Gd-DOTA compelexes in large quantities, thus minimizing the number of trastuzumab molecules used. Trastuzumab is human monoclonal antibody that can spesifically interact with HER-2. Synthesis of radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab was initiated by conjugating DOTA NHS ester ligand with PAMAM G3.0 dendrimer. The DOTA-PAMAM G3.0 produced was conjugated to trastuzumab molecule and labeled with 153Gd. Characterization DOTA-PAMAM G3.0-trastuzumab immunoconjugate was performed using HPLC system equipped with SEC. The formation of immunoconjugate was indicated by the shorter retention time (6.82 min compared to that of trastuzumab (7.06 min. Radiochemical purity of radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab was >99% after purification process by PD-10 desalting column. Radiogadolinium(III-DOTA-PAMAM G3.0-trastuzumab compound was stable at room temperature and at 2–8 0C as indicated by its radiochemical purity 97.6 ± 0.5%–99.1 ± 0.5% after 144 h storage.

  7. Ligand-protein conjugated quantification assay by UV spectrophotometry in 99mTc indirect labeling

    International Nuclear Information System (INIS)

    Basualdo, Daniel A.; Rabiller, Graciela; Poch, Carolina; El Tamer, Elias A.

    2009-01-01

    Objective: Quantify IgG-HYNIC conjugated for obtaining substitution ratio and as a chemical quality control for 99m Tc labeling of this immunoglobulin. Introduction: The Operational Guidance on Hospital Radiopharmacy by IAEA states that the procedures performed in a Radiopharmacy Laboratory fall into three operational levels. At present, Nuclear Medicine Centre of 'Hospital de Clinicas' has an operational level 2b which requires the preparation of radiopharmaceuticals from approved reagent kits and radionuclide generators, and labeling of autologous blood cells. Centre's goal is to reach an operational level 3a, which allows us to compounding radiopharmaceuticals from drugs and radionuclides for diagnosis; modification to existing commercial kits; related research and development. In approach of that goal, we addressed the optimization of conjugation of proteins and peptides with S-HYNIC so as to bring about the procedures involved. In this work, was conjugated nonspecific polyclonal immunoglobulin G (IgG) with S-HYNIC. Our interest was focused in calculate how many HYNIC groups were incorporated per IgG molecule so that in later stages can be obtained a correlate with labeling efficiency. Materials and methods: A sample of IgG-HYNIC conjugate of 0.2 ml was diluted in 4 ml of benzaldehyde o-sulfonic acid (1 mg / ml, 0.1 M NaAc, pH 4.7). The reaction was incubated at room temperature overnight in darkness. As a negative control took 0.2 ml of IgG-HYNIC conjugate in 4 ml of NaAc buffer 0.1 M. 3 ml of benzaldehyde o-sulfonic acid (1 mg / ml 0.1 M NaAc, pH 4.7) was used as blank. The absorption of the hydrazone was read at 343 nm. The hydrazine concentration was calculated using a molar extinction coefficient ε (343 nm) 17000 M-1cm-1. Results: Molar substitution ratio (MSR) was calculated. The MSR indicates the number of HYNIC groups incorporated in the IgG-HYNIC conjugate determined by the spectrophotometric assay. Conclusions: In labeling with a bifunctional

  8. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells.

    Science.gov (United States)

    Khan, Selina; Bijker, Martijn S; Weterings, Jimmy J; Tanke, Hans J; Adema, Gosse J; van Hall, Thorbald; Drijfhout, Jan W; Melief, Cornelis J M; Overkleeft, Hermen S; van der Marel, Gijsbert A; Filippov, Dmitri V; van der Burg, Sjoerd H; Ossendorp, Ferry

    2007-07-20

    Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam(3)CysSK(4) (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG approximately conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam approximately conjugated peptides were likewise internalized independently of the expression of cell surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-dependent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG approximately conjugates was independent of clathrin-coated pits but partly dependent on caveolae formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8(+) T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen

  9. Ashanti pepper (Piper guineense Schumach et Thonn) attenuates carbohydrate hydrolyzing, blood pressure regulating and cholinergic enzymes in experimental type 2 diabetes rat model.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu; Adefegha, Omowunmi Monisola

    2017-01-01

    Ashanti pepper (Piper guineense Schumach et Thonn) seed is well known in folkloric medicine in the management of type 2 diabetes (T2DM) with little or no scientific documentation for its action. This study investigated the effect of Ashanti pepper seed on some enzymes relevant to carbohydrate hydrolysis, blood regulation and the cholinergic system, as well as the blood glucose level, lipid profile, antioxidant parameters, and hepatic and renal function markers in T2DM rats. T2DM was induced by feeding rats with high-fat diet (HFD) for 14 days followed by a single intraperitoneal dose of 35 mg/kg body weight of streptozotocin (STZ). Three days after STZ induction, diabetic rats were placed on a dietary regimen containing 2%-4% Ashanti pepper. Reduced blood glucose level with decreased α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities were observed in Ashanti pepper seed and acarbose-treated rat groups when compared to that of the diabetic control rat group. Furthermore, the results revealed that inclusion of 2%-4% Ashanti pepper seed in diabetic rat fed group diets may ameliorate the lipid profile, antioxidant status, and hepatic and renal function in T2DM rats as much as in the acarbose-treated groups. In addition, a chromatographic profile of the seed revealed the presence of quercitrin (116.51 mg/g), capsaicin (113.94 mg/g), dihydrocapsaicin (88.29 mg/g) and isoquercitrin (74.89 mg/g). The results from this study clearly suggest that Ashanti pepper could serve as a promising source of phenolic compounds with great alternative therapeutic potentials in the management of T2DM.

