MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT
Directory of Open Access Journals (Sweden)
ZURAIDAH FITRIAH
2017-10-01
Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.
Several Guaranteed Descent Conjugate Gradient Methods for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
San-Yang Liu
2014-01-01
Full Text Available This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent condition gkTdk≤-1-1/4θkgk2 θk>1/4 and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Directory of Open Access Journals (Sweden)
San-Yang Liu
2014-01-01
Full Text Available Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.
A conjugate gradient method with descent properties under strong Wolfe line search
Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.
2017-09-01
The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.
Conjugate descent formulation of backpropagation error in ...
African Journals Online (AJOL)
nique of backpropagation was popularized in a paper by Rumelhart, et al. ... the training of a multilayer neural network using a gradient descent approach applied to a .... superior convergence of the conjugate descent method over a standard ...
Directory of Open Access Journals (Sweden)
Qiuyu Wang
2014-01-01
descent method at first finite number of steps and then by conjugate gradient method subsequently. Under some appropriate conditions, we show that the algorithm converges globally. Numerical experiments and comparisons by using some box-constrained problems from CUTEr library are reported. Numerical comparisons illustrate that the proposed method is promising and competitive with the well-known method—L-BFGS-B.
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Bhaya, Amit; Kaszkurewicz, Eugenius
2004-01-01
It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2012-04-01
Full Text Available It is well known that the numerical algorithms of the steepest descent method (SDM, and the conjugate gradient method (CGM are effective for solving well-posed linear systems. However, they are vulnerable to noisy disturbance for solving ill-posed linear systems. We propose the modifications of SDM and CGM, namely the modified steepest descent method (MSDM, and the modified conjugate gradient method (MCGM. The starting point is an invariant manifold defined in terms of a minimum functional and a fictitious time-like variable; however, in the final stage we can derive a purely iterative algorithm including an acceleration parameter. Through the Hopf bifurcation, this parameter indeed plays a major role to switch the situation of slow convergence to a new situation that the functional is stepwisely decreased very fast. Several numerical examples are examined and compared with exact solutions, revealing that the new algorithms of MSDM and MCGM have good computational efficiency and accuracy, even for the highly ill-conditioned linear equations system with a large noise being imposed on the given data.
Directory of Open Access Journals (Sweden)
Bakhtawar Baluch
2017-01-01
Full Text Available A new modified three-term conjugate gradient (CG method is shown for solving the large scale optimization problems. The idea relates to the famous Polak-Ribière-Polyak (PRP formula. As the numerator of PRP plays a vital role in numerical result and not having the jamming issue, PRP method is not globally convergent. So, for the new three-term CG method, the idea is to use the PRP numerator and combine it with any good CG formula’s denominator that performs well. The new modification of three-term CG method possesses the sufficient descent condition independent of any line search. The novelty is that by using the Wolfe Powell line search the new modification possesses global convergence properties with convex and nonconvex functions. Numerical computation with the Wolfe Powell line search by using the standard test function of optimization shows the efficiency and robustness of the new modification.
On the Strong Convergence of a Sufficient Descent Polak-Ribière-Polyak Conjugate Gradient Method
Directory of Open Access Journals (Sweden)
Min Sun
2014-01-01
Full Text Available Recently, Zhang et al. proposed a sufficient descent Polak-Ribière-Polyak (SDPRP conjugate gradient method for large-scale unconstrained optimization problems and proved its global convergence in the sense that lim infk→∞∥∇f(xk∥=0 when an Armijo-type line search is used. In this paper, motivated by the line searches proposed by Shi et al. and Zhang et al., we propose two new Armijo-type line searches and show that the SDPRP method has strong convergence in the sense that limk→∞∥∇f(xk∥=0 under the two new line searches. Numerical results are reported to show the efficiency of the SDPRP with the new Armijo-type line searches in practical computation.
Conjugate descent formulation of backpropagation error in ...
African Journals Online (AJOL)
The feedforward neural network architecture uses backpropagation learning to determine optimal weights between dierent interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to ...
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry
2018-02-11
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Stochastic Spectral and Conjugate Descent Methods
Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter
2018-01-01
The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.
Conjugate descent formulation of backpropagation error in feedforward neural networks
Directory of Open Access Journals (Sweden)
NK Sharma
2009-06-01
Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Block-conjugate-gradient method
International Nuclear Information System (INIS)
McCarthy, J.F.
1989-01-01
It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum
Applying Gradient Descent in Convolutional Neural Networks
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
Orderings for conjugate gradient preconditionings
Ortega, James M.
1991-01-01
The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.
Practical gradient-descent for memristive crossbars
Nair, Manu V; Dudek, Piotr
2015-01-01
This paper discusses implementations of gradientdescent based learning algorithms on memristive crossbar arrays. The Unregulated Step Descent (USD) is described as a practical algorithm for feed-forward on-line training of large crossbar arrays. It allows fast feed-forward fully parallel on-line hardware based learning, without requiring accurate models of the memristor behaviour and precise control of the programming pulses. The effect of device parameters, training parameters, and device va...
A feasible DY conjugate gradient method for linear equality constraints
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.
Preconditioned stochastic gradient descent optimisation for monomodal image registration
Klein, S.; Staring, M.; Andersson, J.P.; Pluim, J.P.W.; Fichtinger, G.; Martel, A.; Peters, T.
2011-01-01
We present a stochastic optimisation method for intensity-based monomodal image registration. The method is based on a Robbins-Monro stochastic gradient descent method with adaptive step size estimation, and adds a preconditioning matrix. The derivation of the pre-conditioner is based on the
Reference-shaping adaptive control by using gradient descent optimizers.
Directory of Open Access Journals (Sweden)
Baris Baykant Alagoz
Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.
Efficient Sensor Placement Optimization Using Gradient Descent and Probabilistic Coverage
Directory of Open Access Journals (Sweden)
Vahab Akbarzadeh
2014-08-01
Full Text Available We are proposing an adaptation of the gradient descent method to optimize the position and orientation of sensors for the sensor placement problem. The novelty of the proposed method lies in the combination of gradient descent optimization with a realistic model, which considers both the topography of the environment and a set of sensors with directional probabilistic sensing. The performance of this approach is compared with two other black box optimization methods over area coverage and processing time. Results show that our proposed method produces competitive results on smaller maps and superior results on larger maps, while requiring much less computation than the other optimization methods to which it has been compared.
Preconditioning the modified conjugate gradient method ...
African Journals Online (AJOL)
In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.
Accelerating deep neural network training with inconsistent stochastic gradient descent.
Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat
2017-09-01
Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
A three-term conjugate gradient method under the strong-Wolfe line search
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
Gradient descent for robust kernel-based regression
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Directory of Open Access Journals (Sweden)
Gonglin Yuan
Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Gradient descent learning in and out of equilibrium
International Nuclear Information System (INIS)
Caticha, Nestor; Araujo de Oliveira, Evaldo
2001-01-01
Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to study on-line Bayesian algorithms is used for potential based or maximum likelihood learning. We look at the on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler information loss. The closest on-line algorithm works by updating the weights along the gradient of an effective potential, which is different from the parent off-line potential. A few examples are analyzed and the origin of the potential annealing is discussed
Robust Fully Distributed Minibatch Gradient Descent with Privacy Preservation
Directory of Open Access Journals (Sweden)
Gábor Danner
2018-01-01
Full Text Available Privacy and security are among the highest priorities in data mining approaches over data collected from mobile devices. Fully distributed machine learning is a promising direction in this context. However, it is a hard problem to design protocols that are efficient yet provide sufficient levels of privacy and security. In fully distributed environments, secure multiparty computation (MPC is often applied to solve these problems. However, in our dynamic and unreliable application domain, known MPC algorithms are not scalable or not robust enough. We propose a light-weight protocol to quickly and securely compute the sum query over a subset of participants assuming a semihonest adversary. During the computation the participants learn no individual values. We apply this protocol to efficiently calculate the sum of gradients as part of a fully distributed minibatch stochastic gradient descent algorithm. The protocol achieves scalability and robustness by exploiting the fact that in this application domain a “quick and dirty” sum computation is acceptable. We utilize the Paillier homomorphic cryptosystem as part of our solution combined with extreme lossy gradient compression to make the cost of the cryptographic algorithms affordable. We demonstrate both theoretically and experimentally, based on churn statistics from a real smartphone trace, that the protocol is indeed practically viable.
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
Jinkui Liu
2012-01-01
Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.
Nonlinear conjugate gradient methods in micromagnetics
Directory of Open Access Journals (Sweden)
J. Fischbacher
2017-04-01
Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.
Conjugate gradient algorithms using multiple recursions
Energy Technology Data Exchange (ETDEWEB)
Barth, T.; Manteuffel, T.
1996-12-31
Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.
Conjugate Gradient Algorithms For Manipulator Simulation
Fijany, Amir; Scheid, Robert E.
1991-01-01
Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
Understanding the Convolutional Neural Networks with Gradient Descent and Backpropagation
Zhou, XueFei
2018-04-01
With the development of computer technology, the applications of machine learning are more and more extensive. And machine learning is providing endless opportunities to develop new applications. One of those applications is image recognition by using Convolutional Neural Networks (CNNs). CNN is one of the most common algorithms in image recognition. It is significant to understand its theory and structure for every scholar who is interested in this field. CNN is mainly used in computer identification, especially in voice, text recognition and other aspects of the application. It utilizes hierarchical structure with different layers to accelerate computing speed. In addition, the greatest features of CNNs are the weight sharing and dimension reduction. And all of these consolidate the high effectiveness and efficiency of CNNs with idea computing speed and error rate. With the help of other learning altruisms, CNNs could be used in several scenarios for machine learning, especially for deep learning. Based on the general introduction to the background and the core solution CNN, this paper is going to focus on summarizing how Gradient Descent and Backpropagation work, and how they contribute to the high performances of CNNs. Also, some practical applications will be discussed in the following parts. The last section exhibits the conclusion and some perspectives of future work.
Determination of accelerated factors in gradient descent iterations based on Taylor's series
Directory of Open Access Journals (Sweden)
Petrović Milena
2017-01-01
Full Text Available In this paper the efficiency of accelerated gradient descent methods regarding the way of determination of accelerated factor is considered. Due to the previous researches we assert that the use of Taylor's series of posed gradient descent iteration in calculation of accelerated parameter gives better final results than some other choices. We give a comparative analysis of efficiency of several methods with different approaches in obtaining accelerated parameter. According to the achieved results of numerical experiments we make a conclusion about the one of the most optimal way in defining accelerated parameter in accelerated gradient descent schemes.
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.
Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo
2011-07-01
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
Ghani, N. H. A.; Mohamed, N. S.; Zull, N.; Shoid, S.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is one of iterative techniques prominently used in solving unconstrained optimization problems due to its simplicity, low memory storage, and good convergence analysis. This paper presents a new hybrid conjugate gradient method, named NRM1 method. The method is analyzed under the exact and inexact line searches in given conditions. Theoretically, proofs show that the NRM1 method satisfies the sufficient descent condition with both line searches. The computational result indicates that NRM1 method is capable in solving the standard unconstrained optimization problems used. On the other hand, the NRM1 method performs better under inexact line search compared with exact line search.
Chowdhary, J; Keyes, T
2002-02-01
Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.
Error Estimation in Preconditioned Conjugate Gradients
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Tichý, Petr
2005-01-01
Roč. 45, - (2005), s. 789-817 ISSN 0006-3835 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB1030306 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned conjugate gradient method * error bounds * stopping criteria * evaluation of convergence * numerical stability * finite precision arithmetic * rounding errors Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2005
Conjugate gradient optimization programs for shuttle reentry
Powers, W. F.; Jacobson, R. A.; Leonard, D. A.
1972-01-01
Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.
M-step preconditioned conjugate gradient methods
Adams, L.
1983-01-01
Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.
Directory of Open Access Journals (Sweden)
Zhongbo Sun
2014-01-01
Full Text Available Two modified three-term type conjugate gradient algorithms which satisfy both the descent condition and the Dai-Liao type conjugacy condition are presented for unconstrained optimization. The first algorithm is a modification of the Hager and Zhang type algorithm in such a way that the search direction is descent and satisfies Dai-Liao’s type conjugacy condition. The second simple three-term type conjugate gradient method can generate sufficient decent directions at every iteration; moreover, this property is independent of the steplength line search. Also, the algorithms could be considered as a modification of the MBFGS method, but with different zk. Under some mild conditions, the given methods are global convergence, which is independent of the Wolfe line search for general functions. The numerical experiments show that the proposed methods are very robust and efficient.
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
The multigrid preconditioned conjugate gradient method
Tatebe, Osamu
1993-01-01
A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.
Minimizing inner product data dependencies in conjugate gradient iteration
Vanrosendale, J.
1983-01-01
The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
Directory of Open Access Journals (Sweden)
Zhifeng Dai
2014-01-01
Full Text Available Combining the Rosen gradient projection method with the two-term Polak-Ribière-Polyak (PRP conjugate gradient method, we propose a two-term Polak-Ribière-Polyak (PRP conjugate gradient projection method for solving linear equality constraints optimization problems. The proposed method possesses some attractive properties: (1 search direction generated by the proposed method is a feasible descent direction; consequently the generated iterates are feasible points; (2 the sequences of function are decreasing. Under some mild conditions, we show that it is globally convergent with Armijio-type line search. Preliminary numerical results show that the proposed method is promising.
Nonlinear System Identification Using Neural Networks Trained with Natural Gradient Descent
Directory of Open Access Journals (Sweden)
Ibnkahla Mohamed
2003-01-01
Full Text Available We use natural gradient (NG learning neural networks (NNs for modeling and identifying nonlinear systems with memory. The nonlinear system is comprised of a discrete-time linear filter followed by a zero-memory nonlinearity . The NN model is composed of a linear adaptive filter followed by a two-layer memoryless nonlinear NN. A Kalman filter-based technique and a search-and-converge method have been employed for the NG algorithm. It is shown that the NG descent learning significantly outperforms the ordinary gradient descent and the Levenberg-Marquardt (LM procedure in terms of convergence speed and mean squared error (MSE performance.
A fast, preconditioned conjugate gradient Toeplitz solver
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
International Nuclear Information System (INIS)
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
On Scalable Deep Learning and Parallelizing Gradient Descent
AUTHOR|(CDS)2129036; Möckel, Rico; Baranowski, Zbigniew; Canali, Luca
Speeding up gradient based methods has been a subject of interest over the past years with many practical applications, especially with respect to Deep Learning. Despite the fact that many optimizations have been done on a hardware level, the convergence rate of very large models remains problematic. Therefore, data parallel methods next to mini-batch parallelism have been suggested to further decrease the training time of parameterized models using gradient based methods. Nevertheless, asynchronous optimization was considered too unstable for practical purposes due to a lacking understanding of the underlying mechanisms. Recently, a theoretical contribution has been made which defines asynchronous optimization in terms of (implicit) momentum due to the presence of a queuing model of gradients based on past parameterizations. This thesis mainly builds upon this work to construct a better understanding why asynchronous optimization shows proportionally more divergent behavior when the number of parallel worker...
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
Block-Based Gradient Descent for Local Backlight Dimming and Flicker Reduction
DEFF Research Database (Denmark)
Burini, Nino; Mantel, Claire; Nadernejad, Ehsan
2014-01-01
Local backlight dimming technology is a two-fold improvement for LED backlit LCD screens that allows to reduce power consumption and increase visual quality. This paper presents a fast version of an iterative backlight dimming algorithm based on gradient descent search. The speed is increased...
preconditioning the modified conjugate gradient method
African Journals Online (AJOL)
Admin
steepest descent method, the number of matrix-vector products per iteration .... modified CGM algorithm is used for large class of problems that is not ..... New Trends in the Mathematical and Computer Sciences with Applications to Real World.
New hybrid conjugate gradient methods with the generalized Wolfe line search.
Xu, Xiao; Kong, Fan-Yu
2016-01-01
The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.
New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods
International Nuclear Information System (INIS)
Dai, Y.-H.; Liao, L.-Z.
2001-01-01
Conjugate gradient methods are a class of important methods for unconstrained optimization, especially when the dimension is large. This paper proposes a new conjugacy condition, which considers an inexact line search scheme but reduces to the old one if the line search is exact. Based on the new conjugacy condition, two nonlinear conjugate gradient methods are constructed. Convergence analysis for the two methods is provided. Our numerical results show that one of the methods is very efficient for the given test problems
Solving Optimal Control Problem of Monodomain Model Using Hybrid Conjugate Gradient Methods
Directory of Open Access Journals (Sweden)
Kin Wei Ng
2012-01-01
Full Text Available We present the numerical solutions for the PDE-constrained optimization problem arising in cardiac electrophysiology, that is, the optimal control problem of monodomain model. The optimal control problem of monodomain model is a nonlinear optimization problem that is constrained by the monodomain model. The monodomain model consists of a parabolic partial differential equation coupled to a system of nonlinear ordinary differential equations, which has been widely used for simulating cardiac electrical activity. Our control objective is to dampen the excitation wavefront using optimal applied extracellular current. Two hybrid conjugate gradient methods are employed for computing the optimal applied extracellular current, namely, the Hestenes-Stiefel-Dai-Yuan (HS-DY method and the Liu-Storey-Conjugate-Descent (LS-CD method. Our experiment results show that the excitation wavefronts are successfully dampened out when these methods are used. Our experiment results also show that the hybrid conjugate gradient methods are superior to the classical conjugate gradient methods when Armijo line search is used.
Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals
Cho, Myung
2016-06-24
We propose fast algorithms that speed up or improve the performance of recovering spectrally sparse signals from un-derdetermined measurements. Our algorithms are based on a non-convex approach of using alternating projected gradient descent for structured matrix recovery. We apply this approach to two formulations of structured matrix recovery: Hankel and Toeplitz mosaic structured matrix, and Hankel structured matrix. Our methods provide better recovery performance, and faster signal recovery than existing algorithms, including atomic norm minimization.
Fast alternating projected gradient descent algorithms for recovering spectrally sparse signals
Cho, Myung; Cai, Jian-Feng; Liu, Suhui; Eldar, Yonina C.; Xu, Weiyu
2016-01-01
We propose fast algorithms that speed up or improve the performance of recovering spectrally sparse signals from un-derdetermined measurements. Our algorithms are based on a non-convex approach of using alternating projected gradient descent for structured matrix recovery. We apply this approach to two formulations of structured matrix recovery: Hankel and Toeplitz mosaic structured matrix, and Hankel structured matrix. Our methods provide better recovery performance, and faster signal recovery than existing algorithms, including atomic norm minimization.
Ionospheric forecasting model using fuzzy logic-based gradient descent method
Directory of Open Access Journals (Sweden)
D. Venkata Ratnam
2017-09-01
Full Text Available Space weather phenomena cause satellite to ground or satellite to aircraft transmission outages over the VHF to L-band frequency range, particularly in the low latitude region. Global Positioning System (GPS is primarily susceptible to this form of space weather. Faulty GPS signals are attributed to ionospheric error, which is a function of Total Electron Content (TEC. Importantly, precise forecasts of space weather conditions and appropriate hazard observant cautions required for ionospheric space weather observations are limited. In this paper, a fuzzy logic-based gradient descent method has been proposed to forecast the ionospheric TEC values. In this technique, membership functions have been tuned based on the gradient descent estimated values. The proposed algorithm has been tested with the TEC data of two geomagnetic storms in the low latitude station of KL University, Guntur, India (16.44°N, 80.62°E. It has been found that the gradient descent method performs well and the predicted TEC values are close to the original TEC measurements.
A new family of Polak-Ribiere-Polyak conjugate gradient method with the strong-Wolfe line search
Ghani, Nur Hamizah Abdul; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
Conjugate gradient (CG) method is an important technique in unconstrained optimization, due to its effectiveness and low memory requirements. The focus of this paper is to introduce a new CG method for solving large scale unconstrained optimization. Theoretical proofs show that the new method fulfills sufficient descent condition if strong Wolfe-Powell inexact line search is used. Besides, computational results show that our proposed method outperforms to other existing CG methods.
Modified conjugate gradient method for diagonalizing large matrices.
Jie, Quanlin; Liu, Dunhuan
2003-11-01
We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.
Comparison of genetic algorithms with conjugate gradient methods
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
Experiments with conjugate gradient algorithms for homotopy curve tracking
Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.
1991-01-01
There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.
Dynamic gradient descent learning algorithms for enhanced empirical modeling of power plants
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, Amir; Chong, K.T.
1991-01-01
A newly developed dynamic gradient descent-based learning algorithm is used to train a recurrent multilayer perceptron network for use in empirical modeling of power plants. The two main advantages of the proposed learning algorithm are its ability to consider past error gradient information for future use and the two forward passes associated with its implementation, instead of one forward and one backward pass of the backpropagation algorithm. The latter advantage results in computational time saving because both passes can be performed simultaneously. The dynamic learning algorithm is used to train a hybrid feedforward/feedback neural network, a recurrent multilayer perceptron, which was previously found to exhibit good interpolation and extrapolation capabilities in modeling nonlinear dynamic systems. One of the drawbacks, however, of the previously reported work has been the long training times associated with accurate empirical models. The enhanced learning capabilities provided by the dynamic gradient descent-based learning algorithm are demonstrated by a case study of a steam power plant. The number of iterations required for accurate empirical modeling has been reduced from tens of thousands to hundreds, thus significantly expediting the learning process
A Modified Conjugacy Condition and Related Nonlinear Conjugate Gradient Method
Directory of Open Access Journals (Sweden)
Shengwei Yao
2014-01-01
Full Text Available The conjugate gradient (CG method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to Dai-Liao (2001. Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions, the given method is globally convergent under the strong Wolfe-Powell line search for general functions. The numerical experiments show that the proposed method is very robust and efficient.
A Spectral Conjugate Gradient Method for Unconstrained Optimization
International Nuclear Information System (INIS)
Birgin, E. G.; Martinez, J. M.
2001-01-01
A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented
Fractional-order gradient descent learning of BP neural networks with Caputo derivative.
Wang, Jian; Wen, Yanqing; Gou, Yida; Ye, Zhenyun; Chen, Hua
2017-05-01
Fractional calculus has been found to be a promising area of research for information processing and modeling of some physical systems. In this paper, we propose a fractional gradient descent method for the backpropagation (BP) training of neural networks. In particular, the Caputo derivative is employed to evaluate the fractional-order gradient of the error defined as the traditional quadratic energy function. The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset. The numerical simulations effectively verify the theoretical observations of this paper as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Loizou, Nicolas
2017-12-27
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.
Loizou, Nicolas; Richtarik, Peter
2017-01-01
In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.
Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
International Nuclear Information System (INIS)
Ovtchinnikov, E.E.
2008-01-01
The paper is concerned with algorithms for computing several extreme eigenpairs of Hermitian problems based on the conjugate gradient method. We analyse computational strategies employed by various algorithms of this kind reported in the literature and identify their limitations. Our criticism is illustrated by numerical tests on a set of problems from electronic structure calculations and acoustics
Conjugate-Gradient Algorithms For Dynamics Of Manipulators
Fijany, Amir; Scheid, Robert E.
1993-01-01
Algorithms for serial and parallel computation of forward dynamics of multiple-link robotic manipulators by conjugate-gradient method developed. Parallel algorithms have potential for speedup of computations on multiple linked, specialized processors implemented in very-large-scale integrated circuits. Such processors used to stimulate dynamics, possibly faster than in real time, for purposes of planning and control.
Deflation in preconditioned conjugate gradient methods for Finite Element Problems
Vermolen, F.J.; Vuik, C.; Segal, A.
2002-01-01
We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods applied to a Finite Element discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions with continuous or discontinuous
Implementing the conjugate gradient algorithm on multi-core systems
Wiggers, W.A.; Bakker, Vincent; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria; Nurmi, J.; Takala, J.; Vainio, O.
2007-01-01
In linear solvers, like the conjugate gradient algorithm, sparse-matrix vector multiplication is an important kernel. Due to the sparseness of the matrices, the solver runs relatively slow. For digital optical tomography (DOT), a large set of linear equations have to be solved which currently takes
Accurate conjugate gradient methods for families of shifted systems
Eshof, J. van den; Sleijpen, G.L.G.
We present an efficient and accurate variant of the conjugate gradient method for solving families of shifted systems. In particular we are interested in shifted systems that occur in Tikhonov regularization for inverse problems since these problems can be sensitive to roundoff errors. The
Accurate reanalysis of structures by a preconditioned conjugate gradient method
Czech Academy of Sciences Publication Activity Database
Kirsch, U.; Kočvara, Michal; Zowe, J.
2002-01-01
Roč. 55, č. 2 (2002), s. 233-251 ISSN 0029-5981 R&D Projects: GA AV ČR IAA1075005 Grant - others:BMBF(DE) 03ZOM3ER Institutional research plan: CEZ:AV0Z1075907 Keywords : preconditioned conjugate gradient s * structural reanalysis Subject RIV: BA - General Mathematics Impact factor: 1.468, year: 2002
Parallel conjugate gradient algorithms for manipulator dynamic simulation
Fijany, Amir; Scheld, Robert E.
1989-01-01
Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).
The Lanczos and Conjugate Gradient Algorithms in Finite Precision Arithmetic
Czech Academy of Sciences Publication Activity Database
Meurant, G.; Strakoš, Zdeněk
2006-01-01
Roč. 15, - (2006), s. 471-542 ISSN 0962-4929 R&D Projects: GA AV ČR 1ET400300415 Institutional research plan: CEZ:AV0Z10300504 Keywords : Lanczos method * conjugate gradient method * finite precision arithmetic * numerical stability * iterative methods Subject RIV: BA - General Mathematics
Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography.
Yang, Qiang; Vogel, Curtis R; Ellerbroek, Brent L
2006-07-20
By 'atmospheric tomography' we mean the estimation of a layered atmospheric turbulence profile from measurements of the pupil-plane phase (or phase gradients) corresponding to several different guide star directions. We introduce what we believe to be a new Fourier domain preconditioned conjugate gradient (FD-PCG) algorithm for atmospheric tomography, and we compare its performance against an existing multigrid preconditioned conjugate gradient (MG-PCG) approach. Numerical results indicate that on conventional serial computers, FD-PCG is as accurate and robust as MG-PCG, but it is from one to two orders of magnitude faster for atmospheric tomography on 30 m class telescopes. Simulations are carried out for both natural guide stars and for a combination of finite-altitude laser guide stars and natural guide stars to resolve tip-tilt uncertainty.
Conjugate gradient heat bath for ill-conditioned actions.
Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele
2007-08-01
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.
An Efficient Hybrid Conjugate Gradient Method with the Strong Wolfe-Powell Line Search
Directory of Open Access Journals (Sweden)
Ahmad Alhawarat
2015-01-01
Full Text Available Conjugate gradient (CG method is an interesting tool to solve optimization problems in many fields, such as design, economics, physics, and engineering. In this paper, we depict a new hybrid of CG method which relates to the famous Polak-Ribière-Polyak (PRP formula. It reveals a solution for the PRP case which is not globally convergent with the strong Wolfe-Powell (SWP line search. The new formula possesses the sufficient descent condition and the global convergent properties. In addition, we further explained about the cases where PRP method failed with SWP line search. Furthermore, we provide numerical computations for the new hybrid CG method which is almost better than other related PRP formulas in both the number of iterations and the CPU time under some standard test functions.
International Nuclear Information System (INIS)
Jia, Ningning; Lam, Edmund Y
2010-01-01
Inverse lithography technology (ILT) synthesizes photomasks by solving an inverse imaging problem through optimization of an appropriate functional. Much effort on ILT is dedicated to deriving superior masks at a nominal process condition. However, the lower k 1 factor causes the mask to be more sensitive to process variations. Robustness to major process variations, such as focus and dose variations, is desired. In this paper, we consider the focus variation as a stochastic variable, and treat the mask design as a machine learning problem. The stochastic gradient descent approach, which is a useful tool in machine learning, is adopted to train the mask design. Compared with previous work, simulation shows that the proposed algorithm is effective in producing robust masks
International Nuclear Information System (INIS)
Dong Bing; Ren Deqing; Zhang Xi
2011-01-01
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10 -3 to 10 -4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.
Application of Conjugate Gradient methods to tidal simulation
Barragy, E.; Carey, G.F.; Walters, R.A.
1993-01-01
A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.
MILC staggered conjugate gradient performance on Intel KNL
DeTar, Carleton; Doerfler, Douglas; Gottlieb, Steven; Jha, Ashish; Kalamkar, Dhiraj; Li, Ruizi; Toussaint, Doug
2016-01-01
We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the Intel Knights Landing (KNL) architecture. KNL is the second gener- ation Intel Xeon Phi processor. It is capable of massive thread parallelism, data parallelism, and high on-board memory bandwidth and is being adopted in supercomputing centers for scientific research. The CG solver consumes the majority of time in production running, so we have spent most of our effort on it. ...
Gadolinium burnable absorber optimization by the method of conjugate gradients
International Nuclear Information System (INIS)
Drumm, C.R.; Lee, J.C.
1987-01-01
The optimal axial distribution of gadolinium burnable poison in a pressurized water reactor is determined to yield an improved power distribution. The optimization scheme is based on Pontryagin's maximum principle, with the objective function accounting for a target power distribution. The conjugate gradients optimization method is used to solve the resulting Euler-Lagrange equations iteratively, efficiently handling the high degree of nonlinearity of the problem
A partitioned conjugate gradient algorithm for lattice Green functions
International Nuclear Information System (INIS)
Bowler, K.C.; Kenway, R.D.; Pawley, G.S.; Wallace, D.J.
1984-01-01
Partitioning reduces by one the dimensionality of the lattice on which a propagator need be calculated using, for example, the conjugate gradient algorithm. Thus the quark propagator in lattice QCD may be determined by a computation on a single spatial hyperplane. For free fermions on a 16 3 x N lattice 2N-bit accuracy in the propagator is required to avoid rounding errors. (orig.)
Moving force identification based on modified preconditioned conjugate gradient method
Chen, Zhen; Chan, Tommy H. T.; Nguyen, Andy
2018-06-01
This paper develops a modified preconditioned conjugate gradient (M-PCG) method for moving force identification (MFI) by improving the conjugate gradient (CG) and preconditioned conjugate gradient (PCG) methods with a modified Gram-Schmidt algorithm. The method aims to obtain more accurate and more efficient identification results from the responses of bridge deck caused by vehicles passing by, which are known to be sensitive to ill-posed problems that exist in the inverse problem. A simply supported beam model with biaxial time-varying forces is used to generate numerical simulations with various analysis scenarios to assess the effectiveness of the method. Evaluation results show that regularization matrix L and number of iterations j are very important influence factors to identification accuracy and noise immunity of M-PCG. Compared with the conventional counterpart SVD embedded in the time domain method (TDM) and the standard form of CG, the M-PCG with proper regularization matrix has many advantages such as better adaptability and more robust to ill-posed problems. More importantly, it is shown that the average optimal numbers of iterations of M-PCG can be reduced by more than 70% compared with PCG and this apparently makes M-PCG a preferred choice for field MFI applications.
A modified three-term PRP conjugate gradient algorithm for optimization models.
Wu, Yanlin
2017-01-01
The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.
Solving large mixed linear models using preconditioned conjugate gradient iteration.
Strandén, I; Lidauer, M
1999-12-01
Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.
Program generator for the Incomplete Cholesky Conjugate Gradient (ICCG) method
International Nuclear Information System (INIS)
Kuo-Petravic, G.; Petravic, M.
1978-04-01
The Incomplete Cholesky Conjugate Gradient (ICCG) method has been found very effective for the solution of sparse systems of linear equations. Its implementation on a computer, however, requires a considerable amount of careful coding to achieve good machine efficiency. Furthermore, the resulting code is necessarily inflexible and cannot be easily adapted to different problems. We present in this paper a code generator GENIC which, given a small amount of information concerning the sparsity pattern and size of the system of equations, generates a solver package. This package, called SOLIC, is tailor made for a particular problem and can be easily incorporated into any user program
Conjugate gradient coupled with multigrid for an indefinite problem
Gozani, J.; Nachshon, A.; Turkel, E.
1984-01-01
An iterative algorithm for the Helmholtz equation is presented. This scheme was based on the preconditioned conjugate gradient method for the normal equations. The preconditioning is one cycle of a multigrid method for the discrete Laplacian. The smoothing algorithm is red-black Gauss-Seidel and is constructed so it is a symmetric operator. The total number of iterations needed by the algorithm is independent of h. By varying the number of grids, the number of iterations depends only weakly on k when k(3)h(2) is constant. Comparisons with a SSOR preconditioner are presented.
Parallel preconditioned conjugate gradient algorithm applied to neutron diffusion problem
International Nuclear Information System (INIS)
Majumdar, A.; Martin, W.R.
1992-01-01
Numerical solution of the neutron diffusion problem requires solving a linear system of equations such as Ax = b, where A is an n x n symmetric positive definite (SPD) matrix; x and b are vectors with n components. The preconditioned conjugate gradient (PCG) algorithm is an efficient iterative method for solving such a linear system of equations. In this paper, the authors describe the implementation of a parallel PCG algorithm on a shared memory machine (BBN TC2000) and on a distributed workstation (IBM RS6000) environment created by the parallel virtual machine parallelization software
Weighted graph based ordering techniques for preconditioned conjugate gradient methods
Clift, Simon S.; Tang, Wei-Pai
1994-01-01
We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.
An online supervised learning method based on gradient descent for spiking neurons.
Xu, Yan; Yang, Jing; Zhong, Shuiming
2017-09-01
The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer
Directory of Open Access Journals (Sweden)
Jing Yang
2018-03-01
Full Text Available This study proposes a modified convolutional neural network (CNN algorithm that is based on dropout and the stochastic gradient descent (SGD optimizer (MCNN-DS, after analyzing the problems of CNNs in extracting the convolution features, to improve the feature recognition rate and reduce the time-cost of CNNs. The MCNN-DS has a quadratic CNN structure and adopts the rectified linear unit as the activation function to avoid the gradient problem and accelerate convergence. To address the overfitting problem, the algorithm uses an SGD optimizer, which is implemented by inserting a dropout layer into the all-connected and output layers, to minimize cross entropy. This study used the datasets MNIST, HCL2000, and EnglishHand as the benchmark data, analyzed the performance of the SGD optimizer under different learning parameters, and found that the proposed algorithm exhibited good recognition performance when the learning rate was set to [0.05, 0.07]. The performances of WCNN, MLP-CNN, SVM-ELM, and MCNN-DS were compared. Statistical results showed the following: (1 For the benchmark MNIST, the MCNN-DS exhibited a high recognition rate of 99.97%, and the time-cost of the proposed algorithm was merely 21.95% of MLP-CNN, and 10.02% of SVM-ELM; (2 Compared with SVM-ELM, the average improvement in the recognition rate of MCNN-DS was 2.35% for the benchmark HCL2000, and the time-cost of MCNN-DS was only 15.41%; (3 For the EnglishHand test set, the lowest recognition rate of the algorithm was 84.93%, the highest recognition rate was 95.29%, and the average recognition rate was 89.77%.
Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn
2007-01-01
Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.
Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics
Fijany, Amir; Scheid, Robert E.
1989-01-01
The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.
International Nuclear Information System (INIS)
Chen, G.S.
1997-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)
MILC staggered conjugate gradient performance on Intel KNL
Energy Technology Data Exchange (ETDEWEB)
Li, Ruiz [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Detar, Carleton [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Physics and Astronomy; Doerfler, Douglas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Gottlieb, Steven [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Jha, Asish [Intel Corp., Hillsboro, OR (United States). Sofware and Services Group; Kalamkar, Dhiraj [Intel Labs., Bangalore (India). Parallel Computing Lab.; Toussaint, Doug [Univ. of Arizona, Tucson, AZ (United States). Physics Dept.
2016-11-03
We review our work done to optimize the staggered conjugate gradient (CG) algorithm in the MILC code for use with the Intel Knights Landing (KNL) architecture. KNL is the second gener- ation Intel Xeon Phi processor. It is capable of massive thread parallelism, data parallelism, and high on-board memory bandwidth and is being adopted in supercomputing centers for scientific research. The CG solver consumes the majority of time in production running, so we have spent most of our effort on it. We compare performance of an MPI+OpenMP baseline version of the MILC code with a version incorporating the QPhiX staggered CG solver, for both one-node and multi-node runs.
Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images
Hu, K.; Huang, X.; You, H.
2017-09-01
Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
IMPROVED CONJUGATE GRADIENT BUNDLE ADJUSTMENT OF DUNHUANG WALL PAINTING IMAGES
Directory of Open Access Journals (Sweden)
K. Hu
2017-09-01
Full Text Available Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
Aerodynamic shape optimization using preconditioned conjugate gradient methods
Burgreen, Greg W.; Baysal, Oktay
1993-01-01
In an effort to further improve upon the latest advancements made in aerodynamic shape optimization procedures, a systematic study is performed to examine several current solution methodologies as applied to various aspects of the optimization procedure. It is demonstrated that preconditioned conjugate gradient-like methodologies dramatically decrease the computational efforts required for such procedures. The design problem investigated is the shape optimization of the upper and lower surfaces of an initially symmetric (NACA-012) airfoil in inviscid transonic flow and at zero degree angle-of-attack. The complete surface shape is represented using a Bezier-Bernstein polynomial. The present optimization method then automatically obtains supercritical airfoil shapes over a variety of freestream Mach numbers. Furthermore, the best optimization strategy examined resulted in a factor of 8 decrease in computational time as well as a factor of 4 decrease in memory over the most efficient strategies in current use.
Total variation superiorized conjugate gradient method for image reconstruction
Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.
2018-03-01
The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.
Ledoux, L.A.F.; Berkhoff, Arthur P.; Thijssen, J.M.
The Conjugate Gradient Rayleigh method for the calculation of acoustic reflection and transmission at a rough interface between two media was experimentally verified. The method is based on a continuous version of the conjugate gradient technique and plane-wave expansions. We measured the beam
Antoine, Xavier; Levitt, Antoine; Tang, Qinglin
2017-08-01
We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.
A new modified conjugate gradient coefficient for solving system of linear equations
Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations
A constrained conjugate gradient algorithm for computed tomography
Energy Technology Data Exchange (ETDEWEB)
Azevedo, S.G.; Goodman, D.M. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.
Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
Temel, Burcin; Mills, Greg; Metiu, Horia
2008-03-27
We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.
Acceleration of monte Carlo solution by conjugate gradient method
International Nuclear Information System (INIS)
Toshihisa, Yamamoto
2005-01-01
The conjugate gradient method (CG) was applied to accelerate Monte Carlo solutions in fixed source problems. The equilibrium model based formulation enables to use CG scheme as well as initial guess to maximize computational performance. This method is available to arbitrary geometry provided that the neutron source distribution in each subregion can be regarded as flat. Even if it is not the case, the method can still be used as a powerful tool to provide an initial guess very close to the converged solution. The major difference of Monte Carlo CG to deterministic CG is that residual error is estimated using Monte Carlo sampling, thus statistical error exists in the residual. This leads to a flow diagram specific to Monte Carlo-CG. Three pre-conditioners were proposed for CG scheme and the performance was compared with a simple 1-D slab heterogeneous test problem. One of them, Sparse-M option, showed an excellent performance in convergence. The performance per unit cost was improved by four times in the test problem. Although direct estimation of efficiency of the method is impossible mainly because of the strong problem-dependence of the optimized pre-conditioner in CG, the method seems to have efficient potential as a fast solution algorithm for Monte Carlo calculations. (author)
Directory of Open Access Journals (Sweden)
Afan Galih Salman
2011-06-01
Full Text Available The artificial neural network (ANN technology in rainfall prediction can be done using the learning approach. The ANN prediction accuracy is measured by the determination coefficient (R2 and root mean square error (RMSE. This research implements Elman’s Recurrent ANN which is heuristically optimized based on el-nino southern oscilation (ENSO variables: wind, southern oscillation index (SOI, sea surface temperatur (SST dan outgoing long wave radiation (OLR to forecast regional monthly rainfall in Bongan Bali. The heuristic learning optimization done is basically a performance development of standard gradient descent learning algorithm into training algorithms: gradient descent momentum and adaptive learning rate. The patterns of input data affect the performance of Recurrent Elman neural network in estimation process. The first data group that is 75% training data and 25% testing data produce the maximum R2 leap 74,6% while the second data group that is 50% training data and 50% testing data produce the maximum R2 leap 49,8%.
Vogel, Curtis R; Yang, Qiang
2006-08-21
We present two different implementations of the Fourier domain preconditioned conjugate gradient algorithm (FD-PCG) to efficiently solve the large structured linear systems that arise in optimal volume turbulence estimation, or tomography, for multi-conjugate adaptive optics (MCAO). We describe how to deal with several critical technical issues, including the cone coordinate transformation problem and sensor subaperture grid spacing. We also extend the FD-PCG approach to handle the deformable mirror fitting problem for MCAO.
Preconditioned Conjugate Gradient methods for low speed flow calculations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Refined isogeometric analysis for a preconditioned conjugate gradient solver
Garcia, Daniel
2018-02-12
Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost required to solve the corresponding system of equations using a direct LU factorization solver dramatically reduces (up to a factor of 55) Garcia et al. (2017). At the same time, rIGA enriches the IGA spaces, thus improving the best approximation error. In this work, we extend the complexity analysis of rIGA to the case of iterative solvers. We build an iterative solver as follows: we first construct the Schur complements using a direct solver over small subdomains (macro-elements). We then assemble those Schur complements into a global skeleton system. Subsequently, we solve this system iteratively using Conjugate Gradients (CG) with an incomplete LU (ILU) preconditioner. For a 2D Poisson model problem with a structured mesh and a uniform polynomial degree of approximation, rIGA achieves moderate savings with respect to IGA in terms of the number of Floating Point Operations (FLOPs) and computational time (in seconds) required to solve the resulting system of linear equations. For instance, for a mesh with four million elements and polynomial degree p=3, the iterative solver is approximately 2.6 times faster (in time) when applied to the rIGA system than to the IGA one. These savings occur because the skeleton rIGA system contains fewer non-zero entries than the IGA one. The opposite situation occurs for 3D problems, and as a result, 3D rIGA discretizations provide no gains with respect to their IGA counterparts when considering iterative solvers.
Blockwise conjugate gradient methods for image reconstruction in volumetric CT.
Qiu, W; Titley-Peloquin, D; Soleimani, M
2012-11-01
Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Numerical Simulation of Solid Combustion with a Robust Conjugate-Gradient Solution for Pressure
National Research Council Canada - National Science Library
Wang, Yi-Zun
2002-01-01
A Bi-Conjugate Gradient method (Bi-CGSTAB) is studied and tested for solid combustion in which the gas and solid phases are coupled by a set of conditions describing mass, momentum and heat transport across the interface...
Application of the conjugate-gradient method to ground-water models
Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.
1984-01-01
The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)
Conjugate Gradient like methods and their application to fixed source neutron diffusion problems
International Nuclear Information System (INIS)
Suetomi, Eiichi; Sekimoto, Hiroshi
1989-01-01
This paper presents a number of fast iterative methods for solving systems of linear equations appearing in fixed source problems for neutron diffusion. We employed the conjugate gradient and conjugate residual methods. In order to accelerate the conjugate residual method, we proposed the conjugate residual squared method by transforming the residual polynomial of the conjugate residual method. Since the convergence of these methods depends on the spectrum of coefficient matrix, we employed the incomplete Choleski (IC) factorization and the modified IC (MIC) factorization as preconditioners. These methods were applied to some neutron diffusion problems and compared with the successive overrelaxation (SOR) method. The results of these numerical experiments showed superior convergence characteristics of the conjugate gradient like method with MIC factorization to the SOR method, especially for a problem involving void region. The CPU time of the MICCG, MICCR and MICCRS methods showed no great difference. In order to vectorize the conjugate gradient like methods based on (M)IC factorization, the hyperplane method was used and implemented on the vector computers, the HITAC S-820/80 and ETA10-E (one processor mode). Significant decrease of the CPU times was observed on the S-820/80. Since the scaled conjugate gradient (SCG) method can be vectorized with no manipulation, it was also compared with the above methods. It turned out the SCG method was the fastest with respect to the CPU times on the ETA10-E. These results suggest that one should implement suitable algorithm for different vector computers. (author)
International Nuclear Information System (INIS)
Chen, G.S.; Yang, D.Y.
1998-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used: TFQMR (transpose free quasi-minimal residual algorithm) CGS (conjugate gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These subroutines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. The reasons to choose the generalized conjugate gradient methods are that the methods have better residual (equivalent to error) control procedures in the computation and have better convergent rate. The pointwise incomplete LU factorization ILU, modified pointwise incomplete LU factorization MILU, block incomplete factorization BILU and modified blockwise incomplete LU factorization MBILU are the preconditioning techniques used in the several testing problems. In Bi-CGSTAB, CGS, TFQMR and QMRCGSTAB method, we find that either CGS or Bi-CGSTAB method combined with preconditioner MBILU is the most efficient algorithm in these methods in the several testing problems. The numerical solution of flux by preconditioned CGS and Bi-CGSTAB methods has the same result as those from Cray computer, obtained by either the point successive relaxation method or the line successive relaxation method combined with Gaussian elimination
Energy Technology Data Exchange (ETDEWEB)
Liu, Mingxue [Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010 (China); Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Dong, Faqin, E-mail: fqdong@swust.edu.cn [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Zhang, Wei [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Nie, Xiaoqin [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang, 621010 (China); Sun, Shiyong [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege [Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010 (China)
2016-08-15
Highlights: • A programmed gradient descent biosorption process was designed. • The adsorption and bioaccumulation quantity of strontium ions by yeast cell were measured. • The decrement of biosorbents after biosorption by ashing was analyzed. • A technological flow process of decrement solution for waste disposal was proposed. - Abstract: One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO{sub 4} existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields.
Accurate conjugate gradient methods for families of shifted systems
Eshof, J. van den; Sleijpen, G.L.G.
2003-01-01
We consider the solution of the linear system (ATA + σI)xσ = ATb, for various real values of σ. This family of shifted systems arises, for example, in Tikhonov regularization and computations in lattice quantum chromodynamics. For each single shift σ this system can be solved using the conjugate
Application of conjugate gradient method to Commix-1B three-dimensional momentum equation
International Nuclear Information System (INIS)
King, J.B.; Domanus, H.
1987-01-01
Conjugate gradient method which is a special case of the variational method was implemented in the momentum section of the COMMIX-1B thermal hydraulics code. The comparisons between this method and the conventional iterative method of Successive Over Relation (S.O.R.) were made. Using COMMIX-1B, three steady state problems were analyzed. These problems were flow distribution in a scaled model of the Clinch River Fast Breeder Reactor outlet plenum, flow of coolant in the cold leg and downcomer of a PWR and isothermal air flow through a partially blocked pipe. It was found that if the conjugate gradient method is used, the execution time required to solve the resulting COMMIX-1B system of equations can be reduced by a factor of about 2 for the first two problems. For the isothermal air flow problem, the conjugate gradient method did not improve the execution time
Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.
2017-10-01
This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution
Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.
Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella
2014-11-03
Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.
PRECONDITIONED BI-CONJUGATE GRADIENT METHOD FOR RADIATIVE TRANSFER IN SPHERICAL MEDIA
International Nuclear Information System (INIS)
Anusha, L. S.; Nagendra, K. N.; Paletou, F.; Leger, L.
2009-01-01
A robust numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is proposed for the solution of the radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These are iterative methods based on the construction of a set of bi-orthogonal vectors. The application of the Pre-BiCG method in some benchmark tests shows that the method is quite versatile, and can handle difficult problems that may arise in astrophysical radiative transfer theory.
Necessary and sufficient conditions for the existence of a conjugate gradient method
International Nuclear Information System (INIS)
Faber, V.; Manteuffel, T.
1984-01-01
The authors characterize the class CG(s) of matrices A for which the linear system Ax = b can be solved by an s-term conjugate gradient method. The authors show that, except for a few anomalies, the class CG(s) consists of matrices A for which conjugate gradient methods are already known. These matrices are the Hermitian matrices, A* = A, and the matrices of the form A = e/sup i theta/(dI + B), with B* = -B. 7 references
A finite element conjugate gradient FFT method for scattering
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method
International Nuclear Information System (INIS)
Egido, J.L.; Robledo, L.M.
1995-01-01
The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.)
Two-level preconditioned conjugate gradient methods with applications to bubbly flow problems
Tang, J.M.
2008-01-01
The Preconditioned Conjugate Gradient (PCG) method is one of the most popular iterative methods for solving large linear systems with a symmetric and positive semi-definite coefficient matrix. However, if the preconditioned coefficient matrix is ill-conditioned, the convergence of the PCG method
The influence of deflation vectors at interfaces on the deflated conjugate gradient method
Vermolen, F.J.; Vuik, C.
2001-01-01
We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods. Our set-up is a Laplace problem in two dimensions with continuous or discontinuous coeffcients that vary in several orders of magnitude. In the
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
A fast nonlinear conjugate gradient based method for 3D frictional contact problems
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from a 3D frictional contact problem. It incorporates an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar
An M-step preconditioned conjugate gradient method for parallel computation
Adams, L.
1983-01-01
This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
J. Zhao (Jing); E.A.H. Vollebregt (Edwin); C.W. Oosterlee (Cornelis)
2015-01-01
htmlabstractThis paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One
Efficient two-level preconditionined conjugate gradient method on the GPU
Gupta, R.; Van Gijzen, M.B.; Vuik, K.
2011-01-01
We present an implementation of Two-Level Preconditioned Conjugate Gradient Method for the GPU. We investigate a Truncated Neumann Series based preconditioner in combination with deflation and compare it with Block Incomplete Cholesky schemes. This combination exhibits fine-grain parallelism and
Analysis and performance estimation of the Conjugate Gradient method on multiple GPUs
Verschoor, M.; Jalba, A.C.
2012-01-01
The Conjugate Gradient (CG) method is a widely-used iterative method for solving linear systems described by a (sparse) matrix. The method requires a large amount of Sparse-Matrix Vector (SpMV) multiplications, vector reductions and other vector operations to be performed. We present a number of
A complete implementation of the conjugate gradient algorithm on a reconfigurable supercomputer
International Nuclear Information System (INIS)
Dubois, David H.; Dubois, Andrew J.; Connor, Carolyn M.; Boorman, Thomas M.; Poole, Stephen W.
2008-01-01
The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double precision, non-preconditioned, conjugate gradient solver for fmite-element or finite-difference methods. OUf work utilizes the SRC Computers, Inc. MAPStation hardware platform along with the 'Carte' software programming environment to ease the programming workload when working with the hybrid (CPUIFPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7 non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining high performance. Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of this algorithm on that architecture.
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.
Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices
Freund, Roland
1989-01-01
We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.
Application of preconditioned conjugate gradient-like methods to reactor kinetics
International Nuclear Information System (INIS)
Yang, D.Y.; Chen, G.S.; Chou, H.P.
1993-01-01
Several conjugate gradient-like (CG-like) methods are applied to solve the nonsymmetric linear systems of equations derived from the time-dependent two-dimensional two-energy-group neutron diffusion equations by a finite difference approximation. The methods are: the generalized conjugate residual method; the generalized conjugate gradient least-square method; the generalized minimal residual method (GMRES); the conjugate gradient square method; and a variant of bi-conjugate gradient method (Bi-CGSTAB). In order to accelerate these methods, six preconditioning techniques are investigated. Two are based on pointwise incomplete factorization: the incomplete LU (ILU) and the modified incomplete LU (MILU) decompositions; two, based on the block tridiagonal structure of the coefficient matrix, are blockwise and modified blockwise incomplete factorizations, BILU and MBILU; two are the alternating-direction implicit and symmetric successive overrelaxation (SSOR) preconditioners, derived from the basic iterative schemes. Comparisons are made by using CG-like methods combined with different preconditioners to solve a sequence of time-step reactor transient problems. Numerical tests indicate that preconditioned BI-CGSTAB with the preconditioner MBILU requires less CPU time and fewer iterations than other methods. The preconditioned CG-like methods are less sensitive to the time-step size used than the Chebyshev semi-iteration method and line SOR method. The indication is that the CGS, Bi-CGSTAB and GMRES methods are, on average, better than the other methods in reactor kinetics computation and that a good preconditioner is more important than the choice of CG-like methods. The MILU decomposition based on the conventional row-sum criterion has difficulty yielding a convergent solution and an improved version is introduced. (author)
Tsuruta, S; Misztal, I; Strandén, I
2001-05-01
Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
Feng, Shuo; Ji, Jim
2014-04-01
Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.
Conjugate gradient based projection - A new explicit methodology for frictional contact
Tamma, Kumar K.; Li, Maocheng; Sha, Desong
1993-01-01
With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.
