WorldWideScience

Sample records for conformationally constrained epibatidine

  1. Epibatidine-derivatives: ligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Westera, G.; Patt, J.T.; Jankowski, K.; Bertrand, D.; Spang, J.; Schubiger, P.A.

    1997-01-01

    Epibatidine, isolated from the Ecuadorian frog Epipedobates tricolar, has been synthesized. 11 C-N-methyl derivate is investigated as useful nicotinergic receptor ligand by electrophysiological methods and in vivo mice experiments. (author) 2 figs., 7 refs

  2. The 7-azanorbornane nucleus of epibatidine: 7-azabicyclo[2.2.1]heptan-7-ium chloride

    Directory of Open Access Journals (Sweden)

    Sergey N. Britvin

    2017-09-01

    Full Text Available 7-Azabicyclo[2.2.1]heptane (7-azanorbornane is a bridged heterocyclic nucleus found in epibatidine, the alkaloid isolated from the skin of the tropical poison frog Epipedobates tricolor. Since epibatidine is known as one of the most potent acetylcholine nicotinic receptor agonists, a plethora of literature has been devoted to this alkaloid. However, there are no structural data on the unsubstituted 7-azanorbornane, the parent bicyclic ring of epibatidine and its derivatives. We herein present the structural characterization of the 7-azabicyclo[2.2.1]heptane parent ring as its hydrochloride salt, namely 7-azabicyclo[2.2.1]heptan-7-ium chloride, C6H12N+·Cl−. The compete cation is generated by a crystallographic mirror plane with the N atom lying on the mirror, as does the chloride anion. In the crystal, the cations are linked to the anions by N—H...Cl hydrogen bonds, which generate [001] chains.

  3. FXR agonist activity of conformationally constrained analogs of GW 4064.

    Science.gov (United States)

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  4. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Directory of Open Access Journals (Sweden)

    Person Alexandra M

    2011-11-01

    Full Text Available Abstract Background Along with high affinity binding of epibatidine (Kd1≈10 pM to α4β2 nicotinic acetylcholine receptor (nAChR, low affinity binding of epibatidine (Kd2≈1-10 nM to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after

  5. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Science.gov (United States)

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  6. Synthesis and biological evaluation of flexible and conformationally constrained LpxC inhibitors

    DEFF Research Database (Denmark)

    Löppenberg, Marius; Müller, Hannes; Pulina, Carla

    2013-01-01

    , conformationally constrained C-glycosidic as well as open chained hydroxamic acids with a defined stereochemistry were prepared. Diversity was introduced by performing C–C coupling reactions like the Sonogashira and Suzuki cross-coupling reactions. The biological evaluation of the synthesized compounds revealed...

  7. Conformationally constrained farnesoid X receptor (FXR) agonists: alternative replacements of the stilbene.

    Science.gov (United States)

    Akwabi-Ameyaw, Adwoa; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2011-10-15

    To further explore the optimum placement of the acid moiety in conformationally constrained analogs of GW 4064 1a, a series of stilbene replacements were prepared. The benzothiophene 1f and the indole 1g display the optimal orientation of the carboxylate for enhanced FXR agonist potency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-plate, and formalin tests in the naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Dulu, Thomas D; Kanui, Titus I; Towett, Philemon K; Maloiy, Geoffrey M; Abelson, Klas S P

    2014-01-01

    The naked mole-rat (Heterocephalus glaber) is a promising animal model for the study of pain mechanisms, therefore a thorough characterization of this species is essential. The aim of the present study was to establish the naked mole-rat as a model for studying the cholinergic receptor system in antinociception by investigating the involvement of muscarinic, nicotinic and opioid receptors in nociceptive tests in this species. The effects of systemic administration of the muscarinic receptor agonist oxotremorine and the nicotinic receptor agonist epibatidine were investigated in the tail-flick, the hot-plate, and the formalin tests. The effects of co-administration of the muscarinic receptor antagonist atropine, the nicotinic receptor antagonist mecamylamine, and the opioid receptor antagonist naloxone were also investigated. Oxotremorine and epibatidine induced a significant, dose-dependent antinociceptive effect in the tail-flick, hot-plate, and formalin tests, respectively. The effects of oxotremorine and epibatidine were blocked by atropine and mecamylamine, respectively. In all three nociceptive tests, naloxone in combination with oxotremorine or epibatidine enhanced the antinociceptive effects of the drugs. The present study demonstrated that stimulation of muscarinic and nicotinic receptors produces antinociceptive effects in the naked-mole rat. The reversal effect of atropine and mecamylamine suggests that this effect is mediated by cholinergic receptors. As naloxone increases the antinociceptive effects of cholinergic agonists, it is suggested that the cholinergic antinociception acts via a gateway facilitated by opioid receptor blockage; however, the precise interaction between these receptor systems needs further investigation.

  9. Preparation and biological evaluation of conformationally constrained BACE1 inhibitors.

    Science.gov (United States)

    Winneroski, Leonard L; Schiffler, Matthew A; Erickson, Jon A; May, Patrick C; Monk, Scott A; Timm, David E; Audia, James E; Beck, James P; Boggs, Leonard N; Borders, Anthony R; Boyer, Robert D; Brier, Richard A; Hudziak, Kevin J; Klimkowski, Valentine J; Garcia Losada, Pablo; Mathes, Brian M; Stout, Stephanie L; Watson, Brian M; Mergott, Dustin J

    2015-07-01

    The BACE1 enzyme is a key target for Alzheimer's disease. During our BACE1 research efforts, fragment screening revealed that bicyclic thiazine 3 had low millimolar activity against BACE1. Analysis of the co-crystal structure of 3 suggested that potency could be increased through extension toward the S3 pocket and through conformational constraint of the thiazine core. Pursuit of S3-binding groups produced low micromolar inhibitor 6, which informed the S3-design for constrained analogs 7 and 8, themselves prepared via independent, multi-step synthetic routes. Biological characterization of BACE inhibitors 6-8 is described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The making of the minibody: an engineered beta-protein for the display of conformationally constrained peptides.

    Science.gov (United States)

    Tramontano, A; Bianchi, E; Venturini, S; Martin, F; Pessi, A; Sollazzo, M

    1994-03-01

    Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost the drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue beta-protein aimed at retaining some desirable features of immunoglobulin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of the main chain conformation of the same regions, based on the 'canonical structures' model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical synthesis and expression in E. coli and characterized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low solubility. We were able to overcome this problem both by further mutagenesis of the framework and by addition of a solubilizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.

  11. Design and stereoselective synthesis of a C-aryl furanoside as a conformationally constrained CHIR-090 analogue

    DEFF Research Database (Denmark)

    Oddo, Alberto; Holl, Ralph

    2012-01-01

    The UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) is a promising target for the development of novel antibiotic substances against multidrug-resistant Gram-negative bacteria. The C-aryl glycoside 3 was designed as conformationally constrained analogue of the potent LpxC-......, and esterification. A Sonogashira reaction of the aryl iodide 11 led to the alkyne 17 which was transformed with H(2)NOH into the hydroxamic acid 3....

  12. Inhibition of human thymidine phosphorylase by conformationally constrained pyrimidine nucleoside phosphonic acids and their "open-structure" isosteres

    Czech Academy of Sciences Publication Activity Database

    Kóšiová, Ivana; Šimák, Ondřej; Panova, Natalya; Buděšínský, Miloš; Petrová, Magdalena; Rejman, Dominik; Liboska, Radek; Páv, Ondřej; Rosenberg, Ivan

    2014-01-01

    Roč. 74, Mar 3 (2014), s. 145-168 ISSN 0223-5234 R&D Projects: GA ČR GA203/09/0820; GA ČR GA202/09/0193; GA ČR GA13-24880S; GA ČR GA13-26526S Institutional support: RVO:61388963 Keywords : phosphonate * conformationally constrained nucleotide analog * human thymidine phosphorylase * PBMC * bi-substrate-like inhibitor * Michael addition Subject RIV: CC - Organic Chemistry Impact factor: 3.447, year: 2014

  13. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution

    DEFF Research Database (Denmark)

    Nielsen, Peter Aadal; Jaroszewski, Jerzy W.; Norrby, Per-Ola

    2001-01-01

    The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha -amino acids, have been studied by C-13 NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G* calculations using...

  14. Constrained Maximum Likelihood Estimation of Relative Abundances of Protein Conformation in a Heterogeneous Mixture from Small Angle X-Ray Scattering Intensity Measurements

    Science.gov (United States)

    Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee

    2015-01-01

    In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916

  15. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40).

    Science.gov (United States)

    Yahi, Nouara; Aulas, Anaïs; Fantini, Jacques

    2010-02-05

    Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta) peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs) on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40) and chemically defined GSLs (GalCer, LacCer, GM1, GM3). Using the Langmuir monolayer technique, we show that Abeta(1-40) selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs). In contrast, Abeta(1-40) did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs). Cholesterol inhibited the interaction of Abeta(1-40) with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40) binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40) with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40). We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the influence

  16. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40.

    Directory of Open Access Journals (Sweden)

    Nouara Yahi

    Full Text Available Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40 and chemically defined GSLs (GalCer, LacCer, GM1, GM3. Using the Langmuir monolayer technique, we show that Abeta(1-40 selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs. In contrast, Abeta(1-40 did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs. Cholesterol inhibited the interaction of Abeta(1-40 with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40 binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40 with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40. We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the

  17. Synthesis of conformationally constrained peptidomimetics using multicomponent reactions

    NARCIS (Netherlands)

    Scheffelaar, R.; Klein Nijenhuis, R.A.; Paravidino, M.; Lutz, M.; Spek, A.L.; Ehlers, A.W.; de Kanter, F.J.J.; Groen, M.B.; Orru, R.V.A.; Ruijter, E.

    2009-01-01

    A novel modular synthetic approach toward constrained peptidomimetics is reported. The approach involves a highly efficient three-step sequence including two multicomponent reactions, thus allowing unprecedented diversification of both the peptide moieties and the turn-inducing scaffold. The

  18. Conformal correlation functions in the Brownian loop soup

    Science.gov (United States)

    Camia, Federico; Gandolfi, Alberto; Kleban, Matthew

    2016-01-01

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  19. Conformal correlation functions in the Brownian loop soup

    Energy Technology Data Exchange (ETDEWEB)

    Camia, Federico, E-mail: federico.camia@nyu.edu [New York University Abu Dhabi (United Arab Emirates); VU University, Amsterdam (Netherlands); Gandolfi, Alberto, E-mail: albertogandolfi@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Università di Firenze (Italy); Kleban, Matthew, E-mail: kleban@nyu.edu [New York University Abu Dhabi (United Arab Emirates); Center for Cosmology and Particle Physics, Department of Physics, New York University (United States)

    2016-01-15

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  20. Conformal correlation functions in the Brownian loop soup

    Directory of Open Access Journals (Sweden)

    Federico Camia

    2016-01-01

    Full Text Available We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  1. Molecular dynamics studies of the conformation of sorbitol

    Science.gov (United States)

    Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.

    2009-01-01

    Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646

  2. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  3. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  4. Conformal Extensions of the Standard Model with Veltman Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Sannino, Francesco

    2014-01-01

    Using the renormalisation group framework we classify different extensions of the standard model according to their degree of naturality. A new relevant class of perturbative models involving elementary scalars is the one in which the theory simultaneously satisfies the Veltman conditions...... and is conformal at the classical level. We term these extensions perturbative natural conformal (PNC) theories. We show that PNC models are very constrained and thus highly predictive. Among the several PNC examples that we exhibit, we discover a remarkably simple PNC extension of the standard model in which...

  5. Probing the Conformational Landscape of Polyether Building Blocks in Supersonic Jets

    Science.gov (United States)

    Bocklitz, Sebastian; Hewett, Daniel M.; Zwier, Timothy S.; Suhm, Martin A.

    2016-06-01

    Polyethylene oxides (Polyethylene glycoles) and their phenoxy-capped analogs represent a prominent class of important polymers that are highly used as precursor molecules in supramolecular reactions. After a detailed study on the simplest representative (1,2-dimethoxyethane) [1], we present results on oligoethylene oxides with increasing chain lengths obtained by spontaneous Raman scattering in a supersonic jet. Through variation of stagnation pressure, carrier gas, nozzle distance and temperature we gain information on the conformational landscape as well as the mutual interconversion of low energy conformers. The obtained results are compared to state-of-the-art quantum chemical calculations. Additionally, we present UV as well as IR-UV and UV-UV double resonance studies on 1-methoxy-2-phenoxyethane in a supersonic jet. These complementary techniques allow for conformationally selective electronic and vibrational spectra in a closely related conformational landscape. [1] S. Bocklitz, M. A. Suhm, Constraining the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy, Z. Phys. Chem. 2015, 229, 1625-1648.

  6. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    Science.gov (United States)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  7. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues

    DEFF Research Database (Denmark)

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte

    2016-01-01

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we...... investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead...

  8. Increased Conformational Flexibility of a Macrocycle–Receptor Complex Contributes to Reduced Dissociation Rates

    NARCIS (Netherlands)

    Glas, Adrian; Wamhoff, Eike Christian; Krüger, Dennis M.; Rademacher, Christoph; Grossmann, Tom N.

    2017-01-01

    Constraining a peptide in its bioactive conformation by macrocyclization represents a powerful strategy to design modulators of challenging biomolecular targets. This holds particularly true for the development of inhibitors of protein-protein interactions which often involve interfaces lacking

  9. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  10. Synthesis and pharmacological evaluation of conformationally constrained glutamic acid higher homologues.

    Science.gov (United States)

    Tamborini, Lucia; Cullia, Gregorio; Nielsen, Birgitte; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2016-11-15

    Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Squaraine rotaxanes with boat conformation macrocycles.

    Science.gov (United States)

    Fu, Na; Baumes, Jeffrey M; Arunkumar, Easwaran; Noll, Bruce C; Smith, Bradley D

    2009-09-04

    Mechanical encapsulation of fluorescent, deep-red bis(anilino)squaraine dyes inside Leigh-type tetralactam macrocycles produces interlocked squaraine rotaxanes. The surrounding macrocycles are flexible and undergo rapid exchange of chair and boat conformations in solution. A series of X-ray crystal structures show how the rotaxane co-conformational exchange process involves simultaneous lateral oscillation of the macrocycle about the center of the encapsulated squaraine thread. Rotaxane macrocycles with 1,4-phenylene sidewalls and 2,6-pyridine dicarboxamide bridging units are more likely to adopt boat conformations in the solid state than analogous squaraine rotaxane systems with isophthalamide-containing macrocycles. A truncated squaraine dye, with a secondary amine attached directly to the central C(4)O(2) core, is less electrophilic than the extended bis(anilino)squaraine analogue, but it is still susceptible to chemical and photochemical bleaching. Its stability is greatly enhanced when it is encapsulated as an interlocked squaraine rotaxane. An X-ray crystal structure of this truncated squaraine rotaxane shows the macrocycle in a boat conformation, and NMR studies indicate that the boat is maintained in solution. Encapsulation as a rotaxane increases the dye's brightness by a factor of 6. The encapsulation process appears to constrain the dye and reduce deformation of the chromophore from planarity. This study shows how mechanical encapsulation as a rotaxane can be used as a rational design parameter to fine-tune the chemical and photochemical properties of squaraine dyes.

  12. Minimal models from W-constrained hierarchies via the Kontsevich-Miwa transform

    CERN Document Server

    Gato-Rivera, Beatriz

    1992-01-01

    A direct relation between the conformal formalism for 2d-quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the KP tau function and decoupling equations corresponding to Virasoro null vectors. The Kontsevich-Miwa transform maps the $W^{(l)}$-constrained KP hierarchy to the $(p^\\prime,p)$ minimal model, with the tau function being given by the correlator of a product of (dressed) $(l,1)$ (or $(1,l)$) operators, provided the Miwa parameter $n_i$ and the free parameter (an abstract $bc$ spin) present in the constraints are expressed through the ratio $p^\\prime/p$ and the level $l$.

  13. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  14. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    Science.gov (United States)

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  15. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation

    Science.gov (United States)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2012-08-01

    The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F1-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg2+ leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.

  16. On bidimensional Lagrangian conformal models

    International Nuclear Information System (INIS)

    Lazzarini, S.

    1990-04-01

    The main topic of this thesis is the study of Conformal Field Theories defined on an arbitrary compact Riemann surface without boundary. The Beltrami parametrization of complexe structures endowing such a surface provides a local bidimensional diffeomorphism invariance of the theory and the holomorphic factorization. The perturbative quantization a la Feynman is then constrained by local factorized Ward identities. The renormalization is analysed in the Esptein-Glaser scheme. A first part deals with the simplest free field models where one checks the interesting conjecture that renormalized perturbative expansions could be resumed by a Polyakov's formula which is a Wess-Zumino action for the diffeomorphism anomaly. For a higher genus surface, only a differential version is proposed. The second part of this thesis is devoted to the characterization of some observables of the free bosonic string in the corresponding gauge theory with the aid of the nilpotent Slavnov s-operator. It is conjectured that part of the observables of this theory is labelled by the local cohomology of s modulo d and corresponds to the vertex operators, as it is verified for the tachyon vertex in the conformal gauge [fr

  17. Hidden conformal symmetry in Randall–Sundrum 2 model: Universal fermion localization by torsion

    Directory of Open Access Journals (Sweden)

    G. Alencar

    2017-10-01

    Full Text Available In this manuscript we describe a hidden conformal symmetry of the second Randall–Sundrum model (RS2. We show how this can be used to localize fermions of both chiralities. The conformal symmetry leaves few free dimensionless constants and constrains the allowed interactions. In this formulation the warping of the extra dimension emerges from a partial breaking of the conformal symmetry in five dimensions. The solution of the system can be described in two alternative gauges: by the metric or by the conformon. By considering this as a fundamental symmetry we construct a conformally invariant action for a vector field which provides a massless photon localized over a Minkowski brane. This is obtained by a conformal non-minimal coupling that breaks the gauge symmetry in five dimensions. We further consider a generalization of the model by including conformally invariant torsion. By coupling torsion non-minimally to fermions we obtain a localized zero mode of both chiralities completing the consistence of the model. The inclusion of torsion introduces a fermion quartic interaction that can be used to probe the existence of large extra dimensions and the validity of the model. This seems to point to the fact that conformal symmetry may be more fundamental than gauge symmetry and that this is the missing ingredient for the full consistence of RS scenarios.

  18. Inflation and conformal invariance: the perspective from radial quantization

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2017-05-15

    According to the dS/CFT correspondence, correlators of fields generated during a primordial de Sitter phase are constrained by three-dimensional conformal invariance. Using the properties of radially quantized conformal field theories and the operator-state correspondence, we glean information on some points. The Higuchi bound on the masses of spin-s states in de Sitter is a direct consequence of reflection positivity in radially quantized CFT{sub 3} and the fact that scaling dimensions of operators are energies of states. The partial massless states appearing in de Sitter correspond from the boundary CFT{sub 3} perspective to boundary states with highest weight for the conformal group. Finally, we discuss the inflationary consistency relations and the role of asymptotic symmetries which transform asymptotic vacua to new physically inequivalent vacua by generating long perturbation modes. We show that on the CFT{sub 3} side, asymptotic symmetries have a nice quantum mechanics interpretation. For instance, acting with the asymptotic dilation symmetry corresponds to evolving states forward (or backward) in ''time'' and the charge generating the asymptotic symmetry transformation is the Hamiltonian itself. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Gravitational waves in Fully Constrained Formulation in a dynamical spacetime with matter content

    Energy Technology Data Exchange (ETDEWEB)

    Cordero-Carrion, Isabel; Cerda-Duran, Pablo [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85741, Garching (Germany); Ibanez, Jose MarIa, E-mail: chabela@mpa-garching.mpg.de, E-mail: cerda@mpa-garching.mpg.de, E-mail: jose.m.ibanez@uv.es [Departamento de AstronomIa y Astrofisica, Universidad de Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain)

    2011-09-22

    We analyze numerically the behaviour of the hyperbolic sector of the Fully Constrained Formulation (FCF) (Bonazzola et al. 2004). The numerical experiments allow us to be confident in the performances of the upgraded version of the CoCoNuT code (Dimmelmeier et al. 2005) by replacing the Conformally Flat Condition (CFC), an approximation of Einstein equations, by FCF. First gravitational waves in FCF in a dynamical spacetime with matter content will be shown.

  20. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  1. Real-time observation of conformational switching in single conjugated polymer chains.

    Science.gov (United States)

    Tenopala-Carmona, Francisco; Fronk, Stephanie; Bazan, Guillermo C; Samuel, Ifor D W; Penedo, J Carlos

    2018-02-01

    Conjugated polymers (CPs) are an important class of organic semiconductors that combine novel optoelectronic properties with simple processing from organic solvents. It is important to study CP conformation in solution to understand the physics of these materials and because it affects the properties of solution-processed films. Single-molecule techniques are unique in their ability to extract information on a chain-to-chain basis; however, in the context of CPs, technical challenges have limited their general application to host matrices or semiliquid environments that constrain the conformational dynamics of the polymer. We introduce a conceptually different methodology that enables measurements in organic solvents using the single-end anchoring of polymer chains to avoid diffusion while preserving polymer flexibility. We explore the effect of organic solvents and show that, in addition to chain-to-chain conformational heterogeneity, collapsed and extended polymer segments can coexist within the same chain. The technique enables real-time solvent-exchange measurements, which show that anchored CP chains respond to sudden changes in solvent conditions on a subsecond time scale. Our results give an unprecedented glimpse into the mechanism of solvent-induced reorganization of CPs and can be expected to lead to a new range of techniques to investigate and conformationally manipulate CPs.

  2. High energy physics signatures from inflation and conformal symmetry of de Sitter

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2015-01-01

    During inflation, the geometry of spacetime is described by a (quasi-)de Sitter phase. Inflationary observables are determined by the underlying (softly broken) de Sitter isometry group SO(1, 4) which acts like a conformal group on R 3 : when the fluctuations are on super-Hubble scales, the correlators of the scalar fields are constrained by conformal invariance. Heavy fields with mass m larger than the Hubble rate H correspond to operators with imaginary dimensions in the dual Euclidean three-dimensional conformal field theory. By making use of the dS/CFT correspondence we show that, besides the Boltzmann suppression expected from the thermal properties of de Sitter space, the generic effect of heavy fields in the inflationary correlators of the light fields is to introduce power-law suppressed corrections of the form O(H 2 / m 2 ). This can be seen, for instance, at the level of the four-point correlator for which we provide the correction due to a massive scalar field exchange. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Conformational Effects through Hydrogen Bonding in a Constrained γ-Peptide Template: From Intraresidue Seven-Membered Rings to a Gel-Forming Sheet Structure.

