WorldWideScience

Sample records for conformational capsid epitope

  1. Generation of neutralizing monoclonal antibodies against a conformational epitope of human adenovirus type 7 (HAdv-7 incorporated in capsid encoded in a HAdv-3-based vector.

    Directory of Open Access Journals (Sweden)

    Minglong Liu

    Full Text Available The generation of monoclonal antibodies (MAbs by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5 of adenovirus type 7 (HAdv-7 was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses.

  2. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.

    Directory of Open Access Journals (Sweden)

    Anna D Koromyslova

    2017-11-01

    Full Text Available Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42 were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14, allosteric interference (Nano-32, and violation of normal capsid morphology (Nano-26 and Nano-85. Finally, we showed that two Nanobodies (Nano-26 and Nano-85 not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great

  3. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

    Science.gov (United States)

    2017-01-01

    Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to

  4. Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization

    Directory of Open Access Journals (Sweden)

    Gao Fan

    2012-01-01

    Full Text Available Abstract Background To characterize the human humoral immune response against enterovirus 71 (EV71 infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3 of BJ08 strain (genomic C4 were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl. Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3 were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15 was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71 were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents.

  5. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    Science.gov (United States)

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  6. Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus.

    Science.gov (United States)

    Chen, Yiyang; Liu, Baoyuan; Sun, Yani; Li, Huixia; Du, Taofeng; Nan, Yuchen; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin

    2018-04-18

    Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection with domestic animals being a reservoir including swine and rabbits. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs); three novel; 1E4, 2C7, 2G9, and one previously characterized (1B5), were evaluated for binding to the capsid protein from genotype 4 (swine) hepatitis E virus (HEV). The results indicated that 625 DFCP 628 , 458 PSRPF 462 , and 407 EPTV 410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368-606), can exist in multimeric forms. Pre-incubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and anti-viral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within

  7. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    Directory of Open Access Journals (Sweden)

    Daniel J Hui

    Full Text Available Adeno-associated virus (AAV has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC class I epitopes for common human leukocyte antigen (HLA types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  8. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions.

    Science.gov (United States)

    Bloom, M E; Martin, D A; Oie, K L; Huhtanen, M E; Costello, F; Wolfinbarger, J B; Hayes, S F; Agbandje-McKenna, M

    1997-01-01

    The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins

  9. Isolation of monoclonal antibodies with predetermined conformational epitope specificity.

    Directory of Open Access Journals (Sweden)

    Anton M Sholukh

    Full Text Available Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs. To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents.

  10. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent...

  11. A Comprehensive Study of Neutralizing Antigenic Sites on the Hepatitis E Virus (HEV) Capsid by Constructing, Clustering, and Characterizing a Tool Box*

    Science.gov (United States)

    Zhao, Min; Li, Xiao-Jing; Tang, Zi-Min; Yang, Fan; Wang, Si-Ling; Cai, Wei; Zhang, Ke; Xia, Ning-Shao; Zheng, Zi-Zheng

    2015-01-01

    The hepatitis E virus (HEV) ORF2 encodes a single structural capsid protein. The E2s domain (amino acids 459–606) of the capsid protein has been identified as the major immune target. All identified neutralizing epitopes are located on this domain; however, a comprehensive characterization of antigenic sites on the domain is lacking due to its high degree of conformation dependence. Here, we used the statistical software SPSS to analyze cELISA (competitive ELISA) data to classify monoclonal antibodies (mAbs), which recognized conformational epitopes on E2s domain. Using this novel analysis method, we identified various conformational mAbs that recognized the E2s domain. These mAbs were distributed into 6 independent groups, suggesting the presence of at least 6 epitopes. Twelve representative mAbs covering the six groups were selected as a tool box to further map functional antigenic sites on the E2s domain. By combining functional and location information of the 12 representative mAbs, this study provided a complete picture of potential neutralizing epitope regions and immune-dominant determinants on E2s domain. One epitope region is located on top of the E2s domain close to the monomer interface; the other is located on the monomer side of the E2s dimer around the groove zone. Besides, two non-neutralizing epitopes were also identified on E2s domain that did not stimulate neutralizing antibodies. Our results help further the understanding of protective mechanisms induced by the HEV vaccine. Furthermore, the tool box with 12 representative mAbs will be useful for studying the HEV infection process. PMID:26085097

  12. Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton

    Science.gov (United States)

    Conway, James F.; Cockrell, Shelley K.; Copeland, Anna Maria; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    2010-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component or CCSC. Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid binding domain of UL25 located on the surface of the mature DNA-containing capsid. PMID:20109467

  13. Analysis of Conformational B-Cell Epitopes in the Antibody-Antigen Complex Using the Depth Function and the Convex Hull.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available The prediction of conformational b-cell epitopes plays an important role in immunoinformatics. Several computational methods are proposed on the basis of discrimination determined by the solvent-accessible surface between epitopes and non-epitopes, but the performance of existing methods is far from satisfying. In this paper, depth functions and the k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each layer of the protein, we compute relative solvent accessibility and four different types of depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth, to analyze the location of epitopes on different layers of the proteins. We found that conformational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic residues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of exposed non-epitopes. The average depths (obtained by four methods for epitopes are significantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test. Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful in building a predictor for epitopes.

  14. Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses

    Science.gov (United States)

    Opperman, Pamela A.; Rotherham, Lia S.; Esterhuysen, Jan; Charleston, Bryan; Juleff, Nicholas; Capozzo, Alejandra V.; Theron, Jacques

    2014-01-01

    ABSTRACT Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible βG-βH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the βG-βH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been

  15. Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion.

    Science.gov (United States)

    Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S

    2018-01-01

    Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle

  16. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36.

    Science.gov (United States)

    Bywaters, Stephanie M; Brendle, Sarah A; Tossi, Kerstin P; Biryukov, Jennifer; Meyers, Craig; Christensen, Neil D

    2017-11-10

    The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs) (H16.V5, H16.U4 and H16.7E) and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17-36). The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  17. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17–36

    Directory of Open Access Journals (Sweden)

    Stephanie M. Bywaters

    2017-11-01

    Full Text Available The currently available nonavalent human papillomavirus (HPV vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs (H16.V5, H16.U4 and H16.7E and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17–36. The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  18. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  19. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids.

    Directory of Open Access Journals (Sweden)

    Ana Clara Mignaqui

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV. The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

  20. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-01-01

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  1. Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis

    Science.gov (United States)

    Bari, Fufa Dawo; Parida, Satya; Asfor, Amin S.; Haydon, Daniel T.; Reeve, Richard; Paton, David J.

    2015-01-01

    Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa. PMID:25614587

  2. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.

    Science.gov (United States)

    Moghram, Basem Ameen; Nabil, Emad; Badr, Amr

    2018-01-01

    T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95

  3. Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly.

    Directory of Open Access Journals (Sweden)

    Jennifer Serrière

    Full Text Available The Feline Immunodeficiency Virus (FIV capsid protein p24 oligomerizes to form a closed capsid that protects the viral genome. Because of its crucial role in the virion, FIV p24 is an interesting target for the development of therapeutic strategies, although little is known about its structure and assembly. We defined and optimized a protocol to overexpress recombinant FIV capsid protein in a bacterial system. Circular dichroism and isothermal titration calorimetry experiments showed that the structure of the purified FIV p24 protein was comprised mainly of α-helices. Dynamic light scattering (DLS and cross-linking experiments demonstrated that p24 was monomeric at low concentration and dimeric at high concentration. We developed a protocol for the in vitro assembly of the FIV capsid. As with HIV, an increased ionic strength resulted in FIV p24 assembly in vitro. Assembly appeared to be dependent on temperature, salt concentration, and protein concentration. The FIV p24 assembly kinetics was monitored by DLS. A limit end-point diameter suggested assembly into objects of definite shapes. This was confirmed by electron microscopy, where FIV p24 assembled into spherical particles. Comparison of FIV p24 with other retroviral capsid proteins showed that FIV assembly is particular and requires further specific study.

  4. An elastic network model of HK97 capsid maturation.

    Science.gov (United States)

    Kim, Moon K; Jernigan, Robert L; Chirikjian, Gregory S

    2003-08-01

    The structure of the capsid of bacteriophage HK97 has been solved at various stages of maturity by crystallography and cryo-electron microscopy, and has been reported previously in the literature. Typically the capsid assembles through polymerization and maturation processes. Maturation is composed of proteolytic cleavages to the precursor capsid (called Prohead II), expansion triggered by DNA packaging (in which the largest conformational changes of the capsid appear), and covalent cross-links of neighboring subunits to create the mature capsid called Head II. We apply a coarse-grained elastic network interpolation (ENI) to generate a feasible pathway for conformational change from Prohead II to Head II. The icosahedral symmetry of the capsid structure offers a significant computational advantage because it is not necessary to consider the whole capsid structure but only an asymmetric unit consisting of one hexamer plus an additional subunit from an adjacent pentamer. We also analyze normal modes of the capsid structure using an elastic network model which is also subject to symmetry constraints. Using our model, we can visualize the smooth evolution of capsid expansion and revisit in more detail several interesting geometric changes recognized in early experimental works such as rigid body motion of two compact domains (A and P) with two refolding extensions (N-arm and E-loop) and track the approach of the two particular residues associated with isopeptide bonds that make hexagonal cross-links in Head II. The feasibility of the predicted pathway is also supported by the results of our normal mode analysis.

  5. Identification of a conformational neutralizing epitope on the VP1 protein of type A foot-and-mouth disease virus.

    Science.gov (United States)

    Liu, Wenming; Yang, Baolin; Wang, Mingxia; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Zhou, Guohui; Yu, Li

    2017-12-01

    Foot-and-mouth disease (FMD) caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope could provide protective immunity against diverse subtypes of FMDV serotype A and protect against future pandemics. In this study, we generated a serotype A FMDV-specific potent neutralizing monoclonal antibody (MAb), 6C9, which recognizes a conformation-dependent epitope. MAb 6C9 potently neutralized FMDV A/XJBC/CHA/2010 with a 50% neutralization titer (NT 50 ) of 4096. Screening of a phage-displayed random 12-mer peptide library revealed that MAb 6C9 bound to phages displaying the consensus motif YxxPxGDLG, which is highly homologous to the 135 YxxPxxxxxGDLG 147 motif found in the serotype A FMDV virus-encoded structural protein VP1. To further verify the authentic epitope recognized by MAb 6C9, two FMDV A/XJBC/CHA/2010 mutant viruses, P138A and G144A, were generated using a reverse genetic system. Subsequent micro-neutralization assays and double-antibody sandwich (DAS) ELISA analyses revealed that the Pro 138 and Gly 144 residues of the conformational epitope that are recognized by 6C9 are important for MAb 6C9 binding. Importantly, the epitope 135 YxxPxxxxxGDLG 147 was highly conserved among different topotypes of serotype A FMDV strains in a sequence alignment analysis. Thus, the results of this study could have potential applications in the development of novel epitope-based vaccines and suitable a MAb-based diagnostic method for the detection of serotype A FMDV and the quantitation of antibodies against this serotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Furebring Christina

    2009-03-01

    Full Text Available Abstract Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS blocks the Complement fragment C5a receptor (C5aR and formylated peptide receptor (FPR and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies

  7. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  8. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate

    DEFF Research Database (Denmark)

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong

    2012-01-01

    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other reg...

  9. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes

    DEFF Research Database (Denmark)

    Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten

    2017-01-01

    Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex t...

  10. Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Daryl W Borley

    Full Text Available Understanding virus antigenicity is of fundamental importance for the development of better, more cross-reactive vaccines. However, as far as we are aware, no systematic work has yet been conducted using the 3D structure of a virus to identify novel epitopes. Therefore we have extended several existing structural prediction algorithms to build a method for identifying epitopes on the appropriate outer surface of intact virus capsids (which are structurally different from globular proteins in both shape and arrangement of multiple repeated elements and applied it here as a proof of principle concept to the capsid of foot-and-mouth disease virus (FMDV. We have analysed how reliably several freely available structure-based B cell epitope prediction programs can identify already known viral epitopes of FMDV in the context of the viral capsid. To do this we constructed a simple objective metric to measure the sensitivity and discrimination of such algorithms. After optimising the parameters for five methods using an independent training set we used this measure to evaluate the methods. Individually any one algorithm performed rather poorly (three performing better than the other two suggesting that there may be value in developing virus-specific software. Taking a very conservative approach requiring a consensus between all three top methods predicts a number of previously described antigenic residues as potential epitopes on more than one serotype of FMDV, consistent with experimental results. The consensus results identified novel residues as potential epitopes on more than one serotype. These include residues 190-192 of VP2 (not previously determined to be antigenic, residues 69-71 and 193-197 of VP3 spanning the pentamer-pentamer interface, and another region incorporating residues 83, 84 and 169-174 of VP1 (all only previously experimentally defined on serotype A. The computer programs needed to create a semi-automated procedure for carrying out

  11. Pro region engineering of nerve growth factor by deep mutational scanning enables a yeast platform for conformational epitope mapping of anti-NGF monoclonal antibodies.

    Science.gov (United States)

    Medina-Cucurella, Angélica V; Zhu, Yaqi; Bowen, Scott J; Bergeron, Lisa M; Whitehead, Timothy A

    2018-04-12

    Nerve growth factor (NGF) plays a central role in multiple chronic pain conditions. As such, anti-NGF monoclonal antibodies (mAbs) that function by antagonizing NGF downstream signaling are leading drug candidates for non-opioid pain relief. To evaluate anti-canine NGF (cNGF) mAbs we sought a yeast surface display platform of cNGF. Both mature cNGF and pro-cNGF displayed on the yeast surface but bound conformationally sensitive mAbs at most 2.5-fold in mean fluorescence intensity above background, suggesting that cNGF was mostly misfolded. To improve the amount of folded, displayed cNGF, we used comprehensive mutagenesis, FACS, and deep sequencing to identify point mutants in the pro-region of canine NGF that properly enhance the folded protein displayed on the yeast surface. Out of 1,737 tested single point mutants in the pro region, 49 increased the amount of NGF recognized by conformationally sensitive mAbs. These gain-of-function mutations cluster around residues A-61-P-26. Gain-of-function mutants were additive, and a construct containing three mutations increased amount of folded cNGF to 23- fold above background. Using this new cNGF construct, fine conformational epitopes for tanezumab and three anti-cNGF mAbs were evaluated. The epitope revealed by the yeast experiments largely overlapped with the tanezumab epitope previously determined by X-ray crystallography. The other mAbs showed site-specific differences with tanezumab. As the number of binding epitopes of functionally neutralizing anti-NGF mAbs on NGF are limited, subtle differences in the individual interacting residues on NGF that bind each mAb contribute to the understanding of each antibody and variations in its neutralizing activity. These results demonstrate the potential of deep sequencing-guided protein engineering to improve the production of folded surface-displayed protein, and the resulting cNGF construct provides a platform to map conformational epitopes for other anti-neurotrophin m

  12. Polarized DNA Ejection from the Herpesvirus Capsid

    Science.gov (United States)

    Newcomb, William W.; Cockrell, Shelley K.; Homa, Fred L.; Brown, Jay C.

    2009-01-01

    Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus (HSV-1) capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in dsDNA bacteriophage where the last end packaged is the first to be ejected. Release of HSV-1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be α4, a transcription factor required for expression of early genes. PMID:19631662

  13. Epitope mapping: the first step in developing epitope-based vaccines.

    Science.gov (United States)

    Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael

    2007-01-01

    epitope mapping, computational algorithms have been developed, such as Mapitope, which has recently been found to be effective in mapping conformational discontinuous epitopes. The pros and cons of various approaches towards epitope mapping are also discussed.

  14. Epitope design of L1 protein for vaccine production against Human Papilloma Virus types 16 and 18.

    Science.gov (United States)

    Baidya, Sunanda; Das, Rasel; Kabir, Md Golam; Arifuzzaman, Md

    2017-01-01

    Cervical cancer accounts for about two-thirds of all cancer cases linked etiologically to Human Papilloma Virus (HPV). 15 oncogenic HPV types can cause cervical cancer, of which HPV16 and HPV18 combinedly account for about 70% of it. So, effective epitope design for the clinically relevant HPV types 16 and 18 would be of major medical benefit. Here, a comprehensive analysis is carried out to predict the epitopes against HPV types 16 and 18 through "reverse vaccinology" approach. We attempted to identify the evolutionarily conserved regions of major capsid protein (L1) as well as minor capsid protein (L2) of HPV and designed epitopes within these regions. In this study, we analyzed about 49 and 27 sequences of HPV L2 and L1 proteins respectively. Since we found that the intertype variability of L2 is higher than for L1 proteins, our analysis was emphasized on epitopes of L1 of HPV types 16 and 18. We had selected HLA-A*0201, DRB1*1501, DQB1*0602, DRB1*0401 and DQB1*0301 alleles for the prediction of T cell epitopes of L1 of HPV 16 and 18. Finally, we reported that predicted epitope sequences EEYDLQFIFQLCKITLTA, and RHGEEYDLQFIFQLCKITLTA of L1 protein of HPV 16, and LPDPNKF, PETQRLVWAC, PVPGQYDA, YNPETQRLVWAC, DTGYGAMD, PVPGQYDATK, KQDIPKVSAYQYRVFRV, RDNVSVDYKQTQLCI and YSRHVEEYDLQFIF of L1 protein of HPV 18 could be therapeutic tools for vaccine design against HPV.

  15. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    International Nuclear Information System (INIS)

    Shen, Peter S.; Enderlein, Dirk; Nelson, Christian D.S.; Carter, Weston S.; Kawano, Masaaki; Xing Li; Swenson, Robert D.; Olson, Norman H.; Baker, Timothy S.; Cheng, R. Holland; Atwood, Walter J.; Johne, Reimar; Belnap, David M.

    2011-01-01

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  16. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity.

    Science.gov (United States)

    Pascual, Elena; Mata, Carlos P; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L; Castón, José R

    2015-03-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign

  17. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    Science.gov (United States)

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  18. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.

    Science.gov (United States)

    Davidson, Edgar; Doranz, Benjamin J

    2014-09-01

    Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.

  19. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    Energy Technology Data Exchange (ETDEWEB)

    Wetz, K.; Habermehl, K.O. (Freie Univ. Berlin (Germany, F.R.))

    1982-04-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid.

  20. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    International Nuclear Information System (INIS)

    Wetz, K.; Habermehl, K.-O.

    1982-01-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid. (author)

  1. HIV p24 as scaffold for presenting conformational HIV Env antigens.

    Directory of Open Access Journals (Sweden)

    Maria Tagliamonte

    Full Text Available Heterologous protein scaffolds engrafted with structurally defined HIV Env epitopes recognized by broadly neutralizing monoclonal antibodies (MAbs represent a promising strategy to elicit broad neutralizing antibodies. In such regards, a protein scaffold based on the HIV p24 CA protein is a highly attractive approach, providing also Gag epitopes for eliciting HIV non-neutralizing protective antibodies and specific CD4(+ and CD8(+ T cell responses. In the present study, computational techniques were employed to verify the presence of acceptor sites for conformational HIV Env epitopes and, as proof of concept, the analysis of HIV p24 CA-based scaffolds using a complete V3 loop in a MAb-bound conformation is presented. The V3-p24 epitope-scaffold proteins show the formation of capsomers made of hexamers similarly to the p24 wild type protein. Moreover, the conformational V3 loop presented on p24 scaffold is recognized by a panel of anti-V3 MAbs. The results suggest that HIV p24 CA protein has suitable acceptor sites for engrafting foreign epitopes, without disrupting the formation of capsomer hexamer structures, and that the V3 epitope does retain its antibody-bound conformation. This strongly support the feasibility of developing a scaffolding strategy based on p24 CA proteins displaying conformational minimal structural, antigenic HIV Env epitopes.

  2. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  3. Positive-unlabeled learning for the prediction of conformational B-cell epitopes

    Science.gov (United States)

    2015-01-01

    Background The incomplete ground truth of training data of B-cell epitopes is a demanding issue in computational epitope prediction. The challenge is that only a small fraction of the surface residues of an antigen are confirmed as antigenic residues (positive training data); the remaining residues are unlabeled. As some of these uncertain residues can possibly be grouped to form novel but currently unknown epitopes, it is misguided to unanimously classify all the unlabeled residues as negative training data following the traditional supervised learning scheme. Results We propose a positive-unlabeled learning algorithm to address this problem. The key idea is to distinguish between epitope-likely residues and reliable negative residues in unlabeled data. The method has two steps: (1) identify reliable negative residues using a weighted SVM with a high recall; and (2) construct a classification model on the positive residues and the reliable negative residues. Complex-based 10-fold cross-validation was conducted to show that this method outperforms those commonly used predictors DiscoTope 2.0, ElliPro and SEPPA 2.0 in every aspect. We conducted four case studies, in which the approach was tested on antigens of West Nile virus, dihydrofolate reductase, beta-lactamase, and two Ebola antigens whose epitopes are currently unknown. All the results were assessed on a newly-established data set of antigen structures not bound by antibodies, instead of on antibody-bound antigen structures. These bound structures may contain unfair binding information such as bound-state B-factors and protrusion index which could exaggerate the epitope prediction performance. Source codes are available on request. PMID:26681157

  4. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  5. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  6. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  7. Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting Burkholderia Infections.

    Science.gov (United States)

    Capelli, Riccardo; Matterazzo, Elena; Amabili, Marco; Peri, Claudio; Gori, Alessandro; Gagni, Paola; Chiari, Marcella; Lertmemongkolchai, Ganjana; Cretich, Marina; Bolognesi, Martino; Colombo, Giorgio; Gourlay, Louise J

    2017-10-13

    Structure-based epitope prediction drives the design of diagnostic peptidic probes to reveal specific antibodies elicited in response to infections. We previously identified a highly immunoreactive epitope from the peptidoglycan-associated lipoprotein (Pal) antigen from Burkholderia pseudomallei, which could also diagnose Burkholderia cepacia infections. Here, considering the high phylogenetic conservation within Burkholderia species, we ask whether cross-reactivity can be reciprocally displayed by the synthetic epitope from B. cenocepacia. We perform comparative analyses of the conformational preferences and diagnostic performances of the corresponding epitopes from the two Burkholderia species when presented in the context of the full-length proteins or as isolated peptides. The effects of conformation on the diagnostic potential and cross-reactivity of Pal peptide epitopes are rationalized on the basis of the 1.8 Å crystal structure of B. cenocepacia Pal and through computational analyses. Our results are discussed in the context of designing new diagnostic molecules for the early detection of infectious diseases.

  8. The VP7 Outer Capsid Protein of Rotavirus Induces Polyclonal B-Cell Activation

    Science.gov (United States)

    Blutt, Sarah E.; Crawford, Sue E.; Warfield, Kelly L.; Lewis, Dorothy E.; Estes, Mary K.; Conner, Margaret E.

    2004-01-01

    The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection. PMID:15194774

  9. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  10. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    DEFF Research Database (Denmark)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo

    2017-01-01

    -reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification...

  11. Proof of principle for epitope-focused vaccine design

    Science.gov (United States)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  12. A molecular thermodynamic model for the stability of hepatitis B capsids

    Science.gov (United States)

    Kim, Jehoon; Wu, Jianzhong

    2014-06-01

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  13. A molecular thermodynamic model for the stability of hepatitis B capsids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-06-21

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  14. IgE epitopes of intact and digested Ara h 1

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Nielsen, H.; Madsen, Charlotte Bernhard

    2012-01-01

    epitopes have been suggested to be of great importance. ObjectiveThe aim of this study was to identify IgE specific epitopes of intact and digested Ara h 1, and to compare epitope patterns between humans and rats. MethodsSera from five peanut allergic patients and five Brown Norway rats were used...... to identify intact and digested Ara h 1-specific IgE epitopes by competitive immunoscreening of a phage-displayed random hepta-mer peptide library using polyclonal IgE from the individual sera. The resulting peptide sequences were mapped on the surface of a three-dimensional structure of the Ara h 1 molecule...... to mimic epitopes using a computer-based algorithm. ResultsPatients as well as rats were shown to have individual IgE epitope patterns. All epitope mimics were conformational and found to cluster into three different areas of the Ara h 1 molecule. Five epitope motifs were identified by patient IgE, which...

  15. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.

    Science.gov (United States)

    McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D

    2011-06-24

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required. Published by Elsevier Ltd.

  16. Identification of a serotype-independent linear epitope of foot-and-mouth disease virus.

    Science.gov (United States)

    Yang, Baolin; Wang, Mingxia; Liu, Wenming; Xu, Zhiqiang; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Zhou, Guohui; Yu, Li

    2017-12-01

    Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. VP2 is a structural protein of FMDV. In this study, an FMDV serotype-independent monoclonal antibody (MAb), 10B10, against the viral capsid protein VP2 was generated, and a series of GST fusion proteins expressing a truncated peptide of VP2 was subjected to Western blot analysis using MAb 10B10. Their results indicated that the peptide 8 TLLEDRILT 16 of VP2 is the minimal requirement of the epitope recognized by MAb 10B10. Importantly, this linear epitope was highly conserved among all seven serotypes of FMDV in a sequence alignment analysis. Subsequent alanine-scanning mutagenesis analysis revealed that the residues Thr 8 and Asp 12 of the epitope were crucial for MAb-10B10 binding. Furthermore, Western blot analysis also revealed that the MAb 10B10-directed epitope could be recognized by positive sera from FMDV-infected cattle. The discovery that MAb 10B10 recognizes a serotype-independent linear epitope of FMDV suggests potential applications for this MAb in the development of serotype-independent tests for FMDV.

  17. Development of a sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains.

    Directory of Open Access Journals (Sweden)

    Fang He

    Full Text Available BACKGROUND: Human Enterovirus 71 (EV71 is a common cause of hand, foot and mouth disease (HFMD in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. METHODOLOGY/PRINCIPAL FINDING: In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6 that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. CONCLUSION: The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.