HIRFL-SSC trim coil currents calculation by conjugate gradients method
International Nuclear Information System (INIS)
Liu, W.
2005-01-01
For accelerating different kinds of ions to various energies, the HIRFL-SSC should form the corresponding isochronous magnetic field by its main coil and trim coils. Previously, there were errors in fitting the theoretical isochronous magnetic field in the small radius region, which led to some operation difficulties for ion acceleration in the inject region. After further investigation of the restrictive condition of the maximum current limitation, the trim coil currents for fitting the theoretical isochronous magnetic field were recalculated by the conjugate gradients method. Better results were obtained in the operation of HIRFL-SSC. This article introduces the procedure to calculate the trim coil currents. The calculation method of conjugate gradients is introduced and the fitting error is analysed. (author)
New generalized conjugate gradient methods for the non-quadratic model in unconstrained optimization
International Nuclear Information System (INIS)
Al-Bayati, A.
2001-01-01
This paper present two new conjugate gradient algorithms which use the non-quadratic model in unconstrained optimization. The first is a new generalized self-scaling variable metric algorithm based on the sloboda generalized conjugate gradient method which is invariant to a nonlinear scaling of a stricity convex quadratic function; the second is an interleaving between the generalized sloboda method and the first algorithm; all these algorithm use exact line searches. Numerical comparisons over twenty test functions show that the interleaving algorithm is best overall and requires only about half the function evaluations of the Sloboda method: interleaving algorithms are likely to be preferred when the dimensionality of the problem is increased. (author). 29 refs., 1 tab
Directory of Open Access Journals (Sweden)
Huiru Zhao
2016-09-01
Full Text Available An important goal of China’s electric power system reform is to create a double-side day-ahead wholesale electricity market in the future, where the suppliers (represented by GenCOs and demanders (represented by DisCOs compete simultaneously with each other in one market. Therefore, modeling and simulating the dynamic bidding process and the equilibrium in the double-side day-ahead electricity market scientifically is not only important to some developed countries, but also to China to provide a bidding decision-making tool to help GenCOs and DisCOs obtain more profits in market competition. Meanwhile, it can also provide an economic analysis tool to help government officials design the proper market mechanisms and policies. The traditional dynamic game model and table-based reinforcement learning algorithm have already been employed in the day-ahead electricity market modeling. However, those models are based on some assumptions, such as taking the probability distribution function of market clearing price (MCP and each rival’s bidding strategy as common knowledge (in dynamic game market models, and assuming the discrete state and action sets of every agent (in table-based reinforcement learning market models, which are no longer applicable in a realistic situation. In this paper, a modified reinforcement learning method, called gradient descent continuous Actor-Critic (GDCAC algorithm was employed in the double-side day-ahead electricity market modeling and simulation. This algorithm can not only get rid of the abovementioned unrealistic assumptions, but also cope with the Markov decision-making process with continuous state and action sets just like the real electricity market. Meanwhile, the time complexity of our proposed model is only O(n. The simulation result of employing the proposed model in the double-side day-ahead electricity market shows the superiority of our approach in terms of participant’s profit or social welfare
A nonsmooth nonlinear conjugate gradient method for interactive contact force problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....
Conjugate gradient method for phase retrieval based on the Wirtinger derivative.
Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong
2017-05-01
A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.
A family of conjugate gradient methods for large-scale nonlinear equations
Directory of Open Access Journals (Sweden)
Dexiang Feng
2017-09-01
Full Text Available Abstract In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.
Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M
2003-01-01
Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.
The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization.
Yuan, Gonglin; Sheng, Zhou; Liu, Wenjie
2016-01-01
In this paper, the Hager and Zhang (HZ) conjugate gradient (CG) method and the modified HZ (MHZ) CG method are presented for large-scale nonsmooth convex minimization. Under some mild conditions, convergent results of the proposed methods are established. Numerical results show that the presented methods can be better efficiency for large-scale nonsmooth problems, and several problems are tested (with the maximum dimensions to 100,000 variables).
The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization.
Directory of Open Access Journals (Sweden)
Gonglin Yuan
Full Text Available In this paper, the Hager and Zhang (HZ conjugate gradient (CG method and the modified HZ (MHZ CG method are presented for large-scale nonsmooth convex minimization. Under some mild conditions, convergent results of the proposed methods are established. Numerical results show that the presented methods can be better efficiency for large-scale nonsmooth problems, and several problems are tested (with the maximum dimensions to 100,000 variables.
A family of conjugate gradient methods for large-scale nonlinear equations.
Feng, Dexiang; Sun, Min; Wang, Xueyong
2017-01-01
In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.
T2CG1, a package of preconditioned conjugate gradient solvers for TOUGH2
International Nuclear Information System (INIS)
Moridis, G.; Pruess, K.; Antunez, E.
1994-03-01
Most of the computational work in the numerical simulation of fluid and heat flows in permeable media arises in the solution of large systems of linear equations. The simplest technique for solving such equations is by direct methods. However, because of large storage requirements and accumulation of roundoff errors, the application of direct solution techniques is limited, depending on matrix bandwidth, to systems of a few hundred to at most a few thousand simultaneous equations. T2CG1, a package of preconditioned conjugate gradient solvers, has been added to TOUGH2 to complement its direct solver and significantly increase the size of problems tractable on PCs. T2CG1 includes three different solvers: a Bi-Conjugate Gradient (BCG) solver, a Bi-Conjugate Gradient Squared (BCGS) solver, and a Generalized Minimum Residual (GMRES) solver. Results from six test problems with up to 30,000 equations show that T2CG1 (1) is significantly (and invariably) faster and requires far less memory than the MA28 direct solver, (2) it makes possible the solution of very large three-dimensional problems on PCs, and (3) that the BCGS solver is the fastest of the three in the tested problems. Sample problems are presented related to heat and fluid flow at Yucca Mountain and WIPP, environmental remediation by the Thermal Enhanced Vapor Extraction System, and geothermal resources
Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.
Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong
2014-09-01
A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.
Use of a preconditioned Bi-conjugate gradient method for hybrid plasma stability analysis
International Nuclear Information System (INIS)
Mikic, Z.; Morse, E.C.
1985-01-01
The numerical stability analysis of compact toroidal plasmas using implicit time differencing requires the solution of a set of coupled, 2-dimensional, elliptic partial differential equations for the field quantities at every timestep. When the equations are spatially finite-differenced and written in matrix form, the resulting matrix is large, sparse, complex, non-Hermitian, and indefinite. The use of the preconditioned bi-conjugate gradient method for solving these equations is discussed. The effect of block-diagonal preconditioning and incomplete block-LU preconditionig on the convergence of the method is investigated. For typical matrices arising in our studies, the eigenvalue spectra of the original and preconditioned matrices are calculated as an illustration of the effectiveness of the preconditioning. We show that the preconditioned bi-conjugate gradient method coverages more rapidly than the conjugate gradient method applied to the normal equations, and that it is an effective iterative method for the class of non-Hermitian, indefinite problems of interest
Problem of unstable pivots in the incomplete LU-conjugate gradient method
International Nuclear Information System (INIS)
Kershaw, D.S.
1978-01-01
Incomplete LU and incomplete-Cholesky conjugate gradient methods are becoming widely used in both laser and magnetic fusion research. In my original presentation of these methods, the problem of what to do if a pivot [L/sub ii/U/sub ii/) becomes very small or zero was raised and only partially answered by the suggestion that it be arbitrarily set to some non-zero value. In what follows it will be shown precisely how small the pivot can become before it must be fixed and precisely what value it should be set to in order to minimize the error in LU. Numerical examples will be given to show that not only does this prescription improve incomplete LU-conjugate gradient methods , but exact LU decomposition carried out with this prescription for handling small pivots and followed by a few linear or conjugate gradient iterations can be much faster than the permutations of rows and columns usually employed to circumvent small pivot problems
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
1998-01-01
Roč. 8, č. 3-4 (1998), s. 201-223 ISSN 1055-6788 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear equations * Armijo-type descent methods * Newton-like methods * truncated methods * global convergence * nonsymmetric linear systems * conjugate gradient -type methods * residual smoothing * computational experiments Subject RIV: BB - Applied Statistics, Operational Research
Penalty Algorithm Based on Conjugate Gradient Method for Solving Portfolio Management Problem
Directory of Open Access Journals (Sweden)
Wang YaLin
2009-01-01
Full Text Available A new approach was proposed to reformulate the biobjectives optimization model of portfolio management into an unconstrained minimization problem, where the objective function is a piecewise quadratic polynomial. We presented some properties of such an objective function. Then, a class of penalty algorithms based on the well-known conjugate gradient methods was developed to find the solution of portfolio management problem. By implementing the proposed algorithm to solve the real problems from the stock market in China, it was shown that this algorithm is promising.
A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics
DEFF Research Database (Denmark)
Engell-Nørregård, Morten; Erleben, Kenny
2009-01-01
Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...
International Nuclear Information System (INIS)
Burkitt, A.N.; Irving, A.C.
1988-01-01
Two of the methods that are widely used in lattice gauge theory calculations requiring inversion of the fermion matrix are the Lanczos and the conjugate gradient algorithms. Those algorithms are already known to be closely related. In fact for matrix inversion, in exact arithmetic, they give identical results at each iteration and are just alternative formulations of a single algorithm. This equivalence survives rounding errors. We give the identities between the coefficients of the two formulations, enabling many of the best features of them to be combined. (orig.)
Inversion of the fermion matrix and the equivalence of the conjugate gradient and Lanczos algorithms
International Nuclear Information System (INIS)
Burkitt, A.N.; Irving, A.C.
1990-01-01
The Lanczos and conjugate gradient algorithms are widely used in lattice QCD calculations. The previously known close relationship between the two methods is explored and two commonly used implementations are shown to give identically the same results at each iteration, in exact arithmetic, for matrix inversion. The identities between the coefficients of the two algorithms are given, and many of the features of the two algorithms can now be combined. The effects of finite arithmetic are investigated and the particular Lanczos formulation is found to be most stable with respect to rounding errors. (orig.)
A fast pulse design for parallel excitation with gridding conjugate gradient.
Feng, Shuo; Ji, Jim
2013-01-01
Parallel excitation (pTx) is recognized as a crucial technique in high field MRI to address the transmit field inhomogeneity problem. However, it can be time consuming to design pTx pulses which is not desirable. In this work, we propose a pulse design with gridding conjugate gradient (CG) based on the small-tip-angle approximation. The two major time consuming matrix-vector multiplications are substituted by two operators which involves with FFT and gridding only. Simulation results have shown that the proposed method is 3 times faster than conventional method and the memory cost is reduced by 1000 times.
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Tichý, Petr
2002-01-01
Roč. 13, - (2002), s. 56-80 ISSN 1068-9613 R&D Projects: GA ČR GA201/02/0595 Institutional research plan: AV0Z1030915 Keywords : conjugate gradient method * Gauss kvadrature * evaluation of convergence * error bounds * finite precision arithmetic * rounding errors * loss of orthogonality Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2002 http://etna.mcs.kent.edu/volumes/2001-2010/vol13/abstract.php?vol=13&pages=56-80
Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing
2011-12-01
Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America
Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction.
Gilles, Luc; Vogel, Curtis R; Ellerbroek, Brent L
2002-09-01
We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.
Frequency domain optical tomography using a conjugate gradient method without line search
International Nuclear Information System (INIS)
Kim, Hyun Keol; Charette, Andre
2007-01-01
A conjugate gradient method without line search (CGMWLS) is presented. This method is used to retrieve the local maps of absorption and scattering coefficients inside the tissue-like test medium, with the synthetic data. The forward problem is solved with a discrete-ordinates finite-difference method based on the frequency domain formulation of radiative transfer equation. The inversion results demonstrate that the CGMWLS can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by reducing cross-talk between absorption and scattering coefficients
Microwave imaging of dielectric cylinder using level set method and conjugate gradient algorithm
International Nuclear Information System (INIS)
Grayaa, K.; Bouzidi, A.; Aguili, T.
2011-01-01
In this paper, we propose a computational method for microwave imaging cylinder and dielectric object, based on combining level set technique and the conjugate gradient algorithm. By measuring the scattered field, we tried to retrieve the shape, localisation and the permittivity of the object. The forward problem is solved by the moment method, while the inverse problem is reformulate in an optimization one and is solved by the proposed scheme. It found that the proposed method is able to give good reconstruction quality in terms of the reconstructed shape and permittivity.
International Nuclear Information System (INIS)
Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu
2007-01-01
An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented
International Nuclear Information System (INIS)
Kari, R.E.; Mezey, P.G.; Csizmadia, I.G.
1975-01-01
Expressions are given for calculating the energy gradient vector in the exponent space of Gaussian basis sets and a technique to optimize orbital exponents using the method of conjugate gradients is described. The method is tested on the (9/sups/5/supp/) Gaussian basis space and optimum exponents are determined for the carbon atom. The analysis of the results shows that the calculated one-electron properties converge more slowly to their optimum values than the total energy converges to its optimum value. In addition, basis sets approximating the optimum total energy very well can still be markedly improved for the prediction of one-electron properties. For smaller basis sets, this improvement does not warrant the necessary expense
International Nuclear Information System (INIS)
Reifman, J.; Vitela, J.E.
1994-01-01
The method of conjugate gradients is used to expedite the learning process of feedforward multilayer artificial neural networks and to systematically update both the learning parameter and the momentum parameter at each training cycle. The mechanism for the occurrence of premature saturation of the network nodes observed with the back propagation algorithm is described, suggestions are made to eliminate this undesirable phenomenon, and the reason by which this phenomenon is precluded in the method of conjugate gradients is presented. The proposed method is compared with the standard back propagation algorithm in the training of neural networks to classify transient events in neural power plants simulated by the Midland Nuclear Power Plant Unit 2 simulator. The comparison results indicate that the rate of convergence of the proposed method is much greater than the standard back propagation, that it reduces both the number of training cycles and the CPU time, and that it is less sensitive to the choice of initial weights. The advantages of the method are more noticeable and important for problems where the network architecture consists of a large number of nodes, the training database is large, and a tight convergence criterion is desired
Three-Dimensional Induced Polarization Parallel Inversion Using Nonlinear Conjugate Gradients Method
Directory of Open Access Journals (Sweden)
Huan Ma
2015-01-01
Full Text Available Four kinds of array of induced polarization (IP methods (surface, borehole-surface, surface-borehole, and borehole-borehole are widely used in resource exploration. However, due to the presence of large amounts of the sources, it will take much time to complete the inversion. In the paper, a new parallel algorithm is described which uses message passing interface (MPI and graphics processing unit (GPU to accelerate 3D inversion of these four methods. The forward finite differential equation is solved by ILU0 preconditioner and the conjugate gradient (CG solver. The inverse problem is solved by nonlinear conjugate gradients (NLCG iteration which is used to calculate one forward and two “pseudo-forward” modelings and update the direction, space, and model in turn. Because each source is independent in forward and “pseudo-forward” modelings, multiprocess modes are opened by calling MPI library. The iterative matrix solver within CULA is called in each process. Some tables and synthetic data examples illustrate that this parallel inversion algorithm is effective. Furthermore, we demonstrate that the joint inversion of surface and borehole data produces resistivity and chargeability results are superior to those obtained from inversions of individual surface data.
Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy
2017-12-01
Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.
Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique
International Nuclear Information System (INIS)
Formiconi, A.R.; Pupi, A.; Passeri, A.
1989-01-01
A procedure for determination of the system matrix in single photon emission tomography (SPECT) is described which use a conjugate gradient reconstruction technique to take into account the variable system resolution of a camera equipped with parallel-hole collimators. The procedure involves acquisition of system line spread functions (LSF) in the region occupied by the object studied. Those data are used to generate a set of weighting factors based on the assumption that the LSFs of the collimated camera are of Gaussian shape with full width at half maximum (FWHM) linearly dependent on source depth in the span of image space. Factors are stored on a disc file for subsequent use in reconstruction. Afterwards reconstruction is performed using the conjugate gradient method with the system matrix modified by incorporation of these precalculated factors to take into account variable geometrical system response. The set of weighting factors is regenerated whenever acquisition conditions are changed (collimator, radius of rotation) with an ultra high resolution (UHR) collimator 2000 weighting factors need to be calculated. (author)
A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.
van Dongen, Koen W A; Wright, William M D
2006-10-01
Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis
Poole, E. L.
1986-01-01
In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.
Method of T2 spectrum inversion with conjugate gradient algorithm from NMR data
International Nuclear Information System (INIS)
Li Pengju; Shi Shangming; Song Yanjie
2010-01-01
Based on the optimization techniques, the T 2 spectrum inversion method of conjugate gradient that is easy to realize non-negativity constraint of T2 spectrum is proposed. The method transforms the linear mixed-determined problem of T2 spectrum inversion into the typical optimization problem of searching the minimum of objective function by building up the objective function according to the basic idea of geophysics modeling. The optimization problem above is solved with the conjugate gradient algorithm that has quick convergence rate and quadratic termination. The method has been applied to the inversion of noise free echo train generated from artificial spectrum, artificial echo train with signal-to-noise ratio (SNR)=25 and NMR experimental data of drilling core. The comparison between the inversion results of this paper and artificial spectrum or the result of software imported in NMR laboratory shows that the method can correctly invert T 2 spectrum from artificial NMR relaxation data even though SNR=25 and that inversion T 2 spectrum with good continuity and smoothness from core NMR experimental data accords perfectly with that of laboratory software imported, and moreover,the absolute error between the NMR porosity computed from T 2 spectrum and helium (He) porosity in laboratory is 0.65%. (authors)
Aviat, Félix; Levitt, Antoine; Stamm, Benjamin; Maday, Yvon; Ren, Pengyu; Ponder, Jay W; Lagardère, Louis; Piquemal, Jean-Philip
2017-01-10
We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is available, one additional Picard fixed point iteration ("peek"), equivalent to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products: three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (three matrix-vector products) and offers new perspectives for long polarizable MD as a production
Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.
1993-01-01
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.
A conjugate gradient method for solving the non-LTE line radiation transfer problem
Paletou, F.; Anterrieu, E.
2009-12-01
This study concerns the fast and accurate solution of the line radiation transfer problem, under non-LTE conditions. We propose and evaluate an alternative iterative scheme to the classical ALI-Jacobi method, and to the more recently proposed Gauss-Seidel and successive over-relaxation (GS/SOR) schemes. Our study is indeed based on applying a preconditioned bi-conjugate gradient method (BiCG-P). Standard tests, in 1D plane parallel geometry and in the frame of the two-level atom model with monochromatic scattering are discussed. Rates of convergence between the previously mentioned iterative schemes are compared, as are their respective timing properties. The smoothing capability of the BiCG-P method is also demonstrated.
A new nonlinear conjugate gradient coefficient under strong Wolfe-Powell line search
Mohamed, Nur Syarafina; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
A nonlinear conjugate gradient method (CG) plays an important role in solving a large-scale unconstrained optimization problem. This method is widely used due to its simplicity. The method is known to possess sufficient descend condition and global convergence properties. In this paper, a new nonlinear of CG coefficient βk is presented by employing the Strong Wolfe-Powell inexact line search. The new βk performance is tested based on number of iterations and central processing unit (CPU) time by using MATLAB software with Intel Core i7-3470 CPU processor. Numerical experimental results show that the new βk converge rapidly compared to other classical CG method.
Oliker, Leonid; Heber, Gerd; Biswas, Rupak
2000-01-01
The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply (SPMV) usually accounts for most of the floating-point operations within a CG iteration. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and SPMV using different programming paradigms and architectures. Results show that for this class of applications, ordering significantly improves overall performance, that cache reuse may be more important than reducing communication, and that it is possible to achieve message passing performance using shared memory constructs through careful data ordering and distribution. However, a multi-threaded implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain high efficiency and scalability.
International Nuclear Information System (INIS)
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-01-01
We present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimal block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer
Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing
2013-09-15
For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.
Conjugate-gradient optimization method for orbital-free density functional calculations.
Jiang, Hong; Yang, Weitao
2004-08-01
Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.
He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie
2010-11-22
In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.
Fully 3D PET image reconstruction using a fourier preconditioned conjugate-gradient algorithm
International Nuclear Information System (INIS)
Fessler, J.A.; Ficaro, E.P.
1996-01-01
Since the data sizes in fully 3D PET imaging are very large, iterative image reconstruction algorithms must converge in very few iterations to be useful. One can improve the convergence rate of the conjugate-gradient (CG) algorithm by incorporating preconditioning operators that approximate the inverse of the Hessian of the objective function. If the 3D cylindrical PET geometry were not truncated at the ends, then the Hessian of the penalized least-squares objective function would be approximately shift-invariant, i.e. G'G would be nearly block-circulant, where G is the system matrix. We propose a Fourier preconditioner based on this shift-invariant approximation to the Hessian. Results show that this preconditioner significantly accelerates the convergence of the CG algorithm with only a small increase in computation
Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.
International Nuclear Information System (INIS)
Kowsary, F.; Pooladvand, K.; Pourshaghaghy, A.
2007-01-01
In this paper, an appropriate distribution of the heating elements' strengths in a radiation furnace is estimated using inverse methods so that a pre-specified temperature and heat flux distribution is attained on the design surface. Minimization of the sum of the squares of the error function is performed using the variable metric method (VMM), and the results are compared with those obtained by the conjugate gradient method (CGM) established previously in the literature. It is shown via test cases and a well-founded validation procedure that the VMM, when using a 'regularized' estimator, is more accurate and is able to reach at a higher quality final solution as compared to the CGM. The test cases used in this study were two-dimensional furnaces filled with an absorbing, emitting, and scattering gas
International Nuclear Information System (INIS)
Huang, C.-H.; Wu, H.-H.
2006-01-01
In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study
On computing quadrature-based bounds for the A-norm of the error in conjugate gradients
Czech Academy of Sciences Publication Activity Database
Meurant, G.; Tichý, Petr
2013-01-01
Roč. 62, č. 2 (2013), s. 163-191 ISSN 1017-1398 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : conjugate gradients * norm of the error * bounds for the error norm Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2013
On computing quadrature-based bounds for the A-norm of the error in conjugate gradients
Czech Academy of Sciences Publication Activity Database
Meurant, G.; Tichý, Petr
2013-01-01
Roč. 62, č. 2 (2013), s. 163-191 ISSN 1017-1398 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : conjugate gradient s * norm of the error * bounds for the error norm Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2013
Madyastha, Raghavendra K.; Aazhang, Behnaam; Henson, Troy F.; Huxhold, Wendy L.
1992-01-01
This paper addresses the issue of applying a globally convergent optimization algorithm to the training of multilayer perceptrons, a class of Artificial Neural Networks. The multilayer perceptrons are trained towards the solution of two highly nonlinear problems: (1) signal detection in a multi-user communication network, and (2) solving the inverse kinematics for a robotic manipulator. The research is motivated by the fact that a multilayer perceptron is theoretically capable of approximating any nonlinear function to within a specified accuracy. The algorithm that has been employed in this study combines the merits of two well known optimization algorithms, the Conjugate Gradients and the Trust Regions Algorithms. The performance is compared to a widely used algorithm, the Backpropagation Algorithm, that is basically a gradient-based algorithm, and hence, slow in converging. The performances of the two algorithms are compared with the convergence rate. Furthermore, in the case of the signal detection problem, performances are also benchmarked by the decision boundaries drawn as well as the probability of error obtained in either case.
Sun, Xiao-Dong; Ge, Zhong-Hui; Li, Zhen-Chun
2017-09-01
Although conventional reverse time migration can be perfectly applied to structural imaging it lacks the capability of enabling detailed delineation of a lithological reservoir due to irregular illumination. To obtain reliable reflectivity of the subsurface it is necessary to solve the imaging problem using inversion. The least-square reverse time migration (LSRTM) (also known as linearized reflectivity inversion) aims to obtain relatively high-resolution amplitude preserving imaging by including the inverse of the Hessian matrix. In practice, the conjugate gradient algorithm is proven to be an efficient iterative method for enabling use of LSRTM. The velocity gradient can be derived from a cross-correlation between observed data and simulated data, making LSRTM independent of wavelet signature and thus more robust in practice. Tests on synthetic and marine data show that LSRTM has good potential for use in reservoir description and four-dimensional (4D) seismic images compared to traditional RTM and Fourier finite difference (FFD) migration. This paper investigates the first order approximation of LSRTM, which is also known as the linear Born approximation. However, for more complex geological structures a higher order approximation should be considered to improve imaging quality.
Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.
Fessler, J A; Booth, S D
1999-01-01
Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.
Directory of Open Access Journals (Sweden)
Bighnaraj Naik
2018-01-01
Full Text Available All the higher order ANNs (HONNs including functional link ANN (FLANN are sensitive to random initialization of weight and rely on the learning algorithms adopted. Although a selection of efficient learning algorithms for HONNs helps to improve the performance, on the other hand, initialization of weights with optimized weights rather than random weights also play important roles on its efficiency. In this paper, the problem solving approach of the teaching learning based optimization (TLBO along with learning ability of the gradient descent learning (GDL is used to obtain the optimal set of weight of FLANN learning model. TLBO does not require any specific parameters rather it requires only some of the common independent parameters like number of populations, number of iterations and stopping criteria, thereby eliminating the intricacy in selection of algorithmic parameters for adjusting the set of weights of FLANN model. The proposed TLBO-FLANN is implemented in MATLAB and compared with GA-FLANN, PSO-FLANN and HS-FLANN. The TLBO-FLANN is tested on various 5-fold cross validated benchmark data sets from UCI machine learning repository and analyzed under the null-hypothesis by using Friedman test, Holm’s procedure and post hoc ANOVA statistical analysis (Tukey test & Dunnett test.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
The application of projected conjugate gradient solvers on graphical processing units
International Nuclear Information System (INIS)
Lin, Youzuo; Renaut, Rosemary
2011-01-01
Graphical processing units introduce the capability for large scale computation at the desktop. Presented numerical results verify that efficiencies and accuracies of basic linear algebra subroutines of all levels when implemented in CUDA and Jacket are comparable. But experimental results demonstrate that the basic linear algebra subroutines of level three offer the greatest potential for improving efficiency of basic numerical algorithms. We consider the solution of the multiple right hand side set of linear equations using Krylov subspace-based solvers. Thus, for the multiple right hand side case, it is more efficient to make use of a block implementation of the conjugate gradient algorithm, rather than to solve each system independently. Jacket is used for the implementation. Furthermore, including projection from one system to another improves efficiency. A relevant example, for which simulated results are provided, is the reconstruction of a three dimensional medical image volume acquired from a positron emission tomography scanner. Efficiency of the reconstruction is improved by using projection across nearby slices.