  10. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  11. Ketopantoyl lactone reductase is a conjugated polyketone reductase.

    Science.gov (United States)

    Hata, H; Shimizu, S; Hattori, S; Yamada, H

    1989-03-01

    Ketopantoyl lactone reductase (EC 1.1.1.168) of Saccharomyces cerevisiae was found to catalyze the reduction of a variety of natural and unnatural conjugated polyketone compounds and quinones, such as isatin, ninhydrin, camphorquinone and beta-naphthoquinone in the presence of NADPH. 5-Bromoisatin is the best substrate for the enzyme (Km = 3.1 mM; Vmax = 650 mumol/min/mg). The enzyme is inhibited by quercetin, and several polyketones. These results suggest that ketopantoyl lactone reductase is a carbonyl reductase which specifically catalyzes the reduction of conjugated polyketones.

  12. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  13. Effect of Chelator Conjugation Level and Injection Dose on Tumor and Organ Uptake of 111In Labeled MORAb-009, an Anti-mesothelin Antibody

    Science.gov (United States)

    Shin, I. S.; Lee, S.-M.; Kim, H. S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K. T.; Hassan, R.; Campo, M. F.; Albone, E. F.; Choyke, P. L.; Pastan, I.; Paik, C. H.

    2012-01-01

    Introduction Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin and the effect of MORAb dose on the biodistribution of 111In labeled MORAb-009. Methods We used nude mice bearing A431/K5 tumor as a mesothelin-positive tumor model and A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5, and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed-mesothelin in the circulation, the biodistribution studies were performed after the i.v. co-injection of the 111In labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses, 0.2, 2, and 30 μg of MORAb-009. Results The tumor uptake in A431/K5 tumor was 4 times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin-mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in biodistribution of the 111In label. The 111In labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake, and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30 μg dose produced higher tumor uptake than the 0.2 and 2 μg doses whereas the 30 μg dose produced lower liver and spleen uptakes than the 0.2 μg dose. Conclusion This study

  14. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR THE URINARY BIOMONITORING OF 2,4-DICHLOROPHRENOCYACETIC ACID (2,4-D)

    Science.gov (United States)

    An enzyme-linked immunosorbent assay (ELISA) method was developed to quantitatively measure 2,4-dichlorophenoyacetic acid (2,4-D) in human urine. Samples were diluted (1:5) with phosphate-buffered saline, 0.05% Tween 20, with 0.02% sodium azide, and analyzed by a 96-microwekk pl...

  15. Re-examination of immune response and estimation of anti-Vi IgG protective threshold against typhoid fever-based on the efficacy trial of Vi conjugate in young children.

    Science.gov (United States)

    Szu, Shousun C; Klugman, Keith P; Hunt, Steven

    2014-04-25

    The capsular polysaccharide of Salmonella enterica serovar Typhi, Vi antigen, is an essential virulence factor and a protective antigen. Similar to other polysaccharide vaccines, the protective action of Vi, both to the polysaccharide alone or when presented as a conjugate, is mediated by serum IgG Vi antibodies. The evaluation of Vi capsular polysaccharide based vaccines to prevent typhoid fever would be significantly facilitated by the identification of a "protective level" of serum antibodies to Vi antigen. The protective level of anti-Vi IgG against typhoid fever was derived from the protective efficacy and immune response of a Vi-rEPA conjugate vaccine efficacy trial. The estimation was derived by two methods: correlation of the percent efficacy and the antibody distribution profile in the vaccine group at a given period of observation, and use of the relative ratio of anti-Vi IgG levels between the vaccine and placebo groups greater or equal to the Relative Risk of typhoid fever used in the efficacy determination. Both methods predicted a similar range of a minimum protective level of anti-Vi IgG between 1.4 and 2.0μg/ml (short term threshold). When applying a protective threshold of 10μg/ml at 6 months post immunization, an IgG level in excess of 1.4μg/ml was achieved by 90% of children at 46 months post immunization, consistent with an 89% level of protection over the duration of the study. We thus suggest that the proportion of children with Vi IgG>10μg/ml (long term threshold) 6 months after immunization may reflect the proportion protected over at least a 4 year period. The current assignment of an anti-Vi IgG protective level may be of value when evaluating vaccine performance of future Vi conjugate vaccines. Published by Elsevier Ltd.

