WorldWideScience

Sample records for conglomerates geology

  1. Geology and recognition criteria for uranium deposits of the quartz-pebble conglomerate type. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Button, A.; Adams, S.S.

    1981-03-01

    This report is concerned with Precambrian uraniferous conglomerates. This class of deposit has been estimated to contain between approximately 16 and 35 percent of the global uranium reserve in two rather small areas, one in Canada, the other in South Africa. Similar conglomerates, which are often gold-bearing, are, however, rather widespread, being found in parts of most Precambrian shield areas. Data have been synthesized on the geologic habitat and character of this deposit type. The primary objective has been to provide the most relevant geologic observations in a structural fashion to allow resource studies and exploration to focus on the most prospective targets in the shortest possible time.

  2. Geology and recognition criteria for uranium deposits of the quartz-pebble conglomerate type. Final report

    International Nuclear Information System (INIS)

    Button, A.; Adams, S.S.

    1981-03-01

    This report is concerned with Precambrian uraniferous conglomerates. This class of deposit has been estimated to contain between approximately 16 and 35 percent of the global uranium reserve in two rather small areas, one in Canada, the other in South Africa. Similar conglomerates, which are often gold-bearing, are, however, rather widespread, being found in parts of most Precambrian shield areas. Data have been synthesized on the geologic habitat and character of this deposit type. The primary objective has been to provide the most relevant geologic observations in a structural fashion to allow resource studies and exploration to focus on the most prospective targets in the shortest possible time

  3. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  4. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates

  5. Geological and Hydrodynamical Examination of the Bathyal Tsunamigenic Origin of Miocene Conglomerates in Chita Peninsula, Central Japan

    Science.gov (United States)

    Tachibana, Toru; Tsuji, Yoshinobu

    2011-06-01

    A conglomerate appears on a rocky coast called "Tsubutega-ura Coast", located on the southwestern coast near the southern tip of the Chita Peninsula, Aichi Prefecture, central Japan. The conglomerate belongs to Miocene sedimentary rocks termed the Morozaki Group. The conglomerate includes meter-scale boulders, indicating that it was formed by an extraordinary event. In the geological investigation, we observed that the conglomerate shows alternate changes of paleocurrent directions between seaward and landward. This feature is supposed to be formed by tsunami currents. In the hydrodynamical investigation, we obtained following results: (1) the lowest limit of a current velocity to move a boulder of about 3 m in diameter would be about 2-3 m/s, (2) the speed of tsunami currents reproduced by tsunami simulation exceeds 3 m/s at 300 m in depth when the tsunami is generated by a gigantic earthquake with magnitude 9.0 or more, (3) the transport distance of the boulder would be several hundred meters to several kilometers by one tsunami event caused by a gigantic earthquake. We conclude that tsunamis best explain the formation of the conglomerate deposited in upper bathyal environments about 200-400 m depth, both from geological and hydrodynamical viewpoints.

  6. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  7. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes

  8. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    International Nuclear Information System (INIS)

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming

  9. Uranium deposits in Proterozoic quartz-pebble conglomerates

    International Nuclear Information System (INIS)

    1987-09-01

    This report is the result of an effort to gather together the most important information on uranium deposits in Proterozoic quartz-pebble conglomerates in the United States of America, Canada, Finland, Ghana, South Africa and Australia. The paper discusses the uranium potential (and in some cases also the gold potential in South Africa, Western Australia and Ghana) in terms of ores, sedimentation, mineralization, metamorphism, placers, geologic formations, stratigraphy, petrology, exploration, tectonics and distribution. Geologic history and application of geologic models are also discussed. Glacial outwash and water influx is also mentioned. The uranium deposits in a number of States in the USA are covered. The Witwatersrand placers are discussed in several papers. Refs, figs, tabs

  10. Conglomerates of Stopnik

    Directory of Open Access Journals (Sweden)

    Jože Čar

    2003-06-01

    Full Text Available In the area between Stopnik, [ebrelje and Pick of [ebrelje the Ladinian clastic, carbonate and volcanogenic rocks, in the thickness of more then 600 m, are very diversely developed. They are situated on diferent structural blocks bounded by the middle Triassicfaults and overlay partly eroded Anisian dolomite in the footwall. Variegated volcanogenic sedimentary rocks with conglomerate lenses comprising the middle part of the Ladinian succession in the broader sorounding of Stopnik are very important for paleogeographicinterpretation of the area. Ten conglomerate lenses were separated in the middle of volcanoclastic and volcanogenic rocks on the [ebrelje structural block. Cross sections of the conglomerate lenses are some 10 m to 550 m long and 15 to 60 m thick. Their axes arearranged in the direction NW-SE. In the lower and upper part of the lithological succession in the lenses prevail conglomerates with more ordered internal structure, denser packing of pebbles and more distinct bedding but in the middle part of the succession in lensesprevail sandy conglomerates and pebbly sandstones with less ordered internal structure, less denser packing of pebbles and less distinct bedding. The pebbles consist of diferent types of limestone, dolomite, volcanic rocks, tuffs, tuffaceous sandstone and conglomerate.They represent prevailing resedimented lower Ladinian rocks. The described sedimentary rocks are interpreted as a product of alluvial fan and fan delta sedimentary complexes, which were transgressively covered by tuffaceous muddy marine sediments passing intothe Cordevolian dolomite.

  11. The underinvestment problem under conglomeration

    Directory of Open Access Journals (Sweden)

    Jacques A. Schnabel

    2015-12-01

    Full Text Available This theoretical paper explores whether the underinvestment problem is aggravated or ameliorated by the formation of a pure conglomerate. It establishes that the answer depends critically on the volatility of corporate assets. If volatility is low, conglomeration ameliorates the underinvestment problem, whereas if volatility is high, conglomeration aggravates the underinvestment problem. These analytical results are then invoked as a potential explanation for the ambiguous conclusions of empirical studies that delve into the existence of a conglomerate discount.

  12. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    International Nuclear Information System (INIS)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology

  13. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.

  14. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  15. Market discipline and incentive problems in conglomerate banks

    NARCIS (Netherlands)

    Boot, A.W.A.; Schmeits, A.

    1998-01-01

    This paper analyzes the optimal conglomeration of bank activities. Weshow that the effectiveness of market discipline forstand-alone activities (divisions) is of crucial importance for thepotential benefits of conglomeration. We find thateffective market discipline reduces the potential benefits

  16. Bank Consolidation, Internationalization, and Conglomeration; Trends and Implications for Financial Risk

    OpenAIRE

    Gianni De Nicolo; Mary G Zephirin; Philip F. Bartholomew; Jahanara Zaman

    2003-01-01

    This paper documents global trends in bank activity, consolidation, internationalization, and financial firm conglomeration, and explores the extent to which financial firm risk and systemic risk potential in banking are related to consolidation and conglomeration. We find that while there is a substantial upward trend in conglomeration globally, consolidation and internationalization exhibit uneven patterns across world regions. Trends in consolidation and conglomeration indicate increased r...

  17. Martian Fluvial Conglomerates at Gale Crater

    Science.gov (United States)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  18. The corporate centre in a financial conglomerate : governance under fundamental industry changes

    OpenAIRE

    Fiole, Eelco Rokus Willem

    2002-01-01

    In part 1, we discuss 1) the fundamental changes in the financial services industry, 2) financial conglomerate structures and 3) value-based-management. These are core components for understanding the challenges and intentions of corporate level management of financial conglomerates. The financial services industry, financial conglomeration and value orientation In the first chapter, we highlight the major trend of consolidation in the financial services industry. This trend...

  19. Creating the future with all finance and financial conglomerates

    CERN Document Server

    Berghe, Lutgart

    1998-01-01

    Creating the Future with All Finance and Financial Conglomerates comprises an academic search for an understanding of all finance and financial conglomerates. It presents a strategic and economic analysis of diversification strategies and the growing interface between different types of financial firms. On the basis of a solid analysis of theoretical foundations and practical value, the book develops basic concepts of creating the future: especially solutions in managing risks and fresh ideas for the development of integrated financial services. The structure of the book is logical: starting on theoretical foundations (section 1, part A) and examining the economic value of All Finance and Financial Conglomerates (part B), leads to creating a concept for the future (part C). Case studies add additional practical value to this research. The review of the subject is completed by aspects of risk management in this sector and by political guidelines for the EU single market (section 2). The book builds further on ...

  20. Some metallogenic features of the Huronian and post-Huronian uraniferous conglomerates

    International Nuclear Information System (INIS)

    Ruzicka, V.

    1981-01-01

    Uraniferous conglomerates with syngenetic mineralization are restricted to lower Proterozoic sediments. The depositional environment was near volcanic centres; excessive sulfur, a product a volcanic and postvolcanic activity, apparently caused sulfurization of some minerals and of hydrocarbon. The sedimentary syngenetic origin of uranium mineralization may be illustrated. The cycle starts with deposition of coarse grains of quartz, continues with the deposition of a mixture of finer grains of quartz and pyrite with distinct graded bedding, is followed by deposition of monazite and brannerite, and ends with deposition of fragmented fine grains of uraninite embedded in sulfur-rich hydrocarbon. This situation apparently testifies to the fact that the carbonaceous material is a product of algal mats that existed in quiet times between cycles of sedimentation. The succeeding cycle again starts with the deposition of coarse grains of quartz. Uraniferous conglomerates with epigenetic mineralization are localized in regions containing rocks with higher contents of uranium. Primary concentration of uranium minerals in these source rocks can also be syngenetic. Deposition of uranium took place by one or more epigenetic processes: adsorption, complexing, precipitation, or redox changes according to the degrees of solubility and stability of uranium compounds. Evidence of these mentioned features is based upon studies on the Huronian uraniferous conglomerate from Elliot Lake, Canada, and on the late Precambrian and Paleozoic radioactive conglomerates from the eastern Ural Mountains and Enisey Crest region, USSR

  1. Uraniferous quartz-pebble conglomerates in South Africa

    International Nuclear Information System (INIS)

    von Backstroem, J.W.

    1981-01-01

    The purpose of this paper is to give a short background statement summarizing data on the Dominion Reef Group, the Witwatersrand Supergroup, and the Ventersdorp Contact Reef, with particular reference to the close relationship of gold and uranium with sedimentary features as well as the mineralization, conditions of deposition, and the nature of the quartz-pebble conglomerates

  2. CONGLOMERATE ROCKS "BRECCIA VERDE ANTICA" ARCHAEOLOGY, PETROLOGY, DETERIORATION AND TECHNOLOGY OF QUARRYING AT HAMMAMAT QUARRIES IN THE EASTEREN DESERT.

    Directory of Open Access Journals (Sweden)

    dr.HESHAM ABBAS KMALLY

    2010-01-01

    Full Text Available One of the most interesting of the monumental rocks of Egypt is the green conglomerates of the Hammamat valley which was used for bowls, vessels, sarcophagus and other objects, from a very early period. The quarries of wadi Hammamat produced the green ornamental stone known in Roman period as "Breccia verde antica". Generally the ancient conglomerate was used occasionally in Egypt at pharaonic time and late period, but it was quarried chiefly by the Roman for export to Italy. The conglomerate rocks range from coarse to fine conglomerates. They are composed of great assortment of rock fragments such as meta-sediments, meta-volcanic and granites. Some pebbles of the coarse conglomerates are previously deposited conglomerates. Pollution, humidity or moisture, solar radiation, rainfall and groundwater represent important factors for disintegration of green conglomerate rocks. Many types of destruction have been noted such as micro-cracks, fractures, joints, exfoliation, crumbling, discoloration, leaching and staining with iron oxides. The conglomerate rock sometimes changes into fragmented, soft residual and parent matter of the soil. Moreover, individual grains of feldspar and quartz begin to become loosened and the rock shows superficial granular disintegration due to, growth of salts and physiochemical weathering

  3. Cavitated Conglomerate Mass in Silicosis Indicating Associated Tuberculosis

    Directory of Open Access Journals (Sweden)

    Pedro Martins

    2010-01-01

    Full Text Available Silicosis is the most common occupational lung disease worldwide. It leads to respiratory impairment and may have associated infections that decrease pulmonary function. We describe the case of a 55-year-old man with chronic silicosis who presented with hemoptysis and a cavitated conglomerate mass. The final diagnosis was silicotuberculosis.

  4. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    2009-11-01

    Full Text Available Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides.For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility.In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  5. Introduction to uranium geology of the Kaycee area in Johnson county, Wyoming

    International Nuclear Information System (INIS)

    Li Wuwei

    2004-01-01

    The geology of the Kaycee uranium deposit is introduced in three aspects: regional setting, stratigraphy and structure. At the same time, uranium and vanadium mineralization of significant economic potential have been reported in the sandstones and conglomerates from Paleocene to Eocene period in the eastern and northeastern part of Kaycee, Wyoming. (authors)

  6. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  7. Conglomerate memory and cosmopolitanism

    Directory of Open Access Journals (Sweden)

    Susannah Ryan

    2016-01-01

    Full Text Available Under what conditions do countries and cultures considered radically different find a basis for allegiance and kinship? What part does memory play in this process? This article responds to these questions in two ways: 1 Through Emmanuel Levinas and Hannah Arendt, I propose that when an other appears in empathetic discourses that both honor difference and cite shared human experiences, seemingly irreconcilable people can develop a sense of mutual responsibility and 2 Conglomerate memory, memories that fuse together others through common pains, contributes to such an appearance. To illustrate this point, I turn to Congolese voices as they are articulated in online American discourses; although currently, authors of online texts typically rely on traditional narrative forms that position Central Africa as incommensurate to Western civilizations, the Internet's worldwide accessibility and intertextual capacities render it a place primed for developing international collectives by connecting memories while maintaining difference.

  8. Eogenetic caves in conglomerate: an example from Udin Boršt, Slovenia

    Directory of Open Access Journals (Sweden)

    Lipar Matej

    2011-01-01

    Full Text Available Udin Boršt is a karstified terrace of carbonate rock, which is of fluvioglacial origin, and is situated in the north-western part of Slovenia. There are 15 registered caves, which have been interpreted as caves in conglomerate, while karst of Udin Boršt itself was interpreted as conglomerate karst, shallow karst or isolated karst. In this article, caves in Udin Boršt have been interpreted as eogenetic caves. Based on porosity and bedding material, different types of caves and cave passages have developed. Four general types of eogenetic caves found in Udin Boršt are; linear stream caves, shelter caves, breakdown caves and vadose shafts.

  9. Discussions of the uranium geology working groups IGC, Sydney

    International Nuclear Information System (INIS)

    1978-01-01

    The report is divided into six working group discussions on the following subjects: 1) Chemical and physical mechanisms in the formation of uranium mineralization, geochronology, isotope geology and mineralogy; 2) Sedimentary basins and sandstone-type uranium deposits; 3) Uranium in quartz-pebble conglomerates; 4) Vein and similar type deposits (pitchblende); 5) Other uranium deposits; 6) Relation of metallogenic, tectonic and zoning factors to the origin of uranium deposits. Each working group paper contains a short introductory part followed by a discussion by the working group members

  10. Ninety years of mining and metallurgy in Trepča-sever conglomerate (part I

    Directory of Open Access Journals (Sweden)

    Nikolić Branislav

    2017-01-01

    Full Text Available Present company Trepča-Sever is formed by foreigners after the bombing of Serbia and Monten former Trepča Conglomerate located in northern part of Kosovo and Metohija, namely in three municipalities: North Kosovska Mitrovica, Zvečan and Leposavić. Main office of Trepča Conglomerate was always in Zvečan, flotation of lead-zinc ore (in the period of 1930- 1985, lead smelting and refining plants (founded in 1939, laboratory, Institute, electromechanical workshops and other ancillary services. In Leposavić flotation, ores of Kopaonik mines are processed, while financial and commercial services are located in the North Kosovska Mitrovica.

  11. Geology and potency of Uranium mineralization occurrences in Harau area, West Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Background of this study is due to the geological setting of Harau area and its surrounding, West Sumatera, that is identified as a favourable area for uranium accumulation which is indicated by the presence of anomalous radioactivity in the Tertiary sedimentary rocks deposited on the terrestrial environment and the presence of anomalous uranium contents in Pre-Tertiary granites in several places in West Sumatera, and the presence of radioactivity anomalous in the Pre Tertiary metamorphic rocks. The purpose of this study is to determine the potential formation of uranium mineralization in the Harau area, to be used as a basis to conduct more detailed research in order to inventory the potential of uranium resources in Indonesia. The scope of the discussion in this review includes a discussion of geology, geochemistry and radioactivity of the outcrops. The composition of regional stratigraphic from old to young is quartzite unit, phyllite unit, conglomerate unit, sandstone unit, tuff unit and alluvium river. The main fault that developed in the study area are normal faults trending southwest – northeast. The study area is splitted into two sections where the southeastern part relatives fall down of the northwest. Based on geological setting, radioactivity and uranium data then is assumed that Harau is a potential area for the formation of uranium mineralization in sandstone and its vein type. Sandstone type is expected occur in sandstone conglomerate unit of The Brani Formation and vein type is expected occur in the quartzite unit of The Kuantan Formation. (author)

  12. Ultrastructure and electrophoretic protein pattern of a nuclear fraction enriched in interchromatin granule conglomerations

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzowska-Gruca, S.; Zborek, A.; Gruca, S.

    1986-01-01

    Rats were injected with a cytostatic 1-nitro-9/3'-dimethylpropyloamine/acridine.2HCl to induce aggregation of interchromatin granules (IG). The conglomerations of IG were well preserved in isolated liver nuclei and in nuclear structures deprived of chromatin. This feature enabled obtaining a nuclear fraction enriched in IG. The method consisted in extraction of isolated nuclei with a non-ionic detergent and digestion with DNase I in a high ionic strength. Each step of isolation was ultrastructurally monitored using both the routine electron microscopy as well as a preferential staining of IG with bismuth. Presence of spots of tightly packed granules within IG conglomerations in the final fraction like in the nuclei in situ was a good ultrastructural marker of IG. The resulting fraction consisted predominantly of IG conglomerations. Their preferential staining with bismuth was well preserved. Minute amounts of fibrillar material originating from nuclear matrix and residual nuclei could be observed. Protein composition of the fraction enriched in IG was studied by SDS-polyacrylamide gel electrophoresis. After electrotransfer, nitrocellulose filters were fixed with glutaraldehyde and stained with bismuth method in order to identify IG proteins. The results of ultrastructural and cytochemical studies in comparison to electrophoretic protein pattern are discussed.

  13. Understanding the unusual reorganization of the nanostructure of a dark conglomerate phase

    NARCIS (Netherlands)

    Nagaraj, M.; Jones, J. C.; Panov, V. P.; Liu, H.; Portale, G.; Bras, W.; Gleeson, H. F.

    2015-01-01

    The dark conglomerate (DC) phase exhibited by a bent-core liquid crystal shows remarkable properties including an electric-field tunable chiral domain structure and a large (0.045) reduction of refractive index, while maintaining an optically dark texture when observed under crossed polarizers. A

  14. Geology and potential of the formation of sandstone type uranium mineralization at Hatapang region, North Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Study based on geological setting of Hatapang region, North Sumatera, identified as a favourable area to the formation of sandstone type uranium mineralization. This characterized by the occurred of anomalous radioactivity, uranium contents of the upper cretaceous granite intrusions and radioactivity anomalous of tertiary sedimentary rocks deposited in terrestrial environments. The study is objective to find out the potential formation of sandstone type-uranium mineralization within tertiary sedimentary rocks based on data’s studies of geological, geochemical, mineralogy, radioactivity of rocks. Stratigraphy of Hatapang area of the oldest to youngest are quartz units (permian-carboniferous), sandstone units (upper Triassic), granite (upper cretaceous), conglomerate units (Lower –middle Miocene) and tuff units (Pleistocene). Hatapang’s granite is S type granite which is not only potential as source of radioactive minerals, particularly placer type monazite, but also potential as source rocks of sandstone type-uranium mineralization on lighter sedimentary rocks. Sedimentary rock of conglomerate units has potential as host rock, even though uranium did not accumulated in its rocks since the lack number of carbon as precipitant material and dissolved U"+"6 in water did not reduced into U"+"4 caused the uranium mineralization did not deposited. (author)

  15. Opening the black box: internal capital markets and managerial power in conglomerates

    NARCIS (Netherlands)

    Glaser, M.; Lopez-de-Silanes, F.; Sautner, Z.

    2010-01-01

    How do firms allocate capital internally across units? Do more powerful and better connected managers inside a conglomerate get larger capital allocations? To answer these questions, we put together a unique five-year business-unit panel data set on planned and actual capital allocations inside a

  16. Managing conflict with a subordinate or a superior : Effectiveness of conglomerated behavior

    NARCIS (Netherlands)

    Van de Vliert, E.; Euwema, M.C.; Huismans, S.E.

    Rather than a single behavior, handling conflict is a conglomeration of behavioral components characterized by a pattern of occurrence and by a pattern of covariation of its components. Theories (R. R. Blake & J. S. Mouton, 1964, 1970; R.E. Walton, 1969) have predicted (a) that the forcing component

  17. The large uranium deposits, their position in the geological cycle, their distribution in the world and their economic importance

    International Nuclear Information System (INIS)

    Cuney, M.; Cathelineau, M.; Nguyen Trung, C.; Pagel, M.; Poty, B.; Aumaitre, R.; Leroy, J.; Ruhlman, F.

    1994-01-01

    The nine types of geological formations with uranium deposits (superficial, precambrian conglomerates, sandstones...) are reviewed. U ore deposits are generally the product of successive enrichments during the geological cycle. Two main mechanisms control U fractionation during the cycle: partial melting followed or not by fractional crystallization and redox reactions. Most of the U ore deposits were formed in relation with major geodynamic events. The most interesting deposits from an economical point of view are the Proterozoic unconformity related deposits which contain very large reserves at a much higher grade than in other deposits

  18. Coronation Hill U-Au mine, South Alligator Valley, Northern Territory: an epigenetic sandstone-type deposit hosted by debris-flow conglomerate

    International Nuclear Information System (INIS)

    Needham, R.S.; Stuart-Smith, P.G.

    1987-01-01

    The host rock at the Coronation Hill U-Au mine is a debris flow conglomerate, developed in a high-energy fluvial environment during deposition of the Coronation Sandstone of the El Sherana Group. Mineralisation took place by movement of low-temperature fluids from the U-enriched volcanics into the conduit sandstone and eventually into the reduced debris flow conglomerate and carbonaceous shale

  19. Relationships between the Brook Street Terrane and Median Tectonic Zone (Median Batholith) : evidence from Jurassic conglomerates

    International Nuclear Information System (INIS)

    Tulloch, A.J.; Kimbrough, D.L.; Landis, C.A.; Mortimer, N.; Johnston, M.R.

    1999-01-01

    U-Pb zircon ages of 237-180 Ma and c. 280 Ma of seven granitoid clasts from the Rainy River Conglomerate which lies within the eastern Median Tectonic Zone (Median Batholith) in Nelson, and the Barretts Formation of the Brook Street Terrane in Southland, constrain the depositional ages of both units to be no older than c. 180-200 Ma (Early Jurassic). The minimum age of the Rainy River Conglomerate is constrained by the 147 +2 -1 Ma (Latest Jurassic) emplacement age of the One Mile Gabbronorite (new name: previously western Buller Diorite). The ages and chemistry of five of the granitoid clasts are broadly compatible with derivation from rocks that are now represented by Triassic plutons of the Median Tectonic Zone (Median Batholith), although ages as young as 180 Ma are slightly outside the range of the latter as currently exposed in New Zealand. The age (273-290 Ma, 237 +/- 3 Ma) and chemistry of the other two clasts (one each from Rainy River Conglomerate and Barretts Formation) suggest derivation from the Brook Street Terrane. Similarity in stratigraphic age, depositional characteristics, granitoid clast ages and composition between Rainy River Conglomerate and Barretts Formation suggests that they are broadly correlative and collectively overlapped a combined Brook Street Terrane - Median Batholith (MTZ) before the Late Jurassic (147 +2 -1 Ma). Sedimentary overlap may also have continued across to Middle Jurassic conglomeratic strata in the Murihiku Terrane to the east of the Brook Street Terrane. A U-Pb zircon age of 261 +/- 2 Ma is reported for Pourakino Trondhjemite of the Brook Street Terrane. (author). 56 refs., 10 figs., 4 tabs

  20. Efficient Havinga–Kondepudi resolution of conglomerate amino acid derivatives by slow cooling and abrasive grinding

    NARCIS (Netherlands)

    Leeman, Michel; Noorduin, Wim L.; Millemaggi, Alessia; Vlieg, Elias; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.

    2010-01-01

    The complete resolution of the conglomerate racemates of two amino acid derivatives susceptible to racemization in solution was achieved by slow crystallization from a supersaturated solution accompanied by cooling and abrasive grinding.

  1. ENGINEERING GEOLOGICAL CHARACTERISTICS OF THE ROAD SOLIN - KLIS (DALMATIA, CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1993-12-01

    Full Text Available The research, that has been done both on the »intact« terrain and on the opened cuts and discontinuities, and which has been carried on in the basic caves of the object, as well as in the tunnels; has verified the engineering geological and basic tectonic characteristics of Senonian limestones, Eocene flysch, the Promina breccias and breccia-conglomerates, as well as Oligocene poorly sorted breccias, on the route of semi-highway Solin-Klis (Dalmatia, Croatia. The lab analyses, of the great number of the rock samples, have brought out the parametres of their basic physical and mechanical features within a particular engineering geological unit. The results, thus obtained, have been compared to the qualities of the rock structure block as a whole, and had been previously evaluated by applying RMR-classification of the rocks, and the results of the measured velocities of the longitudinal waves. It has been pointed out that similar procedure may be applied in the publication of General Engineering Geological Map of the Republic of Croatia (the paper is published in Croatian.