Directory of Open Access Journals (Sweden)
Jianfei Zhang
2013-01-01
Full Text Available Graphics processing unit (GPU has obtained great success in scientific computations for its tremendous computational horsepower and very high memory bandwidth. This paper discusses the efficient way to implement polynomial preconditioned conjugate gradient solver for the finite element computation of elasticity on NVIDIA GPUs using compute unified device architecture (CUDA. Sliced block ELLPACK (SBELL format is introduced to store sparse matrix arising from finite element discretization of elasticity with fewer padding zeros than traditional ELLPACK-based formats. Polynomial preconditioning methods have been investigated both in convergence and running time. From the overall performance, the least-squares (L-S polynomial method is chosen as a preconditioner in PCG solver to finite element equations derived from elasticity for its best results on different example meshes. In the PCG solver, mixed precision algorithm is used not only to reduce the overall computational, storage requirements and bandwidth but to make full use of the capacity of the GPU devices. With SBELL format and mixed precision algorithm, the GPU-based L-S preconditioned CG can get a speedup of about 7–9 to CPU-implementation.
The application of projected conjugate gradient solvers on graphical processing units
Energy Technology Data Exchange (ETDEWEB)
Lin, Youzuo [Los Alamos National Laboratory; Renaut, Rosemary [ARIZONA STATE UNIV.
2011-01-26
Graphical processing units introduce the capability for large scale computation at the desktop. Presented numerical results verify that efficiencies and accuracies of basic linear algebra subroutines of all levels when implemented in CUDA and Jacket are comparable. But experimental results demonstrate that the basic linear algebra subroutines of level three offer the greatest potential for improving efficiency of basic numerical algorithms. We consider the solution of the multiple right hand side set of linear equations using Krylov subspace-based solvers. Thus, for the multiple right hand side case, it is more efficient to make use of a block implementation of the conjugate gradient algorithm, rather than to solve each system independently. Jacket is used for the implementation. Furthermore, including projection from one system to another improves efficiency. A relevant example, for which simulated results are provided, is the reconstruction of a three dimensional medical image volume acquired from a positron emission tomography scanner. Efficiency of the reconstruction is improved by using projection across nearby slices.
Use of the preconditioned conjugate gradient method to accelerate S/sub n/ iterations
International Nuclear Information System (INIS)
Derstine, K.L.; Gelbard, E.M.
1985-01-01
It is well known that specially tailored diffusion difference equations are required in the synthetic method. The tailoring process is not trivial, and for some S/sub n/ schemes (e.g., in hexagonal geometry) tailored diffusion operators are not available. The need for alternative acceleration methods has been noted by Larsen who has, in fact, proposed two alternatives. The proposed methods, however, do not converge to the S/sub n/ solution, and their accuracy is still largely unknown. Los Alamos acceleration methods are required to converge for any mesh, no matter how coarse. Since negative flux-fix ups (normally involved when mesh widths are large) may impede convergence, it is not clear that such a strict condition is really practical. Here a lesser objective is chosen. The authors wish to develop an acceleration method useful for a wide (though finite) range of mesh widths, but to avoid the use of special diffusion difference equations. It is shown that the conjugate gradient (CG) method, with the standard box-centered (BC) diffusion equation as a preconditioner, yields an algorithm that, for fixed-source problems with isotropic scattering, is mechanically very similar to the synthetic method; but, in two-dimensional test problems in various geometries, the CG method is substantially more stable
Generalized conjugate-gradient methods for the Navier-Stokes equations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1991-01-01
A generalized conjugate-gradient method is used to solve the two-dimensional, compressible Navier-Stokes equations of fluid flow. The equations are discretized with an implicit, upwind finite-volume formulation. Preconditioning techniques are incorporated into the new solver to accelerate convergence of the overall iterative method. The superiority of the new solver is demonstrated by comparisons with a conventional line Gauss-Siedel Relaxation solver. Computational test results for transonic flow (trailing edge flow in a transonic turbine cascade) and hypersonic flow (M = 6.0 shock-on-shock phenoena on a cylindrical leading edge) are presented. When applied to the transonic cascade case, the new solver is 4.4 times faster in terms of number of iterations and 3.1 times faster in terms of CPU time than the Relaxation solver. For the hypersonic shock case, the new solver is 3.0 times faster in terms of number of iterations and 2.2 times faster in terms of CPU time than the Relaxation solver.
Acceptable solutions obtained by unfolding noisy data with a conjugate gradient technique
International Nuclear Information System (INIS)
Lang, D.W.
1976-01-01
A linear resolution function in a physical measurement leads to data values and standard deviations at, say, N points. It is noted that the associated resolution functions may require that a number n of particular linear combinations of the data values be each not significantly different from zero. One is left with at most N-n parameters to evaluate. If the resolution functions are reasonably behaved, one can show that one sensible way to describe the underlying spectrum treats it as a linear combination of the given resolution functions and includes all the significant information from the data. An iterative search for the best component available to minimize the chi-square of the next fit to the data leads to a conjugate gradient technique. Programs based on the technique have been successfully used to obtain neutron spectra as a function of energy; in raw data from a pulse height analysis of proton recoils in a proportional counter, and where the raw data are time of flight spectra from a time dependent pulse of known form. It is planned to incorporate these, together with working programs respectively for photonuclear analysis and to explore the impurity concentration profile in a surface, into a single ''work-bench'' type program. A suitably difficult model unfolding problem has been developed and used to show the strengths and weaknesses of a number of other methods that have been used for unfolding
International Nuclear Information System (INIS)
King, J.B.; Anghaie, S.; Domanus, H.M.
1987-01-01
Finite difference approximations to the continuity, momentum, and energy equations in thermal hydraulics codes result in a system of N by N equations for a problem having N field points. In a three dimensional problem, N increases as the problem becomes larger or more complex, and more rapidly as the computational mesh size is reduced. As a consequence, the execution time required to solve the problem increases, which may lead to placing limits on the problem resolution or accuracy. A conventinal method of solution of these systems of equations is the Successive Over Relaxation (SOR) technique. However, for a wide range of problems the execution time may be reduced by using a more efficient linear equation solver. One such method is the conjugate gradient method which was implemented in COMMIX-1B thermal hydraulics code. It was found that the execution time required to solve the resulting system of equations was reduced by a factor of about 2 for some problems. This paper summarizes the characteristics of these iterative solution procedures and compares their performance in modeling of a variety of reactor thermal hydraulic problems, using the COMMIX-1B computer code
International Nuclear Information System (INIS)
Perez, L; Autrique, L; Gillet, M
2008-01-01
The aim of this paper is to investigate the thermal diffusivity identification of a multilayered material dedicated to fire protection. In a military framework, fire protection needs to meet specific requirements, and operational protective systems must be constantly improved in order to keep up with the development of new weapons. In the specific domain of passive fire protections, intumescent coatings can be an effective solution on the battlefield. Intumescent materials have the ability to swell up when they are heated, building a thick multi-layered coating which provides efficient thermal insulation to the underlying material. Due to the heat aggressions (fire or explosion) leading to the intumescent phenomena, high temperatures are considered and prevent from linearization of the mathematical model describing the system state evolution. Previous sensitivity analysis has shown that the thermal diffusivity of the multilayered intumescent coating is a key parameter in order to validate the predictive numerical tool and therefore for thermal protection optimisation. A conjugate gradient method is implemented in order to minimise the quadratic cost function related to the error between predicted temperature and measured temperature. This regularisation algorithm is well adapted for a large number of unknown parameters.
Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing
2014-04-01
Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.
Adjustment technique without explicit formation of normal equations /conjugate gradient method/
Saxena, N. K.
1974-01-01
For a simultaneous adjustment of a large geodetic triangulation system, a semiiterative technique is modified and used successfully. In this semiiterative technique, known as the conjugate gradient (CG) method, original observation equations are used, and thus the explicit formation of normal equations is avoided, 'huge' computer storage space being saved in the case of triangulation systems. This method is suitable even for very poorly conditioned systems where solution is obtained only after more iterations. A detailed study of the CG method for its application to large geodetic triangulation systems was done that also considered constraint equations with observation equations. It was programmed and tested on systems as small as two unknowns and three equations up to those as large as 804 unknowns and 1397 equations. When real data (573 unknowns, 965 equations) from a 1858-km-long triangulation system were used, a solution vector accurate to four decimal places was obtained in 2.96 min after 1171 iterations (i.e., 2.0 times the number of unknowns).
Missing value imputation in DNA microarrays based on conjugate gradient method.
Dorri, Fatemeh; Azmi, Paeiz; Dorri, Faezeh
2012-02-01
Analysis of gene expression profiles needs a complete matrix of gene array values; consequently, imputation methods have been suggested. In this paper, an algorithm that is based on conjugate gradient (CG) method is proposed to estimate missing values. k-nearest neighbors of the missed entry are first selected based on absolute values of their Pearson correlation coefficient. Then a subset of genes among the k-nearest neighbors is labeled as the best similar ones. CG algorithm with this subset as its input is then used to estimate the missing values. Our proposed CG based algorithm (CGimpute) is evaluated on different data sets. The results are compared with sequential local least squares (SLLSimpute), Bayesian principle component analysis (BPCAimpute), local least squares imputation (LLSimpute), iterated local least squares imputation (ILLSimpute) and adaptive k-nearest neighbors imputation (KNNKimpute) methods. The average of normalized root mean squares error (NRMSE) and relative NRMSE in different data sets with various missing rates shows CGimpute outperforms other methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT).
Wang, Qi; Wang, Huaxiang
2011-04-01
During the past few decades, computerized tomography (CT) was widely used for non-destructive testing (NDT) and non-destructive examination (NDE) in the industrial area because of its characteristics of non-invasiveness and visibility. Recently, CT technology has been applied to multi-phase flow measurement. Using the principle of radiation attenuation measurements along different directions through the investigated object with a special reconstruction algorithm, cross-sectional information of the scanned object can be worked out. It is a typical inverse problem and has always been a challenge for its nonlinearity and ill-conditions. The Tikhonov regulation method is widely used for similar ill-posed problems. However, the conventional Tikhonov method does not provide reconstructions with qualities good enough, the relative errors between the reconstructed images and the real distribution should be further reduced. In this paper, a modified conjugate gradient (CG) method is applied to a Tikhonov system (MCGT method) for reconstructing CT images. The computational load is dominated by the number of independent measurements m, and a preconditioner is imported to lower the condition number of the Tikhonov system. Both simulation and experiment results indicate that the proposed method can reduce the computational time and improve the quality of image reconstruction. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure
Hill, Mary C.
1990-01-01
The performance of the preconditioned conjugate-gradient method with three preconditioners is compared with the strongly implicit procedure (SIP) using a scalar computer. The preconditioners considered are the incomplete Cholesky (ICCG) and the modified incomplete Cholesky (MICCG), which require the same computer storage as SIP as programmed for a problem with a symmetric matrix, and a polynomial preconditioner (POLCG), which requires less computer storage than SIP. Although POLCG is usually used on vector computers, it is included here because of its small storage requirements. In this paper, published comparisons of the solvers are evaluated, all four solvers are compared for the first time, and new test cases are presented to provide a more complete basis by which the solvers can be judged for typical groundwater flow problems. Based on nine test cases, the following conclusions are reached: (1) SIP is actually as efficient as ICCG for some of the published, linear, two-dimensional test cases that were reportedly solved much more efficiently by ICCG; (2) SIP is more efficient than other published comparisons would indicate when common convergence criteria are used; and (3) for problems that are three-dimensional, nonlinear, or both, and for which common convergence criteria are used, SIP is often more efficient than ICCG, and is sometimes more efficient than MICCG.
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
3D DC Resistivity Inversion with Topography Based on Regularized Conjugate Gradient Method
Directory of Open Access Journals (Sweden)
Jian-ke Qiang
2013-01-01
Full Text Available During the past decades, we observed a strong interest in 3D DC resistivity inversion and imaging with complex topography. In this paper, we implemented 3D DC resistivity inversion based on regularized conjugate gradient method with FEM. The Fréchet derivative is assembled with the electric potential in order to speed up the inversion process based on the reciprocity theorem. In this study, we also analyzed the sensitivity of the electric potential on the earth’s surface to the conductivity in each cell underground and introduced an optimized weighting function to produce new sensitivity matrix. The synthetic model study shows that this optimized weighting function is helpful to improve the resolution of deep anomaly. By incorporating topography into inversion, the artificial anomaly which is actually caused by topography can be eliminated. As a result, this algorithm potentially can be applied to process the DC resistivity data collected in mountain area. Our synthetic model study also shows that the convergence and computation speed are very stable and fast.
Optimization of gadolinium burnable poison loading by the conjugate gradients method
International Nuclear Information System (INIS)
Drumm, C.R.
1984-01-01
Improved use of burnable poison is suggested for pressurized water reactors (PWR's) to insure a sufficiently negative moderator temperature coefficient of reactivity for extended burnup cycles and low leakage refueling patterns. The use of gadolinium as a burnable poison can lead to large axial fluctuations in the power distribution through the cycle. The goal of this work is to determine the optimal axial distribution of gadolinium burnable poison in a PWR to overcome the axial fluctuations, yielding an improved power distribution. The conjugate gradients optimization method is used in this work because of the high degree of nonlinearity of the problem. The neutron diffusion and depletion equations are solved for a one-dimensional one-group core model. The state variables are the flux, the critical soluble boron concentration, and the burnup. The control variables are the number of gadolinium pins per assembly and the beginning-of-cycle gadolinium concentration, which determine the gadolinium cross section. Two separate objectives are considered: 1) to minimize the power peaking factor, which will minimize the capital cost of the plant; and 2) to maximize the cycle length, which will minimize the fuel cost for the plant. It is shown in this work that optimizing the gadolinium distribution can yield an improved power distribution
Embedding SAS approach into conjugate gradient algorithms for asymmetric 3D elasticity problems
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsin-Chu; Warsi, N.A. [Clark Atlanta Univ., GA (United States); Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
In this paper, we present two strategies to embed the SAS (symmetric-and-antisymmetric) scheme into conjugate gradient (CG) algorithms to make solving 3D elasticity problems, with or without global reflexive symmetry, more efficient. The SAS approach is physically a domain decomposition scheme that takes advantage of reflexive symmetry of discretized physical problems, and algebraically a matrix transformation method that exploits special reflexivity properties of the matrix resulting from discretization. In addition to offering large-grain parallelism, which is valuable in a multiprocessing environment, the SAS scheme also has the potential for reducing arithmetic operations in the numerical solution of a reasonably wide class of scientific and engineering problems. This approach can be applied directly to problems that have global reflexive symmetry, yielding smaller and independent subproblems to solve, or indirectly to problems with partial symmetry, resulting in loosely coupled subproblems. The decomposition is achieved by separating the reflexive subspace from the antireflexive one, possessed by a special class of matrices A, A {element_of} C{sup n x n} that satisfy the relation A = PAP where P is a reflection matrix (symmetric signed permutation matrix).
Hill, Mary C.
1990-01-01
This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.
Freund, Roland
1988-01-01
Conjugate gradient type methods are considered for the solution of large linear systems Ax = b with complex coefficient matrices of the type A = T + i(sigma)I where T is Hermitian and sigma, a real scalar. Three different conjugate gradient type approaches with iterates defined by a minimal residual property, a Galerkin type condition, and an Euclidian error minimization, respectively, are investigated. In particular, numerically stable implementations based on the ideas behind Paige and Saunder's SYMMLQ and MINRES for real symmetric matrices are proposed. Error bounds for all three methods are derived. It is shown how the special shift structure of A can be preserved by using polynomial preconditioning. Results on the optimal choice of the polynomial preconditioner are given. Also, some numerical experiments for matrices arising from finite difference approximations to the complex Helmholtz equation are reported.
Czech Academy of Sciences Publication Activity Database
Gutknecht, M. H.; Rozložník, Miroslav
2002-01-01
Roč. 41, - (2002), s. 7-22 ISSN 0168-9274 R&D Projects: GA AV ČR IAA1030103; GA ČR GA101/00/1035 Institutional research plan: AV0Z1030915 Keywords : sparse linear systems * Krylov space method * orthogonal residual method * minimal residual method * conjugate gradient method * residual smoothing * CG * CGNE * CGNR * CR * FOM * GMRES * PRES Subject RIV: BA - General Mathematics Impact factor: 0.504, year: 2002
Preconditioned conjugate-gradient methods for low-speed flow calculations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-09-01
Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
Experience with the Incomplete Cholesky Conjugate Gradient method in a diffusion code
International Nuclear Information System (INIS)
Hoebel, W.
1985-01-01
For the numerical solution of sparse systems of linear equations arising from finite difference approximation of the multidimensional neutron diffusion equation fast methods are needed. Effective algorithms for scalar computers may not be likewise suitable on vector computers. In the improved version DIXY2 of the Karlsruhe two-dimensional neutron diffusion code for rectangular geometries an Incomplete Cholesky Conjugate Gradient (ICCG) algorithm has been combined with the originally implemented Cyclically Reduced 4-Lines SOR (CR4LSOR) inner iteration method. The combined procedure is automatically activated for slowly converging applications, thus leading to a drastic reduction of iterations as well as CPU-times on a scalar computer. In a follow-up benchmark study necessary modifications to ICCG and CR4LSOR for their use on a vector computer were investigated. It was found that a modified preconditioning for the ICCG algorithm restricted to the block diagonal matrix is an effective method both on scalar and vector computers. With a splitting of the 9-band-matrix in two triangular Cholesky matrices necessary inversions are performed on a scalar machine by recursive forward and backward substitutions. On vector computers an additional factorization of the triangular matrices into four bidiagonal matrices enables Buneman reduction and the recursive inversion is restricted to a small system. A similar strategy can be realized with CR4LSOR if the unvectorizable Gauss-Seidel iteration is replaced by Double Jacobi and Buneman technique for a vector computer. Compared to single line blocking over the original mesh the cyclical 4-lines reduction of the DIXY inner iteration scheme reduces numbers of iterations and CPU-times considerably
A nonrecursive order N preconditioned conjugate gradient: Range space formulation of MDOF dynamics
Kurdila, Andrew J.
1990-01-01
While excellent progress has been made in deriving algorithms that are efficient for certain combinations of system topologies and concurrent multiprocessing hardware, several issues must be resolved to incorporate transient simulation in the control design process for large space structures. Specifically, strategies must be developed that are applicable to systems with numerous degrees of freedom. In addition, the algorithms must have a growth potential in that they must also be amenable to implementation on forthcoming parallel system architectures. For mechanical system simulation, this fact implies that algorithms are required that induce parallelism on a fine scale, suitable for the emerging class of highly parallel processors; and transient simulation methods must be automatically load balancing for a wider collection of system topologies and hardware configurations. These problems are addressed by employing a combination range space/preconditioned conjugate gradient formulation of multi-degree-of-freedom dynamics. The method described has several advantages. In a sequential computing environment, the method has the features that: by employing regular ordering of the system connectivity graph, an extremely efficient preconditioner can be derived from the 'range space metric', as opposed to the system coefficient matrix; because of the effectiveness of the preconditioner, preliminary studies indicate that the method can achieve performance rates that depend linearly upon the number of substructures, hence the title 'Order N'; and the method is non-assembling. Furthermore, the approach is promising as a potential parallel processing algorithm in that the method exhibits a fine parallel granularity suitable for a wide collection of combinations of physical system topologies/computer architectures; and the method is easily load balanced among processors, and does not rely upon system topology to induce parallelism.
Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M; El Fakhri, Georges
2013-10-01
Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%-29% and 32%-70% for 50 × 10(6) and 10 × 10(6) detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40-50 iterations), while more than 500 iterations were needed for CG. The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method.
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.
Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R
2003-09-10
Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
Experience with the incomplete Cholesky conjugate gradient method in a diffusion code
International Nuclear Information System (INIS)
Hoebel, W.
1986-01-01
For the numerical solution of sparse systems of linear equations arising from the finite difference approximation of the multidimensional neutron diffusion equation, fast methods are needed. Effective algorithms for scalar computers may not be likewise suitable on vector computers. In the improved version (DIXY2) of the Karlsruhe two-dimensional neutron diffusion code for rectangular geometries, an incomplete Cholesky conjugate gradient (ICCG) algorithm has been combined with the originally implemented cyclically reduced four-line successive overrelaxation (CR4LSOR) inner iteration method. The combined procedure is automatically activated for slowly converging applications, thus leading to a drastic reduction of iterations as well as CPU times on a scalar computer. In a follow-up benchmark study, necessary modifications to ICCG and CR4LSOR for use on a vector computer were investigated. It was found that a modified preconditioning for the ICCG algorithm restricted to the block diagonal matrix is an effective method both on scalar and vector computers. With a splitting of the nine-band matrix in two triangular Cholesky matrices, necessary inversions are performed on a scalar machine by recursive forward and backward substitutions. On vector computers an additional factorization of the triangular matrices into four bidiagonal matrices enables Buneman reduction, and the recursive inversion is restricted to a small system. A similar strategy can be realized with CR4LSOR if the unvectorizable Gauss-eidel iteration is replaced by Double Jacobi and Buneman techniques for a vector computer. Compared to single-line blocking over the original mesh, the cyclical four-line reduction of the DIXY inner iteration scheme reduces numbers of iterations and CPU times considerably
On Nonconvex Decentralized Gradient Descent
2016-08-01
and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math . Program., 116: 5-16, 2009. [2] H...splitting, and regularized Gauss-Seidel methods, Math . Pro- gram., Ser. A, 137: 91-129, 2013. [3] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent...subgradient method under random communication topologies , IEEE J. Sel. Top. Signal Process., 5:754-771, 2011. [11] A. Nedic and A. Ozdaglar, Distributed
Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong
2017-07-01
Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize
Burrows, R. R.
1972-01-01
A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.
Wei, Yongjie; Ge, Baozhen; Wei, Yaolin
2009-03-20
In general, model-independent algorithms are sensitive to noise during laser particle size measurement. An improved conjugate gradient algorithm (ICGA) that can be used to invert particle size distribution (PSD) from diffraction data is presented. By use of the ICGA to invert simulated data with multiplicative or additive noise, we determined that additive noise is the main factor that induces distorted results. Thus the ICGA is amended by introduction of an iteration step-adjusting parameter and is used experimentally on simulated data and some samples. The experimental results show that the sensitivity of the ICGA to noise is reduced and the inverted results are in accord with the real PSD.
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho
2008-12-01
Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.
Directory of Open Access Journals (Sweden)
Xiangrong Li
Full Text Available It is generally acknowledged that the conjugate gradient (CG method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
Directory of Open Access Journals (Sweden)
Shoubin Wang
2017-01-01
Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.
Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang
2015-01-01
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
International Nuclear Information System (INIS)
Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem
2008-01-01
In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.
International Nuclear Information System (INIS)
Biffle, J.H.
1991-01-01
1 - Description of program or function: JAC is a two-dimensional finite element program for solving large deformation, temperature dependent, quasi-static mechanics problems with the nonlinear conjugate gradient (CG) technique. Either plane strain or axisymmetric geometry may be used with material descriptions which include temperature dependent elastic-plastic, temperature dependent secondary creep, and isothermal soil models. The nonlinear effects examined include material and geometric nonlinearities due to large rotations, large strains, and surface which slide relative to one another. JAC is vectorized to perform efficiently on the Cray1 computer. A restart capability is included. 2 - Method of solution: The nonlinear conjugate gradient method is employed in a two-dimensional plane strain or axisymmetric setting with various techniques for accelerating convergence. Sliding interface conditions are also implemented. A four-node Lagrangian uniform strain element is used with orthogonal hourglass viscosity to control the zero energy modes. Three sets of continuum equations are needed - kinematic statements, constitutive equations, and equations of equilibrium - to describe the deformed configuration of the body. 3 - Restrictions on the complexity of the problem - Maxima of: 10 load and solution control functions, 4 materials. The strain rate is assumed constant over a time interval. Current large rotation theory is applicable to a maximum shear strain of 1.0. JAC should be used with caution for large shear strains. Problem size is limited only by available memory
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Liu, Guhuan; Hu, Jinming; Zhang, Guoying; Liu, Shiyong
2015-07-15
Spatiotemporal switching of respective phototherapy modes at the cellular level with minimum side effects and high therapeutic efficacy is a major challenge for cancer phototherapy. Herein we demonstrate how to address this issue by employing photosensitizer-conjugated pH-responsive block copolymers in combination with intracellular endocytic pH gradients. At neutral pH corresponding to extracellular and cytosol milieu, the copolymers self-assemble into micelles with prominently quenched fluorescence emission and low (1)O2 generation capability, favoring a highly efficient photothermal module. Under mildly acidic pH associated with endolysosomes, protonation-triggered micelle-to-unimer transition results in recovered emission and enhanced photodynamic (1)O2 efficiency, which synergistically actuates release of encapsulated drugs, endosomal escape, and photochemical internalization processes.
Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D
2017-05-15
We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.
International Nuclear Information System (INIS)
Wang Hua; Liu Feng; Crozier, Stuart; Xia Ling
2008-01-01
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart
2008-11-21
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
International Nuclear Information System (INIS)
Wang, J.J.H.; Dubberley, J.R.
1989-01-01
Electromagnetic (EM) fields in a three-dimensional, arbitrarily shaped heterogeneous dielectric or biological body illuminated by a plane wave are computed by an iterative conjugate gradient method. The method is a generalized method of moments applied to the volume integral equation. Because no matrix is explicitly involved or stored, the present iterative method is capable of computing EM fields in objects an order of magnitude larger than those that can be handled by the conventional method of moments. Excellent numerical convergence is achieved. Perfect convergence to the result of the conventional moment method using the same basis and weighted with delta functions is consistently achieved in all the cases computed, indicating that these two algorithms (direct and interactive) are equivalent
International Nuclear Information System (INIS)
Krishnamoorthy, Gautham
2017-01-01
Highlights: • The P_1 radiation model was interfaced with high performance linear solvers. • Pre-conditioned conjugate gradient (PC CG) method improved convergence by 50% • PC CG was more than 30 times faster than classical iterative methods. • The time to solution scaled linearly with increase in problem size employing PC CG. • Employing WSGGM with P_1 model compared reasonably well against benchmark data. - Abstract: The iterative convergence of the P_1 radiation model can be slow in optically thin scenarios when employing classical iterative methods. In order to remedy this shortcoming, an in-house P_1 radiation model was interfaced with high performance, scalable, linear solver libraries. Next, the accuracies of P_1 radiation model calculations was assessed by comparing its predictions against discrete ordinates (DO) model calculations for prototypical problems representative of modern combustion systems. Corresponding benchmark results were also included for comparison. Utilizing Pre-Conditioners (PC) to the Conjugate Gradients (CG) method, the convergence time of the P_1 radiation model reduced by a factor of 30 for modest problem sizes and a factor of 70 for larger sized problems when compared against classical Gauss Seidel sweeps. Further, PC provided 50% computational savings compared to employing CG in a standalone mode. The P_1 model calculation times were about 25–30% of the DO model calculation time. The time to solution also scaled linearly with an increase in problem size. The weighted sum of gray gases model employed in this study in conjunction with the P_1 model provided good agreement against benchmark data with L_2 error norms (defined relative to corresponding DO calculations) improving when isotropic intensities were prevalent.