    Science.gov (United States)

    Awada, Hawraà; Grison, Claire M; Charnay-Pouget, Florence; Baltaze, Jean-Pierre; Brisset, François; Guillot, Régis; Robin, Sylvie; Hachem, Ali; Jaber, Nada; Naoufal, Daoud; Yazbeck, Ogaritte; Aitken, David J

    2017-05-05

    A series of three short oligomers (di-, tri-, and tetramers) of cis-2-(aminomethyl)cyclobutane carboxylic acid, a γ-amino acid featuring a cyclobutane ring constraint, were prepared, and their conformational behavior was examined spectroscopically and by molecular modeling. In dilute solutions, these peptides showed a number of low-energy conformers, including ribbonlike structures pleated around a rarely observed series of intramolecular seven-membered hydrogen bonds. In more concentrated solutions, these interactions defer to an organized supramolecular assembly, leading to thermoreversible organogel formation notably for the tripeptide, which produced fibrillar xerogels. In the solid state, the dipeptide adopted a fully extended conformation featuring a one-dimensional network of intermolecularly H-bonded molecules stacked in an antiparallel sheet alignment. This work provides unique insight into the interplay between inter- and intramolecular H-bonded conformer topologies for the same peptide template.

  4. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    Science.gov (United States)

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  5. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  6. Enrichment of Druggable Conformations from Apo Protein Structures Using Cosolvent-Accelerated Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrew Kalenkiewicz

    2015-04-01

    Full Text Available Here we describe the development of an improved workflow for utilizing experimental and simulated protein conformations in the structure-based design of inhibitors for anti-apoptotic Bcl-2 family proteins. Traditional structure-based approaches on similar targets are often constrained by the sparsity of available structures and difficulties in finding lead compounds that dock against flat, flexible protein-protein interaction surfaces. By employing computational docking of known small molecule inhibitors, we have demonstrated that structural ensembles derived from either accelerated MD (aMD or MD in the presence of an organic cosolvent generally give better scores than those assessed from analogous conventional MD. Furthermore, conformations obtained from combined cosolvent aMD simulations started with the apo-Bcl-xL structure yielded better average and minimum docking scores for known binders than an ensemble of 72 experimental apo- and ligand-bound Bcl-xL structures. A detailed analysis of the simulated conformations indicates that the aMD effectively enhanced conformational sampling of the flexible helices flanking the main Bcl-xL binding groove, permitting the cosolvent acting as small ligands to penetrate more deeply into the binding pocket and shape ligand-bound conformations not evident in conventional simulations. We believe this approach could be useful for identifying inhibitors against other protein-protein interaction systems involving highly flexible binding sites, particularly for targets with less accumulated structural data.

  7. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  8. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  9. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  10. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations

    Science.gov (United States)

    Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S.

    2018-06-01

    The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound c S at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that c S is likely to violate the conformal limit of {c}S2≤slant {c}2/3, possibly reaching values closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit, we conclude that the rapid increase of c S required to accommodate a 2 M ⊙ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4 M ⊙, we find radii between 10 and 14 km, and the smallest possible radius of a 1.4 M ⊙ NS consistent with constraints from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.

  11. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. “Invisible” Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-01-01

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide-rich protein. In addition, sensitive 15N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. PMID:25676351

  13. Replacement between conformity and counter-conformity in consumption decisions.

    Science.gov (United States)

    Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica

    2013-02-01

    This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.

  14. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example

    Science.gov (United States)

    Lerner, Eitan; Ingargiola, Antonino; Weiss, Shimon

    2018-03-01

    Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.

  15. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations.

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-03-23

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  16. Combining EPR spectroscopy and X-ray crystallography to elucidate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals.

    Science.gov (United States)

    Consentius, Philipp; Gohlke, Ulrich; Loll, Bernhard; Alings, Claudia; Heinemann, Udo; Wahl, Markus C; Risse, Thomas

    2017-08-09

    Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is used to investigate the structure and dynamics of conformationally constrained spin labels in T4 lysozyme single crystals. Within a single crystal, the oriented ensemble of spin bearing moieties results in a strong angle dependence of the EPR spectra. A quantitative description of the EPR spectra requires the determination of the unit cell orientation with respect to the sample tube and the orientation of the spin bearing moieties within the crystal lattice. Angle dependent EPR spectra were analyzed by line shape simulations using the stochastic Liouville equation approach developed by Freed and co-workers and an effective Hamiltonian approach. The gain in spectral information obtained from the EPR spectra of single crystalline samples taken at different frequencies, namely the X-band and Q-band, allows us to discriminate between motional models describing the spectra of isotropic solutions similarly well. In addition, it is shown that the angle dependent single crystal spectra allow us to identify two spin label rotamers with very similar side chain dynamics. These results demonstrate the utility of single crystal EPR spectroscopy in combination with spectral line shape simulation techniques to extract valuable dynamic information not readily available from the analysis of isotropic systems. In addition, it will be shown that the loss of electron density in high resolution diffraction experiments at room temperature does not allow us to conclude that there is significant structural disorder in the system.

  17. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  18. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers.

    Science.gov (United States)

    Kriegel, Franziska; Ermann, Niklas; Lipfert, Jan

    2017-01-01

    Nucleic acids are central to the storage and transmission of genetic information. Mechanical properties, along with their sequence, both enable and fundamentally constrain the biological functions of DNA and RNA. For small deformations from the equilibrium conformations, nucleic acids are well described by an isotropic elastic rod model. However, external forces and torsional strains can induce conformational changes, giving rise to a complex force-torque phase diagram. This review focuses on magnetic tweezers as a powerful tool to precisely determine both the elastic parameters and conformational transitions of nucleic acids under external forces and torques at the single-molecule level. We review several variations of magnetic tweezers, in particular conventional magnetic tweezers, freely orbiting magnetic tweezers and magnetic torque tweezers, and discuss their characteristic capabilities. We then describe the elastic rod model for DNA and RNA and discuss conformational changes induced by mechanical stress. The focus lies on the responses to torque and twist, which are crucial in the mechanics and interactions of nucleic acids and can directly be measured using magnetic tweezers. We conclude by highlighting several recent studies of nucleic acid-protein and nucleic acid-small-molecule interactions as further applications of magnetic tweezers and give an outlook of some exciting developments to come. Copyright © 2016. Published by Elsevier Inc.

  19. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States); Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  20. Exploring the biological consequences of conformational changes in aspartame models containing constrained analogues of phenylalanine.

    Science.gov (United States)

    Mollica, Adriano; Mirzaie, Sako; Costante, Roberto; Carradori, Simone; Macedonio, Giorgia; Stefanucci, Azzurra; Dvoracsko, Szabolcs; Novellino, Ettore

    2016-12-01

    The dipeptide aspartame (Asp-Phe-OMe) is a sweetener widely used in replacement of sucrose by food industry. 2',6'-Dimethyltyrosine (DMT) and 2',6'-dimethylphenylalanine (DMP) are two synthetic phenylalanine-constrained analogues, with a limited freedom in χ-space due to the presence of methyl groups in position 2',6' of the aromatic ring. These residues have shown to increase the activity of opioid peptides, such as endomorphins improving the binding to the opioid receptors. In this work, DMT and DMP have been synthesized following a diketopiperazine-mediated route and the corresponding aspartame derivatives (Asp-DMT-OMe and Asp-DMP-OMe) have been evaluated in vivo and in silico for their activity as synthetic sweeteners.

  1. A novel correction factor based on extended volume to complement the conformity index.

    Science.gov (United States)

    Jin, F; Wang, Y; Wu, Y-Z

    2012-08-01

    We propose a modified conformity index (MCI), based on extended volume, that improves on existing indices by correcting for the insensitivity of previous conformity indices to reference dose shape to assess the quality of high-precision radiation therapy and present an evaluation of its application. In this paper, the MCI is similar to the conformity index suggested by Paddick (CI(Paddick)), but with a different correction factor. It is shown for three cases: with an extended target volume, with an extended reference dose volume and without an extended volume. Extended volume is generated by expanding the original volume by 0.1-1.1 cm isotropically. Focusing on the simulation model, measurements of MCI employ a sphere target and three types of reference doses: a sphere, an ellipsoid and a cube. We can constrain the potential advantage of the new index by comparing MCI with CI(Paddick). The measurements of MCI in head-neck cancers treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy provide a window on its clinical practice. The results of MCI for a simulation model and clinical practice are presented and the measurements are corrected for limited spatial resolution. The three types of MCI agree with each other, and comparisons between the MCI and CI(Paddick) are also provided. The results from our analysis show that the proposed MCI can provide more objective and accurate conformity measurement for high-precision radiation therapy. In combination with a dose-volume histogram, it will be a more useful conformity index.

  2. Conformal fields. From Riemann surfaces to integrable hierarchies

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1991-01-01

    I discuss the idea of translating ingredients of conformal field theory into the language of hierarchies of integrable differential equations. Primary conformal fields are mapped into (differential or matrix) operators living on the phase space of the hierarchy, whereas operator insertions of, e.g., a current or the energy-momentum tensor, become certain vector fields on the phase space and thus acquire a meaning independent of a given Riemann surface. A number of similarities are observed between the structures arising on the hierarchy and those of the theory on the world-sheet. In particular, there is an analogue of the operator product algebra with the Cauchy kernel replaced by its 'off-shell' hierarchy version. Also, hierarchy analogues of certain operator insertions admit two (equivalent, but distinct) forms, resembling the 'bosonized' and 'fermionized' versions respectively. As an application, I obtain a useful reformulation of the Virasoro constraints of the type that arise in matrix models, as a system of equations on dressing (or Lax) operators (rather than correlation functions, i.e., residues or traces). This also suggests an interpretation in terms of a 2D topological field theory, which might be extended to a correspondence between Virasoro-constrained hierarchies and topological theories. (orig.)

  3. OPE convergence in non-relativistic conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Goldberger, Walter D.; Khandker, Zuhair University; Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Physics Department, Boston University,Boston, MA 02215 (United States)

    2015-12-09

    Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic “radial quantization” Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.

  4. Complete conformal field theory solution of a chiral six-point correlation function

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Kleban, Peter

    2011-01-01

    Using conformal field theory, we perform a complete analysis of the chiral six-point correlation function C(z)= 1,2 φ 1,2 Φ 1/2,0 (z, z-bar )φ 1,2 φ 1,2 >, with the four φ 1,2 operators at the corners of an arbitrary rectangle, and the point z = x + iy in the interior. We calculate this for arbitrary central charge (equivalently, SLE parameter κ > 0). C is of physical interest because for percolation (κ = 6) and many other two-dimensional critical points, it specifies the density at z of critical clusters conditioned to touch either or both vertical ends of the rectangle, with these ends 'wired', i.e. constrained to be in a single cluster, and the horizontal ends free. The correlation function may be written as the product of an algebraic prefactor f and a conformal block G, where f = f(x, y, m), with m a cross-ratio specified by the corners (m determines the aspect ratio of the rectangle). By appropriate choice of f and using coordinates that respect the symmetry of the problem, the conformal block G is found to be independent of either y or x, and given by an Appell function.

  5. Quantum Conformal Algebras and Closed Conformal Field Theory

    CERN Document Server

    Anselmi, D

    1999-01-01

    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...

  6. C-metric solution for conformal gravity with a conformally coupled scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-15

    The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.

  7. Conformational Restriction of Peptides Using Dithiol Bis-Alkylation.

    Science.gov (United States)

    Peraro, L; Siegert, T R; Kritzer, J A

    2016-01-01

    Macrocyclic peptides are highly promising as inhibitors of protein-protein interactions. While many bond-forming reactions can be used to make cyclic peptides, most have limitations that make this chemical space challenging to access. Recently, a variety of cysteine alkylation reactions have been used in rational design and library approaches for cyclic peptide discovery and development. We and others have found that this chemistry is versatile and robust enough to produce a large variety of conformationally constrained cyclic peptides. In this chapter, we describe applications, methods, mechanistic insights, and troubleshooting for dithiol bis-alkylation reactions for the production of cyclic peptides. This method for efficient solution-phase macrocyclization is highly useful for the rapid production and screening of loop-based inhibitors of protein-protein interactions. © 2016 Elsevier Inc. All rights reserved.

  8. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  9. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...... the transposition process. We therefore conclude that a stronger focus on an effective sanctioning mechanism is warranted for safeguarding compliance with directives....

  10. Conformal Einstein spaces

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.; Tod, K.P.

    1985-01-01

    Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)

  11. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  12. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide.

    Science.gov (United States)

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T; Markowitz, Joseph; Weber, David; Ghosh, Mrinal K; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-07-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. © 2014 Wiley Periodicals, Inc.

  13. Conformal symmetry in two-dimensional space: recursion representation of conformal block

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1988-01-01

    The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau

  14. Modular constraints on conformal field theories with currents

    Science.gov (United States)

    Bae, Jin-Beom; Lee, Sungjay; Song, Jaewon

    2017-12-01

    We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite programming. In particular, we find the bounds on the twist gap for the non-current primaries depend dramatically on the presence of holomorphic currents, showing numerous kinks and peaks. Various rational CFTs are realized at the numerical boundary of the twist gap, saturating the upper limits on the degeneracies. Such theories include Wess-Zumino-Witten models for the Deligne's exceptional series, the Monster CFT and the Baby Monster CFT. We also study modular constraints imposed by W -algebras of various type and observe that the bounds on the gap depend on the choice of W -algebra in the small central charge region.

  15. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  16. Conformal Infinity.

    Science.gov (United States)

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  17. Conformational Plasticity of the Influenza A M2 Transmembrane Helix in Lipid Bilayers Under Varying pH, Drug Binding and Membrane Thickness

    Science.gov (United States)

    Hu, Fanghao; Luo, Wenbin; Cady, Sarah D.; Hong, Mei

    2010-01-01

    Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). 13C and 15N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, non-ideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and non-ideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (ϕ, ψ) torsion angles for three basis states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins. PMID:20883664

  18. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  19. Logarithmic conformal field theory through nilpotent conformal dimensions

    International Nuclear Information System (INIS)

    Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.

    2001-01-01

    We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor

  20. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  1. Two-dimensional NMR investigations of the dynamic conformations of phospholipids and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1996-05-01

    Two-dimensional 13C, 1H, and 31P nuclear magnetic resonance (NMR) techniques are developed and used to study molecular structure and dynamics in liquid-crystalline systems, primarily phospholipids and nematic liquid crystals. NMR spectroscopy characterizes molecular conformation in terms of orientations and distances of molecular segments. In anisotropically mobile systems, this is achieved by measuring motionally-averaged nuclear dipolar couplings and chemical shift anisotropies. The short-range couplings yield useful bond order parameters, while the long-range interactions constrain the overall conformation. In this work, techniques for probing proton dipolar local fields are further developed to obtain highlyresolved dipolar couplings between protons and rare spins. By exploiting variable-angle sample spinning techniques, orientation-sensitive NMR spectra are resolved according to sitespecific isotropic chemical shifts. Moreover, the signs and magnitudes of various short-range dipolar couplings are obtained. They are used in novel theoretical analyses that provide information about segmental orientations and their distributions. Such information is obtained in a model-independent fashion or with physically reasonable assumptions. The structural investigation of phospholipids is focused on the dynam

  2. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  3. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W.T.; Siebers, J.V. [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanar Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing

  4. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Watkins, W.T.; Siebers, J.V.

    2016-01-01

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanar Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing

  5. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  6. Searching for dark matter-dark energy interactions: Going beyond the conformal case

    Science.gov (United States)

    van de Bruck, Carsten; Mifsud, Jurgen

    2018-01-01

    We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.

  7. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  8. Conformational analysis by intersection: CONAN.

    Science.gov (United States)

    Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve

    2003-01-15

    As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003

  9. The conformal method and the conformal thin-sandwich method are the same

    International Nuclear Information System (INIS)

    Maxwell, David

    2014-01-01

    The conformal method developed in the 1970s and the more recent Lagrangian and Hamiltonian conformal thin-sandwich methods are techniques for finding solutions of the Einstein constraint equations. We show that they are manifestations of a single conformal method: there is a straightforward way to convert back and forth between the parameters for these methods so that the corresponding solutions of the Einstein constraint equations agree. The unifying idea is the need to clearly distinguish tangent and cotangent vectors to the space of conformal classes on a manifold, and we introduce a vocabulary for working with these objects without reference to a particular representative background metric. As a consequence of these conceptual advantages, we demonstrate how to strengthen previous near-CMC (constant mean curvature) existence and non-existence theorems for the original conformal method to include metrics with scalar curvatures that change sign. (paper)

  10. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  11. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  12. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  13. Conformal Infinity

    OpenAIRE

    Frauendiener, J?rg

    2000-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory...

  14. Method for exploiting bias in factor analysis using constrained alternating least squares algorithms

    Science.gov (United States)

    Keenan, Michael R.

    2008-12-30

    Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.

  15. Conformal superalgebras via tractor calculus

    Science.gov (United States)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  16. Conformal sequestering simplified

    International Nuclear Information System (INIS)

    Schmaltz, Martin; Sundrum, Raman

    2006-01-01

    Sequestering is important for obtaining flavor-universal soft masses in models where supersymmetry breaking is mediated at high scales. We construct a simple and robust class of hidden sector models which sequester themselves from the visible sector due to strong and conformally invariant hidden dynamics. Masses for hidden matter eventually break the conformal symmetry and lead to supersymmetry breaking by the mechanism recently discovered by Intriligator, Seiberg and Shih. We give a unified treatment of subtleties due to global symmetries of the CFT. There is enough review for the paper to constitute a self-contained account of conformal sequestering

  17. Conformity index: A review

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre

    2006-01-01

    We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear

  18. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  19. Fabrication challenges associated with conformal optics

    Science.gov (United States)

    Schaefer, John; Eichholtz, Richard A.; Sulzbach, Frank C.

    2001-09-01

    A conformal optic is typically an optical window that conforms smoothly to the external shape of a system platform to improve aerodynamics. Conformal optics can be on-axis, such as an ogive missile dome, or off-axis, such as in a free form airplane wing. A common example of conformal optics is the automotive head light window that conforms to the body of the car aerodynamics and aesthetics. The unusual shape of conformal optics creates tremendous challenges for design, manufacturing, and testing. This paper will discuss fabrication methods that have been successfully demonstrated to produce conformal missile domes and associated wavefront corrector elements. It will identify challenges foreseen with more complex free-form configurations. Work presented in this paper was directed by the Precision Conformal Optics Consortium (PCOT). PCOT is comprised of both industrial and academic members who teamed to develop and demonstrate conformal optical systems suitable for insertion into future military programs. The consortium was funded under DARPA agreement number MDA972-96-9-08000.

  20. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    Science.gov (United States)

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (E a ), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. E a , k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  1. Exploring Constrained Creative Communication

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk

    2017-01-01

    Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...

  2. Axiomatic conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Goddard, P.

    2000-01-01

    A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)

  3. Conformal description of spinning particles

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1986-01-01

    This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)

  4. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  5. Conformally connected universes

    International Nuclear Information System (INIS)

    Cantor, M.; Piran, T.

    1983-01-01

    A well-known difficulty associated with the conformal method for the solution of the general relativistic Hamiltonian constraint is the appearance of an aphysical ''bag of gold'' singularity at the nodal surface of the conformal factor. This happens whenever the background Ricci scalar is too large. Using a simple model, it is demonstrated that some of these singular solutions do have a physical meaning, and that these can be considered as initial data for Universe containing black holes, which are connected, in a conformally nonsingular way with each other. The relation between the ADM mass and the horizon area in this solution supports the cosmic censorship conjecture. (author)

  6. Explaining evolution via constrained persistent perfect phylogeny

    Science.gov (United States)

    2014-01-01

    Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to

  7. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  8. Conformal algebra of Riemann surfaces

    International Nuclear Information System (INIS)

    Vafa, C.

    1988-01-01

    It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view

  9. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Barry J Grant

    2009-03-01

    Full Text Available Ras mediates signaling pathways controlling cell proliferation and development by cycling between GTP- and GDP-bound active and inactive conformational states. Understanding the complete reaction path of this conformational change and its intermediary structures is critical to understanding Ras signaling. We characterize nucleotide-dependent conformational transition using multiple-barrier-crossing accelerated molecular dynamics (aMD simulations. These transitions, achieved for the first time for wild-type Ras, are impossible to observe with classical molecular dynamics (cMD simulations due to the large energetic barrier between end states. Mapping the reaction path onto a conformer plot describing the distribution of the crystallographic structures enabled identification of highly populated intermediate structures. These structures have unique switch orientations (residues 25-40 and 57-75 intermediate between GTP and GDP states, or distinct loop3 (46-49, loop7 (105-110, and alpha5 C-terminus (159-166 conformations distal from the nucleotide-binding site. In addition, these barrier-crossing trajectories predict novel nucleotide-dependent correlated motions, including correlations of alpha2 (residues 66-74 with alpha3-loop7 (93-110, loop2 (26-37 with loop10 (145-151, and loop3 (46-49 with alpha5 (152-167. The interconversion between newly identified Ras conformations revealed by this study advances our mechanistic understanding of Ras function. In addition, the pattern of correlated motions provides new evidence for a dynamic linkage between the nucleotide-binding site and the membrane interacting C-terminus critical for the signaling function of Ras. Furthermore, normal mode analysis indicates that the dominant collective motion that occurs during nucleotide-dependent conformational exchange, and captured in aMD (but absent in cMD simulations, is a low-frequency motion intrinsic to the structure.

  10. Conformality lost

    International Nuclear Information System (INIS)

    Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.

    2009-01-01

    We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.

  11. 40 CFR 93.154 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any Federal...

  12. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  13. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  14. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  15. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  16. Choosing health, constrained choices.

    Science.gov (United States)

    Chee Khoon Chan

    2009-12-01

    In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.

  17. Benchmarking Commercial Conformer Ensemble Generators.

    Science.gov (United States)

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  18. Conformal and Nearly Conformal Theories at Large N

    Science.gov (United States)

    Tarnoplskiy, Grigory M.

    In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We

  19. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  20. Conformal radiotherapy: principles and classification

    International Nuclear Information System (INIS)

    Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)

  1. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...

  2. Conformal Killing vectors in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.d.

    1986-01-01

    It is well known that Robertson-Walker spacetimes admit a conformal Killingl vector normal to the spacelike homogeneous hypersurfaces. Because these spacetimes are conformally flat, there are a further eight conformal Killing vectors, which are neither normal nor tangent to the homogeneous hypersurfaces. The authors find these further conformal Killing vectors and the Lie algebra of the full G 15 of conformal motions. Conditions on the metric scale factor are determined which reduce some of the conformal Killing vectors to homothetic Killing vectors or Killing vectors, allowing one to regain in a unified way the known special geometries. The non-normal conformal Killing vectors provide a counter-example to show that conformal motions do not, in general, map a fluid flow conformally. These non-normal vectors are also used to find the general solution of the null geodesic equation and photon Liouville equation. (author)

  3. Conformal transformations in superspace

    International Nuclear Information System (INIS)

    Dao Vong Duc

    1977-01-01

    The spinor extension of the conformal algebra is investigated. The transformation law of superfields under the conformal coordinate inversion R defined in the superspace is derived. Using R-technique, the superconformally covariant two-point and three-point correlation functions are found

  4. Towards conformal loop quantum gravity

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2006-01-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity

  5. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  6. Mass generation within conformal invariant theories

    International Nuclear Information System (INIS)

    Flato, M.; Guenin, M.