  2. Listing a Geological Rarity of ‘Stone Balls’ in Kysuce Among World Geotourism Destinations

    Science.gov (United States)

    Duraj, Miloš; Niemiec, Dominik; Marschalko, Marian; Yilmaz, Işik

    2016-10-01

    Kysuce, situated on the border with the Czech Republic and Poland, belongs among distinctive regions in the Slovak Republic. This region offers tourism many interesting sites. Few decades ago, Kysuce offered tourists and visitors well-preserved national architecture, which is nowadays concentrated in an open-air museum Vychylovka. Thanks to the rich afforestation and a sophisticated network of signs for hikers, hiking has been very popular. The ground relief and climatic conditions also encourage winter sports. The world-wide development of geotourism has also concerned this region. Despite a low-varied geological structure, there are unique geological formations that have attracted attention for years. For example, tourists visit the interesting mineralized springs and a remarkable crude oil seep in Korna. Geologically unique are also the occurrences of ‘stone balls’ from sandstone and conglomerates. This phenomenon has attracted attention of both geologists and esotericism supporters.

  3. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  4. A Parallel Algorithm for the Counting of Ellipses Present in Conglomerates Using GPU

    Directory of Open Access Journals (Sweden)

    Reyes Yam-Uicab

    2018-01-01

    Full Text Available Detecting and counting elliptical objects are an interesting problem in digital image processing. There are real-world applications of this problem in various disciplines. Solving this problem is harder when there is occlusion among the elliptical objects, since in general these objects are considered as part of the bigger object (conglomerate. The solution to this problem focusses on the detection and segmentation of the precise number of occluded elliptical objects, while omitting all noninteresting objects. There are a variety of computational approximations that focus on this problem; however, such approximations are not accurate when there is occlusion. This paper presents an algorithm designed to solve this problem, specifically, to detect, segment, and count elliptical objects of a specific size when these are in occlusion with other objects within the conglomerate. Our algorithm deals with a time-consuming combinatorial process. To optimize the execution time of our algorithm, we implemented a parallel GPU version with CUDA-C, which experimentally improved the detection of occluded objects, as well as lowering processing times compared to the sequential version of the method. Comparative test results with another method featured in literature showed improved detection of objects in occlusion when using the proposed parallel method.

  5. Thoughts about uranium-bearing quartz-pebble conglomerates: a summary of ideas presented at the workshop

    International Nuclear Information System (INIS)

    Skinner, B.J.

    1981-01-01

    A summation of papers given at the Workshop on the Genesis of Uranium- and Gold-Bearing Precambrian Quartz-Pebble Conglomerates held at Golden, Colorado, on October 13-15, 1975, is presented. Seven pertinent topics, chosen by the author, are compiled from the several papers and are critically discussed. The time of formation of these deposits is between 3- and 2-billion years ago. The uraniferous conglomerates appear to be of fluvial origin and the known uranium reserves are plotted along an idealized fluviatile system. The source areas for the placers are related to 3 billion year old granites, greenstones and metamorphic rocks of the cratons - these most probably were located paleogeographically in a polar region. The role of diagenesis in the formation of uranium ores is discussed with respect to oxygen content of Precambrian atmospheres and of subsurface waters. The effect of subsequent metamorphism and recrystallization upon indigenous pyrites and kerogen is related. Finally characteristics of known uranium deposits are correlated to suggest a strategy to be employed while prospecting for undiscovered uranium ores. (DT)

  6. The job market and temporary work programs. ANalysis of the case of the Greater La Plata conglomerate 2003-2008

    Directory of Open Access Journals (Sweden)

    Juliana Santa María

    2009-01-01

    Full Text Available This paper aims at looking into the job market situation in the Greater La Plata conglomerate, focusing its attention on the implementation of Temporary Work Programs as a clearly passive tool used by the State -especially during the last few decades- to deal with the population's employment issues. Based on the situation that the region presents, the specific situation of the municipality of Berisso which is part of the conglomerate will be looked into, in order to carry out an in-depth analysis of these types of policies' effective implementation forms and strategies on the municipal level. The Permanent Home Survey (EHP - INDEC, information provided by the Municipality and documents on Employment Policies and Programs will be used in order to complete this work.

  7. Ornithopod and Sauropod Dinosaur Remains from the Maastrichtian Al-Khod Conglomerate, Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Ann S. Schulp

    2008-06-01

    Full Text Available Fieldwork in the Upper Cretaceous (Maastrichtian Al-Khod Conglomerates in the Sultanate of Oman led to the discovery of a large bone fragment tentatively identified as a partial distal left humerus of a sauropod and an ornithopod dorsal vertebra. The very fragmentary state of preservation of the dorsal vertebra makes specific attribution difficult, but it shows remarkable similarities to the rhabdodontid dinosaurs Rhabdodon and Zalmoxes.

  8. Some aspects of the genesis of heavy mineral assemblages in Lower Proterozoic uranium-gold conglomerates

    International Nuclear Information System (INIS)

    Clemmey, H.

    1982-01-01

    Some genetic models for Lower Proterozoic gold- and uranium-bearing pyritic conglomerates favour a modified placer origin in which low levels of atmospheric oxygen are used to account for the survival of uraninite and pyrite. There are many difficulties with such models. New evidence concerning the genesis of the deposits is derived from a clast of ferric iron clay thought to represent a precursor sediment of the Witwatersrand Basin. Reworking of such clays and transport of a magnetite and ferric clay assemblage with subsequent sulphidation, could account for the porous pyrites, the absence of magnetite and the lack of hydraulic equivalence of the mineral grains in the conglomerates. The presence of oxygen, as indicated by the ferric iron clasts, would account for the evidence of mobility of uranium and of gold and would enhance their extraction from source rocks; particularly the release of gold from a precursor auriferous iron formation source. It is suggested that some aspects of the genesis of uranium deposits of the Witwatersrand and Elliott Lake may be similar to those of the Phanerozoic 'Roll Front' ores involving interaction between oxidizing uraniferous groundwaters and previously sulphidized and reduzate facies sediments. (author)

  9. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    Science.gov (United States)

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  10. Geology and geothermics of the Island of Milos (Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Fytikas, M.; Marinelli, G.

    1976-01-01

    Geothermal research which has been conducted on the island of Milos is reviewed and the island's geology is discussed in terms of the geodynamics of the eastern Mediterranean. The rock formations which outcrop at Milos are described in detail, including the crystalline basement, Neogene transgressive conglomerates and limestones, and the Quaternary volcanics and volcano-sedimentary series. The recent disjunctive tectonics and volcano-tectonics affecting Milos and the neighboring islands are reviewed. Thermal manifestations and their attendant mineralizations and hydrothermal alterations are described. The geophysical methods utilized in exploration and for the siting of production wells are described. Exploration work involved the drilling of 55 wells for thermometric determinations and a full scale electrical survey. Preliminary data from two production wells with bottom-hole temperatures in excess of 300/sup 0/C are reported. Fifty-four references are provided.

  11. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  12. The geological position, sedimentary record and composition of the Tylicz Conglomerate (Late Eocene-Oligocene): stratigraphical and paleogeographical implications (Magura Nappe, Polish Outer Carpathians)

    Science.gov (United States)

    Olszewska, Barbara; Oszczypko, Nestor

    2010-02-01

    During the Late Cretaceous to Paleogene the Magura Basin was supplied with clastic material from, non-existing today, source areas situated on the northern and southern margins of the basin. The northern source area is traditionally connected with Silesian Ridge, whereas the position of the southern one is still under discussion. The Upper Eocene-Oligocene pebbly mudstones of the Tylicz/Krynica facies zone contain exotic material derived from the south-Magura source area. The studied pebbles and clasts contain fragments of crystalline rocks, derived from a continental type of crust, and frequent clasts of Mesozoic to Paleogene deep and shallow-water limestones. Volcanites, rarely granitoides as well as schists, gneisses, quartzites and cataclasites were found in the group of crystalline exotic pebbles. The isotopic ages of "exotic" pebbles from the Tylicz section document a Variscan age of plutonic and metamorphic rocks. The composition of the Tylicz exotic conglomerates occupied the transitional position between the Jarmuta/Proč (Maastrichtian-Lower Eocene) and Strihovce (Eocene) exotic pebbles. The provenance of these rocks could be connected with Eocene exhumation of the SE sector of the Magura Basin basement. Another possibility can be explain by supply of siliciclastic material from a SE source area (Dacia and Tisza Mega-Units) and carbonate material from a S source area (ALCAPA Mega-Unit: Central Carpathian Block and Pieniny Klippen Belt).

  13. Paleogene Vertebrate Paleontology, Geology and Remote Sensing in the Wind River Basin

    Science.gov (United States)

    Stucky, R. K.; Krishtalka, L.

    1985-01-01

    Biostratigraphic and lithostratigraphic studies were used to correlate different events in the geologic evolution of the northeastern part of the Wind River Basin and have suggested several conclusions. Laterally equivalent exposures of the Lysite member from Cedar Ridge to Bridger Creek show a gradation in lithology from interbedded boulder conglomerates and sandstones to interbedded lenticular sandstones and mudstones to interbedded carbonaceous shales, coals and tabular sandstones. This gradation suggests a shift from alluvial fan to braided stream to paludal or lacustrine sedimentary environments during the late early Eocene. The Lysite and Lost Cabin members of the Wind River Formation are in fault contact in the Bridger Creek area and may intertongue to the east along Cedar Ridge. Ways in which remote sensing could be used in these studies are discussed.

  14. INVESTIGATION OF CEMENT CONCRETE CONGLOMERATE SOLIDIFICATION PROCESS BY IMPEDANCE SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    S. N. Bandarenka

    2015-01-01

    Full Text Available One of the most prospective directions in preservation  and increase of service live of  road pavements is a construction of  automobile roads with cement concrete surface. Modern tendencies for provision of road construction quality presuppose a necessity to control processes of solidification and subsequent destruction of the material while forming and using cement concrete conglomerate being considered as a basic element of the road surface.  Multiyear practical experience of  automobile road operation using cement concrete pavements reveals an importance for monitoring  such processes as formation and destruction of cement concrete materials. An impedance spectroscopy method has been tried out and proposed as a tool for solution of the given problem.Experimental samples of cement concrete have been prepared for execution of tests, graded silica sand and granite chippings with particle size from 0.63 to 2.5 mm have been used as a fine aggregate in the samples. Dependencies of resistance (impedance on AC-current frequency  have been studied for samples of various nature and granulometric composition. The Gamry  G300 potentiostat has been used for measurement of complex impedance value. A spectrum analysis and calculation of equivalent circuit parameters calculation have been carried out while using EIS Spectrum Analyzer program.Comparison of impedance spectra for the prepared cement concrete samples have made it possible to reveal tendencies in changing spectrum parameters during solidification and subsequent contact with moisture in respect of every type of the sample. An equivalent electrical circuit has been developed that  characterizes physical and chemical processes which are accompanied by charge transfer in cement concrete conglomerate. The paper demonstrates a possibility to use an impedance spectroscopy for solution of a number of actual problems in the field of cement concrete technology problems. Particularly, the problems

  15. Cross-sector diversification in financial conglomerates: simulations with a fair-value assets and liabilities model

    Directory of Open Access Journals (Sweden)

    Jacob A. Bikker

    2002-12-01

    Full Text Available Risk diversification is one of the many reasons for cross-sector mergers of financialinstitutes. This paper presents a fair-value type asset and liability model in order to identify diversification effects for financial conglomerates (PCs under various shocks. My analysis for the Netherlands reveals that diversification effects on PCs of especially interest rate shocks are very strong. In principle, substantial diversificationeffects argue for lower capital requirements for PCs. However, there are other non-negligible risks run by PCs to consider, namely contagion risk, regulatory arbitrage andcross-sector and TBTF moral hazard risks, which have not yet been quantified.

  16. Physicochemical Properties, Micromorphology and Clay Mineralogy of Soils Affected by Geological Formations, Geomorphology and Climate

    Directory of Open Access Journals (Sweden)

    A. Bayat

    2017-01-01

    Full Text Available Introduction: Soil genesis and development in arid and semi-arid areas are strongly affected by geological formations and geomorphic surfaces. Various morphological, physical, and geochemical soil properties at different geomorphic positions are usually attributed to different soil forming factors including parent material and climate. Due to variations in climate, geological formations (Quaternary, Neogene and Cretaceous and geomorphology, the aim of the present research was the study of genesis, development, clay mineralogy, and micromorphology of soils affected by climate, geology and geomorphology in Bardsir area, Kerman Province. Materials and Methods: The study area, 25000 ha, starts from Bardsir and extends to Khanesorkh elevations close to Sirjan city. The climate of the area is warm and semi-arid with mean annual temperature and precipitation of 14.9 °C and 199 mm, respectively. Soil moisture and temperature regimes of the area are aridic and mesic due to 1:2500000 map, provided by Soil and Water Research Institute. Moving to west and southwest, soil moisture regime of the area changes to xeric with increasing elevation. Using topography and geology maps (1:100000 together with Google Earth images, geomorphic surfaces and geologic formations of the area were investigated. Mantled pediment (pedons 1, 3, 7, and 8, rock pediment (pedon 2, semi-stable alluvial plain (pedon 6, unstable alluvial plain (pedon 5, piedmont plain (pedons 9 and 11, intermediate surface of alluvial plain and pediment (pedon 4, and old river terrace (pedon 10 are among geomorphic surfaces investigated in the area. Mantled pediment is composed of young Quaternary sediments and Cretaceous marls. Rock pediments are mainly formed by Cretaceous marls. Quaternary formations are dominant in alluvial plains. Alluvial terraces and intermediate surface of alluvial plain and pediment are dominated by Neogene conglomerates. Siltstone, sandstone, and Neogene marls together with

  17. Preliminary geological study in kabupaten Pamekasan area to support the selection of candidate site of nuclear desalination plant

    International Nuclear Information System (INIS)

    Ngadenin; Lilik Subiantoro; Kurnia Setiawan Widana

    2014-01-01

    The area around the southern coast Pamekasan is one of the candidates for the alternatives location of nuclear desalination plant site. In 1949 around Sampang Madura ever tectonic earthquake measuring 5 on the Richter scale with its epicenter on land. Tectonic earthquake with epicenter on land is likely related to the presence of active faults on the Madura island. Location prospective nuclear desalination plant site should be away or free of active faults. The study aimed to obtain geological information and find out the characteristics of tectonics including active fault to support site studies of nuclear desalination plant on the island of Madura. The method used is the geological mapping scale, 1 : 50,000. Lithology in the area along the south coast district Pamekasan is alluvium Holocene age and conglomerate units of Pleistocene age. There were no indications of active faults in the region. Candidates site at this location is less attractive in terms of geotechnical foundation as can be ascertained bedrock will be found sufficient in that building construction will require expensive. (author)

  18. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Vennemann, T.W.; Kesler, S.E.; O' Neil, J.R. (Univ. of Michigan, Ann Arbor (United States))

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The [delta][sup 18]O values of quartz pebbles within any one sample typically vary by [approximately] 4[per thousand] or more, but occasionally by as much as 8[per thousand], even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting [delta][sup 18]O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with [delta][sup 18]O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., [delta][sup 18]O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low [delta][sup 18]O values of chert pebbles (9[per thousand] to 11.5[per thousand]) relative to those expected for Archean and Proterozoic marine cherts (commonly [ge] 17[per thousand]) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  19. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    International Nuclear Information System (INIS)

    Vennemann, T.W.; Kesler, S.E.; O'Neil, J.R.

    1992-01-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The δ 18 O values of quartz pebbles within any one sample typically vary by ∼ 4 per-thousand or more, but occasionally by as much as 8 per-thousand, even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting δ 18 O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with δ 18 O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., δ 18 O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low δ 18 O values of chert pebbles (9 per-thousand to 11.5 per-thousand) relative to those expected for Archean and Proterozoic marine cherts (commonly ≥ 17 per-thousand) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold

  20. The uranium deposits of Ontario

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1981-01-01

    The principal types of uranium deposits in Ontario are carbonatites and fenites, alkalic volcanic rocks, pegiatites, calc-silicate rocks, pyritic quartz-pebble conglomerates, polymictic conglomerates and some pelitic rocks, and various 'pitchblende' deposits including late Precambrian unconformities, possibly late Precambrian diabase dikes, and other unconformities: carbonates, sandstones, lignites, and semi-pelitic rocks of middle and upper Precambrian age. Only red unzoned pegmatite and the pyritic quartz-pebble conglomerate have supported production. Ontario reasonably assured and estimated resources in the economic and subeconomic categories in 1977 amounted to 553 000 tonnes U, and 1977 production was 4000 tonnes U. Measured, indicated, and inferred resources in the Elliot Lake - Agnew Lake area are at least 400 000 tonnes U. The latter deposits are also a significant thorium resource. Geological features reflecting major changes in physics and chemistry are prime controls on distribution of uranium deposits. Geological province and subprovince boundaries, major faults, higher metamorphic grades, domain boundaries related to quartz monzonite batholiths, alkalic complexes, and the distribution of carbonate rocks are examples of such geological features

  1. Activation analysis and classification to source of samples from the Kimberley Reef Conglomerates

    International Nuclear Information System (INIS)

    Rasmussen, S.E.

    1977-01-01

    Three boreholes were drilled in the west, central, and eastern sections of the Durban Roodepoort Deep Mine, and twelve distinct strata were intersected. Twenty-two samples from the three borehole cores were analysed in triplicate for twenty-six elements, and, including standards, a total of 2000 determinations were made. Statistical analysis of the results obtained for twenty-four elements shows a successful back-classification of 98 per cent, whereas, if the conglomerates or quartzites are treated separately, 100 per cent success is obtained. When the present data are used for classification of the samples from the three cores analysed during the first phase of this project, 100 per cent accuracy of classification is achieved by use of only ten selected elements. The objects of this investigation have therefore been met successfully, and extension to further strata and to sampling beyond the confines of the mine is justified [af

  2. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts

    International Nuclear Information System (INIS)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-01

    -temperature, and metallogenic provinces; 21 - Magmatic-hydrothermal transition in the Roessing pegmatite: implications for uranium mineralisation; 22 - Deformation and partial fusion of a Archean-paleo-Proterozoic crust: implication on uraniferous ores mobilization and deposition, Torngats orogenesis, Ungava bay; 23 - Black chert pebbles of the Pongola basin conglomerates (∼2, 9 Ga - South Africa): a potential uranium source?; 24 - origin and evolution of detrital pyrites in meso-Archean conglomerates (3.08-2.64 Ga) of South Africa: uranium source or trap?; 25 - Experimental study of U(VI) carbonates with respect to 3 parameters: pH, carbonate concentration, temperature, using vibrational (Raman, FTIR, ATR) and optical (UV-visible) spectroscopy; 26 - Nature and significance of the contact between the Abbabis gneiss complex and the meta-sedimentary sequences of the Damara orogenic belt; 27 - Metallogenic potentialities of Proterozoic orogenic belts accreted to Archean basements: the Damara/Lufilien orogen - Namibia and Zambia; 28 - Contribution of the Geological Exploration to the development of the KATCO ISR mine - Chu-Sarysu basin, Kazakhstan; 29 - Remarks about some remarkable events which occurred during the Francevillien formation; 30 - Geochemical signature of different mineral phases obtained by ICP-MS laser ablation (trace elements and rare earths): Application Uranium deposits; 31 - Role of fluids and irradiation in complex pegmatite euxenite/zircon assemblies from Norway and their U-Pb geochronological consequences; 32 - Mechanical modeling of rupture around metamictic minerals; 33 - Helium diffusion in apatite: Effect alpha recoil-linked damages; 34 - Rare earth spectra in uranium oxides: a marker of the uranium deposit type; 35 - Rare earths: tracers of uranium behaviour during acid sulphated hydrothermal weathering - the Guadeloupe example; 36 - What metallogenic model for the Kiggavik-Andrew Lake trend? Nunavut, Canada; 37 - Uranium mobility in the Southern

  3. Nové poznatky o svrchní křídě u Kolína (střední Čechy)

    Czech Academy of Sciences Publication Activity Database

    Žítt, Jiří; Vodrážka, R.; Svobodová, Marcela

    2013-01-01

    Roč. 2012, Prosinec (2013), s. 102-108 ISSN 0514-8057 Institutional support: RVO:67985831 Keywords : conglomerate * macrofauna * palynomorphs * Upper Cretaceous * Central Bohemia Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2012/Zpravy_2012-19.pdf

  4. Microdistribution of Thorotrast conglomerates in lymph nodes and radiation exposure of single lymphocytes

    International Nuclear Information System (INIS)

    Steinstraesser, A.; Kemmer, W.; Muth, H.

    1979-01-01

    In Thorotrast patients, chromosome aberrations of lymphocytes from peripheral blood are to be used as a biological dosimeter. To get a significant dose-effect relationship it is necessary to estimate the absorbed dose of a single lymphocyte during its exposure time. In individual cases only average values can be calculated, based on assumptions of special distributions of Thorotrast. At first effects of the size of Thorotrast conglomerates and of their space distribution on the α-radiation dose distribution in their surroundings are described in a model. Then this model is transferred to the real dimensions and the histological structures of lymph nodes bearing Thorotrast. In some individual cases the microdistribution of Thorotrast has been determined in lymph nodes. Some of these results are demonstrated. According to these Thorotrast distributions, calculation of real absorbed dose of lymphocytes are performed. These values can be used for setting up a dose-effect relationship for biological dosimetry

  5. The clasts of Cretaceous marls in the conglomerates of the Konradsheim Formation (Pöchlau quarry, Gresten Klippen Zone, Austria)

    Science.gov (United States)

    Ślączka, Andrzej; Gasiñski, M. Adam; Bąk, Marta; Wessely, Godfrid

    2009-04-01

    Investigations were carried out on foraminiferids and radiolaria from redeposited clasts within the conglomerates of the Konradsheim Formation (Gresten Klippen Zone) in the area of the Pöchlau hill, east of Maria Neustift. These shales and marls are of Middle to Late Jurassic and Early Cretaceous age. In the latter clasts, foraminiferal assemblages with Tritaxia ex gr. gaultina as well as radiolaria species Angulobracchia portmanni Baumgartner, Dictyomitra communis (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lodogaensis Pessagno, Pseudoeucyrtis hanni (Tan), Rhopalosyringium fossile (Squinabol) were found. In one block from the uppermost part of the sequence there is an assemblage with Caudammina (H) gigantea, Rotalipora appenninica and Globotruncana bulloides. However, the brecciated character of this block and occurrence near a fault suggest that it was probably wedged into the conglomerates of the Konradsheim Formation during tectonic movements. In pelitic siliceous limestones below the Konradsheim Limestone radiolarian assemblages of Middle Callovian to Early Tithonian age were found. They enable correlation with the Scheibbsbach Formation. In a marly sequence, above the conglomeratic limestone, the foraminiferal assemblages contain taxa from mid-Cretaceous up to Paleocene. The present biostratigraphic investigation confirmed the previous stratigraphic assignments and imply clearly that the sedimentation of deposits similar to the Konradsheim Formation also occurred at the end of the Early Cretaceous and deposition of conglomeratic limestones within the Gresten Klippen Zone, and especially within the Konradsheim Formation, was repeated several times during the Late Jurassic and Early Cretaceous.

  6. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  7. The occurrence, origin and stratigraphic significance of bone-bearing mudstone pellet conglomerates from the Beaufort group in the Jansenville district, Cape Province, South Africa

    International Nuclear Information System (INIS)

    Turner, B.R.

    1981-01-01

    The lack of useful lithostratigraphic markers in the Beaufort Group in the southern Karoo Basin has focused attention on the biostratigraphy of the sediments. As a result a more refined scheme of biostratigraphic classification is now possible which may prove useful in fixing the stratigraphic position of the uranium mineralized horizons. The most important mineralized horizon in the Beaufort West area (contains about 90 per cent of all known uranium occurrences) is associated with the Pristerognathus/Diictodon assemblage zone, but the way in which this relates to the important uranium occurrences farther east, between Graaff-Reinet and Jansenville, is uncertain because of the lack of biostratigraphic control. Vertebrate remains have recently been found in mudstone pellet conglomerates in Beaufort channel sandstones along the Bullrivier in the Jansenville District, in an area that is extensively mineralized. The sandstones were deposited as point bar sands within a meandering river system flowing towards the north-east. The rivers drained a dry, arid to semi-arid alluvial plain and were characterized by fluctuating discharge and periods of low or negligible flow. These conditions promoted flood scour and fill activity and the deposition of internal mudstone pellet conglomerates. Hydrodynamic considerations suggest that estimates of bone transport velocity from their hydrodynamically equivalent quartz sphere is of limited value and can seldom, if ever, be applied to fossil bone accumulations. Identification of the bones from the conglomerates indicates that they belong to the Dino-cephalia biozone and not the overlying Pristerognathus/Diictodon zone. This suggests that the lower part of the Beaufort succession (formerly the Tapinocephalus zone) extends farther east than previously thought, and that the main mineralized horizon in this area occurs lower down in the succession than that around Beaufort West

  8. Geology and metallogeny of the volcanic complex of Rio Blanco Ullum. Province of San Juan. Republica Argentina

    International Nuclear Information System (INIS)

    Mendoza, N.; Weidmann, N.; Puigdomenech, H.; Weidmann, R.