  16. Quench detection method for 2G HTS wire

    International Nuclear Information System (INIS)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V

    2010-01-01

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  17. Quench detection method for 2G HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V, E-mail: maxmarche@gmail.co, E-mail: yxie@superpower-inc.co [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-03-15

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  18. No effect of C1473G polymorphism in the tryptophan hydroxylase 2 gene on the response of the brain serotonin system to chronic fluoxetine treatment in mice.

    Science.gov (United States)

    Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V

    2017-07-13

    Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.

    Science.gov (United States)

    Kirlin, W G; Cai, J; DeLong, M J; Patten, E J; Jones, D P

    1999-10-01

    Dietary agents that induce glutathione S-transferases and related detoxification systems (Phase 2 enzyme inducers) are thought to prevent cancer by enhancing elimination of chemical carcinogens. The present study shows that compounds of this group (benzyl isothiocyanate, allyl sulfide, dimethyl fumarate, butylated hydroxyanisole) activated apoptosis in human colon carcinoma (HT29) cells in culture over the same concentration ranges that elicited increases in enzyme activity (5-25, 25-100, 10-100, 15-60 micromol/L, respectively). Pretreatment of cells with sodium butyrate, an agent that induces HT29 cell differentiation, resulted in parallel increases in Phase 2 enzyme activities and induction of apoptosis in response to the inducers. Cell death characteristics included apoptotic morphological changes, appearance of cells at sub-G1 phase on flow cytometry, caspase activation, DNA fragmentation and TUNEL-positive staining. The results suggest that dietary Phase 2 inducers may protect against cancer by a mechanism distinct from and in addition to that associated with enhanced elimination of carcinogens. If this occurs in vivo, diets high in such compounds could eliminate precancerous cells by apoptosis at time points well after initial exposure to chemical mutagens and carcinogens.

  20. Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair

    Science.gov (United States)

    Gilon, Tamar; Chomsky, Orna; Kulka, Richard G.

    2000-01-01

    Proteolysis by the ubiquitin-proteasome system is highly selective. Specificity is achieved by the cooperation of diverse ubiquitin-conjugating enzymes (Ubcs or E2s) with a variety of ubiquitin ligases (E3s) and other ancillary factors. These recognize degradation signals characteristic of their target proteins. In a previous investigation, we identified signals directing the degradation of β-galactosidase and Ura3p fusion proteins via a subsidiary pathway of the ubiquitin-proteasome system involving Ubc6p and Ubc7p. This pathway has recently been shown to be essential for the degradation of misfolded and regulated proteins in the endoplasmic reticulum (ER) lumen and membrane, which are transported to the cytoplasm via the Sec61p translocon. Mutant backgrounds which prevent retrograde transport of ER proteins (hrd1/der3Δ and sec61-2) did not inhibit the degradation of the β-galactosidase and Ura3p fusions carrying Ubc6p/Ubc7p pathway signals. We therefore conclude that the ubiquitination of these fusion proteins takes place on the cytosolic face of the ER without prior transfer to the ER lumen. The contributions of different sequence elements to a 16-amino-acid-residue Ubc6p-Ubc7p-specific signal were analyzed by mutation. A patch of bulky hydrophobic residues was an essential element. In addition, positively charged residues were found to be essential. Unexpectedly, certain substitutions of bulky hydrophobic or positively charged residues with alanine created novel degradation signals, channeling the degradation of fusion proteins to an unidentified proteasomal pathway not involving Ubc6p and Ubc7p. PMID:10982838

  1. Evaluation of a competitive enzyme-linked immunosorbent assay for measurements of soluble HLA-G protein

    DEFF Research Database (Denmark)

    Rasmussen, M; Dahl, M; Buus, S

    2014-01-01

    . We report a novel method, a competitive immunoassay, for measuring HLA-G5/sHLA-G1 in biological fluids. The sHLA-G immunoassay is based upon a competitive enzyme-linked immunosorbent assay (ELISA) principle. It includes a recombinant sHLA-G1 protein in complex with β2-microglobulin and a peptide...... as a standard, biotinylated recombinant sHLA-G1 as an indicator, and the MEM-G/9 anti-HLA-G monoclonal antibody (mAb) as the capture antibody. The specificity and sensitivity of the assay were evaluated. Testing with different recombinant HLA class I proteins and different anti-HLA class I mAbs showed....../ml. An intra-assay coefficient of variation (CV) of 15.5% at 88 ng/ml and an inter-assay CV of 23.1% at 39 ng/ml were determined. An assay based on the competitive sHLA-G ELISA may be important for measurements of sHLA-G proteins in several conditions: assisted reproduction, organ transplantation, cancer...