  18. Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids

    Science.gov (United States)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert

    2013-01-01

    The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783

  19. IgE vs IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Nielsen, H.; Eiwegger, T.

    2013-01-01

    to the allergen. However, recent studies have demonstrated the very importance of the IgG4-epitope affinity for the blocking ability. Studies comparing IgE and IgG4 binding epitopes mainly focus on the identification of linear epitopes. Peanut allergy is one of the most severe and persistent forms of food allergy....... The importance of conformational epitopes, of the major peanut allergen Ara h 1, has been demonstrated. The aim of this study was to compare Ara h 1-specific epitope patterns for IgE and IgG4 in patients with severe peanut allergy applying a method suitable to identify both linear and conformational epitopes....... Methods: Ara h 1-specific IgE and IgG4 epitope patterns were examined by competitive immunoscreening of a phage-displayed random 7-mer peptide library using polyclonal IgE and IgG4 from three individual patients suffering from severe peanut allergy. The resulting peptide sequences were mapped...

  20. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn2+

    International Nuclear Information System (INIS)

    Ratka, M.; Lackmann, M.; Ueckermann, C.; Karlins, U.; Koch, G.

    1989-01-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg 2+ . In this paper, the effect of Zn 2+ on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg 2+ . In the presence of Zn 2+ , phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn 2+ . The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn 2+ . This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus

  1. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    Science.gov (United States)

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  2. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  3. Designing and overproducing a tandem epitope of gp350/220 that shows a potential to become an EBV vaccine

    Directory of Open Access Journals (Sweden)

    Widodo

    2018-03-01

    Full Text Available Background: Epstein-Barr virus (EBV can cause cancer in people from around the world. There is no EBV vaccine available for use on a global scale. However, emerging evidence suggests that the epitope on the gp350/220 capsid protein may be developed into an EBV vaccine. Nevertheless, the production of small, single epitope is challenging of stability issues and possible alteration of peptide structure. In this study, a tandem epitope was developed consisting of three single epitopes, aimed to improve stability, antigenicity and preserve epitope structure. Materials and methods: A tandem epitope was designed using bioinformatics based on the epitope structure of the gp350/220 protein. The tandem epitope structure was analyzed using a protein folding method with Abalone software, which was further refined via YASARA force field and molecular repairing using a FoldX method. Immunogenicity was examined with Epitopia software, whereas allergen properties were tested using AlgPred. The pattern of the tandem epitope binding with anti-gp350/220 antibodies was performed using Z-dock and snugDock. The tandem epitope was then overproduced in E. coli strain BL21 as a host cell. Result: Our model demonstrated a successfully designed and overproduced tandem epitope. The tandem epitope demonstrated a similar structure compared with the epitope of whole protein gp350/220. Our epitope also demonstrated non-allergen and antigenicity properties, and possessed antibody binding patterns consistent with whole protein gp350/220. Conclusion and recommendation: These data suggest a novel tandem epitope composed of three similar epitopes demonstrates antigenicity, structure, and binding properties consistent with whole protein gp350/220. We also demonstrate successful production of the tandem epitope using E. coli strain BL21 as a host. Future in vivo experimental animal research is necessary to test the ability of this tandem epitope to stimulate antibody production

  4. Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

    Science.gov (United States)

    Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi

    2016-01-01

    ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit

  5. A novel monoclonal antibody to a defined peptide epitope in MUC16

    DEFF Research Database (Denmark)

    Marcos-Silva, Lara; Ricardo, Sara; Chen, Kowa

    2015-01-01

    with the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of potent...... immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry...

  6. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    DEFF Research Database (Denmark)

    Buus, Søren; Rockberg, Johan; Forsström, Björn

    2012-01-01

    Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning...... against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high......-resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against...

  7. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses.

    Science.gov (United States)

    Pouyanfard, Somayeh; Spagnoli, Gloria; Bulli, Lorenzo; Balz, Kathrin; Yang, Fan; Odenwald, Caroline; Seitz, Hanna; Mariz, Filipe C; Bolchi, Angelo; Ottonello, Simone; Müller, Martin

    2018-02-15

    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs. IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only

  8. Structural analysis of linear and conformational epitopes of allergens

    Science.gov (United States)

    Ivanciuc, Ovidiu; Schein, Catherine H.; Garcia, Tzintzuni; Oezguen, Numan; Negi, Surendra S.; Braun, Werner

    2009-01-01

    In many countries regulatory agencies have adopted safety guidelines, based on bioinformatics rules from the WHO/FAO and EFSA recommendations, to prevent potentially allergenic novel foods or agricultural products from reaching consumers. We created the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to combine data that had previously been available only as flat files on Web pages or in the literature. SDAP was designed to be user friendly, to be of maximum use to regulatory agencies, clinicians, as well as to scientists interested in assessing the potential allergenic risk of a protein. We developed methods, unique to SDAP, to compare the physicochemical properties of discrete areas of allergenic proteins to known IgE epitopes. We developed a new similarity measure, the property distance (PD) value that can be used to detect related segments in allergens with clinical observed crossreactivity. We have now expanded this work to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to known IgE epitopes. In complementary work we show how sequence motifs characteristic of allergenic proteins in protein families can be used as fingerprints for allergenicity. PMID:19121639

  9. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex

    International Nuclear Information System (INIS)

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2012-01-01

    We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU L 26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU L 26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU L 26 is required for this conformational change.

  10. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kui; Wills, Elizabeth G. [Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (United States); Baines, Joel D., E-mail: jdb11@cornell.edu [Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-20

    We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU{sub L}26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU{sub L}26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU{sub L}26 is required for this conformational change.

  11. IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Nielsen, H.; Eiwegger, T.

    2014-01-01

    epitopes. Objective: The aim of this study was to compare Ara h 1-specific IgE and IgG4 epitope recognition patterns in patients with severe peanut allergy, applying a method allowing for identification of both linear and conformational epitopes. Methods: Polyclonal sera from three individual patients......, suffering from severe allergic reaction to peanuts, including anaphylaxis, were used to analyse the IgE and IgG4 epitope recognition patterns of the major peanut allergen Ara h 1. Epitope identification was conducted by competitive immuno-screening of a phage-displayed random heptamer peptide library...

  12. Application of phage peptide display technology for the study of food allergen epitopes.

    Science.gov (United States)

    Chen, Xueni; Dreskin, Stephen C

    2017-06-01

    Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of minor displacements in loops of the porcine parvovirus VP2 capsid on virus-like particles assembly and the induction of antibody responses.

    Science.gov (United States)

    Pan, Qunxing; He, Kongwang; Wang, Yongshan; Wang, Xiaoli; Ouyang, Wei

    2013-06-01

    An antigen-delivery system based on hybrid virus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine parvovirus (PPV) and expressing foreign peptides offers an alternative method for vaccination. In this study, the three-dimensional structure of the PPV capsid protein and surface loops deletion mutants were analyzed to define essential domains in PPV VP2 for the assembly of VLPs. Electron microscopic analysis and SDS-PAGE analysis confirmed the presence of abundant VLPs in a loop2 deletion mutant of expected size and appropriate morphology. Loop4 and loop2-loop4 deletion mutants, however, resulted in a lower number of particles and the morphology of the particles was not well preserved. Furthermore, the green fluorescent protein (gfp) gene was used as a model. GFP was observed at the same level in displacements mutants. However, GFP displacement mutants in loop2 construct allowed better adaptation for the fusion GFP to be further displayed on the surface of the capsid-like structure. Immunogenicity study showed that there is no obvious difference in mice inoculated with rAd-VP2(Δloop2), rAd-VP2(Δloop4), rAd-VP2(Δloop2-Δloop4), and PPV inactivated vaccine. The results suggested the possibility of inserting simultaneously B and T cell epitopes in the surface loop2 and the N-terminus. The combination of different types of epitopes (B, CD4+, and CD8+) in different positions of the PPV particles opens the way to the development of highly efficient vaccines, able to stimulate at the same time the different branches of the immune system.

  14. Herpesvirus capsid assembly and DNA packaging

    Science.gov (United States)

    Heming, Jason D.; Conway, James F.; Homa, Fred L.

    2017-01-01

    Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442

  15. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Packianathan, Charles; Katen, Sarah P.; Dann, III, Charles E.; Zlotnick, Adam (Indiana)

    2010-01-12

    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.

  16. Immunization with Hexon modified adenoviral vectors integrated with gp83 epitope provides protection against Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Anitra L Farrow

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary.The "antigen capsid-incorporation" strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5 vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83. This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies.This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses, as evidenced by the production of several Ig isotypes

  17. The Murid Herpesvirus-4 gL regulates an entry-associated conformation change in gH.

    Directory of Open Access Journals (Sweden)

    Laurent Gillet

    2008-07-01

    Full Text Available The glycoprotein H (gH/gL heterodimer is crucial for herpesvirus membrane fusion. Yet how it functions is not well understood. The Murid Herpesvirus-4 gH, like that of other herpesviruses, adopts its normal virion conformation by associating with gL. However, gH switched back to a gL-independent conformation after virion endocytosis. This switch coincided with a conformation switch in gB and with capsid release. Virions lacking gL constitutively expressed the down-stream form of gH, prematurely switched gB to its down-stream form, and showed premature capsid release with poor infectivity. These data argue that gL plays a key role in regulating a gH and gB functional switch from cell binding to membrane fusion.

  18. Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.

    Science.gov (United States)

    Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan

    2011-09-01

    The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Plasticity and Epitope Exposure of the HIV-1 Envelope Trimer.

    Science.gov (United States)

    Powell, Rebecca L R; Totrov, Maxim; Itri, Vincenza; Liu, Xiaomei; Fox, Alisa; Zolla-Pazner, Susan

    2017-09-01

    We recently showed that mutations in the HIV-1 envelope (Env) destabilize the V3 loop, rendering neutralization-resistant viruses sensitive to V3-directed monoclonal antibodies (MAbs). Here, we investigated the propagation of this effect on other Env epitopes, with special emphasis on V2 loop exposure. Wild-type JR-FL and 19 mutant JR-FL pseudoviruses were tested for neutralization sensitivity to 21 MAbs specific for epitopes in V2, the CD4 binding site (CD4bs), and the CD4-induced (CD4i) region. Certain glycan mutants, mutations in the gp120 hydrophobic core, and mutations in residues involved in intraprotomer interactions exposed epitopes in the V2i region (which overlies the α4β7 integrin binding site) and the V3 crown, suggesting general destabilization of the distal region of the trimer apex. In contrast, other glycan mutants, mutations affecting interprotomer interactions, and mutations affecting the CD4bs exposed V3 but not V2i epitopes. These data indicate for the first time that V3 can move independently of V2, with V3 pivoting out from its "tucked" position in the trimer while apparently leaving the V2 apex intact. Notably, none of the mutations exposed V2 epitopes without also exposing V3, suggesting that movement of V2 releases V3. Most mutations increased sensitivity to CD4bs-directed MAbs without exposure of the CD4i epitope, implying these mutations facilitate the trimers' maintenance of an intermediate energy state between open and closed conformations. Taken together, these data indicate that several transient Env epitopes can be rendered more accessible to antibodies (Abs) via specific mutations, and this may facilitate the design of V1V2-targeting immunogens. IMPORTANCE Many epitopes of the HIV envelope (Env) spike are relatively inaccessible to antibodies (Abs) compared to their exposure in the open Env conformation induced by receptor binding. However, the reduced infection rate that resulted from the vaccine used in the RV144 HIV-1 vaccine

  20. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    Science.gov (United States)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  1. Display of neutralizing epitopes of Canine parvovirus and a T-cell epitope of the fusion protein of Canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against Canine parvo and Canine distemper.

    Science.gov (United States)

    Chandran, Dev; Shahana, Pallichera Vijayan; Rani, Gudavelli Sudha; Sugumar, Parthasarthy; Shankar, Chinchkar Ramchandra; Srinivasan, Villuppanoor Alwar

    2009-12-10

    Expression of Physalis mottle tymovirus coat protein in Escherichia coli was earlier shown to self-assemble into empty capsids that were nearly identical to the capsids formed in vivo. Amino acid substitutions were made at the N-terminus of wild-type Physalis mottle virus coat protein with neutralizing epitopes of Canine parvovirus containing the antigenic sites 1-2, 4 and 6-7 and T-cell epitope of the fusion protein of Canine distemper virus in various combinations to yield PhMV1, PhMV2, PhMV3, PhMV4 and PhMV5. These constructs were cloned and expressed in E. coli. The chimeric proteins self-assembled into chimeric tymovirus-like particles (TVLPs) as determined by electron microscopy. The TVLPs were purified by ultracentrifugation and injected into guinea pigs and dogs to determine their immunogenicity. Initial immunogenicity studies in guinea pigs indicated that PhMV3 gave a higher response in comparison to the other TVLPs for both CPV and CDV and hence all further experiments in dogs were done with PhMV3. HI was done against different isolates obtained from various parts of the country. Protective titres indicated the broad spectrum of the vaccine. In conclusion the study indicated that the above chimeric VLP based vaccine could be used in dogs to generate a protective immune response against diseases caused by both Canine parvo and Canine distemper virus.

  2. Characterization of two conformational epitopes of the Chlamydia trachomatis serovar L2 DnaK immunogen

    DEFF Research Database (Denmark)

    Birkelund, Svend; Mygind, P; Holm, A

    1996-01-01

    this protein. By use of recombinant DNA techniques, we located the epitopes for two MAbs in the C-terminal variable part. Although the antibodies reacted in an immunoblot assay, it was not possible to map the epitopes completely by use of 16-mer synthetic peptides displaced by one amino acid corresponding......Chlamydia trachomatis DnaK is an important immunogen in chlamydial infections. DnaK is composed of a conserved N-terminal ATP-binding domain and a variable C-terminal peptide-binding domain. To locate the immunogenic part of C. trachomatis Dnak, we generated monoclonal antibodies (MAbs) against...... with the two antibodies. The epitopes were found not to overlap. To obtain DnaK fragments recognized by the antibodies with the same affinity as native C. trachomatis DnaK, it was necessary to express, respectively, regions of 127 and 77 amino acids. The MAbs described in this study thus recognized...

  3. Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Perez, Edmundo I.; López, Tomás; Arias, Carlos F.; DuBois, Rebecca M. (UNAM-Mexico); (UCSC)

    2017-10-25

    ABSTRACT

    Human astroviruses are recognized as a leading cause of viral diarrhea worldwide in children, immunocompromised patients, and the elderly. There are currently no vaccines available to prevent astrovirus infection; however, antibodies developed by healthy individuals during previous infection correlate with protection from reinfection, suggesting that an effective vaccine could be developed. In this study, we investigated the molecular mechanism by which several strains of human astrovirus serotype 2 (HAstV-2) are resistant to the potent HAstV-2-neutralizing monoclonal antibody PL-2 (MAb PL-2). Sequencing of the HAstV-2 capsid genes reveals mutations in the PL-2 epitope within the capsid's spike domain. To understand the molecular basis for resistance from MAb PL-2 neutralization, we determined the 1.35-Å-resolution crystal structure of the capsid spike from one of these HAstV-2 strains. Our structure reveals a dramatic conformational change in a loop within the PL-2 epitope due to a serine-to-proline mutation, locking the loop in a conformation that sterically blocks binding and neutralization by MAb PL-2. We show that mutation to serine permits loop flexibility and recovers MAb PL-2 binding. Importantly, we find that HAstV-2 capsid spike containing a serine in this loop is immunogenic and elicits antibodies that neutralize all HAstV-2 strains. Taken together, our results have broad implications for rational selection of vaccine strains that do not contain prolines in antigenic loops, so as to elicit antibodies against diverse loop conformations.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. In this study, we investigated how several strains of HAstV are resistant to a virus-neutralizing monoclonal antibody. We determined the crystal structure of the capsid protein spike domain from one of these HAstV strains and found that

  4. Comparative characteristic of the methods of protein antigens epitope mapping

    Directory of Open Access Journals (Sweden)

    O. Yu. Galkin

    2014-08-01

    Full Text Available Comparative analysis of experimental methods of epitope mapping of protein antigens has been carried out. The vast majority of known techniques are involved in immunochemical study of the interaction of protein molecules or peptides with antibodies of corresponding specifici­ty. The most effective and widely applicable metho­dological techniques are those that use synthetic and genetically engineered peptides. Over the past 30 years, these groups of methods have travelled a notable evolutionary path up to the maximum automation and the detection of antigenic determinants of various types (linear and conformational epitopes, and mimotopes. Most of epitope searching algorithms were integrated into a computer program, which greatly facilitates the analysis of experimental data and makes it possible to create spatial models. It is possible to use comparative epitope mapping for solving the applied problems; this less time-consuming method is based on the analysis of competition between different antibodies interactions with the same antigen. The physical method of antigenic structure study is X-ray analysis of antigen-antibody complexes, which may be applied only to crystallizing­ proteins, and nuclear magnetic resonance.

  5. The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and λ

    International Nuclear Information System (INIS)

    Effantin, Gregory; Figueroa-Bossi, Nara; Schoehn, Guy; Bossi, Lionello; Conway, James F.

    2010-01-01

    Phage Gifsy-2, a lambdoid phage infecting Salmonella, has an unusually large composite gene coding for its major capsid protein (mcp) at the C-terminal end, a ClpP-like protease at the N-terminus, and a ∼ 200 residue central domain of unknown function but which may have a scaffolding role. This combination of functions on a single coding region is more extensive than those observed in other phages such as HK97 (scaffold-capsid fusion) and λ (protease-scaffold fusion). To study the structural phenotype of the unique Gifsy-2 capsid gene, we have purified Gifsy-2 particles and visualized capsids and procapsids by cryoelectron microscopy, determining structures to resolutions up to 12 A. The capsids have lambdoid T = 7 geometry and are well modeled with the atomic structures of HK97 mcp and phage λ gpD decoration protein. Thus, the unique Gifsy-2 capsid protein gene yields a capsid maturation pathway engaging features from both phages HK97 and λ.

  6. Conformational occlusion of blockade antibody epitopes, a novel mechanism of GII.4 human norovirus immune evasion

    OpenAIRE

    Lindesmith, Lisa C.; Mallory, Michael L.; Debbink, Kari; Donaldson, Eric F.; Brewer-Jensen, Paul D.; Swann, Excel W.; Sheahan, Timothy P.; Graham, Rachel L.; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S.

    2018-01-01

    ABSTRACT Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach f...

  7. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens.

    Science.gov (United States)

    Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong

    2016-02-01

    Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA.

  8. Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis Reacting with Murine Monoclonal and Sheep Antibodies

    Science.gov (United States)

    Wu, Jingbo; Zhang, Hui; Wang, Yuanzhi; Qiao, Jun; Chen, Chuangfu; Gao, Goege F.; Allain, Jean-Pierre; Li, Chengyao

    2012-01-01

    More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90. PMID:22457830

  9. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases

    NARCIS (Netherlands)

    Hickman, D.T.; Nand, D.; Baldus, M.; Muhs, A.

    2011-01-01

    Synthetic peptide immunogens which mimic the conformation of a target epitope of pathological relevance offer the possibility to precisely control the immune response specificity. Here, we performed conformational analyses using a panel of peptides in order to investigate the key parameters

  10. Determination of prestress and elastic properties of virus capsids

    Science.gov (United States)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  11. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    OpenAIRE

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ?procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: a...

  12. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Venteo, A.

    1999-01-01

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological...... in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coil using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most....... Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques...

  13. Stochastic modeling of virus capsid assembly pathways

    Science.gov (United States)

    Schwartz, Russell

    2009-03-01

    Virus capsids have become a key model system for understanding self-assembly due to their high complexity, robust and efficient assembly processes, and experimental tractability. Our ability to directly examine and manipulate capsid assembly kinetics in detail nonetheless remains limited, creating a need for computer models that can infer experimentally inaccessible features of the assembly process and explore the effects of hypothetical manipulations on assembly trajectories. We have developed novel algorithms for stochastic simulation of capsid assembly [1,2] that allow us to model capsid assembly over broad parameter spaces [3]. We apply these methods to study the nature of assembly pathway control in virus capsids as well as their sensitivity to assembly conditions and possible experimental interventions. [4pt] [1] F. Jamalyaria, R. Rohlfs, and R. Schwartz. J Comp Phys 204, 100 (2005). [0pt] [2] N. Misra and R. Schwartz. J Chem Phys 129, in press (2008). [0pt] [3] B. Sweeney, T. Zhang, and R. Schwartz. Biophys J 94, 772 (2008).

  14. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition

    Directory of Open Access Journals (Sweden)

    Lucas Y. H. Goh

    2015-06-01

    Full Text Available Chikungunya virus (CHIKV is an arthropod-borne agent that causes severe arthritic disease in humans and is considered a serious health threat in areas where competent mosquito vectors are prevalent. CHIKV has recently been responsible for several millions of cases of disease, involving over 40 countries. The recent re-emergence of CHIKV and its potential threat to human health has stimulated interest in better understanding of the biology and pathogenesis of the virus, and requirement for improved treatment, prevention and control measures. In this study, we mapped the binding sites of a panel of eleven monoclonal antibodies (mAbs previously generated towards the capsid protein (CP of CHIKV. Using N- and C-terminally truncated recombinant forms of the CHIKV CP, two putative binding regions, between residues 1–35 and 140–210, were identified. Competitive binding also revealed that five of the CP-specific mAbs recognized a series of overlapping epitopes in the latter domain. We also identified a smaller, N-terminally truncated product of native CP that may represent an alternative translation product of the CHIKV 26S RNA and have potential functional significance during CHIKV replication. Our data also provides evidence that the C-terminus of CP is required for authentic antigenic structure of CP. This study shows that these anti-CP mAbs will be valuable research tools for further investigating the structure and function of the CHIKV CP.

  15. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  16. Periodic table of virus capsids: implications for natural selection and design.

    Science.gov (United States)

    Mannige, Ranjan V; Brooks, Charles L

    2010-03-04

    For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.

  17. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    Full Text Available The phospholipase A2 receptor (PLA2R was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN. Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA utilizing indirect immunofluorescence (IIF on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA platform. Since reactive domains of PLA2R (i.e. epitopes could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  18. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  19. Eclipse Phase of Herpes Simplex Virus Type 1 Infection: Efficient Dynein-Mediated Capsid Transport without the Small Capsid Protein VP26

    Science.gov (United States)

    Döhner, Katinka; Radtke, Kerstin; Schmidt, Simone; Sodeik, Beate

    2006-01-01

    Cytoplasmic dynein,together with its cofactor dynactin, transports incoming herpes simplex virus type 1 (HSV-1) capsids along microtubules (MT) to the MT-organizing center (MTOC). From the MTOC, capsids move further to the nuclear pore, where the viral genome is released into the nucleoplasm. The small capsid protein VP26 can interact with the dynein light chains Tctex1 (DYNLT1) and rp3 (DYNLT3) and may recruit dynein to the capsid. Therefore, we analyzed nuclear targeting of incoming HSV1-ΔVP26 capsids devoid of VP26 and of HSV1-GFPVP26 capsids expressing a GFPVP26 fusion instead of VP26. To compare the cell entry of different strains, we characterized the inocula with respect to infectivity, viral genome content, protein composition, and particle composition. Preparations with a low particle-to-PFU ratio showed efficient nuclear targeting and were considered to be of higher quality than those containing many defective particles, which were unable to induce plaque formation. When cells were infected with HSV-1 wild type, HSV1-ΔVP26, or HSV1-GFPVP26, viral capsids were transported along MT to the nucleus. Moreover, when dynein function was inhibited by overexpression of the dynactin subunit dynamitin, fewer capsids of HSV-1 wild type, HSV1-ΔVP26, and HSV1-GFPVP26 arrived at the nucleus. Thus, even in the absence of the potential viral dynein receptor VP26, HSV-1 used MT and dynein for efficient nuclear targeting. These data suggest that besides VP26, HSV-1 encodes other receptors for dynein or dynactin. PMID:16873277

  20. Properties and Functions of the Dengue Virus Capsid Protein.

    Science.gov (United States)

    Byk, Laura A; Gamarnik, Andrea V

    2016-09-29

    Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

  1. Construction of hevein (Hev b 6.02) with reduced allergenicity for immunotherapy of latex allergy by comutation of six amino acid residues on the conformational IgE epitopes.

    Science.gov (United States)

    Karisola, Piia; Mikkola, Jari; Kalkkinen, Nisse; Airenne, Kari J; Laitinen, Olli H; Repo, Susanna; Pentikäinen, Olli T; Reunala, Timo; Turjanmaa, Kristiina; Johnson, Mark S; Palosuo, Timo; Kulomaa, Markku S; Alenius, Harri

    2004-02-15

    Recently we have established that IgE Abs bind to conformational epitopes in the N- and C-terminal regions of the major natural rubber latex allergen, hevein (Hev b 6.02). To identify the critical amino acid residues that interact with IgE, the hevein sequence was scanned by using site-specific mutations. Twenty-nine hevein mutants were designed and produced by a baculovirus expression system in insect cells and tested by IgE inhibition-ELISA using sera from 26 latex allergic patients. Six potential IgE-interacting residues of hevein (Arg(5), Lys(10), Glu(29), Tyr(30), His(35), and Gln(38)) were identified and characterized further in detail. Based on these six residues, two triple mutants (Hdelta3A, Hdelta3B) and hevein mutant where all six residues were mutated (Hdelta6), were designed, modeled, and produced. Structural and functional properties of these combinatory mutants were compared experimentally and in silico with those of recombinant hevein. The IgE-binding affinity of the mutants decreased by three to five orders of magnitude as compared with that of recombinant hevein. Skin prick test reactivity of the triple mutant HDelta3A was drastically reduced and that of the six-residue mutant Hdelta6 was completely abolished in all patients examined in this study. The approach presented in this paper offers tools for identification and modification of amino acid residues on conformational epitopes of allergens that interact with IgE. Hevein with a highly reduced ability to bind IgE should provide a valuable candidate molecule for immunotherapy of latex allergy and is anticipated to have a low risk of systemic side effects.

  2. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein.

    Directory of Open Access Journals (Sweden)

    Heng Wang

    Full Text Available Hepatitis E virus (HEV is responsible for hepatitis E, which represents a global public health problem. HEV genotypes 3 and 4 are reported to be zoonotic, and animals are monitored for HEV infection in the interests of public hygiene and food safety. The development of novel diagnostic methods and vaccines for HEV in humans is thus important topics of research. Opening reading frame (ORF 2 of HEV includes both linear and conformational epitopes and is regarded as the primary candidate for vaccines and diagnostic tests. We investigated the precise location of the HEV epitopes in the ORF2 protein. We prepared four monoclonal antibodies (mAbs against genotype 4 ORF2 protein and identified two linear epitopes, G438IVIPHD444 and Y457DNQH461, corresponding to two of these mAbs using phage display biopanning technology. Both these epitopes were speculated to be universal to genotypes 1, 2, 3, 4, and avian HEVs. We also used two 12-mer fragments of ORF2 protein including these two epitopes to develop a peptide-based enzyme-linked immunosorbent assay (ELISA to detect HEV in serum. This assay demonstrated good specificity but low sensitivity compared with the commercial method, indicating that these two epitopes could serve as potential candidate targets for diagnosis. Overall, these results further our understanding of the epitope distribution of HEV ORF2, and provide important information for the development of peptide-based immunodiagnostic tests to detect HEV in serum.