    1981-01-01

    The massless Yang-Mills theory is strongly conformally invariant and renormalizable; however, when masses are introduced the theory becomes nonrenormalizable and weakly conformally invariant. Conditions which recover strong conformal invariance are discussed in the letter. (author)

  7. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  8. Conformal group actions and Segal's cosmology

    International Nuclear Information System (INIS)

    Werth, J.-E.

    1984-01-01

    A mathematical description of Segal's cosmological model in the framework of conformal group actions is presented. The relation between conformal and causal group actions on time-orientable Lorentzian manifolds is analysed and several examples are discussed. A criterion for the conformality of a map between Lorentzian manifolds is given. The results are applied to Segal's 'conformal compactification' of Minkowski space. Furthermore, the 'unitary formulation' of Segal's cosmology is regarded. (Author) [pt

  9. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  10. New conformations of linear polyubiquitin chains from crystallographic and solution-scattering studies expand the conformational space of polyubiquitin.

    Science.gov (United States)

    Thach, Trung Thanh; Shin, Donghyuk; Han, Seungsu; Lee, Sangho

    2016-04-01

    The conformational flexibility of linkage-specific polyubiquitin chains enables ubiquitylated proteins and their receptors to be involved in a variety of cellular processes. Linear or Met1-linked polyubiquitin chains, associated with nondegradational cellular signalling pathways, have been known to adopt multiple conformations from compact to extended conformations. However, the extent of such conformational flexibility remains open. Here, the crystal structure of linear Ub2 was determined in a more compact conformation than that of the previously known structure (PDB entry 3axc). The two structures differ significantly from each other, as shown by an r.m.s.d. between C(α) atoms of 3.1 Å. The compactness of the linear Ub2 structure in comparison with PDB entry 3axc is supported by smaller values of the radius of gyration (Rg; 18 versus 18.9 Å) and the maximum interatomic distance (Dmax; 55.5 versus 57.8 Å). Extra intramolecular hydrogen bonds formed among polar residues between the distal and proximal ubiquitin moieties seem to contribute to stabilization of the compact conformation of linear Ub2. An ensemble of three semi-extended and extended conformations of linear Ub2 was also observed by small-angle X-ray scattering (SAXS) analysis in solution. In addition, the conformational heterogeneity in linear polyubiquitin chains is clearly manifested by SAXS analyses of linear Ub3 and Ub4: at least three distinct solution conformations are observed in each chain, with the linear Ub3 conformations being compact. The results expand the extent of conformational space of linear polyubiquitin chains and suggest that changes in the conformational ensemble may be pivotal in mediating multiple signalling pathways.

  11. Ward identities for conformal models

    International Nuclear Information System (INIS)

    Lazzarini, S.; Stora, R.

    1988-01-01

    Ward identities which express the symmetry of conformal models are treated. Diffeomorphism invariance or locally holomorphic coordinate transformations are used. Diffeomorphism invariance is then understood in terms of Riemannian geometry. Two different sets of Ward identities expressing diffeomorphism invariance in a conformally invariant way are found for the free bosonic string. Using a geometrical argument, the correct invariance for a large class of conformal models is given

  12. Constrained dynamics of two interacting relativistic particles in the Faddeev-Jackiw symplectic framework

    Science.gov (United States)

    Rodríguez-Tzompantzi, Omar

    2018-05-01

    The Faddeev-Jackiw symplectic formalism for constrained systems is applied to analyze the dynamical content of a model describing two massive relativistic particles with interaction, which can also be interpreted as a bigravity model in one dimension. We systematically investigate the nature of the physical constraints, for which we also determine the zero-modes structure of the corresponding symplectic matrix. After identifying the whole set of constraints, we find out the transformation laws for all the set of dynamical variables corresponding to gauge symmetries, encoded in the remaining zero modes. In addition, we use an appropriate gauge-fixing procedure, the conformal gauge, to compute the quantization brackets (Faddeev-Jackiw brackets) and also obtain the number of physical degree of freedom. Finally, we argue that this symplectic approach can be helpful for assessing physical constraints and understanding the gauge structure of theories of interacting spin-2 fields.

  13. Conformity and statistical tolerancing

    Science.gov (United States)

    Leblond, Laurent; Pillet, Maurice

    2018-02-01

    Statistical tolerancing was first proposed by Shewhart (Economic Control of Quality of Manufactured Product, (1931) reprinted 1980 by ASQC), in spite of this long history, its use remains moderate. One of the probable reasons for this low utilization is undoubtedly the difficulty for designers to anticipate the risks of this approach. The arithmetic tolerance (worst case) allows a simple interpretation: conformity is defined by the presence of the characteristic in an interval. Statistical tolerancing is more complex in its definition. An interval is not sufficient to define the conformance. To justify the statistical tolerancing formula used by designers, a tolerance interval should be interpreted as the interval where most of the parts produced should probably be located. This tolerance is justified by considering a conformity criterion of the parts guaranteeing low offsets on the latter characteristics. Unlike traditional arithmetic tolerancing, statistical tolerancing requires a sustained exchange of information between design and manufacture to be used safely. This paper proposes a formal definition of the conformity, which we apply successively to the quadratic and arithmetic tolerancing. We introduce a concept of concavity, which helps us to demonstrate the link between tolerancing approach and conformity. We use this concept to demonstrate the various acceptable propositions of statistical tolerancing (in the space decentring, dispersion).

  14. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  15. Dissecting the large-scale galactic conformity

    Science.gov (United States)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  16. Entanglement evolution across a conformal interface

    Science.gov (United States)

    Wen, Xueda; Wang, Yuxuan; Ryu, Shinsei

    2018-05-01

    For two-dimensional conformal field theories (CFTs) in the ground state, it is known that a conformal interface along the entanglement cut can suppress the entanglement entropy from to , where L is the length of the subsystem A, and is the effective central charge which depends on the transmission property of the conformal interface. In this work, by making use of conformal mappings, we show that a conformal interface has the same effect on entanglement evolution in non-equilibrium cases, including global, local and certain inhomogeneous quantum quenches. I.e. a conformal interface suppresses the time evolution of entanglement entropy by effectively replacing the central charge c with , where is exactly the same as that in the ground state case. We confirm this conclusion by a numerical study on a critical fermion chain. Furthermore, based on the quasi-particle picture, we conjecture that this conclusion holds for an arbitrary quantum quench in CFTs, as long as the initial state can be described by a regularized conformal boundary state.

  17. Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Amin, Anthony; Zaccardi, Joe; Mullen, Stanley; Olland, Stephane; Orlowski, Mark; Feld, Boris; Labonte, Patrick; Mak, Paul

    2003-01-01

    A class of disulfide constrained peptides containing a core motif FPWG was identified from a screen of phage displayed library using the HCV RNA-dependent RNA polymerase (NS5B) as a bait. Surface plasmon resonance studies showed that three highly purified synthetic constrained peptides bound to immobilized NS5B with estimated K d values ranging from 30 to 60 μM. In addition, these peptides inhibited the NS5B activity in vitro with IC 50 ranging from 6 to 48 μM, whereas in contrast they had no inhibitory effect on the enzymatic activities of calf thymus polymerase α, human polymerase β, RSV polymerase, and HIV reverse transcriptase in vitro. Two peptides demonstrated conformation-dependent inhibition since their synthetic linear versions were not inhibitory in the NS5B assay. A constrained peptide with the minimum core motif FPWG retained selective inhibition of NS5B activity with an IC 50 of 50 μM. Alanine scan analyses of a representative constrained peptide, FPWGNTW, indicated that residues F1 and W7 were critical for the inhibitory effect of this peptide, although residues P2 and N5 had some measurable inhibitory effect as well. Further analyses of the mechanism of inhibition indicated that these peptides inhibited the formation of preelongation complexes required for the elongation reaction. However, once the preelongation complex was formed, its activity was refractory to peptide inhibition. Furthermore, the constrained peptide FPWGNTW inhibited de novo initiated RNA synthesis by NS5B from a poly(rC) template. These data indicate that the peptides confer selective inhibition of NS5B activity by binding to the enzyme and perturbing an early step preceding the processive elongation step of RNA synthesis

  18. Long, partial-short, and special conformal fields

    Energy Technology Data Exchange (ETDEWEB)

    Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)

    2016-05-17

    In the framework of metric-like approach, totally symmetric arbitrary spin bosonic conformal fields propagating in flat space-time are studied. Depending on the values of conformal dimension, spin, and dimension of space-time, we classify all conformal field as long, partial-short, short, and special conformal fields. An ordinary-derivative (second-derivative) Lagrangian formulation for such conformal fields is obtained. The ordinary-derivative Lagrangian formulation is realized by using double-traceless gauge fields, Stueckelberg fields, and auxiliary fields. Gauge-fixed Lagrangian invariant under global BRST transformations is obtained. The gauge-fixed BRST Lagrangian is used for the computation of partition functions for all conformal fields. Using the result for the partition functions, numbers of propagating D.o.F for the conformal fields are also found.

  19. Maxwell equations in conformal invariant electrodynamics

    International Nuclear Information System (INIS)

    Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.

    1983-01-01

    We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)

  20. Conformal symmetries of FRW accelerating cosmologies

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2014-01-01

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage

  1. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2014-10-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N-H...O=C, type II by a strong O-H...N hydrogen bond, type III by weak N-H...O-H hydrogen bonds, and type IV by a C=O...H-C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O-H...N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm-1, respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG undergoes facile photofragmentation

  2. Conformers, infrared spectrum, UV-induced photochemistry, and near-IR-induced generation of two rare conformers of matrix-isolated phenylglycine

    International Nuclear Information System (INIS)

    Borba, Ana; Fausto, Rui; Gómez-Zavaglia, Andrea

    2014-01-01

    The conformational space of α-phenylglycine (PG) have been investigated theoretically at both the DFT/B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of approximation. Seventeen different minima were found on the investigated potential energy surfaces, which are characterized by different dominant intramolecular interactions: type I conformers are stabilized by hydrogen bonds of the type N–H···O=C, type II by a strong O–H···N hydrogen bond, type III by weak N–H···O–H hydrogen bonds, and type IV by a C=O···H–C contact. The calculations indicate also that entropic effects are relevant in determining the equilibrium populations of the conformers of PG in the gas phase, in particular in the case of conformers of type II, where the strong intramolecular O–H···N hydrogen bond considerably diminishes entropy by reducing the conformational mobility of the molecule. In consonance with the relative energies of the conformers and barriers for conformational interconversion, only 3 conformers of PG were observed for the compound isolated in cryogenic Ar, Xe, and N 2 matrices: the conformational ground state (ICa), and forms ICc and IITa. All other significantly populated conformers existing in the gas phase prior to deposition convert either to conformer ICa or to conformer ICc during matrix deposition. The experimental observation of ICc had never been achieved hitherto. Narrowband near-IR irradiation of the first overtone of νOH vibrational mode of ICa and ICc in nitrogen matrices (at 6910 and 6930 cm −1 , respectively) led to selective generation of two additional conformers of high-energy, ITc and ITa, respectively, which were also observed experimentally for the first time. In addition, these experiments also provided the key information for the detailed vibrational characterization of the 3 conformers initially present in the matrices. On the other hand, UV irradiation (λ = 255 nm) of PG isolated in a xenon matrix revealed that PG

  3. 40 CFR 52.2133 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false General conformity. 52.2133 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) South Carolina § 52.2133 General conformity. The General Conformity regulations adopted into the South Carolina State Implementation Plan which...

  4. 40 CFR 91.106 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 91.106... Provisions § 91.106 Certificate of conformity. (a) Every manufacturer of a new marine SI engine produced... obtain a certificate of conformity covering each engine family. The certificate of conformity must be...

  5. 40 CFR 52.938 - General conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false General conformity. 52.938 Section 52...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.938 General conformity. The General Conformity regulations were submitted on November 10, 1995, and adopted into the Kentucky State...

  6. 40 CFR 51.854 - Conformity analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Conformity analysis. 51.854 Section 51... FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 51.854 Conformity analysis. Link to an...

  7. Lie algebra of conformal Killing–Yano forms

    International Nuclear Information System (INIS)

    Ertem, Ümit

    2016-01-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases. (paper)

  8. Universal hydrodynamics of non-conformal branes

    International Nuclear Information System (INIS)

    Kanitscheider, Ingmar; Skenderis, Kostas

    2009-01-01

    We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be ζ/η = 2(1/(d-1)-c s 2 ), where c s is the speed of sound in the fluid.

  9. Operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Gabbiani, F.; Froehlich, J.

    1993-01-01

    We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)

  10. 47 CFR 2.906 - Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Declaration of Conformity. 2.906 Section 2.906... Conformity. (a) A Declaration of Conformity is a procedure where the responsible party, as defined in § 2.909... of Conformity attaches to all items subsequently marketed by the responsible party which are...

  11. Naturality in conformal field theory

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)

  12. 21 CFR 26.70 - Conformity assessment bodies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Conformity assessment bodies. 26.70 Section 26.70...Frameworkâ Provisions § 26.70 Conformity assessment bodies. Each party recognizes that the conformity... conformity in relation to its requirements as specified in subpart B of this part. The parties shall specify...

  13. Conformational analysis of lignin models

    International Nuclear Information System (INIS)

    Santos, Helio F. dos

    2001-01-01

    The conformational equilibrium for two 5,5' biphenyl lignin models have been analyzed using a quantum mechanical semiempirical method. The gas phase and solution structures are discussed based on the NMR and X-ray experimental data. The results obtained showed that the observed conformations are solvent-dependent, being the geometries and the thermodynamic properties correlated with the experimental information. This study shows how a systematic theoretical conformational analysis can help to understand chemical processes at a molecular level. (author)

  14. On the linear conformal gravitation

    International Nuclear Information System (INIS)

    Pal'chik, M.Ya.; Fradkin, E.S.

    1984-01-01

    Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained

  15. Conformal Symmetry Patterns in Baryon Spectra

    International Nuclear Information System (INIS)

    Kirchbach, Mariana; Compean, Cliffor B

    2011-01-01

    Attention is drawn to the fact that the spectra of the baryons of the lightest flavors, the nucleon and the Δ, carry quantum numbers characteristic for an unitary representation of the conformal group. We show that the above phenomenon is well explained for baryons whose internal structure is dominated by a quark-diquark configuration that resides in a conformally compactified Minkowski space time, R 1 x S 3 , and is described by means of the conformal scale equation there. The R 1 x S 3 space-time represents the boundary of the conformally compactified AdS 5 , on which one expects to encounter a conformal theory in accord with the gauge-gravity duality. Within this context, our model is congruent with AdS 5 /CFT 4 .

  16. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    OpenAIRE

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-01-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG0, which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG0 conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ molK1, respectively, while the barriers associated with the GG0/GT and GT/GG isomerizations are 1.90 and 9.64 kJ molK1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonst...

  17. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  18. Conformationally constrained dipeptide surrogates with aromatic side-chains: synthesis of 4-aryl indolizidin-9-one amino acids by conjugate addition to a common alpha,omega-diaminoazelate enone intermediate.

    Science.gov (United States)

    Cluzeau, Jérôme; Lubell, William D

    2004-03-05

    Four methyl 9-oxo-8-(N-(Boc)-amino)-4-phenyl-1-azabicyclo[4.3.0]nonane carboxylates (11, 4-Ph-I(9)aa-OMe) were synthesized from (2S,8S,5E)-di-tert-butyl-4-oxo-5-ene-2,8-bis[N-(PhF)amino]azelate [(5E)-7, PhF = 9-(9-phenylfluorenyl)] via a seven-step process featuring a conjugate addition/reductive amination/lactam cyclization sequence. Various nucleophiles were used in the conjugate addition reactions on enone (5E)-7 as a general route for making alpha,omega-diaminoazelates possessing different substituents in good yield albeit low diastereoselectivity except in the case of aryl Grignard reagents (9/1 to 15/1 drs). 6-Phenylazelates (6S)-8d and (6R)-8d were separated by chromatography and diastereoselective precipitation and independently transformed into 4-Ph-I(9)aa-OMe. From (6S)-8d, (2S,4R,6R,8S)-4-Ph-I(9)aa-OMe 11 was prepared selectively in 51% yield. Reductive amination of (6R)-8d provided the desired pipecolates 9 along with desamino compound 10, which was minimized by performing the hydrogenation in the presence of ammonium acetate. Subsequent ester exchange, lactam cyclization, and amine protection provided three products (2R,4S,6S,8R)-, (2R,4S,6S,8S)-, and (2S,4S,6R,8S)-4-Ph-I(9)aa-OMe 11 in 10, 6, and 6% yields, respectively, from (6R)-8d. Ester hydrolysis of (2S,4R,6R,8S)-11 furnished 4-phenyl indolizidin-9-one N-(Boc)amino acid 3 as a novel constrained Ala-Phe dipeptide surrogate for studying conformation-activity relationships of biologically active peptides.

  19. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  20. Thickenings and conformal gravity

    Science.gov (United States)

    Lebrun, Claude

    1991-07-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M].

  1. Thickenings and conformal gravity

    International Nuclear Information System (INIS)

    LeBrun, C.

    1991-01-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M]. (orig.)

  2. Conformal symmetry inheritance in null fluid spacetimes

    International Nuclear Information System (INIS)

    Tupper, B O J; Keane, A J; Hall, G S; Coley, A A; Carot, J

    2003-01-01

    We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case

  3. Conformal maps between pseudo-Finsler spaces

    Science.gov (United States)

    Voicu, Nicoleta

    The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.

  4. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  5. Extended conformal algebras

    International Nuclear Information System (INIS)

    Goddard, Peter

    1990-01-01

    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  6. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  7. Thickenings and conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, C. (State Univ. of New York, Stony Brook, NY (USA). Dept. of Mathematics)

    1991-07-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason (B-M). (orig.).

  8. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  9. Conformity in Christ | Waaijman | Acta Theologica

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a comprehensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  10. Gauge fixing problem in the conformal QED

    International Nuclear Information System (INIS)

    Ichinose, Shoichi

    1986-01-01

    The gauge fixing problem in the conformal (spinor and scalar) QED is examined. For the analysis, we generalize Dirac's manifestly conformal-covariant formalism. It is shown that the (vector and matter) fields must obey a certain mixed (conformal and gauge) type of transformation law in order to fix the local gauge symmetry preserving the conformal invariance in the Lagrangian. (orig.)

  11. Transportation Conformity Training and Presentations

    Science.gov (United States)

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  12. Two dimensional infinite conformal symmetry

    International Nuclear Information System (INIS)

    Mohanta, N.N.; Tripathy, K.C.

    1993-01-01

    The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs

  13. Virtual and solution conformations of oligosaccharides

    International Nuclear Information System (INIS)

    Cumming, D.A.; Carver, J.P.

    1987-01-01

    The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1 H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1 H NMR determined conformations are virtual in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the solution conformation is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T 1 )'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis the authors conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T 1 ) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions

  14. Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method

    International Nuclear Information System (INIS)

    Wang Yue; Wang Jian-Guo; Chen Zai-Gao

    2015-01-01

    Based on conformal construction of physical model in a three-dimensional Cartesian grid, an integral-based conformal convolutional perfectly matched layer (CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain (ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor (PEC) waveguide. The algorithm has the same numerical stability as the ECT-CFDTD method. For the long-time propagation problems of an evanescent wave in a waveguide, several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML. Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. (paper)

  15. Noncommutative geometry and twisted conformal symmetry

    International Nuclear Information System (INIS)

    Matlock, Peter

    2005-01-01

    The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra

  16. Superintegrability of d-dimensional conformal blocks

    International Nuclear Information System (INIS)

    Isachenkov, Mikhail

    2016-02-01

    We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  17. Superintegrability of d-dimensional conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail [Weizmann Institute of Science, Rehovot (Israel). Dept. of Particle Physics and Astronomy; Schomerus, Volker [DESY Theory Group, Hamburg (Germany)

    2016-02-15

    We observe that conformal blocks of scalar 4-point functions in a d-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled Poeschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension d, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  18. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  19. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1987-01-01

    In the present paper we show how the N = 2 superconformal group is realised in harmonic superspace and examine conformal invariance of N = 2 off-shell theories. We believe that the example of N = O self-dual Yang-Mills equations can serve as an instructive introduction to the subject of harmonic superspace and this is examined. The rigid N = 2 conformal supersymmetry and its local version, i.e. N = 2 conformal supergravity is also discussed. The paper is a contribution to the book commemorating the sixtieth birthday of E.S. Fradkin. (author)

  20. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics

    2016-12-07

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  1. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)

    2017-03-15

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  2. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-08-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG', which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG' conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ mol -1, respectively, while the barriers associated with the GG'→GT and GT→GG isomerizations are 1.90 and 9.64 kJ mol -1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonstrated that the GG'→GT energy barrier is low enough to allow an extensive conversion of the GG' form into the GT conformer during deposition of the matrices, the extent of the conversion increasing along the series Arconformers could be trapped in both argon and krypton matrices, but, at a given temperature, the amount of GG' form trapped in krypton is considerably smaller than in argon, while the amount of GT form increases in relation to the most stable GG form. In addition, when xenon is used, no bands due to GG' are observed in the as-deposited spectra ( Tsubstrate≥10 K, the minimum substrate temperature accessible to our experimental set up), indicating that when the best relaxant gas is used the GG'→GT conversion during deposition of the matrix is complete even at 10 K. Annealing of the argon and krypton matrices shows that the increase of the temperature of the matrix first promotes the GG'→GT isomerization, and only at higher temperatures the GT→GG conversion starts to occur, in consonance with the relative energy barriers associated with these two processes. The results also indicate that dimethyl sulfite exhibits conformation selective aggregation, with the most stable form, which has the highest dipole moment, aggregating more easily than the remaining experimentally relevant conformers (GT and GG').

  3. Conformal hyperbolicity of Lorentzian warped products

    International Nuclear Information System (INIS)

    Markowitz, M.J.

    1982-01-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)

  4. Conformal hyperbolicity of Lorentzian warped products

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)

    1982-12-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.

  5. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  6. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  7. Constrained optimization via simulation models for new product innovation

    Science.gov (United States)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  8. Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin

    2012-01-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of writing down geometric scalars in terms of the conformal mode. Using this general effective action, we compute the two-point function for the Goldstone and a fiducial weight-0 field, as well as some sample three-point functions involving these fields

  9. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  10. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena; Pubill, David

    2007-01-01

    Previous work from our group indicated that α7 nicotinic acetylcholine receptors (α7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric α7 nAChR ([ 3 H]methyllycaconitine binding) and other heteromeric subtypes ([ 3 H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K i values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [ 3 H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B max of high-affinity sites for both radioligands without affecting K d . The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence

  11. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to

  12. Conformal Dimensions via Large Charge Expansion.

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-09

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  13. Affine Lie algebraic origin of constrained KP hierarchies

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-07-01

    It is presented an affine sl(n+1) algebraic construction of the basic constrained KP hierarchy. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and we show that these approaches are equivalent. The model is recognized to be generalized non-linear Schroedinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Backlund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. The construction uncovers origin of the Toda lattice structure behind the latter hierarchy. (author). 23 refs

  14. Some Progress in Conformal Geometry

    Directory of Open Access Journals (Sweden)

    Sun-Yung A. Chang

    2007-12-01

    Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

  15. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  16. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  17. 47 CFR 68.320 - Supplier's Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Supplier's Declaration of Conformity. 68.320... Approval § 68.320 Supplier's Declaration of Conformity. (a) Supplier's Declaration of Conformity is a... Supplier's Declaration of Conformity attaches to all items subsequently marketed by the responsible party...