    2007-01-01

    Preliminary results of a research carried out at the Complejo Rio Blanco de Ullum, San Juan. Argentina are summarized in the present paper. These studies are focused on geological and metallogenic features o f this unit. The study area is located 20 km. WNW of San Juan city with geographic coordinates of 31grades 30' South latitude and 68 grades 52' West longitude. The older rocks aotcroping in the area correspond to limestones of Ordovician San Juan Formation, the chronologic succession continues with sales and siltstones of Silurian Tambolar Formation, pelites and subgraywackes of Devonian Punta Negra Formation and finally a 1500 m thick package of piroclastics and sediments of Albarracin Formation of Tertiary age. Albarracin Formation is composed pf a Basal Member (sandstones and stilstones), a Tuffaceous Member (tuffs, tuffites and oligomictic breccia s with conglomerate interbed dings in the upper part) and a Conglomeratic Member (polimictic para conglomerates). According to piroclastics facies, relationships and spreading area of piroclastics deposits a c olapsed dome and avalanche model is proposed to be the main process for the piroclastics package outcropping in the area.Sedimentary and piroclastics rocks are intruded by five sub volcanic units as noted by Leveratto (1968) which are composed by different lithologies such as: Altered Da cite - Rhyolite, Ullum Da cite, Cerro Blanco de Zonda Andesite, Ullum Andesite and Hybrid Andesite.Detailed work on alteration assemblages and metallogenic features in the southwestern sector of the Complejo resulted in the identification of three alteration zones with characteric features of potassic, argillic and propyllitic signature. (author)

  9. The straight line hypothesis elaborated: case reference obesity, an argument for acidosis, oxidative stress, and disease conglomeration?

    Science.gov (United States)

    Berkemeyer, Shoma

    2010-07-01

    Studies report on the association between obesity and oxidative stress, with and without additional diseases. Macrophages in adipocytes, and hypoxia in adipose tissue have been suggested to explain how obesity can relate to oxidative stress. The straight line hypothesis using the lactic acid trap construct has been put forward to explain how proton imbalance can relate to obesity. Proton imbalance has been also reported to associate with the production of reactive oxygen species by inhibition of mitochondrial energy production. This review brings together existing literature and concepts to explain how obesity can relate to oxidative stress via protons, uniquely for itself or, as often observed, in conglomeration of additional diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Evaluation of the Cerro Solo nuclear ore, province of Chubut. Geological characteristics of the deposit and of the basin. Pt. 2

    International Nuclear Information System (INIS)

    Benitez, A.F.; Fuente, A.; Maloberti, A.; Landi, V.A.; Bianchi, R.E.; Marveggio de Bianchi, N.; Gayone, M.R.

    1993-01-01

    The Cerro Solo uranium ore deposit, is located 420 km west from Trelew city, Chubut province, in the extra-andean. The geologic environment belongs to the northwest edge portion of the intracratonic San Jorge Gulf Basin. The uraniferous district is named Pichinanes Ridge district. The mineralization lies 25 to 130 m depth, and is hosted by Los Adobes formation aged Aptian-Albian, made up by conglomerates, sandstones, coarse-sandstones and less abundant siltstones and claystones. The Cerro Solo ore deposit that belongs to the sandstone type-uranium occurrences are lenticular or tabular shaped, associated with organic material and pyrite, generally roughly parallel to the bedding (Trend-Type). The uranium minerals are uraninite and coffinite associated with organic material and pyrite, and frequently hematite, goethite, calcite, siderite and barite are observed. (Author)

  11. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    International Nuclear Information System (INIS)

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits

  12. Mitigating the consequences of future earthquakes in historical centres: what perspectives from the joined use of past information and geological-geophysical surveys?

    Science.gov (United States)

    Terenzio Gizzi, Fabrizio; Moscatelli, Massimiliano; Potenza, Maria Rosaria; Zotta, Cinzia; Simionato, Maurizio; Pileggi, Domenico; Castenetto, Sergio

    2015-04-01

    To mitigate the damage effects of earthquakes in urban areas and particularly in historical centres prone to high seismic hazard is an important task to be pursued. As a matter of fact, seismic history throughout the world informs us that earthquakes have caused deep changes in the ancient urban conglomerations due to their high building vulnerability. Furthermore, some quarters can be exposed to an increase of seismic actions if compared with adjacent areas due to the geological and/or topographical features of the site on which the historical centres lie. Usually, the strategies aimed to estimate the local seismic hazard make only use of the geological-geophysical surveys. Thorough this approach we do not draw any lesson from what happened as a consequences of past earthquakes. With this in mind, we present the results of a joined use of historical data and traditional geological-geophysical approach to analyse the effects of possible future earthquakes in historical centres. The research activity discussed here is arranged into a joint collaboration between the Department of Civil Protection of the Presidency of Council of Ministers, the Institute of Environmental Geology and Geoengineering and the Institute of Archaeological and Monumental Heritage of the National (Italian) Research Council. In order to show the results, we discuss the preliminary achievements of the integrated study carried out on two historical towns located in Southern Apennines, a portion of the Italian peninsula exposed to high seismic hazard. Taking advantage from these two test sites, we also discuss some methodological implications that could be taken as a reference in the seismic microzonation studies.

  13. Mlčechvostský slepenec – datování a geochemie karbonátového tmelu slepence

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Hercman, H.; Světlík, Ivo; Živor, Roman; Jačková, I.; Zelenka, P.; Bosák, Pavel

    2009-01-01

    Roč. 2008, - (2009), s. 79-81 ISSN 0514-8057 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : river terrace * Middle Pleistocene * conglomerate cement * radiocarbon dating * U-series dating Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2008/2008-20.pdf

  14. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits.

  15. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  16. Querns and mills during Roman times at the northern frontier of the Roman Empire (Belgium, Northern France, Southern Netherlands, Western Germany: Unraveling geological and geographical provenances, a multidisciplinary research project

    Directory of Open Access Journals (Sweden)

    Sibrecht Reniere

    2016-10-01

    Full Text Available This paper presents the results of a multi-disciplinary provenance study of querns and millstones during the Roman period (1st-4th century CE in the northern part of the Roman Empire (provinces of Gallia Belgica and Germania Inferior. Comparative petrographical, mineralogical and geochemical analysis allowed an international team of archaeologists and geologists to identify the different raw materials used for the manufacturing of querns and millstones. As a result, (litho- stratigraphic assignments as well as geological-geographical provenances are suggested or corroborated for the broad spectrum of these natural geo-materials. We give evidence for the exploitation of at least seven different rock types. They include sedimentary rocks (fine- to coarse-grained quartzitic and arkosic sandstones, conglomerates, limestones and volcanic rocks (vesicular lavas derived from different geological strata in the following geological-geographical settings: the volcanic Eifel area (Pleistocene lava, the Ardennes Massif (Palaeozoic sedimentary rocks and the Paris and Northern Sea Basin (Cenozoic sedimentary rocks. Furthermore we show that a large diversity existed within different productions (different types of hand-mills and mechanical powered mills and distribution patterns. This paper provides new data which will lead to new insights into the socio-economics of the local “Gallo-Roman” communities and into their networks within the northern Roman Empire.

  17. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  18. K otázce provenience svrchnokarbonských slepenců v severovýchodních Čechách

    Czech Academy of Sciences Publication Activity Database

    Mikuláš, Radek; Prouza, V.

    2008-01-01

    Roč. 2007, - (2008), s. 27-29 ISSN 0514-8057 R&D Projects: GA AV ČR IAA304130601 Institutional research plan: CEZ:AV0Z30130516 Keywords : Krkonoše Piedmont Basin * Intrasudetic Basin * Upper Carboniferous * Ordovician * Skolithos ichnofabric * conglomerates Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2007/2007-8.pdf

  19. Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky

    Science.gov (United States)

    Lyons, Erwin J.

    1957-01-01

    Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.

  20. Siwalik Group

    Indian Academy of Sciences (India)

    34

    Through the passage of geological time, trace-producing activities migrated from ... Mángano 1998), whereas fluvial trace fossils have received less attention. .... which has been divided into members - Lower Boulder Conglomerate, which is.

  1. Predicting multi-scale relationships between geomorphology and bedrock geology of the rocky intertidal in Central and Northern California

    Science.gov (United States)

    Wheeler, A.; Aiello, I. W.

    2014-12-01

    Substratum geology is fundamental in shaping rocky shore morphology. Specific lithologies have various responses to wave action, tectonic features (e.g. fractures, faults) and sedimentary structures (e.g. bedding), creating distinctive weathering profiles. Along with local oceanography and climate forcing, different rock substrata create coastal morphologies that can vary distinctly between scales, ranging from mm to km. Despite the complexity of the system, qualitative observations show coastal areas with similar rock types share similar geomorphologies. Thus, a statistic relationship between geomorphology (expressed for instance by surface parameter rugosity) and geology can be envisaged. There are multiple benefits of finding such a relationship, as rocky intertidal geomorphology can be an important determinant in which organisms can settle, grow, and survive in near shore communities: allowing the prediction of geomorphologic parameters determining coastal ecology solely based on substratum geology, a crucial aspect in guiding the selection of marine protected areas. This study presents preliminary results of multi-scale geospatial surveys (cm to tens of meters) of rocky intertidal outcrops from Central to Northern California using a Terrestrial Laser Scanner. The outcrops investigated are representative of the most common igneous and sedimentary rocks in California (granitoids, conglomerates, sandstones, mudstones) and metamorphic units. The statistical analysis of the survey data support the hypothesis that surface properties can change significantly with changing scale, each rock type having distinct surface characteristics which are similar to comparable lithologies exposed at different locations. These scale dependent variations are controlled by different lithologic and structural characteristics of the outcrop in question. Our data also suggests lithologic variability within a rock unit could be a very significant factor in controlling changes in

  2. Geological exploration of uranium ores at Burgos' basin

    International Nuclear Information System (INIS)

    Cabrera Valdez, M.E.

    1975-01-01

    The outcrop sediments of the Burgos river basin cover the complete Cenozoic sequence from the Pallaeocene to recent date, and are arranged in the form of parallel strips with a regional dip towards the east, in which direction the sediments become steadily younger. Generally speaking they correspond to a regressive process the lithology of which is an alternation of shales, sandstones, tuffaceous material and conglomerates. The explorations and evaluations of sedimentary uranium deposits so far carried out in the north-east of Mexico show close relationships between the mineralization and the sedimentary processes of the enclosing rock. Analysis of the sedimentary-type uranium ore bodies in Mexico indicates characteristics very similar to those found in the deposits of the same type which were first studied and described in southern Texas and were used as a standard for the first exploratory studies. The uranium ore in the State of Texas is found in sands belonging mainly to the Jackson group of the Eocene and, to a lesser extent, the Catahoula formation of Miocene-Oligocene age. In the Burgos basin the existence of uranium deposits in the non-marine Frio formation of Oligocene age, with geological characteristics similar to the Texan deposits, has been demonstrated. This comparative analysis suggests very good prospects for uranium exploration in the region; it is recommended that priority be given to intensive study of the sediments of the non-marine member of the Frio formation, and the Jackson and Catahoula formations. (author)

  3. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  4. Copper mineralization geology of Mandacaru, State of Piaui, Brazil

    International Nuclear Information System (INIS)

    Parente, C.V.

    1984-01-01

    The Mandacaru area, Sao Juliao county, Piaui, comprises a Precambrian crystalline basement of granitic to quartaz dioritic gneisses overlain by several younger units of low grade metamorphics, volcanic and sedimentary rocks. The late Proterozoic Sao Juliao sequence comprises folded epicontinental marine metasediments of rank greenschist facies, including phyllite marble, metarkose and quartzite. The Eopaleozoic Catole Formation is represented by continental volcanic material (basalt, andesitic basalt, dacite, rhyolite, pyroclastics) and sedimentary rocks (conglomerate, arkosic wacke, felspathic sandstone, silt-stone), intruded by the post-tectonic Mandacaru Granite and related dykes and apophyses of granophyre, quartz porphyry, and other felsic subvolcanic roks. The intrusive rocks display subalkaline to slightly alkaline (potassic) trends. Rb-Sr isotope determinations yielded a reference isochron of 550+-8 my, Ri=0,70924+-0,0010. Eopaleozoic volcanism, sedimentation and granite introsion are controlled by faulting and graben-like strucutures, the evolution of which culminated with the deposition of polymictic conglomerate and breccia of the Tamboril Formation. AII the previous units are unconformably overlain by the Silurian Serra Grande Formation at the eastern border of the Parnaiba Basin. (Author) [pt

  5. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  6. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  7. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  8. MARINE CONGLOMERATE AND REEF MEGACLASTS AT MAURITUS ISLAND: Evidences of a tsunami generated by a flank collapse of the PITON DE LA Fournaise volcano, Reunion Island?

    Directory of Open Access Journals (Sweden)

    R. Paris

    2014-05-01

    Full Text Available Tsunamis related to volcano flank collapse are typically a high-magnitude, low frequency hazard for which evaluation and mitigation are difficult to address. In this short communication, we present field evidences of a large tsunami along the southern coast of Mauritius Island ca. 4400 years ago. Tsunami deposits described include both marine conglomerates and coral boulders up to 90 m3 (> 100 tons. The most probable origin of the tsunami is a flank collapse of Piton de la Fournaise volcano, Réunion Island.

  9. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  10. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  11. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  12. Geophysical German mission

    International Nuclear Information System (INIS)

    Adelhardt, W.

    1989-01-01

    This work is about a geological study carried out in the Arroyo Grande region with the proposal to identify a gravimetric anomaly. The sequence of Precambrian quartzite conglomerates determine the auriferous area existence due the surface erosion as well as the heavy minerals in particular the pyrites

  13. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  14. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  15. Chemical composition of granite uraninites and of quartz-pebble-conglomerates-type uranium deposits: evidences for a placer-type origin for these deposits; Composition chimique des uraninites des granites et des gisements d'uranium de type conglomerats a galets de quartz: evidences pour une origine de type placer de ces gisements

    Energy Technology Data Exchange (ETDEWEB)

    Duhamel, I.; Cuney, M. [Nancy-Universite, Laboratoire G2R - UMR 7566, CNRS, CREGU, 54 - Vandoeuvre-les-Nancy (France)

    2009-07-01

    The authors report and comment data obtained by geochemical and mineralogical studies performed in several conglomerate-type uranium deposits located in South Africa and in Canada. These data display positive correlations between uranium enriching and that of thorium, rare earth notably. They compare the geochemical signature of uraninites of these conglomerates with that of granitoid uraninites of same age which could be their source. Measurements have been performed with an electronic microprobe for uranium oxide species and a ionic microprobe for rare earth contents. Different types of uranium-bearing minerals are identified which correspond to different mechanisms and origins of formation of uraninites

  16. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts; Reunion de la Societe Geologique de France - Uranium: geologie, geophysique, chimie. Recueil des resumes

    Energy Technology Data Exchange (ETDEWEB)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-15

    -temperature, and metallogenic provinces; 21 - Magmatic-hydrothermal transition in the Roessing pegmatite: implications for uranium mineralisation; 22 - Deformation and partial fusion of a Archean-paleo-Proterozoic crust: implication on uraniferous ores mobilization and deposition, Torngats orogenesis, Ungava bay; 23 - Black chert pebbles of the Pongola basin conglomerates ({approx}2, 9 Ga - South Africa): a potential uranium source?; 24 - origin and evolution of detrital pyrites in meso-Archean conglomerates (3.08-2.64 Ga) of South Africa: uranium source or trap?; 25 - Experimental study of U(VI) carbonates with respect to 3 parameters: pH, carbonate concentration, temperature, using vibrational (Raman, FTIR, ATR) and optical (UV-visible) spectroscopy; 26 - Nature and significance of the contact between the Abbabis gneiss complex and the meta-sedimentary sequences of the Damara orogenic belt; 27 - Metallogenic potentialities of Proterozoic orogenic belts accreted to Archean basements: the Damara/Lufilien orogen - Namibia and Zambia; 28 - Contribution of the Geological Exploration to the development of the KATCO ISR mine - Chu-Sarysu basin, Kazakhstan; 29 - Remarks about some remarkable events which occurred during the Francevillien formation; 30 - Geochemical signature of different mineral phases obtained by ICP-MS laser ablation (trace elements and rare earths): Application Uranium deposits; 31 - Role of fluids and irradiation in complex pegmatite euxenite/zircon assemblies from Norway and their U-Pb geochronological consequences; 32 - Mechanical modeling of rupture around metamictic minerals; 33 - Helium diffusion in apatite: Effect alpha recoil-linked damages; 34 - Rare earth spectra in uranium oxides: a marker of the uranium deposit type; 35 - Rare earths: tracers of uranium behaviour during acid sulphated hydrothermal weathering - the Guadeloupe example; 36 - What metallogenic model for the Kiggavik-Andrew Lake trend? Nunavut, Canada; 37 - Uranium mobility in the Southern

  17. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  18. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  19. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  20. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  1. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  2. Monitoring the fall of large atmospheric ice conglomerations: a multianalytical approach to the study of the Mejorada del Campo megacryometeor.

    Science.gov (United States)

    Orellana, Francisco Alamilla; Alegre, José Ma Ramiro; Cordero Pérez, José Carlos; Martín Redondo, Ma Paz; Delgado Huertas, Antonio; Fernández Sampedro, Ma Teresa; Menor-Salván, César; Ruiz-Bermejo, Marta; López-Vera, Fernando; Rodríguez-Losada, José A; Martinez-Frias, Jesus

    2008-04-01

    Certain local atmospheric anomalies, such as the formation of unusually large ice conglomerations (megacryometeors), have been proposed to be a potential natural hazard for people and aviation, as well as geoindicators for fingerprinting larger-scale atmospheric environmental changes. On March 13th 2007, at approximately 10:15 am, an ice chunk weighing about 10 kg fell from the clear-sky and crashed through the roof (around 15 m) of an industrial storage house in Mejorada del Campo, a town located 20 km east from Madrid. The megacryometeor monitoring follow-up and the original investigation presented here includes, for the first time, both logistic and scientific collaboration between the Laboratory of the Environment, Criminalistic Service (SECRIM, the Spanish "Guardia Civil") and academic and scientific institutions (universities and the Spanish National Research Council). We propose that the management procedure of the incident, along with the detailed scientific research and combination of analytical methodologies in different laboratories, can serve as a protocol model for other similar events.

  3. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  4. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  5. Photocatalytic degradation of clofibric acid, carbamazepine and iomeprol using conglomerated TiO2 and activated carbon in aqueous suspension.

    Science.gov (United States)

    Ziegmann, Markus; Frimmel, Fritz H

    2010-01-01

    The combination of powdered activated carbon (PAC) and TiO(2) has been tested for synergistic/antagonistic effects in the photocatalytic degradation of carbamazepine, clofibric acid and iomeprol. Synergistic effects are thought to be caused by rapid adsorption on the PAC surface followed by diffusion to the TiO(2) surface and photocatalytic degradation. The Freundlich constant K(F) was used for comparing the sorption properties of the three substances and it was found that K(F) for clofibric acid was 3 times lower than for carbamazepine and iomeprol, regardless of the kind of PAC used. A PAC with a distinct tendency to form conglomerates was selected so that a high percentage of the PAC surface was in direct proximity to the TiO(2) surface. The photocatalytic degradation of the pharmaceutically active compounds studied followed pseudo-first order kinetics. Synergistic effects only occurred for clofibric acid (factor 1.5) and an inverse relationship between adsorption affinity and synergistic effects was found. High affinity of the target substances to the PAC surface seemed to be counterproductive for the photocatalytic degradation.

  6. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  7. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  8. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  9. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  10. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  11. Time resolution of geologic events on the Keweenaw Peninsula and implications for development of the Midcontinent Rift system

    International Nuclear Information System (INIS)

    Davis, D.W.; Paces, J.B.

    1990-01-01

    Three flood-type lava flows from the Keweenaw Peninsula in upper Michigan have been precisely dated, using U-Pb analyses of zircon and baddeleyite. Zircons were extracted from pegmatoid segregations within two basaltic flows. Ages from the Copper City Flow, near the base of the Portage Lake Volcanics, and the Greenstone Flow, near the top, are 1096.2±1.8 Ma and 1094.0±1.5 Ma, respectively (95% confidence errors). U-Pb analyses of baddeleyite from these samples are in general agreement with the zircon results although some fractions appear slightly older, possibly due to 222 Rn loss. The age of an andesite flow from the Lake Shore Traps, 1000 m above the Portage Lake Volcanics and within the Copper Harbour Conglomerate, is 1087.2±1.6 Ma from analyses of zircon. This gives an age for sedimentation within the Copper Harbor Conglomerate. These ages, along with stratigraphic data, indicate a subsidence rate of 1.3 -0.6 +1.8 mm/y during eruption of the Portage Lake Volcanics and 0.2±0.1 mm/y (1σ errors) for the transitional period from flood basalt eruption to clastic sedimentation. Magma eruption rates were at least 0.02-0.05 km 3 /y during emplacement of the Portage Lake Volcanics. Rates as high as 0.2-0.6 km 3 /y are inferred from regional stratigraphic data and currently available precise dates from throughout the Lake Superior basin. These values are comparable to the high rates of magma production estimated for Phanerozoic continental flood basalt provinces. Analyses of three detrital zircon grains from a sandstone at the base of the Copper Harbor Conglomerate give ages from 1101 to 1106 Ma. A fraction consisting of 29 detrital zircon grains has an age of 1104±2 Ma indicating that sediments within the Copper Harbor Conglomerate were probably derived almost entirely from lower Keweenawan rocks. (orig./WB)

  12. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  13. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  14. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  15. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  16. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  17. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  18. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  19. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  20. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  1. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  2. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  3. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  4. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  5. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  6. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  7. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  8. A política bancária do regime militar: o projeto de conglomerado (1967-1973 The finance policy of military regime: the conglomerate project (1967-1973

    Directory of Open Access Journals (Sweden)

    José Pedro Macarini

    2007-12-01

    Full Text Available Este artigo examina a política bancária e financeira conduzida por Delfim Netto de 1967 a 1973, a qual se revestiu de características específicas. São examinadas as pronunciadas tendências à concentração no segmento dos bancos comerciais privados e a sua expansão para outras faixas de operação, formando conglomerados financeiros e, assim, alterando profundamente a estrutura projetada originalmente pela reforma de 1964. Ambos os processos estiveram vinculados à orientação particular da política econômica a partir de 1967, cujo sentido maior encontrou expressão na tentativa de implementar, no governo Médici, um projeto de conglomerado integrando banco e indústria, visando a consolidar um segmento de grandes empresas privadas nacionais. O artigo sistematiza evidência disponível acerca desse projeto estratégico - um capítulo importante da política econômica durante uma fase do regime militar.This article discusses the banking policy led by Delfim Netto from 1967 trough 1973, which had special features. It is examined the tendency to banking concentration, very intense in those years, as well as the acute centralization process which led to the constitution of financial conglomerates, thus transforming the financial structure in a way not foreseen by the banking and financial reforms of 1964. Both processes reflected the new course of economic policy since 1967, having as its major objective to induce the formation of a new form of private capitalist organization - the conglomerate, integrating banking and industry -, which would led to the consolidation of a segment of big national private firms. The article seeks to collect the available evidence about that strategic project developed during a phase of the military regime.

  9. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  10. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  11. Geological research for hot spring resources in the Kanno-kawa area, Tsukui-machi, Tanzawa mountains

    Energy Technology Data Exchange (ETDEWEB)

    1969-03-01

    The Kanno-kawa area is mainly composed of the following geological units: miocene submarine pyroclastic formation and its associated augite dolerite sheets, quartz diorite intrusive, and hornblende andesite dykes. The Miocene pyroclastic rocks mainly consist of tuff, tuff breccia, and agglomerate of basaltic, andestic, and dacitic composition intercalated with subordinate amounts of conglomerate, sandstone, and siltstone beds. These rocks were divided into two lithological facies: basaltic and andestic tuff and tuff breccia facies and a facies of dacitic pumice tuff with characteristic white or gray spots of siliceous pumice (2 to 35 mm in diameter). These pyroclastic rocks suffered metamorphism mainly related to the intrusion of quartz diorite. The metamorphic rocks can be divided into the following four zones: amphibolite, actinolite hornfels, pumpellyite-prehnite, and zeolite. Probably during the late stage of the metamorphism, hornblende andesite intruded along sheared zones running from NE or NNE toward SW or SSW. Above noted Miocene pyroclastic rocks, quartz diorite, and hornblende andesite also suffered a hydrothermal alteration by which many zeolite bearing veins or networks were formed. Mineral waters of the Tanzawa mountains are believed to be related to the intrusion of quartz diorite, hornblende andesite, and formation of zeolite veins. In this respect, mineral water of highly alkaline nature can be expected by deep drilling of 600 to 1,000 m at some places such as Choja-goya and Hikage-zawa of the Kanno-kawa area.

  12. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  13. Performance of a mixed-waste landfill amid geologic uncertainty—learning from a case study: Altamont Hills, California, U.S.A.

    Science.gov (United States)

    Taffet, Michael J.; Lamarre, Albert L.; Oberdorfer, June A.