  3. A theory for viral capsid assembly around electrostatic cores

    Science.gov (United States)

    Hagan, Michael F.

    2009-03-01

    We develop equilibrium and kinetic theories that describe the assembly of viral capsid proteins on a charged central core, as seen in recent experiments in which brome mosaic virus capsids assemble around nanoparticles functionalized with polyelectrolyte. We model interactions between capsid proteins and nanoparticle surfaces as the interaction of polyelectrolyte brushes with opposite charge using the nonlinear Poisson Boltzmann equation. The models predict that there is a threshold density of functionalized charge, above which capsids efficiently assemble around nanoparticles, and that light scatter intensity increases rapidly at early times without the lag phase characteristic of empty capsid assembly. These predictions are consistent with and enable interpretation of preliminary experimental data. However, the models predict a stronger dependence of nanoparticle incorporation efficiency on functionalized charge density than measured in experiments and do not completely capture a logarithmic growth phase seen in experimental light scatter. These discrepancies may suggest the presence of metastable disordered states in the experimental system. In addition to discussing future experiments for nanoparticle-capsid systems, we discuss broader implications for understanding assembly around charged cores such as nucleic acids.

  4. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers.

    Science.gov (United States)

    Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J

    2018-03-01

    Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity

  5. A single amino acid of human immunodeficiency virus type 2 capsid protein affects conformation of two external loops and viral sensitivity to TRIM5α.

    Directory of Open Access Journals (Sweden)

    Tadashi Miyamoto

    Full Text Available We previously reported that human immunodeficiency virus type 2 (HIV-2 carrying alanine or glutamine but not proline at position 120 of the capsid protein (CA could grow in the presence of anti-viral factor TRIM5α of cynomolgus monkey (CM. To elucidate details of the interaction between the CA and TRIM5α, we generated mutant HIV-2 viruses, each carrying one of the remaining 17 possible amino acid residues, and examined their sensitivity to CM TRIM5α-mediated restriction. Results showed that hydrophobic residues or those with ring structures were associated with sensitivity, while those with small side chains or amide groups conferred resistance. Molecular dynamics simulation study revealed a structural basis for the differential TRIM5α sensitivities. The mutations at position 120 in the loop between helices 6 and 7 (L6/7 affected conformation of the neighboring loop between helices 4 and 5 (L4/5, and sensitive viruses had a common L4/5 conformation. In addition, the common L4/5 structures of the sensitive viruses were associated with a decreased probability of hydrogen bond formation between the 97th aspartic acid in L4/5 and the 119th arginine in L6/7. When we introduced aspartic acid-to-alanine substitution at position 97 (D97A of the resistant virus carrying glutamine at position 120 to disrupt hydrogen bond formation, the resultant virus became moderately sensitive. Interestingly, the virus carrying glutamic acid at position 120 showed resistance, while its predicted L4/5 conformation was similar to those of sensitive viruses. The D97A substitution failed to alter the resistance of this particular virus, indicating that the 120th amino acid residue itself is also involved in sensitivity regardless of the L4/5 conformation. These results suggested that a hydrogen bond between the L4/5 and L6/7 modulates the overall structure of the exposed surface of the CA, but the amino acid residue at position 120 is also directly involved in CM TRIM5

  6. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    Science.gov (United States)

    Roos, Wouter H.; Radtke, Kerstin; Kniesmeijer, Edward; Geertsema, Hylkje; Sodeik, Beate; Wuite, Gijs J. L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze the structural and mechanical properties of scaffold-containing (B), empty (A), and DNA-containing (C) nuclear capsids. Atomic force microscopy experiments revealed that A and C capsids were mechanically indistinguishable, indicating that the presence of DNA does not account for changes in mechanical properties during capsid maturation. Despite having the same rigidity, the scaffold-containing B capsids broke at significantly lower forces than A and C capsids. An extraction of pentons with guanidine hydrochloride (GuHCl) increased the flexibility of all capsids. Surprisingly, the breaking forces of the modified A and C capsids dropped to similar values as those of the GuHCl-treated B capsids, indicating that mechanical reinforcement occurs at the vertices. Nonetheless, it also showed that HSV1 capsids possess a remarkable structural integrity that was preserved after removal of pentons. We suggest that HSV1 capsids are stabilized after removal of the scaffold proteins, and that this stabilization is triggered by the packaging of DNA, but independent of the actual presence of DNA. PMID:19487681

  7. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    International Nuclear Information System (INIS)

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L.

    2006-01-01

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-γ stimulation of blood CD8 + T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS

  8. Epitope prediction methods

    DEFF Research Database (Denmark)

    Karosiene, Edita

    Analysis. The chapter provides detailed explanations on how to use different methods for T cell epitope discovery research, explaining how input should be given as well as how to interpret the output. In the last chapter, I present the results of a bioinformatics analysis of epitopes from the yellow fever...... peptide-MHC interactions. Furthermore, using yellow fever virus epitopes, we demonstrated the power of the %Rank score when compared with the binding affinity score of MHC prediction methods, suggesting that this score should be considered to be used for selecting potential T cell epitopes. In summary...... immune responses. Therefore, it is of great importance to be able to identify peptides that bind to MHC molecules, in order to understand the nature of immune responses and discover T cell epitopes useful for designing new vaccines and immunotherapies. MHC molecules in humans, referred to as human...

  9. Antimicrobial peptide capsids of de novo design.

    Science.gov (United States)

    De Santis, Emiliana; Alkassem, Hasan; Lamarre, Baptiste; Faruqui, Nilofar; Bella, Angelo; Noble, James E; Micale, Nicola; Ray, Santanu; Burns, Jonathan R; Yon, Alexander R; Hoogenboom, Bart W; Ryadnov, Maxim G

    2017-12-22

    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.

  10. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    International Nuclear Information System (INIS)

    Hespenheide, B M; Jacobs, D J; Thorpe, M F

    2004-01-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations

  11. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Science.gov (United States)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  12. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Energy Technology Data Exchange (ETDEWEB)

    Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)

    2004-11-10

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  13. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    Science.gov (United States)

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. CD4+ T-cell epitope prediction using antigen processing constraints.

    Science.gov (United States)

    Mettu, Ramgopal R; Charles, Tysheena; Landry, Samuel J

    2016-05-01

    T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.

    Science.gov (United States)

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty

  16. Epitope Mapping of Metuximab on CD147 Using Phage Display and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Bifang He

    2013-01-01

    Full Text Available Metuximab is the generic name of Licartin, a new drug for radioimmunotherapy of hepatocellular carcinoma. Although it is known to be a mouse monoclonal antibody against CD147, the complete epitope mediating the binding of metuximab to CD147 remains unknown. We panned the Ph.D.-12 phage display peptide library against metuximab and got six mimotopes. The following bioinformatics analysis based on mimotopes suggested that metuximab recognizes a conformational epitope composed of more than 20 residues. The residues of its epitope may include T28, V30, K36, L38, K57, F74, D77, S78, D79, D80, Q81, G83, S86, N98, Q100, L101, H102, G103, P104, V131, P132, and K191. The homology modeling of metuximab and the docking of CD147 to metuximab were also performed. Based on the top one docking model, the epitope was predicted to contain 28 residues: AGTVFTTV (23–30, I37, D45, E84, V88, EPMGTANIQLH (92–102, VPP (131–133, Q164, and K191. Almost half of the residues predicted on the basis of mimotope analysis also appear in the docking result, indicating that both results are reliable. As the predicted epitopes of metuximab largely overlap with interfaces of CD147-CD147 interactions, a structural mechanism of metuximab is proposed as blocking the formation of CD147 dimer.

  17. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  18. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    Science.gov (United States)

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  19. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages.

    Science.gov (United States)

    Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R

    2017-01-15

    Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction

  20. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages

    Science.gov (United States)

    Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan

    2016-01-01

    ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in

  1. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  2. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    International Nuclear Information System (INIS)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.

    2014-01-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10 6 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it

  3. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Science.gov (United States)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  4. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis.

    Science.gov (United States)

    Huang, Yan Xin; Bao, Yong Li; Guo, Shu Yan; Wang, Yan; Zhou, Chun Guang; Li, Yu Xin

    2008-12-16

    The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from immunologists, structural biologists and computational biologists. Phage-displayed random peptide libraries are powerful tools used to obtain mimotopes that are selected by binding to a given monoclonal antibody (mAb) in a similar way to the native epitope. These mimotopes can be considered as functional epitope mimics. Mimotope analysis based methods can predict not only linear but also conformational epitopes and this has been the focus of much research in recent years. Though some algorithms based on mimotope analysis have been proposed, the precise localization of the interaction site mimicked by the mimotopes is still a challenging task. In this study, we propose a method for B-cell epitope prediction based on mimotope analysis called Pep-3D-Search. Given the 3D structure of an antigen and a set of mimotopes (or a motif sequence derived from the set of mimotopes), Pep-3D-Search can be used in two modes: mimotope or motif. To evaluate the performance of Pep-3D-Search to predict epitopes from a set of mimotopes, 10 epitopes defined by crystallography were compared with the predicted results from a Pep-3D-Search: the average Matthews correlation coefficient (MCC), sensitivity and precision were 0.1758, 0.3642 and 0.6948. Compared with other available prediction algorithms, Pep-3D-Search showed comparable MCC, specificity and precision, and could provide novel, rational results. To verify the capability of Pep-3D-Search to align a motif sequence to a 3D structure for predicting epitopes, 6 test cases were used. The predictive performance of Pep-3D-Search was demonstrated to be superior to that of other similar programs

  5. Microbiota epitope similarity either dampens or enhances the immunogenicity of disease-associated antigenic epitopes.

    Directory of Open Access Journals (Sweden)

    Sebastian Carrasco Pro

    Full Text Available The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens were retrieved from the Immune Epitope Database (IEDB. Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens or increased (inflammatory; e.g. Dengue and West Nile viruses likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen

  6. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  7. The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes.

    Directory of Open Access Journals (Sweden)

    Magdalini Polymenidou

    Full Text Available PrP(Sc, a misfolded and aggregated form of the cellular prion protein PrP(C, is the only defined constituent of the transmissible agent causing prion diseases. Expression of PrP(C in the host organism is necessary for prion replication and for prion neurotoxicity. Understanding prion diseases necessitates detailed structural insights into PrP(C and PrP(Sc. Towards this goal, we have developed a comprehensive collection of monoclonal antibodies denoted POM1 to POM19 and directed against many different epitopes of mouse PrP(C. Three epitopes are located within the N-terminal octarepeat region, one is situated within the central unstructured region, and four epitopes are discontinuous within the globular C-proximal domain of PrP(C. Some of these antibodies recognize epitopes that are resilient to protease digestion in PrP(Sc. Other antibodies immunoprecipitate PrP(C, but not PrP(Sc. A third group was found to immunoprecipitate both PrP isoforms. Some of the latter antibodies could be blocked with epitope-mimicking peptides, and incubation with an excess of these peptides allowed for immunochromatography of PrP(C and PrP(Sc. Amino-proximal antibodies were found to react with repetitive PrP(C epitopes, thereby vastly increasing their avidity. We have also created functional single-chain miniantibodies from selected POMs, which retained the binding characteristics despite their low molecular mass. The POM collection, thus, represents a unique set of reagents allowing for studies with a variety of techniques, including western blotting, ELISA, immunoprecipitation, conformation-dependent immunoassays, and plasmon surface plasmon resonance-based assays.

  8. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.; Ejemel, Monir; Rapp, Chelsea A.; Thomas, William D.; Sundberg, Eric J.; Weng, Zhiping; Wang, Yang; Diamond, Michael S.

    2017-08-09

    Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as well as a bivalent immunogen with two copies of the epitope on the E2 surface. We solved the X-ray structure of a cyclic immunogen in complex with the HCV1 antibody and confirmed preservation of the epitope conformation and the HCV1 interface. Mice vaccinated with our designed immunogens produced robust antibody responses to epitope I, and their serum could neutralize HCV. Notably, the cyclic designs induced greater epitope-specific responses and neutralization than the native peptide epitope. Beyond successfully designing several novel HCV immunogens, this study demonstrates the principle that neutralizing anti-HCV antibodies can be induced by epitope-based, engineered vaccines and provides the basis for further efforts in structure-based design of HCV vaccines.

    IMPORTANCEHepatitis C virus is a leading cause of liver disease and liver cancer, with approximately 3% of the world's population infected. To combat this virus, an effective vaccine would have distinct advantages over current therapeutic options, yet experimental vaccines have not been successful to date, due in part to the virus's high sequence variability leading to immune escape. In this study, we rationally designed several vaccine immunogens based on the structure of a conserved epitope that

  9. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  10. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    Science.gov (United States)

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  11. Generation of a novel high-affinity monoclonal antibody with conformational recognition epitope on human IgM.

    Science.gov (United States)

    Sarikhani, Sina; Mirshahi, Manouchehr; Gharaati, Mohammad Reza; Mirshahi, Tooran

    2010-11-01

    As IgM is the first isotype of antibody which appears in blood after initial exposure to a foreign antigen in the pattern of primary response, detection, and quantification of this molecule in blood seems invaluable. To approach these goals, generation, and characterization of a highly specific mAb (monoclonal antibody) against human IgM were investigated. Human IgM immunoglobulins were used to immunize Balb/c mice. Spleen cells taken from the immunized animals were fused with SP2/O myeloma cells using PEG (polyethylene glycol, MW 1450) as fusogen. The hybridomas were cultured in HAT containing medium and supernatants from the growing hybrids were screened by enzyme-linked immunosorbent assay (ELISA) using plates coated with pure human IgM and the positive wells were then cloned at limiting dilutions. The best clone designated as MAN-1, was injected intraperitoneally to some Pristane-injected mice. Anti-IgM mAb was purified from the animals' ascitic fluid by protein-G sepharose followed by DEAE-cellulose ion exchange chromatography. MAN-1 interacted with human IgM with a very high specificity and affinity. The purity of the sample was tested by SDS-PAGE and the affinity constant was measured (K(a) = 3.5 x 10(9)M(-1). Immunoblotting and competitive ELISA were done and the results showed that the harvested antibody recognizes a conformational epitope on the mu chain of human IgM and there was no cross-reactivity with other subclasses of immunoglobulins. Furthermore, isotyping test was done and the results showed the subclass of the obtained mAb which was IgG(1)kappa.

  12. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.

    Science.gov (United States)

    Rath, Soumya Lipsa; Liu, Huihui; Okazaki, Susumu; Shinoda, Wataru

    2018-02-26

    Around 270 million individuals currently live with hepatitis B virus (HBV) infection. Heteroaryldihydropyrimidines (HAPs) are a family of antivirals that target the HBV capsid protein and induce aberrant self-assembly. The capsids formed resemble the native capsid structure but are unable to propagate the virus progeny because of a lack of RNA/DNA. Under normal conditions, self-assembly is initiated by the viral genome. The mode of action of HAPs, however, remains largely unknown. In this work, using molecular dynamics simulations, we attempted to understand the action of HAP by comparing the dynamics of capsid proteins with and without HAPs. We found that the inhibitor is more stable in higher oligomers. It retains its stability in the hexamer throughout 1 μs of simulation. Our results also show that the inhibitor might help in stabilizing the C-terminus, the HBc 149-183 arginine-rich domain of the capsid protein. The C-termini of dimers interact with each other, assisted by the HAP inhibitor. During capsid assembly, the termini are supposed to directly interact with the viral genome, thereby suggesting that the viral genome might work in a similar way to stabilize the capsid protein. Our results may help in understanding the underlying molecular mechanism of HBV capsid self-assembly, which should be crucial for exploring new drug targets and structure-based drug design.

  13. Routinely used immunoassays do not detect circulating anti-GBM antibodies against native NC1 hexamer and EA epitope of the α3 chain of type IV collagen.

    Science.gov (United States)

    Clavarino, Giovanna; Gauthier, Arnaud; Hellmark, Thomas; Carron, Pierre-Louis; Giovannini, Diane; Colliard, Sophie; Dragon-Durey, Marie-Agnès; Segelmark, Mårten; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal

    2018-04-12

    Detection of circulating anti-GBM antibodies has a key role for the diagnosis of Goodpasture syndrome but immunoassays using purified or recombinant alpha3(IV)NC1 as antigen do not recognize all anti-GBM antibodies. We show that anti-GBM antibodies directed against epitopes in their native conformation or cryptic epitopes are detected by indirect immunofluorescence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Epitope mapping for monoclonal antibody reveals the activation mechanism for αVβ3 integrin.

    Directory of Open Access Journals (Sweden)

    Tetsuji Kamata

    Full Text Available Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.

  15. Identification of broadly reactive epitopes targeting major glycoproteins of Herpes simplex virus (HSV) 1 and 2 - An immunoinformatics analysis.

    Science.gov (United States)

    Chauhan, Varun; Goyal, Kapil; Singh, Mini P

    2018-07-01

    Infections due to both HSV-1 and HSV-2 constitute an enormous health burden worldwide. Development of vaccine against herpes infections is a WHO supported public health priority. The viral glycoproteins have always been the major hotspots for vaccine designing. The present study was aimed to identify the conserved T and B cell epitopes in the major glycoproteins of both HSV-1 and HSV-2 via rigorous computational approaches. Identification of promiscuous T cell epitopes is of utmost importance in vaccine designing as such epitopes are capable of binding to several allelic forms of HLA and could generate effective immune response in the host. The criteria designed for identification of T and B cell epitopes was that it should be conserved in both HSV-1 and 2, promiscuous, have high affinity towards HLA alleles, should be located on the surface of glycoproteins and not be present in the glycosylation sites. This study led to the identification of 17 HLA Class II and 26 HLA Class I T cell epitopes, 9 linear and some conformational B cell epitopes. The identified T cell epitopes were further subjected to molecular docking analysis to analyze their binding patterns. Altogether we have identified 4 most promising regions in glycoproteins (2-gB, 1-gD, 1-gH) of HSV-1 and 2 which are promiscuous to HLA Class II alleles and have overlapping HLA Class I and B cell epitopes, which could be very useful in generating both arms of immune response in the host i.e. adaptive as well as humoral immunity. Further the authors propose the cross-validation of the identified epitopes in experimental settings for confirming their immunogenicity to support the present findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Structure of a novel shoulder-to-shoulder p24 dimer in complex with the broad-spectrum antibody A10F9 and its implication in capsid assembly.

    Directory of Open Access Journals (Sweden)

    Ying Gu

    Full Text Available Mature HIV-1 viral particles assemble as a fullerene configuration comprising p24 capsid hexamers, pentamers and dimers. In this paper, we report the X-ray crystal structures of the p24 protein from natural HIV-1 strain (BMJ4 in complex with Fab A10F9, which recognizes a conserved epitope in the C-terminal domain of the BMJ4 p24 protein. Our structures reveal a novel shoulder-to-shoulder p24 dimerization mode that is mediated by an S-S bridge at C177. Consistent with these structures, the shoulder-to-shoulder dimer that was obtained from the BMJ4 strain was also observed in p24 proteins from other strains by the introduction of a cysteine residue at position 177. The potential biological significance was further validated by the introduction of a C177A mutation in the BMJ4 strain, which then displays a low infectivity. Our data suggest that this novel shoulder-to-shoulder dimer interface trapped by this unique S-S bridge could represent a physiologically relevant mode of HIV-1 capsid assembly during virus maturation, although Cys residue itself may not be critical for HIV-I replication.

  17. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-Cell immunogen shows enhanced immunogenicity in mice

    Directory of Open Access Journals (Sweden)

    Liu Xiangtao

    2011-02-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE, and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA and indirect sandwich-ELISA (IS-ELISA showed both recombinant baculoviruses (with or without T-cell epitopes were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ. Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P P Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.

  18. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  19. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    Energy Technology Data Exchange (ETDEWEB)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino (Rutgers); (LBNL); (Connecticut); (TJU); (MSU)

    2017-01-30

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid’) built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging’ is a DNA-dependent symmetrization of portal protein.

  20. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    Science.gov (United States)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging' is a DNA-dependent symmetrization of portal protein. PMID:28134243

  1. Quantum dot-induced viral capsid assembling in dissociation buffer

    Directory of Open Access Journals (Sweden)

    Gao D

    2013-06-01

    Full Text Available Ding Gao,1,2 Zhi-Ping Zhang,1 Feng Li,3 Dong Men,1 Jiao-Yu Deng,1 Hong-Ping Wei,1 Xian-En Zhang,1 Zong-Qiang Cui1 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 2Graduate University of Chinese Academy of Sciences, Beijing, 3Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China Abstract: Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs are still unknown. In this article, it was found that quantum dots (QDs can induce simian virus 40 (SV40 capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1 can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD = 2.19E-10 M, which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles. Keywords: quantum dots, simian virus 40, self-assembly, encapsulation, virus-based nanoparticles

  2. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis

    OpenAIRE

    Huang, Yan Xin; Bao, Yong Li; Guo, Shu Yan; Wang, Yan; Zhou, Chun Guang; Li, Yu Xin

    2008-01-01

    Abstract Background The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from immunologists, structural biologists and computational biologists. Phage-displayed random peptide libraries are powerful tools...

  3. Human rhinovirus capsid dynamics is controlled by canyon flexibility

    International Nuclear Information System (INIS)

    Reisdorph, Nichole; Thomas, John J.; Katpally, Umesh; Chase, Elaine; Harris, Ken; Siuzdak, Gary; Smith, Thomas J.

    2003-01-01

    Quantitative enzyme accessibility experiments using nano liquid chromatography electrospray mass spectrometry combined with limited proteolysis and isotope-labeling was used to examine the dynamic nature of the human rhinovirus (HRV) capsid in the presence of three antiviral compounds, a neutralizing Fab, and drug binding cavity mutations. Using these methods, it was found that the antivirals WIN 52084 and picovir (pleconaril) stabilized the capsid, while dansylaziridine caused destabilization. Site-directed mutations in the drug-binding cavity were found to stabilize the HRV14 capsid against proteolytic digestion in a manner similar to WIN 52084 and pleconaril. Antibodies that bind to the NIm-IA antigenic site and penetrate the canyon were also observed to protect the virion against proteolytic cleavage. These results demonstrate that quantifying the effects of antiviral ligands on protein 'breathing' can be used to compare their mode of action and efficacy. In this case, it is apparent that hydrophobic antiviral agents, antibodies, or mutations in the canyon region block viral breathing. Therefore, these studies demonstrate that mobility in the canyon region is a major determinant in capsid breathing

  4. Investigating the thermal dissociation of viral capsid by lattice model

    Science.gov (United States)

    Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume

    2017-11-01

    The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.

  5. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  6. Studies towards the sex pheromone of the green capsid bug

    NARCIS (Netherlands)

    Drijfhout, F.P.

    2001-01-01

    The green capsid bug, Lygocoris pabulinus (L.) (Heteroptera: Miridae) is a serious pest in fruit orchards, which is difficult to control. Because it is difficult to determine the actual population density, fruit growers apply insecticides against the green capsid bug on

  7. Antibodies against linear epitopes on Goodpasture autoantigen in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis.

    Science.gov (United States)

    Jia, Xiao-Yu; Yu, Jun-Tao; Hu, Shui-Yi; Li, Jian-Nan; Wang, Miao; Wang, Chen; Chen, Min; Cui, Zhao; Zhao, Ming-Hui

    2017-09-01

    In a substantial number of patients with crescentic glomerulonephritis, both anti-glomerular basement membrane (GBM) antibodies and anti-neutrophil cytoplasmic antibodies (ANCA) are detected simultaneously. ANCA is presumed to be the initial event but the mechanism is unknown. In the present study, we investigated the antibodies against linear epitopes on Goodpasture autoantigen in sera from patients with ANCA-associated vasculitis, aiming to reveal the mechanisms of the coexistence of the two kinds of autoantibodies. Thirty-one patients with ANCA-associated vasculitis were enrolled in this study. Twenty-four overlapping linear peptides were synthesized across the whole sequence of Goodpasture autoantigen. Serum antibodies against linear peptides were detected by ELISA and their associations with clinical features were further analyzed. Twenty-five out of the thirty-one (80.6%) sera from patients with ANCA-associated vasculitis possessed antibodies against linear peptides on Goodpasture autoantigen. These antibodies could be detected in 50% of patients with normal renal function (Scr ≤ 133 μmol/L), 70% of patients with moderate renal dysfunction (133 μmol/L  600 μmol/L) (P = 0.032). The highest recognition frequencies were found for peptides P4 (51.6%), P14 (54.8%), and P24 (54.8%), which contained the sequences that constitute the conformational epitopes of E A (P4) and E B (P14) recognized by anti-GBM antibodies. The level of anti-P4 antibodies was positively correlated with the percentage of crescents in glomeruli (r = 0.764, P = 0.027). Patients with anti-P24 antibodies had a significantly higher prevalence of renal dysfunction on diagnosis (88.2 vs. 42.9%, P = 0.018). Antibodies against linear epitopes on Goodpasture autoantigen could be detected in sera of patients with ANCA-associated vasculitis, which might mediate the production of antibodies towards the conformational epitopes on Goodpasture autoantigen, namely, the anti-GBM antibodies.

  8. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  9. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  10. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    Science.gov (United States)

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.