  18. Conformational effects in photoelectron circular dichroism

    Science.gov (United States)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  19. Understanding modern magnets through conformal mapping

    International Nuclear Information System (INIS)

    Halbach, K.

    1989-10-01

    I want to show with the help of a number of examples that conformal mapping is a unique and enormously powerful tool for thinking about, and solving, problems. Usually one has to write down only a few equations, and sometimes none at all exclamation point When I started getting involved in work for which conformal mapping seemed to be a powerful tool, I did not think that I would ever be able to use that technique successfully because it seemed to require a nearly encyclopedic memory, an impression that was strengthened when I saw K. Kober's Dictionary of Conformal Representations. This attitude changed when I started to realize that beyond the basics of the theory of a function of a complex variable, I needed to know only about a handful of conformal maps and procedures. Consequently, my second goal for this talk is to show that in most cases conformal mapping functions can be obtained by formulating the underlying physics appropriately. This means particularly that encyclopedic knowledge of conformal maps is not necessary for successful use of conformal mapping techniques. To demonstrate these facts I have chosen examples from an area of physics/engineering in which I am active, namely accelerator physics. In order to do that successfully I start with a brief introduction into high energy charged particle storage ring technology, even though not all examples used in this paper to elucidate my points come directly from this particular field of accelerator technology

  20. Higher-derivative generalization of conformal mechanics

    Science.gov (United States)

    Baranovsky, Oleg

    2017-08-01

    Higher-derivative analogs of multidimensional conformal particle and many-body conformal mechanics are constructed. Their Newton-Hooke counterparts are derived by applying appropriate coordinate transformations.

  1. Gluon amplitudes as 2 d conformal correlators

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  2. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  3. Multichannel conformal blocks for scattering amplitudes

    Science.gov (United States)

    Belitsky, A. V.

    2018-05-01

    By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.

  4. Conformation Generation: The State of the Art.

    Science.gov (United States)

    Hawkins, Paul C D

    2017-08-28

    The generation of conformations for small molecules is a problem of continuing interest in cheminformatics and computational drug discovery. This review will present an overview of methods used to sample conformational space, focusing on those methods designed for organic molecules commonly of interest in drug discovery. Different approaches to both the sampling of conformational space and the scoring of conformational stability will be compared and contrasted, with an emphasis on those methods suitable for conformer sampling of large numbers of drug-like molecules. Particular attention will be devoted to the appropriate utilization of information from experimental solid-state structures in validating and evaluating the performance of these tools. The review will conclude with some areas worthy of further investigation.

  5. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves

  6. Arbitrary spin conformal fields in (A)dS

    International Nuclear Information System (INIS)

    Metsaev, R.R.

    2014-01-01

    Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach

  7. Inversion theory and conformal mapping

    CERN Document Server

    Blair, David E

    2000-01-01

    It is rarely taught in an undergraduate or even graduate curriculum that the only conformal maps in Euclidean space of dimension greater than two are those generated by similarities and inversions in spheres. This is in stark contrast to the wealth of conformal maps in the plane. The principal aim of this text is to give a treatment of this paucity of conformal maps in higher dimensions. The exposition includes both an analytic proof in general dimension and a differential-geometric proof in dimension three. For completeness, enough complex analysis is developed to prove the abundance of conformal maps in the plane. In addition, the book develops inversion theory as a subject, along with the auxiliary theme of circle-preserving maps. A particular feature is the inclusion of a paper by Carath�odory with the remarkable result that any circle-preserving transformation is necessarily a M�bius transformation, not even the continuity of the transformation is assumed. The text is at the level of advanced undergr...

  8. Inverse bootstrapping conformal field theories

    Science.gov (United States)

    Li, Wenliang

    2018-01-01

    We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.

  9. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  10. On functional representations of the conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Rosten, Oliver J.

    2017-07-15

    Starting with conformally covariant correlation functions, a sequence of functional representations of the conformal algebra is constructed. A key step is the introduction of representations which involve an auxiliary functional. It is observed that these functionals are not arbitrary but rather must satisfy a pair of consistency equations corresponding to dilatation and special conformal invariance. In a particular representation, the former corresponds to the canonical form of the exact renormalization group equation specialized to a fixed point whereas the latter is new. This provides a concrete understanding of how conformal invariance is realized as a property of the Wilsonian effective action and the relationship to action-free formulations of conformal field theory. Subsequently, it is argued that the conformal Ward Identities serve to define a particular representation of the energy-momentum tensor. Consistency of this construction implies Polchinski's conditions for improving the energy-momentum tensor of a conformal field theory such that it is traceless. In the Wilsonian approach, the exactly marginal, redundant field which generates lines of physically equivalent fixed points is identified as the trace of the energy-momentum tensor. (orig.)

  11. 40 CFR 89.105 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 89.105... and Certification Provisions § 89.105 Certificate of conformity. Every manufacturer of a new nonroad compression-ignition engine must obtain a certificate of conformity covering the engine family, as described...

  12. A note on fashion cycles, novelty and conformity

    OpenAIRE

    Federica Alberti

    2013-01-01

    We develop a model in which novelty and conformity motivate fashion behavior. Fashion cycles occur if conformity is not too high. The duration of fashion cycles depends on individual-specific conformity, novelty, and the number of available styles. The use of individual-specific novelty and conformity allows us to also identify fashion leaders.

  13. Nonperturbative results for two-index conformal windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Ryttov, Thomas A.; Sannino, Francesco [CP-Origins and the Danish IAS, University of Southern Denmark,5230 Odense M (Denmark)

    2015-12-10

    Via large and small N{sub c} relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N{sub c} is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N{sub c} two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N{sub c}) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N{sub c}) with two and four symmetric Dirac flavors.

  14. Nonperturbative results for two-index conformal windows

    International Nuclear Information System (INIS)

    Bergner, Georg; Ryttov, Thomas A.; Sannino, Francesco

    2015-01-01

    Via large and small N c relations we derive nonperturbative results about the conformal window of two-index theories. Using Schwinger-Dyson methods as well as four-loops results we estimate subleading corrections and show that naive large number of colors extrapolations are unreliable when N c is less than about six. Nevertheless useful nonperturbative inequalities for the size of the conformal windows, for any number of colors, can be derived. By further observing that the adjoint conformal window is independent of the number of colors we argue, among other things, that: the large N c two-index conformal window is twice the conformal window of the adjoint representation (which can be determined at small N c ) expressed in terms of Dirac fermions; lattice results for adjoint matter can be used to provide independent information on the conformal dynamics of two-index theories such as SU(N c ) with two and four symmetric Dirac flavors.

  15. Measuring the mechanical properties of molecular conformers

    Science.gov (United States)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  16. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  17. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  18. 47 CFR 2.1072 - Limitation on Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Limitation on Declaration of Conformity. 2.1072... Conformity § 2.1072 Limitation on Declaration of Conformity. (a) The Declaration of Conformity signifies that...'s rules. (b) A Declaration of Conformity by the responsible party is effective until a termination...

  19. Conformity index for brain cancer patients

    International Nuclear Information System (INIS)

    Petkovska, Sonja; Tolevska, Cveta; Kraleva, Slavica; Petreska, Elena

    2010-01-01

    The purpose of this study is to present the level of conformity achieved by using 3D conformal radiotherapy for brain cancer patients. Conformity index is a helpful quantitative tool for assessing (evaluating) the quality of a treatment plan. Treatment plans made for ninety patients with brain tumor are worked on this paper. The patients are in supine position and immobilized with thermoplastic masks for the head. Computed tomography data sets with 5 mm scan thickness are used to create a 3D image. All structures of interest are contoured. In order to obtain an optimal dose distribution, treatment fields are fit around target volume with set-up margins of 7mm in each direction. The conformity index values are between 1.21 and 2.04. Value of 1.8 is exceeded in eighteen cases; nine of them are bigger than 1.9 and only three of them are above 2. The target volume for each of these extreme CI values is ideal covered (between 95% and 105% of the prescribed dose). The most acceptable conformity index value in this paper belongs to the plan with the lowest minimal dose (84.7%). It can be concluded that conformity index is necessary but not sufficient factor for assessing radiation treatment plan conformity. To be able to estimate the acceptability of some treatment plan in daily practice, additional information as minimal, maximal and mean dose into target volume, as well as health tissues coverage must be taken into account.(Author)

  20. Renormalization, conformal ward identities and the origin of a conformal anomaly pole

    Science.gov (United States)

    Corianò, Claudio; Maglio, Matteo Maria

    2018-06-01

    We investigate the emergence of a conformal anomaly pole in conformal field theories in the case of the TJJ correlator. We show how it comes to be generated in dimensional renormalization, using a basis of 13 form factors (the F-basis), where only one of them requires renormalization (F13), extending previous studies. We then combine recent results on the structure of the non-perturbative solutions of the conformal Ward identities (CWI's) for the TJJ in momentum space, expressed in terms of a minimal set of 4 form factors (A-basis), with the properties of the F-basis, and show how the singular behaviour of the corresponding form factors in both basis can be related. The result proves the centrality of such massless effective interactions induced by the anomaly, which have recently found realization in solid state, in the theory of topological insulators and of Weyl semimetals. This pattern is confirmed in massless abelian and nonabelian theories (QED and QCD) investigated at one-loop.

  1. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  2. 40 CFR 90.106 - Certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certificate of conformity. 90.106... Standards and Certification Provisions § 90.106 Certificate of conformity. (a)(1) Except as provided in § 90... certificate of conformity covering such engines; however, engines manufactured during an annual production...

  3. SCit: web tools for protein side chain conformation analysis

    OpenAIRE

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each...

  4. On the origin of constrained superfields

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, G. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dudas, E. [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Farakos, F. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-05-06

    In this work we analyze constrained superfields in supersymmetry and supergravity. We propose a constraint that, in combination with the constrained goldstino multiplet, consistently removes any selected component from a generic superfield. We also describe its origin, providing the operators whose equations of motion lead to the decoupling of such components. We illustrate our proposal by means of various examples and show how known constraints can be reproduced by our method.

  5. SCit: web tools for protein side chain conformation analysis.

    Science.gov (United States)

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  6. Conformal Killing horizons and their thermodynamics

    Science.gov (United States)

    Nielsen, Alex B.; Shoom, Andrey A.

    2018-05-01

    Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.

  7. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  8. Lattice models and conformal field theories

    International Nuclear Information System (INIS)

    Saleur, H.

    1988-01-01

    Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied

  9. 14 CFR 21.130 - Statement of conformity.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Statement of conformity. 21.130 Section 21... conformity. Each holder or licensee of a type certificate only, for a product manufactured in the United... Administrator a statement of conformity (FAA Form 317). This statement must be signed by an authorized person...

  10. 14 CFR 21.53 - Statement of conformity.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Statement of conformity. 21.53 Section 21... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.53 Statement of conformity. Link to an... conformity (FAA Form 317) to the Administrator for each aircraft engine and propeller presented to the...

  11. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  12. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  13. Rapid roll inflation with conformal coupling

    International Nuclear Information System (INIS)

    Kofman, Lev; Mukohyama, Shinji

    2008-01-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S 3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities

  14. Rapid roll inflation with conformal coupling

    Science.gov (United States)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  15. Operator approach to solutions of the constrained BKP hierarchy

    International Nuclear Information System (INIS)

    Shen, Hsin-Fu; Lee, Niann-Chern; Tu, Ming-Hsien

    2011-01-01

    The operator formalism to the vector k-constrained BKP hierarchy is presented. We solve the Hirota bilinear equations of the vector k-constrained BKP hierarchy via the method of neutral free fermion. In particular, by choosing suitable group element of O(∞), we construct rational and soliton solutions of the vector k-constrained BKP hierarchy.

  16. Conformal collineations and anisotropic fluids in general relativity

    International Nuclear Information System (INIS)

    Duggal, K.L.; Sharma, R.

    1986-01-01

    Recently, Herrera et al. [L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)] studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = μ) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformal collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter

  17. Bioactive focus in conformational ensembles: a pluralistic approach

    Science.gov (United States)

    Habgood, Matthew

    2017-12-01

    Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.

  18. CONFORMITY IN CHRIST 1. THE TRANSFORMATION PROCESS

    African Journals Online (AJOL)

    This essay investigates the notion of conformity in Christ as it is part of a compre- hensive, multilayered process of transformation. In the first part it focuses on the process of transformation in creation, re-creation, conformity, love and glory. In the second part it discusses transformation in Christ by looking at conformation and ...

  19. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator

  20. New open conformation of SMYD3 implicates conformational selection and allostery

    Directory of Open Access Journals (Sweden)

    Nicholas Spellmon

    2016-12-01

    Full Text Available SMYD3 plays a key role in cancer cell viability, adhesion, migration and invasion. SMYD3 promotes formation of inducible regulatory T cells and is involved in reducing autoimmunity. However, the nearly “closed” substrate-binding site and poor in vitro H3K4 methyltransferase activity have obscured further understanding of this oncogenically related protein. Here we reveal that SMYD3 can adopt an “open” conformation using molecular dynamics simulation and small-angle X-ray scattering. This ligand-binding-capable open state is related to the crystal structure-like closed state by a striking clamshell-like inter-lobe dynamics. The two states are characterized by many distinct structural and dynamical differences and the conformational transition pathway is mediated by a reversible twisting motion of the C-terminal domain (CTD. The spontaneous transition from the closed to open states suggests two possible, mutually non-exclusive models for SMYD3 functional regulation and the conformational selection mechanism and allostery may regulate the catalytic or ligand binding competence of SMYD3. This study provides an immediate clue to the puzzling role of SMYD3 in epigenetic gene regulation.

  1. Reciprocity Outperforms Conformity to Promote Cooperation.

    Science.gov (United States)

    Romano, Angelo; Balliet, Daniel

    2017-10-01

    Evolutionary psychologists have proposed two processes that could give rise to the pervasiveness of human cooperation observed among individuals who are not genetically related: reciprocity and conformity. We tested whether reciprocity outperformed conformity in promoting cooperation, especially when these psychological processes would promote a different cooperative or noncooperative response. To do so, across three studies, we observed participants' cooperation with a partner after learning (a) that their partner had behaved cooperatively (or not) on several previous trials and (b) that their group members had behaved cooperatively (or not) on several previous trials with that same partner. Although we found that people both reciprocate and conform, reciprocity has a stronger influence on cooperation. Moreover, we found that conformity can be partly explained by a concern about one's reputation-a finding that supports a reciprocity framework.

  2. Irreversibility and higher-spin conformal field theory

    Science.gov (United States)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  3. Essential role of conformational selection in ligand binding.

    Science.gov (United States)

    Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico

    2014-02-01

    Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and

  4. Rotational Spectroscopy Unveils Eleven Conformers of Adrenaline

    Science.gov (United States)

    Cabezas, C.; Cortijo, V.; Mata, S.; Lopez, J. C.; Alonso, J. L.

    2013-06-01

    Recent improvements in our LA-MB-FTMW instrumentation have allowed the characterization of eleven and eight conformers for the neurotransmitters adrenaline and noradrenaline respectively. The observation of this rich conformational behavior is in accordance with the recent observation of seven conformers for dopamine and in sharp contrast with the conformational reduction proposed for catecholamines. C. Cabezas, I. Peña, J. C. López, J. L. Alonso J. Phys. Chem. Lett. 2013, 4, 486. H. Mitsuda, M. Miyazaki, I. B. Nielsen, P. Carcabal,C. Dedonder, C. Jouvet, S. Ishiuchi, M. Fujii J. Phys. Chem. Lett. 2010, 1, 1130.

  5. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.

    Science.gov (United States)

    Tsukamoto, Hisao; Farrens, David L

    2013-09-27

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.

  6. Dilogarithm identities in conformal field theory

    International Nuclear Information System (INIS)

    Nahm, W.; Recknagel, A.; Terhoeven, M.

    1992-11-01

    Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds. (orig.)

  7. Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies.

    Science.gov (United States)

    Kim, Do-Nyun; Altschuler, Josiah; Strong, Campbell; McGill, Gaël; Bathe, Mark

    2011-01-01

    The conformational dynamics data bank (CDDB, http://www.cdyn.org) is a database that aims to provide comprehensive results on the conformational dynamics of high molecular weight proteins and protein assemblies. Analysis is performed using a recently introduced coarse-grained computational approach that is applied to the majority of structures present in the electron microscopy data bank (EMDB). Results include equilibrium thermal fluctuations and elastic strain energy distributions that identify rigid versus flexible protein domains generally, as well as those associated with specific functional transitions, and correlations in molecular motions that identify molecular regions that are highly coupled dynamically, with implications for allosteric mechanisms. A practical web-based search interface enables users to easily collect conformational dynamics data in various formats. The data bank is maintained and updated automatically to include conformational dynamics results for new structural entries as they become available in the EMDB. The CDDB complements static structural information to facilitate the investigation and interpretation of the biological function of proteins and protein assemblies essential to cell function.

  8. Synthesis and structure-activity relationships of constrained heterocyclic analogues of combretastatin A4.

    Science.gov (United States)

    Arthuis, Martin; Pontikis, Renée; Chabot, Guy G; Seguin, Johanne; Quentin, Lionel; Bourg, Stéphane; Morin-Allory, Luc; Florent, Jean-Claude

    2011-09-05

    A series of combretastatin A4 (CA4) analogues with a lactam or lactone ring fused to the trimethoxyphenyl or the B-phenyl moiety were synthesized in an efficient and stereoselective manner by using a domino Heck-Suzuki-Miyaura coupling reaction. The vascular-disrupting potential of these conformationally restricted CA4 analogues was assessed by various in vitro assays: inhibition of tubulin polymerization, modification of endothelial cell morphology, and disruption of endothelial cell cords. Compounds were also evaluated for their growth inhibitory effects against murine and human tumor cells. B-ring-constrained derivatives that contain an oxindole ring (in contrast to compounds with a benzofuranone ring) as well as analogues bearing a six-membered lactone core fused to the trimethoxyphenyl ring are endowed with significant biological activity. The most potent compound of this series (oxindole 9 b) is of particular interest, as it combines chemical stability and a biological activity profile characteristic of a vascular-disrupting agent. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conformational Analysis of Contrast Media for X-Ray Diagnostic Radiology

    International Nuclear Information System (INIS)

    Solieman, A.H.M.

    2010-01-01

    The conformational analysis of iodinated non-ionic contrast agent, Iobitridol, was carried out using theoretical calculations to explore its conformational space, and to study different aspects connected with application of different search techniques. Monte Carlo (MC), random search (RS) and molecular dynamics (MD) based conformational search techniques were used to extract a reasonable-size sample that adequately represents and has an average behavior of the entire conformational ensemble.While MC is good for quick search for lowest energy conformer, RS is better in obtaining conformational sample that cover the whole conformational space and MD is the best for investigation of isomeric preferences inside the conformational ensemble at thermal equilibrium. Conformational analysis of the produced gas phase samples reveals that RS and MD methods could sufficiently present the 18 distinct isomeric classes that constitute the total conformational space of the Iobitridol. S samples of conformational space of Iobitridol are extensively studied, as it hypothetically cover the total conformational space. They are used to test the suitability of different methods (charge distribution methods, energy calculation methods) for Iobitridol molecular computations and internal structure forces (steric hindrance, resonance interaction), as well as dependences among the internal coordinates (dihedral angles correlations and coincidences). The atomic partial charge distribution is found to greatly affect the energy calculation for the molecular mechanics based conformational energy distributions. Further energy minimization of conformational sample by the quantum molecular orbital methods is crucial to obtain charge independent as well as energy balanced conformational sample.

  10. Static validation of licence conformance policies

    DEFF Research Database (Denmark)

    Hansen, Rene Rydhof; Nielson, Flemming; Nielson, Hanne Riis

    2008-01-01

    Policy conformance is a security property gaining importance due to commercial interest like Digital Rights Management. It is well known that static analysis can be used to validate a number of more classical security policies, such as discretionary and mandatory access control policies, as well...... as communication protocols using symmetric and asymmetric cryptography. In this work we show how to develop a Flow Logic for validating the conformance of client software with respect to a licence conformance policy. Our approach is sufficiently flexible that it extends to fully open systems that can admit new...

  11. The decomposition of global conformal invariants

    CERN Document Server

    Alexakis, Spyros

    2012-01-01

    This book addresses a basic question in differential geometry that was first considered by physicists Stanley Deser and Adam Schwimmer in 1993 in their study of conformal anomalies. The question concerns conformally invariant functionals on the space of Riemannian metrics over a given manifold. These functionals act on a metric by first constructing a Riemannian scalar out of it, and then integrating this scalar over the manifold. Suppose this integral remains invariant under conformal re-scalings of the underlying metric. What information can one then deduce about the Riemannian scalar? Dese

  12. Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.

    Science.gov (United States)

    Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R

    2016-08-01

    Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.

  13. 77 FR 14979 - Transportation Conformity Rule Restructuring Amendments

    Science.gov (United States)

    2012-03-14

    ... Transportation Conformity Rule Restructuring Amendments AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is amending the transportation conformity rule to finalize provisions that were proposed on August 13, 2010. These amendments restructure several sections of the transportation conformity...

  14. Solid state conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; García, L.; Kessler, M.

    2005-01-01

    A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...

  15. Conformational analysis of 9β,19-cyclopropyl sterols: Detection of the pseudoplanar conformer by nuclear Overhauser effects and its functional implications

    International Nuclear Information System (INIS)

    Nes, W.D.; Benson, M.; Lundin, R.E.; Le, P.H.

    1988-01-01

    Nuclear Overhauser difference spectroscopy and variable temperature studies of the 9β,19-cyclopropyl sterols 24,25-dehydropollinastanol (4,4-desmethyl-5α-cycloart-24-en-3β-ol) and cyclolaudenol [(24S)-24-methyl-5α-cycloart-25(27)-en-3β-ol] have shown the solution conformation of the B/C rings to be twist-chair/twist-boat rather than boat/chair as suggested in the literature. This is very similar to the known crystal structure conformation of 9β,19-cyclopropyl sterols. The effect of these conformations on the molecular shape is highly significant; the first conformation orients into a pseudoplanar or flat shape analogous to lanosterol, whereas the latter conformation exhibits a bent shape. The results are interpreted to imply that, for conformational reasons, cyclopropyl sterols can be expected to maintain the pseudoplanar shape in membrane bilayers

  16. Application of Conformational Space Search in Drug Action | Adikwu ...

    African Journals Online (AJOL)

    The role of conformational space in drug action is presented. Two examples of molecules in different therapeutic groups are presented. Conformational space search will lead to isolating the exact conformation with the desired medicinal properties. Many conformations of a plant isolate may exist which are active, weakly ...