  2. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, Mads Corvinius; Larsen, Anders Foller; Abdikadir, Faisal Hussein

    2014-01-01

    G-quadruplex (G4) ligands are currently receiving considerable attention as potential anticancer therapeutics. A series of phenanthroline-2,9-bistriazoles carrying tethered positive end groups has been synthesized and evaluated as G4 stabilizers. The compounds were efficiently assembled by copper......(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in CH2Cl2 and water in the presence of a complexing agent. Characterization of the target compounds on telomeric and c-KIT G4 sequences led to the identification of guanidinium-substituted compounds as potent G4 DNA ligands with high selectivity over duplex DNA....... The diisopropylguanidium ligands exhibited high selectivity for the proto-oncogenic sequence c-KIT over the human telomeric sequence in the surface plasmon resonance (SPR) assay, whereas the compounds appeared potent on both G4 structures in the FRET melting temperature assay. The phenanthroline-2,9-bistriazole ligands...

  3. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Science.gov (United States)

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    Science.gov (United States)

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  5. Enhancement of Gene Silencing Effect and Membrane Permeability by Peptide-Conjugated 27-Nucleotide Small Interfering RNA

    Directory of Open Access Journals (Sweden)

    Toshio Seyama

    2012-09-01

    Full Text Available Two different sizes of siRNAs, of which one type was 21-nucleotide (nt siRNA containing 2-nt dangling ends and the other type was 27-nt siRNA with blunt ends, were conjugated with a nuclear export signal peptide of HIV-1 Rev at the 5′-sense end. Processing by Dicer enzyme, cell membrane permeability, and RNAi efficiency of the peptide-conjugated siRNAs were examined. Dicer cleaved the peptide-conjugated 27-nt siRNA leading to the release of 21-nt siRNA, whereas the peptide-conjugated 21-nt siRNA was not cleaved. High membrane permeability and cytoplasmic localization was found in the conjugates. Moreover, the peptide-conjugated 27-nt siRNA showed increased potency of RNAi in comparison with the nonmodified 21-nt and 27-nt siRNAs, whereas the peptide-conjugated 21-nt siRNA showed decreased RNAi efficacy. This potent RNAi efficacy is probably owing to acceleration of RISC through recognition by Dicer, as well as to the improvement of cell membrane permeability and intracellular accumulation.

  6. G+K 1Σ+/sub g/ double-minimum excited state of H2

    International Nuclear Information System (INIS)

    Glover, R.M.; Weinhold, F.

    1977-01-01

    We have obtained a Born--Oppenheimer potential curve for the previously uncharacterized third 1 Σ + /sub g/ state of H 2 , using a correlated 20-term wavefunction of generalized James--Coolidge type. We find this potential curve to have a double-minimum character, with the inner (Rydberg-like) and outer (''ionic'') wells having minima at about 1.99 and 3.30 bohr, respectively, and an intervening maximum at 2.76 bohr. Unlike the extensively studied E+F double-minimum state, the outer well here appears to be the deeper, by some 450 cm -1 in our calculation. The inner and outer minima can apparently be associated with spectral lines that in experimental tables have previously been attributed to distinct G and K electronic states. The appropriate spectroscopic term symbol of this combined state is accordingly G+K 1 Σ + /sub g/ (1ssigma3dsigma+22 )

  7. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  8. Oracle JDeveloper 11gR2 Cookbook

    CERN Document Server

    Haralabidis, Nick

    2012-01-01

    "Oracle JDeveloper 11gR2 Cookbook" is a practical cookbook which goes beyond the basics with immediately applicable recipes for building ADF applications at an intermediate-to-advanced level. If you are a JavaEE developer who wants to go beyond the basics of building ADF applications with Oracle JDeveloper 11gR2 and get hands on with practical recipes, this book is for you. You should be comfortable with general Java development principles, the JDeveloper IDE, and ADF basics

  9. Associated liver enzymes with hyperlipidemic profile in type 2 diabetes patients.

    Science.gov (United States)

    Al-Jameil, Noura; Khan, Farah A; Arjumand, Sadia; Khan, Mohammad F; Tabassum, Hajera

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and is associated with dyslipidemia and disturbed liver function. Aim of the present work is to assess the liver enzymes and to find its association with hyperlipidemic profile in T2DM. Total of 157 subjects were studied and divided into two groups; diabetes (n=81) and non-diabetes (n=76). Various biochemical parameters like fasting glucose, post prandial glucose, HbA1c, total cholesterol (TC), triglycerides (Tg), high density lipoprotein cholesterol (HDL-C), alanine amino transferase (ALT), aspartate amino transferase (AST) and gamma-glutamyl transferase (GGT) were analyzed by ROCHE module Cobas 6000 (C501 & C601) analyzer, kits were procured by ROCHE diagnostics. Low density lipoprotein cholesterol (LDL-C) was estimated by Freidwald's formula. Statistical analysis was performed by applying student t test and Pearson's correlation coefficient, at 0.0001 and 0.05 level of significance, respectively. All the glycemic control parameters, lipid profile parameters except HDL-C and liver enzymes were found increased in diabetes group and significantly differ from non-diabetes group (p>0.0001). ALT showed significant positive correlation with fasting glucose, post prandial glucose, HbA1c, TC, Tg, LDL-C and GGT at p>0.05. AST showed very weak relation with all parameters while GGT was positively associated with fasting glucose, post prandial glucose, HbA1c, TC, Tg, LDL-C and ALT at p>0.05. In conclusion, T2DM incline to elevate liver enzymes, especially ALT and GGT were of significance. Routine screening of ALT and GGT in T2DM patients may assists early detection of liver abnormalities and to arrest the progress of disease.