    1991-11-01

    This paper presents a case study that illustrates how geologic factors, which are not always obvious without extensive study, may hamper later landfill performance. The site is Lawrence Livermore National Laboratory (LLNL) site 300. Two unlined landfills, opened in 1958, and 1968, contain small amounts of tritium, uranium-238, lead, and beryllium in a vast proportion of inert materials (gravel, wood, and plastic). Groundwater analyses indicate that tritium at activities up to 600,000 picoCuries per liter (pCi/l) is present in two plumes beneath and adjacent to the landfills within a perched water-bearing zone. The affected water-bearing zone averages 2 m in thickness and occurs within the late Miocene Neroly Formation, which is composed of feldspathic sandstones and siltstones and interbedded claystones and conglomerates. Scanning election microscopy (SEM) analysis indicates that diagenetic clays have occluded the porosity of much of the sandstones. However, abundant fractures appear to provide permeability. Depth to the water table fluctuates greatly beneath the site but averages about 10 m. In the past, following heavy rains, groundwater levels rose into the landfill bottoms and mobilized the tritium. Rapid recharge and rise of water levels appear to have been enhanced by the funnelling of surface water by topography, direct infiltration through fractures and permeable landfill materials, and the low permeability of the geologic materials that comprise the water-bearing zone. These and other hydrogeologic conditions contributed to groundwater contact with landfill materials but were not known before landfill construction. Such information is important for siting landfills in the current regulatory environment. Contaminant transport modeling indicates that even if the perched water-bearing zone were continuous to the site 300 boundary, tritium activities would undergo radioactive decay to background levels by the time the tritiated water could reach the site

  14. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  15. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  16. Revised Geologic Map of the Fort Garland Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Wallace, Alan R.; Machette, Michael N.

    2008-01-01

    The map area includes Fort Garland, Colo., and the surrounding area, which is primarily rural. Fort Garland was established in 1858 to protect settlers in the San Luis Valley, then part of the Territory of New Mexico. East of the town are the Garland mesas (basalt-covered tablelands), which are uplifted as horsts with the Central Sangre de Cristo fault zone. The map also includes the northern part of the Culebra graben, a deep structural basin that extends from south of San Luis (as the Sanchez graben) to near Blanca, about 8 km west of Fort Garland. The oldest rocks exposed in the map area are early Proterozic basement rocks (granites in Ikes Creek block) that occupy an intermediate structural position between the strongly uplifted Blanca Peak block and the Culebra graben. The basement rocks are overlain by Oligocene volcanic and volcaniclastic rocks of unknown origin. The volcanic rocks were buried by a thick sequence of basin-fill deposits of the Santa Fe Group as the Rio Grande rift formed about 25 million years ago. The Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts, was deposited within sediment, and locally provides a basis for dividing the group into upper and lower parts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Exposures of the sediment beneath the basalt and within the low foothills east of the Central Sangre de Cristo fault zone are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) is preserved as isolated remnants that cap high surfaces north and east of Fort Garland. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. The Central

  17. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  18. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  19. Development of cataclastic foliation in deformation bands in feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil

    Science.gov (United States)

    Nicchio, Matheus A.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Souza, Jorge A. B.; Carvalho, Bruno R. B. M.; Bezerra, Francisco H. R.

    2018-02-01

    In this work we describe the deformation mechanisms and processes that occurred during the evolution of cataclastic deformation bands developed in the feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. We studied bands with different deformation intensities, ranging from single cm-thick tabular bands to more evolved clustering zones. The chemical identification of cataclastic material within deformation bands was performed using compositional mapping in SEM images, EDX and XRD analyses. Deformation processes were identified by microstructural analysis and by the quantification of comminution intensity, performed using digital image processing. The deformation bands are internally non homogeneous and developed during five evolutionary stages: (1) moderate grain size reduction, grain rotation and grain border comminution; (2) intense grain size reduction with preferential feldspar fragmentation; (3) formation of subparallel C-type slip zones; (4) formation of S-type structures, generating S-C-like fabric; and (5) formation of C‧-type slip zones, generating well-developed foliation that resembles S-C-C‧-type structures in a ductile environment. Such deformation fabric is mostly imparted by the preferential alignment of intensely comminuted feldspar fragments along thin slip zones developed within deformation bands. These processes were purely mechanical (i.e., grain crushing and reorientation). No clays or fluids were involved in such processes.

  20. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  1. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  2. Database system of geological information for geological evaluation base of NPP sites(I)

    International Nuclear Information System (INIS)

    Lim, C. B.; Choi, K. R.; Sim, T. M.; No, M. H.; Lee, H. W.; Kim, T. K.; Lim, Y. S.; Hwang, S. K.

    2002-01-01

    This study aims to provide database system for site suitability analyses of geological information and a processing program for domestic NPP site evaluation. This database system program includes MapObject provided by ESRI and Spread 3.5 OCX, and is coded with Visual Basic language. Major functions of the systematic database program includes vector and raster farmat topographic maps, database design and application, geological symbol plot, the database search for the plotted geological symbol, and so on. The program can also be applied in analyzing not only for lineament trends but also for statistic treatment from geologically site and laboratory information and sources in digital form and algorithm, which is usually used internationally

  3. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  4. On some aspects of the stratigraphy, depositional environment and its bearing on uranium mineralisation in parts of the Singhbhum shear zone, Bihar

    International Nuclear Information System (INIS)

    Virnave, S.N.; Mukhopadhyay, T.K.; Krishnabadri, N.S.R.

    1994-01-01

    A review of the geology and controls of uranium mineralisation in the Singhbhum Shear Zone between Narwapahar (Lat. 22deg44'N; Long. 86deg15'E) in the west, to Ghatsila (Lat. 22deg25'N; Long. 86deg20'E) in the southeast and up to Dalmas in the north is presented in the light of new data based on facies analysis and palaeo-current studies on the conglomerate and associated meta-sediments in the area. Synthesis and integration of geologic data have led to the following conclusions: a) The facies variation and its distribution pattern in the area demonstrate fluviatile conditions of deposition with upward fining and thinning sequences b) The sedimentary sequence shows progressive younging towards north without any obvious break or juxta-position of the older over the younger. c) The nature of Jaduguda sedimentary facies assemblage is indicative of a fluvial fan with conglomerate gray-wacke-arenite assemblage representing proximal fan facies. On the basis of facies model, the area north of Subarnarekha river represents a meandering fluvial pattern. d) Uranium mineralisation is distinctly stratabound with characteristic facies association. (author). 13 refs., 11 figs., 3 tabs

  5. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  6. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  7. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  8. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  9. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  10. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  11. Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility

    Science.gov (United States)

    Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.

    2017-11-01

    Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples 〈 χ 〉 with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility 〈 χ 〉 of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = 〈 χ 〉 /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).

  12. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  13. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  14. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  15. Inventory of uranium prospect area Rantau Prapat North Sumatra: general prospection stage

    International Nuclear Information System (INIS)

    Wusana, Y.; Djalil, A.; Sriyono; Sutriyono, A.; Sajiyo

    2000-01-01

    The research has been carried out to gain knowledge of geology, radiometry, geochemistry to bound U prospect area scale 1:50.000. Based on investigation result of preliminary prospection was obtained indication of uranium mineralization as stream sediment anomalies in meta sandstone (Perm-Carboniferous) 0.86-28.00 ppm, sandstone (Middle-Upper Miosen) 1.192-7.20 ppm, granite (Upper Permian) 10.71-12.00 ppm; The total U content in sandstone until 10.29 ppm, granite 33.24 ppm, and radiometry of stand stone 25-150 cps, granite 200-500 cps. Lithology of the prospect area consist of quartzite, phyllitte, sandstone, siltstone, clay stone, conglomerate, granite, quartz feldspatic veins, andesite, tufaceous. Strike slip fault, normal fault, foliation and folding has been obtained in these area. Uranium anomalies of stream sediments were found in Conglomerate-Stand stone (1.04-4.80) ppm, Quartzite-Phyllite (0.91-1.90) ppm and Granite units (9.81-13.20) ppm. Uranium content of Conglomerate-stand stone (2.5-5) ppm, quartzite-phyllite (3.0-46.0) ppm, tuffaceous (9.0-22.0) ppm and granite (biotite muscovite) (23.5-40.0) ppm. Granite in these area is as uranium source. Based on anomaly of stream sediments on Conglomerate-Stand stone unit only about 7.64 km 2 , Quartzite-Phyllite 12.04 km 2 , Granite 10.20 km 2 and no supported by heavy mineral anomalies, radiometry and U rock content, so it was advised to not investigate follow up. (author)

  16. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  17. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  18. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  19. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    Science.gov (United States)

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  20. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  1. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  2. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  3. The geology of the Falkland Islands

    OpenAIRE

    Aldiss, D.T.; Edwards, E.J.

    1999-01-01

    This report is complementary to the 1:250 000 scale geological map of the Falkland Islands compiled in 1998. The report and map are products of the Falkland Islands Geological Mapping Project (1996-1998). Geological observation and research in the Islands date from 1764. The Islands were visited during two pioneering scientific cruises in the 19th century. Subsequently, many scientists visited en route to the Antarctic or Patagonia. Geological affinities to other parts of the sout...

  4. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  5. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  6. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  7. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  8. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  9. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  10. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  11. 49 CFR 801.59 - Geological records.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  12. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  13. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  14. Intelligent Learning for Knowledge Graph towards Geological Data

    Directory of Open Access Journals (Sweden)

    Yueqin Zhu

    2017-01-01

    Full Text Available Knowledge graph (KG as a popular semantic network has been widely used. It provides an effective way to describe semantic entities and their relationships by extending ontology in the entity level. This article focuses on the application of KG in the traditional geological field and proposes a novel method to construct KG. On the basis of natural language processing (NLP and data mining (DM algorithms, we analyze those key technologies for designing a KG towards geological data, including geological knowledge extraction and semantic association. Through this typical geological ontology extracting on a large number of geological documents and open linked data, the semantic interconnection is achieved, KG framework for geological data is designed, application system of KG towards geological data is constructed, and dynamic updating of the geological information is completed accordingly. Specifically, unsupervised intelligent learning method using linked open data is incorporated into the geological document preprocessing, which generates a geological domain vocabulary ultimately. Furthermore, some application cases in the KG system are provided to show the effectiveness and efficiency of our proposed intelligent learning approach for KG.

  15. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  16. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  17. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  18. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  19. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  20. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  1. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  2. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  3. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  4. Data release for intermediate-density hydrogeochemical and stream sediment sampling in the Vallecito Creek Special Study Area, Colorado, including concentrations of uranium and forty-six additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.

    1981-04-01

    A sediment sample and two water samples were collected at each location about a kilometer apart from small tributary streams within the area. One of the two water samples collected at each location was filtered in the field and the other was not. Both samples were acidified to a pH of < 1; field data and uranium concentrations are listed first for the filtered sample (sample type = 07) and followed by the unfiltered sample (sample type = 27) for each location in Appendix I-A. Uranium concentrations are higher in unfiltered samples than in filtered samples for most locations. Measured uranium concentrations in control standards analyzed with the water samples are listed in Appendix II. All sediments were air dried and the fraction finer than 100 mesh was separated and analyzed for uranium and forty-six additional elements. Field data and analytical results for each sediment sample are listed in Appendix I-B. Analytical procedures for both water and sediment samples are briefly described in Appendix III. Most bedrock units within the sampled area are of Precambrian age. Three Precambrian units are known or potential hosts for uranium deposits; the Trimble granite is associated with the recently discovered Florida Mountain vein deposit, the Uncompahgre formation hosts a vein-type occurrence in Elk Park near the contact with the Irving formation, and the Vallecito conglomerate has received some attention as a possible host for a quartz pebble conglomerate deposit. Nearly all sediment samples collected downslope from exposures of Timble granite (geologic unit symbol ''T'' in Appendix I) contain unusually high uranium concentrations. High uranium concentrations in sediment also occur for an individual sample location that has a geologic setting similar to the Elk Park occurrence and for a sample associated with the Vallecito conglomerate

  5. The sedimentological characteristics of microbialites of the Cambrian in the vicinity of Beijing, China

    Directory of Open Access Journals (Sweden)

    Yin-Ye Wu

    2017-04-01

    Full Text Available With oil and gas exploration transferring to deeper and more ancient marine strata, more researches have been conducted about the Meso–Neoproterozoic and Cambrian microbial carbonate rocks by petroleum geologists. The Cambrian deposits experienced the first transgression of the Paleozoic, with shallow marine facies depositing in most areas, which are favorable for different kinds of biological reproduction. The Lower Cambrian in Beijing area is lithologically dominated by purple red shales interbedded with limestones, the Middle Cambrian is mainly composed of thick oolitic limestones, and the Upper Cambrian consists of thin limestones and flat-pebble conglomerates. Two beds of microbial carbonate rocks were discovered in the Cambrian outcrops in the vicinity of Beijing. One is from the Zhangxia Formation of Middle Cambrian, and the other is from the Gushan Formation of Upper Cambrian. The microbialites are characterized by combination of multiple stromatolites forming different bioherms. The bioherms are mostly in oval shape and with different sizes, which are 3–4 m long, and 1–3 m high. The surrounding strata beneath the bioherms are oolitic limestones. A central core of flat-pebble conglomerates occurred within each bioherm. Wavy or columnar stromatolites grow on the basis of flat-pebble conglomerates, with dentate erosional surfaces. The bioherm carbonate rocks are interpreted as products from a deep ramp sedimentary environment where potential oil and gas reservoirs can be found. The analysis of sedimentological characteristics of bioherm carbonate rocks and its lithofacies palaeogeography has significant implication for petroleum exploration. Research on geological record of microbialites is beneficial to investigating the Earth evolution, biodiversity, palaeoenvironment and palaeoclimate change, as well as biological extinction event during geological transitions. It also gives warning to human beings of modern biological crisis.

  6. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  7. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  8. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  9. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  10. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  11. Provincial geology and the Industrial Revolution.

    Science.gov (United States)

    Veneer, Leucha

    2006-06-01

    In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology.

  12. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  13. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  14. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq

    Science.gov (United States)

    Othman, Arsalan A.; Gloaguen, Richard

    2017-09-01

    Lithological mapping in mountainous regions is often impeded by limited accessibility due to relief. This study aims to evaluate (1) the performance of different supervised classification approaches using remote sensing data and (2) the use of additional information such as geomorphology. We exemplify the methodology in the Bardi-Zard area in NE Iraq, a part of the Zagros Fold - Thrust Belt, known for its chromite deposits. We highlighted the improvement of remote sensing geological classification by integrating geomorphic features and spatial information in the classification scheme. We performed a Maximum Likelihood (ML) classification method besides two Machine Learning Algorithms (MLA): Support Vector Machine (SVM) and Random Forest (RF) to allow the joint use of geomorphic features, Band Ratio (BR), Principal Component Analysis (PCA), spatial information (spatial coordinates) and multispectral data of the Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite. The RF algorithm showed reliable results and discriminated serpentinite, talus and terrace deposits, red argillites with conglomerates and limestone, limy conglomerates and limestone conglomerates, tuffites interbedded with basic lavas, limestone and Metamorphosed limestone and reddish green shales. The best overall accuracy (∼80%) was achieved by Random Forest (RF) algorithms in the majority of the sixteen tested combination datasets.

  15. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  16. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  17. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  18. Evaluation of in situ sulfate reduction as redox buffer capacity in groundwater flow path

    International Nuclear Information System (INIS)

    Ioka, Seiichiro; Iwatsuki, Teruki; Amano, Yuki; Furue, Ryoji

    2007-01-01

    For safety assessment of geological isolation, it is important to evaluate in situ redox buffer capacity in high-permeability zone as groundwater flow path. The study evaluated in situ sulfate reduction as redox buffer capacity in the conglomerate bedding in Toki Lignite-bearing Formation, which occurs at the lowest part of sedimentary rocks overlying basement granite. The bedding plays an important role as the main groundwater flow path. The result showed that in situ redox buffer capacity in the conglomerate bedding has been identified on first nine months, whereas in the following period the redox buffer capacity has not been identified for about fifteen months. This will be caused by the bedding became inappropriate for microbial survival as the organic matter which is needfuel for microbial activity was consumed. Thus, there will be limited redox buffer capacity in groundwater flow path even in formation including organic matter-bearing layer. (author)

  19. A Geospatial Information Grid Framework for Geological Survey

    OpenAIRE

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of ...

  20. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  1. County digital geologic mapping. Final report

    International Nuclear Information System (INIS)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-01-01

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included

  2. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    Science.gov (United States)

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I

  3. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  4. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  5. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  6. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  7. Geocongress 84: 20. Geological congress of the Geological Society of South Africa. Abstracts: Pt. 1. General

    International Nuclear Information System (INIS)

    1984-01-01

    Various aspects of the geology, geochemistry and geophysics of the geologic deposits in South Africa are dealt with. Uranium and thorium resources are included in this. There are also chapters on stratigraphy, petrology and petrochemistry

  8. Geology of Cardiff and Faraday Townships

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, D F

    1960-12-31

    The area described in this report lies at the centre of the Haliburton-Bancroft uranium district in Ontario, where prospecting and mining have been carried out for over 50 years. The report describes the area`s physiography, natural resources, general geology (Precambrian metasedimentary, plutonic, and granitic and syenitic rocks), structural geology, and economic geology. The latter section includes descriptions of occurrences, claims, mines, and mineral properties, including the principal uranium properties in the area.

  9. Geology and uranium favorability of the Sonora Pass region, Alpine and Tuolumne Counties, California

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, J.S.; Short, W.O.

    1981-06-01

    Uranium mineralization at the Juniper Mine is restricted to host rocks of the Relief Peak Formation and is most common in coarse-grained lithic sandstone, conglomerate, and lithic wacke. The richest beds contain as much as 0.5% U/sub 3/O/sub 8/. Uranium is present as coffinite, uraninite, and unidentified minerals. Thorium/uranium ratios are generally low and erratic. Equivalent uranium determinations are low in comparison with chemical uranium values, indicating that uranium mineralization of the Juniper Mine is geologically young. Core drilling at 16 localities shows that widely separated exposures of the Relief Peak Formation have very similar lithology, geochemistry, and stratigraphy. Some sections are similar to the Juniper Mine section. Core from the bottom of drill hole SP-1 contains 83 ppM uranium, the greatest known concentration outside the mine area. Significant uranium deposits may be concealed beneath the thick Tertiary volcanic cover of the region. The quartz latitic Eureka Valley Tuff is fairly widespread in east-central California and western Nevada. It contains 12 to 14 ppM uranium and stratigraphically overlies the Relief Peak Formation. It is permeable and contains abundant alkali metals and volcanic glass. Because of its petrology, geochemistry, and position, this formation is the most likely source for uranium mineralization of the Sonora Pass region. It should be examined as a potential source rock in other areas with special regard to its relationship to carbonaceous sedimentary formations. The uraniferous granite pegmatitite dike that crops out in the Niagara Creek area appears too small to be a significant source rock. The most favorable rocks in the Sonora Pass region occur near the Juniper Mine and west of it, in the Dardanelles, the Whittakers Dardanelles, and the area of the Big Meadow Quadrangle. Potential uranium host rocks crop out in areas along the crest of the Sierra Nevada from Lake Tahoe to Yosemite.

  10. Geology and uranium favorability of the Sonora Pass region, Alpine and Tuolumne Counties, California

    International Nuclear Information System (INIS)

    Rapp, J.S.; Short, W.O.

    1981-06-01

    Uranium mineralization at the Juniper Mine is restricted to host rocks of the Relief Peak Formation and is most common in coarse-grained lithic sandstone, conglomerate, and lithic wacke. The richest beds contain as much as 0.5% U 3 O 8 . Uranium is present as coffinite, uraninite, and unidentified minerals. Thorium/uranium ratios are generally low and erratic. Equivalent uranium determinations are low in comparison with chemical uranium values, indicating that uranium mineralization of the Juniper Mine is geologically young. Core drilling at 16 localities shows that widely separated exposures of the Relief Peak Formation have very similar lithology, geochemistry, and stratigraphy. Some sections are similar to the Juniper Mine section. Core from the bottom of drill hole SP-1 contains 83 ppM uranium, the greatest known concentration outside the mine area. Significant uranium deposits may be concealed beneath the thick Tertiary volcanic cover of the region. The quartz latitic Eureka Valley Tuff is fairly widespread in east-central California and western Nevada. It contains 12 to 14 ppM uranium and stratigraphically overlies the Relief Peak Formation. It is permeable and contains abundant alkali metals and volcanic glass. Because of its petrology, geochemistry, and position, this formation is the most likely source for uranium mineralization of the Sonora Pass region. It should be examined as a potential source rock in other areas with special regard to its relationship to carbonaceous sedimentary formations. The uraniferous granite pegmatitite dike that crops out in the Niagara Creek area appears too small to be a significant source rock. The most favorable rocks in the Sonora Pass region occur near the Juniper Mine and west of it, in the Dardanelles, the Whittakers Dardanelles, and the area of the Big Meadow Quadrangle. Potential uranium host rocks crop out in areas along the crest of the Sierra Nevada from Lake Tahoe to Yosemite

  11. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  12. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  13. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  14. Three-dimensional Geological and Geo-mechanical Modelling of Repositories for Nuclear Waste Disposal in Deep Geological Structures

    International Nuclear Information System (INIS)

    Fahland, Sandra; Hofmann, Michael; Bornemann, Otto; Heusermann, Stefan

    2008-01-01

    To prove the suitability and safety of underground structures for the disposal of radioactive waste extensive geo-scientific research and development has been carried out by BGR over the last decades. Basic steps of the safety analysis are the geological modelling of the entire structure including the host rock, the overburden and the repository geometry as well as the geo-mechanical modelling taking into account the 3-D modelling of the underground structure. The geological models are generated using the special-construction openGEO TM code to improve the visualisation an d interpretation of the geological data basis, e.g. borehole, mine, and geophysical data. For the geo-mechanical analysis the new JIFE finite-element code has been used to consider large 3-D structures with complex inelastic material behaviour. To establish the finite-element models needed for stability and integrity calculations, the geological models are simplified with respect to homogenous rock layers with uniform material behaviour. The modelling results are basic values for the evaluation of the stability of the repository mine and the long-term integrity of the geological barrier. As an example of application, the results of geological and geo-mechanical investigations of the Morsleben repository based on 3-D modelling are presented. (authors)

  15. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Stark, T.

    1988-01-01

    Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical condition have been performed since 1977 in specific site investigation as well as for geoscientific projects. The database comprises four main groups of data volumes. These are: geological data, geophysical data, hydrogeological data, and hydrochemical data. In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes. This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, and since July 1982 by Swedish Geological Co, SGAB. The geological investigations have been divided into three categories, and each category is stored separately in the database. The are: surface factures, core mapping, and chemical analyses. At SGU/SGAB the geological data were stored on-line on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. In the report the data flow of each of the three geological information categories are described separately. (L.E.)

  16. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  17. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  18. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  19. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  20. Evaluating Boy Scout Geology Education, A Pilot Study

    Science.gov (United States)

    Hintz, R. S.; Thomson, B.

    2008-12-01

    This study investigated geology knowledge acquisition by Boy Scouts through use of the Boy Scout Geology Merit Handbook. In this study, boys engaged in hands-on interactive learning following the requirements set forth in the Geology Merit Badge Handbook. The purposes of this study were to determine the amount of geology content knowledge engendered in adolescent males through the use of the Geology Merit Badge Handbook published by the Boy Scouts of America; to determine if single sex, activity oriented, free-choice learning programs can be effective in promoting knowledge development in young males; and to determine if boys participating in the Scouting program believed their participation helped them succeed in school. Members of a local Boy Scout Troop between the ages of 11 and 18 were invited to participate in a Geology Merit Badge program. Boys who did not already possess the badge were allowed to self-select participation. The boys' content knowledge of geology, rocks, and minerals was pre- and post-tested. Boys were interviewed about their school and Scouting experiences; whether they believed their Scouting experiences and work in Merit Badges contributed to their success in school. Contributing educational theories included single-sex education, informal education with free-choice learning, learning styles, hands-on activities, and the social cognitive theory concept of self-efficacy. Boys who completed this study seemed to possess a greater knowledge of geology than they obtained in school. If boys who complete the Boy Scout Geology Merit Badge receive additional geological training, their field experiences and knowledge acquired through this learning experience will be beneficial, and a basis for continued scaffolding of geologic knowledge.

  1. Fission-track ages and their geological interpretation

    International Nuclear Information System (INIS)

    Wagner, G.A.

    1981-01-01

    In fission-track dating, experimental procedures such as etching and thermal pre-treatment may strongly affect the age values determined and their geological interpretation. This peculiarity is due to the common phenomenon of partial fading of fossil (spontaneous-) fission tracks during a sample's geological history. The proper geological interpretation of the age data must take into account the specific experimental conditions, the stability characteristics and size distribution of fission tracks in the sample, the ages of co-existing minerals, and the independent information about the thermal history of the geological region. (author)

  2. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  3. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  4. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  5. Ontology-aided annotation, visualization and generalization of geological time-scale information from online geological map services

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a RDF (Resource Description Framework) model to represent

  6. Ontology-aided annotation, visualization and generalization of geological time scale information from online geological map services

    NARCIS (Netherlands)

    Ma, Marshal; Ma, X.; Carranza, E.J.M; Wu, C.; van der Meer, F.D.

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the

  7. Long-term characteristics of geological conditions in Japan. Pt. 1. Fundamental concept for future's prediction of geological conditions and the subjects

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro; Chigira, Masahiro.