  11. ATP-Driven Contraction of Phage T3 Capsids with DNA Incompletely Packaged In Vivo

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2017-05-01

    Full Text Available Adenosine triphosphate (ATP cleavage powers packaging of a double-stranded DNA (dsDNA molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo. These capsids retain incompletely packaged DNA (ipDNA and are called ipDNA-capsids; the ipDNA-capsids are assumed to be products of premature genome maturation-cleavage. They were isolated via preparative Nycodenz buoyant density centrifugation. For some ipDNA-capsids, Nycodenz impermeability increases hydration and generates density so low that shell hyper-expansion must exist to accommodate associated water. Electron microscopy (EM confirmed hyper-expansion and low permeability and revealed that 3.0 mM magnesium ATP (physiological concentration causes contraction of hyper-expanded, lowpermeability ipDNA-capsids to less than mature size; 5.0 mM magnesium ATP (border of supraphysiological concentration or more disrupts them. Additionally, excess sodium ADP reverses 3.0 mM magnesium ATP-induced contraction and re-generates hyper-expansion. The Nycodenz impermeability implies assembly perfection that suggests selection for function in DNA packaging. These findings support the above challenge and can be explained via the assumption that T3 DNA packaging includes a back-up cycle of ATP-driven capsid contraction and hyper-expansion.

  12. A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid.

    Science.gov (United States)

    Lee, Lye Siang; Brunk, Nicholas; Haywood, Daniel G; Keifer, David; Pierson, Elizabeth; Kondylis, Panagiotis; Wang, Joseph Che-Yen; Jacobson, Stephen C; Jarrold, Martin F; Zlotnick, Adam

    2017-11-01

    Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive-pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90-mers in the disassembly of uncrosslinked HBV capsids. 90-mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations. © 2017 The Protein Society.

  13. The Immune Epitope Database 2.0

    DEFF Research Database (Denmark)

    Hoof, Ilka; Vita, R; Zarebski, L

    2010-01-01

    The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive...... immune receptors and the experimental contexts in which these molecules were determined to be immune epitopes. Epitopes recognized in humans, nonhuman primates, rodents, pigs, cats and all other tested species are included. Both positive and negative experimental results are captured. Over the course...

  14. L2, the minor capsid protein of papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joshua W. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Roden, Richard B.S., E-mail: roden@jhmi.edu [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 (United States)

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  15. L2, the minor capsid protein of papillomavirus

    International Nuclear Information System (INIS)

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies

  16. Characterization and specificity of the linear epitope of the enterovirus 71 VP2 protein

    Directory of Open Access Journals (Sweden)

    Kiener Tanja K

    2012-02-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 has emerged as a major causative agent of hand, foot and mouth disease in the Asia-Pacific region over the last decade. Hand, foot and mouth disease can be caused by different etiological agents from the enterovirus family, mainly EV71 and coxsackieviruses, which are genetically closely related. Nevertheless, infection with EV71 may occasionally lead to high fever, neurologic complications and the emergence of a rapidly fatal syndrome of pulmonary edema associated with brainstem encephalitis. The rapid progression and high mortality of severe EV71 infection has highlighted the need for EV71-specific diagnostic and therapeutic tools. Monoclonal antibodies are urgently needed to specifically detect EV71 antigens from patient specimens early in the infection process. Furthermore, the elucidation of viral epitopes will contribute to the development of targeted therapeutics and vaccines. Results We have identified the monoclonal antibody 7C7 from a screen of hybridoma cells derived from mice immunized with the EV71-B5 strain. The linear epitope of 7C7 was mapped to amino acids 142-146 (EDSHP of the VP2 capsid protein and was characterized in detail. Mutational analysis of the epitope showed that the aspartic acid to asparagine mutation of the EV71 subgenogroup A (BrCr strain did not interfere with antibody recognition. In contrast, the serine to threonine mutation at position 144 of VP2, present in recently emerged EV71-C4 China strains, abolished antigenicity. Mice injected with this virus strain did not produce any antibodies against the VP2 protein. Immunofluorescence and Western blotting confirmed that 7C7 specifically recognized EV71 subgenogroups and did not cross-react to Coxsackieviruses 4, 6, 10, and 16. 7C7 was successfully used as a detection antibody in an antigen-capture ELISA assay. Conclusions Detailed mapping showed that the VP2 protein of Enterovirus 71 contains a single, linear, non

  17. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  18. Structure of the capsid of Kilham rat virus from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.

    1984-01-01

    The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H 2 O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H 2 O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H 2 O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H 2 O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions

  19. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.

    Science.gov (United States)

    Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L

    2017-08-04

    Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import.

    Science.gov (United States)

    Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K

    2017-10-20

    Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.

  2. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides.

    Directory of Open Access Journals (Sweden)

    Nathali Kaushansky

    Full Text Available Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and "epitope spread", have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such "multi-epitope-targeting" approach in murine experimental autoimmune encephalomyelitis (EAE associated with a single ("classical" or multiple ("complex" anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as "multi-epitope-targeting" agents. Y-MSPc was superior to peptide(s in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells. Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of "classical" or "complex EAE" or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a "multi-epitope-targeting" strategy is required for

  3. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    Science.gov (United States)

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  4. How viral capsids adapt to mismatched cargoes—identifying mechanisms of morphology control with simulations

    Science.gov (United States)

    Elrad, Oren

    2009-03-01

    During the replication of many viruses, hundreds to thousands of protein subunits assemble around the viral nucleic acid to form a protein shell called a capsid. Most viruses form one particular structure with astonishing fidelity; yet, recent experiments demonstrate that capsids can assemble with different sizes and morphologies to accommodate nucleic acids or other cargoes such as functionalized nanoparticles. In this talk, we will explore the mechanisms of simultaneous assembly and cargo encapsidation with a computational model that describes the assembly of icosahedral capsids around functionalized nanoparticles. With this model, we find parameter values for which subunits faithfully form empty capsids with a single morphology, but adaptively assemble into different icosahedral morphologies around nanoparticles with different diameters. Analyzing trajectories in which adaptation is or is not successful sheds light on the mechanisms by which capsid morphology may be controlled in vitro and in vivo, and suggests experiments to test these mechanisms. We compare the simulation results to recent experiments in which Brome Mosaic Virus capsid proteins assemble around functionalized nanoparticles, and describe how future experiments can test the model predictions.

  5. A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases.

  6. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  7. Overcoming preexisting humoral immunity to AAV using capsid decoys.

    Science.gov (United States)

    Mingozzi, Federico; Anguela, Xavier M; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J; Hui, Daniel J; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser; High, Katherine A

    2013-07-17

    Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.

  8. General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins.

    Science.gov (United States)

    Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash; Dawidziak, Daria M; Roganowicz, Marcin D; Wan, Yueping; Pumroy, Ruth A; Demeler, Borries; Ivanov, Dmitri N; Ganser-Pornillos, Barbie K; Sundquist, Wesley I; Pornillos, Owen

    2018-02-15

    Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( K D of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( K D of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly

  9. Automatic Generation of Validated Specific Epitope Sets

    Directory of Open Access Journals (Sweden)

    Sebastian Carrasco Pro

    2015-01-01

    Full Text Available Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.

  10. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  11. Immune epitope database analysis resource

    DEFF Research Database (Denmark)

    Kim, Yohan; Ponomarenko, Julia; Zhu, Zhanyang

    2012-01-01

    The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide......, and the homology mapping tool was updated to enable mapping of discontinuous epitopes onto 3D structures. Furthermore, to serve a wider range of users, the number of ways in which IEDB-AR can be accessed has been expanded. Specifically, the predictive tools can be programmatically accessed using a web interface...

  12. Identification, characterization, and synthesis of peptide epitopes and a recombinant six-epitope protein for Trichomonas vaginalis serodiagnosis

    Directory of Open Access Journals (Sweden)

    Alderete JF

    2013-08-01

    Full Text Available J F Alderete, Calvin J NeaceSchool of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USAAbstract: There is a need for a rapid, accurate serodiagnostic test useful for both women and men infected by Trichomonas vaginalis, which causes the number one sexually transmitted infection (STI. Women and men exposed to T. vaginalis make serum antibody to fructose-1,6-bisphosphate aldolase (ALD, α-enolase (ENO, and glyceraldehyde-3-phosphate dehydrogenase (GAP. We identified, by epitope mapping, the common and distinct epitopes of each protein detected by the sera of women patients with trichomonosis and by the sera of men highly seropositive to the immunogenic protein α-actinin (positive control sera. We analyzed the amino acid sequences to determine the extent of identity of the epitopes of each protein with other proteins in the databanks. This approach identified epitopes unique to T. vaginalis, indicating these peptide-epitopes as possible targets for a serodiagnostic test. Individual or combinations of 15-mer peptide epitopes with low to no identity with other proteins were reactive with positive control sera from both women and men but were unreactive with negative control sera. These analyses permitted the synthesis of a recombinant His6 fusion protein of 111 amino acids with an Mr of ~13.4 kDa, which consisted of 15-mer peptides of two distinct epitopes each for ALD, ENO, and GAP. This recombinant protein was purified by affinity chromatography. This composite protein was detected by enzyme-linked immunosorbent assay (ELISA, dot blots, and immunoblots, using positive control sera from women and men. These data indicate that it is possible to identify epitopes and that either singly, in combination, or as a composite protein represent targets for a point-of-care serodiagnostic test for T. vaginalis.Keywords: diagnostics, point-of-care, targets, trichomonosis

  13. A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice.

    Science.gov (United States)

    Xiang, Kui; Kusov, Yuri; Ying, Guan; Yan, Wang; Shan, Yi; Jinyuan, Wu; Na, Yin; Yan, Zhou; Hongjun, Li; Maosheng, Sun

    2017-09-15

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal-oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459-606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine.

  14. Mapping of epitopes for autoantibodies to the Type 1 diabetes autoantigen IA-2 by peptide phage display and molecular modelling: Overlap of antibody and T-cell determinants

    DEFF Research Database (Denmark)

    A. Dromey, James; Weenink, Sarah M.; Peters, Günther H.J.

    2004-01-01

    IA-2 is a major target of autoimmunity in type 1 diabetes. IA-2 responsive T cells recognize determinants within regions represented by amino acids 787–817 and 841–869 of the molecule. Epitopes for IA-2 autoantibodies are largely conformational and not well defined. In this study, we used peptide......, and aromatic residues and amino acids contributing to the epitope investigated using site-directed mutagenesis. Mutation of each of amino acids Asn858, Glu836, and Trp799 reduced 96/3 Ab binding by >45%. Mutations of these residues also inhibited binding of serum autoantibodies from IA-2 Ab-positive type 1...... phage display and homology modeling to characterize the epitope of a monoclonal IA-2 Ab (96/3) from a human type 1 diabetic patient. This Ab competes for IA-2 binding with Abs from the majority of patients with type 1 diabetes and therefore binds a region close to common autoantibody epitopes. Alignment...

  15. Epitope discovery with phylogenetic hidden Markov models.

    LENUS (Irish Health Repository)

    Lacerda, Miguel

    2010-05-01

    Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.

  16. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    International Nuclear Information System (INIS)

    Sathish, Narayanan; Yuan Yan

    2010-01-01

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-Δ65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  17. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  18. The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly

    Directory of Open Access Journals (Sweden)

    Anna C. Maurer

    2018-05-01

    Full Text Available Summary: The adeno-associated virus (AAV vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. : Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. Keywords: AAV, AAP, adeno-associated virus, capsid assembly, manufacturing, capsid, vector engineering, structure-function, gene therapy

  19. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  20. High-Throughput Tools for Characterization of Antibody Epitopes

    DEFF Research Database (Denmark)

    Christiansen, Anders

    mapping. In Chapter 1, it was examined whether combining phage display, a traditional epitope mapping approach, with HTS would improve the method. The developed approach was successfully used to map Ara h 1 epitopes in sera from patients with peanut allergy. Notably, the sera represented difficult...... proliferation advantages. Finally, in Chapter 4, a different emerging technology, next-generation peptide microarrays, was applied for epitope mapping of major peanut allergens using sera from allergic patients. New developments in the peptide microarray have enabled a greatly increased throughput....... In this study, these improvements were utilized to characterize epitopes at high resolution, i.e. determine the importance of each residue for antibody binding, for all major peanut allergens. Epitope reactivity among patients often converged on known epitope hotspots, however the binding patterns were somewhat...

  1. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles.

    Directory of Open Access Journals (Sweden)

    David P Wilson

    Full Text Available Spherical viruses are remarkably well characterized by the Triangulation (T number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary

  2. Relevance of capsid structure in the buckling and maturation of spherical viruses

    International Nuclear Information System (INIS)

    Aznar, María; Luque, Antoni; Reguera, David

    2012-01-01

    The shape and mechanical properties of viral capsids play an important role in several biological processes during the virus life cycle. In particular, to become infective, many viruses require a maturation stage where the capsid undergoes a buckling transition, from an initial spherical procapsid into a final icosahedral faceted shell. Here we study, using a minimal physical model, how the capsid shape and the buckling transition depend on the triangulation number T and the icosahedral class P of the virus structure. We find that, for small shells, capsids with P = 1 are most likely to produce polyhedral shapes that minimize their energy and accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big capsids, all shells are more stable adopting an icosahedral shape, in agreement with continuum elastic theory. Moreover, spherical viruses show a buckling transition to polyhedral shells under expansion, in consonance with virus maturation. The resulting icosahedral shell is mechanically stiffer, tolerates larger expansions and withstands higher internal pressures before failing, which could explain why some dsDNA viruses, which rely on the pressurization of their genetic material to facilitate the infection, undergo a buckling transition. We emphasize that the results are general and could also be applied to non-biological systems. (paper)

  3. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  4. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits.

    Science.gov (United States)

    Lima, Sabrina de Almeida; Guerra-Duarte, Clara; Costal-Oliveira, Fernanda; Mendes, Thais Melo; Figueiredo, Luís F M; Oliveira, Daysiane; Machado de Avila, Ricardo A; Ferrer, Valéria Pereira; Trevisan-Silva, Dilza; Veiga, Silvio S; Minozzo, João C; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2018-01-01

    Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho , and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.

  5. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits

    Science.gov (United States)

    Lima, Sabrina de Almeida; Guerra-Duarte, Clara; Costal-Oliveira, Fernanda; Mendes, Thais Melo; Figueiredo, Luís F. M.; Oliveira, Daysiane; Machado de Avila, Ricardo A.; Ferrer, Valéria Pereira; Trevisan-Silva, Dilza; Veiga, Silvio S.; Minozzo, João C.; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2018-01-01

    Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms. PMID:29666624

  6. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    Science.gov (United States)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  7. Inner tegument proteins of Herpes Simplex Virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting

    Science.gov (United States)

    Müller, Oliver; Ivanova, Lyudmila; Bialy, Dagmara; Pohlmann, Anja; Binz, Anne; Hegemann, Maike; Viejo-Borbolla, Abel; Rosenhahn, Bodo; Bauerfeind, Rudolf; Sodeik, Beate

    2017-01-01

    Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells. PMID:29284065

  8. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines.

    Science.gov (United States)

    Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q

    1995-06-09

    By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.

  9. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo

    Directory of Open Access Journals (Sweden)

    Victoria A. Meliopoulos

    2016-11-01

    Full Text Available The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1 capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2 capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3 from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.

  10. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein L1 from the L2/DNA complex following virus entry.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L; Sapp, Martin

    2012-09-01

    Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles.

  11. The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses.

    Science.gov (United States)

    Yang, Bo; Yang, Fan; Zhang, Yan; Liu, Huanan; Jin, Ye; Cao, Weijun; Zhu, Zixiang; Zheng, Haixue; Yin, Hong

    2016-02-02

    The VP1 G-H loop of the foot-and-mouth disease virus (FMDV) contains the primary antigenic site, as well as an Arg-Gly-Asp (RGD) binding motif for the αv-integrin family of cell surface receptors. We anticipated that introducing a foreign epitope tag sequence downstream of the RGD motif would be tolerated by the viral capsid and would not destroy the antigenic site of FMDV. In this study, we have designed, generated, and characterized two recombinant FMDVs with a FLAG tag or histidine (HIS) inserted in the VP1 G-H loop downstream of the RGD motif +9 position. The tagged viruses were genetically stable and exhibited similar growth properties with their parental virus. What is more, the recombinant viruses rFMDV-FLAG and rFMDV-HIS showed neutralization sensitivity to FMDV type Asia1-specific mAbs, as well as to polyclonal antibodies. Additionally, the r1 values of the recombinant viruses were similar to that of the parental virus, indicating that the insertion of FLAG or HIS tag sequences downstream of the RGD motif +9 position do not eradicate the antigenic site of FMDV and do not affect its antigenicity. These results indicated that the G-H loop of Asia1 FMDV is able to effectively display the foreign epitopes, making this a potential approach for novel FMDV vaccines development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  13. Functional requirements of the yellow fever virus capsid protein.

    Science.gov (United States)

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  14. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids.

    Science.gov (United States)

    Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael; Zlotnick, Adam

    2018-01-29

    Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. © 2017, Schlicksup et al.

  15. DRREP: deep ridge regressed epitope predictor.

    Science.gov (United States)

    Sher, Gene; Zhi, Degui; Zhang, Shaojie

    2017-10-03

    The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade there have been numerous advancements and improvements in epitope prediction, on average the best benchmark prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed Epitope Predictor (DRREP). DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702. DRREP is an analytically trained deep neural network, thus capable of learning in a single step through regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art predictors.

  16. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids

    Science.gov (United States)

    Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael

    2018-01-01

    Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. PMID:29377794

  17. The two capsid proteins of maize rayado fino virus contain common peptide sequences.

    Science.gov (United States)

    Falk, B W; Tsai, J H

    1986-01-01

    Virions of maize rayado fino virus (MRFV) were purified and two major capsid proteins (ca. Mr 29,000 and 22,000) were resolved by SDS-PAGE. When the two major capsid proteins were isolated from gels and compared by one-dimensional peptide mapping after digestion with Staphylococcus aureus V-8 protease, indistinguishable peptide maps were obtained, suggesting that these two proteins contain common peptide sequences. Some preparations also showed minor protein components that were intermediate between the Mr 22,000 and Mr 29,000 capsid proteins. One of the minor proteins, ca. Mr 27,000, gave a peptide map indistinguishable from the major capsid proteins. In vitro ageing of partially purified preparations or virion treatment with proteolytic enzymes failed to show conversion of the Mr 29,000 protein to a Mr 22,000. Protease inhibitors added to the buffers used for virion purification did not affect the apparent 1:3 ratio of 29,000 to 22,000 proteins in the purified preparations.

  18. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs.

    Science.gov (United States)

    Hook, Lauren M; Cairns, Tina M; Awasthi, Sita; Brooks, Benjamin D; Ditto, Noah T; Eisenberg, Roselyn J; Cohen, Gary H; Friedman, Harvey M

    2018-05-01

    Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to

  19. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  20. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    Directory of Open Access Journals (Sweden)

    Tae Sik Goh

    2017-01-01

    Full Text Available IL-7 signaling via IL-7Rα and common γ-chain (γc is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα.

  1. IL-7 Induces an Epitope Masking of γc Protein in IL-7 Receptor Signaling Complex

    Science.gov (United States)

    Goh, Tae Sik; Jo, Yuna; Lee, Byunghyuk; Kim, Geona; Hwang, Hyunju; Ko, Eunhee; Kang, Seung Wan; Oh, Sae-Ock; Baek, Sun-Yong; Yoon, Sik; Lee, Jung Sub

    2017-01-01

    IL-7 signaling via IL-7Rα and common γ-chain (γc) is necessary for the development and homeostasis of T cells. Although the delicate mechanism in which IL-7Rα downregulation allows the homeostasis of T cell with limited IL-7 has been well known, the exact mechanism behind the interaction between IL-7Rα and γc in the absence or presence of IL-7 remains unclear. Additionally, we are still uncertain as to how only IL-7Rα is separately downregulated by the binding of IL-7 from the IL-7Rα/γc complex. We demonstrate here that 4G3, TUGm2, and 3E12 epitope masking of γc protein are induced in the presence of IL-7, indicating that the epitope alteration is induced by IL-7 binding to the preassembled receptor core. Moreover, the epitope masking of γc protein is inversely correlated with the expression of IL-7Rα upon IL-7 binding, implying that the structural alteration of γc might be involved in the regulation of IL-7Rα expression. The conformational change in γc upon IL-7 binding may contribute not only to forming the functional IL-7 signaling complex but also to optimally regulating the expression of IL-7Rα. PMID:28127156

  2. Immune Epitope Database and Analysis Resource (IEDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — This repository contains antibody/B cell and T cell epitope information and epitope prediction and analysis tools for use by the research community worldwide. Immune...

  3. Characterization of the mode of action of a potent dengue virus capsid inhibitor.

    Science.gov (United States)

    Scaturro, Pietro; Trist, Iuni Margaret Laura; Paul, David; Kumar, Anil; Acosta, Eliana G; Byrd, Chelsea M; Jordan, Robert; Brancale, Andrea; Bartenschlager, Ralf

    2014-10-01

    Dengue viruses (DV) represent a significant global health burden, with up to 400 million infections every year and around 500,000 infected individuals developing life-threatening disease. In spite of attempts to develop vaccine candidates and antiviral drugs, there is a lack of approved therapeutics for the treatment of DV infection. We have previously reported the identification of ST-148, a small-molecule inhibitor exhibiting broad and potent antiviral activity against DV in vitro and in vivo (C. M. Byrd et al., Antimicrob. Agents Chemother. 57:15-25, 2013, doi:10 .1128/AAC.01429-12). In the present study, we investigated the mode of action of this promising compound by using a combination of biochemical, virological, and imaging-based techniques. We confirmed that ST-148 targets the capsid protein and obtained evidence of bimodal antiviral activity affecting both assembly/release and entry of infectious DV particles. Importantly, by using a robust bioluminescence resonance energy transfer-based assay, we observed an ST-148-dependent increase of capsid self-interaction. These results were corroborated by molecular modeling studies that also revealed a plausible model for compound binding to capsid protein and inhibition by a distinct resistance mutation. These results suggest that ST-148-enhanced capsid protein self-interaction perturbs assembly and disassembly of DV nucleocapsids, probably by inducing structural rigidity. Thus, as previously reported for other enveloped viruses, stabilization of capsid protein structure is an attractive therapeutic concept that also is applicable to flaviviruses. Dengue viruses are arthropod-borne viruses representing a significant global health burden. They infect up to 400 million people and are endemic to subtropical and tropical areas of the world. Currently, there are neither vaccines nor approved therapeutics for the prophylaxis or treatment of DV infections, respectively. This study reports the characterization of the

  4. High-throughput epitope identification for snakebite antivenom

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Laustsen, Andreas Hougaard

    Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individua...... toxins from pit vipers (Crotalidae) using the ICP Crotalidae antivenom. Due to an abundance of snake venom metalloproteinases and phospholipase A2s in the venoms used for production of the investigated antivenom, this study focuses on these toxin families.......Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individual...

  5. Structural Simulation of MHC-peptide Interactions using T-cell Epitope in Iron-acquisition Protein of N. meningitides for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Namrata Mishra

    2010-12-01

    Full Text Available The present work uses a structural simulation approach to identify the potential target vaccine candidates or T cell epitopes (antigenic region that can activate T cell response in two iron acquisition proteins from Neisseria. An iron regulated outer membrane protein frpB: extracellular, [NMB1988], and a Major ferric Iron-binding protein fbpA: periplasmic, [NMB0634] critical for the survival of the pathogen in the host were used. Ten novel promiscuous epitopes from the two iron acquisition proteins were identified using bioinformatics interface. Of these epitopes, 630VQKAVGSIL638 present on frpB with high binding affinity for allele HLA*DR1 was identified with an anchor position at P2, an aliphatic residue at P4 and glycine at P6 making it thereby a potential quality choice for linking peptide-loaded MHC dynamics to T-cell activation and vaccine constructs. The feasibility and structural binding of predicted peptide to the respective HLA allele was investigated by molecular modeling and template-based structural simulation. The conformational properties of the linear peptide were investigated by molecular dynamics using GROMOS96 package and Swiss PDB viewer.

  6. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  7. Functional dissection of the alphavirus capsid protease: sequence requirements for activity.

    Science.gov (United States)

    Thomas, Saijo; Rai, Jagdish; John, Lijo; Günther, Stephan; Drosten, Christian; Pützer, Brigitte M; Schaefer, Stephan

    2010-11-18

    The alphavirus capsid is multifunctional and plays a key role in the viral life cycle. The nucleocapsid domain is released by the self-cleavage activity of the serine protease domain within the capsid. All alphaviruses analyzed to date show this autocatalytic cleavage. Here we have analyzed the sequence requirements for the cleavage activity of Chikungunya virus capsid protease of genus alphavirus. Amongst alphaviruses, the C-terminal amino acid tryptophan (W261) is conserved and found to be important for the cleavage. Mutating tryptophan to alanine (W261A) completely inactivated the protease. Other amino acids near W261 were not having any effect on the activity of this protease. However, serine protease inhibitor AEBSF did not inhibit the activity. Through error-prone PCR we found that isoleucine 227 is important for the effective activity. The loss of activity was analyzed further by molecular modelling and comparison of WT and mutant structures. It was found that lysine introduced at position 227 is spatially very close to the catalytic triad and may disrupt electrostatic interactions in the catalytic site and thus inactivate the enzyme. We are also examining other sequence requirements for this protease activity. We analyzed various amino acid sequence requirements for the activity of ChikV capsid protease and found that amino acids outside the catalytic triads are important for the activity.

  8. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies.

    Science.gov (United States)

    Botkjaer, Kenneth A; Fogh, Sarah; Bekes, Erin C; Chen, Zhuo; Blouse, Grant E; Jensen, Janni M; Mortensen, Kim K; Huang, Mingdong; Deryugina, Elena; Quigley, James P; Declerck, Paul J; Andreasen, Peter A

    2011-08-15

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation. © The Authors Journal compilation © 2011 Biochemical Society

  9. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2013-10-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of protein chains, which result in the capsid stiffening. Dynamic coupling of these modes defines the extent of elasticity and reversibility of capsid mechanical deformation. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses' biological function.

  10. EpiJen: a server for multistep T cell epitope prediction

    Directory of Open Access Journals (Sweden)

    Guan Pingping

    2006-03-01

    Full Text Available Abstract Background The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP to the endoplasmic reticulum (ER, where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM, EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.

  11. Facilitating the use of alternative capsid control methods towards sustainable production of organic cocoa in Ghana

    OpenAIRE

    Ayenor, G.K.; Huis, van, A.; Obeng-Ofori, D.; Padi, B.; Röling, N.G.