  10. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  11. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    Science.gov (United States)

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  12. Permeability of surface modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers

    OpenAIRE

    Yellepeddi, Venkata K.; Pisal, Dipak S.; Kumar, Ajay; Kaushik, Radhey S.; Hildreth, Michael B.; Guan, Xiangming; Palakurthi, Srinath

    2007-01-01

    Aim of this study was to prepare polyamine-conjugated PAMAM dendrimers and study their permeability across Caco-2 cell monolayers. Polyamines, namely, arginine and ornithine were conjugated to the amine terminals of the G4 PAMAM dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (Papp) for the PAMAM dendrimers increased by conjugating the dendrimers with both of the polyamines. The enhancement in permeability was depe...

  13. Wild-type and mutated IDH1/2 enzymes and therapy responses.

    Science.gov (United States)

    Molenaar, Remco J; Maciejewski, Jaroslaw P; Wilmink, Johanna W; van Noorden, Cornelis J F

    2018-04-01

    Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of D-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.

  14. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells

    International Nuclear Information System (INIS)

    Shimada, S.; Katz, S.I.

    1985-01-01

    A most effective method for the induction of hapten-specific allergic contact sensitivity (CS) is via epicutaneous application of the hapten. Another effective method is by the administration of haptenated epidermal cells (EC) subcutaneously. The latter method induces more intense and longer lasting CS than does the subcutaneous administration of haptenated spleen cells (SC). Thus, there may be something unique about EC which, when haptenated, allows them to generate effector cells more effectively than do SC. The authors therefore, attempted to generate T cell clones that were both hapten- and epidermal-specific. Four days after painting mice with 7% trinitrochlorobenzene, draining lymph node cells were obtained and T cells were purified. These cells were co-cultured with trinitrophenylated (TNP) Langerhans cell-enriched EC. After 4 days, cells were harvested and rested on non-TNP-conjugated EC. The cells were restimulated and rested three times, and were then cloned by limiting dilution with added interleukin 2, which was then continually added. Proliferation of T cells was assessed by [ 3 H]-thymidine incorporation. Cytotoxicity assays utilized TNP-conjugated concanavalin A SC blasts or EC as targets. Clones A-2 and E-4 are Thy-1+, Lyt-2+, and L3T4-, and TNP-specific. In contrast to noncloned TNP-specific T cells, the clones proliferate preferentially in response to TNP-EC rather than TNP-SC. Also in contrast to noncloned T cells, the clones were preferentially cytotoxic for TNP-EC; compared to TNP-SC, there was an eight- to 32-fold increase in killing when TNP-EC were used as targets. Clones A-2 and E-4 therefore exhibit hapten and epidermal specificity

  15. QED contributions to electron g-2

    Science.gov (United States)

    Laporta, Stefano

    2018-05-01

    In this paper I briefly describe the results of the numerical evaluation of the mass-independent 4-loop contribution to the electron g-2 in QED with 1100 digits of precision. In particular I also show the semi-analytical fit to the numerical value, which contains harmonic polylogarithms of eiπ/3, e2iπ/3 and eiπ/2 one-dimensional integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated up to 4800 digits. I give also some information about the methods and the program used.

  16. Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri.

    Science.gov (United States)

    Shima, S; Hérault, D A; Berkessel, A; Thauer, R K

    1998-11-01

    Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; approximately 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri.

  17. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    Science.gov (United States)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  18. Influence of earth's gravity on (g - 2) measurements

    International Nuclear Information System (INIS)

    Widom, A.; Chen, C.C.

    1988-01-01

    Experimental probes of the anomalous magnetic moment of the muon, which are sufficiently sensitive to probe electro-weak unification contributions to (g - 2), are also sufficiently sensitive to test an interesting feature of general relativity. The gravitational field of the earth produces a background space-time metric which will influence (g - 2) measurements

  19. Wigner effect in graphite stack: G2 and G3 reactors

    International Nuclear Information System (INIS)

    Artozoul, M.; L'Homme, M.

    1982-11-01

    This text describes work carried out between 1978 and 1980 by a COGEMA/CEA team responsible for a report on the feasibility, effectiveness and possible hazards likely to be encountered in the nuclear annealing of G2 and in changing the operating conditions of G3 [fr

  20. Parametric Amplification, Wavelength Conversion, and Phase Conjugation of a 2.048-Tbit/s WDM PDM 16-QAM Signal

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Gnauck, A. H.

    2015-01-01

    We demonstrate polarization-independent parametric amplification of a 2.048-Tbit/s 8-WDM PDM 16-QAM signal and simultaneous wavelength conversion and phase conjugation in a highly nonlinear fiber. Two high-power continuous-wave pumps with orthogonal polarizations and counter-phase modulation are ...