    1997-01-01

    It is very important to evaluate the long-term stability of geological conditions such as volcanic activity, uplift-subsidence, earthquakes, faulting and sea level change when the long-term safety performance of HLW geological disposal is investigated. We proposed the extrapolation method using the geological date obtained in the geologic time of the last 500 ka to predict the future's tectonic movements in Japan. Furthermore, we extract geological conditions that would affect the long-term safety of HLW geological disposal with regard to direct and indirect radionuclide release scenarios. As a result, it was concluded that volcanic activity and tectonic movements including faulting and uplift-subsidence, should be considered and their surveying system and evaluating method should be developed. (author)

  8. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    Science.gov (United States)

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  9. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the

  10. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  11. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  12. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  13. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  14. Digital geologic map in the scale 1:50 000

    International Nuclear Information System (INIS)

    Kacer, S.; Antalik, M.

    2005-01-01

    In this presentation authors present preparation of new digital geologic map of the Slovak Republic. This map is prepared by the State Geological Institute of Dionyz Stur as a part of the project Geological information system GeoIS. One of the basic information geologic layers, which will be accessible on the web-site will be digital geologic map of the Slovak Republic in the scale 1: 50 000

  15. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  16. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  17. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    Science.gov (United States)

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  18. Study on radon geological potential of Beijing city

    International Nuclear Information System (INIS)

    Liu Qingcheng; Wu Xinmin; Liu Yujuan; Yang Yaxin; Zhang Ye

    2009-01-01

    According to elemental geochemistry in Beijing, the uranium content in the area was measured, and distribution of radon concentration was predicted. Based on the uranium-radium equilibrium coefficient, porosity and diffusion coefficient, which were either measured or calculated, the radon geological potential of Beijing city was studied using γ-ray spectroscopy or mass spectroscopy and certain models were used to calculate the relation between radon geological potential and lithology and geological structure. The results showed that radon geological potential of Beijing city could be divided into four zones, tend of every zone coincides with the main structure, and the potential values nearly relate with geological factors. (authors)

  19. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  20. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  1. U-Pb ages in zircon of the Grao Mogol diamond-bearing conglomerate (Espinhaco supergroup): implications for the diamond origin in the Espinhaco range in Minas Gerais

    International Nuclear Information System (INIS)

    Chaves, Mario Luiz de Sa Carneiro; Silva, Marcio Celio Rodrigues da; Babinski, Marly; Scholz, Rixcardo

    2013-01-01

    The Espinhaco Range in the Grao Mogol region, center-north of Minas Gerais state, is composed by fine grained quartzites with large cross stratifications (Resplandescente Formation), which are covered with erosional unconformity by monomictic conglomerates, and medium to coarse grained quartzites (Grao Mogol Formation), both units belonging to the Espinhaco Supergroup, of Proterozoic age. At the locality known as 'Pedra Rica' (signify Rich Rock, an old diamond digging), rocks of these formations were sampled and separated detrital zircons to acquire U-Pb by Laser Ablation Inductively LA-ICPMS) ages. The analyzed grains are rounded to slightly rounded and show oscillatory zoning. The obtained results indicate a maximum depositional age of 1,595±20 Ma for the Resplandescente Formation, and 1,052±50 Ma for the Grao Mogol Formation. The comparison between the obtained data and the available ages for the Diamantina region and proximities, in the same diamond province, indicates a strong evidence for the existence of at least two primary mineralizing events in the basin, in the age range of 1.35 to 1.05 Ga. (author)

  2. Constructing a Geology Ontology Using a Relational Database

    Science.gov (United States)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  3. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  4. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  5. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  6. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  7. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  8. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  9. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  10. Field-trip guide to the geology of the Lexington Reservoir and Loma Prieta areas in the Santa Cruz Mountains, Santa Clara and Santa Cruz counties, California

    Science.gov (United States)

    Stoffer, Philip W.; Messina, Paula

    2002-01-01

    This guide contains a road log and five stop descriptions for a field trip in the southern Santa Cruz Mountains. The trip officially begins at the boat dock parking area on Alma Bridge Road near the dam of Lexington Reservoir. Stop 1 involves a walk up the Limekiln Trail to examine a large landslide in serpentinite that frequently takes out the trail. Stop 2 is at Miller Point picnic area along the shore of the reservoir where exposures of massive, fractured graywacke sandstone are capped with terrace gravel deposits. Stop 3 is along Highland Way in the Santa Cruz Mountains where large landslides have occasionally force the closure of the road. Stop 4A-C are several closely spaced outcrop areas along Loma Prieta Avenue and Summit-Mt. Madonna Road in the Loma Prieta summit area. A walk to scenic vista points provide opportunity to discuss the evolution of regional landscape along the crest of the Sierra Azul. In addition, a variety of rock types are exposed in the Stop 4 area along a series of road cuts, including Cretaceous age conglomerate, turbidites (consisting of interbedded sandstone and shale), and fossiliferous mudstone. Stop 5 involves returning to the boat dock parking area to examine geology and the placement of the Lexington Dam in the Los Gatos Creek canyon.

  11. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  12. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  13. Nuevos datos sobre estratigrafía del Ordovícico y estructura varisca en el Macizo de Santa María la Real de Nieva

    OpenAIRE

    Alonso, F.; Rubio, F. J.; Martín Parra, L. M.; Rodríguez Fernández, L. R.

    2004-01-01

    We present a new geological map of the lower Ordovician materials cropping out in the Santa Maria la Real de Nieva Massif. The Ordovician sequence, Fm. Capas de Domingo García, comprises two separate stratigraphic units. The lower unit contains conglomerate with clasts of felsic volcanic rocks at its base, slates, and quartzite with cruziana. The upper unit is composed by the quartzite and slate, which is considered a regional equivalent of the sequence at the base of the Armorica...

  14. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  15. Age and provenance of mica-schist pebbles from the Eocene conglomerates of the Tylicz and Krynica Zone (Magura Nappe, Outer Flysch Carpathians)

    Science.gov (United States)

    Oszczypko, Nestor; Salata, Dorota; Konečný, Patrik

    2016-06-01

    During the Łate Cretaceous to Palaeogene, the Magura Basin was supplied by clastic material from source areas situated on the northern and southern margins of the basin, which do not outcrop on the surface at present. The northern source area is traditionally connected with the Silesian Ridge, whereas the position of the southern one is still under discussion. A source area situated SE of the Magura Basin supplied the Eocene pebbly para-conglomerates containing partly exotic material. The studied clastic material contains fragments of crystalline rocks, and frequent clasts of Mesozoic to Palaeogene deep and shallow-water limestones. Numerous mica schists, scarce volcanites and granitoids as well as gneisses, quartzites and cataclasites were found in the group of crystalline exotic pebbles. Monazite ages of "exotic" mica-schist pebbles from the Tylicz, Zarzecze and Piwniczna-Mniszek sections document the Variscan 310±10 Ma age of metamorphic processes. The provenance of these exotic rocks could be connected with a remote source area located SE of the Magura Basin, which could be the NW part of the Dacia Mega Unit. The idea is strongly supported by palaeotransport directions from the SE, the absence of material derived from the Pieniny Klippen Belt, the presence of shallow water limestones, typical facies of the Median Dacides belt and metamorphic age distribution proved by monazite dating.

  16. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  17. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  18. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group (EEG) is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant (WIPP). As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, titled Geotechnical Considerations for Radiological Hazard Assessment of WIPP on January 17-18, 1980. During this conference, it was realized that a field trip to the site would further clarify the different views on the geological processes active at the site. The field trip of June 16-18, 1980 was organized for this purpose. This report provides a summary of the field trip activities along with the participants post field trip comments. Important field stops are briefly described, followed by a more detailed discussion of critical geological issues. The report concludes with EEG's summary and recommendations to the US Department of Energy for further information needed to more adequately resolve concerns for the geologic and hydrologic integrity of the site

  19. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  20. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  1. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  2. Geology of the Río de la Plata and the surrounding areas of Argentina and Uruguay related to the evolution of the Atlantic margin

    Science.gov (United States)

    Rossello, Eduardo A.; Veroslavsky, Gerardo; de Santa Ana, Héctor; Rodríguez, Pablo

    2018-04-01

    An integrated study of geological and geophysical data of the Río de la Plata region and its relation to the evolution of the Atlantic passive margin is herein described. This characterization is based on the available geological and geophysical information and on the correlation of the southern end of the best-known Santa Lucía Basin in Uruguay to the Salado Basin in Argentina, and their connection through the Quilmes Trough. Furthermore, a new Meso-Cenozoic depocenter is characterized and identified as Recalada Trough, subparallely aligned to the Quilmes Trough and separated from it by the Magdalena-Montevideo High. Both sedimentary fillings present ENE-WSW trending main axes and reach an average thickness of almost 2000 m. This suggests an evolution from a triple junction where interconnected extensional arms developed, which have had common Mesozoic tectosedimentary histories related to the early opening of the Atlantic Ocean. Based on the geophysical and geological evidence, the previously accepted existence in the Río de la Plata of a first-order structural feature along the international border between Argentina and Uruguay, associated to an ENE-WSW trending tectonic high, identified as Martín García, is unjustified. The tectonic evolution of the Atlantic margin in front of the Río de la Plata estuary is the consequence of a long deformation history starting in the Precambrian up to recent times. Each Precambrian, Paleozoic, Mesozoic and Cenozoic tectonic scenario adds different weak trends on the continental crust, which control the evolution of the sedimentary depocenters. The presence of these tectosedimentary records influence the bathymetric control of the Río de la Plata and the dynamics of the recent estuarine deposits. The Meso-Cenozoic sedimentary infill is estimated to comprise considerable ranges of sandstones and conglomerates associated with faulted blocks of the crystalline basement, with expected petrophysical conditions oscillating in

  3. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  4. Environmental resources of selected areas of Hawaii: Geological hazards

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  5. Assessment of effectiveness of Geologic Isolation Systems. The development and application of a geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1982-03-01

    The Geologic Simulation Model (GSM) developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) project at the Pacific Northwest Laboratory for the Department of Energy is a quasi-deterministic process-response model which simulates the development of the geologic and hydrologic systems of a ground-water basin for a million years into the future. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach. The completed AEGIS GSM was used to generate 500 Monte Carlo simulations of the behavior of the geologic/hydrologic system affecting a hypothetical repository in the Pasco Basin over the next million years. These simulations used data which were not subjected to a review adequate to the needs of a real site performance assessment. However, the general care used in generating the data, and the overall behavior of the GSM suggest that the results are plausible at this time

  6. Internet-based information system of digital geological data providing

    Science.gov (United States)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  7. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  8. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  9. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  10. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  11. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    Science.gov (United States)

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  12. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  13. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    Science.gov (United States)

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  14. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  15. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  16. "Carta geologica totius Poloniae, Moldaviae, Transilvaniae et partis Hungariae et Valachiae" by S. Staszic and its importance for European geology and geological cartography

    Czech Academy of Sciences Publication Activity Database

    Czarniecki, S.; Grigelis, A.; Kozák, Jan; Narebski, W.; Wójcik, Z.

    -, č. 6 (2008), s. 81-101 ISSN 1507-0557 Institutional research plan: CEZ:AV0Z30120515 Keywords : history of geology * geological cartography * Stanislaw Wawrzyniec Staszic Subject RIV: DB - Geology ; Mineralogy

  17. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  18. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging

  19. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  20. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  1. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  2. Nagra technical report 14-02, geological basics - Dossier III - Long-term geological developments

    International Nuclear Information System (INIS)

    Schnellmann, M.; Madritsch, H.

    2014-01-01

    This dossier is the third of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier III takes a look at long-term geological developments. Developments in the topography and river networks of northern Switzerland over the past five million years are looked at. Data and information derived from high-resolution models and compilations of gravel deposition, glacier developments and moraines are reviewed. Tectonic developments, seismological aspects and erosion are discussed. Their consequences for the long-term geological developments in the proposed depository areas are looked at

  3. A new algorithm for coding geological terminology

    Science.gov (United States)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  4. Use of space applications for geologic research

    Energy Technology Data Exchange (ETDEWEB)

    Presnukhin, V I

    1981-01-01

    Overview of literature published in USSR during 1969-1977 shows broad potential and effectiveness for using satellite imaging of earth in the geologic sciences: geomorphology, tectonics, engineering geology, and searh for useful ore and minerals.

  5. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  6. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  7. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    Science.gov (United States)

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  8. Evaluations for draft reports on geological disposal

    International Nuclear Information System (INIS)

    Maekawa, Keisuke; Igarashi, Hiroshi

    2002-10-01

    This report summarizes the results of the technical evaluations on two reports which are named as 'Overview of the Geological Disposal Facility' and Considerable Factors on Selection of Potential Sites for Geological Disposal' drafted by NUMO (Nuclear Waste Management Organization of Japan). The review of each draft report has been referred to committee (held on 9th September, 2002) and working group (held on 1st October, 2002) which were organized in order to confirm a progress of implementation of geological disposal by government. (author)

  9. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  10. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  11. Archives: Journal of Mining and Geology

    African Journals Online (AJOL)

    Items 1 - 13 of 13 ... Archives: Journal of Mining and Geology. Journal Home > Archives: Journal of Mining and Geology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 13 of 13 ...

  12. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  13. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  14. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  15. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  16. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  17. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  18. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  19. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  20. Bedrock Geology and Asbestos Deposits of the Upper Missisquoi Valley and Vicinity, Vermont

    Science.gov (United States)

    Cady, Wallace Martin; Albee, Arden Leroy; Chidester, A.H.

    1963-01-01

    The upper Missisquoi Valley and vicinity as described in this report covers an area of about 250 square miles at the headwaters of the Missisquoi River in north-central Vermont. About 90 percent of the area is forested and the remainder is chiefly farm land. The topography reflects the geologic structure and varied resistance of the bedrock to erosion. Most of the area is on the east limb of the Green Mountain anticlinorium, which is the principal structural feature of Vermont. The bedrock is predominantly sedimentary and volcanic rock that has been regionally metamorphosed. It was intruded before metamorphism by mafic and ultramafic igneous rocks, and after metamorphism by felsic and mafic igneous rocks. The metamorphosed sedimentary and volcanic rocks range in age from Cambrian(?) to Middle Silurian, the intrusive igneous rocks from probably Late Ordovician to probably late Permian. Metamorphism and principal folding in the region occurred in Middle Devonian time. The metamorphosed sedimentary and volcanic rocks make up a section at least 25,000 feet thick and can be divided into nine formations. The Hazens Notch formation of Cambrian(?) and Early Cambrian age is characterized by carbonaceous schist. It is succeeded in western parts of the area by the Jay Peak formation of Early Cambrian age, which is chiefly a schist that is distinguished by the general absence of carbonaceous zones; in central parts of the area the Hazens Notch formation is followed by the Belvidere Mountain amphibolite, probably the youngest of the formations of Early Cambrian age. The Ottauquechee formation, composed of carbonaceous phyllite and quartzite, and phyllitic graywacke, is of Middle Cambrian age. The Stowe formation of Late Cambrian(?) and Early(?) Ordovician age overlies the Ottauquechee and is predominantly noncarbonaceous schist, though it also contains greenstone and carbonaceous schist and phyllite. The Umbrella Hill formation of Middle Ordovician age is characteristically a

  1. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  2. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  3. Digital Geologic Map of New Mexico - Formations

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  4. Impact of Geological Changes on Regional and Global Economies

    Science.gov (United States)

    Tatiana, Skufina; Peter, Skuf'in; Vera, Samarina; Taisiya, Shatalova; Baranov, Sergey

    2017-04-01

    Periods of geological changes such as super continent cycle (300-500 million years), Wilson's cycles (300-900 million years), magmatic-tectonic cycle (150-200 million years), and cycles with smaller periods (22, 100, 1000 years) lead to a basic contradiction preventing forming methodology of the study of impact of geological changes on the global and regional economies. The reason of this contradiction is the differences of theoretical and methodological aspects of the Earth science and economics such as different time scales and accuracy of geological changes. At the present the geological models cannot provide accurate estimation of time and place where geological changes (strong earthquakes, volcanos) are expected. Places of feature (not next) catastrophic events are the only thing we have known. Thus, it is impossible to use the periodicity to estimate both geological changes and their consequences. Taking into accounts these factors we suggested a collection of concepts for estimating impact of possible geological changes on regional and global economies. We illustrated our approach by example of estimating impact of Tohoku earthquake and tsunami of March 2011 on regional and global economies. Based on this example we concluded that globalization processes increase an impact of geological changes on regional and global levels. The research is supported by Russian Foundation for Basic Research (Projects No. 16-06-00056, 16-32-00019, 16-05-00263A).

  5. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  6. Geological aspects of acid deposition

    International Nuclear Information System (INIS)

    Bricker, O.P.

    1984-01-01

    The general pattern of rain falling on the earth and reacting with the materials of the lithosphere (the weathering reactions so familiar to every beginning geology student) began soon after the earth was formed and has continued to the present. Anthropogenic additions to the natural acidic components of the atmosphere have increased since the time of the industrial revolution until they now rival or exceed those of the natural system. The severity of the environmental perturbations caused by these anthropogenic additions to the atmosphere has become a hotly debated topic in scientific forums and in the political arena. The six chapters in this book address various aspects of the acid deposition phenomenon from a geological perspective. It is hoped that the geological approach will be useful in bringing the problem more clearly into focus and may shed light on the geochemical processes that modify the chemical composition of acid deposition after it encounters and reacts with the materials of the lithosphere

  7. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  8. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  10. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  11. The 16th International Geological Congress, Washington, 1933

    Science.gov (United States)

    Nelson, C.M.

    2009-01-01

    In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).

  12. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  13. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  14. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Simeonov, Assen; Isaksson, Hans

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  15. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  16. 10 CFR 51.67 - Environmental information concerning geologic repositories.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental information concerning geologic repositories... information concerning geologic repositories. (a) In lieu of an environmental report, the Department of Energy... connection with any geologic repository developed under Subtitle A of Title I, or under Title IV, of the...

  17. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  18. Geology--hydrology of Avery Island Salt Dome

    International Nuclear Information System (INIS)

    Jacoby, C.H.

    1977-07-01

    After a review of the geology of the Gulf Coast salt domes, the geology (geomorphology and tectonics) and hydrology of Avery Island Dome, 10 miles south-southwest of New Iberia, Louisiana, were studied in detail. Rock mechanics were studied using grouts and piezometers. 17 figs

  19. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  20. Medical Geology: a globally emerging discipline

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, J.E.; Finkelman, R.B.; Centeno, J.A.; Selinus, O. [Armed Forces Institute of Pathology, Washington, DC (United States)

    2007-07-01

    Medical Geology, the study of the impacts of geologic materials and processes on animal and human health, is a dynamic emerging discipline bringing together the geoscience, biomedical, and public health communities to solve a wide range of environmental health problems. Among the Medical Geology described in this review are examples of both deficiency and toxicity of trace element exposure. Goiter is a widespread and potentially serious health problem caused by deficiency of iodine. In many locations the deficiency is attributable to low concentrations of iodine in the bedrock. Similarly, deficiency of selenium in the soil has been cited as the principal cause of juvenile cardiomyopathy and muscular abnormalities. Overexposure to arsenic is one of the most widespread Medical Geology problems affecting more than one hundred million people in Bangladesh, India, China, Europe, Africa and North and South America. The arsenic exposure is primarily due to naturally high levels in groundwater but combustion of mineralized coal has also caused arsenic poisoning. Dental and skeletal fluorosis also impacts the health of millions of people around the world and, like arsenic, is due to naturally high concentrations in drinking water and, to a lesser extent, coal combustion. Other Medical Geology issues described include geophagia, the deliberate ingestion of soil, exposure to radon, and ingestion of high concentrations of organic compounds in drinking water. Geoscience and biomedical/public health researchers are teaming to help mitigate these health problems as well as various non-traditional issues for geoscientists such as vector-borne diseases.

  1. Ecological geology environmental assessment of open-pit mines

    International Nuclear Information System (INIS)

    Dong Shuangfa; Jiang Xue

    2010-01-01

    In this paper, there is a detail description of ecological geology environmental assessment of open-pit mines, including method, process and results. We took ecological geology environmental assessment work on the base of the results of some open-pit mines such as extremely low content magnetite in Hebei Province, inducted and summarized the ecological geology environment quality. The results are reasonable. It provides basic data for the second mines programming in Hebei Province. (authors)

  2. CHUVARDINSKY’S ANTIGLACIAL (GENERALIZED GEOLOGICAL CONCEPTION

    Directory of Open Access Journals (Sweden)

    P. K. Skufyin

    2016-12-01

    Full Text Available Based on the analytical study of V. G. Chuvardinsky’s monographs on the revision of the generally accepted glacial theory, the authors of the review concluded that there was convincing evidence of a fault-tectonic origin of ‘ice-exaration’ relief of the Baltic Shield. Developed by Chuvardinsky, a radically new methodology of boulder prospecting of ore deposits not only refuted the old glacial theory, but also led to the discovery of copper-nickel deposits, a new apatite alkaline massif, promising manifestation of copper-nickel ore, platinum group metals, native gold, chromite and other mineral resources. A thorough drilling of ice sheets in Greenland and Antarctica for the international project determined the absence of boulder material over the entire thickness of the ice, only pulverulent and fine particles (mainly volcanic ash were found in the ice. Bottom ice layers are immobilised, their function is preservation of the geological surface. V. G. Chuvardinsky far outstripped western and Russian scientists in the field of Earth Sciences. His field studies on the Baltic Shield not only refuted the mighty glacial theory, but also created and substantiated a new geological concept instead. Professor V. Z. Negrutsa was quite right when he wrote in his review on Chuvardinsky’s work (journal Geomorfologiya, 2003, no. 1, ‘Evidence of Chuvardinsky about tectonic origin of geological and geomorphological features traditionally associated with the Quaternary glaciation is so obvious and reproducible both by field observations and by geological modeling that is presented irrefutable and undeniable in its essence’. In general, assessing the scientific significance of V. G. Chuvardinsky’s works, it can be stated that his work would have done honour to research institutes of geological and geographical orientation according to the level of study of the geological material and the value of his field studies. His books present the material for

  3. Southeastern Regional Geologic Characterization Report. Executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final Southeastern Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes, and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in central Maryland; noncoastal Virginia, North Carolina, and South Carolina; and northern Georgia. For each of the states within the Southeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening

  4. Innovative progress and sustainable development of remote sensing for uranium geology

    International Nuclear Information System (INIS)

    Liu Dechang; Zhao Yingjun; Ye Fawang

    2009-01-01

    The paper reviewes the innovative process of remote sensing for the uranium geology in Beijing Research Institute of Uranium Geology (BRIUG), discusses the science and technology progress of uranium geology due to remote sensing technique, and the way how to keep sustainable development of the remote sensing for uranium geology so as to play an important role in the uranium geology in the future. (authors)

  5. Software development for geologic information management system on open-pit production

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Tian, A.; Ren, Z.; Pang, Y. [China University of Mining and Technomogy, Xuzhou (China). College of Mineral and Energy Resources

    2001-09-01

    A software, including geological data gathering and processing, deposit modelling, reserves calculating and mine map plotting, for geologic information management of open-pit production was developed. Based on the interactive technique, CAD, the object-oriented simulation, and the characteristics of geologic structures, all the geologic information databases and geologic mapping sub-systems have been established for open-pit production, planning and management. 6 refs., 1 fig.

  6. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2017-06-01

    Full Text Available Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional features via geological domain ontology. These fragments are reorganized into a NoSQL (Not Only SQL database, and then associations between the fragments are added. A specific class of geological questions was analyzed and transformed into workflow tasks according to the predefined rules and associations between fragments to identify spatial information and unstructured content. We establish a knowledge-driven geologic survey information smart-service platform (GSISSP based on previous work, and we detail a study case for our research. The study case shows that all the content that has known relationships or semantic associations can be mined with the assistance of multiple ontologies, thereby improving the accuracy and comprehensiveness of geological information discovery.

  7. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  8. Introductory Geological Mapwork--An Active Learning Classroom

    Science.gov (United States)

    Drennan, Gillian R.; Evans, Mary Y.

    2011-01-01

    First year Geology students at the University of the Witwatersrand experience problems with both three-dimensional and "four-dimensional" (or time) visualization when attempting to interpret geological maps. These difficulties have been addressed by the introduction of hands-on modeling exercises, which allow students to construct…

  9. Pilot monitoring program: geologic input for the hillslope component (includes a discussion of Caspar Creek geology and geomorphology)

    Science.gov (United States)

    T. E. Spittler

    1995-01-01

    The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...

  10. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    Science.gov (United States)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  11. Office of Geologic Repositories issues hierarchy for a mined geologic disposal system

    International Nuclear Information System (INIS)

    1987-08-01

    The Nuclear Regulatory Commission (NRC) has indicated that the identification of the issues that must be resolved to complete licensing assessments of site and design suitability is an important step in the licensing process. The issues hierarchy developed by the Office of Geologic Repositories (OGR) for the mined geologic disposal system (MGDS) are based on the issues-hierarchy concept presented in the Mission Plan. Specific questions are encompassed by the general issue statements in the OGR issues hierarchy. The OGR issues hierarchy is limited to the issues related to the siting and licensing requirements of applicable federal regulations and does not address the requirements of other regulations, functional or operating requirements for the MGDS, or requirements for the integration and the design/operational efficiency of the MGDS. 4 figs

  12. International Uranium Resources Evaluation Project (IUREP) national favourability studies: Finland

    International Nuclear Information System (INIS)

    1977-11-01

    Finland covers an area of 337,000 skm. One third of the country lies north of the northern polar circle. 31,613 skm are covered by lakes. 71% of the landscape are covered by coniferous -wood. Climatlcal conditions are continental. The topography of the country is gently rolling with highest elevations of 300 m in the northern part. The most interesting geological units for uranium are Karelian, marginal meta-sediments, mainly quarzites and conglomerates but also schists. These schists are intruded by orogenlc plutonic rocks which are 1800-My-old. Potassium granites are common adjacent to the contact of the Pre-karelian basement (2500 My). In addition to these geological environment uranium and thorium minerals have been found in a large carbonatite in northern Finland, which is explored now

  13. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  14. Modelling geological uncertainty for mine planning

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M

    1980-07-01

    Geosimplan is an operational gaming approach used in testing a proposed mining strategy against uncertainty in geological disturbance. Geoplan is a technique which facilitates the preparation of summary analyses to give an impression of size, distribution and quality of reserves, and to assist in calculation of year by year output estimates. Geoplan concentrates on variations in seam properties and the interaction between geological information and marketing and output requirements.