    2007-01-01

    Cocoa (Theobroma cacao L.) is an important foreign exchange earner for Ghana. However, production is constrained by a high incidence of pests and diseases. Based on farmers' needs, this study focused on the control of capsids, mainly Sahlbergella singularis Haglund and Distantiella theobroma (Distant) (both Hemiptera: Miridae). Annual crop loss caused by capsids is estimated at 25¿30%. To control capsids, formal research recommends application of synthetic insecticides four times between Augu...

  12. The allosteric switching mechanism in bacteriophage MS2

    Energy Technology Data Exchange (ETDEWEB)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  13. Epitope diversification driven by non-tumor epitope-specific Th1 and Th17 mediates potent antitumor reactivity.

    Science.gov (United States)

    Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei

    2012-09-21

    MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  15. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids

    Science.gov (United States)

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; Conway, James F.; Homa, Fred L.

    2011-01-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes. PMID:21411517

  16. Machine learning-based methods for prediction of linear B-cell epitopes.

    Science.gov (United States)

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  17. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    Outer membrane protein U (OmpU), an adhesion protein of Vibrio mimicus, is a good antigen, but its epitopes are still unclear. In order to locate the epitopes of OmpU protein, epitope prediction was performed using the amino acid sequence of OmpU protein of V. mimicus HX4 strain that was isolated from the diseased ...

  18. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  19. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  20. Immune epitope database analysis resource (IEDB-AR)

    DEFF Research Database (Denmark)

    Zhang, Qing; Wang, Peng; Kim, Yohan

    2008-01-01

    We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of the previously implemented tools, and a total...

  1. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    Science.gov (United States)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  2. Expression of human apolipoprotein A-I epitopes in high density lipoproteins and in serum

    International Nuclear Information System (INIS)

    Marcel, Y.L.; Jewer, D.; Vezina, C.; Milthorp, P.; Weech, P.K.

    1987-01-01

    The expression and immunoreactivity of apolipoprotein (apo) A-I epitopes in high density lipoproteins (HDL) and serum has been investigated using two series of monoclonal antibodies (Mabs) which have been described elsewhere. Series 1 Mabs, identified as 3D4, 6B8, and 5G6, were obtained by immunization and screening with apoA-I, and series 2 Mabs, identified as 2F1, 4H1, 3G10, 4F7, and 5F6, were obtained by immunization and screening with HDL. These Mabs were characterized with respect to their binding to HDL particles in solution. In series 2 Mabs, 2F1, 3G10, and 4F7, which react with apoA-I CNBr-fragments 1 and 2, could precipitate 100% of 125 I-labeled HDL, while 4H1 and 5F6, which react with CNBr fragments 1 and 3, precipitated 90 and 60% of 125 I-labeled HDL, respectively. Therefore, three distinct epitopes mapped to CNBr fragments 1 and 2 have been identified which are expressed on all HDL particles, indicating that several antigenic do mains exist on apoA-I which have the same conformation on all apoA-I-containing lipoproteins. The Mabs reacting at these sites have significantly higher affinity constants for 125 I-labeled HDL than those that failed to precipitate 100% of HDL. This suggests that the high affinity Mabs react with apoA-I epitopes that are both expressed on all lipoproteins and located in thermo-dynamically stable regions of the molecules. All Mabs from series 1 precipitated 35% or less of 125 I-labeled HDL prepared from freshly collected serum, but the proportion of HDL particles expressing the epitopes for these Mabs doubled or more upon serum storage at 4 degrees C. The time course of the alteration of apoA-I antigen in vitro was measured in three normolipemic donors

  3. An assessment on epitope prediction methods for protozoa genomes

    Directory of Open Access Journals (Sweden)

    Resende Daniela M

    2012-11-01

    Full Text Available Abstract Background Epitope prediction using computational methods represents one of the most promising approaches to vaccine development. Reduction of time, cost, and the availability of completely sequenced genomes are key points and highly motivating regarding the use of reverse vaccinology. Parasites of genus Leishmania are widely spread and they are the etiologic agents of leishmaniasis. Currently, there is no efficient vaccine against this pathogen and the drug treatment is highly toxic. The lack of sufficiently large datasets of experimentally validated parasites epitopes represents a serious limitation, especially for trypanomatids genomes. In this work we highlight the predictive performances of several algorithms that were evaluated through the development of a MySQL database built with the purpose of: a evaluating individual algorithms prediction performances and their combination for CD8+ T cell epitopes, B-cell epitopes and subcellular localization by means of AUC (Area Under Curve performance and a threshold dependent method that employs a confusion matrix; b integrating data from experimentally validated and in silico predicted epitopes; and c integrating the subcellular localization predictions and experimental data. NetCTL, NetMHC, BepiPred, BCPred12, and AAP12 algorithms were used for in silico epitope prediction and WoLF PSORT, Sigcleave and TargetP for in silico subcellular localization prediction against trypanosomatid genomes. Results A database-driven epitope prediction method was developed with built-in functions that were capable of: a removing experimental data redundancy; b parsing algorithms predictions and storage experimental validated and predict data; and c evaluating algorithm performances. Results show that a better performance is achieved when the combined prediction is considered. This is particularly true for B cell epitope predictors, where the combined prediction of AAP12 and BCPred12 reached an AUC value

  4. Changes in the stability and biomechanics of P22 bacteriophage capsid during maturation.

    Science.gov (United States)

    Kant, Ravi; Llauró, Aida; Rayaprolu, Vamseedhar; Qazi, Shefah; de Pablo, Pedro J; Douglas, Trevor; Bothner, Brian

    2018-03-15

    The capsid of P22 bacteriophage undergoes a series of structural transitions during maturation that guide it from spherical to icosahedral morphology. The transitions include the release of scaffold proteins and capsid expansion. Although P22 maturation has been investigated for decades, a unified model that incorporates thermodynamic and biophysical analyses is not available. A general and specific model of icosahedral capsid maturation is of significant interest to theoreticians searching for fundamental principles as well as virologists and material scientists seeking to alter maturation to their advantage. To address this challenge, we have combined the results from orthogonal biophysical techniques including differential scanning fluorimetry, atomic force microscopy, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. By integrating these results from single particle and population measurements, an energy landscape of P22 maturation from procapsid through expanded shell to wiffle ball emerged, highlighting the role of metastable structures and the thermodynamics guiding maturation. The propagation of weak quaternary interactions across symmetric elements of the capsid is a key component for stability in P22. A surprising finding is that the progression to wiffle ball, which lacks pentamers, shows that chemical and thermal stability can be uncoupled from mechanical rigidity, elegantly demonstrating the complexity inherent in capsid protein interactions and the emergent properties that can arise from icosahedral symmetry. On a broader scale, this work demonstrates the power of applying orthogonal biophysical techniques to elucidate assembly mechanisms for supramolecular complexes and provides a framework within which other viral systems can be compared. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Prediction of antigenic epitopes on protein surfaces by consensus scoring

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2009-09-01

    Full Text Available Abstract Background Prediction of antigenic epitopes on protein surfaces is important for vaccine design. Most existing epitope prediction methods focus on protein sequences to predict continuous epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available and they have not yet shown satisfying performance. Results We present a new antigen Epitope Prediction method, which uses ConsEnsus Scoring (EPCES from six different scoring functions - residue epitope propensity, conservation score, side-chain energy score, contact number, surface planarity score, and secondary structure composition. Applied to unbounded antigen structures from an independent test set, EPCES was able to predict antigenic eptitopes with 47.8% sensitivity, 69.5% specificity and an AUC value of 0.632. The performance of the method is statistically similar to other published methods. The AUC value of EPCES is slightly higher compared to the best results of existing algorithms by about 0.034. Conclusion Our work shows consensus scoring of multiple features has a better performance than any single term. The successful prediction is also due to the new score of residue epitope propensity based on atomic solvent accessibility.

  6. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  7. Catalase epitopes vaccine design for Helicobacter pylori: A ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... colored region and P1 anchor or the starting residue of each ..... score of MVNKDVKQTT; * 1, MVNKDVKQTT is a composition of two epitopes: MVNKDVKQT and .... Therapeutic efficacy of a multi-epitope vaccine against.

  8. Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2017-01-01

    Full Text Available Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt’s lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble.

  9. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    OpenAIRE

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice...

  10. Public epitopes and the antigenic structure of the HLA molecules.

    Science.gov (United States)

    Rodey, G E; Fuller, T C

    1987-01-01

    Simplified procedures for determining amino acid sequences in proteins and nucleotide sequences in DNA have rapidly expanded the number of MHC molecules for which primary amino acid structure is known. These molecules will be especially valuable as tools to study the structure-function relationships of globular proteins because of the extensive polymorphism of genes coding the MHC genes products. The general three-dimensional structure of class I MHC molecules was recently deduced, but the more subtle topographical microconformations are still undefined. Definition and topographical mapping of epitopes, defined by serological or cellular immune effector products, will be critical probes for these three-dimensional studies. Comparative studies of amino acid sequences among various MHC and molecules have revealed distinct regions of hypervariability in the alpha-1 and -2 domains of class I heavy chains and the alpha-1 and beta-1 domains of most class II molecules. Mutant MHC molecules that differ from each other by no more than one to three amino acids can have structural changes which may result in a loss of the private epitopes that defined the allelic gene product. On the basis of these studies, the private epitopes are thought to be determined by one or more of the hypervariable regions. Similar studies of the relationships between specific regions of the molecule and public epitopes are not fully explored. Because public epitopes are partially conserved structures, one might expect that their structure is not principally determined by hypervariable region. In fact, however, some public epitopes, such as A2/B17 and BW4/Bw6, do map to diversity regions. Epitope mapping as a means of identifying specific topographic sites and relating these sites to specific functional regions of the molecule will be difficult unless the epitopes themselves are better defined. Thus, the capacity to distinguish spatially distinct public epitopes from cross-reactive homologous

  11. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies

    DEFF Research Database (Denmark)

    Staus, Dean P; Wingler, Laura M; Strachan, Ryan T

    2014-01-01

    . However, a monomeric single-domain antibody (nanobody) from the Camelid family was recently found to allosterically bind and stabilize an active conformation of the β2-adrenergic receptor (β2AR). Here, we set out to study the functional interaction of 18 related nanobodies with the β2AR to investigate...... their roles as novel tools for studying GPCR biology. Our studies revealed several sequence-related nanobody families with preferences for active (agonist-occupied) or inactive (antagonist-occupied) receptors. Flow cytometry analysis indicates that all nanobodies bind to epitopes displayed...... on the intracellular receptor surface; therefore, we transiently expressed them intracellularly as "intrabodies" to test their effects on β2AR-dependent signaling. Conformational specificity was preserved after intrabody conversion as demonstrated by the ability for the intracellularly expressed nanobodies...

  12. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons

    Science.gov (United States)

    Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate

    2018-01-01

    Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174

  13. Human Cytomegalovirus pUL47 Modulates Tegumentation and Capsid Accumulation at the Viral Assembly Complex

    Science.gov (United States)

    Cappadona, Ilaria; Villinger, Clarissa; Schutzius, Gabi; Mertens, Thomas

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) tegument protein pUL47 is an interaction partner of pUL48 and highly conserved among herpesviruses. It is closely associated with the capsid and has an important function early in infection. Here, we report a specific role of pUL47 in the tegumentation of capsids in the cytoplasm. A newly generated mutant virus (TB-47stop), in which expression of pUL47 is blocked, exhibited a severe impairment in cell-to-cell spread and release of infectivity from infected cells. Ultrastructural analysis of TB-47stop-infected cells clearly showed cytoplasmic accumulations of nonenveloped capsids that were only partially tegumented, indicating that these capsids failed to complete tegumentation. Nevertheless, these accumulations were positive for HCMV inner tegument proteins pp150 and pUL48, suggesting that their attachment to capsids occurs independently of pUL47. Despite these morphological alterations, fully enveloped virus particles were found in the extracellular space and at the viral assembly complex (vAC) of TB-47stop-infected cells, indicating that pUL47 is not essential for the generation of virions. We confirmed findings that incorporation of pUL48 into virions is impaired in the absence of pUL47. Interestingly, pUL47 exhibited a strong nuclear localization in transfected cells, whereas it was found exclusively at the vAC in the context of virus infection. Colocalization of pUL47 and pUL48 at the vAC is consistent with their interaction. We also found a shift to a more nuclear localization of pUL47 when the expression of pUL48 was reduced. Summarizing our results, we hypothesize that pUL48 directs pUL47 to the vAC to promote tegumentation and secondary envelopment of capsids. IMPORTANCE Generation of infectious HCMV particles requires an organized and multistep process involving the action of several viral and cellular proteins as well as protein-protein interactions. A better understanding of these processes is important for

  14. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  15. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  16. Mapping the antigenic structure of porcine parvovirus at the level of peptides

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Langeveld, Jan; Bøtner, Anette

    1998-01-01

    The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were...... located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein....... It is concluded that in PPV, the VP2 N-terminus is involved in virus neutralisation (VN) and peptides from this region are therefore primary targets for developing peptide-based vaccines against this virus....

  17. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration

    Science.gov (United States)

    Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.

    2018-03-01

    Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.

  18. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    Science.gov (United States)

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-02

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  19. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Muszynski, Bartosz; Organtini, Lindsey J.

    2013-01-01

    The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic...... (from serotypes O and A) and 3Cpro were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3Cpro expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3Cpro with reduced catalytic....... These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD...

  20. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries.

    Science.gov (United States)

    Bentley, L; Fehrsen, J; Jordaan, F; Huismans, H; du Plessis, D H

    2000-04-01

    VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.

  1. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  2. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    AJL

    2012-05-01

    May 1, 2012 ... In order to locate the epitopes of OmpU protein, epitope prediction was performed ... enzyme linked immunosorbent assay; OmpU, outer membrane protein U .... recombinant plasmids were extracted and identified by PCR,.

  3. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  4. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    International Nuclear Information System (INIS)

    Yu Hua; Jiang Lifang; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-01-01

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed

  5. Epitope-dependent functional effects of celiac disease autoantibodies on transglutaminase 2

    DEFF Research Database (Denmark)

    Hnida, Kathrin; Stamnaes, Jorunn; du Pré, M Fleur

    2016-01-01

    Transglutaminase 2 (TG2) is a Ca(2+)-dependent cross-linking enzyme involved in the pathogenesis of CD. We have previously characterized a panel of anti-TG2 mAbs generated from gut plasma cells of celiac patients and identified four epitopes (epitopes 1-4) located in the N-terminal part of TG2...... of epitope 1-targeting B cells to keep TG2 active and protected from oxidation might explain why generation of epitope 1-targeting plasma cells seems to be favored in celiac patients....

  6. Levels of HIV1 gp120 3D B-cell epitopes mutability and variability: searching for possible vaccine epitopes.

    Science.gov (United States)

    Khrustalev, Vladislav Victorovich

    2010-01-01

    We used a DiscoTope 1.2 (http://www.cbs.dtu.dk/services/DiscoTope/), Epitopia (http://epitopia.tau.ac.il/) and EPCES (http://www.t38.physik.tu-muenchen.de/programs.htm) algorithms to map discontinuous B-cell epitopes in HIV1 gp120. The most mutable nucleotides in HIV genes are guanine (because of G to A hypermutagenesis) and cytosine (because of C to U and C to A mutations). The higher is the level of guanine and cytosine usage in third (neutral) codon positions and the lower is their level in first and second codon positions of the coding region, the more stable should be an epitope encoded by this region. We compared guanine and cytosine usage in regions coding for five predicted 3D B-cell epitopes of gp120. To make this comparison we used GenBank resource: 385 sequences of env gene obtained from ten HIV1-infected individuals were studied (http://www.barkovsky.hotmail.ru/Data/Seqgp120.htm). The most protected from nonsynonymous nucleotide mutations of guanine and cytosine 3D B-cell epitope is situated in the first conserved region of gp120 (it is mapped from 66th to 86th amino acid residue). We applied a test of variability to confirm this finding. Indeed, the less mutable predicted B-cell epitope is the less variable one. MEGA4 (standard PAM matrix) was used for the alignments and "VVK Consensus" algorithm (http://www.barkovsky.hotmail.ru) was used for the calculations.

  7. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    International Nuclear Information System (INIS)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Koksunan, Sarawut; Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya; Prachasupap, Apichai; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Yasugi, Mayo; Ono, Ken-ichiro; Arai, Yasuha

    2014-01-01

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses

  8. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Koksunan, Sarawut [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya [National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Prachasupap, Apichai [Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Muang, Nonthaburi (Thailand); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Sasaki, Tadahiro [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Kubota-Koketsu, Ritsuko [Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa (Japan); Yasugi, Mayo [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka (Japan); Ono, Ken-ichiro [Ina Laboratory, Medical and Biological Laboratories Corporation, Ltd., Ina, Nagano (Japan); Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo (Japan); Arai, Yasuha [Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  9. Structure of the Triatoma virus capsid.

    Science.gov (United States)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S; Costabel, Marcelo D; Marti, Gerardo A; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M A; Rey, Felix A

    2013-06-01

    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  10. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.

    Science.gov (United States)

    Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J

    2013-04-01

    In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.

  11. HIV-1 subtype A gag variability and epitope evolution.

    Science.gov (United States)

    Abidi, Syed Hani; Kalish, Marcia L; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed

    2014-01-01

    The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.

  12. HIV-1 subtype A gag variability and epitope evolution.

    Directory of Open Access Journals (Sweden)

    Syed Hani Abidi

    Full Text Available OBJECTIVE: The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. METHODS: We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. RESULTS: The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. CONCLUSION: It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.

  13. Epitope finding in Zika virus molecule:The first world report

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    Zika virus infection is a new problematic virus infection that becomes the present public health problem. Now this mosquito borne infectious disease can be seen worldwide and can cause dengue-like infection. In addition, it can also induce trans-placental infection and result in congenital neurological defect. To prevent this infec-tion, there is still no specific vaccine. To find a new vaccine, finding epitope is the first step. Here, the authors report the study to find epitope within Zika virus molecule. According to this study, the appropriate epitopes can be seen. This is the first world report on epitope finding for Zika virus. The data can be useful for further vaccine development.

  14. Identification of murine T-cell epitopes in Ebola virus nucleoprotein

    International Nuclear Information System (INIS)

    Simmons, Graham; Lee, Anee; Rennekamp, Andrew J.; Fan Xin; Bates, Paul; Shen Hao

    2004-01-01

    CD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2 d -restricted epitope (NP279-288) and two H-2 b -restricted epitopes (NP44-52 and NP288-296). The identification of these epitopes will facilitate studies of immune correlates of protection and the evaluation of vaccine strategies in murine models of Ebola infection

  15. File list: Oth.Adl.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.50.Epitope_tags.AllCell dm3 TFs and others Epitope tags Adult SRX181419,SRX...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.50.Epitope_tags.AllCell.bed ...

  16. File list: Oth.Myo.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Muscle SRX344965,SR...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.50.Epitope_tags.AllCell.bed ...

  17. File list: Oth.Adl.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.20.Epitope_tags.AllCell dm3 TFs and others Epitope tags Adult SRX181427,SRX...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.20.Epitope_tags.AllCell.bed ...

  18. File list: Oth.Dig.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.Epitope_tags.AllCell mm9 TFs and others Epitope tags Digestive tract SRX...365692 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.10.Epitope_tags.AllCell.bed ...

  19. File list: Oth.Dig.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Digestive tract SRX...365692 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Dig.20.Epitope_tags.AllCell.bed ...

  20. File list: Oth.CDV.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.Epitope_tags.AllCell mm9 TFs and others Epitope tags Cardiovascular SRX1...304813 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.10.Epitope_tags.AllCell.bed ...

  1. File list: Oth.Unc.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.10.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags Unclassified ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.10.Epitope_tags.AllCell.bed ...

  2. File list: Oth.Brs.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Breast SRX667411,S...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.Epitope_tags.AllCell.bed ...

  3. File list: Oth.Adl.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adl.05.Epitope_tags.AllCell dm3 TFs and others Epitope tags Adult SRX181427,SRX...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Adl.05.Epitope_tags.AllCell.bed ...

  4. File list: Oth.CDV.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Cardiovascular SRX1...304813 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.20.Epitope_tags.AllCell.bed ...

  5. File list: Oth.Myo.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.10.Epitope_tags.AllCell mm9 TFs and others Epitope tags Muscle SRX039346,SR...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.10.Epitope_tags.AllCell.bed ...

  6. File list: Oth.CDV.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Cardiovascular SRX1...304813 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.50.Epitope_tags.AllCell.bed ...

  7. File list: Oth.Unc.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Unc.20.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags Unclassified ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.Unc.20.Epitope_tags.AllCell.bed ...

  8. File list: Oth.Myo.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Muscle SRX039346,SR...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.05.Epitope_tags.AllCell.bed ...

  9. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    Science.gov (United States)

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. File list: Oth.Myo.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Muscle SRX1470542,...SRX1470544 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Myo.20.Epitope_tags.AllCell.bed ...

  11. File list: Oth.CDV.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Cardiovascular SRX...096360,SRX096362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.Epitope_tags.AllCell.bed ...

  12. File list: Oth.CDV.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Cardiovascular SRX...096360,SRX096362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.Epitope_tags.AllCell.bed ...

  13. Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus

    Science.gov (United States)

    Mousnier, Aurélie; Bell, Andrew S.; Swieboda, Dawid P.; Morales-Sanfrutos, Julia; Pérez-Dorado, Inmaculada; Brannigan, James A.; Newman, Joseph; Ritzefeld, Markus; Hutton, Jennie A.; Guedán, Anabel; Asfor, Amin S.; Robinson, Sean W.; Hopkins-Navratilova, Iva; Wilkinson, Anthony J.; Johnston, Sebastian L.; Leatherbarrow, Robin J.; Tuthill, Tobias J.; Solari, Roberto; Tate, Edward W.

    2018-06-01

    Rhinoviruses (RVs) are the pathogens most often responsible for the common cold, and are a frequent cause of exacerbations in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Here we report the discovery of IMP-1088, a picomolar dual inhibitor of the human N-myristoyltransferases NMT1 and NMT2, and use it to demonstrate that pharmacological inhibition of host-cell N-myristoylation rapidly and completely prevents rhinoviral replication without inducing cytotoxicity. The identification of cooperative binding between weak-binding fragments led to rapid inhibitor optimization through fragment reconstruction, structure-guided fragment linking and conformational control over linker geometry. We show that inhibition of the co-translational myristoylation of a specific virus-encoded protein (VP0) by IMP-1088 potently blocks a key step in viral capsid assembly, to deliver a low nanomolar antiviral activity against multiple RV strains, poliovirus and foot and-mouth disease virus, and protection of cells against virus-induced killing, highlighting the potential of host myristoylation as a drug target in picornaviral infections.

  14. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers.

    Science.gov (United States)

    Morris, Charles D; Azadnia, Parisa; de Val, Natalia; Vora, Nemil; Honda, Andrew; Giang, Erick; Saye-Francisco, Karen; Cheng, Yushao; Lin, Xiaohe; Mann, Colin J; Tang, Jeffrey; Sok, Devin; Burton, Dennis R; Law, Mansun; Ward, Andrew B; He, Linling; Zhu, Jiang

    2017-02-28

    Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches. IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing

  15. File list: Oth.Gon.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Gonad SRX153152,SRX...153153,SRX153151 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.05.Epitope_tags.AllCell.bed ...

  16. File list: Oth.Prs.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Prostate SRX084527...,SRX084528,SRX084524 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.50.Epitope_tags.AllCell.bed ...

  17. File list: Oth.Neu.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Neural SRX367452,S...RX367451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.10.Epitope_tags.AllCell.bed ...

  18. File list: Oth.YSt.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.YSt.50.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags Yeast strain SR...3939 http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.YSt.50.Epitope_tags.AllCell.bed ...

  19. File list: Oth.PSC.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Pluripotent stem c...ell SRX555489 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.Epitope_tags.AllCell.bed ...

  20. File list: Oth.Prs.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Prs.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Prostate SRX084527...,SRX084528,SRX084524 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Prs.20.Epitope_tags.AllCell.bed ...

  1. File list: Oth.Gon.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Gonad SRX204898,SR...X204899 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Gon.10.Epitope_tags.AllCell.bed ...

  2. Four levels of hierarchical organization, including noncovalent chainmail, brace the mature tumor herpesvirus capsid against pressurization.

    Science.gov (United States)

    Zhou, Z Hong; Hui, Wong Hoi; Shah, Sanket; Jih, Jonathan; O'Connor, Christine M; Sherman, Michael B; Kedes, Dean H; Schein, Stan

    2014-10-07

    Like many double-stranded DNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved noncovalently in the much larger gammaherpesvirus capsid is unknown. Our cryoelectron microscopy structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1,378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (∼280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) One hundred sixty-two belts concatenate to form noncovalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach.

    Science.gov (United States)

    Adhikari, Utpal Kumar; Rahman, M Mizanur

    2017-12-01

    Rift Valley fever virus (RVFV) is an emergent arthropod-borne zoonotic infectious viral pathogen which causes fatal diseases in the humans and ruminants. Currently, no effective and licensed vaccine is available for the prevention of RVFV infection in endemic as well as in non-endemic regions. So, an immunoinformatics-driven genome-wide screening approach was performed for the identification of overlapping CD8+ and CD4+ T-cell epitopes and also linear B-cell epitopes from the conserved sequences of the nucleocapsid (N) and glycoprotein (G) of RVFV. We identified overlapping 99.39% conserved 1 CD8+ T-cell epitope (MMHPSFAGM) from N protein and 100% conserved 7 epitopes (AVFALAPVV, LAVFALAPV, FALAPVVFA, VFALAPVVF, IAMTVLPAL, FFDWFSGLM, and FLLIYLGRT) from G protein and also identified IL-4 and IFN-γ induced (99.39% conserved) 1 N protein CD4+ T-cell epitope (HMMHPSFAGMVDPSL) and 100% conserved 5 G protein CD4+ T-cell epitopes (LPALAVFALAPVVFA, PALAVFALAPVVFAE, GIAMTVLPALAVFAL, GSWNFFDWFSGLMSW, and FFLLIYLGRTGLSKM). The overlapping CD8+ and CD4+ T-cell epitopes were bound with most conserved HLA-C*12:03 and HLA-DRB1*01:01, respectively with the high binding affinity (kcal/mol). The combined population coverage analysis revealed that the allele frequencies of these epitopes are high in endemic and non-endemic regions. Besides, we found 100% conserved and non-allergenic 2 decamer B-cell epitopes, GVCEVGVQAL and RVFNCIDWVH of G protein had the sequence similarity with the nonamer CD8+ T-cell epitopes, VCEVGVQAL and RVFNCIDWV, respectively. Consequently, these epitopes may be used for the development of epitope-based peptide vaccine against emerging RVFV. However, in vivo and in vitro experiments are required for their efficient use as a vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  5. File list: Oth.Emb.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryo SRX663359,SR...SRX967653,SRX139878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Emb.05.Epitope_tags.AllCell.bed ...