  1. Development and characterization of highly informative ELISA for the detection of IgG and IgA antibodies to Сhlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    O. Yu. Galkin

    2018-04-01

    Full Text Available The goal of this work was developing of highly informative an enzyme-linked immunosorbent assay (ELISA for the detection of IgG and IgA antibodies against to Chlamydia trachomatis, as well as comparative characterization of developed assay using standardized control materials. The study was conducted using: monoclonal antibodies (McAbs to human IgA and IgG; recombinant Ch. trachomatis proteins – Pgp3, major outer membrane protein (MOMP; two panels of characterized sera and four reference ELISA kits. The study of immunochemical activity of peroxidase conjugates of McAbs was performed in comparison with conjugates of commercial analogues: anti-IgG McAb 2A11 and anti-IgA McAb AD3. About half of the conjugates from the received McAbs panel were more active compared to the reference antibody conjugates. It was quite justified to use the conjugates of antibodies that interact with different antigenic determinants. When IgG antibodies were detected to MOMP, it was justified 1.14-1.56 times more; when IgA antibodies were detected to MOMP, it was justified 1.16-1.37 times more. ELISA for detecting IgG/IgA antibodies to MOMP and Pgp3 of Ch. trachomatis were evaluated using appropriately described serum panels OCO-42-28-313-00 and OCO-42-28-314-00. Comparative studies of the developed ELISA for the detection of IgG and IgA antibodies to the MOMP and Pgp3 of Ch. trachomatis showed their prominent advantage over the commercial analogues, which more clearly demonstrates the difference in the ratio of average values of optical density of positive and negative samples of the described panel of sera: this indicator for commercial kits was 1.36-3.59 times less.

  2. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor

    KAUST Repository

    Das, Sabuj Kanti

    2018-03-02

    Covalent organic frameworks (COFs) build via periodic arrangement of organic building blocks are attracting increasing interest in recent times due to the huge scope in their synthesis through a wide range of structural motifs and diversity in their potential applications. Here we report the synthesis of a new porous extended network π-conjugated TFP-NDA-COF via solvothermal Schiff base condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,5-diaminonaphthalene (NDA). The electrochemical study demonstrates that TFP-NDA-COF has the capability of energy storage up to 379 F g−1 at 2 mV s−1 scan rate, 348 F g−1 at 0.5 A g−1 and offer excellent specific capacitance retention of 75% after 8000 charge discharge cycles. High electrochemical performance could be attributed to the π-electronic conjugation along the polymeric 2D layered network and ion conduction inside the porous channel and permanent porosity of the framework. This indicates that the COF reported herein meets the key requirements like energy storage ability and electrochemical stability needed for developing an efficient energy storage device.

  3. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor

    KAUST Repository

    Das, Sabuj Kanti; Bhunia, Kousik; Mallick, Arijit; Pradhan, Anirban; Pradhan, Debabrata; Bhaumik, Asim

    2018-01-01

    Covalent organic frameworks (COFs) build via periodic arrangement of organic building blocks are attracting increasing interest in recent times due to the huge scope in their synthesis through a wide range of structural motifs and diversity in their potential applications. Here we report the synthesis of a new porous extended network π-conjugated TFP-NDA-COF via solvothermal Schiff base condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,5-diaminonaphthalene (NDA). The electrochemical study demonstrates that TFP-NDA-COF has the capability of energy storage up to 379 F g−1 at 2 mV s−1 scan rate, 348 F g−1 at 0.5 A g−1 and offer excellent specific capacitance retention of 75% after 8000 charge discharge cycles. High electrochemical performance could be attributed to the π-electronic conjugation along the polymeric 2D layered network and ion conduction inside the porous channel and permanent porosity of the framework. This indicates that the COF reported herein meets the key requirements like energy storage ability and electrochemical stability needed for developing an efficient energy storage device.

  4. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    Full Text Available Jin-Lian He,1 Zhi-Wei Zhou,2,3 Juan-Juan Yin,2 Chang-Qiang He,1 Shu-Feng Zhou,2,3 Yang Yu1 1College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Drug metabolizing enzymes (DMEs and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2-like 2 (Nrf2 is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2 cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(PH: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant

  5. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system.

    Science.gov (United States)

    Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang

    2012-03-21

    In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method.

  6. The "g-2" Muon Storage Ring

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  7. Tumor-activated prodrug (TAP)-conjugated nanoparticles with cleavable domains for safe doxorubicin delivery.