  17. Defects in conformal field theory

    International Nuclear Information System (INIS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-01-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  18. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  19. UV conformal window for asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom

    2018-02-01

    Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.

  20. Irregular conformal block, spectral curve and flow equations

    International Nuclear Information System (INIS)

    Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong

    2016-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of irregular conformal block using the spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2) for the gauge theory) and third order (W_3 symmetry, SU(3)) differential equations of a polynomial with finite degree. The conformal and W symmetry generate the flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  1. Scalar perturbations and conformal transformation

    International Nuclear Information System (INIS)

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  2. 49 CFR 577.9 - Conformity to statutory requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Conformity to statutory requirements. 577.9 Section 577.9 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY... NOTIFICATION § 577.9 Conformity to statutory requirements. A notification that does not conform to the...

  3. 20 CFR 604.6 - Conformity and substantial compliance.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Conformity and substantial compliance. 604.6... FOR ELIGIBILITY FOR UNEMPLOYMENT COMPENSATION § 604.6 Conformity and substantial compliance. (a) In... for the administration of its UC program. (b) Resolving Issues of Conformity and Substantial...

  4. Vertex operator algebras and conformal field theory

    International Nuclear Information System (INIS)

    Huang, Y.Z.

    1992-01-01

    This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics

  5. The butane condensed matter conformational problem

    NARCIS (Netherlands)

    Weber, A.C.J.; de Lange, C.A.; Meerts, W.L.; Burnell, E.E.

    2010-01-01

    From the dipolar couplings of orientationally ordered n-butane obtained by NMR spectroscopy we have calculated conformer probabilities using the modified Chord (Cd) and Size-and-Shape (CI) models to estimate the conformational dependence of the order matrix. All calculation methods make use of

  6. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  7. Geometrical formulation of the conformal Ward identity

    International Nuclear Information System (INIS)

    Kachkachi, M.

    2002-08-01

    In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)

  8. Riemann monodromy problem and conformal field theories

    International Nuclear Information System (INIS)

    Blok, B.

    1989-01-01

    A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)

  9. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  10. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  11. Conformal anomaly actions for dilaton interactions

    Directory of Open Access Journals (Sweden)

    Rose Luigi Delle

    2014-01-01

    Full Text Available We discuss, in conformally invariant field theories such as QCD with massless fermions, a possible link between the perturbative signature of the conformal anomaly, in the form of anomaly poles of the 1-particle irreducible effective action, and its descrip- tion in terms of Wess-Zumino actions with a dilaton. The two descriptions are expected to capture the UV and IR behaviour of the conformal anomaly, in terms of fundamental and effective degrees of freedom respectively, with the dilaton effective state appearing in a nonlinear realization. As in the chiral case, conformal anomalies seem to be related to the appearance of these effective interactions in the 1PI action in all the gauge-invariant sectors of the Standard Model. We show that, as a consequence of the underlying anomalous symmetry, the infinite hierarchy of recurrence relations involving self-interactions of the dilaton is entirely determined only by the first four of them. This relation can be generalized to any even space-time dimension.

  12. Invariants for minimal conformal supergravity in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)

    2016-12-15

    We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.

  13. Continuation of Sets of Constrained Orbit Segments

    DEFF Research Database (Denmark)

    Schilder, Frank; Brøns, Morten; Chamoun, George Chaouki

    Sets of constrained orbit segments of time continuous flows are collections of trajectories that represent a whole or parts of an invariant set. A non-trivial but simple example is a homoclinic orbit. A typical representation of this set consists of an equilibrium point of the flow and a trajectory...... that starts close and returns close to this fixed point within finite time. More complicated examples are hybrid periodic orbits of piecewise smooth systems or quasi-periodic invariant tori. Even though it is possible to define generalised two-point boundary value problems for computing sets of constrained...... orbit segments, this is very disadvantageous in practice. In this talk we will present an algorithm that allows the efficient continuation of sets of constrained orbit segments together with the solution of the full variational problem....

  14. A Mediated Moderation Model of Conformative Peer Bullying

    Science.gov (United States)

    Cho, Yoonju; Chung, Ock-Boon

    2012-01-01

    We investigated the relationship between conformative peer bullying and issues of peer conformity among adolescents. This relationship is examined through the establishment of a mediated moderation model for conformative peer bullying using structural equation modeling in a sample of 391 second-year middle school students in Seoul, South Korea. We…

  15. {kappa}-deformed realization of D=4 conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)

    1995-07-01

    We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.

  16. Selective stimulation of conformational conversions in free molecules

    International Nuclear Information System (INIS)

    Ismailzade, G.I.; Movsumov, I.Z.; Menzeleev, M.R.; Kazymova, S.B.

    2014-01-01

    Application of double-resonance (RF-MW, IR-MW, MW-MW) methods to enhance studies of unstable isomeric structures was discussed. The use of infrared pump radiation to excite conformational energy levels in order to stimulate selectively conformational conversions and to correct spectral line intensities of separate conformations was substantiated. (authors)

  17. Constrained consequence

    CSIR Research Space (South Africa)

    Britz, K

    2011-09-01

    Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...

  18. Elementary introduction to conformal invariance

    International Nuclear Information System (INIS)

    Grandati, Y.

    1992-01-01

    These notes constitute an elementary introduction to the concept of conformal invariance and its applications to the study of bidimensional critical phenomena. The aim is to give an access as pedestrian as possible to this vast subject. After a brief account of the general properties of conformal transformation in D dimensions, we study more specifically the case D = 2. The center of the discussion is then the consequences of the action of this symmetry group on bidimensional field theories, and in particular the links between the representations of the Virasoro algebra and the structure of the correlation functions of conformal field theories. Finally after showing how the Ising model reduces to a Majorana fermionic field theory, we see how the general formalism previously discussed can be applied to the Ising case at the critical point. (orig.)

  19. Conformational changes in glycine tri- and hexapeptide

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods...... also investigated the influence of the secondary structure of polypeptide chains on the formation of the potential energy landscape. This analysis has been performed for the sheet and the helix conformations of chains of six amino acids....

  20. Conformal invariance in the quantum field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1975-09-01

    Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt

  1. Non-local Effects of Conformal Anomaly

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  2. Free and constrained symplectic integrators for numerical general relativity

    International Nuclear Information System (INIS)

    Richter, Ronny; Lubich, Christian

    2008-01-01

    We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime

  3. Seed conformal blocks in 4D CFT

    Energy Technology Data Exchange (ETDEWEB)

    Echeverri, Alejandro Castedo; Elkhidir, Emtinan; Karateev, Denis [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); Serone, Marco [SISSA and INFN,Via Bonomea 265, I-34136 Trieste (Italy); ICTP,Strada Costiera 11, I-34151 Trieste (Italy)

    2016-02-29

    We compute in closed analytical form the minimal set of “seed' conformal blocks associated to the exchange of generic mixed symmetry spinor/tensor operators in an arbitrary representation (ℓ,ℓ̄) of the Lorentz group in four dimensional conformal field theories. These blocks arise from 4-point functions involving two scalars, one (0,|ℓ−ℓ̄|) and one (|ℓ−ℓ̄|,0) spinors or tensors. We directly solve the set of Casimir equations, that can elegantly be written in a compact form for any (ℓ,ℓ̄), by using an educated ansatz and reducing the problem to an algebraic linear system. Various details on the form of the ansatz have been deduced by using the so called shadow formalism. The complexity of the conformal blocks depends on the value of p=|ℓ−ℓ̄| and grows with p, in analogy to what happens to scalar conformal blocks in d even space-time dimensions as d increases. These results open the way to bootstrap 4-point functions involving arbitrary spinor/tensor operators in four dimensional conformal field theories.

  4. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  5. Conformal Invariance in the Long-Range Ising Model

    CERN Document Server

    Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo

    2016-01-01

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  6. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  7. Conformational stability and self-association equilibrium in biologics.

    Science.gov (United States)

    Clarkson, Benjamin R; Schön, Arne; Freire, Ernesto

    2016-02-01

    Biologics exist in equilibrium between native, partially denatured, and denatured conformational states. The population of any of these states is dictated by their Gibbs energy and can be altered by changes in physical and solution conditions. Some conformations have a tendency to self-associate and aggregate, an undesirable phenomenon in protein therapeutics. Conformational equilibrium and self-association are linked thermodynamic functions. Given that any associative reaction is concentration dependent, conformational stability studies performed at different protein concentrations can provide early clues to future aggregation problems. This analysis can be applied to the selection of protein variants or the identification of better formulation solutions. In this review, we discuss three different aggregation situations and their manifestation in the observed conformational equilibrium of a protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Conformal Cosmology and Supernova Data

    OpenAIRE

    Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis

    2000-01-01

    We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.

  9. I/O-Efficient Construction of Constrained Delaunay Triangulations

    DEFF Research Database (Denmark)

    Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke

    2005-01-01

    In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where...

  10. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  11. Conformal Symmetry as a Template for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2004-08-04

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.

  12. Conformal Symmetry as a Template for QCD

    International Nuclear Information System (INIS)

    Brodsky, S

    2004-01-01

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized

  13. Hyperbolicity and constrained evolution in linearized gravity

    International Nuclear Information System (INIS)

    Matzner, Richard A.

    2005-01-01

    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations

  14. Constrained noninformative priors

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-10-01

    The Jeffreys noninformative prior distribution for a single unknown parameter is the distribution corresponding to a uniform distribution in the transformed model where the unknown parameter is approximately a location parameter. To obtain a prior distribution with a specified mean but with diffusion reflecting great uncertainty, a natural generalization of the noninformative prior is the distribution corresponding to the constrained maximum entropy distribution in the transformed model. Examples are given

  15. Z/NZ conformal field theories

    International Nuclear Information System (INIS)

    Degiovanni, P.

    1990-01-01

    We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)

  16. Structural alphabets derived from attractors in conformational space

    Directory of Open Access Journals (Sweden)

    Kleinjung Jens

    2010-02-01

    Full Text Available Abstract Background The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis. Results A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness. Conclusions The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics.

  17. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    Science.gov (United States)

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  18. Towards an Approximate Conformance Relation for Hybrid I/O Automata

    Directory of Open Access Journals (Sweden)

    Morteza Mohaqeqi

    2016-12-01

    Full Text Available Several notions of conformance have been proposed for checking the behavior of cyber-physical systems against their hybrid systems models. In this paper, we explore the initial idea of a notion of approximate conformance that allows for comparison of both observable discrete actions and (sampled continuous trajectories. As such, this notion will consolidate two earlier notions, namely the notion of Hybrid Input-Output Conformance (HIOCO by M. van Osch and the notion of Hybrid Conformance by H. Abbas and G.E. Fainekos. We prove that our proposed notion of conformance satisfies a semi-transitivity property, which makes it suitable for a step-wise proof of conformance or refinement.

  19. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  20. Determinants of conformal wave operators in four dimensions

    International Nuclear Information System (INIS)

    Blau, S.K.; Visser, M.; Wipf, A.

    1988-01-01

    We consider conformally coupled wave operators in four dimensions. Such operators are associated with conformally coupled massless scalars, massless spin 1/2 particles, and abelian gauge bosons. We explicitly calculate the change in the determinant of these wave operators as a function of conformal deformations of the background metric. This variation is given in terms of a geometrical object, the second Seeley-de Witt coefficient. (orig.)

  1. Conformal dimension theory and application

    CERN Document Server

    Mackay, John M

    2010-01-01

    Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...

  2. Conformal geometry and quasiregular mappings

    CERN Document Server

    Vuorinen, Matti

    1988-01-01

    This book is an introduction to the theory of spatial quasiregular mappings intended for the uninitiated reader. At the same time the book also addresses specialists in classical analysis and, in particular, geometric function theory. The text leads the reader to the frontier of current research and covers some most recent developments in the subject, previously scatterd through the literature. A major role in this monograph is played by certain conformal invariants which are solutions of extremal problems related to extremal lengths of curve families. These invariants are then applied to prove sharp distortion theorems for quasiregular mappings. One of these extremal problems of conformal geometry generalizes a classical two-dimensional problem of O. Teichmüller. The novel feature of the exposition is the way in which conformal invariants are applied and the sharp results obtained should be of considerable interest even in the two-dimensional particular case. This book combines the features of a textbook an...

  3. Renyi entropy and conformal defects

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Meineri, Marco [Scuola Normale Superiore, Pisa (Italy); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Myers, Robert C. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Smolkin, Michael [California Univ., Berkely, CA (United States). Center for Theoretical Physics and Department of Physics

    2016-04-18

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  4. Renyi entropy and conformal defects

    International Nuclear Information System (INIS)

    Bianchi, Lorenzo; Myers, Robert C.; Smolkin, Michael

    2016-01-01

    We propose a field theoretic framework for calculating the dependence of Renyi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Renyi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Renyi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  5. Cosmicflows Constrained Local UniversE Simulations

    Science.gov (United States)

    Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo

    2016-01-01

    This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.

  6. Evidence for weak or linear conformity but not for hyper-conformity in an everyday social learning context.

    Science.gov (United States)

    Claidière, Nicolas; Bowler, Mark; Whiten, Andrew

    2012-01-01

    Conformity is thought to be an important force in cultural evolution because it has the potential to stabilize cooperation in large groups, potentiate group selection and thus explain uniquely human behaviors. However, the effects of such conformity on cultural and biological evolution will depend much on the way individuals are influenced by the frequency of alternative behavioral options witnessed. Theoretical modeling has suggested that only what we refer to as 'hyper-conformity', an exaggerated tendency to perform the most frequent behavior witnessed in other individuals, is able to increase within-group homogeneity and between-group diversity, for instance. Empirically however, few experiments have addressed how the frequency of behavior witnessed affects behavior. Accordingly we performed an experiment to test for the presence of conformity in a natural situation with humans. Visitors to a Zoo exhibit were invited to write or draw answers to questions on A5 cards and potentially win a small prize. We manipulated the proportion of existing writings versus drawings visible to visitors and measured the proportion of written cards submitted. We found a strong and significant effect of the proportion of text displayed on the proportion of text in the answers, thus demonstrating social learning. We show that this effect is approximately linear, with potentially a small, weak-conformist component but no hyper-conformist one. The present experiment therefore provides evidence for linear conformity in humans in a very natural context.

  7. Fusion rules in conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.

    1993-06-01

    Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)

  8. Investigating ion channel conformational changes using voltage clamp fluorometry.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Double-trace deformations of conformal correlations

    Science.gov (United States)

    Giombi, Simone; Kirilin, Vladimir; Perlmutter, Eric

    2018-02-01

    Large N conformal field theories often admit unitary renormalization group flows triggered by double-trace deformations. We compute the change in scalar four-point functions under double-trace flow, to leading order in 1/ N. This has a simple dual in AdS, where the flow is implemented by a change of boundary conditions, and provides a physical interpretation of single-valued conformal partial waves. We extract the change in the conformal dimensions and three-point coefficients of infinite families of double-trace composite operators. Some of these quantities are found to be sign-definite under double-trace flow. As an application, we derive anomalous dimensions of spinning double-trace operators comprised of non-singlet constituents in the O( N) vector model.

  10. The conformally invariant Laplace-Beltrami operator and factor ordering

    International Nuclear Information System (INIS)

    Ryan, Michael P.; Turbiner, Alexander V.

    2004-01-01

    In quantum mechanics the kinetic energy term for a single particle is usually written in the form of the Laplace-Beltrami operator. This operator is a factor ordering of the classical kinetic energy. We investigate other relatively simple factor orderings and show that the only other solution for a conformally flat metric is the conformally invariant Laplace-Beltrami operator. For non-conformally-flat metrics this type of factor ordering fails, by just one term, to give the conformally invariant Laplace-Beltrami operator

  11. Reassessing the role of book-tax conformity

    NARCIS (Netherlands)

    Goncharov, I.; Werner, J.R.

    2009-01-01

    Book-tax conformity refers to the legal link between financial and tax accounts, and is an institutional feature of many continental European countries and countries like Japan that follow continental European traditions. Many studies argue that book-tax conformity impedes earnings informativeness.

  12. SUSY Unparticle and Conformal Sequestering

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu; Nakayama, Yu

    2007-07-17

    We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.

  13. Open conformal systems and perturbations of transfer operators

    CERN Document Server

    Pollicott, Mark

    2017-01-01

    The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, meromorphic maps and rational functions. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite t...

  14. Confab - Systematic generation of diverse low-energy conformers

    Directory of Open Access Journals (Sweden)

    O'Boyle Noel M

    2011-03-01

    Full Text Available Abstract Background Many computational chemistry analyses require the generation of conformers, either on-the-fly, or in advance. We present Confab, an open source command-line application for the systematic generation of low-energy conformers according to a diversity criterion. Results Confab generates conformations using the 'torsion driving approach' which involves iterating systematically through a set of allowed torsion angles for each rotatable bond. Energy is assessed using the MMFF94 forcefield. Diversity is measured using the heavy-atom root-mean-square deviation (RMSD relative to conformers already stored. We investigated the recovery of crystal structures for a dataset of 1000 ligands from the Protein Data Bank with fewer than 1 million conformations. Confab can recover 97% of the molecules to within 1.5 Å at a diversity level of 1.5 Å and an energy cutoff of 50 kcal/mol. Conclusions Confab is available from http://confab.googlecode.com.

  15. THz time domain spectroscopy of biomolecular conformational modes

    International Nuclear Information System (INIS)

    Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert

    2002-01-01

    We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules

  16. From conformal Haag-Kastler nets to Wightman functions

    International Nuclear Information System (INIS)

    Joerss, M.

    1996-08-01

    Starting from a chiral conformal Haag-Kastler net on 2 dimensional Minkowski space we present a canonical construction that leads to a complete set of conformally covariant N-point-functions fulfilling the Wightman axioms. Our method consists of an explicit use of the representation theory of the universal covering group of SL(2,R) combined with a generalization of the conformal cluster theorem to N-point-functions. (orig.)

  17. Theoretical investigation of the conformational space of baicalin.

    Science.gov (United States)

    Martínez Medina, Juan J; Ferrer, Evelina G; Williams, Patricia A M; Okulik, Nora B

    2017-09-01

    Flavonoids are a large group of polyphenolic compounds ubiquitously present in plants. They are important components of human diet. They are recognized as potential drug candidates to be used in the treatment and prevention of a lot of pathological disorders, due to their protective effects. Baicalin (7-glucuronic acid 5, 6-dihydroxyflavone) is one of the main single active constituents isolated from the dried roots of Scutellaria baicalensis Georgi. The great interest on this flavonoid is due to its various pharmacological properties, such as antioxidant, antimicrobial, anti-inflammatory, anticancer and so on, and its high accumulation in the roots of S. baicalensis. The aim of our work was to analyze the geometric and electronic properties of baicalin conformers (BCL), thus performing a complete search on the conformational space of this flavonoid in gas phase and in aqueous solution. The results indicate that the conformational space of baicalin is formed by eight conformers in gas phase and five conformers in aqueous solution optimized at B3LYP/6-311++G** theory level. BCLa2 TT and BCLa1 TT conformers have low stability in gas phase and very high stability in aqueous solution. This variation is related to a modification in the τ 1 angle that represents the relative position of the glucuronide unit respect to the central rings of the flavan nucleus (A and C). This modification was successfully explained by examining the changes in the hydrogen bond (HB) interactions that occur in the region around the hydroxyl group located in position 6 of ring A. Besides, the molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analyses indicate that BCLa2 TT and BCLa1 TT conformers are the most favorable conformers for interacting with positively charged species (such as metal ions) in aqueous media (such as biological fluids). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  19. Surface Design Based on Discrete Conformal Transformations

    Science.gov (United States)

    Duque, Carlos; Santangelo, Christian; Vouga, Etienne

    Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.

  20. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  1. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-conformality versus efficiency of dose delivery

    International Nuclear Information System (INIS)

    Webb, Steve

    2000-01-01

    Intensity-modulated radiotherapy (IMRT) may be delivered with a high-energy-photon linac mounted on a robotic gantry and executing a complex trajectory. In a previous paper an inverse-planning technique was developed for such an application. Here the work is extended to demonstrate the dependence of conformality on the size of the elemental pencil beam, on the complexity of the trajectory and on the sampling of azimuth and elevation of the collimated source. The improved conformality of complex trajectories is demonstrated and benchmarked relative to simpler trajectories, more representative of existing non-robotic IMRT techniques. Specifically, by choosing a very fine pencil beam, exquisitely conformal dose distributions have been obtained. Important sampling considerations have been determined. Expressions have been derived for the dosimetry and monitor-unit efficiency of robotic IMRT. Equivalent trajectories were computed for executing the complex robotic trajectories instead by using a conventional linac. The work benchmarks an ideal in IMRT against which more practical and more common techniques may be measured. (author)

  2. Conformity of LINAC-Based Stereotactic Radiosurgery Using Dynamic Conformal Arcs and Micro-Multileaf Collimator

    International Nuclear Information System (INIS)

    Hazard, Lisa J.; Wang, Brian; Skidmore, Thomas B.; Chern, Shyh-Shi; Salter, Bill J.; Jensen, Randy L.; Shrieve, Dennis C.

    2009-01-01

    Purpose: To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. Methods and Materials: In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a 'standardized' prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. Results: The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. Conclusion: The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity

  3. Factorization of Constrained Energy K-Network Reliability with Perfect Nodes

    OpenAIRE

    Burgos, Juan Manuel

    2013-01-01

    This paper proves a new general K-network constrained energy reliability global factorization theorem. As in the unconstrained case, beside its theoretical mathematical importance the theorem shows how to do parallel processing in exact network constrained energy reliability calculations in order to reduce the processing time of this NP-hard problem. Followed by a new simple factorization formula for its calculation, we propose a new definition of constrained energy network reliability motiva...

  4. Conformal consistency relations for single-field inflation

    International Nuclear Information System (INIS)

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko

    2012-01-01

    We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q 3 , where q is the small wavevector — but also the subleading one, going as 1/q 2 . This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q 3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q 2 . We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta

  5. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  6. Conformational Study of Taurine in the Gas Phase

    Science.gov (United States)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  7. 40 CFR 86.407-78 - Certificate of conformity required.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Certificate of conformity required. 86... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.407-78 Certificate of conformity... conformity issued pursuant to this subpart, except as specified in paragraph (b) of this section, or...

  8. Synthesis of conformationally restricted beta-turn mimics

    NARCIS (Netherlands)

    IJsselstijn, M.