Fastest Rates for Stochastic Mirror Descent Methods
Hanzely, Filip
2018-03-20
Relative smoothness - a notion introduced by Birnbaum et al. (2011) and rediscovered by Bauschke et al. (2016) and Lu et al. (2016) - generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as a particular instances of stochastic mirror descent algorithms. One of them, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.
Fastest Rates for Stochastic Mirror Descent Methods
Hanzely, Filip; Richtarik, Peter
2018-01-01
Relative smoothness - a notion introduced by Birnbaum et al. (2011) and rediscovered by Bauschke et al. (2016) and Lu et al. (2016) - generalizes the standard notion of smoothness typically used in the analysis of gradient type methods. In this work we are taking ideas from well studied field of stochastic convex optimization and using them in order to obtain faster algorithms for minimizing relatively smooth functions. We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD), both generalizing famous algorithms in the standard smooth setting. The methods we propose can be in fact seen as a particular instances of stochastic mirror descent algorithms. One of them, relRCD corresponds to the first stochastic variant of mirror descent algorithm with linear convergence rate.
International Nuclear Information System (INIS)
Kim, Hyun Keol; Charette, Andre
2007-01-01
The Sensitivity Function-based Conjugate Gradient Method (SFCGM) is described. This method is used to solve the inverse problems of function estimation, such as the local maps of absorption and scattering coefficients, as applied to optical tomography for biomedical imaging. A highly scattering, absorbing, non-reflecting, non-emitting medium is considered here and simultaneous reconstructions of absorption and scattering coefficients inside the test medium are achieved with the proposed optimization technique, by using the exit intensity measured at boundary surfaces. The forward problem is solved with a discrete-ordinates finite-difference method on the framework of the frequency-domain full equation of radiative transfer. The modulation frequency is set to 600 MHz and the frequency data, obtained with the source modulation, is used as the input data. The inversion results demonstrate that the SFCGM can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by significantly reducing a cross-talk between inter-parameters. It is also observed that the closer-to-detector objects are better retrieved
Directory of Open Access Journals (Sweden)
Shuang Rong
2015-12-01
Full Text Available Aiming to relieve the large amount of wind power curtailment during the heating period in the North China region, a thermal-electric decoupling (TED approach is proposed to both bring down the constraint of forced power output of combined heat and power plants and increase the electric load level during valley load times that assist the power grid in consuming more wind power. The operating principles of the thermal-electric decoupling approach is described, the mathematical model of its profits is developed, the constraint conditions of its operation are listed, also, an improved parallel conjugate gradient is utilized to bypass the saddle problem and accelerate the optimal speed. Numerical simulations are implemented and reveal an optimal allocation of TED which with a rated power of 280 MW and 185 MWh heat storage capacity are possible. This allocation of TED could bring approximately 16.9 billion Yuan of economic profit and consume more than 80% of the surplus wind energy which would be curtailed without the participation of TED. The results in this article verify the effectiveness of this method that could provide a referential guidance for thermal-electric decoupling system allocation in practice.
Directory of Open Access Journals (Sweden)
ChunPing Ren
2017-01-01
Full Text Available We propose a novel mathematical algorithm to offer a solution for the inverse random dynamic force identification in practical engineering. Dealing with the random dynamic force identification problem using the proposed algorithm, an improved maximum entropy (IME regularization technique is transformed into an unconstrained optimization problem, and a novel conjugate gradient (NCG method was applied to solve the objective function, which was abbreviated as IME-NCG algorithm. The result of IME-NCG algorithm is compared with that of ME, ME-CG, ME-NCG, and IME-CG algorithm; it is found that IME-NCG algorithm is available for identifying the random dynamic force due to smaller root mean-square-error (RMSE, lower restoration time, and fewer iterative steps. Example of engineering application shows that L-curve method is introduced which is better than Generalized Cross Validation (GCV method and is applied to select regularization parameter; thus the proposed algorithm can be helpful to alleviate the ill-conditioned problem in identification of dynamic force and to acquire an optimal solution of inverse problem in practical engineering.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F
2011-04-01
To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.
Woodward, Richard B; Spanias, John A; Hargrove, Levi J
2016-08-01
Powered lower limb prostheses have the ability to provide greater mobility for amputee patients. Such prostheses often have pre-programmed modes which can allow activities such as climbing stairs and descending ramps, something which many amputees struggle with when using non-powered limbs. Previous literature has shown how pattern classification can allow seamless transitions between modes with a high accuracy and without any user interaction. Although accurate, training and testing each subject with their own dependent data is time consuming. By using subject independent datasets, whereby a unique subject is tested against a pooled dataset of other subjects, we believe subject training time can be reduced while still achieving an accurate classification. We present here an intent recognition system using an artificial neural network (ANN) with a scaled conjugate gradient learning algorithm to classify gait intention with user-dependent and independent datasets for six unilateral lower limb amputees. We compare these results against a linear discriminant analysis (LDA) classifier. The ANN was found to have significantly lower classification error (P<;0.05) than LDA with all user-dependent step-types, as well as transitional steps for user-independent datasets. Both types of classifiers are capable of making fast decisions; 1.29 and 2.83 ms for the LDA and ANN respectively. These results suggest that ANNs can provide suitable and accurate offline classification in prosthesis gait prediction.
Barkeshli, Kasra; Volakis, John L.
1991-01-01
The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.
Tavakoli, Behnoosh; Zhu, Quing
2013-01-01
Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.
Gilles, Luc; Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Ellerbroek, Brent
2013-05-01
This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves
Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C; Li, Debiao
2010-01-01
First-pass perfusion magnetic resonance imaging (MRI) is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. A combination of sliding window and conjugate-gradient HighlY constrained back-PRojection reconstruction (SW-CG-HYPR) method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of 1 frame per heartbeat in myocardial perfusion MRI. This method allows for improved spatial coverage, resolution, and SNR. In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results from 6 mongrel dogs (15-25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2 to 3 slices to 6 slices as compared with the conventional techniques including both turbo-Fast Low Angle Short (FLASH) and echoplanar imaging (EPI). The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68 ± 2.46) is significantly higher (P < 0.01) than the turbo-FLASH (8.65 ± 1.93) and EPI (5.48 ± 1.24). The spatial resolution of SW-CG-HYPR images is 1.2 × 1.2 × 8.0 mm, which is better than the turbo-FLASH (1.8 × 1.8 × 8.0 mm) and EPI (2.0 × 1.8 × 8.0 mm). Sliding-window CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting.
Aviat, Félix; Lagardère, Louis; Piquemal, Jean-Philip
2017-10-01
In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered "non-iterative." This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the TCG methods are more efficient than traditional techniques, making it a method of choice for future long molecular dynamics simulations using polarizable force fields where energy conservation matters. We detail the various steps required for the implementation of the complete method by software developers.
International Nuclear Information System (INIS)
Kalkreuter, T.; Simma, H.
1995-07-01
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
International Nuclear Information System (INIS)
Aruchunan, E.
2015-01-01
In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
International Nuclear Information System (INIS)
Yoon, Jong Seon; Choi, Hyoung Gwon; Jeon, Byoung Jin; Jung, Hye Dong
2016-01-01
A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.
International Nuclear Information System (INIS)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jong Seon; Choi, Hyoung Gwon [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of); Jeon, Byoung Jin [Yonsei Univ., Seoul (Korea, Republic of); Jung, Hye Dong [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)
2016-09-15
A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.
International Nuclear Information System (INIS)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
The 15th and last section of the CMS detector was lowered on Tuesday 22 January. The YE-1 endcap (1430 tonnes) began its 100-metre descent at 7 am and arrived gently on the floor of the experiment hall at 5.30 pm.
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.
The ﬁrst endcap disc of CMS being lowered slowly and carefully 100 m underground into the experimental cavern. The disc is one of 15 large pieces to make the grand descent. The uniquely shaped slice, 16 m high, about 50 cm thick weighs 400 tonnes. The two HF that were lowered earlier in November can also be seen in the foreground and background.
Dictionary descent in optimization
Temlyakov, Vladimir
2015-01-01
The problem of convex optimization is studied. Usually in convex optimization the minimization is over a d-dimensional domain. Very often the convergence rate of an optimization algorithm depends on the dimension d. The algorithms studied in this paper utilize dictionaries instead of a canonical basis used in the coordinate descent algorithms. We show how this approach allows us to reduce dimensionality of the problem. Also, we investigate which properties of a dictionary are beneficial for t...
With precise coordination YE+1 was lowered into the cavern (9-Jan), soon joined by the ?rst barrel wheel YB+2 (19-Jan), then YB+1(4-Feb) and HB+ (13-Feb). The 1920 ton central barrel wheel YB0 rests brie?y on the pit-head cover in anticipation of a monumental descent (28-Feb) that will also trigger an intense campaign of installation of services and detectors underground.
International Nuclear Information System (INIS)
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; Van de Kamp, Thomas; Rolo, Tomy dos Santos; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer
2015-01-01
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration o fin vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation
International Nuclear Information System (INIS)
Gelebart, Lionel; Mondon-Cancel, Romain
2013-01-01
FFT-based methods are used to solve the problem of a heterogeneous unit-cell submitted to periodic boundary conditions, which is of a great interest in the context of numerical homogenization. Recently (in 2010), Brisard and Zeman proposed simultaneously to use Conjugate Gradient based solvers in order to improve the convergence properties (when compared to the basic scheme, proposed initially in 1994). The purpose of the paper is to extend this idea to the case of non-linear behaviors. The proposed method is based on a Newton-Raphson algorithm and can be applied to various kinds of behaviors (time dependant or independent, with or without internal variables) through a conventional integration procedure as used in finite element codes. It must be pointed out that this approach is fundamentally different from the traditional FFT-based approaches which rely on a fixed-point algorithm (e.g. basic scheme, Eyre and Milton accelerated scheme, Augmented Lagrangian scheme, etc.). The method is compared to the basic scheme on the basis of a simple application (a linear elastic spherical inclusion within a non-linear elastic matrix): a low sensitivity to the reference material and an improved efficiency, for a soft or a stiff inclusion, are observed. At first proposed for a prescribed macroscopic strain, the method is then extended to mixed loadings. (authors)
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; dos Santos Rolo, Tomy; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer
2015-03-09
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.
Pengpen, T; Soleimani, M
2015-06-13
Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Ma, Heng; Yang, Jun; Liu, Jing; Ge, Lan; An, Jing; Tang, Qing; Li, Han; Zhang, Yu; Chen, David; Wang, Yong; Liu, Jiabin; Liang, Zhigang; Lin, Kai; Jin, Lixin; Bi, Xiaoming; Li, Kuncheng; Li, Debiao
2012-04-15
Myocardial perfusion magnetic resonance imaging (MRI) with sliding-window conjugate-gradient highly constrained back-projection reconstruction (SW-CG-HYPR) allows whole left ventricular coverage, improved temporal and spatial resolution and signal/noise ratio, and reduced cardiac motion-related image artifacts. The accuracy of this technique for detecting coronary artery disease (CAD) has not been determined in a large number of patients. We prospectively evaluated the diagnostic performance of myocardial perfusion MRI with SW-CG-HYPR in patients with suspected CAD. A total of 50 consecutive patients who were scheduled for coronary angiography with suspected CAD underwent myocardial perfusion MRI with SW-CG-HYPR at 3.0 T. The perfusion defects were interpreted qualitatively by 2 blinded observers and were correlated with x-ray angiographic stenoses ≥50%. The prevalence of CAD was 56%. In the per-patient analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of SW-CG-HYPR was 96% (95% confidence interval 82% to 100%), 82% (95% confidence interval 60% to 95%), 87% (95% confidence interval 70% to 96%), 95% (95% confidence interval 74% to100%), and 90% (95% confidence interval 82% to 98%), respectively. In the per-vessel analysis, the corresponding values were 98% (95% confidence interval 91% to 100%), 89% (95% confidence interval 80% to 94%), 86% (95% confidence interval 76% to 93%), 99% (95% confidence interval 93% to 100%), and 93% (95% confidence interval 89% to 97%), respectively. In conclusion, myocardial perfusion MRI using SW-CG-HYPR allows whole left ventricular coverage and high resolution and has high diagnostic accuracy in patients with suspected CAD. Copyright © 2012 Elsevier Inc. All rights reserved.
Stochastic Spectral Descent for Discrete Graphical Models
International Nuclear Information System (INIS)
Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan
2015-01-01
Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José; Liu, Qinya; Zhou, Bing
2017-05-01
We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409-436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35-43, 1969; Polyak in USSR Comput Math Math Phys 9:94-112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177-182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method ( Direct), the parabolic search method ( Search), and the two-point quadratic interpolation method ( Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the
Directory of Open Access Journals (Sweden)
Andreea Koreanschi
2017-02-01
Full Text Available In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods, namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.
Luteinizing hormone in testicular descent
DEFF Research Database (Denmark)
Toppari, Jorma; Kaleva, Marko M; Virtanen, Helena E
2007-01-01
alone is not sufficient for normal testicular descent. The regulation of androgen production is influenced both by placental human chorionic gonadotropin (hCG) and pituitary luteinizing hormone (LH). There is evidence that the longer pregnancy continues, the more important role pituitary LH may have....... Insulin-like hormone-3 (INSL3) is suggested to be the main regulator of gubernacular development and therefore an apparent regulator of testicular descent. INSL3 production is also related to LH, and reduced INSL3 action is a possible cause for cryptorchidism. Cryptorchid boys have normal testosterone...
Theseus' arid Peirithoos' descent into the underworld
Bremmer, Jan N.
2015-01-01
In my contribution I will first briefly discuss the earliest known literary descent, that by Enkidu, which almost certainly influenced the poet of the Odyssey in his depiction of Odysseus' descent. Then I will take a brief look at some descents in the Archaic Age, in particular the earliest
Energy Technology Data Exchange (ETDEWEB)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
1985-05-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
Descent construction for GSpin groups
Hundley, Joseph
2016-01-01
In this paper the authors provide an extension of the theory of descent of Ginzburg-Rallis-Soudry to the context of essentially self-dual representations, that is, representations which are isomorphic to the twist of their own contragredient by some Hecke character. The authors' theory supplements the recent work of Asgari-Shahidi on the functorial lift from (split and quasisplit forms of) GSpin_{2n} to GL_{2n}.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Steepest descent method implementation on unconstrained optimization problem using C++ program
Napitupulu, H.; Sukono; Mohd, I. Bin; Hidayat, Y.; Supian, S.
2018-03-01
Steepest Descent is known as the simplest gradient method. Recently, many researches are done to obtain the appropriate step size in order to reduce the objective function value progressively. In this paper, the properties of steepest descent method from literatures are reviewed together with advantages and disadvantages of each step size procedure. The development of steepest descent method due to its step size procedure is discussed. In order to test the performance of each step size, we run a steepest descent procedure in C++ program. We implemented it to unconstrained optimization test problem with two variables, then we compare the numerical results of each step size procedure. Based on the numerical experiment, we conclude the general computational features and weaknesses of each procedure in each case of problem.
Mühlherr, Bernhard; Weiss, Richard M
2015-01-01
Descent in Buildings begins with the resolution of a major open question about the local structure of Bruhat-Tits buildings. The authors then put their algebraic solution into a geometric context by developing a general fixed point theory for groups acting on buildings of arbitrary type, giving necessary and sufficient conditions for the residues fixed by a group to form a kind of subbuilding or "form" of the original building. At the center of this theory is the notion of a Tits index, a combinatorial version of the notion of an index in the relative theory of algebraic groups. These results
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
Random versus Deterministic Descent in RNA Energy Landscape Analysis
Directory of Open Access Journals (Sweden)
Luke Day
2016-01-01
Full Text Available Identifying sets of metastable conformations is a major research topic in RNA energy landscape analysis, and recently several methods have been proposed for finding local minima in landscapes spawned by RNA secondary structures. An important and time-critical component of such methods is steepest, or gradient, descent in attraction basins of local minima. We analyse the speed-up achievable by randomised descent in attraction basins in the context of large sample sets where the size has an order of magnitude in the region of ~106. While the gain for each individual sample might be marginal, the overall run-time improvement can be significant. Moreover, for the two nongradient methods we analysed for partial energy landscapes induced by ten different RNA sequences, we obtained that the number of observed local minima is on average larger by 7.3% and 3.5%, respectively. The run-time improvement is approximately 16.6% and 6.8% on average over the ten partial energy landscapes. For the large sample size we selected for descent procedures, the coverage of local minima is very high up to energy values of the region where the samples were randomly selected from the partial energy landscapes; that is, the difference to the total set of local minima is mainly due to the upper area of the energy landscapes.
Continuous Descent Operations using Energy Principles
De Jong, P.M.A.
2014-01-01
During today’s aircraft descents, Air Traf?c Control (ATC) commands aircraft to descend to specific altitudes and directions to maintain separation and spacing from other aircraft. When the aircraft is instructed to maintain an intermediate descent altitude, it requires engine thrust to maintain
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
Propulsive Descent Technologies (PDT): Original Content Project
National Aeronautics and Space Administration — Future missions to Mars require landed mass that exceeds the capability of current entry, descent, and landing technology. New technology and techniques are...
Steepest descent approximations for accretive operator equations
International Nuclear Information System (INIS)
Chidume, C.E.
1993-03-01
A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs
Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I
2017-01-01
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.
Optimising a parallel conjugate gradient solver
Energy Technology Data Exchange (ETDEWEB)
Field, M.R. [O`Reilly Institute, Dublin (Ireland)
1996-12-31
This work arises from the introduction of a parallel iterative solver to a large structural analysis finite element code. The code is called FEX and it was developed at Hitachi`s Mechanical Engineering Laboratory. The FEX package can deal with a large range of structural analysis problems using a large number of finite element techniques. FEX can solve either stress or thermal analysis problems of a range of different types from plane stress to a full three-dimensional model. These problems can consist of a number of different materials which can be modelled by a range of material models. The structure being modelled can have the load applied at either a point or a surface, or by a pressure, a centrifugal force or just gravity. Alternatively a thermal load can be applied with a given initial temperature. The displacement of the structure can be constrained by having a fixed boundary or by prescribing the displacement at a boundary.
Entry, Descent, and Landing With Propulsive Deceleration
Palaszewski, Bryan
2012-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.
Minimizing convex functions by continuous descent methods
Directory of Open Access Journals (Sweden)
Sergiu Aizicovici
2010-01-01
Full Text Available We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.
Evaluation of vertical profiles to design continuous descent approach procedure
Pradeep, Priyank
The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
Nurses of African descent and career advancement.
Wesley, Yvonne; Dobal, May T
2009-01-01
The purpose of this article is to evaluate a leadership institute designed to promote career advancement and leadership in administration, education, and research among nurses of African descent. Government reports indicate that Black Americans receive lower quality health care than other racial groups even when insurance and income are equal. Moreover, the literature suggests that less than 10% of practicing professional nurses in America are Black-and of these, less than 1% are in senior executive leadership positions. However, the literature lacks detailed discussion of the effectiveness of leadership programs. This article provides an in-depth look at a leadership institute for Black nurses and outlines the impact of the program.
Noise annoyance caused by continuous descent approaches compared to regular descent procedures
White, K.; Arntzen, M.; Walker, F.; Waiyaki, F.M.; Meeter, M.; Bronkhorst, A.W.
2017-01-01
During Continuous Descent Approaches (CDAs) aircraft glide towards the runway resulting in reduced noise and fuel usage. Here, we investigated whether such landings cause less noise annoyance than a regular stepwise approach. Both landing types were compared in a controlled laboratory setting with a
Development and descent of the testis in relation to cryptorchidism
DEFF Research Database (Denmark)
Virtanen, Helena E; Cortes, Dina; Rajpert-De Meyts, Ewa
2007-01-01
The testis descends in two phases. Animal studies suggest, that the transabdominal descent of the testis depends on the insulin-like hormone 3 (INSL3). Androgens are important in the inguinoscrotal testicular descent in animals and humans. In general, the cause of cryptorchidism is unknown...... and the aetiology is possibly multifactorial. Histological changes in cryptorchid testes demonstrate disturbed development. Conclusion: Since testicular descent is regulated by testis-derived hormones, cryptorchidism may reflect a functional defect of the testis....
Regression Analysis of Top of Descent Location for Idle-thrust Descents
Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg
2013-01-01
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.
The grand descent has begun for CMS
2006-01-01
Until recently, the CMS experimental cavern looked relatively empty; its detector was assembled entirely at ground level, to be lowered underground in 15 sections. On 2 November, the first hadronic forward calorimeter led the way with a grand descent. The first section of the CMS detector (centre of photo) arriving from the vertical shaft, viewed from the cavern floor. There is something unusual about the construction of the CMS detector. Instead of being built in the experimental cavern, like all the other detectors in the LHC experiments, it was constructed at ground level. This was to allow for easy access during the assembly of the detector and to minimise the size of the excavated cavern. The slightly nerve-wracking task of lowering it safely into the cavern in separate sections came after the complete detector was successfully tested with a magnetic field at ground level. In the early morning of 2 November, the first section of the CMS detector began its eagerly awaited descent into the underground ca...
Terrain reconstruction based on descent images for the Chang’e III landing area
Directory of Open Access Journals (Sweden)
Xu Xinchao
2015-10-01
Full Text Available A new method that combined image matching and shape from shading for terrain reconstruction was proposed to solve the lack of terrain in the landing area of Chang'e III. First, the reflection equation was established based on the Lommel– Seeliger reflection model. After edge extraction, the gradients of points on the edge were solved. The normal vectors of adjacent points were obtained using the smoothness constraint. Furthermore, the gradients of residual points in the image were determined through evolution. The inadequacy of the reflection equation was eliminated by considering the gradient as the constraint of the reflection equation. The normal vector of each point could be obtained by solving the reflection equation. The terrain without coordinate information was reconstructed by iterating the vector field. After using scaleinvariant feature transform to extract matching points in the descent images, the terrain was converted to a lander centroid coordinate system. Experiments were carried out with MATLAB-simulated images, laboratory images, and descent images of Chang'e III. Results show that the proposed method performs better than the classical SFS algorithm. The new method can provide reference for other deep space exploration activities.
Enumerating set partitions according to the number of descents of ...
Indian Academy of Sciences (India)
) according to the number of descents of size or more, where ≥ 1 is fixed. An explicit expression in terms of Stirling numbers of the second kind may be given for the total number of such descents in all the members of (,). We also ...
Testicular descent: INSL3, testosterone, genes and the intrauterine milieu
DEFF Research Database (Denmark)
Bay, Katrine; Main, Katharina M; Toppari, Jorma
2011-01-01
Complete testicular descent is a sign of, and a prerequisite for, normal testicular function in adult life. The process of testis descent is dependent on gubernacular growth and reorganization, which is regulated by the Leydig cell hormones insulin-like peptide 3 (INSL3) and testosterone. Investi...
43 CFR 10.14 - Lineal descent and cultural affiliation.
2010-10-01
... Hawaiian organization and the human remains, funerary objects, sacred objects, or objects of cultural... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Lineal descent and cultural affiliation... GRAVES PROTECTION AND REPATRIATION REGULATIONS General § 10.14 Lineal descent and cultural affiliation...
Planetary entry, descent, and landing technologies
Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.
2003-04-01
Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.
in a Family of South Indian Descent
Directory of Open Access Journals (Sweden)
Muthiah Subramanian
2015-01-01
Full Text Available Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4 and nonsense mutations in voltage gated calcium channels (CACNA1A have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies.
Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace
Coopenbarger, Richard A.
2010-01-01
Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.
Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm
Desmal, Abdulla; Bagci, Hakan
2017-01-01
steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without
ExoMars entry, descent and landing science
Ferri, F.; Lewis, S. R.; Withers, P.; Aboudan, A.; Bettanini, C.; Colombatti, G.; Debei, S.; Golombek, M.; Harri, A. M.; Komatsu, G.; Leese, M. R.; Mäkinen, T.; Müller-Wodarg, I.; Ori, G. G.; Patel, M. R.
2011-01-01
The entry, descent and landing of ExoMars offer a rare (once-per-mission) opportunity to perform in situ investigation of the martian environment over a wide altitude range. Entry, Descent and Landing System (EDLS) measurements can provide essential data for atmospheric scientific investigations.\\ud \\ud We intend to perform atmospheric science measurements by exploiting data from EDLS engineering sensors and exploiting their readings beyond the expected engineering information.
Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo
Directory of Open Access Journals (Sweden)
N. Christakis
2009-03-01
Full Text Available Sporadic E layers (Es follow regular daily patterns in variability and altitude descent, which are determined primarily by the vertical tidal wind shears in the lower thermosphere. In the present study a large set of sporadic E layer incoherent scatter radar (ISR measurements are analyzed. These were made at Arecibo (Geog. Lat. ~18° N; Magnetic Dip ~50° over many years with ISR runs lasting from several hours to several days, covering evenly all seasons. A new methodology is applied, in which both weak and strong layers are clearly traced by using the vertical electron density gradient as a function of altitude and time. Taking a time base equal to the 24-h local day, statistics were obtained on the seasonal behavior of the diurnal and semidiurnal tidal variability and altitude descent patterns of sporadic E at Arecibo. The diurnal tide, most likely the S(1,1 tide with a vertical wavelength around 25 km, controls fully the formation and descent of the metallic Es layers at low altitudes below 110 km. At higher altitudes, there are two prevailing layers formed presumably by vertical wind shears associated mainly with semidiurnal tides. These include: 1 a daytime layer starting at ~130 km around midday and descending down to 105 km by local midnight, and 2 a less frequent and weaker nighttime layer which starts prior to midnight at ~130 km, descending downwards at somewhat faster rate to reach 110 km by sunrise. The diurnal and semidiurnal-like pattern prevails, with some differences, in all seasons. The differences in occurrence, strength and descending speeds between the daytime and nighttime upper layers are not well understood from the present data alone and require further study.