    Science.gov (United States)

    Guarnieri, Daniela; Biondi, Marco; Yu, Hui; Belli, Valentina; Falanga, Andrea P; Cantisani, Marco; Galdiero, Stefania; Netti, Paolo A

    2015-03-01

    A major issue in chemotherapy is the lack of specificity of many antitumor drugs, which cause severe side effects and an impaired therapeutic response. Here we report on the design and characterization of model tumor activated prodrug-conjugated polystyrene (PS) nanoparticles (TAP-NPs) for the release of doxorubicin (Dox) triggered by matrix metalloprotease-2 (MMP2) enzyme, which is overexpressed in the extracellular matrix of tumors. In particular, TAP-NPs were produced by attaching Dox to poly(ethylene glycol) (PEG) through two MMP2-cleavable enzymes. The resulting adduct was then tethered to PS NPs. Results showed that Dox release was actually triggered by MMP2 cleavage and was dependent on enzyme concentration, with a plateau around 20 nM. Furthermore, significant cell cytotoxicity was observed towards three cell lines only in the presence of MMP2, but not in cells without enzyme pre-treatment, even after NP internalization by cells. These findings indicate the potential of TAP-NPs as suitable nanocarriers for an on demand, tumor--specific delivery of antitumor drugs after the response to an endogenous stimulus. Further advancements will focus on the translation of this production technology to biodegradable systems for the safe transport of cytotoxic drug to tumor tissues. © 2014 Wiley Periodicals, Inc.

  8. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    Science.gov (United States)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  9. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Takashi Jin

    2009-11-01

    Full Text Available The early detection of HER2 (human epidermal growth factor receptor 2 status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC. As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs with fluorescence quantum yields of 0.23~0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission on the fluorescence image of KPL-4 cells.

  10. Advances in enzyme bioelectrochemistry

    Directory of Open Access Journals (Sweden)

    ANDRESSA R. PEREIRA

    Full Text Available ABSTRACT Bioelectrochemistry can be defined as a branch of Chemical Science concerned with electron-proton transfer and transport involving biomolecules, as well as electrode reactions of redox enzymes. The bioelectrochemical reactions and system have direct impact in biotechnological development, in medical devices designing, in the behavior of DNA-protein complexes, in green-energy and bioenergy concepts, and make it possible an understanding of metabolism of all living organisms (e.g. humans where biomolecules are integral to health and proper functioning. In the last years, many researchers have dedicated itself to study different redox enzymes by using electrochemistry, aiming to understand their mechanisms and to develop promising bioanodes and biocathodes for biofuel cells as well as to develop biosensors and implantable bioelectronics devices. Inside this scope, this review try to introduce and contemplate some relevant topics for enzyme bioelectrochemistry, such as the immobilization of the enzymes at electrode surfaces, the electron transfer, the bioelectrocatalysis, and new techniques conjugated with electrochemistry vising understand the kinetics and thermodynamics of redox proteins. Furthermore, examples of recent approaches in designing biosensors and biofuel developed are presented.

  11. Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters

    Science.gov (United States)

    Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid

    2014-04-01

    We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.

  12. Angiotensin converting enzyme (ACE and ACE2 bind integrins and ACE2 regulates integrin signalling.

    Directory of Open Access Journals (Sweden)

    Nicola E Clarke

    Full Text Available The angiotensin converting enzymes (ACEs are the key catalytic components of the renin-angiotensin system, mediating precise regulation of blood pressure by counterbalancing the effects of each other. Inhibition of ACE has been shown to improve pathology in cardiovascular disease, whilst ACE2 is cardioprotective in the failing heart. However, the mechanisms by which ACE2 mediates its cardioprotective functions have yet to be fully elucidated. Here we demonstrate that both ACE and ACE2 bind integrin subunits, in an RGD-independent manner, and that they can act as cell adhesion substrates. We show that cellular expression of ACE2 enhanced cell adhesion. Furthermore, we present evidence that soluble ACE2 (sACE2 is capable of suppressing integrin signalling mediated by FAK. In addition, sACE2 increases the expression of Akt, thereby lowering the proportion of the signalling molecule phosphorylated Akt. These results suggest that ACE2 plays a role in cell-cell interactions, possibly acting to fine-tune integrin signalling. Hence the expression and cleavage of ACE2 at the plasma membrane may influence cell-extracellular matrix interactions and the signalling that mediates cell survival and proliferation. As such, ectodomain shedding of ACE2 may play a role in the process of pathological cardiac remodelling.

  13. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    Science.gov (United States)

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  14. Prescription patterns of enzyme-containing products in South Africa over a 2-year period

    Directory of Open Access Journals (Sweden)

    Ilse Truter

    2014-09-01

    Full Text Available Enzymes are traded in five categories, namely medical (intervention, diagnostic (detection and quantification, molecular biology, biofuel and industrial. Therapeutic enzymes have been investigated for different uses, for example, for the treatment of genetic disorders, blood clotting disorders, cancer and infectious diseases and for burn debridement. No studies on the prescription of enzyme-containing products in South Africa could be found. Enzymes are classified in the Monthly Index of Medical Specialities under digestants, enzymes and fibrinolytics. The primary aim of this study was to investigate the prescription patterns and cost of enzyme-containing products in South Africa. A private health-care medicines claims database for 2010 and 2011 of approximately 4.5 million records was analysed retrospectively. Enzyme-containing products constituted a small percentage of medical insurance claims (only 0.02% of approximately 4.5 million claims for products and procedures, yet they were relatively expensive. A total of 906 products was prescribed at a cost of almost ZAR2 million over the 2 years. Hyaluronidase was the most frequently prescribed (60.04%, followed by pancreatin-containing products (34.66%. Pancreatin (lipase/ protease/amylase is primarily used in the management of pancreatic exocrine insufficiency. The average cost per hyaluronidase prescription paid by the medical insurance schemes was ZAR280. Other enzyme-containing products prescribed were imiglucerase, alteplase and tenecteplase. Imiglucerase was overall the most expensive. Alteplase, tenecteplase and streptokinase are antithrombotic enzymes that are used in the treatment of acute myocardial infarction or ischaemic stroke. Streptokinase, regarded as the most affordable antithrombotic enzyme, was not prescribed during the period under study. With the growing opportunities for enzymes for therapeutics, the use of enzyme-containing products which are comparatively expensive require