    2006-01-01

    This thesis aims at developing methods for introducing conformational restriction in Beta-turns, the turn elements present in Beta-sheets. A conformationally restricted peptide might either be formed via incorporation of a bridging diamino acids in a growing peptide chain, or via covalent bond

  9. Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Xingen Wu; Zunliang Wang

    2000-01-01

    A genetic algorithm has been used to optimize the selection of beam weights for external beam three-dimensional conformal radiotherapy treatment planning. A fitness function is defined, which includes a difference function to achieve a least-square fit to doses at preselected points in a planning target volume, and a penalty item to constrain the maximum allowable doses delivered to critical organs. Adjustment between the dose uniformity within the target volume and the dose constraint to the critical structures can be achieved by varying the beam weight variables in the fitness function. A floating-point encoding schema and several operators, like uniform crossover, arithmetical crossover, geometrical crossover, Gaussian mutation and uniform mutation, have been used to evolve the population. Three different cases were used to verify the correctness of the algorithm and quality assessment based on dose-volume histograms and three-dimensional dose distributions were given. The results indicate that the genetic algorithm presented here has considerable potential. (author)

  10. Conformal coupling associated with the Noether symmetry and its connection with the ΛCDM dynamics

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2013-01-01

    The aim of this work is to investigate a non-minimally coupled scalar field model through the Noether symmetry approach, with the radiation, matter and cosmological constant eras being analyzed. The Noether symmetry condition allows a conformal coupling and by means of a change of coordinates in the configuration space the field equations can be reduced to a single equation, which is of the form of the Friedmann equation for the ΛCDM model. In this way, it is formally shown that the dynamical system can furnish solutions with the same form as those of the ΛCDM model, although the theory here considered is physically different from the former. The conserved quantity associated with the Noether symmetry can be related to the kinetic term of the scalar field and could constrain the possible deviations of the model from the ΛCDM picture. Observational constraints on the variation of the gravitational constant can be imposed on the model through the initial condition of the scalar field. (paper)

  11. Conformal anomaly of super Wilson loop

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-09-11

    Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.

  12. Willmore energy estimates in conformal Berger spheres

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel

    2011-01-01

    Highlights: → The Willmore energy is computed in a wide class of surfaces. → Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. → The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  13. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  14. Conformation sensitive charge transport in conjugated polymers

    International Nuclear Information System (INIS)

    Mattias Andersson, L.; Hedström, Svante; Persson, Petter

    2013-01-01

    Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole- and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highest occupied molecular orbital is consistent with a conventional hole mobility behavior and also proposed to be one of the reasons for why the material works well as a hole transporter in amorphous bulk heterojunction solar cells

  15. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  16. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  17. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  18. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    Kato, Mitsuhiro.

    1989-07-01

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  19. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  20. Standing in the Hallway Improves Students' Understanding of Conformity

    Science.gov (United States)

    Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.

    2013-01-01

    To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…

  1. Molecular dynamics of conformation-specific dopamine transporter-inhibitor complexes.

    Science.gov (United States)

    Jean, Bernandie; Surratt, Christopher K; Madura, Jeffry D

    2017-09-01

    The recreational psychostimulant cocaine inhibits dopamine reuptake from the synapse, resulting in excessive stimulation of postsynaptic dopamine receptors in brain areas associated with reward and addiction. Cocaine binds to and stabilizes the outward- (extracellular-) facing conformation of the dopamine transporter (DAT) protein, while the low abuse potential DAT inhibitor benztropine prefers the inward- (cytoplasmic-) facing conformation. A correlation has been previously postulated between psychostimulant abuse potential and preference for the outward-facing DAT conformation. The 3β-aryltropane cocaine analogs LX10 and LX11, however, differ only in stereochemistry and share a preference for the outward-facing DAT, yet are reported to vary widely in abuse potential in an animal model. In search of the molecular basis for DAT conformation preference, complexes of cocaine, benztropine, LX10 or LX11 bound to each DAT conformation were subjected to 100ns of all-atom molecular dynamics simulation. Results were consistent with previous findings from cysteine accessibility assays used to assess an inhibitor's DAT conformation preference. The respective 2β- and 2α-substituted phenyltropanes of LX10 and LX11 interacted with hydrophobic regions of the DAT S1 binding site that were inaccessible to cocaine. Solvent accessibility measurements also revealed subtle differences in inhibitor positioning within a given DAT conformation. This work serves to advance our understanding of the conformational selectivity of DAT inhibitors and suggests that MD may be useful in antipsychostimulant therapeutic design. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Complete inhibition of fetal movement in the day 40 pregnant goat model by the piperidine alkaloid anabasine but not related alkaloids

    Science.gov (United States)

    Four chemically similar alkaloids, anabasine, anabaseine, epibatidine and dimethylphenylpiperazinium (DMPP), are potent nicotinic acetylcholine receptor agonists of fetal muscle nicotinic acetylcholine receptors in human TE-671 cells. Based on results with these cells, we hypothesized that these alk...

  3. The intercomparison of the dose distributions between conformation techniques with pions and photons

    International Nuclear Information System (INIS)

    Karasawa, K.; Nakagawa, K.; Akanuma, A.

    1990-01-01

    To compare conformation radiation treatment with pions vs photons, dose volume histograms (DVH) to the critical organs, including the spinal cord, kidney, and intestine, were examined in a patient with retroperitoneal soft tissue sarcoma. For photon conformation treatment, the following techniques were used: 360 degree rotation conformation technique (photon conformation), 4 fixed field technique (photon 4-field), and 2-axis conformation technique (photon 2-axial conformation). According to the DVH reduction method, complication probability was estimated. The concave portion of the target was conformed by pion conformation treatment, but not by photon conformation treatment. Pion conformation for the intestine showed the best DVH, whereas photon 4-field technique showed the worst DVH. For the kidney, pion conformation showed better DVH as compared with any other photon conformation treatment technique. In the spinal cord, photon 2-axial conformation was far superior, followed by pion conformation and then photon conformation and 4-field technique. A 2-axial technique showed a bigger inhomogeneity inside the target volume which is critical in curative treatment. TD 50 was 72 Gy for pion conformation, 53 Gy for photon conformation, 51 Gy for photon 4-field, and 68 Gy for photon 2-axial conformation. Complication probabilities for these conformation techniques at 60 Gy were 3%, 85%, 97%, and 9%. In view of tumor control probabilities, pion seems to have the biggest therapeutic ratio among these techniques. (N.K.)

  4. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge

    2000-01-01

    A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)

  5. 20 CFR 640.4 - Standard for conformity.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Standard for conformity. 640.4 Section 640.4 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR STANDARD FOR BENEFIT PAYMENT PROMPTNESS-UNEMPLOYMENT COMPENSATION § 640.4 Standard for conformity. A State law will satisfy the...

  6. Irreversibility and higher-spin conformal field theory

    CERN Document Server

    Anselmi, D

    2000-01-01

    I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...

  7. In vitro transcription of a torsionally constrained template

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Peter E

    2002-01-01

    RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated...... of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....

  8. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  9. Comments on conformal masses, asymptotic backgrounds and conservation laws

    International Nuclear Information System (INIS)

    Deruelle, Nathalie; Katz, Joseph

    2006-01-01

    The 'conformal mass prescriptions' were used recently to calculate the mass of spacetimes in higher dimensional and higher curvature theories of gravity. These definitions are closely related to Komar integrals for spacetimes that are conformally flat at great distances from the sources. We derive these relations without using the conformal infinity formalism

  10. Increased conformity offers diminishing returns for reducing total knee replacement wear.

    Science.gov (United States)

    Fregly, Benjamin J; Marquez-Barrientos, Carlos; Banks, Scott A; DesJardins, John D

    2010-02-01

    Wear remains a significant problem limiting the lifespan of total knee replacements (TKRs). Though increased conformity between TKR components has the potential to decrease wear, the optimal amount and planes of conformity have not been investigated. Furthermore, differing conformities in the medial and lateral compartments may provide designers the opportunity to address both wear and kinematic design goals simultaneously. This study used a computational model of a Stanmore knee simulator machine and a previously validated wear model to investigate this issue for simulated gait. TKR geometries with different amounts and planes of conformity on the medial and lateral sides were created and tested in two phases. The first phase utilized a wide range of sagittal and coronal conformity combinations to blanket a physically realistic design space. The second phase performed a focused investigation of the conformity conditions from the first phase to which predicted wear volume was sensitive. For the first phase, sagittal but not coronal conformity was found to have a significant effect on predicted wear volume. For the second phase, increased sagittal conformity was found to decrease predicted wear volume in a nonlinear fashion, with reductions gradually diminishing as conformity increased. These results suggest that TKR geometric design efforts aimed at minimizing wear should focus on sagittal rather than coronal conformity and that at least moderate sagittal conformity is desirable in both compartments.

  11. 18 CFR 153.21 - Conformity with requirements.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Conformity with requirements. 153.21 Section 153.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Requirements § 153.21 Conformity with requirements. (a) General Rule. Applications under subparts B and C of...

  12. Conformal (WEYL) invariance and Higgs mechanism

    International Nuclear Information System (INIS)

    Zhao Shucheng.

    1991-10-01

    A massive Yang-Mills field theory with conformal invariance and gauge invariance is proposed. It involves gravitational and various gauge interactions, in which all the mass terms appear as a uniform form of interaction m(x) KΦ(x). When the conformal symmetry is broken spontaneously and gravitation is ignored, the Higgs field emerges naturally, where the imaginary mass μ can be described as a background curvature. (author). 7 refs

  13. Constrained principal component analysis and related techniques

    CERN Document Server

    Takane, Yoshio

    2013-01-01

    In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches.The book begins with four concre

  14. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  15. Homothetic and conformal symmetries of solutions to Einstein's equations

    International Nuclear Information System (INIS)

    Eardley, D.; Isenberg, J.; Marsden, J.; Moncrief, V.; Yale Univ., New Haven, CT

    1986-01-01

    We present several results about the nonexistence of solutions of Einstein's equations with homoethetic or conformal symmetry. We show that the only spatially compact, globally hyperbolic spacetimes admitting a hypersurface of constant mean extrinsic curvature, and also admitting an infinitesimal proper homothetic symmetry, are everywhere locally flat; this assumes that the matter fields either obey certain energy conditions, or are the Yang-Mills or massless Klein-Gordon fields. We find that the only vacuum solutions admitting an infinitesimal proper conformal symmetry are everywhere locally flat spacetimes and certain plane wave solutions. We show that if the dominant energy condition is assumed, then Minkowski spacetime is the only asymptotically flat solution which has an infinitesimal conformal symmetry that is asymptotic to a dilation. In other words, with the exceptions cited, homothetic or conformal Killing fields are in fact Killing in spatially compact or asymptotically flat spacetimes. In the conformal procedure for solving the initial value problem, we show that data with infinitesimal conformal symmetry evolves to a spacetime with full isometry. (orig.)

  16. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)

    2004-07-01

    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  17. Conformational impact of structural modifications in 2-fluorocyclohexanone

    Directory of Open Access Journals (Sweden)

    Francisco A. Martins

    2017-08-01

    Full Text Available 2-Haloketones are building blocks that combine physical, chemical and biological features of materials and bioactive compounds, while organic fluorine plays a fundamental role in the design of performance organic molecules. Since these features are dependent on the three-dimensional chemical structure of a molecule, simple structural modifications can affect its conformational stability and, consequently, the corresponding physicochemical/biological property of interest. In this work, structural changes in 2-fluorocyclohexanone were theoretically studied with the aim at finding intramolecular interactions that induce the conformational equilibrium towards the axial or equatorial conformer. The interactions evaluated were hydrogen bonding, hyperconjugation, electrostatic and steric effects. While the gauche effect, originated from hyperconjugative interactions, does not appear to cause some preferences for the axial conformation of organofluorine heterocycles, more classical effects indeed rule the conformational equilibrium of the compounds. Spectroscopic parameters (NMR chemical shifts and coupling constants, which can be useful to determine the stereochemistry and the interactions operating in the series of 2-fluorocyclohexanone derivatives, were also calculated.

  18. Conformational kinetics of aliphatic tails

    Science.gov (United States)

    Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi

    The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.

  19. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  20. Truncated conformal space approach to scaling Lee-Yang model

    International Nuclear Information System (INIS)

    Yurov, V.P.; Zamolodchikov, Al.B.

    1989-01-01

    A numerical approach to 2D relativstic field theories is suggested. Considering a field theory model as an ultraviolet conformal field theory perturbed by suitable relevant scalar operator one studies it in finite volume (on a circle). The perturbed Hamiltonian acts in the conformal field theory space of states and its matrix elements can be extracted from the conformal field theory. Truncation of the space at reasonable level results in a finite dimensional problem for numerical analyses. The nonunitary field theory with the ultraviolet region controlled by the minimal conformal theory μ(2/5) is studied in detail. 9 refs.; 17 figs

  1. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    International Nuclear Information System (INIS)

    De Wagter, C.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions

  2. Quaternion analyticity and conformally Kaehlerian structure in Euclidean gravity

    International Nuclear Information System (INIS)

    Guersey, F.; Chia-Hsiung Tze

    1984-01-01

    Starting from the fact that the d = 4 Euclidean flat spacetime is conformally related to the Kaehler manifold H 2 xS 2 , we show the Euclidean Schwarzschild metric to be conformally related to another Kaehler manifold M 2 xS 2 with M 2 being conformal to H 2 in two dimensions. Both metrics which are conformally Kaehlerian, are form-invariant under the infinite parameter Fueter group, the Euclidean counterpart of Milne's group of clock regraduation. The associated Einstein's equations translate into Fueter's quaternionic analyticity. The latter leads to an infinite number of local continuity equations. (orig.)

  3. Note on Weyl versus conformal invariance in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)

    2017-12-15

    It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)

  4. Conformal symmetry and string theories

    International Nuclear Information System (INIS)

    Kumar, A.

    1987-01-01

    This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories

  5. Mixed global anomalies and boundary conformal field theories

    OpenAIRE

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  6. 40 CFR 90.711 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 90.711 Section 90.711 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... conformity. (a) The certificate of conformity is suspended with respect to any engine failing pursuant to... suspend the certificate of conformity for an engine family which is determined to be in noncompliance...

  7. 40 CFR 92.512 - Suspension and revocation of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificates of conformity. 92.512 Section 92.512 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of certificates of conformity. (a)(1) The certificate of conformity is suspended with respect to any... conformity is suspended with respect to any locomotive or locomotive engine that fails an audit pursuant to...

  8. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    Science.gov (United States)

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  9. Conformal and Lie superalgebras motivated from free fermionic fields

    International Nuclear Information System (INIS)

    Ma, Shukchuen

    2003-01-01

    In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermonic fields with derivatives, and we prove their simplicity. The Lie superalgebras generated by these conformal superalgebras are proven to be simple except for a few special cases in the general linear superalgebras and the type-Q lie superalgebras, in which these Lie superalgebras have a one-dimensional centre and the quotient Lie superalgebras modulo the centre are simple. Certain natural central extensions of these families of conformal superalgebras are also given. Moreover, we prove that these conformal superalgebras are generated by their finite-dimensional subspaces of minimal weight in a certain sense. It is shown that a conformal superalgebra is simple if and only if its generated Lie superalgebra does not contain a proper nontrivial ideal with a one-variable structure

  10. Spatial and null infinity via advanced and retarded conformal factors

    International Nuclear Information System (INIS)

    Hayward, Sean A.

    2003-01-01

    A new approach to space-time asymptotics is presented, refining Penrose's idea of conformal transformations with infinity represented by the conformal boundary of space-time. It is proposed that the Penrose conformal factor be a product of advanced and retarded conformal factors, which asymptotically relate physical and conformal null coordinates and vanish at future and past null infinity respectively. A refined definition of asymptotic flatness at both spatial and null infinity is given, including that the conformal boundary is locally a light cone, with spatial infinity as the vertex. It is shown how to choose the conformal factors so that this asymptotic light cone is locally a metric light cone. The theory is implemented in the spin-coefficient (or null-tetrad) formalism by a joint transformation of the spin-metric and spin-basis (or metric and tetrad). Asymptotic regularity conditions are proposed, based on the conformal boundary locally being a smoothly embedded metric light cone. These conditions ensure that the Bondi-Sachs energy-flux integrals of ingoing and outgoing gravitational radiation decay at spatial infinity such that the total radiated energy is finite, and that the Bondi-Sachs energy-momentum has a unique limit at spatial infinity, coinciding with the uniquely rendered ADM energy-momentum

  11. Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation

    Science.gov (United States)

    Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito

    2014-02-01

    A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.

  12. Dynamical realizations of l-conformal Newton–Hooke group

    International Nuclear Information System (INIS)

    Galajinsky, Anton; Masterov, Ivan

    2013-01-01

    The method of nonlinear realizations and the technique previously developed in [A. Galajinsky, I. Masterov, Nucl. Phys. B 866 (2013) 212, (arXiv:1208.1403)] are used to construct a dynamical system without higher derivative terms, which holds invariant under the l-conformal Newton–Hooke group. A configuration space of the model involves coordinates, which parametrize a particle moving in d spatial dimensions and a conformal mode, which gives rise to an effective external field. The dynamical system describes a generalized multi-dimensional oscillator, which undergoes accelerated/decelerated motion in an ellipse in accord with evolution of the conformal mode. Higher derivative formulations are discussed as well. It is demonstrated that the multi-dimensional Pais–Uhlenbeck oscillator enjoys the l=3/2 -conformal Newton–Hooke symmetry for a particular choice of its frequencies

  13. On the Conformable Fractional Quantum Mechanics

    Science.gov (United States)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.

  14. Closed forms for conformally flat Green's functions

    International Nuclear Information System (INIS)

    Brown, M.R.; Grove, P.G.; Ottewill, A.C.

    1981-01-01

    A closed form is obtained for the massless scalar Green's function on Rindler space. This is related by conformal transformation to the Green's function for a massless, conformally coupled scalar field on the open Einstein universe. A closed form is also obtained for the corresponding Green's function on the Einstein static universe. (author)

  15. Topics in conformal field theory

    International Nuclear Information System (INIS)

    Kiritsis, E.B.

    1988-01-01

    In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail

  16. Constraining walking and custodial technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2008-01-01

    We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...

  17. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  18. Conformal special relativity

    International Nuclear Information System (INIS)

    Maia, M.D.

    2006-01-01

    It is shown that the information loss/recovery theorem based on the ADS/CFT correspondence is not consistent with the stability of the Schwarzschild or Reissner-Nordstrom black holes. Nonetheless, the conformal invariance of Yang-Mills theory points to new relativity principle compatible with quantum unitarity near those black holes

  19. 21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal constrained cemented or uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained...

  20. On conformal invariance in gauge theories. Quantum electrodynamics

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1983-01-01

    In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite

  1. Coding for Two Dimensional Constrained Fields

    DEFF Research Database (Denmark)

    Laursen, Torben Vaarbye

    2006-01-01

    a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....

  2. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  3. 47 CFR 68.350 - Revocation of Supplier's Declaration of Conformity.

    Science.gov (United States)

    2010-10-01

    ... Conformity. 68.350 Section 68.350 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... Terminal Equipment Approval § 68.350 Revocation of Supplier's Declaration of Conformity. (a) The Commission may revoke any Supplier's Declaration of Conformity for cause in accordance with the provisions of...

  4. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  5. Conformal field theories near a boundary in general dimensions

    International Nuclear Information System (INIS)

    McAvity, D.M.

    1995-01-01

    The implications of restricted conformal invariance under conformal transformations preserving a plane boundary are discussed for general dimensions d. Calculations of the universal function of a conformal invariant ξ which appears in the two-point function of scalar operators in conformally invariant theories with a plane boundary are undertaken to first order in the ε=4-d expansion for the operator φ 2 in φ 4 theory. The form for the associated functions of ξ for the two-point functions for the basic field φ α and the auxiliary field λ in the N→∞ limit of the O(N) non-linear sigma model for any d in the range 2 α φ β and λλ. Using this method the form of the two-point function for the energy-momentum tensor in the conformal O(N) model with a plane boundary is also found. General results for the sum of the contributions of all derivative operators appearing in the operator product expansion, and also in a corresponding boundary operator expansion, to the two-point functions are also derived making essential use of conformal invariance. (orig.)

  6. Hidden symmetries of integrable conformal mechanical systems

    International Nuclear Information System (INIS)

    Hakobyan, Tigran; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen

    2010-01-01

    We split the generic conformal mechanical system into a 'radial' and an 'angular' part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4 supersymmetric 'angular' Hamiltonian system one may construct a new system with full N=4 superconformal D(1,2;α) symmetry.

  7. Isomonodromic tau-functions from Liouville conformal blocks

    International Nuclear Information System (INIS)

    Iorgov, N.; Lisovyy, O.

    2014-01-01

    The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with SL(2,C)-valued monodromy on Riemann surfaces of genus zero with n punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at c=1. This implies a similar representation for the isomonodromic tau-function. In the case n=4 we thereby get a proof of the relation between tau-functions and conformal blocks discovered in O. Gamayun, N. Iorgov, and O. Lisovyy (2012). We briefly discuss a possible application of our results to the study of relations between certain N=2 supersymmetric gauge theories and conformal field theory.

  8. From global to heavy-light: 5-point conformal blocks

    International Nuclear Information System (INIS)

    Alkalaev, Konstantin; Belavin, Vladimir

    2016-01-01

    We consider Virasoro conformal blocks in the large central charge limit. There are different regimes depending on the behavior of the conformal dimensions. The most simple regime is reduced to the global sl(2,ℂ) conformal blocks while the most complicated one is known as the classical conformal blocks. Recently, Fitzpatrick, Kaplan, and Walters showed that the two regimes are related through the intermediate stage of the so-called heavy-light semiclassical limit. We study this idea in the particular case of the 5-point conformal block. To find the 5-point global block we use the projector technique and the Casimir operator approach. Furthermore, we discuss the relation between the global and the heavy-light limits and construct the heavy-light block from the global block. In this way we reproduce our previous results for the 5-point perturbative classical block obtained by means of the monodromy method.

  9. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.

  10. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  11. Crystal structures and conformers of CyMe4-BTBP

    Directory of Open Access Journals (Sweden)

    Lyczko Krzysztof

    2015-12-01

    Full Text Available The crystal structure of new conformation of the CyMe4-BTBP ligand (ttc has been presented. The ttt conformer of this compound in a form of THF solvate has been also crystallized. The geometries of six possible conformations (ttt, ttc, tct, tcc, ctc and ccc of the CyMe4-BTBP ligand have been modeled in the gas phase and in solutions (MeOH and H2O by DFT calculations using B3LYP/6-31G(d,p method. According to the calculations, in the three different media the conformers with trans orientation of the N atoms in the bipyridyl moiety are the most stable.

  12. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    Protein dynamics play a crucial role in function, catalytic activity, and pathogenesis. Consequently, there is great interest in computational methods that probe the conformational fluctuations of a protein. However, molecular dynamics simulations are computationally costly and therefore are often...... limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... on conformational fluctuations that is in correspondence with experimental measurements. TYPHON provides a flexible, yet computationally efficient, method to explore possible conformational fluctuations in proteins....