  15. Stratigraphy and uranium potential of early proterozoic metasedimentary rocks in the Medicine Bow Mountains, Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.

    1979-01-01

    The Medicine Bow Mountains of southeastern Wyoming contain an eight mile (13 km) thick section of Early Proterozoic (2500 to 1700 My b.p.) metasedimentary rocks which is subdivided into three successions: the Phantom Lake Metamorphic Suite (oldest), Deep Lake Group, and Libby Creek Group. The most promising units are the basal conglomerate of the upper Phantom Lake Suite, which appears to unconformably overlie metavolcanics of the lower Phantom Lake Suite, and the Magnolia Formation, which unconformably overlies the upper Phantom Lake Suite. Outcrops of the former have yielded assays of up to 141 ppM U and 916 ppM Th, with no appreciable gold. Outcrops of the Magnolia Formation have yielded up to 8.4 ppM U and 38 ppM Th. Several factors indicate that these units deserve further study. First, the lithologies of the radioactive and nonradioactive units are remarkably similar to those found in known uranium fossil-placers. Second, the paleogeography was favorable for placer accumulation if the conglomerates are fluvial sediments in an epicontinental clastic succession which was deposited during several transgressive-regressive cycles, as interpreted to be, Third, the age of the conglomerates may be similar to the age of other known uranium placers-i.e., more than 2000 My b.p. And fourth, geological and geochemical studies indicate that both uranium and pyrite have been strongly leached from outcrops and that subsurface rocks contain more uranium than surface rocks do

  16. The millstone industry a summary of research on quarries and producers in the United States, Europe and elsewhere

    CERN Document Server

    Hockensmith, Charles D

    2009-01-01

    Since prehistoric times, the process of cutting rock to make millstones has been one of the most important industries in the world. The first part of this book compiles information on the millstone industry in the United States, which dates between the mid-1600s and the mid-1900s. Primarily based on archival research and brief accounts published in geological and historical volumes, it focuses on conglomerate, granite, flint, quartzite, gneiss, and sandstone quarries in different regions and states. The second part focuses on the millstone quarrying industry in Europe and other areas.

  17. Prospects of uranium in Baluchistan

    International Nuclear Information System (INIS)

    Aslam, M.; Rehman, M.A.

    1981-01-01

    A review of the geology of Baluchistan indicates that sedimentary rocks consisting of sandstones and conglomerates ranging from Paleocene to Miocene age were formed under the fluviatile conditions. The region underwent Late Cretaceous-Early Cenozic continent to continent collision resulting in varied metallogenic environments. Considering the criteria of favourability for the environments of uranium deposition, it is found that these rocks and the acidicigneous rocks of Cretaceous age are favourable for the occurrence of uranium. A radiometric prospecting programme is suggested to locate possible mineralization in the region. (author)

  18. Geologic-SURFICIAL62K-Sand and gravel pits

    Data.gov (United States)

    Vermont Center for Geographic Information — The GeologicSurficial_SURFICIAL data consists of surficial geologic features as digitized from the 1:62,500 15 minute series USGS quadrangle map sheets, compiled by...

  19. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    OpenAIRE

    Liang Wu; Lei Xue; Chaoling Li; Xia Lv; Zhanlong Chen; Baode Jiang; Mingqiang Guo; Zhong Xie

    2017-01-01

    Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP) and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional f...

  20. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach

  1. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    Energy Technology Data Exchange (ETDEWEB)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  2. The Geological Grading Scale: Every million Points Counts!

    Science.gov (United States)

    Stegman, D. R.; Cooper, C. M.

    2006-12-01

    The concept of geological time, ranging from thousands to billions of years, is naturally quite difficult for students to grasp initially, as it is much longer than the timescales over which they experience everyday life. Moreover, universities operate on a few key timescales (hourly lectures, weekly assignments, mid-term examinations) to which students' maximum attention is focused, largely driven by graded assessment. The geological grading scale exploits the overwhelming interest students have in grades as an opportunity to instill familiarity with geological time. With the geological grading scale, the number of possible points/marks/grades available in the course is scaled to 4.5 billion points --- collapsing the entirety of Earth history into one semester. Alternatively, geological time can be compressed into each assignment, with scores for weekly homeworks not worth 100 points each, but 4.5 billion! Homeworks left incomplete with questions unanswered lose 100's of millions of points - equivalent to missing the Paleozoic era. The expected quality of presentation for problem sets can be established with great impact in the first week by docking assignments an insignificant amount points for handing in messy work; though likely more points than they've lost in their entire schooling history combined. Use this grading scale and your students will gradually begin to appreciate exactly how much time represents a geological blink of the eye.

  3. Developing medical geology in Uruguay: a review.

    Science.gov (United States)

    Mañay, Nelly

    2010-05-01

    Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population's exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  4. Developing Medical Geology in Uruguay: A Review

    Directory of Open Access Journals (Sweden)

    Nelly Mañay

    2010-04-01

    Full Text Available Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population’s exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  5. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  6. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  7. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  8. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  9. Northeastern Regional Geologic Characterization Report: executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final Northeastern Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. 5 refs., 3 figs

  10. The geological thought process: A help in developing business instincts

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.A. [Dean Witter Reynolds, New York, NY (United States)

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences and geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.

  11. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  12. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    Science.gov (United States)

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  13. Status report on the geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  14. Japanese issues on the future behavior of the geological environment

    International Nuclear Information System (INIS)

    Aoki, Kaz; Nakatsuka, Noboru; Ishimaru, Tsuneari

    1994-01-01

    Comprehending and predicting the future states of the geological environment is very important in ensuring a safe geological disposal of high level radioactive wastes (HLW). This paper is one in a series of studies required to ascertain the existence of a geologically stable area in Japan over the long term. In particular, interest is focussed on the aspect of accumulating data on behavior patterns of selected natural phenomena which will enable predictions of future behavior of geological processes and finding of areas of long term stability. While this paper limits itself to the second and part of the third step, the overall flow-chart of study on natural processes and events which may perturb the geological environment entails three major steps. They include: (i) identification of natural processes and events relevant to long term stability of geological environment to be evaluated; (ii) characterization of the identified natural processes and events; and (iii) prediction of the probability of occurrence, magnitude and influence of the natural processes and events which may perturb the geological environment. (J.P.N)

  15. Status report on the geology of the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth

  16. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  17. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  18. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  19. Geology and religion - historical perspective and current problems

    Science.gov (United States)

    Kölbl-Ebert, Martina

    2010-05-01

    Today, when referring to the relationship between geology and religion, people usually at once think of Christian (and other) fundamentalists and their chronic palaeontological illiteracy leading to Creationism, to Intelligent Design, and a distrust of science in general among them most prominently geology, palaeontology and evolutionary biology. Thus the relationship of geology and religion is usually considered to be under strain. In former times things used to be quite different, and for most of human history the observation of geological phenomena and the acquisition of geological expertise was intimately connected with religious ideas. The Judeo-Christian sense of a finite Earth history prepared the ground for accepting the Earth's different strata as testimony to the development of our globe through time. It was this religious, theological framework, from which the early geology started to evolve. However, with increasing observations there was a growing mismatch between what was expected according to ancient, scriptural authorities and the actual data. The release of geology from religious connotations or associations was a development closely connected with the Enlightenment, when geology and religion started to drift apart not with a violent rupture but in a subtle and sometimes circuitous manner. However, outside the group of people with geological expertise, not all was smooth and peaceful, and some conservative clergymen as well as laypersons were rather shocked by the new ideas that came with geology: the immensity of the timescale, a dynamic Earth, not just a ruin shaped by the Deluge, and a dynamic biology too with the Darwinian theory of evolution, which was founded in part on palaeontological evidence and the assumption of a long geological time scale. Nevertheless and interestingly the Creationism we face today is a rather recent phenomenon influenced by a number of motives, most of them philosophical and theological in nature. And so, the current

  20. Historical foundations of chemical geology and geochemistry

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    Roughly, the name chemical geology has been used for as long as chemistry has been applied in geology; the name geochemistry was introduced by Schönbein, in 1838. Whereas initially the names were often regarded as synonymous, in our century there is a tendency to make a distinction between the two

  1. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  2. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  3. Exploring the assessment of geological observation with design research

    Science.gov (United States)

    Baek, John Y.

    The purpose of this study was to investigate the assessment of geological observation through the development and field testing of performance tasks. The study addressed a central challenge in geoscience education: for students to observe the world around them and make real-world connections. Yet, there existed no cohesive research approach for the study of observation in geoscience education. The research goal was to understand the assessment of geological observation. The design research of geological observation encountered the situation where few performance assessments existed and few domain-specific learning theories were available. Design research is suited to inquiries in which a domain of learning is unexplored and the phenomena needs to be supported in the classroom in order to study it. This dissertation addressed one general research question and four subquestions: (RQ) How should geological observation be assessed? (S1) What role did perception play in assessing students' geological observations? (S2) What role did explanation play in assessing students' geological observations? (S3) What role did gestures play in assessing students' geological observations? (S4) Were there performance differences between the first and second trial of the GO Inquire prototype with fourth graders? Students were supported in making geological observations with three performance tasks: GO Inquire stamp task, Cutting task, and Fieldguide task. The data set for this study consisted of student response data, videorecordings, and participant observations from seven field tests across one fourth and one fifth grade class. Three data-analytic methods, qualitative coding, item-difficulty analysis, and non-parametric comparisons, were utilized based on four mixed-method data analysis strategies: typology development, data transformation, extreme case analysis, and data consolidation. Analysis revealed that assessment should take into account the separation of visual from verbal

  4. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  5. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  6. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  7. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  8. Geology of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  9. Geodiversity: Exploration of 3D geological model space

    Science.gov (United States)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  10. Nurture of human resources for geological repository program

    International Nuclear Information System (INIS)

    Fujiwara, A.

    2004-01-01

    The Japanese geological repository program entered the implementing stage in 2002. At the implementing stage of the program, different sectors need various human resources to conduct their functions. This paper discusses a suitable framework of nurture of the human resources to progress the geological repository program. The discussion is based on considering of specific characters involved in the program and of the multidisciplinary knowledge related to geological disposal. Considering the specific characters of the project, two types of the human resources need to be nurtured. First type is the core persons with the highest knowledge on geological disposal. They are expected to communicate with the various stakeholders and pass down the whole knowledge of the project to the next generation. Another is to conduct the project as the managers, the engineers and the workers. The former human resources can be developed through the broad practice and experience in each sector. The latter human resources can be effectively developed by training of the fundamental knowledge on geological disposal at training centers as well as by conventional on-the-job training. The sectors involved in the program need to take their own roles in the nurture of these human resources. (author)

  11. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  12. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  13. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  14. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  15. Several issues of uranium geology exploration facilities decommissioning

    International Nuclear Information System (INIS)

    Zhang Lu; Lu Caixia; Sheng Qing; Zhuang Jingqi; Xie Shujun; Liao Yunxuan

    2013-01-01

    The environmental protection completion acceptance review work of uranium geology exploration facilities 'llth five-year plan' decommissioned and remediation projects is introduced. Some questions related to norms and standards for uranium geology exploration facilities decommissioning and remediation, scheme of decommissioning and remediation, process inspection and acceptance of project and so on are discussed, and corresponding countermeasures and suggestions are put forward, Some references can be provided for the later development of uranium geological exploration facility '12th five-year plan' decommissioning and remediation projects. (authors)

  16. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  17. Digital Geologic Map of New Mexico - Volcanic Vents

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  18. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  19. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  20. Uranium geology and chemistry, programme and book of abstracts

    International Nuclear Information System (INIS)

    Patrice Bruneton; Cathelineau, Michel; Richard, Antonin; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Beaufort, D.; Patrier, P.; Goncalves, Philippe; Trap, Pierre; Van Lichtervelde, Marieke; Jeanneret, Pauline; Marquer, Didier; Feybesse, Jean-Louis; Paquette, Jean-Louis; Mercadier, Julien; Annesley, Irvine R.; Austmann, Christine L.; Creighton, Steve; Eglinger, Aurelien; Vanderhaeghe, Olivier; Andre-Mayer, Anne-Sylvie; Cuney, Michel; Goncalves, Philippe; Durand, Cyril; Feybesse, Jean-Louis; Zeyen, Hermann; Beres, Jan; Pessel, Marc; Gaffet, Stephane; Rousset, Dominique; Senechal, Guy; Dargent, Maxime; Dubessy, Jean; Caumon, Marie-Camille; Trung, Chinh-Nguyen; Richard, Antonin; Montel, Jean-Marc; Peiffert, Chantal; Leborgne, Romain; Seydoux-Guillaume, Anne-Magali; Montel, J.M.; Bingen, B.; Bosse, V.; De Parseval, Ph.; Janots, Emilie; Wirth, Richard; Reiller, Pascal E.; Marang, Laura; Jouvin, Delphine; Benedetti, Marc F.; Clavier, N.; Costin, D.T.; Mesbah, A.; Dacheux, N.; Poinssot, C.; Raimbault, Louis; Mercadier, Julien; Cuney, Michel; Moncoffre, Nathalie; Marchand, Benoit; Perrat-Mabillon, Angela; Gine, A.; Saint-Bezar, B.; Benedicto, A.; Wattinne, A.; Andre, G.; Bonnetti, Christophe; Bourlange, Sylvain; Malartre, Fabrice; Benedicto, Antonio; Liu, Xiaodong; Cretaz, F.; Szenknect, S.; Descostes, M.; Dacheux, N.; Othmane, Guillaume; Allard, Thierry; Menguy, Nicolas; Vercouter, Thomas; Morin, Guillaume; Esteve, Imene; Calas, Georges; Fayek, Mostafa; Barbarand, Jocelyn; Drot, Romuald; Grare, Alexis; Reyx, Jean; Pagel, Maurice; Brouand, Marc; Zakari, Aziz; Bidaud, Adrien; Toe, Wilfried; Milesi, Jean-Pierre; Carrouee, Simon; Moyen, Jean-Francois; Schmitt, Jean-Michel; Brouand, Marc; Bouzid, Majda; Langlais, Valerie; Hocquet, Sebastien; Munara, A.; Boulvais, P.; Carpentier, C.; Ajjabou, Leila; Ledru, Patrick; Fiet, Nicolas; Hocquet, Sebastien; Royer, Jean-Jacques; Fiet, N.; Oppeneau, T.; Berestnev, N.; Merembayev, T.; Parize, Olivier; Aouami, I.; Nedjari, A.; Mahaman, T.; Sanguinetti, H.; Uri, Freddy; Beaufort, Daniel; Riegler, Thomas; Lescuyer, Jean-Luc; Wollenberg, Peter; Dardel, Jacques; Bourgeois, Damien; Maynadie, Jerome; Meyer, Daniel; Courtaud, B.; Auger, F.; Thiry, J.; Fakhi, S.; Fait, E.; Outayad, R.; Mouflih, M.; Voque Romero, I.; Manjon, Guillermo; Ben Mansour, M.; Bouih, A.; Nourreddine, A.; El Hadi, H.; Mokhtari, Hamid; Gourgiotis, Alkiviadis; Bassot, Sylvain; Simonucci, Caroline; Diez, Olivier; Mifsud, Aurelie; Martin-Garin, Arnaud; Coppin, Frederic; Dejeant, Adrien; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael; Wattine-Morice, Aurelia; Belieres, Michel; Ben Simon, Rose; Schmitt, Jean-Michel; Thiry, Medard; Megneng, Melissa; Orberger, Beate; Hofmann, Axel; Wirth, Richard; Dumas, Paule; Sandt, Christophe; Hicks, Nigel; Tudryn, Alina; Tartese, Romain; Boulvais, Philippe; Poujol, Marc

    2011-11-01

    This meeting of the French Geological Society (SGF) was organized with the joint contribution of Areva, CNRS-INSU, PACEN, GUTEC, IDES, and Paris-Sud University. This document gathers the abstracts of the following 40 presentations: 1 - Uranium deposits of 'Intrusive'-type; 2 - U deposits beneath discordance: analogy with F-Ba-Pb-Zn(Ag) 'Basin Hosted'-type deposits?; 3 - Clays and related minerals as guides for uranium deposits prospecting: status of recent advances; 4 - Hudsonian Uranium mineralizations in the Western part of the Trans-Hudsonian orogen (Saskatchewan, Canada): a source for the formation of discordance-type deposits?; 5 - U-Th elements mobilization during the Panafrican metamorphism: implication on the formation of Cu-Co-(U) deposits, Solwezi dome, NW Zambia; 6 - Fractures network characterization by seismic and electrical anisotropy; 7 - study of uranyl speciation by Raman spectroscopy in chlorinated solutions (LiCl = 0.5 to 15 M) up to 350 deg. C. Metallogenic consequences and perspectives; 8 - Experimental weathering of natural monazite in the conditions of formation of Oklo and discordance-type uranium deposits; 9 - Disturbance of the U-Th-Pb chronometers during the low temperature weathering of monazite: synergy between irradiation damages and dissolution-precipitation; 10 - U(VI) interaction with humic substances: speciation and application to independent data; 11 - Preparation and characterization of Th 1-x U x SiO 4 solid solutions: towards the understanding of coffinite formation?; 12 - A new geochemical tool for the study of U deposits: the anions in uraninite; 13 - Tectonics in the Unegt basin (E-Gobi, Mongolia): deformation stripes, hydrocarbons migration and U mineralizations; 14 - Study of U sources in the Erlian Basin (China); 15 Thermodynamic data acquisition for uranyl phosphates and vanadates: from synthetic analogues to natural samples; 16 - U speciation in Nopal I opals: geochemical consequences for the end of the deposit genesis

  1. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  2. Use of Geological Lineaments Results in Groundwater Exploration ...

    African Journals Online (AJOL)

    Locating aquifiers in Precambrian crystalline rocks offers major problems unless areas of intense weathering or fracturing are targeted. These normally occur along geological lineaments which can be identified during groundwater exploration. Major geological lineaments were identified in the Zomba area, southern Malawi ...

  3. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  4. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  5. Determining probabilities of geologic events and processes

    International Nuclear Information System (INIS)

    Hunter, R.L.; Mann, C.J.; Cranwell, R.M.

    1985-01-01

    The Environmental Protection Agency has recently published a probabilistic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one chance in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events and processes, and no consensus exists in the waste-management community on how to do this. Sandia National Laboratories is developing a general method for determining probabilities of a given set of geologic events and processes. In addition, we will develop a repeatable method for dealing with events and processes whose probability cannot be determined. 22 refs., 4 figs

  6. Geomediations in the Anthropocene: Fictions of the Geologic Turn

    Directory of Open Access Journals (Sweden)

    Alla Ivanchikova

    2018-02-01

    Full Text Available In both literature and philosophy, geologic matter has been imagined as a vector of extending perception and analysis into the territory of not only the nonhuman, but also the non-living, challenging the very distinctions between life and non-life, agile and inert matter. Recently, the debates over the concept of the Anthropocene amplified our fascination with the geologic, bringing into view the inescapable bond of human and Earth’s history. The article probes the possibilities of the geologic turn through two short stories published in the era of the Anthropocene debates—Margaret Atwood’s ‘Stone Mattress’ (2013 and A.S. Byatt’s ‘A Stone Woman’ (2003. The stories’ interest in a geologic setting, their staging of human-mineral intimacies, and their geologically-infused aesthetics position these two stories as fictions of the geologic turn. I examine how these writers—through reconfiguring the relations between bios and geos, human and nonhuman—forge alternatives to an extractive relation to the geos, as well as refuse to accept the figure of Earth as either an inert object or a victim. In this reframing, they also exemplify feminist critique of the imagined unity of ‘Anthropos’ that is named by the Anthropocene thinkers.

  7. Proceedings of the 14. Symposium on Geology from Northeast

    International Nuclear Information System (INIS)

    1991-01-01

    Works on geology, including topics about sedimentology, stratigraphy, paleontology, geomorphology, environmental, hydrogeology, petrology, geochemistry, geochronology, geophysics, geotectonics and structural geology are described in this symposium. (C.G.C.)

  8. North Central Regional Geologic Characterization Report. Executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final North Central Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening

  9. Developing, deploying and reflecting on a web-based geologic simulation tool

    Science.gov (United States)

    Cockett, R.

    2015-12-01

    Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.

  10. MUSEUM GEOLOGI DAN PRASEJARAH DI MAKASSAR DENGAN PENDEKATAN ARSITEKTUR HIGH TECH

    Directory of Open Access Journals (Sweden)

    Saefullah Saefullah

    2015-12-01

    Full Text Available Abstrak—Indonesia kaya akan sumber daya geologi yang terdiri dari batuan, mineral dan bahan tambang. Berbicara mengenai geologi sangat erat kaitannya dengan zaman prasejarah.karena belum ditemukannya bukti-bukti tertulis dari zaman prasejarah tersebut, keterangan mengenai zaman ini diperoleh melalui bidang-bidang seperti paleontologi, astronomi, biologi, geologi, antropologi, dan arkeologi pentingnya melestarikan dan menjaga peninggalan-peninggalan prasejarah. Sehingga akan menumbuhkan rasa tanggungjawab terhadapnya. Hal ini sejalan dengan tugas Direktorat Jendral Kebudayaan Kementrian Pendidikan dan Kebudyaaan Indonesia dalam laporan kinerjanya .yang mengemukakan bahwa sisa-sisa peninggalan sejarah penting dipelihara sebagai pelajaran hidup bagi generasi berikutnya.Tujuan penelitian menyusun suatu landasan konseptual desain perancangan Museum Geologi dan prasejarah dengan pendekatan arsitektur high-tech, menerapkan system Double fasade, Ligth Pipe dan system fotovoltaic pada bangunan, mengaplikasikan intelegent system pada utilitas pada bangunan.Hasil Laporan ini adalah mendesain bangunan museum geologi dan prasejarah di Makassar dengan pendekatan arsitektur high-tech. Kata Kunci :Museum geologi, prasejarah, high-tech Abstract-Indonesia is rich geological resources consisting of rocks, minerals and minerals. Talking about the geology is very closely related to prehistoric times because of not finding written evidence from prehistoric times, the information concerning this age obtained through fields like paleontology, astronomy, biology, geology, anthropology, and archeology importance of preserving and maintaining prehistoric relics. So will foster a sense of responsibility to it. This is in line with the duties of the Directorate General of Culture Ministry of Education and Indonesian culture in its performance report which suggested that the remains of important historical remains preserved as a living lesson for the next generation. The

  11. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  12. Environmental geology in the United States: Present practice and future training needs

    Science.gov (United States)

    Lundgren, Lawrence

    Environmental geology as practiced in the United States confronts issues in three large areas: Threats to human society from geologic phenomena (geologic hazards); impacts of human activities on natural systems (environmental impact), and natural-resource management. This paper illustrates present U.S. practice in environmental geology by sampling the work of 7 of the 50 state geological surveys and of the United States Geological Survey as well. Study of the work of these agencies provides a basis for identifying avenues for the training of those who will deal with environmental issues in the future. This training must deal not only with the subdisciplines of geology but with education to cope with the ethical, interdisciplinary, and public-communication aspects of the work of the environmental geologist.

  13. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  14. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  15. Preliminary Geological Survey on the Proposed Sites for the New Research Reactor

    International Nuclear Information System (INIS)

    Lim, In Cheol; Ha, J. J.; Oh, K. B.

    2010-12-01

    · Performing the preliminary geological survey on the proposed sites for the new research reactor through the technical service · Ordering a technical service from The Geological Society of Korea · Contents of the geological survey - Confirmation of active fault - Confirmation of a large-scale fracture zone or weak zone - Confirmation of inappropriate items related to the underground water - Confirmation of historical seismicity and instrumental earthquakes data · Synthesized analysis and holding a report meeting · Results of the geological survey - Confirmation of the geological characteristics of the sites and drawing the requirements for the precise geological survey in the future

  16. Uncertainties in the geological disposal for high-level radioactive waste

    International Nuclear Information System (INIS)

    Liu Xiaodong; Wang Changxuan

    2008-01-01

    Geological disposal, referring to the disposal of high-level solid radioactive waste in a facility located underground in a stable geological formation, was considered the most favourable methods to provide long term isolation of the radionuclides in the waste from the biosphere, and was adopted by IAEA and the developed nations with nuclear facilities. Over 50 years studies have been proved the technical feasibility of geological disposal for radioactive waste. However, there are many subjective and objective uncertainties on development, operation and closure of a geological disposal facility. For providing flexibility in responding to new technical information, advances in waste management and materials technologies, and in enabling social, economic and political aspects to be addressed, it is necessary to evaluate the uncertainties for all the R and D steps of a geological disposal program. (authors)

  17. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  18. Optimal sampling schemes applied in geology

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-05-01

    Full Text Available Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 2 / 47 Outline 1 Introduction to hyperspectral remote... sensing 2 Objective of Study 1 3 Study Area 4 Data used 5 Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology...