  15. Targeting of the retroviral envelope protein SL3-2 towards the human G-Protein coupled receptor hAPJ

    DEFF Research Database (Denmark)

    Pagh, Kristina

    enzym, der så kobler biotin til virus partiklen, mens peptid 2 tidligere har vist sig at binde sig til biotin. Det første peptid er også blevet sat ind i apelin receptoren. Gennem disse forsøg kan vi konstatere, at det er muligt at binde biotin til både virus og apelin receptoren, uden at dette påvirker...

  16. The MAP, M/G1,G2/1 queue with preemptive priority

    Directory of Open Access Journals (Sweden)

    Bong Dae Choi

    1997-01-01

    Full Text Available We consider the MAP, M/G1,G2/1 queue with preemptive resume priority, where low priority customers arrive to the system according to a Markovian arrival process (MAP and high priority customers according to a Poisson process. The service time density function of low (respectively: high priority customers is g1(x (respectively: g2(x. We use the supplementary variable method with Extended Laplace Transforms to obtain the joint transform of the number of customers in each priority queue, as well as the remaining service time for the customer in service in the steady state. We also derive the probability generating function for the number of customers of low (respectively, high priority in the system just after the service completion epochs for customers of low (respectively, high priority.

  17. Downlink power distributions for 2G and 3G mobile communication networks.

    Science.gov (United States)

    Colombi, Davide; Thors, Björn; Persson, Tomas; Wirén, Niklas; Larsson, Lars-Eric; Jonsson, Mikael; Törnevik, Christer

    2013-12-01

    Knowledge of realistic power levels is key when conducting accurate EMF exposure assessments. In this study, downlink output power distributions for radio base stations in 2G and 3G mobile communication networks have been assessed. The distributions were obtained from network measurement data collected from the Operations Support System, which normally is used for network monitoring and management. Significant amounts of data were gathered simultaneously for large sets of radio base stations covering wide geographical areas and different environments. The method was validated with in situ measurements. For the 3G network, the 90th percentile of the averaged output power during high traffic hours was found to be 43 % of the maximum available power. The corresponding number for 2G, with two or more transceivers installed, was 65 % or below.

  18. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  19. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes.

    Directory of Open Access Journals (Sweden)

    Fatemeh Zebardast Roodi

    Full Text Available Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57 from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp and Coh01133 (KP335160: 3678 bp] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3. The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2, maltotriose (G3 and maltotetraose (G4. The enzymes hydrolyzed pullulan to maltotriose (G3 only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.

  20. Cohnella amylopullulanases: Biochemical characterization of two recombinant thermophilic enzymes.

    Science.gov (United States)

    Zebardast Roodi, Fatemeh; Aminzadeh, Saeed; Farrokhi, Naser; Karkhane, AliAsghar; Haghbeen, Kamahldin

    2017-01-01

    Some industries require newer, more efficient recombinant enzymes to accelerate their ongoing biochemical reactions in harsh environments with less replenishment. Thus, the search for native enzymes from extremophiles that are suitable for use under industrial conditions is a permanent challenge for R & D departments. Here and toward such discoveries, two sequences homologous to amylopullulanases (EC 3.2.1.41, GH57) from an endogenous Cohnella sp., [Coh00831 (KP335161; 1998 bp) and Coh01133 (KP335160: 3678 bp)] were identified. The genes were heterologously expressed in E. coli to both determine their type and further characterize their properties. The isolated DNA was PCR amplified with gene specific primers and cloned in pET28a, and the recombinant proteins were expressed in E. coli BL21 (DE3). The temperatures and pH optima of purified recombinants Coh 01133 and Coh 00831 enzymes were 70°C and 8, and 60°C and 6, respectively. These enzymes are stable more than 90% in 60°C and 50°C for 90 min respectively. The major reactions released sugars which could be fractionated by HPLC analysis, from soluble starch were mainly maltose (G2), maltotriose (G3) and maltotetraose (G4). The enzymes hydrolyzed pullulan to maltotriose (G3) only. Enzyme activities for both proteins were improved in the availability of Mn2+, Ba2+, Ca2+, and Mg2+ and reduced in the presence of Fe2+, Li2+, Na2+, Triton X100 and urea. Moreover, Co2+, K+, and Cu2+ had a negative effect only on Coh 01133 enzyme.