Design of automation tools for management of descent traffic
Erzberger, Heinz; Nedell, William
1988-01-01
The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational
Fisher, Robert A
1983-01-01
This book appears at a time of intense activity in optical phase conjugation. We chose not to await the maturation of the field, but instead to provide this material in time to be useful in its development. We have tried very hard to elucidate and interrelate the various nonlinear phenomena which can be used for optical phase conjugation.
International Nuclear Information System (INIS)
Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft
1992-04-01
A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques
Distributed Gradient Descent for Solving Optimal Power Flow in Radial Networks
Gan, Lingwen; Low, Steven H.
2016-01-01
Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control, One embodiment includes a node controller comprising a memory containing: a plurality of node operating parameters; and a plurality of node operating parameters describing operating parameters for a set of at least one node selected from the group consisting of at least one downstream node and at least one upstream node; wherein the processor is configured by the ...
A Numerical Approach to Optimal Coherent Quantum LQG Controller Design Using Gradient Descent
Sichani, Arash Kh.; Vladimirov, Igor G.; Petersen, Ian R.
2016-01-01
This paper is concerned with coherent quantum linear quadratic Gaussian (CQLQG) control. The problem is to find a stabilizing measurement-free quantum controller for a quantum plant so as to minimize a mean square cost for the fully quantum closed-loop system. The plant and controller are open quantum systems interconnected through bosonic quantum fields. In comparison with the observation-actuation structure of classical controllers, coherent quantum feedback is less invasive to the quantum ...
Gender difference in metacarpal descent of fifth metacarpal
International Nuclear Information System (INIS)
Rafique, A.; Ali, H.; Ghani, S.
2006-01-01
To determine the difference in metacarpal descent of fifth metacarpal between men and women. Skyline of the 2nd and 3rd metacarpals were used as reference line, from which the descent of the 5th metacarpal head was measured. The position of 5th metacarpal head was documented as angle X. Metacarpal descent was defined as the difference between angle 'X' in relaxed and clenched fist position. The relaxed position was standardized by placing the forearm, wrist and palm on a shaped woodblock such that the wrist would be held in 25 - 30 degree in extension by a triangular spur, supported the 3rd metacarpal only. It was ensured that the movement of 4th and 5th metacarpals were not impaired. Analysis of variance was performed to compare the significance of means between genders at p < 0.05 level of significance. Metacarpal descent of the 5th metacarpal of both hands was significantly greater for women, with a mean of 7 degree as compared with a mean of 4 degree for the men. This decrease in angle 'X' was significant for the right 5th metacarpal relaxed and fist position and the fist position on the left. In contrast, women showed no significant differences between the various age groups for any of the variables tested.There was no relationship between metacarpal descent and hand dominance.Difference in metacarpal descent between men and women is significant and must be kept in mind when hand function is evaluated in both genders to assess the outcome of treatment and rehabilitation. (author)
Entry, Descent and Landing Systems Analysis Study: Phase 1 Report
DwyerCianciolo, Alicia M.; Davis, Jody L.; Komar, David R.; Munk, Michelle M.; Samareh, Jamshid A.; Powell, Richard W.; Shidner, Jeremy D.; Stanley, Douglas O.; Wilhite, Alan W.; Kinney, David J.;
2010-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the motivation, approach and top-level results from Year 1 of the study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission
Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradien
Mahmudah, Dewi Erla; Naf'an, Muhammad Zidny
2017-01-01
In this paper we focus on solution of 2D Poisson equation numerically. 2D Poisson equation is a partial differential equation of second order elliptical type. This equation is a particular form or non-homogeneous form of the Laplace equation. The solution of 2D Poisson equation is performed numerically using Gauss Seidel method and Conjugate Gradient method. The result is the value using Gauss Seidel method and Conjugate Gradient method is same. But, consider the iteration process, the conver...
Qualidade conjugal: mapeando conceitos
Directory of Open Access Journals (Sweden)
Clarisse Mosmann
2006-12-01
Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.
... version Home Brain, Spinal Cord, and Nerve Disorders Cranial Nerve Disorders Conjugate Gaze Palsies Horizontal gaze palsy Vertical ... Version. DOCTORS: Click here for the Professional Version Cranial Nerve Disorders Overview of the Cranial Nerves Internuclear Ophthalmoplegia ...
Conjugated Polymer Solar Cells
National Research Council Canada - National Science Library
Paraschuk, Dmitry Y
2006-01-01
This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...
Polymers for Protein Conjugation
Directory of Open Access Journals (Sweden)
Gianfranco Pasut
2014-01-01
Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.
Integrated Targeting and Guidance for Powered Planetary Descent
Azimov, Dilmurat M.; Bishop, Robert H.
2018-02-01
This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.
Screening for homozygosity by descent in families with autosomal
Indian Academy of Sciences (India)
Home; Journals; Journal of Genetics; Volume 81; Issue 2 ... Perspectives Volume 81 Issue 2 August 2002 pp 59-63 ... disease locus in families with the recessive form of the disease, we used the approach of screening for homozygosity by descent in offspring of consanguineous and nonconsanguineous families with RP.
Neuromuscular function during stair descent in meniscectomized patients and controls
DEFF Research Database (Denmark)
Thorlund, Jonas Bloch; Roos, Ewa M; Aagaard, Per
2011-01-01
The aim of this study was to identify differences in knee range of motion (ROM), movement speed, ground reaction forces (GRF) profile, neuromuscular activity, and muscle coactivation during the transition between stair descent and level walking in meniscectomized patients at high risk of knee...
Dalmau Codina, Ramon; Prats Menéndez, Xavier
2017-01-01
Continuous descent operations with controlled times of arrival at one or several metering fixes could enable environmentally friendly procedures without compromising terminal airspace capacity. This paper focuses on controlled time of arrival updates once the descent has been already initiated, assessing the feasible time window (and associated fuel consumption) of continuous descent operations requiring neither thrust nor speed-brake usage along the whole descent (i.e. only elevator control ...
De Candia, T.r.; Lee, S.H.; Yang, J.; Browning, B.L.; Gejman, P. V.; Levinson, D. F.; Mowry, B. J.; Hewitt, J.K.; Goddard, M.E.; O'Donovan, M.C.; Purcell, S.M.; Posthuma, D.; Visscher, P. M.; Wray, N.R.; Keller, M. C.
2013-01-01
To investigate the extent to which the proportion of schizophrenia's additive genetic variation tagged by SNPs is shared by populations of European and African descent, we analyzed the largest combined African descent (AD [n = 2,142]) and European descent (ED [n = 4,990]) schizophrenia case-control
Refined isogeometric analysis for a preconditioned conjugate gradient solver
Garcia, Daniel; Pardo, D.; Dalcin, Lisandro; Calo, Victor M.
2018-01-01
Starting from a highly continuous Isogeometric Analysis (IGA) discretization, refined Isogeometric Analysis (rIGA) introduces C0 hyperplanes that act as separators for the direct LU factorization solver. As a result, the total computational cost
A Projected Conjugate Gradient Method for Sparse Minimax Problems
DEFF Research Database (Denmark)
Madsen, Kaj; Jonasson, Kristjan
1993-01-01
A new method for nonlinear minimax problems is presented. The method is of the trust region type and based on sequential linear programming. It is a first order method that only uses first derivatives and does not approximate Hessians. The new method is well suited for large sparse problems...... as it only requires that software for sparse linear programming and a sparse symmetric positive definite equation solver are available. On each iteration a special linear/quadratic model of the function is minimized, but contrary to the usual practice in trust region methods the quadratic model is only...... with the method are presented. In fact, we find that the number of iterations required is comparable to that of state-of-the-art quasi-Newton codes....
Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method
Czech Academy of Sciences Publication Activity Database
Benzi, M.; Cullum, J. K.; Tůma, Miroslav
2000-01-01
Roč. 22, č. 4 (2000), s. 1318-1332 ISSN 1064-8275 R&D Projects: GA AV ČR IAA2030706; GA AV ČR IAA2030801 Institutional research plan: AV0Z1030915 Subject RIV: BA - General Mathematics Impact factor: 1.421, year: 2000
Preconditioned conjugate gradient methods for the Navier-Stokes equations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1994-01-01
A preconditioned Krylov subspace method (GMRES) is used to solve the linear systems of equations formed at each time-integration step of the unsteady, two-dimensional, compressible Navier-Stokes equations of fluid flow. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux-split formulation. Several preconditioning techniques are investigated to enhance the efficiency and convergence rate of the implicit solver based on the GMRES algorithm. The superiority of the new solver is established by comparisons with a conventional implicit solver, namely line Gauss-Seidel relaxation (LGSR). Computational test results for low-speed (incompressible flow over a backward-facing step at Mach 0.1), transonic flow (trailing edge flow in a transonic turbine cascade), and hypersonic flow (shock-on-shock interactions on a cylindrical leading edge at Mach 6.0) are presented. For the Mach 0.1 case, overall speedup factors of up to 17 (in terms of time-steps) and 15 (in terms of CPU time on a CRAY-YMP/8) are found in favor of the preconditioned GMRES solver, when compared with the LGSR solver. The corresponding speedup factors for the transonic flow case are 17 and 23, respectively. The hypersonic flow case shows slightly lower speedup factors of 9 and 13, respectively. The study of preconditioners conducted in this research reveals that a new LUSGS-type preconditioner is much more efficient than a conventional incomplete LU-type preconditioner.
A conjugate gradient method for the spectral partitioning of graphs
Kruyt, Nicolaas P.
1997-01-01
The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and
Using Conjugate Gradient Network to Classify Stress Level of Patients.
Directory of Open Access Journals (Sweden)
Er. S. Pawar
2013-02-01
Full Text Available Diagnosis of stress is important because it can cause many diseases e.g., heart disease, headache, migraine, sleep problems, irritability etc. Diagnosis of stress in patients often involves acquisition of biological signals for example heart rate, electrocardiogram (ECG, electromyography signals (EMG etc. Stress diagnosis using biomedical signals is difficult and since the biomedical signals are too complex to generate any rule an experienced person or expert is needed to determine stress levels. Also, it is not feasible to use all the features that are available or possible to extract from the signal. So, relevant features should be chosen from the extracted features that are capable to diagnose stress. Electronics devices are increasingly being seen in the field of medicine for diagnosis, therapy, checking of stress levels etc. The research and development work of medical electronics engineers leads to the manufacturing of sophisticated diagnostic medical equipment needed to ensure good health care. Biomedical engineering combines the design and problem solving skills of engineering with medical and biological sciences to improve health care diagnosis and treatment.
The Deflated Preconditioned Conjugate Gradient Method Applied to Composite Materials
Jönsthövel, T.B.
2012-01-01
Simulations with composite materials often involve large jumps in the coefficients of the underlying stiffness matrix. These jumps can introduce unfavorable eigenvalues in the spectrum of the stiffness matrix. We show that the rigid body modes; the translations and rotations, of the disjunct rigid
Mapping the Conjugate Gradient Algorithm onto High Performance Heterogeneous Computers
2014-05-01
Solution of sparse indefinite systems of linear equations. Society for Industrial and Applied Mathematis 12(4), 617 –629. Parker, M. ( 2009 ). Taking advantage...44 vii 11 LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE API Application Programming Interface ASIC Application Specific Integrated Circuit...FPGA designer, 1 16 2 thus, final implementations were nearly always performed using fixed-point or integer arithmetic (Parker 2009 ). With the recent
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.
1989-10-01
The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.
Environmental effects on hormonal regulation of testicular descent
DEFF Research Database (Denmark)
Toppari, J; Virtanen, H E; Skakkebaek, N E
2006-01-01
cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen-estrogen ratio may disturb testicular descent. Environmental effects changing......Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones...... hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen-estrogen ratio) may be involved in cryptorchidism....
Reversible cerebral vasoconstriction syndrome precipitated by airplane descent: Case report.
Hiraga, Akiyuki; Aotsuka, Yuya; Koide, Kyosuke; Kuwabara, Satoshi
2017-10-01
Background Reversible cerebral vasoconstriction syndrome (RCVS) is characterized by segmental vasospasm. Vasoactive agents and childbirth have been reported as precipitating factors for RCVS; however, RCVS induced by altitude change or air travel has rarely been reported. Case We present a case of a 74-year-old woman who presented with thunderclap headache during airplane descent. Magnetic resonance angiography demonstrated segmental vasoconstriction that improved 9 days after onset. Conclusion These findings indicate that airplane descent may be a trigger of RCVS. The time course of headache in the present case was similar to that of prolonged headache attributed to airplane travel, indicating that RCVS during air travel may have previously been overlooked and that some headache attributed to airplane travel cases may represent a milder form of RCVS.
RITD - Adapting Mars Entry, Descent and Landing System for Earth
Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.
2015-10-01
We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.
Convergence results for a class of abstract continuous descent methods
Directory of Open Access Journals (Sweden)
Sergiu Aizicovici
2004-03-01
Full Text Available We study continuous descent methods for the minimization of Lipschitzian functions defined on a general Banach space. We establish convergence theorems for those methods which are generated by approximate solutions to evolution equations governed by regular vector fields. Since the complement of the set of regular vector fields is $sigma$-porous, we conclude that our results apply to most vector fields in the sense of Baire's categories.
Whole-body angular momentum during stair ascent and descent.
Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M
2014-04-01
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.
Additive preservers of the ascent, descent and related subsets
Czech Academy of Sciences Publication Activity Database
Mbekhta, M.; Müller, Vladimír; Oudghiri, M.
2014-01-01
Roč. 71, č. 1 (2014), s. 63-83 ISSN 0379-4024 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : additive preservers * ascent * descent Subject RIV: BA - General Mathematics Impact factor: 0.550, year: 2014 http://www.mathjournals.org/jot/2014-071-001/2014-071-001-004.html
Flight Management System Execution of Idle-Thrust Descents in Operations
Stell, Laurel L.
2011-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.
Hazard avoidance via descent images for safe landing
Yan, Ruicheng; Cao, Zhiguo; Zhu, Lei; Fang, Zhiwen
2013-10-01
In planetary or lunar landing missions, hazard avoidance is critical for landing safety. Therefore, it is very important to correctly detect hazards and effectively find a safe landing area during the last stage of descent. In this paper, we propose a passive sensing based HDA (hazard detection and avoidance) approach via descent images to lower the landing risk. In hazard detection stage, a statistical probability model on the basis of the hazard similarity is adopted to evaluate the image and detect hazardous areas, so that a binary hazard image can be generated. Afterwards, a safety coefficient, which jointly utilized the proportion of hazards in the local region and the inside hazard distribution, is proposed to find potential regions with less hazards in the binary hazard image. By using the safety coefficient in a coarse-to-fine procedure and combining it with the local ISD (intensity standard deviation) measure, the safe landing area is determined. The algorithm is evaluated and verified with many simulated descent downward looking images rendered from lunar orbital satellite images.
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Inflammatory bowel disease in children of middle eastern descent.
Naidoo, Christina Mai Ying; Leach, Steven T; Day, Andrew S; Lemberg, Daniel A
2014-01-01
Increasing rates of inflammatory bowel disease (IBD) are now seen in populations where it was once uncommon. The pattern of IBD in children of Middle Eastern descent in Australia has never been reported. This study aimed to investigate the burden of IBD in children of Middle Eastern descent at the Sydney Children's Hospital, Randwick (SCHR). The SCHR IBD database was used to identify patients of self-reported Middle Eastern ethnicity diagnosed between 1987 and 2011. Demographic, diagnosis, and management data was collected for all Middle Eastern children and an age and gender matched non-Middle Eastern IBD control group. Twenty-four patients of Middle Eastern descent were identified. Middle Eastern Crohn's disease patients had higher disease activity at diagnosis, higher use of thiopurines, and less restricted colonic disease than controls. Although there were limitations with this dataset, we estimated a higher prevalence of IBD in Middle Eastern children and they had a different disease phenotype and behavior compared to the control group, with less disease restricted to the colon and likely a more active disease course.
Testicular descent: INSL3, testosterone, genes and the intrauterine milieu.
Bay, Katrine; Main, Katharina M; Toppari, Jorma; Skakkebæk, Niels E
2011-04-01
Complete testicular descent is a sign of, and a prerequisite for, normal testicular function in adult life. The process of testis descent is dependent on gubernacular growth and reorganization, which is regulated by the Leydig cell hormones insulin-like peptide 3 (INSL3) and testosterone. Investigation of the role of INSL3 and its receptor, relaxin-family peptide receptor 2 (RXFP2), has contributed substantially to our understanding of the hormonal control of testicular descent. Cryptorchidism is a common congenital malformation, which is seen in 2-9% of newborn boys, and confers an increased risk of infertility and testicular cancer in adulthood. Although some cases of isolated cryptorchidism in humans can be ascribed to known genetic defects, such as mutations in INSL3 or RXFP2, the cause of cryptorchidism remains unknown in most patients. Several animal and human studies are currently underway to test the hypothesis that in utero factors, including environmental and maternal lifestyle factors, may be involved in the etiology of cryptorchidism. Overall, the etiology of isolated cryptorchidism seems to be complex and multifactorial, involving both genetic and nongenetic components.
DEFF Research Database (Denmark)
Hansen, Paul Robert
2015-01-01
To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....
Photoluminescence in conjugated polymers
International Nuclear Information System (INIS)
Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.
2002-01-01
Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2018-05-15
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki
2016-05-03
The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.
Entry, Descent, and Landing for Human Mars Missions
Munk, Michelle M.; DwyerCianciolo, Alicia M.
2012-01-01
One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.
Distributed Coordinate Descent Method for Learning with Big Data
Richtárik, Peter; Takáč, Martin
2013-01-01
In this paper we develop and analyze Hydra: HYbriD cooRdinAte descent method for solving loss minimization problems with big data. We initially partition the coordinates (features) and assign each partition to a different node of a cluster. At every iteration, each node picks a random subset of the coordinates from those it owns, independently from the other computers, and in parallel computes and applies updates to the selected coordinates based on a simple closed-form formula. We give bound...
Predictive Modeling for NASA Entry, Descent and Landing Missions
Wright, Michael
2016-01-01
Entry, Descent and Landing (EDL) Modeling and Simulation (MS) is an enabling capability for complex NASA entry missions such as MSL and Orion. MS is used in every mission phase to define mission concepts, select appropriate architectures, design EDL systems, quantify margin and risk, ensure correct system operation, and analyze data returned from the entry. In an environment where it is impossible to fully test EDL concepts on the ground prior to use, accurate MS capability is required to extrapolate ground test results to expected flight performance.
Scintillation Reduction using Conjugate-Plane Imaging (Abstract)
Vander Haagen, G. A.
2017-12-01
(Abstract only) All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30-cm amateur telescope. It is well known that these disturbances are caused by wind and temperature-driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80-mm, f7 telescope.
Crosswind Shear Gradient Affect on Wake Vortices
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Shape tracking with occlusions via coarse-to-fine region-based sobolev descent
Yang, Yanchao
2015-05-01
We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy. © 2014 IEEE.
Stereotypes of women of Asian descent in midwifery: some evidence.
Bowler, I M
1993-03-01
The subject of this paper is part of a larger study which investigated the delivery of maternity care to women of South Asian descent in Britain (Bowler, 1990). An ethnographic approach was used and the main method of data collection was non-participant observation in antenatal clinics, labour and postnatal wards in a teaching hospital maternity unit. These observations were supported by data from interviews with midwives. It was found that the midwives commonly use stereotypes of women in order to help them to provide care. These stereotypes are particularly likely to be used in situations where the midwife has difficulty (through pressure of time or other circumstances) in getting to know an individual woman. The stereotype of women of Asian descent contained four main themes: communication problems; failure to comply with care and service abuse; making a fuss about nothing; a lack of normal maternal instinct. Reasons for stereotyping are explored. Effects on service provision in the areas of family planning and breast feeding are highlighted.
Non-homogeneous updates for the iterative coordinate descent algorithm
Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang
2007-02-01
Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.
Steepest descent moment method for three-dimensional magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Hirshman, S.P.; Whitson, J.C.
1983-11-01
An energy principle is used to obtain the solution of the magnetohydrodynamic (MHD) equilibrium equation J Vector x B Vector - del p = 0 for nested magnetic flux surfaces that are expressed in the inverse coordinate representation x Vector = x Vector(rho, theta, zeta). Here, theta and zeta are poloidal and toroidal flux coordinate angles, respectively, and p = p(rho) labels a magnetic surface. Ordinary differential equations in rho are obtained for the Fourier amplitudes (moments) in the doubly periodic spectral decomposition of x Vector. A steepest descent iteration is developed for efficiently solving these nonlinear, coupled moment equations. The existence of a positive-definite energy functional guarantees the monotonic convergence of this iteration toward an equilibrium solution (in the absence of magnetic island formation). A renormalization parameter lambda is introduced to ensure the rapid convergence of the Fourier series for x Vector, while simultaneously satisfying the MHD requirement that magnetic field lines are straight in flux coordinates. A descent iteration is also developed for determining the self-consistent value for lambda
Arachnid aloft: directed aerial descent in neotropical canopy spiders.
Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert
2015-09-06
The behaviour of directed aerial descent has been described for numerous taxa of wingless hexapods as they fall from the tropical rainforest canopy, but is not known in other terrestrial arthropods. Here, we describe similar controlled aerial behaviours for large arboreal spiders in the genus Selenops (Selenopidae). We dropped 59 such spiders from either canopy platforms or tree crowns in Panama and Peru; the majority (93%) directed their aerial trajectories towards and then landed upon nearby tree trunks. Following initial dorsoventral righting when necessary, falling spiders oriented themselves and then translated head-first towards targets; directional changes were correlated with bilaterally asymmetric motions of the anterolaterally extended forelegs. Aerial performance (i.e. the glide index) decreased with increasing body mass and wing loading, but not with projected surface area of the spider. Along with the occurrence of directed aerial descent in ants, jumping bristletails, and other wingless hexapods, this discovery of targeted gliding in selenopid spiders further indicates strong selective pressures against uncontrolled falls into the understory for arboreal taxa. © 2015 The Author(s).
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Antibody-radioisotope conjugates for tumor localization and treatment
International Nuclear Information System (INIS)
Larson, S.M.; Carrasquillo, J.A.
1985-01-01
In principle, anti-tumor antibodies can be used to carry radioactivity to tumors for in-vivo diagnosis and treatment of cancer. First, for diagnostic purposes, an antibody that targets a specific antigen (for example, the p97 antigen of human melanoma tumor), is labeled with a tracer amount of radioactivity. When this antibody-radioisotope conjugate is injected into the blood stream, the antibody carries the radioactivity throughout the body and in time, percolates through all the tissues of the body. Because the tumor has specific antigens to which the antibody can bind, the antibody conjugate progressively accumulates in the tumor. Using conventional nuclear medicine imaging equipment, the body of the patient is scanned for radioactivity content, and a map of the distribution of the radioactivity is displayed on photographic film. The tumor shows up as a dense area of radio-activity. These same antibody-radioisotope conjugates may be used for therapy of tumors, except that in this case large amounts of radioactivity are loaded on the antibody. After localization of the conjugate there is sufficient radiation deposited in the tumor of radiotherapy. The success of this approach in the clinic is determined in large measure by the concentration gradient that can be achieved between tissue antibody conjugate in tumor versus normal tissue
Frequency-domain full-waveform inversion with non-linear descent directions
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a
The Role of la Familia for Women of Mexican Descent Who Are Leaders in Higher Education
Elizondo, Sandra Gray
2012-01-01
The purpose of this qualitative case study was to describe the role of "la familia" for women of Mexican descent as it relates to their development as leaders and their leadership in academia. Purposeful sampling was utilized to reach the goal of 18 participants who were female academic leaders of Mexican descent teaching full time in…
Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces
Sandovici, Adrian; de Snoo, Henk; Winkler, Henrik
2007-01-01
For a linear relation in a linear space the concepts of ascent, descent, nullity, and defect are introduced and studied. It is shown that the results of A.E. Taylor and M.A. Kaashoek concerning the relationship between ascent, descent, nullity, and defect for the case of linear operators remain
Counseling and Psychotherapy with Clients of Middle Eastern Descent: A Qualitative Inquiry
Boghosian, Sara
2011-01-01
It is becoming increasingly important for clinical and counseling psychologists to have multicultural competence skills for treating an increasingly diverse client population. The psychology literature related to culturally competent treatment with persons of Middle Eastern descent is currently limited. In this study, qualitative methodology was utilized to explore the mental health attitudes and psychotherapy experiences of clients of Middle Eastern descent. Participants described culturally...
Ethnic Identity and Acculturative Stress as Mediators of Depression in Students of Asian Descent
Lantrip, Crystal; Mazzetti, Francesco; Grasso, Joseph; Gill, Sara; Miller, Janna; Haner, Morgynn; Rude, Stephanie; Awad, Germine
2015-01-01
This study underscored the importance of addressing the well-being of college students of Asian descent, because these students had higher rates of depression and lower positive feelings about their ethnic group compared with students of European descent, as measured by the Affirmation subscale of the Ethnic Identity Scale. Affirmation mediated…
Verhoeven, Ronald; Dalmau Codina, Ramon; Prats Menéndez, Xavier; de Gelder, Nico
2014-01-01
1 Abstract In this paper an initial implementation of a real - time aircraft trajectory optimization algorithm is presented . The aircraft trajectory for descent and approach is computed for minimum use of thrust and speed brake in support of a “green” continuous descent and approach flight operation, while complying with ATC time constraints for maintaining runway throughput and co...
Hybrid Steepest-Descent Methods for Triple Hierarchical Variational Inequalities
Directory of Open Access Journals (Sweden)
L. C. Ceng
2015-01-01
Full Text Available We introduce and analyze a relaxed iterative algorithm by combining Korpelevich’s extragradient method, hybrid steepest-descent method, and Mann’s iteration method. We prove that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inclusions, and the solution set of general system of variational inequalities (GSVI, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm for solving a hierarchical variational inequality problem with constraints of finitely many GMEPs, finitely many variational inclusions, and the GSVI. The results obtained in this paper improve and extend the corresponding results announced by many others.
Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm
Desmal, Abdulla
2017-04-03
An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.
Adapting Mars Entry, Descent and Landing System for Earth
Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Guerrero, H.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Arruego, I.; Martin, S.; Siili, T.