  6. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development

    Science.gov (United States)

    2015-01-01

    Background High genetic heterogeneity in the hepatitis C virus (HCV) is the major challenge of the development of an effective vaccine. Existing studies for developing HCV vaccines have mainly focused on T-cell immune response. However, identification of linear B-cell epitopes that can stimulate B-cell response is one of the major tasks of peptide-based vaccine development. Owing to the variability in B-cell epitope length, the prediction of B-cell epitopes is much more complex than that of T-cell epitopes. Furthermore, the motifs of linear B-cell epitopes in different pathogens are quite different (e. g. HCV and hepatitis B virus). To cope with this challenge, this work aims to propose an HCV-customized sequence-based prediction method to identify B-cell epitopes of HCV. Results This work establishes an experimentally verified dataset comprising the B-cell response of HCV dataset consisting of 774 linear B-cell epitopes and 774 non B-cell epitopes from the Immune Epitope Database. An interpretable rule mining system of B-cell epitopes (IRMS-BE) is proposed to select informative physicochemical properties (PCPs) and then extracts several if-then rule-based knowledge for identifying B-cell epitopes. A web server Bcell-HCV was implemented using an SVM with the 34 informative PCPs, which achieved a training accuracy of 79.7% and test accuracy of 70.7% better than the SVM-based methods for identifying B-cell epitopes of HCV and the two general-purpose methods. This work performs advanced analysis of the 34 informative properties, and the results indicate that the most effective property is the alpha-helix structure of epitopes, which influences the connection between host cells and the E2 proteins of HCV. Furthermore, 12 interpretable rules are acquired from top-five PCPs and achieve a sensitivity of 75.6% and specificity of 71.3%. Finally, a conserved promising vaccine candidate, PDREMVLYQE, is identified for inclusion in a vaccine against HCV. Conclusions This work

  7. File list: Oth.Oth.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.Epitope_tags.AllCell mm9 TFs and others Epitope tags Others SRX228677,SR...X228676,SRX228679,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.Epitope_tags.AllCell.bed ...

  8. File list: Oth.ALL.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags All cell types SRX1...995,SRX275809,SRX275811 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.50.Epitope_tags.AllCell.bed ...

  9. File list: Oth.Kid.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Kid.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Kidney SRX065541,S...RX644719,SRX170375,SRX644723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Kid.10.Epitope_tags.AllCell.bed ...

  10. File list: Oth.Kid.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Kid.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Kidney SRX065541,S...RX170376,SRX065542,SRX065543 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Kid.50.Epitope_tags.AllCell.bed ...

  11. File list: Oth.ALL.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags All cell types SRX1...460,ERX320411,SRX695808 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Epitope_tags.AllCell.bed ...

  12. Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.

    Science.gov (United States)

    Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang

    2012-05-01

    Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures.

    Directory of Open Access Journals (Sweden)

    Kerstin Radtke

    2010-07-01

    Full Text Available Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1 show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during

  14. File list: Oth.PSC.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Pluripotent stem ce...822,SRX266828,SRX352996,ERX320411,SRX204802 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.Epitope_tags.AllCell.bed ...

  15. File list: Oth.PSC.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Pluripotent stem ce...821,ERX320410,SRX266822,SRX352996,ERX320411 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Epitope_tags.AllCell.bed ...

  16. File list: Oth.ALL.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags All cell types SRX...644715,SRX555489,SRX644719,SRX527876,SRX644723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.Epitope_tags.AllCell.bed ...

  17. Identification and characterization of survivin-derived H-2Kb-restricted CTL epitopes

    DEFF Research Database (Denmark)

    Hofmann, Uta B; Voigt, Heike; Andersen, Mads H

    2009-01-01

    for potential binding K(b)-restricted octamer peptide epitopes. Two epitopes, which bind strongly to K(b), were selected to test their immunogenicity in vivo. Spleen cells from mice vaccinated by intradermal injection of mature DC pulsed with these peptides displayed reactivity to the respective epitopes...

  18. Confirmation of antibodies against L-tryptophan-like epitope in ...

    African Journals Online (AJOL)

    Confirmation of antibodies against L-tryptophan-like epitope in human African trypanosomosis serological diagnostic. ... number of patients in Congo. A diagnostic test based on this synthetic epitope, especially in combination with other tests, might improve the HAT diagnostic test in field conditions. Key words: Tryptophan ...

  19. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures

    DEFF Research Database (Denmark)

    Andersen, P.H.; Nielsen, Morten; Lund, Ole

    2006-01-01

    . We show that the new structure-based method has a better performance for predicting residues of discontinuous epitopes than methods based solely on sequence information, and that it can successfully predict epitope residues that have been identified by different techniques. DiscoTope detects 15...... experimental epitope mapping in both rational vaccine design and development of diagnostic tools, and may lead to more efficient epitope identification....

  20. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  1. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  2. Bioinformatics Tools for the Prediction of T-Cell Epitopes

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2018-01-01

    T-cell responses are activated by specific peptides, called epitopes, presented on the cell surface by MHC molecules. Binding of peptides to the MHC is the most selective step in T-cell antigen presentation and therefore an essential factor in the selection of potential epitopes. Several in-vitro...

  3. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway

    Science.gov (United States)

    Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun

    2016-12-01

    HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.

  4. File list: Oth.Utr.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Uterus SRX248763,S...,SRX735140,SRX735139,SRX210703,SRX210702,SRX095386,SRX968127 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.Epitope_tags.AllCell.bed ...

  5. File list: Oth.Utr.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Uterus SRX188854,S...,SRX210703,SRX968127,SRX610673,SRX610674,SRX610672,SRX095386 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.Epitope_tags.AllCell.bed ...

  6. A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J.

    Science.gov (United States)

    Wang, Xiaoyu; Zhou, Defang; Wang, Guihua; Huang, Libo; Zheng, Qiankun; Li, Chengui; Cheng, Ziqiang

    2017-12-04

    The hypervariable antigenicity and immunosuppressive features of avian leukosis virus subgroup J (ALV-J) has led to great challenges to develop effective vaccines. Epitope vaccine will be a perspective trend. Previously, we identified a variant antigenic neutralizing epitope in hypervariable region 1 (hr1) of ALV-J, N-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-C. BLAST analysis showed that the mutation of A, E, T and H in this epitope cover 79% of all ALV-J strains. Base on this data, we designed a multi-variant epitope ensemble vaccine comprising the four mutation variants linked with glycine and serine. The recombinant multi-variant epitope gene was expressed in Escherichia coli BL21. The expressed protein of the variant multi-variant epitope gene can react with positive sera and monoclonal antibodies of ALV-J, while cannot react with ALV-J negative sera. The multi-variant epitope vaccine that conjugated Freund's adjuvant complete/incomplete showed high immunogenicity that reached the titer of 1:64,000 at 42 days post immunization and maintained the immune period for at least 126 days in SPF chickens. Further, we demonstrated that the antibody induced by the variant multi-variant ensemble epitope vaccine recognized and neutralized different ALV-J strains (NX0101, TA1, WS1, BZ1224 and BZ4). Protection experiment that was evaluated by clinical symptom, viral shedding, weight gain, gross and histopathology showed 100% chickens that inoculated the multi-epitope vaccine were well protected against ALV-J challenge. The result shows a promising multi-variant epitope ensemble vaccine against hypervariable viruses in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  8. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Directory of Open Access Journals (Sweden)

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  9. File list: Oth.Epd.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Epidermis SRX51236...8,SRX512367,SRX718420,SRX512372,SRX512366,SRX512373,SRX807621,SRX807620 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Epd.05.Epitope_tags.AllCell.bed ...

  10. File list: Oth.Epd.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Epd.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Epidermis SRX71842...0,SRX512368,SRX512366,SRX807621,SRX512367,SRX512372,SRX512373,SRX807620 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Epd.20.Epitope_tags.AllCell.bed ...

  11. File list: Oth.NoD.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags No description htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.NoD.10.Epitope_tags.AllCell.bed ...

  12. File list: Oth.NoD.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags No description htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.NoD.50.Epitope_tags.AllCell.bed ...

  13. File list: Oth.NoD.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags No description htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.NoD.05.Epitope_tags.AllCell.bed ...

  14. File list: Oth.NoD.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags No description htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.NoD.20.Epitope_tags.AllCell.bed ...

  15. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    Molecular characterization of capsid protein gene of potato virus X from Pakistan. Arshad Jamal, Idrees Ahmad Nasir, Bushra Tabassum, Muhammad Tariq, Abdul Munim Farooq, Zahida Qamar, Mohsin Ahmad Khan, Nadeem Ahmad, Muhammad Shafiq, Muhammad Saleem Haider, M. Arshad Javed, Tayyab Husnain ...

  16. Anaplasma marginale major surface protein 2 CD4+-T-cell epitopes are evenly distributed in conserved and hypervariable regions (HVR), whereas linear B-cell epitopes are predominantly located in the HVR.

    Science.gov (United States)

    Abbott, Jeffrey R; Palmer, Guy H; Howard, Chris J; Hope, Jayne C; Brown, Wendy C

    2004-12-01

    Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4(+) T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.

  17. File list: Oth.Liv.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.10.Epitope_tags.AllCell hg19 TFs and others Epitope tags Liver SRX1165095,S...RX1165103,SRX1165100,SRX1165096,SRX1165104,SRX1165101,SRX1165090,SRX1165102,SRX1165091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.Epitope_tags.AllCell.bed ...

  18. File list: Oth.Liv.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.Epitope_tags.AllCell hg19 TFs and others Epitope tags Liver SRX1165103,S...RX1165095,SRX1165100,SRX1165101,SRX1165104,SRX1165102,SRX1165090,SRX1165091,SRX1165096 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.50.Epitope_tags.AllCell.bed ...

  19. File list: Oth.Liv.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.Epitope_tags.AllCell hg19 TFs and others Epitope tags Liver SRX1165095,S...RX1165103,SRX1165096,SRX1165104,SRX1165100,SRX1165101,SRX1165102,SRX1165090,SRX1165091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.05.Epitope_tags.AllCell.bed ...

  20. File list: Oth.Liv.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.Epitope_tags.AllCell hg19 TFs and others Epitope tags Liver SRX1165103,S...RX1165095,SRX1165100,SRX1165101,SRX1165090,SRX1165104,SRX1165102,SRX1165096,SRX1165091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.Epitope_tags.AllCell.bed ...

  1. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    Science.gov (United States)

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  2. File list: Oth.NoD.10.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.10.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags No description ...http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.10.Epitope_tags.AllCell.bed ...

  3. File list: Oth.CeL.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CeL.50.Epitope_tags.AllCell dm3 TFs and others Epitope tags Cell line SRX099638...099636 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.CeL.50.Epitope_tags.AllCell.bed ...

  4. File list: Oth.NoD.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.NoD.20.Epitope_tags.AllCell sacCer3 TFs and others Epitope tags No description ...http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Oth.NoD.20.Epitope_tags.AllCell.bed ...

  5. File list: Oth.CeL.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CeL.20.Epitope_tags.AllCell dm3 TFs and others Epitope tags Cell line SRX099638...099636 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.CeL.20.Epitope_tags.AllCell.bed ...

  6. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes

    DEFF Research Database (Denmark)

    Moise, Leonard; McMurry, Julie A; Buus, Søren

    2009-01-01

    Epitopes shared by the vaccinia and variola viruses underlie the protective effect of vaccinia immunization against variola infection. We set out to identify a subset of cross-reactive epitopes using bioinformatics and immunological methods. Putative T-cell epitopes were computationally predicted...

  7. File list: Oth.Neu.20.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.Epitope_tags.AllCell mm9 TFs and others Epitope tags Neural SRX275807,SR...SRX691799,SRX691794,SRX759286,SRX691798,SRX691797,SRX275809,SRX275811,SRX691795,SRX022866 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.Epitope_tags.AllCell.bed ...

  8. Random Insertion of mCherry Into VP3 Domain of Adeno-associated Virus Yields Fluorescent Capsids With no Loss of Infectivity

    Directory of Open Access Journals (Sweden)

    Justin Judd

    2012-01-01

    Full Text Available Adeno-associated virus (AAV-derived vectors are promising gene delivery systems, and a number of design strategies have been pursued to improve their performance. For example, genetic insertion of proteins into the capsid may be used to achieve vector retargeting, reduced immunogenicity, or to track vector transport. Unfortunately, rational approaches to genetic insertion have experienced limited success due to the unpredictable context-dependent nature of protein folding and the complexity of the capsid's macroassembly. We report the construction and use of a frame-enriched DNase-based random insertion library based on AAV2 cap, called pAAV2_RaPID (Random Peptide Insertion by DNase. The fluorescent mCherry protein was inserted randomly throughout the AAV2 capsid and the library was selected for fluorescent and infectious variants. A capsid site was identified in VP3 that can tolerate the large protein insertion. In contrast to previous efforts to incorporate fluorescent proteins into the AAV2 capsid, the isolated mCherry mutant maintains native infectivity while displaying robust fluorescence. Collectively, these results demonstrate that the pAAV2_RaPID platform library can be used to create fully infectious AAV vectors carrying large functional protein domains on the capsid.

  9. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers

    Directory of Open Access Journals (Sweden)

    Charles D. Morris

    2017-02-01

    Full Text Available Broadly neutralizing antibodies (bNAbs have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3 loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.

  10. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    Science.gov (United States)

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  11. Structure of the Triatoma virus capsid

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  12. Structure of the Triatoma virus capsid

    International Nuclear Information System (INIS)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S.; Costabel, Marcelo D.; Marti, Gerardo A.; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M. A.; Rey, Felix A.

    2013-01-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed

  13. Functional and Structural Characterization of a Novel HLA-DRB1*04:01-Restricted α-Enolase T Cell Epitope in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Christina Gerstner

    2016-11-01

    Full Text Available Antibodies to citrullinated proteins, common in rheumatoid arthritis (RA patients, are strongly associated to a specific set of HLA-DR alleles including HLA-DRB1*04:01, *04:04, and *01:01. Here, we first demonstrate that autoantibody levels toward the dominant citrullinated B cell epitope from α-enolase are significantly elevated in HLA-DRB1*04:01-positive RA patients. Furthermore, we identified α-enolase-derived T cell epitopes and demonstrated that native and citrullinated versions of several peptides bind with different affinities to HLA-DRB1*04:01, *04:04, and *01:01. The citrulline residues in the eight identified peptides are distributed throughout the entire length of the presented epitopes and more specifically, localized at peptide positions p-2, p2, p4, p6, p7, p10, and p11. Importantly, in contrast to its native version peptide 26 (TSKGLFRAAVPSGAS, the HLA-DRB1*04:01-restricted citrullinated peptide Cit26 (TSKGLFCitAAVPSGAS elicited significant functional T cell responses in primary cells from RA patients. Comparative analysis of the crystal structures of HLA-DRB1*04:01 in complex with peptide 26 or Cit26 demonstrated that the posttranslational modification did not alter the conformation of the peptide. And since citrullination is the only structural difference between the two complexes, this indicates that the neo-antigen Cit26 is recognized by T cells with high specificity to the citrulline residue.

  14. A xylogalacturonan epitope is specifically associated with plant cell detachment

    DEFF Research Database (Denmark)

    Willats, William George Tycho; McCartney, L.; Steele-King, C.G.

    2004-01-01

    A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitop...

  15. Bovine adenovirus type 3 containing heterologous protein in the C-terminus of minor capsid protein IX

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Connors, Wayne; Van Kessel, Andrew; Tikoo, Suresh Kumar

    2004-01-01

    Earlier, we detected pIX of BAdV-3 as a 14-kDa protein in purified virions. Analysis of BAdV-3 pIX using different region antibodies revealed that the N-terminus and central domain of the pIX contain immunogenic sites and are not exposed on the surface of BAdV-3 virion. This suggested that the C-terminus of BAdV-3 pIX (125 amino acid) may be exposed on the virion and may be used as a site for incorporation of heterologous peptides or proteins. We constructed recombinant BAV950 containing a small peptide (21 amino acid), including the RGD motif or recombinant BAV951 containing enhanced yellow-green fluorescent protein (EYFP) fused to the C-terminus of pIX. Western blot analysis demonstrated that the chimeric pIX-RGD was incorporated into virion capsids. Incorporation of the RGD motif into the pIX resulted in significant augmentation of BAdV-3 fiber knob-independent infection of the integrin-positive cells, suggesting that RGD motifs are displayed on the surface of virion capsids and are accessible for binding to integrins. Analysis of BAV951 revealed that the chimeric pIX is incorporated into virion capsids and EYFP containing the C-terminus of pIX is exposed on the surface of the virion. Moreover, insertion of chimeric pIXs was maintained without change through successive rounds of viral replication. These results suggested that in contrast to major capsid proteins (hexon, penton, fiber), the minor capsid protein IX can be use for the incorporation of targeting ligands based on either small peptides or longer polypeptides

  16. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  17. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  18. Multiple epitopes in a dodecapeptide of myelin basic protein determined bymonoclonal antibodies

    International Nuclear Information System (INIS)

    Price, J.O.; Whitaker, J.N.; Vasu, R.I.; Metzger, D.W.

    1986-01-01

    Three custom synthesized myelin basic protein (MBP) peptides, bovine peptide 79-88, human peptide 80-89, and human peptide 82-91, were used to produce four murine monoclonal antibodies (MAb) that were selected on the basis of reaction in a solid phase radioimmunoassay (SRIA) with human MBP. The MAb were compared with respect to antigen specificity against intact MBP and 10 overlapping MBP peptides. One MAb recognized an epitope near the amino-terminus of bovine MBP peptide 79-88. A second MAb was directed towards an epitope that is more reactive in human MBP peptide 45-89 than in intact MBP, but is not recognized in any of the small MBP peptides examined. The third MAb detected an epitope near the middle of human MBP peptide 80-89, whereas the fourth MAb reacted with the carboxyl-terminal portion of human MBP peptide 82-91. Epitopes recognized in SRIA were sometimes not detected by the same MAb in a fluid phase double antibody radioimmunoassay. These results demonstrate the multiplicity of potential epitopes in a dodecapeptide of MBP and do not support the concept of a single, dominant epitope in the region of MBP peptide 80-89

  19. File list: Oth.EmF.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryonic fibroblas...RX542102,SRX204644,SRX204643,SRX255462,SRX255460 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.05.Epitope_tags.AllCell.bed ...

  20. File list: Oth.EmF.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryonic fibroblas...RX255460,SRX204644,SRX542102,SRX204643,SRX204642 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.50.Epitope_tags.AllCell.bed ...

  1. Epitope Identification and Application for Diagnosis of Duck Tembusu Virus Infections in Ducks

    Directory of Open Access Journals (Sweden)

    Chenxi Li

    2016-11-01

    Full Text Available Duck Tembusu virus (DTMUV causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs 1F3 and 1A5. Two minimal epitopes were mapped to 221LD/NLPW225 and 87YAEYI91 by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas 221LD/NLPW225 was a cross-reactive epitope for West Nile virus (WNV, dengue virus (DENV, and Japanese encephalitis virus (JEV and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.

  2. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

    Energy Technology Data Exchange (ETDEWEB)

    Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing; Huffman, Jamie B.; Homa, Fred L.; Rau, Donald; Evilevitch, Alex

    2014-10-01

    DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

  3. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    Science.gov (United States)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  4. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  5. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    Science.gov (United States)

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  6. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets.

    Science.gov (United States)

    Iglesias, Nestor G; Mondotte, Juan A; Byk, Laura A; De Maio, Federico A; Samsa, Marcelo M; Alvarez, Cecilia; Gamarnik, Andrea V

    2015-09-01

    Dengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism. Here, we examined the process by which the viral capsid is transported from the endoplasmic reticulum (ER) membrane, where the protein is synthesized, to LDs. Using different methods of intervention, we found that the GBF1-Arf1/Arf4-COPI pathway is necessary for capsid transport to LDs, while the process is independent of both COPII components and Golgi integrity. The transport was sensitive to Brefeldin A, while a drug resistant form of GBF1 was sufficient to restore capsid subcellular distribution in infected cells. The mechanism by which LDs gain or lose proteins is still an open question. Our results support a model in which the virus uses a non-canonical function of the COPI system for capsid accumulation on LDs, providing new ideas for antiviral strategies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Mimicry of the immunodominant conformation-dependent antigenic site of hepatitis A virus by motifs selected from synthetic peptide libraries.

    Science.gov (United States)

    Mattioli, S; Imberti, L; Stellini, R; Primi, D

    1995-09-01

    Hepatitis A virus (HAV) is a positive-strand RNA virus with a genome length of approximately 7,480 nucleotides. Although HAV morphogenesis is thought to be similar to that of poliovirus, the prototype picornavirus, the complete characterization of the antigenic structure of this virus remains elusive. All the available evidences, however, support the existence, on HAV virions and empty capsids, of an immunodominant neutralization antigenic site which is conformation dependent and whose structure involves residues of both VP1 and VP3 capsid proteins. This particular feature and the difficulty of obtaining high virus yield in tissue cultures make HAV an ideal target for developing synthetic peptides that simulate the structure of its main antigenic determinant. To this end we utilized, in the present work, the divide-couple-recombine approach to generate a random library composed of millions of different hexapeptides. This vast library was screened with a well-characterized anti-HAV monoclonal antibody. By this strategy we identified a peptide that reacted specifically with monoclonal and polyclonal anti-HAV antibodies and, in mice, induced a specific anti-virus immune response. Furthermore, the peptide could also be used in an enzyme-linked immunosorbent assay for revealing a primary immunoglobulin M immune response in sera of acutely infected human patients. Interestingly, no sequence homology was found between the identified peptide and the HAV capsid proteins VP1 and VP3. Collectively, these data represent an additional important paradigm of a mimotope capable of mimicking an antigenic determinant with unknown tertiary structure.

  8. Identification and fine mapping of a linear B cell epitope of human vimentin

    DEFF Research Database (Denmark)

    Dam, Catharina Essendrup; Houen, Gunnar; Hansen, Paul R.

    2014-01-01

    Knowledge about antibody-antigen interactions is important for the understanding of the immune system mechanisms and for supporting development of drugs and biomarkers. A tool for identification of these antigenic epitopes of specific antibodies is epitope mapping. In this study, a modified enzyme......-linked immunosorbent assay was applied for epitope mapping of a mouse monoclonal vimentin antibody using overlapping resin-bound peptides covering the entire vimentin protein. The minimal epitope required for binding was identified as the LDSLPLVD sequence using N- and C-terminally truncated peptides. The peptide...... sequence LDSLPLVDTH was identified as the complete epitope, corresponding to amino acids 428-437 in the C-terminal end of the human vimentin protein. Alanine scanning and functionality scanning applying substituted peptides were used to identify amino acids essential for antibody reactivity. In particular...

  9. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  10. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid.

    Directory of Open Access Journals (Sweden)

    Neil J Ball

    2016-11-01

    Full Text Available The Spumaretrovirinae, or foamy viruses (FVs are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV. The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA and C-terminal domains (CtDCA of archetypal orthoretroviral capsid protein (CA. Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.

  11. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid

    Science.gov (United States)

    Dutta, Moumita; Pollard, Dominic J.; Goldstone, David C.; Ramos, Andres; Müllers, Erik; Stirnnagel, Kristin; Stanke, Nicole; Lindemann, Dirk; Taylor, William R.; Rosenthal, Peter B.

    2016-01-01

    The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN—CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold. PMID:27829070

  12. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  13. Analysis of potato virus Y coat protein epitopes recognized by three commercial monoclonal antibodies.

    Science.gov (United States)

    Tian, Yan-Ping; Hepojoki, Jussi; Ranki, Harri; Lankinen, Hilkka; Valkonen, Jari P T

    2014-01-01

    Potato virus Y (PVY, genus Potyvirus) causes substantial economic losses in solanaceous plants. Routine screening for PVY is an essential part of seed potato certification, and serological assays are often used. The commercial, commonly used monoclonal antibodies, MAb1128, MAb1129, and MAb1130, recognize the viral coat protein (CP) of PVY and distinguish PVYN strains from PVYO and PVYC strains, or detect all PVY strains, respectively. However, the minimal epitopes recognized by these antibodies have not been identified. SPOT peptide array was used to map the epitopes in CP recognized by MAb1128, MAb1129, and MAb1130. Then alanine replacement as well as N- and C-terminal deletion analysis of the identified peptide epitopes was done to determine critical amino acids for antibody recognition and the respective minimal epitopes. The epitopes of all antibodies were located within the 30 N-terminal-most residues. The minimal epitope of MAb1128 was 25NLNKEK30. Replacement of 25N or 27N with alanine weakened the recognition by MAb1128, and replacement of 26L, 29E, or 30K nearly precluded recognition. The minimal epitope for MAb1129 was 16RPEQGSIQSNP26 and the most critical residues for recognition were 22I and 23Q. The epitope of MAb1130 was defined by residues 5IDAGGS10. Mutation of residue 6D abrogated and mutation of 9G strongly reduced recognition of the peptide by MAb1130. Amino acid sequence alignment demonstrated that these epitopes are relatively conserved among PVY strains. Finally, recombinant CPs were produced to demonstrate that mutations in the variable positions of the epitope regions can affect detection with the MAbs. The epitope data acquired can be compared with data on PVY CP-encoding sequences produced by laboratories worldwide and utilized to monitor how widely the new variants of PVY can be detected with current seed potato certification schemes or during the inspection of imported seed potatoes as conducted with these MAbs.