  19. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  20. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  1. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  2. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules

    International Nuclear Information System (INIS)

    Aebersold, M.

    2008-01-01

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  3. Creating Geologically Based Radon Potential Maps for Kentucky

    Science.gov (United States)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  4. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  5. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  6. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  7. Developing Connectivist Schemas for Geological and Geomorphological Education

    Science.gov (United States)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and

  8. Semantic Web-based digital, field and virtual geological

    Science.gov (United States)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  9. Teachers doing science: An authentic geology research experience for teachers

    Science.gov (United States)

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  10. A reappraaisal of the geology, geochemistry, structures and ...

    African Journals Online (AJOL)

    The largest segment of the Neoproterozoic Mozambique belt in Kenya occurs east of the north-south oriented Rift system. Geological works carried out in the country during the last few decades have progressively revealed the complexity of the geology, structures and tectonics of the Mozambique belt in the region.

  11. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  12. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  13. Geologic studies of the Columbia Plateau: a status report

    International Nuclear Information System (INIS)

    Myers, C.W.; Price, S.M.

    1979-10-01

    The results of recent geologic studies of the Columbia Plateau, with emphasis on work completed under the Basalt Waste Isolation Project, Rockwell Hanford Operations, are summarized in this report. Geologic studies were performed mostly during the period from 1977 to 1979. The major objective of these studies was to examine the feasibility of using deep underground tunnels mined into Columbia River basalt beneath the Hanford Site for final storage of nuclear waste. The results are presented in four chapters: Introduction; Regional Geology; Pasco Basin Geology; and Seismicity and Tectonics. Results from surface mapping and remote sensing studies in the Washington State portion of the Columbia Plateau are presented in the Regional Geology chapter. Results from surface mapping, borehole studies, and geophysical surveys in the Pasco Basin are presented in the Pasco Basin Geology chapter. Results that relate to the tectonic stability of the Pasco Basin and Columbia Plateau and discussion of findings from earthquake monitoring in the region for the past ten years are summarized in the Seismicity and Tectonics chapter. A volume of Appendices is included. This volume contains a description of study tasks, a description of the methodology used in geophysical surveys the geophysical survey results, a summary of earthquake records in eastern Washington, a description of tectonic provinces, and a preliminary description of the regional tectonic setting of the Columbia Plateau

  14. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  15. Proceedings of the 39. Brazilian congress on geology. v. 1

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subjects debates that involves the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to to show the geosciences role to the social welfare. The works were presented the following symposiums: the social value of the environment study; urban geology and geology risks; degraded areas recovery; coastal erosion; global paleoregisters; and carstic terranes geology

  16. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  17. Proceedings of the eighth thematic conference on geologic remote sensing

    International Nuclear Information System (INIS)

    Balmer, M.L.; Lange, F.F.; Levi, C.G.

    1991-01-01

    These proceedings contain papers presented at the Eighth Thematic Conference on Geologic Remote Sensing. This meeting was held April 29-May 2, 1991, in Denver, Colorado, USA. The conference was organized by the Environmental Research Institute of Michigan, in Cooperation with an international program committee composed primarily of geologic remote sensing specialists. The meeting was convened to discuss state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing as well as research and development activities aimed at increasing the future capabilities of this technology. The presentations in these volumes address the following topics: Spectral Geology; U.S. and International Hydrocarbon Exploration; Radar and Thermal Infrared Remote Sensing; Engineering Geology and Hydrogeology; Minerals Exploration; Remote Sensing for Marine and Environmental Applications; Image Processing and Analysis; Geobotanical Remote Sensing; Data Integration and Geographic Information Systems

  18. History Matching: Towards Geologically Reasonable Models

    DEFF Research Database (Denmark)

    Melnikova, Yulia; Cordua, Knud Skou; Mosegaard, Klaus

    This work focuses on the development of a new method for history matching problem that through a deterministic search finds a geologically feasible solution. Complex geology is taken into account evaluating multiple point statistics from earth model prototypes - training images. Further a function...... that measures similarity between statistics of a training image and statistics of any smooth model is introduced and its analytical gradient is computed. This allows us to apply any gradientbased method to history matching problem and guide a solution until it satisfies both production data and complexity...

  19. Geologic disposal of radioactive waste, 1983

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10 -4 Sv/y. 50 references, 11 figures, 6 tables

  20. Surficial Geologic Map of the Town of Randolph, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG10-2 Wright, S., Larsen, F., and Springston, G., 2010,�Surficial Geologic Map of the Town of Randolph, Vermont: Vermont Geological Survey...

  1. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  2. Geology and prospecting in the Carpatians conference excursion guide

    Directory of Open Access Journals (Sweden)

    Jacko Stanislav

    2000-06-01

    Full Text Available We would like to welcome you to the excursions finalizing the Geology and prospecting in the Carpathians Conference, Her¾any –2000. The aim of the excursions is to provide you an overview of these Western Carpathian lithostructural units – and their mineralization respectively, research progress of which has been (at that time closely connected with personal investigation enthusiasm of our Professors - the founders of our Faculty. The current state of geological development knowledge of principal structural units of the Western Carpathians is outlined in papers included in special issue of Mineralia Slovaca magazine you have received at the begining of the Conference. For this reason the content of this Excursion quide is exclusively concentrated to description of routes localities. Broader geological relationships of particular outcrops is possible to find in attached Geological map of the Slovak Republic 1:100 000. The organizers of the excursions gratefully acknowledge the efforts of all colleagues who contributed to this quide. We also like to express our thanks for the financial support to Slovak VEGA grant Agency (Grant No:1/7389/2 and to the following organizations: Association of Metallurgy, Minig Industry and Geology of Slovak Republic, Slovak Geological Society, Management of TU Košice, SAPTU Foundation of TU Košice, Geological Survey of the Slovak Republic Betox JSC. Košice, SMW JSC. Jelšava, Uranpress Ltd. Spišská Nová Ves, TESCO Košice, ŽELBA-Siderite JSC. Nižná Slaná and ŽELBA –JSC. Spišská Nová Ves.

  3. Solid state nuclear track detection: a useful geological/geophysical tool

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, A.A.

    1994-01-01

    Solid State Nuclear Track Detection (SSNTD) is a relatively new nuclear particle detection technique. Since its inception, it has found useful application in almost every branch of science. This paper gives a very brief review of the role it has played in solving some geological/geophysical problems. Since the technique has been found useful in a wide spectrum of geological/geophysical applications, it was simply not possible to discuss all of these in this paper due to severe space restrictions. However, an attempt has been made to discuss the salient features of some of the most prominent applications in the geological and geophysical sciences. The paper has been divided into two parts. Firstly, applications based on radon measurements by SSNTDs have been described. These include: Uranium/thorium and mineral exploration, search for geothermal energy sources, study of volcanic processes, location of geological faults and earthquake prediction, for example. Secondly, applications based on the study of spontaneous fission tracks in geological samples have been described briefly. The second group of applications includes: fission track dating (FTD) of geological samples, FTD in the study of emplacement times, provenance studies, and thermal histories of minerals. Necessary references have been provided for detailed studies of (a) the applications cited in this paper, and (b) other important geological/geophysical applications, which unfortunately could not be covered in the present paper. (author)

  4. Identification of different geologic units using fuzzy constrained resistivity tomography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  5. Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada

    Directory of Open Access Journals (Sweden)

    Rasim Latifovic

    2018-02-01

    Full Text Available Mapping of surficial geology is an important requirement for broadening the geoscience database of northern Canada. Surficial geology maps are an integral data source for mineral and energy exploration. Moreover, they provide information such as the location of gravels and sands, which are important for infrastructure development. Currently, surficial geology maps are produced through expert interpretation of aerial photography and field data. However, interpretation is known to be subjective, labour-intensive and difficult to repeat. The expert knowledge required for interpretation can be challenging to maintain and transfer. In this research, we seek to assess the potential of deep neural networks to aid surficial geology mapping by providing an objective surficial materials initial layer that experts can modify to speed map development and improve consistency between mapped areas. Such an approach may also harness expert knowledge in a way that is transferable to unmapped areas. For this purpose, we assess the ability of convolution neural networks (CNN to predict surficial geology classes under two sampling scenarios. In the first scenario, a CNN uses samples collected over the area to be mapped. In the second, a CNN trained over one area is then applied to locations where the available samples were not used in training the network. The latter case is important, as a collection of in situ training data can be costly. The evaluation of the CNN was carried out using aerial photos, Landsat reflectance, and high-resolution digital elevation data over five areas within the South Rae geological region of Northwest Territories, Canada. The results are encouraging, with the CNN generating average accuracy of 76% when locally trained. For independent test areas (i.e., trained over one area and applied over other, accuracy dropped to 59–70% depending on the classes selected for mapping. In the South Rae region, significant confusion was found

  6. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  7. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  8. Introduction to ore geology

    International Nuclear Information System (INIS)

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint

  9. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  10. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  11. Evaluation of uncertainty in geological framework models at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bagtzoglou, A.C.; Stirewalt, G.L.; Henderson, D.B.; Seida, S.B.

    1995-01-01

    The first step towards determining compliance with the performance objectives for both the repository system and the geologic setting at Yucca Mountain requires the development of detailed geostratigraphic models. This paper proposes an approach for the evaluation of the degree of uncertainty inherent in geologic maps and associated three-dimensional geological models. Following this approach, an assessment of accuracy and completeness of the data and evaluation of conceptual uncertainties in the geological framework models can be performed

  12. Bedrock geologic map of the town of Williston, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG07-4, Kim, J., Gale, M., Thompson, P.J. and Derman, K., 2007, Bedrock geologic map of the town of Williston, Vermont: Vermont Geological Survey...

  13. VOSGES, a long and rich geologic history

    Science.gov (United States)

    Dominique, Carteaux; Cyrille, Delangle; Sophie, Demangel

    2015-04-01

    The study of geology in scientific classes is often too theoretical and abstract for the pupils. How can teachers make the link between some samples of rocks observed in a practical class and the geologic story of the region? There's nothing better than outdoor education to establish a relationship between the rock observed in macroscopic and microscopic scale in the classroom,with the outcrop scale and the landscape scale in the field: all of them are the result of a fascinating geologic history.Our pupils are lucky enough to live at the heart of a modest mountain massif that has a very rich geologic story: the massif from Vosges situated in the east of France. During two expeditions we show the students all the following tectonic processes: Accretion at the scale of the landscape with the Rhenish Ditch (tectonic and volcanic markers) Obductionis observed due to ophiolites found in the massive of Thalhorn (peridotite, gabbro and sedimentary marine rocks of great depth). Collisionis illuminated with numerous sites like the schists of Steige, the phyllite of Villé, the gneisses of Climont. Subductionis captured bystudying the outcrops of magmatic rocks within the continental crust (andesite, diorite, granodiorite). At each of the stops we have the students, from a hand sample, to findits story in a more global context. So the theory becomes reality. A study of thin slides of rocks observed on the ground finishes these exits and so various scales of understanding are approached. The long and rich geologic history of Vosges maybe reconstituted on hundreds of million years, allowing certainly giving another aspect to the living environment of our pupils.

  14. Geology Museum-Based Learning in Soil Science Education

    Science.gov (United States)

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  15. Mapping variation in radon potential both between and within geological units

    International Nuclear Information System (INIS)

    Miles, J C H; Appleton, J D

    2005-01-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m -3 ) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430 000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock-superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface

  16. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  17. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  18. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  19. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  20. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  1. Geologic Reconnaissance of the Antelope-Ashwood Area, North-Central Oregon: With Emphasis on the John Day Formation of Late Oligocene and Early Miocene Age

    Science.gov (United States)

    Peck, Dallas L.

    1964-01-01

    This report briefly describes the geology of an area of about 750 square miles in Jefferson, Wasco, Crook, and Wheeler Counties, Oregon. About 16,000 feet of strata that range in age from pre-Tertiary to Quaternary are exposed. These include the following units: pre-Tertiary slate, graywacke, conglomerate, and meta-andesite; Clarno Formation of Eocene age - lava flows, volcanic breccia, tuff, and tuffaceous mudstone, chiefly of andesitic composition; John Day Formation of late Oligocene and early Miocene age - pyroclastic rocks, flows, and domes, chiefly of rhyolitic composition; Columbia River Basalt of middle Miocene age - thick, columnar jointed flows of very fine grained dense dark-gray basalt; Dalles Formation of Pliocene age - bedded tuffaceous sandstone, siltstone, and conglomerate; basalt of Pliocene or Pleistocene age - lava flows of porous-textured olivine basalt; and Quaternary loess, landslide debris, and alluvium. Unconformities separate pre-Tertiary rocks and Clarno Formation, Clarno and John Day Formations, John Day Formation and Columbia River Basalt, and Columbia River Basalt and Dalles Formation. The John Day Formation, the only unit studied in detail, consists of about 4,000 feet of tuff, lapilli tuff, strongly to weakly welded rhyolite ash flows, and less abundant trachyandesite flows and rhyolite flows and domes. The formation was divided into nine mappable members in part of the area, primarily on the basis of distinctive ledge-forming welded ash-flow sheets. Most of the sheets are composed of stony rhyolite containing abundant lithophysae and sparse phenocrysts. One sheet contains 10 to 20 percent phenocrysts, mostly cryptoperthitic soda sanidine, but including less abundant quartz, myrmekitic intergrowths of quartz and sanidine, and oligoclase. The rhyolitic ash flows and lava flows were extruded from nearby vents, in contrast to some of the interbedded air-fall tuff and lapilli tuff of dacitic and andesitic composition that may have been

  2. 3. South American symposium on isotope geology. Extended abstracts

    International Nuclear Information System (INIS)

    2001-10-01

    This publication include papers in the fields on Methodology, thermochronology, and geochronology; Evolution of cratonic South America; Magmatic processes; Environmental geology, hydrogeology, isotopic stratigraphy and paleoclimatology; Economic Geology and Evolution of the Andean margin of South America

  3. Geological techniques used in the siting of South Africa's nuclear facilities

    International Nuclear Information System (INIS)

    Andersen, N.J.B.

    1990-01-01

    Nuclear site selection studies begin with an initial screening phase in order to pick regions which could be potentially suitable. When assessing a potential nuclear site from a structural geological point of view, the most important factors are the presence of 'capable faults', the seismicity of the area, and the existence of good foundation rock. A geological evaluation of a potential site involves a literature survey for all existing geological data on the site, geophysical investigations, structural domain analysis and geological mapping

  4. The basic concept for the geological surveys

    International Nuclear Information System (INIS)

    Deguchi, Akira; Takahashi, Yoshiaki

    1998-01-01

    Before the construction of high level radioactive waste repository, the implementing entity will go through three siting stages for the repository. In each of those three stages, the implementing entity will carry out geological surveys. In this report, the concept for the geological surveys is described, on the basic of 'The policies for the high level radioactive waste disposal (a tentative draft)' issued by the Atomic Energy Commission in July, 1997. (author)

  5. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  6. Thematic dimension of geological heritage: An evidence from the Western Caucasus

    Directory of Open Access Journals (Sweden)

    Plyusnina Ekaterina E.

    2015-01-01

    Full Text Available The geodiversity hotspot comprising 14 geological heritage sites is located on the territory of Mountainous Adygeja in the Western Caucasus (southwestern Russia. The geosites represent some lengthy intervals of the geological history from the Precambrian to the Quaternary, as well as changes in the palaeotectonical affinity of the Greater Caucasus. Visitors of this territory can observe rocks, fossils, and facies, which are typical for the geological periods, especially the Permian, the Triassic, and Jurassic, and the Cretaceous. The same geosites permit to trace shift of the Greater Caucasus Terrane from the Gondwanan margin, where it was before the Devonian, to Laurussia and then Laurasia. Therefore, the geosites can be grouped thematically to facilitate arrangement of geoconservation and geotourism activities. This approach permits to increase the scientific and educational values of the geological heritage in Mountainous Adygeja and to make it more attractive for geotourists. However, such a thematic treatment of the regional geological heritage should not lead to underestimation of the other geological features.

  7. An approach to improve Romanian geological repository planning

    International Nuclear Information System (INIS)

    Andrei, Veronica; Prisecaru, Ilie

    2016-01-01

    International standards recommend typical phases to be included within any national program for the development of a geological repository dedicated to disposal of the high level radioactive wastes generated in countries using nuclear power. However, these are not universally applicable and the content of each of these phases may need to be adapted for each national situation and regulatory and institutional framework. Several national geological repository programs have faced failures in schedules and have revised their programs to consider an adapted phased management approach. The authors have observed that in the case of those countries in the early phases of a geological repository program where boundary conditions have not been fully defined, international recommendations for handling delays/failures in the national program might not immediately help. This paper considers a case study of the influences of the national context risks on the current planning schedule of the Romanian national geological repository. It proposes an optimum solution for an integrated response to any significant adverse impact arising from these risks, enabling sustainable program planning

  8. Assessment of heterogeneous geological environment using geostatistical techniques

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-02-01

    'Geoscientific' research at Tono are developing site investigation and assessment techniques in geological environment. One of their important themes is to establish rational methodology to reduce uncertainties associated with the understanding of geological environment, which often exhibits significant heterogeneity. Purpose of this study is to identify and evaluate uncertainties associated with the understanding of geological environment. Because it is useful to guide designing effective site investigation techniques to reduce the uncertainty. For this, a methodology of the uncertainty analysis concerning the heterogeneous geological environment has been developed. In this report the methodology has also been tested through an exercise attempted in Tono area to demonstrate its applicability. This report summarizes as follows: 1) The exercise shows that the methodology considered 'variability' and 'ignorance' can demonstrate its applicability at three-dimensional case. 2) The exercise shows that the methodology can identity and evaluate uncertainties concerning ground water flow associated with performance assessment. 3) Based on sensitivity analyses, it is possible for the methodology to support designs of the following stage investigations to reduce the uncertainties efficiently. (author)

  9. Personnel monitoring in geologic fields

    International Nuclear Information System (INIS)

    Romanova, I.N.; Seredin, Yu.V.

    1981-01-01

    State of radiation safety for the personnel of geologic crews carrying out neutron logging of wells using Po-Be sources has been evaluated. Given are results of development of methods for the evaluation of individual radiation loads for personnel when working with Po-Be neutron sources useful for the application in practice by a geologic logging crew as well as a quantitative evaluation of profissional radiation loads during this kind of work. The following methods are recommended for personnel monitoring: 1) calculation of whole-body irradiation doses and hands from averaged values of radiation dose rate; 2) calculational tabulated determination of irradiation doses during recharging of shanks of well instruments. Personnel monitoring by means of instrumental methods is not necessary in the considered case [ru

  10. PROCESS FOR LICENSE APPLICATION DEVELOPMENT FOR THE GEOLOGIC REPOSITORY

    International Nuclear Information System (INIS)

    DOUGLAS M. FRANKS AND NORMAN C. HENDERSON

    1997-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the U.S. Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, (section)60.21ff and (section)60.31ff. This paper discusses the process the Yucca Mountain Site Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the ''Technical Guidance Document for Preparation of the License Application'' (TGD), currently in development

  11. Process for license application development for the geologic repository

    International Nuclear Information System (INIS)

    Franks, D.M.; Henderson, N.C.

    1998-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the US Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, section 60.21ff and section 60.31ff. This paper discusses the process the Yucca Mountain Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the Technical Guidance Document for Preparation of the License Application (TGD), currently in development

  12. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions

    Directory of Open Access Journals (Sweden)

    HE Handong

    2017-08-01

    Full Text Available Using GIS, data models of geology via geometric descriptions and expressions are being developed. However, the role played by these data models in terms of the description and expression of geological structure phenomenon is limited. To improve the semantic information in geological GIS data models, this study adopts an object-oriented method that describes and expresses the geometric and semantic features of the geological structure phenomenon using geological objects and designs a data model of regional geological structures by integrating geometry and semantics. Moreover, the study designs a semantic "vocabulary-explanation-graph" method for describing the geological phenomenon of structures. Based on the semantic features of regional geological structures and a linear classification method, it divides the regional geological structure phenomenon into 3 divisions, 10 groups, 33 classes and defines the element set and element class. Moreover, it builds the basic geometric network for geological elements based on the geometric and semantic relations among geological objects. Using the ArcGIS Diagrammer Geodatabase, it considers the regional geological structure of the Ning-Zhen Mountains to verify the data model, and the results indicate a high practicability.

  13. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Bromenshenk, Jerry [Montana State Univ., Bozeman, MT (United States)

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO2 into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO2-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO2 leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  14. Seismically integrated geologic modelling: Guntong Field, Malay Basin

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, Craig S.; Bhuyan, K.; Sterling, J. Helwick; Hill, Rob E.; Hubbard, R. Scott; Khare, Vijay; Wahrmund, Leslie A.; Wang, Gann-Shyong

    1998-12-31

    This presentation relates to a research project on offshore seismically reservoir modelling. The goal of the project was to develop and test a process for interpreting reservoir properties from 3-D seismic data and for integrating these data into the building of 3-D geologic models that would be suitable for use in flow simulation studies. The project produced a 3-D geologic model for three reservoir intervals and three predominantly non-reservoir intervals. Each reservoir interval was subdivided into faces that were determined by integrating core, well log, and seismic interpretations. predictions of porosity and lithology used in building the geologic model were made using seismic attributes calculated from acoustic impedance data. 8 figs.

  15. Geology of Joshua Tree National Park geodatabase

    Science.gov (United States)

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges

  16. Safety aspects of geological studies around nuclear installations sites

    International Nuclear Information System (INIS)

    Faure, J.

    1988-01-01

    The experience of geological studies of about forty french nuclear sites allows to set out the objectives, the phases and the geographic extensions of workings to be realized for confirming a site. The data to be collected for the safety analysis are specified; they concern the local and regional geology, the geotechnical characteristics and the essential elements for evaluating the hazards related to the soil liquefaction, the surface fracturing and in some cases the volcanic risks. It is necessary to follow up the geology during the installation construction and life. 8 refs. (F.M.)

  17. 50 CFR 37.45 - Exploration by the U.S. Geological Survey.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Exploration by the U.S. Geological Survey... INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE....S. Geological Survey. Notwithstanding the requirement found in § 37.21(b) on when exploration plans...

  18. The GEOLOGY of GÖKÇEADA (ÇANAKKALE

    Directory of Open Access Journals (Sweden)

    Ramazan SARI

    2015-10-01

    Full Text Available The geology and especially the magmatic rocks of Gökçeada, which is the biggest island of Turkey and located at 20 km’s west of Biga Peninsula, constitute the subject of this study. Late Ediacaran/Early Paleozoic aged Çamlıca metamorphics which crop out with a tectonic uplift in a narrow area in northwest of Gökçeada are the oldest rocks of the island. Early Eocene aged Karaağaç Formation which is formed by submarine fan deposits unconformably overlies Çamlıca metamorphics. As for the Dağiçitepe volcanic member which is formed by rhyolitic lavas, tuff and tuffites emplaced into Karaağaç Formation cutting Çamlıca metamorphics is the oldest volcanic unit of the study area. On Karaağaç Formation, Koyunbaba Formation has unconformably been deposited which consists of Middle Eocene shallow marine sediments. Then it has conformably been overlain by Soğucak Formation which consists of SE-NW ex- tending reefal limestone. Middle-Upper Eocene aged Ceylan Formation which conformably overlies the Soğucak Formation and the early Oligocene aged Mezardere Formation which conformably overlies Ceylan Formation have been deposited due to turbiditic currents in deep marine environment. Late Eocene(? – Oligocene aged subvolcanics which cut Me- sozoic and Eocene units and emplaced into Eocene aged sedimentary units in the form of crypto dome and dome form the recent rigid topography of the study area and are the second magmatic phase called the “Gökçeada Domes”. Diorite-monzonites porphyry which crys- tallized in lower zones of subvolcanics on the other hand constitutes Mutludere intrusion. In eastern and southern parts of Gökçeada, Late Oligocene Gökçeada ignimbrites are located which are observed in the form of pumice flows on Mezardere Formation. These ignimbrites are then overlain by Early Miocene aged Kesmekaya volcanics which are formed by blocky ash flows. Middle Miocene aged Eşelek volcanics consisting of lava and

  19. Terrestrial and Lunar Geological Terminology

    Science.gov (United States)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  20. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  1. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  2. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  3. Use of the ion microprobe in geological dating

    International Nuclear Information System (INIS)

    Compston, W.; Williams, I.S.; Black, L.P.

    1983-01-01

    SHRIMP, the Sensitive High Resolution Ion Microprobe with computerised control and data acquisition system, has recently been commissioned. It is used within the Research School of Earth Sciences, Australian National University, for the isotopic analysis of geological samples. Principles of operation and geological applications are outlined. One example described is the application to Pb-U dating of zircon

  4. Helium and radon-emanation bibliography. Selected references of geologic interest to uranium exploration

    International Nuclear Information System (INIS)

    Adkisson, C.W.; Reimer, G.M.

    1976-01-01

    Selected references on helium and radon gas emanations and geologically related topics are given. There are 172 references primarily related to helium geology, 129 to radon geology, and 171 to helium and radon. These references are of geologic interest to uranium exploration

  5. A geological reconnaissance study of the Lac du Bonnet batholith

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Kerford, P.S.; Requeima, J.C.; Temple, C.A.