2013-09-01
In 2001 - 2011 an inflatable Entry, Descent and Landing System (EDLS) for Martian atmosphere was developed by FMI and the MetNet team. This MetNet Mars Lander EDLS is used in both the initial deceleration during atmospheric entry and in the final deceleration before the semi-hard impact of the penetrator to Martian surface. The EDLS design is ingenious and its applicability to Earth's atmosphere is studied in the on-going project. In particular, the behavior of the system in the critical transonic aerodynamic (from hypersonic to subsonic) regime will be investigated. This project targets to analyze and test the transonic behavior of this compact and light weight payload entry system to Earth's atmosphere [1]. Scaling and adaptation for terrestrial atmospheric conditions, instead of a completely new design, is a favorable approach for providing a new re-entry vehicle for terrestrial space applications.
Human Mars Entry, Descent, and Landing Architecture Study Overview
Cianciolo, Alicia D.; Polsgrove, Tara T.
2016-01-01
The Entry, Descent, and Landing (EDL) Architecture Study is a multi-NASA center activity to analyze candidate EDL systems as they apply to human Mars landing in the context of the Evolvable Mars Campaign. The study, led by the Space Technology Mission Directorate (STMD), is performed in conjunction with the NASA's Science Mission Directorate and the Human Architecture Team, sponsored by NASA's Human Exploration and Operations Mission Directorate. The primary objective is to prioritize future STMD EDL technology investments by (1) generating Phase A-level designs for selected concepts to deliver 20 t human class payloads, (2) developing a parameterized mass model for each concept capable of examining payloads between 5 and 40 t, and (3) evaluating integrated system performance using trajectory simulations. This paper summarizes the initial study results.
Ground reaction forces and frictional demands during stair descent: effects of age and illumination.
Christina, Kathryn A; Cavanagh, Peter R
2002-04-01
Stair descent is an inherently risky and demanding task that older adults often encounter in everyday life. It is believed that slip between the foot or shoe sole and the stair surface may play a role in stair related falls, however, there are no reports on slip resistance requirements for stair descent. The aim of this study was to determine the required coefficient of friction (RCOF) necessary for safe stair descent in 12 young and 12 older adults, under varied illuminance conditions. The RCOF during stair descent was found to be comparable in magnitude and time to that for overground walking, and thus, with adequate footwear and dry stair surfaces, friction does not appear to be a major determinant of stair safety. Illuminance level had little effect on the dependent variables quantified in this study. However, the older participants demonstrated safer strategies than the young during stair descent, as reflected by differences in the ground reaction forces and lower RCOF.
Organometallic B12-DNA conjugate
DEFF Research Database (Denmark)
Hunger, Miriam; Mutti, Elena; Rieder, Alexander
2014-01-01
Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...
Double diffusive conjugate heat transfer: Part I
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.
Conjugation in Escherichia coli
Boyer, Herbert
1966-01-01
Boyer, Herbert (Yale University, New Haven, Conn.). Conjugation in Escherichia coli. J. Bacteriol. 91:1767–1772. 1966.—The sex factor of Escherichia coli K-12 was introduced into an E. coli B/r strain by circumventing the host-controlled modification and restriction incompatibilities known to exist between these closely related strains. The sexual properties of the constructed F+ B strain and its Hfr derivatives were examined. These studies showed that the E. coli strain B/r F+ and Hfr derivatives are similar to the E. coli strain K-12 F+ and Hfr derivatives. However, the site of sex factor integration was found to be dependent on the host genome. PMID:5327905
Electrochromic in conjugated polymers
International Nuclear Information System (INIS)
Picado Valenzuela, Alfredo
2007-01-01
This revision considered object the description of one of the materials with the greatest potential in the field of electrochromic (mainly in the visible region): the conjugated polymers (CP), area of enormous potential both now and in a short time ahead. The CP are insulating materials and organic semiconductors in a state not doped. They can be doped positively or negatively being observed a significant increase in the conductivity and being generated a color change in these materials. The understanding of how optical properties vary based on the chemical structure of the polymer or its mixtures and more precisely of the alternatives that can be entered into the conjugated system or π system to obtain a material that besides to be flexible, environmentally stable, presents the colored states. The revision was centred chiefly in the polypyrrole (Ppy), the polythiophene (PTh) and their derivatives such as poly (3.4-ethylenedioxythiophene) (PEDOT). The advantage of using monomers with variable structure, to adjust the composition of the copolymer, or to blend with the PC, allows to obtain a variety of colored states that can be modulated through the visible spectrum and even with applications to wavelengths outside of this region. Because the PC presented at least two different colored states can be varied continuously as a function of the voltage applied. In some cases, they may submit multicoloured statements, which offers a range of possibilities for their application in flexible electronic devices type screens and windows. Applications include smart windows, camouflage clothing and data screens. This type of material is emerging as one of the substitutes of the traditional inorganic semiconductor, with the advantage of its low cost, high flexibility and the possibility to generate multiple colors through the handling of the monomers in the structure and control of energy of his band gap. (author) [es
Yan, Yan
2015-01-01
We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial
Aliberti, Sandra; Mezêncio, Bruno; Amadio, Alberto Carlos; Serrão, Julio Cerca; Mochizuki, Luis
2018-05-23
Knee pain during stair managing is a common complaint among individuals with PFP and can negatively affect their activities of daily living. Gait modification programs can be used to decrease patellofemoral pain. Immediate effects of a stair descent distal gait modification session that intended to emphasize forefoot landing during stair descent are described in this study. To analyze the immediate effects of a distal gait modification session on lower extremity movements and intensity of pain in women with patellofemoral pain during stair descent. Nonrandomized controlled trial. Sixteen women with patellofemoral pain were allocated into two groups: (1) Gait Modification Group (n = 8); and 2) Control Group (n = 8). The intensity of pain (visual analog scale) and kinematics of knee, ankle, and forefoot (multi-segmental foot model) during stair descent were assessed before and after the intervention. After the gait modification session, there was an increase of forefoot eversion and ankle plantarflexion as well as a decrease of knee flexion. An immediate decrease in patellofemoral pain intensity during stair descent was also observed. The distal gait modification session changed the lower extremity kinetic chain strategy of movement, increasing foot and ankle movement contribution and decreasing knee contribution to the task. An immediate decrease in patellofemoral pain intensity during stair descent was also observed. To emphasize forefoot landing may be a useful intervention to immediately relieve pain in patients with patellofemoral pain during stair descent. Clinical studies are needed to verify the gait modification session effects in medium and long terms.
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
Solar multi-conjugate adaptive optics performance improvement
Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie
2015-08-01
In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.
An Optimized Method for Terrain Reconstruction Based on Descent Images
Directory of Open Access Journals (Sweden)
Xu Xinchao
2016-02-01
Full Text Available An optimization method is proposed to perform high-accuracy terrain reconstruction of the landing area of Chang’e III. First, feature matching is conducted using geometric model constraints. Then, the initial terrain is obtained and the initial normal vector of each point is solved on the basis of the initial terrain. By changing the vector around the initial normal vector in small steps a set of new vectors is obtained. By combining these vectors with the direction of light and camera, the functions are set up on the basis of a surface reflection model. Then, a series of gray values is derived by solving the equations. The new optimized vector is recorded when the obtained gray value is closest to the corresponding pixel. Finally, the optimized terrain is obtained after iteration of the vector field. Experiments were conducted using the laboratory images and descent images of Chang’e III. The results showed that the performance of the proposed method was better than that of the classical feature matching method. It can provide a reference for terrain reconstruction of the landing area in subsequent moon exploration missions.
Foot and Ankle Kinematics During Descent From Varying Step Heights.
Gerstle, Emily E; O'Connor, Kristian; Keenan, Kevin G; Cobb, Stephen C
2017-12-01
In the general population, one-third of incidences during step negotiation occur during the transition to level walking. Furthermore, falls during curb negotiation are a common cause of injury in older adults. Distal foot kinematics may be an important factor in determining injury risk associated with transition step negotiation. The purpose of this study was to identify foot and ankle kinematics of uninjured individuals during descent from varying step heights. A 7-segment foot model was used to quantify kinematics as participants walked on a level walkway, stepped down a single step (heights: 5 cm, 15 cm, 25 cm), and continued walking. As step height increased, landing strategy transitioned from the rearfoot to the forefoot, and the rearfoot, lateral and medial midfoot, and medial forefoot became more plantar flexed. During weight acceptance, sagittal plane range of motion of the rearfoot, lateral midfoot, and medial and lateral forefoot increased as step height increased. The changes in landing strategy and distal foot function suggest a less stable ankle position at initial contact and increased demand on the distal foot at initial contact and through the weight acceptance phase of transition step negotiation as step height increases.
Estimating the degree of identity by descent in consanguineous couples.
Carr, Ian M; Markham, Sir Alexander F; Pena, Sérgio D J
2011-12-01
In some clinical and research settings, it is often necessary to identify the true level of "identity by descent" (IBD) between two individuals. However, as the individuals become more distantly related, it is increasingly difficult to accurately calculate this value. Consequently, we have developed a computer program that uses genome-wide SNP genotype data from related individuals to estimate the size and extent of IBD in their genomes. In addition, the software can compare a couple's IBD regions with either the autozygous regions of a relative affected by an autosomal recessive disease of unknown cause, or the IBD regions in the parents of the affected relative. It is then possible to calculate the probability of one of the couple's children suffering from the same disease. The software works by finding SNPs that exclude any possible IBD and then identifies regions that lack these SNPs, while exceeding a minimum size and number of SNPs. The accuracy of the algorithm was established by estimating the pairwise IBD between different members of a large pedigree with varying known coefficients of genetic relationship (CGR). © 2011 Wiley Periodicals, Inc.
Race, language, and mental evolution in Darwin's descent of man.
Alter, Stephen G
2007-01-01
Charles Darwin was notoriously ambiguous in his remarks about the relationship between human evolution and biological race. He stressed the original unity of the races, yet he also helped to popularize the notion of a racial hierarchy filling the gaps between the highest anthropoids and civilized Europeans. A focus on Darwin's explanation of how humans initially evolved, however, shows that he mainly stressed not hierarchy but a version of humanity's original mental unity. In his book The Descent of Man, Darwin emphasized a substantial degree of mental development (including the incipient use of language) in the early, monogenetic phase of human evolution. This development, he argued, necessarily came before primeval man's numerical increase, geographic dispersion, and racial diversification, because only thus could one explain how that group was able to spread at the expense of rival ape-like populations. This scenario stood opposed to a new evolutionary polygenism formulated in the wake of Darwin's Origin of Species by his ostensible supporters Alfred Russel Wallace and Ernst Haeckel. Darwin judged this outlook inadequate to the task of explaining humanity's emergence. (c) 2007 Wiley Periodicals, Inc.
Physics-based Entry, Descent and Landing Risk Model
Gee, Ken; Huynh, Loc C.; Manning, Ted
2014-01-01
A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.
The glucokinase mutation p.T206P is common among MODY patients of Jewish Ashkenazi descent.
Gozlan, Yael; Tenenbaum, Ariel; Shalitin, Shlomit; Lebenthal, Yael; Oron, Tal; Cohen, Ohad; Phillip, Moshe; Gat-Yablonski, Galia
2012-09-01
Maturity-onset diabetes of the young (MODY) is characterized by an autosomal dominant mode of inheritance; a primary defect in insulin secretion with non-ketotic hyperglycemia, age of onset under 25 yr; and lack of autoantibodies. Heterozygous mutations in glucokinase (GCK) are associated with mild fasting hyperglycemia and gestational diabetes mellitus while homozygous or compound heterozygous GCK mutations result in permanent neonatal diabetes mellitus. Given that both the Israeli-Arabic and the various Israeli-Jewish communities tend to maintain ethnic seclusion, we speculated that it would be possible to identify a relatively narrow spectrum of mutations in the Israeli population. To characterize the genetic basis of GCK-MODY in the different ethnic groups of the Israeli population. Patients with clinically identified GCK-MODY and their first degree family members. Molecular analysis of GCK was performed on genomic DNA using polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and sequencing. Bioinformatic model was preformed using the NEST program. Mutations in GCK were identified in 25 families and were all family-specific, except c.616A>C. p.T206P. This mutation was identified in six unrelated families, all patients from a Jewish-Ashkenazi descent, thus indicating an ethno-genetic correlation. A simple, fast, and relatively cheap DGGE/restriction-digestion assay was developed. The high incidence of the mutant allele in GCK-MODY patients of Jewish-Ashkenazi descent suggests a founder effect. We propose that clinically identified GCK-MODY patients of Jewish-Ashkenazi origin be first tested for this mutation. © 2011 John Wiley & Sons A/S.
Entanglements in Conjugated Polymers
Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph
Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.
Regularized image denoising based on spectral gradient optimization
International Nuclear Information System (INIS)
Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša
2011-01-01
Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance
Purification Efficacy of Synthetic Cannabinoid Conjugates Using High-Pressure Liquid Chromatography
conducted using high-pressure liquid chromatography and gradient screens to determine the most effective means of purifying the SC:dark quencher conjugates...to obtain the highest yields and purity. The purity was verified using liquid chromatographycoupled mass spectroscopy and nuclear magnetic resonance.
Protein carriers of conjugate vaccines
Pichichero, Michael E
2013-01-01
The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057
National Aeronautics and Space Administration — The landing of the Mars Science Laboratory represents the upper limit of current Entry, Descent, and Landing (EDL) capabilities for Mars exploration. The succession...
Intelligent Data Understanding for Architecture Analysis of Entry, Descent, and Landing
National Aeronautics and Space Administration — Because Entry, Descent and Landing (EDL) system validations are limited in Earth environments, these technologies rely heavily on models and analysis tools to...
Wavelet methods in multi-conjugate adaptive optics
International Nuclear Information System (INIS)
Helin, T; Yudytskiy, M
2013-01-01
The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory. (paper)
Machado-Joseph Disease in Pedigrees of Azorean descent is Linked to Chromosome 14
George-Hyslop, P. St; Rogaeva, E.; Huterer, J.; Tsuda, T.; Santos, J.; Haines, J. L.; Schlumpf, K.; Rogaev, E. I.; Liang, Y.; McLachlan, D. R. Crapper; Kennedy, J.; Weissenbach, J.; Billingsley, G. D.; Cox, D. W.; Lang, A. E.
1994-01-01
A locus for Machado-Joseph disease (MJD) has recently been mapped to a 30-cM region of chromosome 14q in five pedigrees of Japanese descent. MJD is a clinically pleomorphic neurodegenerative disease that was originally described in subjects of Azorean descent. In light of the nonallelic heterogeneity in other inherited spinocere-bellar ataxias, we were interested to determine if the MJD phenotype in Japanese and Azorean pedigrees arose from mutations at the same locus. We provide evidence tha...
Salman, Afan Galih
2011-01-01
Penggunaan teknologi di bidang Artificial Intellegence khususnya teknologi Jaringan Syaraf Tiruan (JST) dalampendugaan curah hujan dapat dilakukan dengan metoda pendekatan pembelajaran. Berdasarkan kemampuanbelajar yang dimilikinya, maka JST dapat dilatih untuk mempelajari dan menganalisa pola data masa lalu danberusaha mencari suatu formula atau fungsi yang akan menghubungkan pola data masa lalu dengan keluaranyang diinginkan pada saat ini. Keakuratan hasil prediksi JST diukur berdasarkan ko...
Conjugated Fatty Acid Synthesis
Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John
2012-01-01
Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660
Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)
Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic
2016-01-01
This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.
Studies of the hormonal control of postnatal testicular descent in the rat.
Spencer, J R; Vaughan, E D; Imperato-McGinley, J
1993-03-01
Dihydrotestosterone is believed to control the transinguinal phase of testicular descent based on hormonal manipulation studies performed in postnatal rats. In the present study, these hormonal manipulation experiments were repeated, and the results were compared with those obtained using the antiandrogens flutamide and cyproterone acetate. 17 beta-estradiol completely blocked testicular descent, but testosterone and dihydrotestosterone were equally effective in reversing this inhibition. Neither flutamide nor cyproterone acetate prevented testicular descent in postnatal rats despite marked peripheral antiandrogenic action. Further analysis of the data revealed a correlation between testicular size and descent. Androgen receptor blockade did not produce a marked reduction in testicular size and consequently did not prevent testicular descent, whereas estradiol alone caused marked testicular atrophy and testicular maldescent. Reduction of the estradiol dosage or concomitant administration of androgens or human chorionic gonadotropin resulted in both increased testicular size and degree of descent. These data suggest that growth of the neonatal rat testis may contribute to its passage into the scrotum.
Research study of conjugate materials; Conjugate material no chosa kenkyu
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-03-01
The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.
Travelling gradient thermocouple calibration
International Nuclear Information System (INIS)
Broomfield, G.H.
1975-01-01
A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed
Conjugated polymer nanoparticles, methods of using, and methods of making
Habuchi, Satoshi
2017-03-16
Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.
Conjugated polymer nanoparticles, methods of using, and methods of making
Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi
2017-01-01
Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.
Quaternion Gradient and Hessian
Xu, Dongpo; Mandic, Danilo P.
2014-01-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...
Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions
Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao
2018-06-05
A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.
Gradient Alloy for Optical Packaging
National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...
Aerodynamics of Reentry Vehicle Clipper at Descent Phase
Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.
2005-02-01
From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and
High Gradient Accelerator Research
International Nuclear Information System (INIS)
Temkin, Richard
2016-01-01
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
Analysis of foot clearance in firefighters during ascent and descent of stairs.
Kesler, Richard M; Horn, Gavin P; Rosengren, Karl S; Hsiao-Wecksler, Elizabeth T
2016-01-01
Slips, trips, and falls are a leading cause of injury to firefighters with many injuries occurring while traversing stairs, possibly exaggerated by acute fatigue from firefighting activities and/or asymmetric load carriage. This study examined the effects that fatigue, induced by simulated firefighting activities, and hose load carriage have on foot clearance while traversing stairs. Landing and passing foot clearances for each stair during ascent and descent of a short staircase were investigated. Clearances decreased significantly (p < 0.05) post-exercise for nine of 12 ascent parameters and increased for two of eight descent parameters. Load carriage resulted in significantly decreased (p < 0.05) clearance over three ascent parameters, and one increase during descent. Decreased clearances during ascent caused by fatigue or load carriage may result in an increased trip risk. Increased clearances during descent may suggest use of a compensation strategy to ensure stair clearance or an increased risk of over-stepping during descent. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Directory of Open Access Journals (Sweden)
Timothy R. Rebbeck
2013-01-01
Full Text Available Prostate cancer (CaP is the leading cancer among men of African descent in the USA, Caribbean, and Sub-Saharan Africa (SSA. The estimated number of CaP deaths in SSA during 2008 was more than five times that among African Americans and is expected to double in Africa by 2030. We summarize publicly available CaP data and collected data from the men of African descent and Carcinoma of the Prostate (MADCaP Consortium and the African Caribbean Cancer Consortium (AC3 to evaluate CaP incidence and mortality in men of African descent worldwide. CaP incidence and mortality are highest in men of African descent in the USA and the Caribbean. Tumor stage and grade were highest in SSA. We report a higher proportion of T1 stage prostate tumors in countries with greater percent gross domestic product spent on health care and physicians per 100,000 persons. We also observed that regions with a higher proportion of advanced tumors reported lower mortality rates. This finding suggests that CaP is underdiagnosed and/or underreported in SSA men. Nonetheless, CaP incidence and mortality represent a significant public health problem in men of African descent around the world.
Conjugal Pairing in Escherichia Coli
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Conjugal Pairing in Escherichia Coli. Joshua Lederberg. Classics Volume 13 Issue 8 August 2008 pp 793-794. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/013/08/0793-0794 ...
Persistence Mechanisms of Conjugative Plasmids
DEFF Research Database (Denmark)
Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes
2009-01-01
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the suc...
Bacteriophytochromes control conjugation in Agrobacterium fabrum.
Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman
2016-08-01
Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.
REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy ...
African Journals Online (AJOL)
REVIEW ARTICLE Conjugated Hyperbilirubinaemia in Early Infancy. AOK Johnson. Abstract. Conjugated hyperbilirubinaemia exists when the conjugated serum bilirubin level is more than 2 mg/dl or more than 20 per cent of the total serum bilirubin. It is always pathological in early infancy. The causes are many and diverse ...
Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation
Yunus, Ali A.; Lima, Christopher D.
2009-01-01
SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417
Giovannini, Massimo
2015-01-01
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Conjugated heat transfer in laminar flow between parallel-plates channel
International Nuclear Information System (INIS)
Guedes, R.O.C.; Cotta, R.M.; Brum, N.C.L.
1989-01-01
An analysis is made of conjugated convective-conductive heat transfer in laminar flow of a newtonian fluid between parallel-plates channel, taking into account the longitudinal conduction along the duct walls only, by neglecting the transversal temperature gradients in the solid. This extended Graetz-type problem is then analytically handled through the generalized integral transform technique, providing accurate numerical results for quantities of practical interest sucyh as bulk and wall temperatures, and Nusselt numbers. The effects of a conjugation parameter and Biot number on heat transfer behavior are then investigated. (author)
TRW - Lunar Descent Engine. Chapter 6, Appendix H
Elverum, Gerard W.
2009-01-01
it came to Apollo 13, we went back into the record, and said, "Hey, we have pushed this system around up there on Apollo 5, and we have also restarted this tandem configuration." The requirements on Apollo 13 were to put it back into play. The spacecraft was out of free return to the earth at the time of the accident. It would not have come back. NASA said, "Okay, we ll use the descent engine to put the spacecraft in a free trajectory; it will go around the moon and be on free trajectory back to Earth." Then, as it came around the far side of the moon, the guys found out that they had an oxygen problem. As you remember, things were getting pretty bad in there. They said, "We ve got to get it back as fast as we can. Is it okay if we re-fire the engine? Now, we re in a free trajectory, so we want to put as much delta-v (or change in velocity) in as we can. Can we re-fire right now?" We said, "Yes, the data says it has been this period of time." We could re-fire the engine, run the rest of the duty cycle up as far as we needed while preserving enough fluids to make the final correction as the spacecraft got near Earth, and restart the engine. It was pretty fortuitous that we could give them those answers.
Convective descent simulations of drilling discharges on Georges and Sable Island banks
International Nuclear Information System (INIS)
Andrade, Y.; Loder, J.W.
1997-01-01
Factors affecting the fate of drilling mud discharges on Georges and Sable Island Banks were examined. The Koh and Chang jet discharge model was used to simulate the convective descent of a jet discharge of relatively dense materials at sites representing different hydrographic and depth regimes with a range of mud densities, and different discharge configurations, ocean currents and seasonal stratifications. The study revealed the dependence of the depth of descent and properties of the discharge plume on the discharge configuration and oceanographic conditions. The factors that affected the depth of descent were mud density, depth of release, initial downward volume flux of the discharge, current strength and ocean stratification. 22 refs., 3 tabs., 59 figs
Videodefaecography combined with measurement of the anorectal angle and of perineal descent
International Nuclear Information System (INIS)
Skomorowska, E.; Henrichsen, S.; Christiansen, J.; Hegedues, V.; Glostrup Sygehus, Copenhagen
1987-01-01
Cineradiographic defaecography combined with measurement of the anorectal angle and descent of the pelvic floor is proposed. The method used in 73 women gave valuable information in 48 patients who complained of anal incompetence, rectal tenesmus, and chronic constipation. In these patients, high and low rectal intussusception, rectocele, and pathologic movement of the pelvic floor were detected. Some of these phenomena could only be diagnosed by the radiologic method here described. Quantitations of the anorectal angle and descent of the pelvic floor placed the group with constipation halfway between normal individuals and those with anal incompetence. The value of this finding is discussed. Recent improvements in anorectal surgery often make videodefaecography decisive for the choice of the optimal operative method. Therefore, videodefaecography together with measurement of the anorectal angle and pelvic floor descent is recommended whenever anorectal surgery for correction of functional disturbances is contemplated. (orig.)
Entry, Descent, and Landing Performance for a Mid-Lift-to-Drag Ratio Vehicle at Mars
Johnson, Breanna J.; Braden, Ellen M.; Sostaric, Ronald R.; Cerimele, Christopher J.; Lu, Ping
2018-01-01
In an effort to mature the design of the Mid-Lift-to-Drag ratio Rigid Vehicle (MRV) candidate of the NASA Evolvable Mars Campaign (EMC) architecture study, end-to-end six-degree-of-freedom (6DOF) simulations are needed to ensure a successful entry, descent, and landing (EDL) design. The EMC study is assessing different vehicle and mission architectures to determine which candidate would be best to deliver a 20 metric ton payload to the surface of Mars. Due to the large mass payload and the relatively low atmospheric density of Mars, all candidates of the EMC study propose to use Supersonic Retro-Propulsion (SRP) throughout the descent and landing phase, as opposed to parachutes, in order to decelerate to a subsonic touchdown. This paper presents a 6DOF entry-to-landing performance and controllability study with sensitivities to dispersions, particularly in the powered descent and landing phases.
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M
2012-11-06
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.
Pizzoferrato, Anne-Cécile; Fauconnier, Arnaud; Bader, Georges; de Tayrac, Renaud; Fort, Julie; Fritel, Xavier
2016-07-01
Obstetric trauma during childbirth is considered a major risk factor for postpartum urinary incontinence (UI), particularly stress urinary incontinence. Our aim was to investigate the relation between postpartum UI, mode of delivery, and urethral descent, and to define a group of women who are particularly at risk of postnatal UI. A total of 186 women were included their first pregnancy. Validated questionnaires about urinary symptoms during pregnancy, 2 and 12 months after delivery, were administered. Urethral descent was assessed clinically and by ultrasound at inclusion. Multivariate logistic regression analysis was used to determine the risk factors for UI during pregnancy, at 2 months and 1 year after first delivery. The prevalence of UI was 38.6, 46.5, 35.6, and 34.4 % at inclusion, late pregnancy, 2 months postpartum, and 1 year postpartum respectively. No significant association was found between UI at late pregnancy and urethral descent assessed clinically or by ultrasound. The only risk factor for UI at 2 months postpartum was UI at inclusion (OR 6.27 [95 % CI 2.70-14.6]). The risk factors for UI at 1 year postpartum were UI at inclusion (6.14 [2.22-16.9]), body mass index (BMI), and urethral descent at inclusion, assessed clinically (7.21 [2.20-23.7]) or by ultrasound. The mode of delivery was not associated with urethral descent. Prenatal urethral descent and UI during pregnancy are risk factors for UI at 1 year postpartum. These results indicate that postnatal UI is more strongly influenced by susceptibility factors existing before first delivery than by the mode of delivery.