  14. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds

    Czech Academy of Sciences Publication Activity Database

    Machara, A.; Lux, V.; Kožíšek, Milan; Grantz Šašková, Klára; Štěpánek, O.; Kotora, M.; Parkan, Kamil; Pávová, Marcela; Glass, B.; Sehr, P.; Lewis, J.; Müller, B.; Kräusslich, H. G.; Konvalinka, Jan

    2016-01-01

    Roč. 59, č. 2 (2016), s. 545-558 ISSN 0022-2623 R&D Projects: GA ČR GA13-19561S EU Projects: European Commission(XE) 201095 - HIV ACE Institutional support: RVO:61388963 Keywords : HIV -1 assembly * capsid * high-throughput screening * AlphaScreen assay Subject RIV: CE - Biochemistry Impact factor: 6.259, year: 2016

  15. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Lundegaard, Claus; Lamberth, K.

    2007-01-01

    BACKGROUND: Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein....... of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2 method is available at http://www.cbs.dtu.dk/services/NetCTL.All used datasets are available at http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php....

  16. Antibody specific epitope prediction-emergence of a new paradigm.

    Science.gov (United States)

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions.

    Science.gov (United States)

    Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A

    2012-05-01

    Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.

  18. Identification of a variant antigenic neutralizing epitope in hypervariable region 1 of avian leukosis virus subgroup J.

    Science.gov (United States)

    Hou, Minbo; Zhou, Defang; Li, Gen; Guo, Huijun; Liu, Jianzhu; Wang, Guihua; Zheng, Qiankun; Cheng, Ziqiang

    2016-03-08

    Avian leukosis virus subgroup J (ALV-J) is a hypervariable oncogenic retrovirus that causes great economic loss in poultry. Antigenic variations in the variable regions make the development of an effective vaccine a challenging task. In the present study, we identified a variant antigenic neutralizing epitope using reverse vaccinology methods. First, we predicted the B-cell epitopes in gp85 gene of ALV-J strains by DNAman and bioinformatics. Fourteen candidate epitopes were selected and linked in tandem with glycines or serines as a multi-epitope gene. The expressed protein of multi-epitope gene can induce high-titer antibody that can recognize nature ALV-J and neutralize the infectivity of ALV-J strains. Next, we identified a high effective epitope using eight overlapping fragments of gp85 gene reacting with mAb 2D5 and anti-multi-epitope sera. The identified epitope contained one of the predicted epitopes and localized in hyervariable region 1 (hr1), indicating a variant epitope. To better understand if the variants of the epitope have a good antigenicity, we synthesized four variants to react with mAb 2D5 and anti-ALV-J sera. The result showed that all variants could react with the two kinds of antibodies though they showed different antigenicity, while could not react with ALV-J negative sera. Thus, the variant antigenic neutralizing epitope was determined as 137-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-158. The result shows a potential use of this variant epitopes as a novel multi-epitope vaccine against ALV-J in poultry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Directory of Open Access Journals (Sweden)

    Akos Gellért

    Full Text Available Potential porcine circovirus type 2 (PCV2 capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  20. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Science.gov (United States)

    Gellért, Akos; Salánki, Katalin; Tombácz, Kata; Tuboly, Tamás; Balázs, Ervin

    2012-01-01

    Potential porcine circovirus type 2 (PCV2) capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV) particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  1. PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.

    Directory of Open Access Journals (Sweden)

    Wenhan Chen

    Full Text Available Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/

  2. Outer capsid proteins induce the formation of pores in epithelial cells

    International Nuclear Information System (INIS)

    Ruiz, M; Abad M; Michelangely, F; Charpilienne, A; Cohen, J

    1995-01-01

    Two mechanisms of entrance in cell of the rotavirus, during the infection, were proposed: a direct entrance through the plasmatic membrane or by means of endocytosis. In the two cases, a permeabilization mechanism of the membrane (cellular or of the endocytic vesicle, respectively) should occur. It has been shown that the rotavirus induces permeabilization of liposomes and of membrane vesicles. In this work, are studied the changes of intact cells permeability, measuring the entrance of e tide bromides. Viral particles of double capsid of the RF stump produce an increase of the cells membrane MA104 permeability, while the simple capsid ones don't induce effect. This phenomenon requires the particles trypsinization, and occurs in a means where the concentration of free Ca is lower to 1 micromolar. The temporary course of the fluorescence increase is sigmoid. The latency, the speed and the width depend on the relationship of virus / cell, and it can be observed up to 100% of permeabilization in relation to the effect of digitonin. The pores induced in the membrane by the rotavirus are irreversible. The permeabilizer effect of the rotavirus on the membrane was observed in other cellular lines as Hela and HT29, but not in the L929 ones. These results suggest that one or more proteins of the external capsid are responsible s of the effect. These could be involved in the penetration process of the virus towards the cytoplasm and could be one of the restrictive factor of the cell infection by means of the virus [es

  3. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  4. The use of HPLC-MS in T-cell epitope identification.

    Science.gov (United States)

    Lemmel, Claudia; Stevanović, Stefan

    2003-03-01

    The hunt for T-cell epitopes is going on because hopes are set on such peptide sequences for diagnosis and vaccine development in the fight against infectious and tumor diseases. In addition to a variety of other techniques used in T-cell epitope identification, mass spectrometers coupled to microcapillary liquid chromatography have now become an important and sensitive tool in separation, detection, and sequence analysis of highly complex natural major histocompatibility complex (MHC) ligand mixtures. In this article, we review the basics of mass spectrometric techniques and their on-line coupling to microcapillary liquid chromatography (microcap-LC). Furthermore, we introduce current strategies for the identification of new T-cell epitopes using microcapillary liquid chromatography-mass spectrometry (microcap-LC-MS).

  5. Discovery of novel targets for multi-epitope vaccines: Screening of HIV-1 genomes using association rule mining

    Directory of Open Access Journals (Sweden)

    Piontkivska Helen

    2009-07-01

    Full Text Available Abstract Background Studies have shown that in the genome of human immunodeficiency virus (HIV-1 regions responsible for interactions with the host's immune system, namely, cytotoxic T-lymphocyte (CTL epitopes tend to cluster together in relatively conserved regions. On the other hand, "epitope-less" regions or regions with relatively low density of epitopes tend to be more variable. However, very little is known about relationships among epitopes from different genes, in other words, whether particular epitopes from different genes would occur together in the same viral genome. To identify CTL epitopes in different genes that co-occur in HIV genomes, association rule mining was used. Results Using a set of 189 best-defined HIV-1 CTL/CD8+ epitopes from 9 different protein-coding genes, as described by Frahm, Linde & Brander (2007, we examined the complete genomic sequences of 62 reference HIV sequences (including 13 subtypes and sub-subtypes with approximately 4 representative sequences for each subtype or sub-subtype, and 18 circulating recombinant forms. The results showed that despite inclusion of recombinant sequences that would be expected to break-up associations of epitopes in different genes when two different genomes are recombined, there exist particular combinations of epitopes (epitope associations that occur repeatedly across the world-wide population of HIV-1. For example, Pol epitope LFLDGIDKA is found to be significantly associated with epitopes GHQAAMQML and FLKEKGGL from Gag and Nef, respectively, and this association rule is observed even among circulating recombinant forms. Conclusion We have identified CTL epitope combinations co-occurring in HIV-1 genomes including different subtypes and recombinant forms. Such co-occurrence has important implications for design of complex vaccines (multi-epitope vaccines and/or drugs that would target multiple HIV-1 regions at once and, thus, may be expected to overcome challenges

  6. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. The infection is caused by foot-and-mouth disease virus (FMDV), a member of the picornavirus family. The positive sense RNA genome of the virus includes a single, large......, open reading frame that encodes a polyprotein. The intact polyprotein is never observed as it is processed, both during and after translation, to 15 different mature proteins plus a variety of precursors. The FMDV capsid protein precursor, P1-2A, is cleaved by the virus encoded 3C protease (3Cpro......) to generate VP0, VP3, VP1 and the peptide 2A. Sixty copies of each of the capsid proteins “self-assemble” into empty capsid particles or with the RNA genome into infectious viruses. These particles normally lack 2A but it is possible to construct and isolate mutant FMDVs in which the cleavage of the VP1/2A...

  7. Venom allergen-like protein 28 in Clonorchis sinensis: four epitopes on its surface and the potential role of Cys124 for its conformational stability.

    Science.gov (United States)

    Lee, Myoung-Ro; Yoo, Won Gi; Kim, Yu Jung; Chung, Eun Ju; Cho, Shin-Hyeong; Ju, Jung-Won

    2018-06-06

    Venom allergen-like (VAL) proteins are important to host-parasite interactions. We previously demonstrated that a Clonorchis sinensis VAL (CsVAL) protein-derived synthetic peptide suppresses allergic and inflammatory responses. However, little is known regarding the physicochemical and antigenic properties of CsVAL proteins. Here, we identified a novel 194 amino acid VAL protein, named C. sinensis VAL 28 (CsVAL28), and characterized its functional motifs and structural details as a new member of the CAP superfamily. Unlike members of the Schistosoma mansoni VAL (SmVAL) family, CsVAL28 has a single CAP1 motif and six highly conserved disulfide bond-forming cysteines. Tertiary models of wild-type CsVAL28 and mutants were built using SmVAL4 as template via homology modeling. Normal mode analysis predicted that disulfide bond breaking by mutation of cysteine 124 to serine would greatly affect protein mobility. Four major immunoreactive linear epitopes were identified in the surface-exposed region or its vicinity via epitope mapping, using sera from clonorchiasis patients and healthy controls. Our findings provide in-depth knowledge on the structure-function properties of VAL proteins and may help determine highly antigenic regions for developing new diagnostic approaches.

  8. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    Science.gov (United States)

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    Science.gov (United States)

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  10. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  11. Identification of novel HLA-A(*)0201-restricted CTL epitopes from Pokemon.

    Science.gov (United States)

    Yuan, Bangqing; Zhao, Lin; Xian, Ronghua; Zhao, Gang

    2012-01-01

    Pokemon is a member of the POK family of transcriptional repressors and aberrant overexpressed in various human cancers. Therefore, the related peptide epitopes derived from Pokemon is essential for the development of specific immunotherapy of malignant tumors. In this study, we predicted and identified HLA-A(*)0201-restricted cytotoxic T lymphocyte (CTL) epitopes derived from Pokemon with computer-based epitope prediction, peptide-binding assay and testing of the induced CTLs toward different kinds of carcinoma cells. The results demonstrated that effectors induced by peptides of Pokemon containing residues 32-40, 61-69, 87-95, and 319-327 could specifically secrete IFN-γ and lyse tumor cell lines of Pokemon-positive and HLA-A2-matched. The results suggest that Pokemon32, Pokemon61, Pokemon87, and Pokemon319 peptides are novel HLA-A(*)0201-restricted restricted CTL epitopes, and could be utilized in the cancer immunotherapy against a broad spectrum of tumors. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1.

    Science.gov (United States)

    Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng

    2013-04-30

    The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. Then, shorter peptides that were derived from PS4, PS6, PS10 and PS11 were predicted using bioinformatics and tested by experimentation. Four out of nine shorter peptides were identified successfully (amino acids 106-120, 166-180, 289-300 and 313-332). We have precisely located the epitopes of T. gondii SAG1 using pig sera collected at different time points after infection. The identified epitopes may be useful for the further study of epitope-based vaccines and diagnostic reagents.

  13. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.

    Science.gov (United States)

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2015-04-01

    Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Reliable B cell epitope predictions: impacts of method development and improved benchmarking

    DEFF Research Database (Denmark)

    Kringelum, Jens Vindahl; Lundegaard, Claus; Lund, Ole

    2012-01-01

    biomedical applications such as; rational vaccine design, development of disease diagnostics and immunotherapeutics. However, experimental mapping of epitopes is resource intensive making in silico methods an appealing complementary approach. To date, the reported performance of methods for in silico mapping...... evaluation data set improved from 0.712 to 0.727. Our results thus demonstrate that given proper benchmark definitions, B-cell epitope prediction methods achieve highly significant predictive performances suggesting these tools to be a powerful asset in rational epitope discovery. The updated version...

  15. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the ...

  16. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    Science.gov (United States)

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  17. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    César Augusto F de Oliveira

    2011-10-01

    Full Text Available Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  18. Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+CD25(+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Guojiang Chen

    Full Text Available BACKGROUND: CD4(+CD25(+ regulatory T cell (Treg-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. METHODOLOGY/PRINCIPAL FINDINGS: Splenic lymphocytes from nonobese diabetic (NOD mice were stimulated with different glutamic acid decarboxylase (GAD-derived epitopes for 7-10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524-538-expanded CD4(+CD25(+ T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509-528- or p530 (GAD530-543-expanded CD4(+CD25(+ T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes between the above-mentioned epitopes and MHC class II I-A(g7 were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-A(g7, while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-A(g7. Furthermore, p524 bound to I-A(g7 more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570-585, p570, which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4(+CD25(+ T cells suppressed the onset of diabetes in NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of

  19. Analysis of the epitope structure of Plum pox virus coat protein.

    Science.gov (United States)

    Candresse, Thierry; Saenz, Pilar; García, Juan Antonio; Boscia, Donato; Navratil, Milan; Gorris, Maria Teresa; Cambra, Mariano

    2011-05-01

    Typing of the particular Plum pox virus (PPV) strain responsible in an outbreak has important practical implications and is frequently performed using strain-specific monoclonal antibodies (MAbs). Analysis in Western blots of the reactivity of 24 MAbs to a 112-amino-acid N-terminal fragment of the PPV coat protein (CP) expressed in Escherichia coli showed that 21 of the 24 MAbs recognized linear or denaturation-insensitive epitopes. A series of eight C-truncated CP fragments allowed the mapping of the epitopes recognized by the MAbs. In all, 14 of them reacted to the N-terminal hypervariable region, defining a minimum of six epitopes, while 7 reacted to the beginning of the core region, defining a minimum of three epitopes. Sequence comparisons allowed the more precise positioning of regions recognized by several MAbs, including those recognized by the 5B-IVIA universal MAb (amino acids 94 to 100) and by the 4DG5 and 4DG11 D serogroup-specific MAbs (amino acids 43 to 64). A similar approach coupled with infectious cDNA clone mutagenesis showed that a V74T mutation in the N-terminus of the CP abolished the binding of the M serogroup-specific AL MAb. Taken together, these results provide a detailed positioning of the epitopes recognized by the most widely used PPV detection and typing MAbs.

  20. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion.

    Directory of Open Access Journals (Sweden)

    Shu-Fan Chou

    2015-10-01

    Full Text Available The Endosomal Sorting Complex Required for Transport (ESCRT is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV, we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147 containing no arginine-rich domain (ARD failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.

  1. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion

    Science.gov (United States)

    Chou, Shu-Fan; Tsai, Ming-Lin; Huang, Jyun-Yuan; Chang, Ya-Shu; Shih, Chiaho

    2015-01-01

    The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1–147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1–147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex. PMID

  2. Epitope Mapping of Monoclonal Antibody PMab-48 Against Dog Podoplanin.

    Science.gov (United States)

    Yamada, Shinji; Kaneko, Mika K; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Ogasawara, Satoshi; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Harada, Hiroyuki; Kato, Yukinari

    2018-04-02

    Podoplanin (PDPN), a type I transmembrane sialoglycoprotein, is expressed on normal renal podocytes, pulmonary type I alveolar cells, and lymphatic endothelial cells. Increased expression of PDPN in cancers is associated with poor prognosis and hematogenous metastasis through interactions with C-type lectin-like receptor 2 (CLEC-2) on platelets. We previously reported a novel PMab-48 antibody, which is an anti-dog PDPN (dPDPN) monoclonal antibody (mAb) recognizing PDPN expressed in lymphatic endothelial cells. However, the binding epitope of PMab-48 is yet to be clarified. In this study, an enzyme-linked immunosorbent assay and flow cytometry were used to investigate epitopes of PMab-48. The results revealed that the critical epitope of PMab-48 comprises Asp29, Asp30, Ile31, Ile32, and Pro33 of dPDPN.

  3. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.G.R.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  4. Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  5. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Ann R Hunt

    2010-07-01

    Full Text Available Venezuelan equine encephalitis virus (VEEV is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion and E2 (binds receptor and elicits virus neutralizing antibodies. Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs. Six E2 epitopes (E2(c,d,e,f,g,h bound VEEV-neutralizing antibody and mapped to amino acids (aa 182-207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE.We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants.Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115-119. Using a 9 A resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope.The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration

  6. A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV: An Immunoinformatics Approach

    Directory of Open Access Journals (Sweden)

    Mokhtar Nosrati

    2017-02-01

    Full Text Available Background: Hepatitis C virus (HCV causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric peptide as a novel epitope based vaccine for cross-protection against the virus. For this, one B and T-cell epitope from both E1 and E2 which was predicted by EPMLR and Propred-1 server and had the highest score and antigenicity in VaxiJen 2.0 and PAP servers were selected for construction of chimeric protein as a multi-epitope vaccine. Results: The results of this study showed that the chimeric peptide had high antigenicity score and stability.Results also showed that most epitopes of E1 were located in two spectra consist of (45-65,88-107 and 148-182 while the results about B-cell epitopes of E2 showed that this protein had much less epitope than E1. The most epitope predicted for E2 were located in (12-24 and 35-54 spectra Conclusion:  In conclusion, epitope based vaccine which was designed by immunoinformatics methods could be considered as a novel and effective vaccine for cross-protection against HCV infection.

  7. Depigmented allergoids reveal new epitopes with capacity to induce IgG blocking antibodies.

    Science.gov (United States)

    López-Matas, M Angeles; Gallego, Mayte; Iraola, Víctor; Robinson, Douglas; Carnés, Jerónimo

    2013-01-01

    The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT) has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol) allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.

  8. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    Science.gov (United States)

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.

  9. MHC class I epitope binding prediction trained on small data sets

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Nielsen, Morten; Lamberth, K.

    2004-01-01

    The identification of potential T-cell epitopes is important for development of new human or vetenary vaccines, both considering single protein/subunit vaccines, and for epitope/peptide vaccines as such. The highly diverse MHC class I alleles bind very different peptides, and accurate binding pre...... in situations where only very limited data are available for training....

  10. The immune epitope database: a historical retrospective of the first decade.

    Science.gov (United States)

    Salimi, Nima; Fleri, Ward; Peters, Bjoern; Sette, Alessandro

    2012-10-01

    As the amount of biomedical information available in the literature continues to increase, databases that aggregate this information continue to grow in importance and scope. The population of databases can occur either through fully automated text mining approaches or through manual curation by human subject experts. We here report our experiences in populating the National Institute of Allergy and Infectious Diseases sponsored Immune Epitope Database and Analysis Resource (IEDB, http://iedb.org), which was created in 2003, and as of 2012 captures the epitope information from approximately 99% of all papers published to date that describe immune epitopes (with the exception of cancer and HIV data). This was achieved using a hybrid model based on automated document categorization and extensive human expert involvement. This task required automated scanning of over 22 million PubMed abstracts followed by classification and curation of over 13 000 references, including over 7000 infectious disease-related manuscripts, over 1000 allergy-related manuscripts, roughly 4000 related to autoimmunity, and 1000 transplant/alloantigen-related manuscripts. The IEDB curation involves an unprecedented level of detail, capturing for each paper the actual experiments performed for each different epitope structure. Key to enabling this process was the extensive use of ontologies to ensure rigorous and consistent data representation as well as interoperability with other bioinformatics resources, including the Protein Data Bank, Chemical Entities of Biological Interest, and the NIAID Bioinformatics Resource Centers. A growing fraction of the IEDB data derives from direct submissions by research groups engaged in epitope discovery, and is being facilitated by the implementation of novel data submission tools. The present explosion of information contained in biological databases demands effective query and display capabilities to optimize the user experience. Accordingly, the

  11. Differential Recognition of Mycobacterium tuberculosis-Specific Epitopes as a Function of Tuberculosis Disease History.

    Science.gov (United States)

    Scriba, Thomas J; Carpenter, Chelsea; Pro, Sebastian Carrasco; Sidney, John; Musvosvi, Munyaradzi; Rozot, Virginie; Seumois, Grégory; Rosales, Sandy L; Vijayanand, Pandurangan; Goletti, Delia; Makgotlho, Edward; Hanekom, Willem; Hatherill, Mark; Peters, Bjoern; Sette, Alessandro; Arlehamn, Cecilia S Lindestam

    2017-09-15

    Individuals with a history of tuberculosis (TB) disease are at elevated risk of disease recurrence. The underlying cause is not known, but one explanation is that previous disease results in less-effective immunity against Mycobacterium tuberculosis (Mtb). We hypothesized that the repertoire of Mtb-derived epitopes recognized by T cells from individuals with latent Mtb infection differs as a function of previous diagnosis of active TB disease. T-cell responses to peptide pools in samples collected from an adult screening and an adolescent validation cohort were measured by IFN-γ enzyme-linked immunospot assay or intracellular cytokine staining. We identified a set of "type 2" T-cell epitopes that were recognized at 10-fold-lower levels in Mtb-infected individuals with a history of TB disease less than 6 years ago than in those without previous TB. By contrast, "type 1" epitopes were recognized equally well in individuals with or without previous TB. The differential epitope recognition was not due to differences in HLA class II binding, memory phenotypes, or gene expression in the responding T cells. Instead, "TB disease history-sensitive" type 2 epitopes were significantly (P < 0.0001) more homologous to sequences from bacteria found in the human microbiome than type 1 epitopes. Preferential loss of T-cell reactivity to Mtb epitopes that are homologous to bacteria in the microbiome in persons with previous TB disease may reflect long-term effects of antibiotic TB treatment on the microbiome.

  12. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    Science.gov (United States)

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  13. Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of "self-tagged" particles.

    Science.gov (United States)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J

    2013-11-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.

  14. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization.

    Science.gov (United States)

    Pesavento, Joseph B; Crawford, Sue E; Roberts, Ed; Estes, Mary K; Prasad, B V Venkataram

    2005-07-01

    The rotavirus spike protein, VP4, is a major determinant of infectivity and neutralization. Previously, we have shown that trypsin-enhanced infectivity of rotavirus involves a transformation of the VP4 spike from a flexible to a rigid bilobed structure. Here we show that at elevated pH the spike undergoes a drastic, irreversible conformational change and becomes stunted, with a pronounced trilobed appearance. These particles with altered spikes, at a normal pH of 7.5, despite the loss of infectivity and the ability to hemagglutinate, surprisingly exhibit sialic acid (SA)-independent cell binding in contrast to the SA-dependent cell binding exhibited by native virions. Remarkably, a neutralizing monoclonal antibody that remains bound to spikes throughout the pH changes (pH 7 to 11 and back to pH 7) completely prevents this conformational change, preserving the SA-dependent cell binding and hemagglutinating functions of the virion. A hypothesis that emerges from the present study is that high-pH treatment triggers a conformational change that mimics a post-SA-attachment step to expose an epitope recognized by a downstream receptor in the rotavirus cell entry process. This process involves sequential interactions with multiple receptors, and the mechanism by which the antibody neutralizes is by preventing this conformational change.

  15. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    Bermúdez-Humarán Luis G

    2009-08-01

    Full Text Available Abstract Background The expression of vaccine antigens in lactic acid bacteria (LAB is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i the expression of Human papillomavirus type 16 (HPV-16 L1 major capsid protein in the model LAB Lactococcus lactis and ii the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs. Results and conclusion HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.

  16. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  17. Conservation and diversity of influenza A H1N1 HLA-restricted T cell epitope candidates for epitope-based vaccines.

    Directory of Open Access Journals (Sweden)

    Paul Thiamjoo Tan

    2010-01-01

    Full Text Available The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54 peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.Seventeen (17 T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.

  18. Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2015-01-01

    Full Text Available Herpes simplex virus 1 (HSV-1 capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i The number of R7041(∆US3 capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii The mean number of R7041(∆US3 virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii 98% of R7041(∆US3 virions were in the perinuclear space; (iv The number of R7041(∆US3 capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3 yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3 virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.

  19. Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes.

    Science.gov (United States)

    Ofran, Yanay; Schlessinger, Avner; Rost, Burkhard

    2008-11-01

    Exact identification of complementarity determining regions (CDRs) is crucial for understanding and manipulating antigenic interactions. One way to do this is by marking residues on the antibody that interact with B cell epitopes on the antigen. This, of course, requires identification of B cell epitopes, which could be done by marking residues on the antigen that bind to CDRs, thus requiring identification of CDRs. To circumvent this vicious circle, existing tools for identifying CDRs are based on sequence analysis or general biophysical principles. Often, these tools, which are based on partial data, fail to agree on the boundaries of the CDRs. Herein we present an automated procedure for identifying CDRs and B cell epitopes using consensus structural regions that interact with the antigens in all known antibody-protein complexes. Consequently, we provide the first comprehensive analysis of all CDR-epitope complexes of known three-dimensional structure. The CDRs we identify only partially overlap with the regions suggested by existing methods. We found that the general physicochemical properties of both CDRs and B cell epitopes are rather peculiar. In particular, only four amino acids account for most of the sequence of CDRs, and several types of amino acids almost never appear in them. The secondary structure content and the conservation of B cell epitopes are found to be different than previously thought. These characteristics of CDRs and epitopes may be instrumental in choosing which residues to mutate in experimental search for epitopes. They may also assist in computational design of antibodies and in predicting B cell epitopes.

  20. Novel Infectivity-Enhanced Oncolytic Adenovirus with a Capsid-Incorporated Dual-Imaging Moiety for Monitoring Virotherapy in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kristopher J. Kimball

    2009-09-01

    Full Text Available We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for non-invasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk and monomeric red fluorescent protein 1 (mRFP1 into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  1. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  2. Characterization of a linear epitope on Chlamydia trachomatis serovar L2 DnaK-like protein

    DEFF Research Database (Denmark)

    Ozkokmen, D; Birkelund, Svend; Christiansen, Gunna

    1994-01-01

    A cytoplasmic 75-kDa immunogen from Chlamydia trachomatis serovar L2 has previously been characterized as being similar to the Escherichia coli heat shock protein DnaK. We have localized a linear epitope for one monoclonal antibody specific for C. trachomatis DnaK. By use of a recombinant DNA...... technique, the epitope was limited to 14 amino acids. With synthetic peptides, the epitope was further limited to eight amino acids. Six of these amino acids are conserved in bovine HSP70, which has a known three-dimensional structure. The amino acid sequence homologous to the epitope is located in a linear...

  3. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases.