  13. Hypotrochoids in conformal restriction systems and Virasoro descendants

    International Nuclear Information System (INIS)

    Doyon, Benjamin

    2013-01-01

    A conformal restriction system is a commutative, associative, unital algebra equipped with a representation of the groupoid of univalent conformal maps on connected open sets of the Riemann sphere, along with a family of linear functionals on subalgebras, satisfying a set of properties including conformal invariance and a type of restriction. This embodies some expected properties of expectation values in conformal loop ensembles CLE κ (at least for 8/3 iθ and w. We find that it has an expansion in positive powers of u and u-bar , and that the coefficients of pure u ( u-bar ) powers are holomorphic in w ( w-bar ). We identify these coefficients (the ‘hypotrochoid fields’) with certain Virasoro descendants of the identity field in conformal field theory, thereby showing that they form part of a vertex operator algebraic structure. This largely generalizes works by the author (in CLE), and the author with his collaborators Riva and Cardy (in SLE 8/3 and other restriction measures), where the case of the ellipse, at the order u 2 , led to the stress–energy tensor of CFT. The derivation uses in an essential way the Virasoro vertex operator algebra structure of conformal derivatives established recently by the author. The results suggest in particular the exact evaluation of CLE expectations of products of hypotrochoid fields as well as nontrivial relations amongst them through the vertex operator algebra, and further shed light onto the relationship between CLE and CFT. (paper)

  14. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  15. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  16. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  17. Conformity to Peer Pressure in Preschool Children

    Science.gov (United States)

    Haun, Daniel B. M.; Tomasello, Michael

    2011-01-01

    Both adults and adolescents often conform their behavior and opinions to peer groups, even when they themselves know better. The current study investigated this phenomenon in 24 groups of 4 children between 4;2 and 4;9 years of age. Children often made their judgments conform to those of 3 peers, who had made obviously erroneous but unanimous…

  18. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  19. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  20. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  1. Conformal higher spin scattering amplitudes from twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim [Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom); Hähnel, Philipp; McLoughlin, Tristan [School of Mathematics, Trinity College Dublin, College Green, Dublin 2 (Ireland)

    2017-04-04

    We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.

  2. ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.

    Science.gov (United States)

    Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra

    2018-05-08

    Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Conformal higher spin scattering amplitudes from twistor space

    International Nuclear Information System (INIS)

    Adamo, Tim; Hähnel, Philipp; McLoughlin, Tristan

    2017-01-01

    We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.

  4. 40 CFR 89.126 - Denial, revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 89.126 Section 89.126 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Standards and Certification Provisions § 89.126 Denial, revocation of certificate of conformity. (a) If... issued certificate of conformity if the Administrator finds any one of the following infractions to be...

  5. 40 CFR 1033.205 - Applying for a certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 1033.205 Section 1033.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Applying for a certificate of conformity. (a) Send the Designated Compliance Officer a complete application for each engine family for which you are requesting a certificate of conformity. (b) [Reserved] (c...

  6. 40 CFR 90.123 - Denial, revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 90.123 Section 90.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Standards and Certification Provisions § 90.123 Denial, revocation of certificate of conformity... conformity if the Administrator finds any one of the following infractions to be substantial: (1) The engine...

  7. Constrained Local UniversE Simulations: a Local Group factory

    Science.gov (United States)

    Carlesi, Edoardo; Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan; Yepes, Gustavo; Libeskind, Noam I.; Pilipenko, Sergey V.; Knebe, Alexander; Courtois, Hélène; Tully, R. Brent; Steinmetz, Matthias

    2016-05-01

    Near-field cosmology is practised by studying the Local Group (LG) and its neighbourhood. This paper describes a framework for simulating the `near field' on the computer. Assuming the Λ cold dark matter (ΛCDM) model as a prior and applying the Bayesian tools of the Wiener filter and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDMscenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of haloes must obey specific isolation, mass and separation criteria. At the second level, the orbital angular momentum and energy are constrained, and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations, 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG `factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high-resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.

  8. Rigid supersymmetry from conformal supergravity in five dimensions

    International Nuclear Information System (INIS)

    Pini, Alessandro; Rodriguez-Gomez, Diego; Schmude, Johannes

    2015-01-01

    We study the rigid limit of 5d conformal supergravity with minimal supersymmetry on Riemannian manifolds. The necessary and sufficient condition for the existence of a solution is the existence of a conformal Killing vector. Whenever a certain SU(2) curvature becomes abelian the backgrounds define a transversally holomorphic foliation. Subsequently we turn to the question under which circumstances these backgrounds admit a kinetic Yang-Mills term in the action of a vector multiplet. Here we find that the conformal Killing vector has to be Killing. We supplement the discussion with various appendices.

  9. Diagonal Limit for Conformal Blocks in d Dimensions

    CERN Document Server

    Hogervorst, Matthijs; Rychkov, Slava

    2013-01-01

    Conformal blocks in any number of dimensions depend on two variables z, zbar. Here we study their restrictions to the special "diagonal" kinematics z = zbar, previously found useful as a starting point for the conformal bootstrap analysis. We show that conformal blocks on the diagonal satisfy ordinary differential equations, third-order for spin zero and fourth-order for the general case. These ODEs determine the blocks uniquely and lead to an efficient numerical evaluation algorithm. For equal external operator dimensions, we find closed-form solutions in terms of finite sums of 3F2 functions.

  10. Explicit mentalizing mechanisms and their adaptive role in memory conformity.

    Science.gov (United States)

    Wheeler, Rebecca; Allan, Kevin; Tsivilis, Dimitris; Martin, Douglas; Gabbert, Fiona

    2013-01-01

    Memory conformity occurs when an individual endorses what other individuals remember about past events. Research on memory conformity is currently dominated by a 'forensic' perspective, which views the phenomenon as inherently undesirable. This is because conformity not only distorts the accuracy of an individual's memory, but also produces false corroboration between individuals, effects that act to undermine criminal justice systems. There is growing awareness, however, that memory conformity may be interpreted more generally as an adaptive social behavior regulated by explicit mentalizing mechanisms. Here, we provide novel evidence in support of this emerging alternative theoretical perspective. We carried out a memory conformity experiment which revealed that explicit belief-simulation (i.e. using one's own beliefs to model what other people believe) systematically biases conformity towards like-minded individuals, even when there is no objective evidence that they have a more accurate memory than dissimilar individuals. We suggest that this bias is functional, i.e. adaptive, to the extent that it fosters trust, and hence cooperation, between in-group versus out-group individuals. We conclude that memory conformity is, in more fundamental terms, a highly desirable product of explicit mentalizing mechanisms that promote adaptive forms of social learning and cooperation.

  11. Conformational elasticity can facilitate TALE-DNA recognition.

    Science.gov (United States)

    Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong

    2014-01-01

    Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.

  12. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of nitrogen (NOX) reasonably available control technology (RACT) and NOX conformity exemption request submitted by...

  13. Electrophysiological precursors of social conformity

    Science.gov (United States)

    Rieskamp, Jörg; Tugin, Sergey; Ossadtchi, Alexey; Krutitskaya, Janina; Klucharev, Vasily

    2013-01-01

    Humans often change their beliefs or behavior due to the behavior or opinions of others. This study explored, with the use of human event-related potentials (ERPs), whether social conformity is based on a general performance-monitoring mechanism. We tested the hypothesis that conflicts with a normative group opinion evoke a feedback-related negativity (FRN) often associated with performance monitoring and subsequent adjustment of behavior. The experimental results show that individual judgments of facial attractiveness were adjusted in line with a normative group opinion. A mismatch between individual and group opinions triggered a frontocentral negative deflection with the maximum at 200 ms, similar to FRN. Overall, a conflict with a normative group opinion triggered a cascade of neuronal responses: from an earlier FRN response reflecting a conflict with the normative opinion to a later ERP component (peaking at 380 ms) reflecting a conforming behavioral adjustment. These results add to the growing literature on neuronal mechanisms of social influence by disentangling the conflict-monitoring signal in response to the perceived violation of social norms and the neural signal of a conforming behavioral adjustment. PMID:22683703

  14. Astrophysical Tests of Kinematical Conformal Cosmology in Fourth-Order Conformal Weyl Gravity

    Directory of Open Access Journals (Sweden)

    Gabriele U. Varieschi

    2014-12-01

    Full Text Available In this work we analyze kinematical conformal cosmology (KCC, an alternative cosmological model based on conformal Weyl gravity (CG, and test it against current type Ia supernova (SNIa luminosity data and other astrophysical observations. Expanding upon previous work on the subject, we revise the analysis of SNIa data, confirming that KCC can explain the evidence for an accelerating expansion of the Universe without using dark energy or other exotic components. We obtain an independent evaluation of the Hubble constant, H0 = 67:53 kms-1 Mpc-1, very close to the current best estimates. The main KCC and CG parameters are re-evaluated and their revised values are found to be close to previous estimates. We also show that available data for the Hubble parameter as a function of redshift can be fitted using KCC and that this model does not suffer from any apparent age problem. Overall,

  15. Geometric decomposition of the conformation tensor in viscoelastic turbulence

    Science.gov (United States)

    Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.

    2018-05-01

    This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

  16. From spinning conformal blocks to matrix Calogero-Sutherland models

    Science.gov (United States)

    Schomerus, Volker; Sobko, Evgeny

    2018-04-01

    In this paper we develop further the relation between conformal four-point blocks involving external spinning fields and Calogero-Sutherland quantum mechanics with matrix-valued potentials. To this end, the analysis of [1] is extended to arbitrary dimensions and to the case of boundary two-point functions. In particular, we construct the potential for any set of external tensor fields. Some of the resulting Schrödinger equations are mapped explicitly to the known Casimir equations for 4-dimensional seed conformal blocks. Our approach furnishes solutions of Casimir equations for external fields of arbitrary spin and dimension in terms of functions on the conformal group. This allows us to reinterpret standard operations on conformal blocks in terms of group-theoretic objects. In particular, we shall discuss the relation between the construction of spinning blocks in any dimension through differential operators acting on seed blocks and the action of left/right invariant vector fields on the conformal group.

  17. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein

    International Nuclear Information System (INIS)

    Duquerroy, Stephane; Vigouroux, Armelle; Rottier, Peter J.M.; Rey, Felix A.; Jan Bosch, Berend

    2005-01-01

    The coronavirus spike glycoprotein is a class I membrane fusion protein with two characteristic heptad repeat regions (HR1 and HR2) in its ectodomain. Here, we report the X-ray structure of a previously characterized HR1/HR2 complex of the severe acute respiratory syndrome coronavirus spike protein. As expected, the HR1 and HR2 segments are organized in antiparallel orientations within a rod-like molecule. The HR1 helices form an exceptionally long (120 A) internal coiled coil stabilized by hydrophobic and polar interactions. A striking arrangement of conserved asparagine and glutamine residues of HR1 propagates from two central chloride ions, providing hydrogen-bonding 'zippers' that strongly constrain the path of the HR2 main chain, forcing it to adopt an extended conformation at either end of a short HR2 α-helix

  18. Very special conformal field theories and their holographic duals

    Science.gov (United States)

    Nakayama, Yu

    2018-03-01

    Cohen and Glashow introduced the notion of very special relativity as viable space-time symmetry of elementary particle physics. As a natural generalization of their idea, we study the subgroup of the conformal group, dubbed very special conformal symmetry, which is an extension of the very special relativity. We classify all of them and construct field theory examples as well as holographic realization of the very special conformal field theories.

  19. Molecular insight into conformational transmission of human P-glycoprotein

    International Nuclear Information System (INIS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-01-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp

  20. Theories of inflation and conformal transformations

    International Nuclear Information System (INIS)

    Kalara, S.; Kaloper, N.; Olive, K.A.

    1990-01-01

    We show that several different theories of inflation including R 2 , Brans-Dicke, and induced-gravity inflation are all related to generalized or power-law inflation by means of conformal transformations. These theories all involve non-standard gravity, and the use of conformal transformations allows one to obtain standard inflationary predictions such as the expansion time-scale, reheating and density perturbations in each case very simply. We also discuss the possibilities of this method to be applied to string theory. (orig.)

  1. A Framework for Online Conformance Checking

    DEFF Research Database (Denmark)

    Burattin, Andrea; Carmona, Josep

    2017-01-01

    is quantified after the completion of the process instance. In this paper we propose a framework for online conformance checking: not only do we quantify (non-)conformant behavior as the execution is running, we also restrict the computation to constant time complexity per event analyzed, thus enabling...... the online analysis of a stream of events. The framework is instantiated with ideas coming from the theory of regions, and state similarity. An implementation is available in ProM and promising results have been obtained....

  2. 40 CFR 91.123 - Denial, revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... conformity. 91.123 Section 91.123 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Certification Provisions § 91.123 Denial, revocation of certificate of conformity. (a) If, after review of the... conformity if the Administrator finds any one of the following infractions to be substantial: (1) The engine...

  3. Volume-constrained optimization of magnetorheological and electrorheological valves and dampers

    Science.gov (United States)

    Rosenfeld, Nicholas C.; Wereley, Norman M.

    2004-12-01

    This paper presents a case study of magnetorheological (MR) and electrorheological (ER) valve design within a constrained cylindrical volume. The primary purpose of this study is to establish general design guidelines for volume-constrained MR valves. Additionally, this study compares the performance of volume-constrained MR valves against similarly constrained ER valves. Starting from basic design guidelines for an MR valve, a method for constructing candidate volume-constrained valve geometries is presented. A magnetic FEM program is then used to evaluate the magnetic properties of the candidate valves. An optimized MR valve is chosen by evaluating non-dimensional parameters describing the candidate valves' damping performance. A derivation of the non-dimensional damping coefficient for valves with both active and passive volumes is presented to allow comparison of valves with differing proportions of active and passive volumes. The performance of the optimized MR valve is then compared to that of a geometrically similar ER valve using both analytical and numerical techniques. An analytical equation relating the damping performances of geometrically similar MR and ER valves in as a function of fluid yield stresses and relative active fluid volume, and numerical calculations are provided to calculate each valve's damping performance and to validate the analytical calculations.

  4. Comparison of phase-constrained parallel MRI approaches: Analogies and differences.

    Science.gov (United States)

    Blaimer, Martin; Heim, Marius; Neumann, Daniel; Jakob, Peter M; Kannengiesser, Stephan; Breuer, Felix A

    2016-03-01

    Phase-constrained parallel MRI approaches have the potential for significantly improving the image quality of accelerated MRI scans. The purpose of this study was to investigate the properties of two different phase-constrained parallel MRI formulations, namely the standard phase-constrained approach and the virtual conjugate coil (VCC) concept utilizing conjugate k-space symmetry. Both formulations were combined with image-domain algorithms (SENSE) and a mathematical analysis was performed. Furthermore, the VCC concept was combined with k-space algorithms (GRAPPA and ESPIRiT) for image reconstruction. In vivo experiments were conducted to illustrate analogies and differences between the individual methods. Furthermore, a simple method of improving the signal-to-noise ratio by modifying the sampling scheme was implemented. For SENSE, the VCC concept was mathematically equivalent to the standard phase-constrained formulation and therefore yielded identical results. In conjunction with k-space algorithms, the VCC concept provided more robust results when only a limited amount of calibration data were available. Additionally, VCC-GRAPPA reconstructed images provided spatial phase information with full resolution. Although both phase-constrained parallel MRI formulations are very similar conceptually, there exist important differences between image-domain and k-space domain reconstructions regarding the calibration robustness and the availability of high-resolution phase information. © 2015 Wiley Periodicals, Inc.

  5. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  6. Rényi entropy and conformal defects

    International Nuclear Information System (INIS)

    Bianchi, Lorenzo; Meineri, Marco; Myers, Robert C.; Smolkin, Michael

    2016-01-01

    We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei’s results for the entanglement entropy.

  7. Coadjoint orbits and conformal field theory

    International Nuclear Information System (INIS)

    Taylor, W. IV.

    1993-08-01

    This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription

  8. Rényi entropy and conformal defects

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Lorenzo [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Meineri, Marco [Scuola Normale Superiore and Istituto Nazionale di Fisica Nucleare - Sezione di Pisa,Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Smolkin, Michael [Center for Theoretical Physics, Department of Physics, University of California,Berkeley, CA 94720 (United States)

    2016-07-14

    We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei’s results for the entanglement entropy.

  9. Relational motivation for conformal operator ordering in quantum cosmology

    International Nuclear Information System (INIS)

    Anderson, Edward

    2010-01-01

    Operator ordering in quantum cosmology is a major as-yet unsettled ambiguity with not only formal but also physical consequences. We determine the Lagrangian origin of the conformal invariance that underlies the conformal operator-ordering choice in quantum cosmology. This arises particularly naturally and simply from relationalist product-type actions (such as the Jacobi action for mechanics or Baierlein-Sharp-Wheeler-type actions for general relativity), for which all that is required is for the kinetic and potential factors to rescale in compensation to each other. These actions themselves mathematically sharply implement philosophical principles relevant to whole-universe modelling, so that the motivation for conformal operator ordering in quantum cosmology is thereby substantially strengthened. Relationalist product-type actions also give emergent times which amount to recovering Newtonian, proper and cosmic time in various contexts. The conformal scaling of these actions directly tells us how emergent time scales; if one follows suit with the Newtonian time or the lapse in the more commonly used difference-type Euler-Lagrange or Arnowitt-Deser-Misner-type actions, one sees how these too obey a more complicated conformal invariance. Moreover, our discovery of the conformal scaling of the emergent time permits relating how this simplifies equations of motion with how affine parametrization simplifies geodesics.

  10. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    Science.gov (United States)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  11. Preschoolers' conformity (and its motivation) is linked to own and parents' personalities.

    Science.gov (United States)

    Hellmer, Kahl; Stenberg, Gunilla; Fawcett, Christine

    2018-03-31

    Previous studies on conformity have primarily focused on factors that moderate conformity rates overall and paid little attention to explaining the individual differences. In this study, we investigate five-factor model personality traits of both parents and children and experimentally elicited conformity in 3.5-year-olds (N = 59) using an Asch-like paradigm with which we measure both overt conformity (public responses) and covert opinions (private beliefs after conformist responses): A correct covert opinion after an incorrect conformist response results from a socially normative motivation, whereas an incorrect covert opinion results from an informational motivation. Our data show (1) low parental extroversion is associated with participants' overall rate of conformity, (2) and low participant extroversion and high openness are associated with an informational instead of a normative motivation to conform. This suggests that sensitivity to the social context or social engagement level, as manifested through extroversion, could be an important factor in conformist behaviour. Statement of contribution What is already known on this subject? We all conform, from early in life - and even when we should know better We can conform for normative and informational motivations Some are more prone to conform than others What does this study add? This is the first study to take an individual differences approach to developmental conformity Social engagement (extroversion) is an important factor in conformity. © 2018 The British Psychological Society.

  12. A discretized algorithm for the solution of a constrained, continuous ...

    African Journals Online (AJOL)

    A discretized algorithm for the solution of a constrained, continuous quadratic control problem. ... The results obtained show that the Discretized constrained algorithm (DCA) is much more accurate and more efficient than some of these techniques, particularly the FSA. Journal of the Nigerian Association of Mathematical ...

  13. Popularity, likeability, and peer conformity: Four field experiments

    NARCIS (Netherlands)

    Gommans, R.; Sandstrom, M.J.; Stevens, G.W.J.M.; Bogt, T.F.M. ter; Cillessen, A.H.N.

    2017-01-01

    Adolescents tend to alter their attitudes and behaviors to match those of others; a peer influence process named peer conformity. This study investigated to what extent peer conformity depended on the status (popularity and likeability) of the influencer and the influencee. The study consisted of

  14. Conformal array design on arbitrary polygon surface with transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: wuyongle138@gmail.com [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  15. Conformal array design on arbitrary polygon surface with transformation optics

    International Nuclear Information System (INIS)

    Deng, Li; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle

    2016-01-01

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  16. Parafermionic conformal field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1989-09-01

    Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt

  17. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  18. Dual conformal transformations of smooth holographic Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Dekel, Amit [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2017-01-19

    We study dual conformal transformations of minimal area surfaces in AdS{sub 5}×S{sup 5} corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the dual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.

  19. MUFASA: the strength and evolution of galaxy conformity in various tracers

    Science.gov (United States)

    Rafieferantsoa, Mika; Davé, Romeel

    2018-03-01

    We investigate galaxy conformity using the MUFASA cosmological hydrodynamical simulation. We show a bimodal distribution in galaxy colour with radius, albeit with too many low-mass quenched satellite galaxies compared to observations. MUFASA produces conformity in observed properties such as colour, specific star formation rate (sSFR), and H I content, i.e. neighbouring galaxies have similar properties. We see analogous trends in other properties such as in environment, stellar age, H2 content, and metallicity. We introduce quantifying conformity using S(R), measuring the relative difference in upper and lower quartile properties of the neighbours. We show that low-mass and non-quenched haloes have weak conformity (S(R)≲ 0.5) extending to large projected radii R in all properties, while high-mass and quenched haloes have strong conformity (S(R)˜ 1) that diminishes rapidly with R and disappears at R ≳ 1 Mpc. S(R) is strongest for environment in low-mass haloes, and sSFR (or colour) in high-mass haloes, and is dominated by one-halo conformity with the exception of H I in small haloes. Metallicity shows a curious anticonformity in massive haloes. Tracking the evolution of conformity for z = 0 galaxies back in time shows that conformity broadly emerges as a late-time (z ≲ 1) phenomenon. However, for fixed halo mass bins, conformity is fairly constant with redshift out to z ≳ 2. These trends are consistent with the idea that strong conformity only emerges once haloes grow above MUFASA's quenching mass scale of ˜1012 M⊙. A quantitative measure of conformity in various properties, along with its evolution, thus represents a new and stringent test of the impact of quenching on environment within current galaxy formation models.

  20. Improvements to robotics-inspired conformational sampling in rosetta.

    Directory of Open Access Journals (Sweden)

    Amelie Stein

    Full Text Available To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties: conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate these strategies in the context of the robotics-based kinematic closure (KIC method for local conformational sampling in Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are only modest, the combination of intensification and annealing strategies into a new "next-generation KIC" method yields a four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible backbone sequence design, and development of more accurate energy functions.

  1. Explicit mentalizing mechanisms and their adaptive role in memory conformity.

    Directory of Open Access Journals (Sweden)

    Rebecca Wheeler

    Full Text Available Memory conformity occurs when an individual endorses what other individuals remember about past events. Research on memory conformity is currently dominated by a 'forensic' perspective, which views the phenomenon as inherently undesirable. This is because conformity not only distorts the accuracy of an individual's memory, but also produces false corroboration between individuals, effects that act to undermine criminal justice systems. There is growing awareness, however, that memory conformity may be interpreted more generally as an adaptive social behavior regulated by explicit mentalizing mechanisms. Here, we provide novel evidence in support of this emerging alternative theoretical perspective. We carried out a memory conformity experiment which revealed that explicit belief-simulation (i.e. using one's own beliefs to model what other people believe systematically biases conformity towards like-minded individuals, even when there is no objective evidence that they have a more accurate memory than dissimilar individuals. We suggest that this bias is functional, i.e. adaptive, to the extent that it fosters trust, and hence cooperation, between in-group versus out-group individuals. We conclude that memory conformity is, in more fundamental terms, a highly desirable product of explicit mentalizing mechanisms that promote adaptive forms of social learning and cooperation.