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
Corrugated thimble tube for controlling control rod descent in nuclear reactor
International Nuclear Information System (INIS)
Luetzow, H.J.
1981-01-01
A thimble tube construction is described which will provide a controlled descent for a control rod while minimizing the reaction forces which must be absorbed by the thimble tube and reducing the possibility that a foreign particle could interfere with the free descent of a control rod. A thimble tube is formed with helically-corrugate internal walls which cooperate with a control rod contained in the tube in an emergency situation to provide a progressively-increasing hydraulic restraining force as each adjacent corrugation is encountered
Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results
DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.
2010-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.
Bigravity from gradient expansion
International Nuclear Information System (INIS)
Yamashita, Yasuho; Tanaka, Takahiro
2016-01-01
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
2010-03-31
nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and
Conjugate heat transfer effects on wall bubble nucleation in subcooled flashing flows
International Nuclear Information System (INIS)
Peterson, P.F.; Hijikata, K.
1990-01-01
A variety of models have been proposed to explain observations that large liquid superheat is required to initiate nucleation in flashing flows of subcooled liquids in nozzles, cracks and pipes. In such flows an abrupt change in the fluid temperature occurs downstream of the nucleating cavities. This paper examines the subcooling of the nucleating cavities due to conjugate heat transfer to the cold downstream fluid. This examination suggests a mechanism limiting the maximum active cavity size. Simple analysis shows that, of the total superheat required to initiate flashing, a substantial portion results from conjugate wall subcooling, which decreases the cavity vapor pressure. The specific case of flashing critical nozzle flow is examined in detail. Here boundary-layer laminarization due to the strong favorable pressure gradient aids the analysis of conjugate heat transfer
A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor
Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas
2001-01-01
The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.
Murray, Ashley; Ellis, Monica U.; Castellanos, Ted; Gaul, Zaneta; Sutton, Madeline Y.; Sneed, Carl D.
2014-01-01
We examined approaches used by African-American mothers and mothers of Latino descent for informal sex-related discussions with their children to inform sexually transmitted infection (STI)/HIV intervention development efforts. We recruited mothers (of children aged 12-15) from youth service agencies and a university in southern California.…
Bissoonauth, Anu
2018-01-01
This paper investigated linguistic practices and choices of Australian children of Indian descent, an under-researched group, who are studying Hindi in primary education. Data was collected using a questionnaire and semi-structured interviews with sixty participants across 3 primary schools in the Sydney area. The findings revealed, as expected,…
Parents and Siblings As Early Resources for Young Children's Learning in Mexican-Descent Families.
Perez-Granados, Deanne R.; Callanan, Maureen A.
1997-01-01
Interviews with parents from 50 Mexican-descent families revealed that parents encouraged their preschool children to ask questions about science and causal relationships; older and younger siblings learned different skills from one another; and children learned through observation and imitation. Discusses issues of "match" between home…
Long-Time Asymptotics for the Korteweg-de Vries Equation via Nonlinear Steepest Descent
International Nuclear Information System (INIS)
Grunert, Katrin; Teschl, Gerald
2009-01-01
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation for decaying initial data in the soliton and similarity region. This paper can be viewed as an expository introduction to this method
Impact of race on the professional lives of physicians of African descent.
Nunez-Smith, Marcella; Curry, Leslie A; Bigby, JudyAnn; Berg, David; Krumholz, Harlan M; Bradley, Elizabeth H
2007-01-02
Increasing the racial and ethnic diversity of the physician workforce is a national priority. However, insight into the professional experiences of minority physicians is limited. This knowledge is fundamental to developing effective strategies to recruit, retain, and support a diverse physician workforce. To characterize how physicians of African descent experience race in the workplace. Qualitative study based on in-person and in-depth racially concordant interviews using a standard discussion guide. The 6 New England states in the United States. 25 practicing physicians of African descent representing a diverse range of primary practice settings, specialties, and ages. Professional experiences of physicians of African descent. 1) Awareness of race permeates the experience of physicians of African descent in the health care workplace; 2) race-related experiences shape interpersonal interactions and define the institutional climate; 3) responses to perceived racism at work vary along a spectrum from minimization to confrontation; 4) the health care workplace is often silent on issues of race; and 5) collective race-related experiences can result in "racial fatigue," with personal and professional consequences for physicians. The study was restricted to New England and may not reflect the experiences of physicians in other geographic regions. The findings are meant to be hypothesis-generating and require additional follow-up studies. The issue of race remains a pervasive influence in the work lives of physicians of African descent. Without sufficient attention to the specific ways in which race shapes physicians' work experiences, health care organizations are unlikely to create environments that successfully foster and sustain a diverse physician workforce.
Hong, Yoon No Gregory; Shin, Choongsoo S
2015-12-01
Falls on stairs often result in severe injury and occur twice as frequently in women. However, gender differences in kinetics and kinematics during stair descent are unknown. Thus, this study aimed to determine whether gender differences of knee and ankle biomechanics exist in the sagittal plane during the stair-to-ground descending transition. It was hypothesized that 1) women would reveal higher ground-toe-trochanter angle and lower ground-toe length during stair-to-ground descent transition than men; and 2) women would reveal lower peak knee extension moment during stair-to-ground descent transition than men. Fifteen men and fifteen women were recruited and performed a stair descent activity. Kinetic and kinematic data were obtained using a force plate and motion capture system. The women performed the stair descent with a lower peak knee extension moment and a peak knee power at the early weight acceptance phase. The women also revealed a higher ground-toe-trochanter angle and a lower ground-toe length, which indicated a more forward position of the lower extremity relative to the toe contact point at both the initial contact and at the time of peak kinematic and kinetic events. This study found that knee and ankle kinematics and kinetics differed significantly between the genders due to differences in ground-toe-trochanter angle. Women have a different stair descending strategy that reduces the demand of the lower extremity muscle function, but this strategy seems to increase the risk of falls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Didar, Tohid Fatanat; Tabrizian, Maryam
2012-11-07
Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.
Structure Property Relationships in Organic Conjugated Systems
O'Neill, Luke
2008-01-01
A series of pi(п) conjugated oligomers containing 1 to 6 monomer units were studied by absorption and photoluminescence spectroscopies. The results are discussed and examined with regard to the variation of the optical properties with the increase of effective conjugation length. It was found that there was a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length. The relationships are in good agreement with the si...
Conjugated Polymers for Energy Production
DEFF Research Database (Denmark)
Livi, Francesco
This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...
Novel ?-cyclodextrin?eosin conjugates
Benkovics, G?bor; Afonso, Damien; Darcsi, Andr?s; B?ni, Szabolcs; Conoci, Sabrina; Fenyvesi, ?va; Szente, Lajos; Malanga, Milo; Sortino, Salvatore
2017-01-01
Eosin B (EoB) and eosin Y (EoY), two xanthene dye derivatives with photosensitizing ability were prepared in high purity through an improved synthetic route. The dyes were grafted to a 6-monoamino-β-cyclodextrin scaffold under mild reaction conditions through a stable amide linkage using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The molecular conjugates, well soluble in aqueous medium, were extensively characterized by 1D and 2D NMR spectroscopy an...
Test of charge conjugation invariance
International Nuclear Information System (INIS)
Nefkens, B.M.K.; Prakhov, S.; Gaardestig, A.; Clajus, M.; Marusic, A.; McDonald, S.; Phaisangittisakul, N.; Price, J.W.; Starostin, A.; Tippens, W.B.; Allgower, C.E.; Spinka, H.; Bekrenev, V.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Lopatin, I.; Briscoe, W.J.; Shafi, A.; Comfort, J.R.
2005-01-01
We report on the first determination of upper limits on the branching ratio (BR) of η decay to π 0 π 0 γ and to π 0 π 0 π 0 γ. Both decay modes are strictly forbidden by charge conjugation (C) invariance. Using the Crystal Ball multiphoton detector, we obtained BR(η→π 0 π 0 γ) -4 at the 90% confidence level, in support of C invariance of isoscalar electromagnetic interactions of the light quarks. We have also measured BR(η→π 0 π 0 π 0 γ) -5 at the 90% confidence level, in support of C invariance of isovector electromagnetic interactions
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.
1986-01-01
The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.
Conjugated polymers developed from alkynes
Institute of Scientific and Technical Information of China (English)
Yajing Liu; Jacky W.Y.Lam; Ben Zhong Tang
2015-01-01
The numerous merits of conjugated polymers(CPs) have encouraged scientists to develop a variety of synthetic routes to CPs with diverse structures and functionalities. Among the large scope of substrates,alkyne plays an important role in constructing polymers with conjugated backbones. In addition to some well-developed reactions including Glaser–Hay and Sonogashira coupling, azide/thiol-yne click reaction and cyclotrimerization, some novel alkyne-based reactions have also been explored such as oxidative polycoupling, decarbonylative polycoupling and multicomponent tandem polymerizations. his review focuses on the recent progress on the synthetic methodology of CPs in the last ive years using monomers with two or more triple bonds and some of their high-technological applications. Selected examples of materials properties of these CPs are given in this review, such as luorescence response to chemical or physical stimuli, magnetism, white light emission, cell imaging and bioprobing. Finally, a short perspective is raised in regard to the outlook of the preparation methodologies, functionalities as well as potential applications of CPs in the future.
Subgap Absorption in Conjugated Polymers
Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.
Subgap absorption in conjugated polymers
Energy Technology Data Exchange (ETDEWEB)
Sinclair, M.; Seager, C.H. (Sandia National Labs., Albuquerque, NM (USA)); McBranch, D.; Heeger, A.J. (California Univ., Santa Barbara, CA (USA)); Baker, G.L. (Bell Communications Research, Inc., Red Bank, NJ (USA))
1991-01-01
Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination. 11 refs., 4 figs.
Dwyer Cianciolo, Alicia M. (Editor)
2011-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.
On the efficiency of a randomized mirror descent algorithm in online optimization problems
Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.
2015-04-01
A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.
Three-dimensional sparse electromagnetic imaging accelerated by projected steepest descent
Desmal, Abdulla
2016-11-02
An efficient and accurate scheme for solving the nonlinear electromagnetic inverse scattering problem on three-dimensional sparse investigation domains is proposed. The minimization problem is constructed in such a way that the data misfit between measurements and scattered fields (which are expressed as a nonlinear function of the contrast) is constrained by the contrast\\'s first norm. The resulting minimization problem is solved using nonlinear Landweber iterations accelerated using a steepest descent algorithm. A projection operator is applied at every iteration to enforce the sparsity constraint by thresholding the result of that iteration. Steepest descent algorithm ensures accelerated and convergent solution by utilizing larger iteration steps selected based on a necessary B-condition.
Minimum-fuel turning climbout and descent guidance of transport jets
Neuman, F.; Kreindler, E.
1983-01-01
The complete flightpath optimization problem for minimum fuel consumption from takeoff to landing including the initial and final turns from and to the runway heading is solved. However, only the initial and final segments which contain the turns are treated, since the straight-line climbout, cruise, and descent problems have already been solved. The paths are derived by generating fields of extremals, using the necessary conditions of optimal control together with singular arcs and state constraints. Results show that the speed profiles for straight flight and turning flight are essentially identical except for the final horizontal accelerating or decelerating turns. The optimal turns require no abrupt maneuvers, and an approximation of the optimal turns could be easily integrated with present straight-line climb-cruise-descent fuel-optimization algorithms. Climbout at the optimal IAS rather than the 250-knot terminal-area speed limit would save 36 lb of fuel for the 727-100 aircraft.
Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.;
2011-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.
DENDRIMER CONJUGATES FOR SELECTIVE OF PROTEIN AGGREGATES
DEFF Research Database (Denmark)
2004-01-01
Dendrimer conjugates are presented, which are formed between a dendrimer and a protein solubilising substance. Such dendrimer conjugates are effective in the treatment of protein aggregate-related diseases (e.g. prion-related diseases). The protein solubilising substance and the dendrimer together...
Tetrafullerene conjugates for all-organic photovoltaics
Fernández, G.; Sánchez, L.; Veldman, D.; Wienk, M.M.; Atienza, C.M.; Guldi, D.M.; Janssen, R.A.J.; Martin, N.
2008-01-01
The synthesis of two new tetrafullerene nanoconjugates in which four C60 units are covalently connected through different -conjugated oligomers (oligo(p-phenylene ethynylene) and oligo(p-phenylene vinylene)) is described. The photovoltaic (PV) response of these C60-based conjugates was evaluated by
CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES
Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G
In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence
The Conjugate Acid-Base Chart.
Treptow, Richard S.
1986-01-01
Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)
Bio-Conjugates for Nanoscale Applications
DEFF Research Database (Denmark)
Villadsen, Klaus
Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...
Class, Kinship Density, and Conjugal Role Segregation.
Hill, Malcolm D.
1988-01-01
Studied conjugal role segregation in 150 married women from intact families in working-class community. Found that, although involvement in dense kinship networks was associated with conjugal role segregation, respondents' attitudes toward marital roles and phase of family cycle when young children were present were more powerful predictors of…
Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems
Energy Technology Data Exchange (ETDEWEB)
Scherrer, Chad; Halappanavar, Mahantesh; Tewari, Ambuj; Haglin, David J.
2012-07-03
We present a generic framework for parallel coordinate descent (CD) algorithms that has as special cases the original sequential algorithms of Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm of Bradley et al. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.
Misonidazole-glutathione conjugates in CHO cells
International Nuclear Information System (INIS)
Varghese, A.J.; Whitmore, G.F.
1984-01-01
Misonidazole, after reduction to the hydroxylamine derivative, reacts with glutathione (GSH) under physiological conditions. The reaction product has been identified as a mixture of two isomeric conjugates. When water soluble extracts of CHO cells exposed to misonidazole under hypoxic conditions are subjected to HPLC analysis, misonidazole derivatives, having the same chromatographic properties as the GSH-MISO conjugates, were detected. When CHO cells were incubated with misonidazole in the presence of added GSH, a substantial increase in the amount of the conjugate was detected. When extracts of CHO cells exposed to misonidazole under hypoxia were subsequently exposed to GSH, an increased formation of the conjugate was observed. A rearrangement product of the hydroxylamine derivative of misonidazole is postulated as the reactive intermediate responsible for the formation of the conjugate
Modelling conjugation with stochastic differential equations
DEFF Research Database (Denmark)
Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik
2010-01-01
Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...
Modelling the descent of nitric oxide during the elevated stratopause event of January 2013
Orsolini, Yvan J.; Limpasuvan, Varavut; Pérot, Kristell; Espy, Patrick; Hibbins, Robert; Lossow, Stefan; Raaholt Larsson, Katarina; Murtagh, Donal
2017-03-01
Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.
Machado-Joseph disease in pedigrees of Azorean descent is linked to chromosome 14.
St George-Hyslop, P; Rogaeva, E; Huterer, J; Tsuda, T; Santos, J; Haines, J L; Schlumpf, K; Rogaev, E I; Liang, Y; McLachlan, D R
1994-07-01
A locus for Machado-Joseph disease (MJD) has recently been mapped to a 30-cM region of chromosome 14q in five pedigrees of Japanese descent. MJD is a clinically pleomorphic neurodegenerative disease that was originally described in subjects of Azorean descent. In light of the nonallelic heterogeneity in other inherited spinocerebellar ataxias, we were interested to determine if the MJD phenotype in Japanese and Azorean pedigrees arose from mutations at the same locus. We provide evidence that MJD in five pedigrees of Azorean descent is also linked to chromosome 14q in an 18-cM region between the markers D14S67 and AACT (multipoint lod score +7.00 near D14S81). We also report molecular evidence for homozygosity at the MJD locus in an MJD-affected subject with severe, early-onset symptoms. These observations confirm the initial report of linkage of MJD to chromosome 14; suggest that MJD in Japanese and Azorean subjects may represent allelic or identical mutations at the same locus; and provide one possible explanation (MJD gene dosage) for the observed phenotypic heterogeneity in this disease.
International Nuclear Information System (INIS)
Vilar, L.C.Q.; Sasaki, C.A.G.; Sorella, S.P.
1996-09-01
The supersymmetric descent equations in superspace are discussed by means of the introduction of two operators ζ α , ζ -α which allow to decompose the supersymmetric covariant derivatives D α , D -α as BRS commutators. (author). 27 refs., 4 tabs
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad
2016-12-01
Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a
International Nuclear Information System (INIS)
Kim, Kyung Min; Yun, Nam Geon; Jeon, Yun Heung; Lee, Dong Hyun; Cho, Yung Hee
2010-01-01
Prediction of temperature distributions on hot components is important in development of a gas turbine combustion liner. The present study investigated conjugated heat transfer to obtain temperature distributions in a combustion liner with six combustion nozzles. 3D numerical simulations using FVM commercial codes, Fluent and CFX were performed to calculate combustion and heat transfer distributions. The temperature distributions in the combustor liner were calculated by conjugation of conduction and convection (heat transfer coefficients) obtained by combustion and cooling flow analysis. The wall temperature was the highest on the attachment points of the combustion gas from combustion nozzles, but the temperature gradient was high at the after shell section with low wall temperature
Gradient waveform synthesis for magnetic propulsion using MRI gradient coils
International Nuclear Information System (INIS)
Han, B H; Lee, S Y; Park, S
2008-01-01
Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
Mini-batch optimized full waveform inversion with geological constrained gradient filtering
Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai
2018-05-01
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
Denaturing gradient gel electrophoresis
International Nuclear Information System (INIS)
Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.
2005-01-01
It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
Novel Aflatoxin Derivatives and Protein Conjugates
Directory of Open Access Journals (Sweden)
Reinhard Niessner
2007-03-01
Full Text Available Aflatoxins, a group of structurally related mycotoxins, are well known for their toxic and carcinogenic effects in humans and animals. Aflatoxin derivatives and protein conjugates are needed for diverse analytical applications. This work describes a reliable and fast synthesis of novel aflatoxin derivatives, purification by preparative HPLC and characterisation by ESI-MS and one- and two-dimensional NMR. Novel aflatoxin bovine serum albumin conjugates were prepared and characterised by UV absorption and MALDI-MS. These aflatoxin protein conjugates are potentially interesting as immunogens for the generation of aflatoxin selective antibodies with novel specificities.
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
International Nuclear Information System (INIS)
Hadley, S.W.; Wilbur, D.S.
1990-01-01
The preparations and conjugations of 2,3,5,6-tetrafluorophenyl 5-[125I/131I]iodo-4-pentenoate (7a) and 2,3,5,6-tetrafluorophenyl 3,3-dimethyl-5-[125I/131I]iodo-4-pentenoate (7b) to monoclonal antibodies are reported. Reagents 7a and 7b were prepared in high radiochemical yield by iododestannylation of their corresponding 5-tri-n-butylstannyl precursors. Radioiodinated antibody conjugates were prepared by reaction of 7a or 7b with the protein at basic pH. Evaluation of these conjugates by several in vitro procedures demonstrated that the radiolabel was attached to the antibody in a stable manner and that the conjugates maintained immunoreactivity. Comparative dual-isotope biodistribution studies of a monoclonal antibody Fab fragment conjugate of 7a and 7b with the same Fab fragment labeled with N-succinimidyl p-[131I]iodobenzoate (PIB, p-iodobenzoate, 2) or directly radioiodinated have been carried out in tumor-bearing nude mice. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 2 demonstrated that the biodistributions were similar in most organs, except the neck tissue (thyroid-containing) and the stomach, which contained substantially increased levels of the 7a label. Coinjection of the Fab conjugate of 7a with the Fab fragment radioiodinated by using the chloramine-T method demonstrated that the biodistributions were remarkably similar, suggesting roughly equivalent in vivo deiodination of these labeled antibody fragments. Coinjection of the Fab conjugate of 7a with the Fab conjugate of 7b indicated that there was ∼ a 2-fold reduction in the amount of in vivo deiodination of the 7b conjugate as compared to the 7a conjugate
Soluble polymer conjugates for drug delivery.
Minko, Tamara
2005-01-01
The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.
Structure Property Relationships in Organic Conjugated Systems
O'Neill, Luke; Lynch, Patrick; McNamara, Mary
2005-01-01
A series of π conjugated oligomers were studied by absorption and photoluminescence spectroscopy. A linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Sto...
Diffeomorphisms Holder conjugate to Anosov diffeomorphisms
Gogolev, Andrey
2008-01-01
We show by means of a counterexample that a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is not necessarily Anosov. The counterexample can bear higher smoothness up to $C^3$. Also we include a result from the 2006 Ph.D. thesis of T. Fisher: a $C^{1+Lip}$ diffeomorphism Holder conjugate to an Anosov diffeomorphism is Anosov itself provided that Holder exponents of the conjugacy and its inverse are sufficiently large.
Rapid modification of retroviruses using lipid conjugates
International Nuclear Information System (INIS)
Mukherjee, Nimisha G; Le Doux, Joseph M; Andrew Lyon, L
2009-01-01
Methods are needed to manipulate natural nanoparticles. Viruses are particularly interesting because they can act as therapeutic cellular delivery agents. Here we examine a new method for rapidly modifying retroviruses that uses lipid conjugates composed of a lipid anchor (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a polyethylene glycol chain, and biotin. The conjugates rapidly and stably modified retroviruses and enabled them to bind streptavidin. The implication of this work for modifying viruses for gene therapy and vaccination protocols is discussed.
NON–DESCENT VAGINAL HYSTERECTOMY FOR BENIGN GYNAECOLOGICAL DISEASE – A PROSPECTIVE STUDY
Directory of Open Access Journals (Sweden)
Thulasi
2016-04-01
Full Text Available OBJECTIVE To assess safety and feasibility of non-descent vaginal hysterectomy for benign gynaecological disease. METHODS A prospective study was conducted at the Department of Obstetrics and Gynaecology of P K Das Institute of Medical Sciences from January 2013 to December 2013. An effort was made to perform hysterectomies vaginally in women with benign or premalignant conditions in the absence of prolapse. A suspected adnexal pathology, endometriosis, immobility of uterus, uterus size more than 16 weeks was excluded from the study. Vaginal hysterectomy was done in usual manner. In bigger size uterus, morcellation techniques like bisection, debulking, coring, myomectomy, or combination of these were used to remove the uterus. Data regarding age, parity, uterine size, estimated blood loss, length of operation, intraoperative and postoperative complications and hospital stay were recorded. RESULTS A total of 100 cases were selected for non-descent vaginal hysterectomy. Among them, 97 cases successfully underwent nondescent vaginal hysterectomy. Majority of the patients (55% were in age group 40-45 yrs. Four patients were nulligravida and eight patients had previous LSCS. Uterine size was ≤ 12 weeks in 84 cases and > 12-16 weeks in 16 cases. Commonest indication was leiomyoma of uterus (43%. Mean duration of surgery was 70±20.5 minutes. Mean blood loss was 150±65 mL. Reasons for failure to perform NDVH was difficulty in opening pouch of Douglas in two cases because of adhesions and in one case there was difficulty in reaching the fundal myoma which prevented the uterine descent. Intra–operatively, one case had bladder injury (1% that had previous 2 LSCS. Postoperatively, complications were minimal which included postoperative fever (11%, UTI (8% and vaginal cuff infection was (4%. Mean hospital stay was 3.5 days. CONCLUSION Vaginal hysterectomy is safe, feasible in most of the women requiring hysterectomy for benign conditions with less
Entry, Descent, and Landing Communications for the 2011 Mars Science Laboratory
Abilleira, Fernando; Shidner, Jeremy D.
2012-01-01
The Mars Science Laboratory (MSL), established as the most advanced rover to land on the surface of Mars to date, launched on November 26th, 2011 and arrived to the Martian Gale Crater during the night of August 5th, 2012 (PDT). MSL will investigate whether the landing region was ever suitable to support carbon-based life, and examine rocks, soil, and the atmosphere with a sophisticated suite of tools. This paper addresses the flight system requirement by which the vehicle transmitted indications of the following events using both X-band tones and UHF telemetry to allow identification of probable root causes should a mission anomaly have occurred: Heat-Rejection System (HRS) venting, completion of the cruise stage separation, turn to entry attitude, atmospheric deceleration, bank angle reversal commanded, parachute deployment, heatshield separation, radar ground acquisition, powered descent initiation, rover separation from the descent stage, and rover release. During Entry, Descent, and Landing (EDL), the flight system transmitted a UHF telemetry stream adequate to determine the state of the spacecraft (including the presence of faults) at 8 kbps initiating from cruise stage separation through at least one minute after positive indication of rover release on the surface of Mars. The flight system also transmitted X-band semaphore tones from Entry to Landing plus one minute although since MSL was occulted, as predicted, by Mars as seen from the Earth, Direct-To-Earth (DTE) communications were interrupted at approximately is approx. 5 min after Entry ( approximately 130 prior to Landing). The primary data return paths were through the Deep Space Network (DSN) for DTE and the existing Mars network of orbiting assets for UHF, which included the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (ODY), and Mars Express (MEX) elements. These orbiters recorded the telemetry data stream and returned it back to Earth via the DSN. The paper also discusses the total power
Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign
Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.
2012-01-01
The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.
A Cockpit Comfort Level of the Descent Capsule-Shaped Vehicles
Directory of Open Access Journals (Sweden)
V. E. Minenko
2017-01-01
Full Text Available The article formulates the task of selecting a design-layout pattern for a transport spacecraft, in terms of reaching a proper comfort level for the crew to have appropriate functioning. Using the example of a domestic spacecraft and an American one, it has been shown that the type of launch vehicle, the launch specifics, the operational overloads, and the overall mass restrictions have a dramatic impact on the choice of the design-layout pattern of the spacecraft. The free volume of the pressure cockpit per each member of the crew is considered as the main characteristic to show a level of the spacecraft comfort. Using the average statistical data on the layout density of different equipment, the article estimates the possible increase of this characteristic for the cutting-edge descent vehicles. Using the example of the descent vehicles of Soyuz and Apollo class, the article shows a dependence of the raising weight of a descent vehicle on the free volume of its pressure cockpit. Attention is drawn to the fact that the limit of increasing free space of the spacecraft compartments to achieve maximum comfort should correspond to a set of functions that the crew performs in the compartments considered. Otherwise, the increase in the spacecraft mass will prove to be unjustified. The results stated in the article can be useful to developers of manned spacecraft, as well as to teachers and students. In the long term it is worthwhile adding the article material with the mass and volume indicators, as well as with the estimate results of the comfort level of modern manned spacecrafts being under design in Russia and USA, such as PTK NP (“Federation”, “Orion”, “Dragon V2”.