    1980-02-01

    A geological reconnaissance survey was carried out of the Lac du Bonnet batholith, southeastern Manitoba, as part of the concept verification phase of the nuclear fuel waste disposal program for Canada. This report summarizes available geological information, presents the results of field mapping and discusses the geochemical analyses of rock samples. The geological and structural aspects of the batholith are described as well as its regional setting and possible genesis. (auth)

  6. 2005 dossier: clay. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological processes taking place in an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - introduction: goal, input data, time and space scales, long-time forecasting of the phenomenological evolution; 2 - the Meuse/Haute-Marne site, the HLLL wastes and the disposal concepts: impact of the repository architecture; 3 - initial state of the geologic environment prior to the building up of the repository: general framework, geologic formations, tectonics and fractures, surface environment, geologic synthesis; 4 - phenomenological processes: storage-related processes, geodynamics-related processes, time scales of processes and of radionuclides migration, independence and evolution similarities of the repository and of the geologic environment; 5 - heat loads: heat transfers between containers and geologic formations, spatial organization of the thermal load, for C-type wastes and spent fuels, for B-type wastes, synthesis of the repository thermal load; 6 - flows and liquid solution and gas transfers: hydraulic behaviour of surrounding Jurassic formations (Tithonian, Kimmeridgian, Callovian, Oxfordian); 7 - chemical phenomena: chemical evolution of ventilated facilities (alveoles, galleries, boreholes), chemical evolution of B-type waste alveoles and of gallery and borehole sealing after closure, far field chemical evolution of Callovo-Oxfordian argilites and of other surrounding formations; 8 - mechanical evolution of the disposal and of the surrounding geologic environment: creation of an initial excavated damaged zone (EDZ), mechanical evolution of ventilated galleries, alveoles and sealing before and after closure, large-scale mechanical evolution; 9 - geodynamical evolution of the Callovo-Oxfordian and other surrounding formations and of the surface environment: internal

  7. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  8. Uncertainty in mapped geological boundaries held by a national geological survey:eliciting the geologists' tacit error model

    Science.gov (United States)

    Lark, R. M.; Lawley, R. S.; Barron, A. J. M.; Aldiss, D. T.; Ambrose, K.; Cooper, A. H.; Lee, J. R.; Waters, C. N.

    2015-06-01

    It is generally accepted that geological line work, such as mapped boundaries, are uncertain for various reasons. It is difficult to quantify this uncertainty directly, because the investigation of error in a boundary at a single location may be costly and time consuming, and many such observations are needed to estimate an uncertainty model with confidence. However, it is recognized across many disciplines that experts generally have a tacit model of the uncertainty of information that they produce (interpretations, diagnoses, etc.) and formal methods exist to extract this model in usable form by elicitation. In this paper we report a trial in which uncertainty models for geological boundaries mapped by geologists of the British Geological Survey (BGS) in six geological scenarios were elicited from a group of five experienced BGS geologists. In five cases a consensus distribution was obtained, which reflected both the initial individually elicited distribution and a structured process of group discussion in which individuals revised their opinions. In a sixth case a consensus was not reached. This concerned a boundary between superficial deposits where the geometry of the contact is hard to visualize. The trial showed that the geologists' tacit model of uncertainty in mapped boundaries reflects factors in addition to the cartographic error usually treated by buffering line work or in written guidance on its application. It suggests that further application of elicitation, to scenarios at an appropriate level of generalization, could be useful to provide working error models for the application and interpretation of line work.

  9. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  10. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Isaksson, Hans; Hermanson, Jan; Oehman, Johan

    2007-10-01

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  11. Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA

    Directory of Open Access Journals (Sweden)

    Tiffany VanDerwerker

    2018-04-01

    Full Text Available We investigated if geologic factors are linked to elevated arsenic (As concentrations above 5 μg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS and two datasets of measured As concentrations in well water (one from public wells, the other from private wells, we evaluated occurrences of elevated As (above 5 μg/L based on geologic unit. We also constructed a logistic regression model to examine statistical relationships between elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of elevated As in well water than other geologic units in Virginia. Model results support these patterns, showing a higher probability for As occurrence above 5 μg/L in well water in these two units. Due to the lack of observations (<5% having elevated As concentrations in our data set, our model cannot be used to predict As concentrations in other parts of the state. However, our results are useful for identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility of GIS, this study approach can be applied to other areas with existing datasets of As concentrations in well water and accessible data on geology.

  12. A Bayesian Framework of Uncertainties Integration in 3D Geological Model

    Science.gov (United States)

    Liang, D.; Liu, X.

    2017-12-01

    3D geological model can describe complicated geological phenomena in an intuitive way while its application may be limited by uncertain factors. Great progress has been made over the years, lots of studies decompose the uncertainties of geological model to analyze separately, while ignored the comprehensive impacts of multi-source uncertainties. Great progress has been made over the years, while lots of studies ignored the comprehensive impacts of multi-source uncertainties when analyzed them item by item from each source. To evaluate the synthetical uncertainty, we choose probability distribution to quantify uncertainty, and propose a bayesian framework of uncertainties integration. With this framework, we integrated data errors, spatial randomness, and cognitive information into posterior distribution to evaluate synthetical uncertainty of geological model. Uncertainties propagate and cumulate in modeling process, the gradual integration of multi-source uncertainty is a kind of simulation of the uncertainty propagation. Bayesian inference accomplishes uncertainty updating in modeling process. Maximum entropy principle makes a good effect on estimating prior probability distribution, which ensures the prior probability distribution subjecting to constraints supplied by the given information with minimum prejudice. In the end, we obtained a posterior distribution to evaluate synthetical uncertainty of geological model. This posterior distribution represents the synthetical impact of all the uncertain factors on the spatial structure of geological model. The framework provides a solution to evaluate synthetical impact on geological model of multi-source uncertainties and a thought to study uncertainty propagation mechanism in geological modeling.

  13. Near-field geologic environment as an effective barrier against radionuclide transport

    International Nuclear Information System (INIS)

    Umeki, H.; Sakuma, H.; Ishiguro, K.; Hatanaka, K.; Naito, M.

    1993-01-01

    A generic performance assessment of the geologic disposal system of HLW in Japan has been carried out by the Power Reactor and Nuclear Fuel Development Corporation (PNC) in accordance with the overall HLW management program defined by the Japanese Atomic Energy Commission. A massive engineered barrier system, consisting of vitrified waste, carbon-steel overpack and thick bentonite buffer, is introduced to ensure a long-term performance of the disposal system considering a wide range of geologic environment. A major part of the total performance of the disposal system is borne by the engineered barrier system given a geologic environment that assures and complements the performance of such engineered barrier system. The performance of the natural barrier system coupled with the strong engineered barrier system was investigated by sensitivity analyses. Two types of conceptual model were considered for the analysis to describe radionuclide transport in geologic media and the range of relevant parameters was given by taking the variation of the geologic environment in Japan into account. The results show that the degree of retardation of radionuclide transport chosen in the geologic media varies significantly depending on the parameter values chosen. However, it is indicated that there are realistic combinations of those geologic parameter values which could provide a sufficient degree of retardation within a range of only a few tens of meters from the engineered barrier system. The relative importance of the near-field geologic environment is also discussed

  14. Object-Oriented Programming When Developing Software in Geology and Geophysics

    Science.gov (United States)

    Ahmadulin, R. K.; Bakanovskaya, L. N.

    2017-01-01

    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.

  15. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  16. Charles Lyell and scientific thinking in geology

    Science.gov (United States)

    Virgili, Carmina

    2007-07-01

    Charles Lyell (1797-1875) was born at Kinnordy, Scotland. His father, an amateur botanist, and his grandfather, a navigator, gave him very soon a taste for the observation of the Nature. He went to the Oxford University to study classical literature, but he also followed the geological course of William Buckland. After having been employed as jurist for some years, in 1827 he decided on a career of geologist and held the chair of geology of the King's College of London, from 1831 on. He was a contemporary of Cuvier, Darwin, von Humboldt, Hutton, Lavoisier, and was elected 'membre correspondant' of the 'Académie des sciences, France', in January 1862. Charles Lyell is one of the eminent geologists who initiated the scientific thinking in geology, in which his famous volumes of the Principles of Geology were taken as the authority. These reference volumes are based on multiple observations and field works collected during numerous fieldtrips in western Europe (principally Spain, France, and Italy) and North America. To his name are attached, among others: ( i) the concept of uniformitarism (or actualism), which was opposed to the famous catastrophism, in vogue at that time, and which may be summarized by the expression "The present is the key to the past"; ( ii) the division of the Tertiary in three series denominated Eocene, Miocene, and Pliocene, due to the study of the age of strata by fossil faunas; ( iii) the theory according to which the orogenesis of a mountain chain, as the Pyrenees, results from different pulsations on very long time scales and was not induced by a unique pulsation during a short and intense period. The uniformity of the laws of Nature is undeniably a principle Charles Lyell was the first to state clearly and to apply to the study of the whole Earth's crust, which opened a new era in geology.

  17. Scale determinants of fiscal investment in geological exploration: evidence from China.

    Science.gov (United States)

    Lu, Linna; Lei, Yalin

    2013-01-01

    With the continued growth in demand for mineral resources and China's efforts in increasing investment in geological prospecting, fiscal investment in geological exploration becomes a research hotspot. This paper examines the yearly relationship among fiscal investment in geological exploration of the current term, that of the last term and prices of mining rights over the period 1999-2009. Hines and Catephores' investment acceleration model is applied to describe the scale determinants of fiscal investment in geological exploration which are value-added of mining rights, value of mining rights and fiscal investment in the last term. The results indicate that when value-added of mining rights, value of mining rights or fiscal investment in the last term moves at 1 unit, fiscal investment in the current term will move 0.381, 1.094 or 0.907 units respectively. In order to determine the scale of fiscal investment in geological exploration for the current year, the Chinese government should take fiscal investment in geological exploration for the last year and the capital stock of the previous investments into account. In practice, combination of government fiscal investment in geological exploration with its performance evaluation can create a virtuous circle of capital management mechanism.

  18. The geological heritage of the Kurkur-Dungul area in southern Egypt

    Science.gov (United States)

    Sallam, Emad S.; Ponedelnik, Alena A.; Tiess, Günter; Yashalova, Natalia N.; Ruban, Dmitry A.

    2018-01-01

    The inventory of the geological heritage of Egypt is important for its efficient conservation and usage for the purposes of science, education, and tourism. The field investigations in the Kurkur-Dungul area in southern Egypt have permitted to identify several unique geological features. Their type, rank, relative abundance, and intrinsic diversity, as well as importance of the entire geological heritage of the study area are investigated. Seven geological heritage types are distinguished, namely stratigraphical, sedimentary, palaeogeographical, mineralogical, structural, geomorphological, and economical types. The rank of the features belonging to the listed types ranges from local to global, and the relative abundance and the intrinsic diversity range from low to high. The global rank is established for the sedimentary type, which is determined by the wide distribution of palaeospring tufa deposits. The high relative abundance and intrinsic diversity are established for the geomorphological type. The entire geological heritage of the Kurkur-Dungul area can be employed for diversification of the existing tourism programs offered at the tourist destination of Aswan, as well as for geotourism development. A geopark can be created in the Kurkur-Dungul area for the better exploitation of its geological heritage. The combined development of geological and industrial tourism seems to be possible.

  19. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  20. 36 CFR 1256.62 - Geological and geophysical information relating to wells.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical... MATERIALS General Restrictions § 1256.62 Geological and geophysical information relating to wells. (a) In accordance with 5 U.S.C. 552(b)(9), NARA may withhold information in records that relates to geological and...

  1. Geology, hydrology, seismology and geotechnique of Al-Jafra site (NORM remediation project)

    International Nuclear Information System (INIS)

    Redwan, Y.; Abou Zakhem, B; Sbeinati, R.; Moussa, A. M.

    2002-07-01

    The Jafra field site is located 35 km to the E-SE of Deir Ezzor Town (east Syria). The prevailing climate is characterized by cold winter (1.8?) and hot summer (39?) with an average rainfall of 144 mm/y. Annual evaporation rate reaches 214 mm/y and strong seasonal wind hits the area in autumn and spring. From geologic and tectonic point of view the Jafra Field Site is situated within Deir Ezzor Depression to the east of the intersection of the SE/ESE trending Euphratean Fault with the NE trending Southern Palymrean Faulting Zone. At the site, horizontal or westwards gently dipping Pliocene gypsum and clayey sediments outcrop. Q3 volcanism ascended through NNE faults covering a vast area. Pliocene gypsum suffer from deep weathering due to high solubility. Physical properties of the rocks exposed in Jafra Oil Field Site were estimated. It is recommended to take them seriously in consideration in designing and construction any future facility. Hydrologically, Lower Pliocene aquifer is composed of conglomerate, gravels and sands. It is fed by lateral infiltration from Euphrates. Shallow water bearing level is found at 20-30 m while a second one lies at 80-90 m. A soil profile was drilled to depth 2.5 m and the mineralogy of the soil was found to be prevailed mainly by gypsum and clay. Water chemical composition and salinity were defined. Seismic hazard of the site was assessed and found that NW-SE Euphrates Faults System and Al Bishri Fault govern the site's seismicity. Three historical earthquakes namely 160 Ad, 8th century Ad and 859-860 Ad hit the Jafra Oil Field Site area. Eighteen earthquakes of magnitudes vary between 4.1 and 5.5 during the time interval extends from 1900-1994 struck the area. A 1- Hz natural period and one vertical component portable seismic station has been installed in the field for two months. It monitored 13 events the strongest of which had a Md = 4.7 located 320 km from the site. The site was given an intensity of III degrees on (EMS-92

  2. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  3. How many geologic repositories will be needed

    International Nuclear Information System (INIS)

    Evans, T.J.; Halstead, R.J.

    1987-01-01

    DOE's postponement of site-specific work on the second repository program had rekindled debate over the number of geologic repositories needed for disposal of high level radioactive waste. The multiple repository approach grew out of the March, 1979 IRG report, which recommended co-disposal of civilian and defense HLW in a system of regional repositories. The multiple repository approach was adopted by DOE, and incorporated in the Nuclear Waste Policy Act passed by Congress in December, 1982. Since the late 1970's, the slower than anticipated growth of the nuclear power industry has substantially reduced earlier estimates of the amount of civilian spent fuel which will require geologic disposal. Reactors currently in operation (78.5 GWe) and reactors in the construction pipeline (28 GWe) are expected to discharge about 103,200 MTU of spent fuel by the year 2036, assuming no increase in fuel burnup rate. By the year 2020, defense high level radioactive wastes equivalent to as much as 27,000 MTU could require geologic disposal. Small amounts of high level waste from other sources will also require geologic disposal. Total disposal requirements appear to be less than 140,000 MTU. The five sites nominated for the first repository, as well as hypothetical sites in granite, the host rock under primary consideration for the second repository, all appear capable of accommodating up to 140,000 MTU

  4. Geology and mineral deposits of an area in the Departments of Antioquia and Caldas (Subzone IIB), Colombia

    Science.gov (United States)

    Feininger, Tomas; Barrero L., Dario; Castro, Nestor; Hall, R.B.

    1973-01-01

    The Inventario Minero National (IMN), a four-year cooperative geologic mapping and mineral resources appraisal project, was accomplished under an agreement between the Republic of Colombia and the U. S. Agency for International Development from 1964 through 1969. Subzone IIB, consisting essentially of the east half of Zone comprises nearly 20,000 km2 principally in the Department of Antioquia but including also small parts of the Departments of Caldas and Tolima. The rocks in IIB range from Precambrian to Holocene. Precambrian feldspar-quartz gneiss occupies a mosaic of fault-bounded blocks intruded by igneous rocks between the Oto fault and the Rio Magdalena. Paleozoic rocks are extensive, and include lightly metamorphosed graptolite-bearing Ordovician shale at Cristalina, and a major suite of graphitic quartz-mica schist, feldspathic and aluminous gneiss, quartzite, marble, amphibolite, and other rocks. Syntectonic intrusive gneiss included many of the older rocks during a late Paleozoic(?) orogeny, which was accompanied by Abukuma-type metamorphosing from lowermost greenschist to upper amphibolite facies. A Jurassic diorite pluton bounded by faults cuts volcanic rocks of unknown age east of the Otu fault. Cretaceous rocks are major units. Middle Cretaceous carbonaceous shale, sandstone, graywacke, conglomerate, and volcanic rocks are locally prominent. The Antioquian batholith (quartz diorite) of Late Cretaceous age cuts the middle Cretaceous and older rocks. A belt of Tertiary nonmarine clastic sedimentary rocks crops out along the Magdalena Valley. Patches of Tertiary alluvium are locally preserved in the mountains. Quaternary alluvium, much of it auriferous, is widespread in modern stream valleys. Structurally IIB constitutes part of a vast complex synclinorium intruded concordantly by syntectonic catazonal or mesozonal felsic plutons, and by the later epizonal post-tectonic Antioquian batholith. Previously unrecognized major wrench faults are outstanding

  5. Ways forward in quantifying data uncertainty in geological databases

    Science.gov (United States)

    Kint, Lars; Chademenos, Vasileios; De Mol, Robin; Kapel, Michel; Lagring, Ruth; Stafleu, Jan; van Heteren, Sytze; Van Lancker, Vera

    2017-04-01

    Issues of compatibility of geological data resulting from the merging of many different data sources and time periods may jeopardize harmonization of data products. Important progress has been made due to increasing data standardization, e.g., at a European scale through the SeaDataNet and Geo-Seas data management infrastructures. Common geological data standards are unambiguously defined, avoiding semantic overlap in geological data and associated metadata. Quality flagging is also applied increasingly, though ways in further propagating this information in data products is still at its infancy. For the Belgian and southern Netherlands part of the North Sea, databases are now rigorously re-analyzed in view of quantifying quality flags in terms of uncertainty to be propagated through a 3D voxel model of the subsurface (https://odnature.naturalsciences.be/tiles/). An approach is worked out to consistently account for differences in positioning, sampling gear, analysis procedures and vintage. The flag scaling is used in the interpolation process of geological data, but will also be used when visualizing the suitability of geological resources in a decision support system. Expert knowledge is systematically revisited as to avoid totally inappropriate use of the flag scaling process. The quality flagging is also important when communicating results to end-users. Therefore, an open data policy in combination with several processing tools will be at the heart of a new Belgian geological data portal as a platform for knowledge building (KB) and knowledge management (KM) serving the marine geoscience, the policy community and the public at large.

  6. The 1:3M geologic map of Mercury: progress and updates

    Science.gov (United States)

    Galluzzi, Valentina; Guzzetta, Laura; Mancinelli, Paolo; Giacomini, Lorenza; Malliband, Christopher C.; Mosca, Alessandro; Wright, Jack; Ferranti, Luigi; Massironi, Matteo; Pauselli, Cristina; Rothery, David A.; Palumbo, Pasquale

    2017-04-01

    After the end of Mariner 10 mission a 1:5M geologic map of seven of the fifteen quadrangles of Mercury [Spudis and Guest, 1988] was produced. The NASA MESSENGER mission filled the gap by imaging 100% of the planet with a global average resolution of 200 m/pixel and this led to the production of a global 1:15M geologic map of the planet [Prockter et al., 2016]. Despite the quality gap between Mariner 10 and MESSENGER images, no global geological mapping project with a scale larger than 1:5M has been proposed so far. Here we present the status of an ongoing project for the geologic mapping of Mercury at an average output scale of 1:3M based on the available MESSENGER data. This project will lead to a fuller grasp of the planet's stratigraphy and surface history. Completing such a product for Mercury is an important goal in preparation for the forthcoming ESA/JAXA BepiColombo mission to aid selection of scientific targets and to provide context for interpretation of new data. At the time of this writing, H02 Victoria [Galluzzi et al., 2016], H03 Shakespeare [Guzzetta et al., 2016] and H04 Raditladi [Mancinelli et al., 2016] have been completed and H05 Hokusai [Rothery et al., 2017], H06 Kuiper [Giacomini et al., 2017], H07 Beethoven and H10 Derain [Malliband et al., 2017] are being mapped. The produced geologic maps were merged using the ESRI ArcGIS software adjusting discontinuous contacts along the quadrangle boundaries. Contact discrepancies were reviewed and discussed among the mappers of adjoining quadrangles in order to match the geological interpretation and provide a unique consistent stratigraphy. At the current stage, more than 20% of Mercury has now a complete 1:3M map and more than 40% of the planet will be covered soon by the maps that are being prepared. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0). References Galluzzi V. et al. (2016). Geology of the Victoria Quadrangle (H

  7. Geologic simulation model for a hypothetical site in the Columbia Plateau

    International Nuclear Information System (INIS)

    Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

    1981-04-01

    This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes

  8. Classification of technogenic impacts on the geological medium

    International Nuclear Information System (INIS)

    Trofimov, V.T.; Korolev, V.A.; Gerasimova, A.S.

    1995-01-01

    The available systems of classification of technology-induced impacts on the geological environment are analyzed and a classification which is elaborated by the authors and allows to break the integrated impact into individual components for their subsequent analysis, evaluation and reflection in cartographic models. This classification assumes the division of technology-induced impacts into classes and subclasses. The first class-impacts of physical nature-includes a subclass of radioactive impacts where, in its turn, two types of impacts are distinguished: radioactive contamination and radiation decontamination of the components of the geological environment. The proposed classification can serve the basis for developing standards and regulations of typification and evaluation of technology-induced impacts o the geological environment. 27 refs., 1 tab

  9. Geology, geophysics and engineering: a case for synergism

    Energy Technology Data Exchange (ETDEWEB)

    Gretener, P.E.

    1984-06-01

    This article uses the example of artificial well fracturing to show how geologists, geophysicists and engineers can benefit from establishing an interdisciplinary dialogue. The term ''Ultimate Recovery'' is shown to be equally applicable to oil production and hard rock mining. While geology and geophysics schools gear their curricula toward the exploration for natural resources, engineers consider exploitation as their exclusive domain. It is proposed that geologists and geophysicists close ranks with the engineers and abolish the current state of separation which is being perpetuated by both sides. It is shown how geological considerations have helped to unravel the process of artificial well stimulation, while well stimulation in turn has provided valuable insights into the present stress conditions in various geological provinces.

  10. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  11. Three-dimensional Subsurface Geological Modeling of the Western Osaka Plane based on Borehole Data

    Science.gov (United States)

    Nonogaki, S.; Masumoto, S.; Nemoto, T.

    2012-12-01

    Three-dimensional (3D) geological model of subsurface structure plays an important role in developing infrastructures. In particular, the 3D geological model in urban area is quite helpful to solve social problems such as underground utilization, environmental preservation, and disaster assessment. Over the past few years, many studies have been made on algorithms for 3D geological modeling. However, most of them have given little attention to objectivity of the model and traceability of modeling procedures. The purpose of this study is to develop an algorithm for constructing a 3D geological model objectively and for maintaining high-traceability of modeling procedures. For the purpose of our work, we proposed a new algorithm for 3D geological modeling using gridded geological boundary surfaces and the "logical model of geologic structure". The geological boundary surface is given by a form of Digital Elevation Model (DEM). The DEM is generated based on geological information such as elevation, strike and dip by using a unique spline-fitting method. The logical model of geological structure is a mathematical model that defines a positional relation between geological boundary surfaces and geological units. The model is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. We applied the proposed algorithm into constructing a 3D subsurface geological model of the western Osaka Plane, southwest Japan. The data used for 3D geological modeling is a set of borehole data provided by Osaka City and Kansai Geoinformatics Agency. As a result, we constructed a 3D model consistent with the subjective model reported in other studies. In addition, all information necessary for modeling, such as the used geological information, the parameters of surface fitting, and the logical model, was stored in text files. In conclusion, we can not only construct 3D geological model objectively but also maintain high

  12. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  13. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  14. Osmotic generation of 'anomalous' fluid pressures in geological environments

    Science.gov (United States)

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  15. Geological disposal of high-level radioactive wastes. Historical perspective and contemporary issues

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2013-01-01

    The contemporary concept on the geological disposal of radioactive wastes, the position of Japan in the world stream of geological disposal, and the ideal aspect of the Japanese geological disposal after the Fukushima accident are described. (M.H.)

  16. Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method

    Science.gov (United States)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.

    2018-04-01

    The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.

  17. Geology - Background complementary studies. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Skagius, Kristina [Kemakta Konsult AB, Stockholm (Sweden)] (eds.)

    2007-09-15

    During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report. The titles and authors of the seven background complementary studies are presented below. Summaries of the results of each study, with a focus on the implications for the geological modelling of deformation zones, are presented in the master geological report, SKB-R--07-45. The sections in the master report, where reference is made to each background complementary study and where the summaries are placed, are also provided. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report. 1. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. 2. Integrated interpretation of surface and

  18. Geology - Background complementary studies. Forsmark modelling stage 2.2

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Skagius, Kristina

    2007-09-01

    During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report. The titles and authors of the seven background complementary studies are presented below. Summaries of the results of each study, with a focus on the implications for the geological modelling of deformation zones, are presented in the master geological report, SKB-R--07-45. The sections in the master report, where reference is made to each background complementary study and where the summaries are placed, are also provided. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report. 1. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. 2. Integrated interpretation of surface and

  19. Submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.; Anderson, D.R.

    1980-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal ''red'' clay. Regions in the ocean that have coarse-grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. Site selection activities for the North Atlantic and North Pacific are reviewed and future activities which include international cooperation are discussed. A paleoenvironmental model for Cenozoic sedimentation in the central North Pacific is presented based on studies of a long core from the Mid-Plate Gyre MPG-1 area, and is an example of the type of study that will be carried out in other seabed study areas. The data show that the MPG-1 region has been an area of slow, continuous accumulation during the past 65 million years. (author)

  20. The laboratories of geological studies; Les laboratoires d`etudes geologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA`s activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)