  2. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-03-14

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  3. A combined variable temperature 600 MHz NMR/MD study of the calcium release agent cyclic adenosine diphosphate ribose (cADPR): Structure, conformational analysis, and thermodynamics of the conformational equilibria.

    Science.gov (United States)

    Javornik, Uroš; Plavec, Janez; Wang, Baifan; Graham, Steven M

    2018-01-02

    A combined variable temperature 600 MHz NMR/molecular dynamics study of the Ca 2+ -release agent cyclic adenosine 5'-diphosphate ribose (cADPR) was conducted. In addition to elucidating the major and minor orientations of the conformationally flexible furanose rings, γ- (C4'-C5'), and β- (C5'-O5') bonds, the thermodynamics (ΔH o , ΔS o ) associated with each of these conformational equilibria were determined. Both furanose rings were biased towards a south conformation (64-74%) and both β-bonds heavily favored trans conformations. The R-ring γ-bond was found to exist almost exclusively as the γ + conformer, whereas the A-ring γ-bond was a mixture of the γ + and γ t conformers, with the trans conformer being slightly favored. Enthalpic factors accounted for most of the observed conformational preferences, although the R-ring furanose exists as its major conformation based solely on entropic factors. There was excellent agreement between the NMR and MD results, particularly with regard to the conformer identities, but the MD showed a bias towards γ + conformers. The MD results showed that both N-glycosidic χ-bonds are exclusively syn. Collectively the data allowed for the construction of a model for cADPR in which many of the conformationally flexible units in fact effectively adopt single orientations and where most of the conformational diversity resides in its A-ring furanose and γ-bond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  5. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  6. Twelve massless flavors and three colors below the conformal window

    International Nuclear Information System (INIS)

    Fodor, Zoltan; Holland, Kieran; Kuti, Julius; Nogradi, Daniel; Schroeder, Chris

    2011-01-01

    We report new results for a frequently discussed gauge theory with twelve fermion flavors in the fundamental representation of the SU(3) color gauge group. The model, controversial with respect to its conformality, is important in non-perturbative studies searching for a viable composite Higgs mechanism beyond the Standard Model (BSM). In comparison with earlier work, our new simulations apply larger volumes and probe deeper in fermion and pion masses toward the chiral limit. Investigating the controversy, we subject the model to opposite hypotheses with respect to the conformal window. In the first hypothesis, below the conformal window, we test chiral symmetry breaking (χSB) with its Goldstone spectrum, F π , the χSB condensate, and several composite hadron states as analytic functions of the fermion mass when varied in a limited range with our best effort to control finite volume effects. In the second test, for the alternate hypothesis inside the conformal window, we probe conformal behavior driven by a single anomalous mass dimension under the assumption of unbroken chiral symmetry at vanishing fermion mass. Our results at fixed gauge coupling, based on the assumptions of the two hypotheses we define, show low level of confidence in the conformal scenario with leading order scaling analysis. Relaxing the important assumption of leading mass-deformed conformality with its conformal finite size scaling would require added theoretical understanding of the scaling violation terms in the conformal analysis and a comprehensive test of its effects on the confidence level of the fits. Results for the running coupling, based on the force between static sources, and preliminary indications for the finite temperature transition are also presented. Staggered lattice fermions with stout-suppressed taste breaking are used throughout the simulations.

  7. Integrability of conformal fishnet theory

    Science.gov (United States)

    Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory

    2018-01-01

    We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.

  8. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Science.gov (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media. © 2015 Wiley Periodicals, Inc.

  9. From integrability to conformal symmetry: Bosonic superconformal Toda theories

    International Nuclear Information System (INIS)

    Bo-Yu Hou; Liu Chao

    1993-01-01

    In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result shows that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability

  10. Conformal Invariance, Dark Energy, and CMB Non-Gaussianity

    CERN Document Server

    Antoniadis, Ignatios; Mottola, Emil

    2012-01-01

    We show that in addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R^3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S^2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the sym...

  11. 40 CFR 86.1114-87 - Suspension and voiding of certificates of conformity.

    Science.gov (United States)

    2010-07-01

    ... of conformity. 86.1114-87 Section 86.1114-87 Protection of Environment ENVIRONMENTAL PROTECTION... conformity. (a) The certificate of conformity is suspended with respect to any engine or vehicle failing... certificate of conformity if the manufacturer, after electing to conduct a PCA, fails to adhere to the...

  12. pp waves of conformal gravity with self-interacting source

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaine, Mokhtar

    2005-01-01

    Recently, Deser, Jackiw and Pi have shown that three-dimensional conformal gravity with a source given by a conformally coupled scalar field admits pp wave solutions. In this paper, we consider this model with a self-interacting potential preserving the conformal structure. A pp wave geometry is also supported by this system and, we show that this model is equivalent to topologically massive gravity with a cosmological constant whose value is given in terms of the potential strength

  13. Boundary states in c=-2 logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Bredthauer, Andreas; Flohr, Michael

    2002-01-01

    Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c=-2 in detail, we show that our method leads to consistent results. In particular, it allows to define boundary states corresponding to both, indecomposable representations as well as their irreducible subrepresentations

  14. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  15. Conformal invariance from nonconformal gravity

    International Nuclear Information System (INIS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2009-01-01

    We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.

  16. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  17. 75 FR 49435 - Transportation Conformity Rule Restructuring Amendments

    Science.gov (United States)

    2010-08-13

    ... hours of operation, and special arrangements should be made for deliveries of boxed information... the need to update the rule each time a NAAQS is promulgated. The same hierarchy of conformity tests... hierarchy of regional conformity tests described below in B. of this section. Therefore, there is redundancy...

  18. Twistor space, Minkowski space and the conformal group

    NARCIS (Netherlands)

    van den Broek, P.M.

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the

  19. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    in second-line treatment of non-small cell lung cancer ... receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell ... were divided into two groups: 106 patients were treated with conformal ... Conformal radiotherapy, Targeted therapy, Survival rate .... regression model was used for survival.

  20. Broadband illusion optical devices based on conformal mappings

    Science.gov (United States)

    Xiong, Zhan; Xu, Lin; Xu, Ya-Dong; Chen, Huan-Yang

    2017-10-01

    In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.

  1. 40 CFR 59.621 - Who may apply for a certificate of conformity?

    Science.gov (United States)

    2010-07-01

    ... conformity? 59.621 Section 59.621 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Families § 59.621 Who may apply for a certificate of conformity? A certificate of conformity may be issued... certificate of conformity. However, in order to hold the certificate, the manufacturer must demonstrate day-to...

  2. 40 CFR 1042.201 - General requirements for obtaining a certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... certificate of conformity. 1042.201 Section 1042.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of conformity. (a) You must send us a separate application for a certificate of conformity for each engine family. A certificate of conformity is valid starting with the indicated effective date, but it is...

  3. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of

  4. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  5. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  6. Taming the conformal zoo

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)

  7. Field theories on conformally related space-times: Some global considerations

    International Nuclear Information System (INIS)

    Candelas, P.; Dowker, J.S.

    1979-01-01

    The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in conformally flat spaces is clarified. The simple but essential point is that the relevant spaces should have conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are divided into two families according to whether they are conformally equivalent to Minkowski space or to the Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two families

  8. Conformational composition of neutral leucine. Matrix isolation infrared and ab initio study

    International Nuclear Information System (INIS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu.; Adamowicz, Ludwik

    2013-01-01

    Highlights: • FTIR spectra of leucine isolated in argon, neon and xenon matrices are obtained. • UV irradiation is used to separate bands of the leucine conformers. • Populations of the leucine conformers is determined. - Abstract: Low-temperature matrix-isolation FTIR spectroscopy and ab initio calculations are employed to determine conformational composition of neutral leucine. The presence of three leucine conformers in the matrices is revealed. This is in agreement with the results of a detailed study of the potential energy surface of leucine which demonstrates that only five out of 105 possible conformers should have populations in the matrices larger than 2% and only three conformers, which are the ones detected in the experiment, should have populations larger than 10%. UV irradiation of the matrix samples are used to separate bands of the different conformers. We also show that the populations of the leucine conformers in the gas phase at 440 K are significantly different from the ones in matrices. The population of the lowest energy conformer in the gas phase being approximately 23% in the gas phase increases to over 64% in matrices

  9. Anomalies, conformal manifolds, and spheres

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  10. CP properties of symmetry-constrained two-Higgs-doublet models

    CERN Document Server

    Ferreira, P M; Nachtmann, O; Silva, Joao P

    2010-01-01

    The two-Higgs-doublet model can be constrained by imposing Higgs-family symmetries and/or generalized CP symmetries. It is known that there are only six independent classes of such symmetry-constrained models. We study the CP properties of all cases in the bilinear formalism. An exact symmetry implies CP conservation. We show that soft breaking of the symmetry can lead to spontaneous CP violation (CPV) in three of the classes.

  11. Constrained multi-degree reduction with respect to Jacobi norms

    KAUST Repository

    Ait-Haddou, Rachid; Barton, Michael

    2015-01-01

    We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.

  12. Constrained multi-degree reduction with respect to Jacobi norms

    KAUST Repository

    Ait-Haddou, Rachid

    2015-12-31

    We show that a weighted least squares approximation of Bézier coefficients with factored Hahn weights provides the best constrained polynomial degree reduction with respect to the Jacobi L2L2-norm. This result affords generalizations to many previous findings in the field of polynomial degree reduction. A solution method to the constrained multi-degree reduction with respect to the Jacobi L2L2-norm is presented.

  13. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  14. Fast, clash-free RNA conformational morphing using molecular junctions.

    Science.gov (United States)

    Héliou, Amélie; Budday, Dominik; Fonseca, Rasmus; van den Bedem, Henry

    2017-07-15

    Non-coding ribonucleic acids (ncRNA) are functional RNA molecules that are not translated into protein. They are extremely dynamic, adopting diverse conformational substates, which enables them to modulate their interaction with a large number of other molecules. The flexibility of ncRNA provides a challenge for probing their complex 3D conformational landscape, both experimentally and computationally. Despite their conformational diversity, ncRNAs mostly preserve their secondary structure throughout the dynamic ensemble. Here we present a kinematics-based procedure to morph an RNA molecule between conformational substates, while avoiding inter-atomic clashes. We represent an RNA as a kinematic linkage, with fixed groups of atoms as rigid bodies and rotatable bonds as degrees of freedom. Our procedure maintains RNA secondary structure by treating hydrogen bonds between base pairs as constraints. The constraints define a lower-dimensional, secondary-structure constraint manifold in conformation space, where motions are largely governed by molecular junctions of unpaired nucleotides. On a large benchmark set, we show that our morphing procedure compares favorably to peer algorithms, and can approach goal conformations to within a low all-atom RMSD by directing fewer than 1% of its atoms. Our results suggest that molecular junctions can modulate 3D structural rearrangements, while secondary structure elements guide large parts of the molecule along the transition to the correct final conformation. The source code, binaries and data are available at https://simtk.org/home/kgs . amelie.heliou@polytechnique.edu or vdbedem@stanford.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Mathematical Modeling of Constrained Hamiltonian Systems

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    1995-01-01

    Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the

  16. Testing conformal mapping with kitchen aluminum foil

    OpenAIRE

    Haas, S.; Cooke, D. A.; Crivelli, P.

    2016-01-01

    We report an experimental verification of conformal mapping with kitchen aluminum foil. This experiment can be reproduced in any laboratory by undergraduate students and it is therefore an ideal experiment to introduce the concept of conformal mapping. The original problem was the distribution of the electric potential in a very long plate. The correct theoretical prediction was recently derived by A. Czarnecki (Can. J. Phys. 92, 1297 (2014)).

  17. Conformal operator product expansion in the Yukawa model

    International Nuclear Information System (INIS)

    Prati, M.C.

    1983-01-01

    Conformal techniques are applied to the Yukawa model, as an example of a theory with spinor fields. It is written the partial-wave analysis of the 4-point function of two scalars and two spinors in the channel phi psi → phi psi in terms of spinor tensor representations of the conformal group. Using this conformal expansion, it is diagonalized the Bethe-Salpeter equation, which is reduced to algebraic relations among the partial waves. It is shown that in the γ 5 -invariant model, but not in the general case, it is possible to derive dynamically from the expansions of the 4-point function the vacuum operator product phi psi>

  18. Difference between standard and quasi-conformal BFKL kernels

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Papa, A.

    2012-01-01

    As it was recently shown, the colour singlet BFKL kernel, taken in Möbius representation in the space of impact parameters, can be written in quasi-conformal shape, which is unbelievably simple compared with the conventional form of the BFKL kernel in momentum space. It was also proved that the total kernel is completely defined by its Möbius representation. In this paper we calculated the difference between standard and quasi-conformal BFKL kernels in momentum space and discovered that it is rather simple. Therefore we come to the conclusion that the simplicity of the quasi-conformal kernel is caused mainly by using the impact parameter space.

  19. Conformal field theory between supersymmetry and indecomposable structures

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, H.

    2006-07-15

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z{sub 2} and Z{sub 4} orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z{sub 2} and Z{sub 4} orbifold model as well as the Gepner model (2){sup 4}. We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c{sub p,q} minimal models which generalise the well-known (augmented) c{sub p,1} model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c{sub p,q} models, the augmented c{sub 2,3}=0 model as well as the augmented Yang-Lee model at c{sub 2,5}=-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic

  20. Conformal field theory between supersymmetry and indecomposable structures

    International Nuclear Information System (INIS)

    Eberle, H.

    2006-07-01

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z 2 and Z 4 orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z 2 and Z 4 orbifold model as well as the Gepner model (2) 4 . We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c p,q minimal models which generalise the well-known (augmented) c p,1 model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c p,q models, the augmented c 2,3 =0 model as well as the augmented Yang-Lee model at c 2,5 =-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic examples to give the representation content and

  1. On the conformal transformations in the massless Thirring model

    International Nuclear Information System (INIS)

    Hadjiivanov, L.K.; Mikhov, S.G.; Stoyanov, D.T.

    1977-01-01

    On the basis of solutions for the massless scalar field in the two dimensional space-time the fields satisfying the renormalized Thirring equation are constructed. Both infinitesimal and global transformations with respect to the two-dimensional conformal group for these fields are obtained. The latter do not coincide with the standard ones. The renormalized Thirring equation is proved to be covariant under infinitesimal conformal group transformations as well as under the global transformations belonging to the universal covering of the conformal group

  2. Massless fields in curved space-time: The conformal formalism

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.

    1986-01-01

    A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome

  3. Conformational analysis of oxa-thio-azolydines through NMR

    International Nuclear Information System (INIS)

    Val, Amelia Maria Gomes do; Guimaraes, Afonso Celso

    1997-01-01

    This work presents the conformational analysis of some selected oxa-thio-azolidines. As the chemical properties of such compounds do not depend only upon the chemical structure, but also upon the conformational state which they may present, special emphasis is given to this phenomenon, which can elucidate the compounds properties

  4. 15 CFR 265.34 - Conformity with posted signs.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Conformity with posted signs. 265.34 Section 265.34 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL..., GAITHERSBURG, MARYLAND, AND BOULDER AND FORT COLLINS, COLORADO Buildings and Grounds § 265.34 Conformity with...

  5. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  6. Bootstrap bound for conformal multi-flavor QCD on lattice

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2016-07-08

    The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.

  7. Conformal anomaly and elimination of infrared divergences in curved spacetime

    International Nuclear Information System (INIS)

    Grib, A.A.; Nesteruk, A.V.; Pritomanov, S.A.

    1984-01-01

    The relation between the problem of eliminating the infrared divergences and the conformal anomaly of the regularized energy-momentum tensor is studied in homogeneous isotropic and anisotropic spacetime. It is shown that elimination of the infrared divergence by means of a cutoff or the introduction of a conformally invariant mass of the field leads to the absence of the conformal anomaly

  8. D=2 and D=4 realization of κ-conformal algebra

    International Nuclear Information System (INIS)

    Klimek, M.

    1996-01-01

    The generators of κ-conformal transformations leaving the κ-deformed d'Alembert equation invariant are described. The algebraic structure of the conformal extension of the off-shell spin zero realization of κ-Poincare algebra is discussed for D=4. The D=2 off-shell realization of κ-conformal algebra for an arbitrary spin and its commutation relations were studied. 14 refs

  9. Constrained bidirectional propagation and stroke segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S; Gillespie, W; Suen, C Y

    1983-03-01

    A new method for decomposing a complex figure into its constituent strokes is described. This method, based on constrained bidirectional propagation, is suitable for parallel processing. Examples of its application to the segmentation of Chinese characters are presented. 9 references.

  10. Src kinase conformational activation: thermodynamics, pathways, and mechanisms.

    Directory of Open Access Journals (Sweden)

    Sichun Yang

    2008-03-01

    Full Text Available Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the alphaC helix, the activation-loop, and the beta strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the alphaC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.

  11. Conformal invariant quantum field theory and composite field operators

    International Nuclear Information System (INIS)

    Kurak, V.

    1976-01-01

    The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry

  12. Advanced Small Animal Conformal Radiation Therapy Device.

    Science.gov (United States)

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  13. Conformal quantum field theory: From Haag-Kastler nets to Wightman fields

    International Nuclear Information System (INIS)

    Joerss, M.

    1996-07-01

    Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski space-time, we construct associated pointlike localizable charged fields which intertwine between the superselection sectors with finite statistics of the theory. This amounts to a proof of the spin-statistics theorem, the PCT theorem, the Bisognano-Wichmann identification of modular operators, Haag duality in the vacuum sector, and the existence of operator product expansions. Our method consists of the explicit use of the representation theory of the universal covering group of SL(2,R). A central role is played by a ''conformal cluster theorem'' for conformal two-point functions in algebraic quantum field theory. Generalizing this ''conformal cluster theorem'' to the n-point functions of Haag-Kastler theories, we can finally construct from a chiral conformal net of algebras a compelte set of conformal n-point functions fulfilling the Wightman axioms. (orig.)

  14. Smart Conformists: Children and Adolescents Associate Conformity With Intelligence Across Cultures.

    Science.gov (United States)

    Wen, Nicole J; Clegg, Jennifer M; Legare, Cristine H

    2017-08-24

    The current study used a novel methodology based on multivocal ethnography to assess the relations between conformity and evaluations of intelligence and good behavior among Western (U.S.) and non-Western (Ni-Vanuatu) children (6- to 11-year-olds) and adolescents (13- to 17-year-olds; N = 256). Previous research has shown that U.S. adults were less likely to endorse high-conformity children as intelligent than Ni-Vanuatu adults. The current data demonstrate that in contrast to prior studies documenting cultural differences between adults' evaluations of conformity, children and adolescents in the United States and Vanuatu have a conformity bias when evaluating peers' intelligence and behavior. Conformity bias for good behavior increases with age. The results have implications for understanding the interplay of conformity bias and trait psychology across cultures and development. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  15. Conformation radiotherapy with eccentric multi-leaves, (1)

    International Nuclear Information System (INIS)

    Obata, Yasunori; Sakuma, Sadayuki.

    1986-01-01

    In order to extend the application of the conformation radiotherapy, the eccentric multi-leaves are equipped with the linear accelerator. The information of the position of the collimators and the dose distribution of the eccentric conformation radiotherapy are calculated by the improved algorism of the treatment planning system. In simple cases, the dose distributions for the distant region from the rotational center are measured and compared with the calculated values. Both distributions are well coincided with the error of about 5 % in the high dose region and 10 % in the low dose region. In eccentric conformation radiotherapy, it is difficult to deliver the planned dose to the lesion. The dose increases with the distance of the target area from the rotational center. And the measured value and the calculated value are well coincided with 1 % error. So after getting the dose ratio of the rotational center to the target area, the calculated dose can be delivered to the rotational center. The advantages of the eccentric conformation radiotherapy are a good coincidence of target area and treated area, a partial shielding and a hollow out technique without absorber. The limitation of the movement of the collimator from center is 5 cm at 1 m SCD. (author)

  16. Development of conformal respirator monitoring technology

    International Nuclear Information System (INIS)

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a open-quotes waffle-ironclose quotes effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors

  17. Deep Inelastic Scattering in Conformal QCD

    CERN Document Server

    Cornalba, Lorenzo; Penedones, Joao

    2010-01-01

    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor a...

  18. An event-based account of conformity.

    Science.gov (United States)

    Kim, Diana; Hommel, Bernhard

    2015-04-01

    People often change their behavior and beliefs when confronted with deviating behavior and beliefs of others, but the mechanisms underlying such phenomena of conformity are not well understood. Here we suggest that people cognitively represent their own actions and others' actions in comparable ways (theory of event coding), so that they may fail to distinguish these two categories of actions. If so, other people's actions that have no social meaning should induce conformity effects, especially if those actions are similar to one's own actions. We found that female participants adjusted their manual judgments of the beauty of female faces in the direction consistent with distracting information without any social meaning (numbers falling within the range of the judgment scale) and that this effect was enhanced when the distracting information was presented in movies showing the actual manual decision-making acts. These results confirm that similarity between an observed action and one's own action matters. We also found that the magnitude of the standard conformity effect was statistically equivalent to the movie-induced effect. © The Author(s) 2015.

  19. The Asch Conformity Effect: A Study in Kuwait.

    Science.gov (United States)

    Amir, Taha

    1984-01-01

    Investigated whether conformity in the experimental setting suggested by Asch was related to American culture and less likely to be replicable elsewhere. Kuwaiti subjects (N=200) were used in replicating the original experiment. Obtained an 'Asch effect' of a comparable magnitude to that of Asch. Individual differences in conformity were evident.…

  20. Rotational Spectroscopy and Conformational Studies of 4-PENTYNENITRILE, 4-PENTENENITRILE, and Glutaronitrile

    Science.gov (United States)

    Hays, Brian M.; Mehta-Hurt, Deepali; Jawad, Khadija M.; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zhang, Di; Zwier, Timothy S.

    2017-06-01

    The pure rotational spectra of 4-pentynenitrile, 4-pentenenitrile, and glutaronitrile were acquired using chirped pulse Fouirer transform microwave spectroscopy. 4-pentynenitrile and 4-pentenenitrile are the recombination products of two resonance stabilized radicals, propargyl + cyanomethyl or allyl + cyanomethyl, respectively, and are thus anticipated to be significant among the more complex nitriles in Titan's atmosphere. Indeed, these partially unsaturated alkyl cyanides have been found in laboratory analogs of tholins and are also expected to have interesting photochemistry. The optimized structures of all conformers below predicted energies of 500 \\wn were calculated for each molecule. Both of the conformers, trans and gauche, for 4-pentynenitrile have been identified and assigned. Five conformers were assigned in 4-pentenenitrile. The eclipsed conformers, with respect to the vinyl group, dominate the spectrum but some population was found in the syn conformers including the syn-gauche conformer, calculated to be 324 \\wn above the global minimum. The glutaronitrile spectrum contained only the two conformers below 500 \\wn, with reduced amount of the gauche trans conformer. The assigned spectra and structural assignments will be presented.