    Science.gov (United States)

    Lu, Yudong; Li, Zhong; Teng, Huan; Xu, Hongke; Qi, Songnan; He, Jian'an; Gu, Dayong; Chen, Qijun; Ma, Hongwei

    2015-08-21

    Linear B-cell epitopes are ideal biomarkers for the serodiagnosis of infectious diseases. However, the long-predicted diagnostic value of epitopes has not been realized. Here, we demonstrated a method, diagnostic epitopes in four steps (DEIFS), that delivers a combination of epitopes for the serodiagnosis of infectious diseases with a high success rate. Using DEIFS for malaria, we identified 6 epitopes from 8 peptides and combined them into 3 chimeric peptide constructs. Along with 4 other peptides, we developed a rapid diagnostic test (RDT), which is able to differentiate Plasmodium falciparum (P. falciparum) from Plasmodium vivax (P. vivax) infections with 95.6% overall sensitivity and 99.1% overall specificity. In addition to applications in diagnosis, DEIFS could also be used in the diagnosis of virus and bacterium infections, discovery of vaccine candidates, evaluation of vaccine potency, and study of disease progression.

  4. The S100A10 subunit of the annexin A2 heterotetramer facilitates L2-mediated human papillomavirus infection.

    Science.gov (United States)

    Woodham, Andrew W; Da Silva, Diane M; Skeate, Joseph G; Raff, Adam B; Ambroso, Mark R; Brand, Heike E; Isas, J Mario; Langen, Ralf; Kast, W Martin

    2012-01-01

    Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI), or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108-120) specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.

  5. The S100A10 subunit of the annexin A2 heterotetramer facilitates L2-mediated human papillomavirus infection.

    Directory of Open Access Journals (Sweden)

    Andrew W Woodham

    Full Text Available Mucosotropic, high-risk human papillomaviruses (HPV are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI, or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108-120 specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.

  6. Depigmented Allergoids Reveal New Epitopes with Capacity to Induce IgG Blocking Antibodies

    Directory of Open Access Journals (Sweden)

    M. Angeles López-Matas

    2013-01-01

    Full Text Available Background. The synthesis of allergen-specific blocking IgGs that interact with IgE after allergen immunotherapy (SIT has been related to clinical efficacy. The objectives were to investigate the epitope specificity of IgG-antibodies induced by depigmented-polymerized (Dpg-Pol allergoids and unmodified allergen extracts, and examine IgE-blocking activity of induced IgG-antibodies. Methods. Rabbits were immunized with native and Dpg-Pol extracts of birch pollen, and serum samples were obtained. Recognition of linear IgG-epitopes of Bet v 1 and Bet v 2 and the capacity of these IgG-antibodies to block binding of human-IgE was determined. Results. Serum from rabbits immunized with native extracts recognised 11 linear epitopes from Bet v 1, while that from Dpg-Pol-immunized animals recognised 8. For Bet v 2, 8 epitopes were recognized by IgG from native immunized animals, and 9 from Dpg-Pol immunized one. Dpg-Pol and native immunized serum did not always recognise the same epitopes, but specific-IgG from both could block human-IgE binding sites for native extract. Conclusions. Depigmented-polymerized birch extract stimulates the synthesis of specific IgG-antibodies which recognize common but also novel epitopes compared with native extracts. IgG-antibodies induced by Dpg-Pol effectively inhibit human-IgE binding to allergens which may be part of the mechanism of action of SIT.

  7. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity

    Directory of Open Access Journals (Sweden)

    Höglund Stefan

    2007-09-01

    Full Text Available Abstract Background The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24 molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation. Results We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture. Conclusion These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells.

  8. Identification of a novel linear B-cell epitope using a monoclonal antibody against the carboxy terminus of the canine distemper virus nucleoprotein and sequence analysis of the identified epitope in different CDV isolates.

    Science.gov (United States)

    Yi, Li; Cao, Zhigang; Tong, Mingwei; Cheng, Yuening; Yang, Yong; Li, Shuang; Wang, Jianke; Lin, Peng; Sun, Yaru; Zhang, Miao; Cheng, Shipeng

    2017-09-29

    The Nucleoprotein (NP) is the most abundant and highly immunogenic protein in canine distemper virus (CDV), playing an important role in CDV viral replication and assembly. In this study, a specific monoclonal antibody, named C8, was produced against the NP protein C terminal (amino acids 401-523). A linear N protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to enzyme-linked immunosorbent assay (ELISA) analysis.The results indicated that 444 GDKYPIHFNDER 455 was the minimal linear epitope that could be recognized by mAb C8. Sequence alignments demonstrated that this linear epitope is less conserved among three CDV genotypes. We next analyzed the level of conservation of the defined epitope in19 Chinese CDV clinical isolates, and it has one site variation in amino acid among these CDV isolations. 2 isolates have the amino acid mutations F451L, while one has P448Ssubstitution.Phylogenetic analysis showed the two isolates with F451Lsubstitution had a closer relationship in a virulent strain ZJ-7, so the epitope may be a significant tag associated with virus virulence. This collection of mAb along with defined linear epitope may provide useful reagents for investigations of NP protein function and the development of CDV specific diagnostics.

  9. Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE. EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP, probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was “leaky” for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the “EAE-susceptibility-associated” epitope was “ignored” by specific CD4 T cells, whereas the “resistance-associated” epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs. TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy, could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

  10. Epitope mapping of the alpha-chain of the insulin-like growth factor I receptor using antipeptide antibodies.

    Science.gov (United States)

    Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W

    1994-12-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.

  11. Viral O-GalNAc peptide epitopes

    DEFF Research Database (Denmark)

    Olofsson, Sigvard; Blixt, Klas Ola; Bergström, Tomas

    2016-01-01

    Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted o...

  12. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  13. A Conformational Change in C-Reactive Protein Enhances Leukocyte Recruitment and Reactive Oxygen Species Generation in Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Jan R. Thiele

    2018-04-01

    Full Text Available IntroductionC-reactive protein circulates as a pentameric protein (pCRP. pCRP is a well-established diagnostic marker as plasma levels rise in response to tissue injury and inflammation. We recently described pro-inflammatory properties of CRP, which are mediated by conformational changes from pCRP to bioactive isoforms expressing pro-inflammatory neo-epitopes [pCRP* and monomeric C-reactive protein (mCRP]. Here, we investigate the role of CRP isoforms in renal ischemia/reperfusion injury (IRI.MethodsRat kidneys in animals with and without intraperitoneally injected pCRP were subjected to IRI by the time of pCRP exposure and were subsequently analyzed for monocyte infiltration, caspase-3 expression, and tubular damage. Blood urea nitrogen (BUN was analyzed pre-ischemia and post-reperfusion. CRP effects on leukocyte recruitment were investigated via intravital imaging of rat-striated muscle IRI. Localized conformational CRP changes were analyzed by immunohistochemistry using conformation specific antibodies. 1,6-bis(phosphocholine-hexane (1,6-bisPC, which stabilizes CRP in its native pentameric form was used to validate CRP effects. Leukocyte activation was assessed by quantification of reactive oxygen species (ROS induction by CRP isoforms ex vivo and in vitro through electron spin resonance spectroscopy. Signaling pathways were analyzed by disrupting lipid rafts with nystatin and subsequent ROS detection. In order to confirm the translational relevance of our findings, biopsies of microsurgical human free tissue transfers before and after IRI were examined by immunofluorescence for CRP deposition and co-localization of CD68+ leukocytes.ResultsThe application of pCRP aggravates tissue damage in renal IRI. 1,6-bisPC reverses these effects via inhibition of the conformational change that leads to exposure of pro-inflammatory epitopes in CRP (pCRP* and mCRP. Structurally altered CRP induces leukocyte–endothelial interaction and induces ROS

  14. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k.

    Science.gov (United States)

    Condezo, Gabriela N; Marabini, Roberto; Ayora, Silvia; Carazo, José M; Alba, Raúl; Chillón, Miguel; San Martín, Carmen

    2015-09-01

    Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the

  15. Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy

    Science.gov (United States)

    Vaughan, Kerrie; Seymour, Emily; Peters, Bjoern; Sette, Alessandro

    2016-01-01

    The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level. PMID:24530743

  16. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries.

    Science.gov (United States)

    Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W

    1998-10-15

    Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.

  17. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Science.gov (United States)

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  18. Temporal Formation and Immunolocalization of an Endospore Surface Epitope During Pasteuria penetrans Sporogenesis.

    Science.gov (United States)

    Brito, J A; Preston, J F; Dickson, D W; Giblin-Davis, R M; Williams, D S; Aldrich, H C; Rice, J D

    2003-09-01

    The synthesis and localization of an endospore surface epitope associated with the development of Pasteuria penetrans was determined using a monoclonal antibody (MAb) as a probe. Nematodes, uninfected or infected with P. penetrans, were harvested at 12, 16, 24, and 38 days after inoculation (DAI) and then examined to determine the developmental stage of the bacterium. Vegetative growth of P. penetrans was observed only in infected nematodes harvested at 12 and 16 DAI, whereas cells at different stages of sporulation and mature endospores were observed at 24 and 38 DAI. ELISA and immunoblot analysis revealed that the adhesin-associated epitope was first detected at 24 DAI, and increased in the later stages of sporogenesis. These results indicate that the synthesis of adhesin-related proteins occurred at a certain developmental stage relative to the sporulation process, and was associated with endospore maturation. Immunofluorescence microscopy indicated that the distribution of the epitope is nearly uniform on the periphery of each spore, as defined by parasporal fibers. Immunocytochemistry at the ultrastructural level indicated a distribution of the epitope over the parasporal fibers. The epitope also was detected over other structures such as sporangium and exosporium during the sporogenesis process, but it was not observed over the cortex, inner-spore coat, outer-spore coat, or protoplasm. The appearance of the adhesin epitope first at stage III of sporogenesis and its presence on the parasporal fibers are consistent with an adhesin-related role in the attachment of the mature endospore to the cuticle of the nematode host.

  19. GPS-MBA: computational analysis of MHC class II epitopes in type 1 diabetes.

    Science.gov (United States)

    Cai, Ruikun; Liu, Zexian; Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-A(g7) in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-A(g7) and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-A(g7) and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-A(g7) and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org.

  20. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    NARCIS (Netherlands)

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity,

  1. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Directory of Open Access Journals (Sweden)

    Chakrabarti Mrinmay

    2010-08-01

    Full Text Available Abstract Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV, a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11 in its genome. Some of its genome segments (S2 and S6-S11 have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1 and 3 (S3 of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV, Lymantria dispar CPV (LdCPV, and Dendrolimus punctatus CPV (DpCPV. The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3

  2. Can mutational GC-pressure create new linear B-cell epitopes in herpes simplex virus type 1 glycoprotein B?

    Science.gov (United States)

    Khrustalev, Vladislav Victorovich

    2009-01-01

    We showed that GC-content of nucleotide sequences coding for linear B-cell epitopes of herpes simplex virus type 1 (HSV1) glycoprotein B (gB) is higher than GC-content of sequences coding for epitope-free regions of this glycoprotein (G + C = 73 and 64%, respectively). Linear B-cell epitopes have been predicted in HSV1 gB by BepiPred algorithm ( www.cbs.dtu.dk/services/BepiPred ). Proline is an acrophilic amino acid residue (it is usually situated on the surface of protein globules, and so included in linear B-cell epitopes). Indeed, the level of proline is much higher in predicted epitopes of gB than in epitope-free regions (17.8% versus 1.8%). This amino acid is coded by GC-rich codons (CCX) that can be produced due to nucleotide substitutions caused by mutational GC-pressure. GC-pressure will also lead to disappearance of acrophobic phenylalanine, isoleucine, methionine and tyrosine coded by GC-poor codons. Results of our "in-silico directed mutagenesis" showed that single nonsynonymous substitutions in AT to GC direction in two long epitope-free regions of gB will cause formation of new linear epitopes or elongation of previously existing epitopes flanking these regions in 25% of 539 possible cases. The calculations of GC-content and amino acid content have been performed by CodonChanges algorithm ( www.barkovsky.hotmail.ru ).

  3. Epitope Mapping of Monoclonal Antibody PMab-38 Against Dog Podoplanin.

    Science.gov (United States)

    Chang, Yao-Wen; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Podoplanin (PDPN), a type I transmembrane sialoglycoprotein, is extensively expressed by normal lymphatic endothelial cells, renal podocytes, and pulmonary type I alveolar cells. Nevertheless, increased expression of PDPN in malignant tumors not only associates with poor prognosis but also facilitates hematogenous metastasis through interaction with C-type lectin-like receptor-2 presented on platelets, followed by PDPN-mediated platelet activation. We previously reported a novel PMab-38 antibody, an anti-dog PDPN (dPDPN) monoclonal antibody, which specifically recognizes PDPN in squamous cell carcinomas melanomas and cancer-associated fibroblasts in canine cancer tissues. However, the specific binding with the epitope of PMab-38 remains undefined. In this study, flow cytometry was utilized to investigate the epitope of PMab-38, which was determined using a series of deletion or point mutants of dPDPN. The results revealed that the critical epitope of PMab-38 is Tyr67 and Glu68 of dPDPN.

  4. A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies

    DEFF Research Database (Denmark)

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah

    2017-01-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories world-wide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types......, and developmental stages. Despite their importance and broad use, the precise binding epitope for only a few of these antibodies has been determined. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies....... Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall...

  5. CTL escape mediated by proteasomal destruction of an HIV-1 cryptic epitope.

    Directory of Open Access Journals (Sweden)

    Sylvain Cardinaud

    2011-05-01

    Full Text Available Cytotoxic CD8+ T cells (CTLs play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames (ARF. We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic acid (Q9VF/5D and a majority encoding an asparagine (Q9VF/5N. We compared the prevalence of each variant in PBMCs of HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals. We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis, we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by introducing mutations leading to HIV ARF-epitope destruction by proteasomes.

  6. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shauna M. [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Zhao, Linbo [Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Bosard, Catherine [Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Imperiale, Michael J., E-mail: imperial@umich.edu [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States)

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  7. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    International Nuclear Information System (INIS)

    Bennett, Shauna M.; Zhao, Linbo; Bosard, Catherine; Imperiale, Michael J.

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection

  8. Thyroid Autoantibodies Display both “Original Antigenic Sin” and Epitope Spreading

    Directory of Open Access Journals (Sweden)

    Sandra M. McLachlan

    2017-12-01

    Full Text Available Evidence for original antigenic sin in spontaneous thyroid autoimmunity is revealed by autoantibody interactions with immunodominant regions on thyroid autoantigens, thyroglobulin (Tg, thyroid peroxidase (TPO, and the thyrotropin receptor (TSHR A-subunit. In contrast, antibodies induced by immunization of rabbits or mice recognize diverse epitopes. Recognition of immunodominant regions persists despite fluctuations in autoantibody levels following treatment or over time. The enhancement of spontaneously arising pathogenic TSHR antibodies in transgenic human thyrotropin receptor/NOD.H2h4 mice by injecting a non-pathogenic form of TSHR A-subunit protein also provides evidence for original antigenic sin. From other studies, antigen presentation by B cells, not dendritic cells, is likely responsible for original antigenic sin. Recognition of restricted epitopes on the large glycosylated thyroid autoantigens (60-kDa A-subunit, 100-kDa TPO, and 600-kDa Tg facilitates exploring the amino acid locations in the immunodominant regions. Epitope spreading has also been revealed by autoantibodies in thyroid autoimmunity. In humans, and in mice that spontaneously develop autoimmunity to all three thyroid autoantigens, autoantibodies develop first to Tg and later to TPO and the TSHR A-subunit. The pattern of intermolecular epitope spreading is related in part to the thyroidal content of Tg, TPO and TSHR A-subunit and to the molecular sizes of these proteins. Importantly, the epitope spreading pattern provides a rationale for future antigen-specific manipulation to block the development of all thyroid autoantibodies by inducing tolerance to Tg, first in the autoantigen cascade. Because of its abundance, Tg may be the autoantigen of choice to explore antigen-specific treatment, preventing the development of pathogenic TSHR antibodies.

  9. Identification of a conserved B-cell epitope on the GapC protein of Streptococcus dysgalactiae.

    Science.gov (United States)

    Zhang, Limeng; Zhou, Xue; Fan, Ziyao; Tang, Wei; Chen, Liang; Dai, Jian; Wei, Yuhua; Zhang, Jianxin; Yang, Xuan; Yang, Xijing; Liu, Daolong; Yu, Liquan; Zhang, Hua; Wu, Zhijun; Yu, Yongzhong; Sun, Hunan; Cui, Yudong

    2015-01-01

    Streptococcus dysgalactiae (S. dysgalactia) GapC is a highly conserved surface dehydrogenase among the streptococcus spp., which is responsible for inducing protective antibody immune responses in animals. However, the B-cell epitope of S. dysgalactia GapC have not been well characterized. In this study, a monoclonal antibody 1F2 (mAb1F2) against S. dysgalactiae GapC was generated by the hybridoma technique and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12) for mapping the linear B-cell epitope. The mAb1F2 recognized phages displaying peptides with the consensus motif TRINDLT. Amino acid sequence of the motif exactly matched (30)TRINDLT(36) of the S. dysgalactia GapC. Subsequently, site-directed mutagenic analysis further demonstrated that residues R31, I32, N33, D34 and L35 formed the core of (30)TRINDLT(36), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1F2. The epitope (30)TRINDLT(36) showed high homology among different streptococcus species. Overall, our findings characterized a conserved B-cell epitope, which will be useful for the further study of epitope-based vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Huang Bin

    2013-06-01

    Full Text Available   Objective(s: To investigate the expression of human papilloma virus (HPV L1 capsid protein, and human telomerase RNA component (hTERC in cervical cancer and the role of detection of both genes in screening of cervical cancer.   Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-/hTERC(+ was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+/hTERC(- and L1(-/hTERC(- were negatively related to the grade of cervical lesions. L1(-/hTERC(+ was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent.

  11. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation.

    Directory of Open Access Journals (Sweden)

    Nayab Malik

    2017-09-01

    Full Text Available Foot-and-mouth disease virus (FMDV belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5 release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4, N-termini (VP1 and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å. In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.

  12. Correlation of Naturally Occurring HIV-1 Resistance to DEB025 with Capsid Amino Acid Polymorphisms

    Directory of Open Access Journals (Sweden)

    Brigitte Rosenwirth

    2013-03-01

    Full Text Available DEB025 (alisporivir is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1 and hepatitis C virus (HCV. It binds to cyclophilin A (CypA and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96, as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent.

  13. Elucidation of the TMab-6 Monoclonal Antibody Epitope Against Telomerase Reverse Transcriptase.

    Science.gov (United States)

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kato, Yukinari

    2018-05-03

    Telomerase reverse transcriptase (TERT) and mutations of the TERT promoter are significant in the pathogenesis of 1p/19q-codeleted oligodendrogliomas and isocitrate dehydrogenase gene wild-type glioblastomas, as well as melanomas and squamous cell carcinomas. We previously developed an antihuman TERT monoclonal antibody (mAb), TMab-6, which is applicable in immunohistochemistry for human tissues. However, the binding epitope of TMab-6 against TERT is yet to be elucidated. In this study, enzyme-linked immunosorbent assay and immunohistochemistry were utilized for investigating the epitope of TMab-6. The findings revealed that the critical epitope of TMab-6 is the TERT sequence PSTSRPPRPWD; Thr310 and Ser311 of TERT are especially significant amino acids for TMab-6 recognition.

  14. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  15. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age.

    Science.gov (United States)

    Ayuso, Rosalía; Sánchez-Garcia, Silvia; Lin, Jing; Fu, Zhiyan; Ibáñez, María Dolores; Carrillo, Teresa; Blanco, Carlos; Goldis, Marina; Bardina, Ludmila; Sastre, Joaquín; Sampson, Hugh A

    2010-06-01

    Shellfish allergy is a long-lasting disorder typically affecting adults. Despite its high prevalence, there is limited information about allergenic shrimp proteins and the epitopes implicated in such allergic reactions. We sought to identify the IgE-binding epitopes of the 4 shrimp allergens and to characterize epitope recognition profiles of children and adults with shrimp allergy. Fifty-three subjects, 34 children and 19 adults, were selected with immediate allergic reactions to shrimp, increased shrimp-specific serum IgE levels, and positive immunoblot binding to shrimp. Study subjects and 7 nonatopic control subjects were tested by means of peptide microarray for IgE binding with synthetic overlapping peptides spanning the sequences of Litopenaeus vannamei shrimp tropomyosin, arginine kinase (AK), myosin light chain (MLC), and sarcoplasmic calcium-binding protein (SCP). The Wilcoxon test was used to determine significant differences in z scores between patients and control subjects. The median shrimp IgE level was 4-fold higher in children than in adults (47 vs 12.5 kU(A)/L). The frequency of allergen recognition was higher in children (tropomyosin, 81% [94% for children and 61% for adults]; MLC, 57% [70% for children and 31% for adults]; AK, 51% [67% for children and 21% for adults]; and SCP, 45% [59% for children and 21% for adults]), whereas control subjects showed negligible binding. Seven IgE-binding regions were identified in tropomyosin by means of peptide microarray, confirming previously identified shrimp epitopes. In addition, 3 new epitopes were identified in tropomyosin (epitopes 1, 3, and 5b-c), 5 epitopes were identified in MLC, 3 epitopes were identified in SCP, and 7 epitopes were identified in AK. Interestingly, frequency of individual epitope recognition, as well as intensity of IgE binding, was significantly greater in children than in adults for all 4 proteins. Children with shrimp allergy have greater shrimp-specific IgE antibody levels and

  16. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    Science.gov (United States)

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  17. Nanoallergens: A multivalent platform for studying and evaluating potency of allergen epitopes in cellular degranulation

    Science.gov (United States)

    Deak, Peter E; Vrabel, Maura R; Pizzuti, Vincenzo J; Kiziltepe, Tanyel

    2016-01-01

    Degranulation caused by type I hypersensitivity (allergies) is a complex biophysical process, and available experimental models for studying relevant immunoglobulin E binding epitopes on allergen proteins lack the ability to adequately evaluate, rank, and associate these epitopes individually and with each other. In this study, we propose a new allergy model system for studying potential allergen epitopes using nanoallergens, liposomes modified to effectively display IgE binding epitopes/haptens. By utilizing the covalently conjugated lipid tails on two hapten molecules (dinitrophenol and dansyl), hapten molecules were successfully incorporated into liposomes with high precision to form nanoallergens. Nanoallergens, with precisely controlled high-particle valency, can trigger degranulation with much greater sensitivity than commonly used bovine serum albumin conjugates. In rat basophil leukemia cell experiments, nanoallergens with only 2% hapten loading were able to trigger degranulation in vitro at concentrations as low as 10 pM. Additionally, unlike bovine serum albumin-hapten conjugates, nanoallergens allow exact control over particle size and valency. By varying the nanoallergen parameters such as size, valency, monovalent affinity of hapten, and specific IgE ratios, we exposed the importance of these variables on degranulation intensity while demonstrating nanoallergens’ potential for evaluating both high- and low-affinity epitopes. The data presented in this article establish nanoallergen platform as a reliable and versatile allergy model to study and evaluate allergen epitopes in mast cell degranulation. PMID:27188517

  18. Specific immunotherapy modifies allergen-specific CD4+ T cell responses in an epitope-dependent manner

    Science.gov (United States)

    Wambre, Erik; DeLong, Jonathan H.; James, Eddie A.; Torres-Chinn, Nadia; Pfützner, Wolfgang; Möbs, Christian; Durham, Stephen R.; Till, Stephen J.; Robinson, David; Kwok, William W.

    2014-01-01

    Background Understanding the mechanisms by which the immune system induces and controls allergic inflammation at the T cell epitope level is critical for the design of new allergy vaccine strategies. Objective To characterize allergen-specific T cell responses linked with allergy or peripheral tolerance and to determine how CD4+ T cell responses to individual allergen-derived epitopes change over allergen-specific immunotherapy (ASIT). Methods Timothy grass pollen (TGP) allergy was used as a model for studying grass pollen allergies. The breadth, magnitude, epitope hierarchy and phenotype of the DR04:01-restricted TGP-specific T cell responses in ten grass pollen allergic, five non-atopic and six allergy vaccine-treated individuals was determined using an ex vivo pMHCII-tetramer approach. Results CD4+ T cells in allergic individuals are directed to a broad range of TGP epitopes characterized by defined immunodominance hierarchy patterns and with distinct functional profiles that depend on the epitope recognized. Epitopes that are restricted specifically to either TH2 or TH1/TR1 responses were identified. ASIT was associated with preferential deletion of allergen-specific TH2 cells and without significant change in frequency of TH1/TR1 cells. Conclusions Preferential allergen-specific TH2-cells deletion after repeated high doses antigen stimulation can be another independent mechanism to restore tolerance to allergen during immunotherapy. PMID:24373351

  19. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhou

    Full Text Available BACKGROUND: Human bocavirus species 1-4 (HBoV1-4 have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS: We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰, and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4. Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE: The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.

  20. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaofeng [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Walter, Michael H. [Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Paredes, Angel [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Morais, Marc C., E-mail: mcmorais@utmb.edu [Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States)

    2011-12-20

    The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T = 16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.

  1. Epitope Mapping of Monoclonal Antibody PMab-52 Against Cat Podoplanin.

    Science.gov (United States)

    Chang, Yao-Wen; Kaneko, Mika K; Yamada, Shinji; Kato, Yukinari

    2018-02-02

    The mucin-type membrane glycoprotein podoplanin (PDPN) is frequently overexpressed in numerous malignant cancers, including squamous cell carcinoma, germinal neoplasia, mesothelioma, lung cancer, oral cancer, and brain tumor. PDPN expression is strongly associated with cancer progression and poor prognosis. Furthermore, PDPN binds to C-type lectin-like receptor 2 (CLEC-2) on platelets, followed by PDPN-mediated platelet aggregation to facilitate tumor metastasis. We have previously reported a novel anti-cat PDPN (cPDPN) monoclonal antibody (mAb), PMab-52, which specifically detects cPDPN using flow cytometry analysis and successfully identifies cPDPN in feline squamous cell carcinomas. However, the specific binding epitope of cPDPN for PMab-52 remains unelucidated. In this study, a series of deletion or point mutants of cPDPN were utilized for investigating the binding epitopes of PMab-52 using flow cytometry and Western blotting. The findings of this study revealed that the critical epitopes of platelet aggregation-stimulating domain 4 (PLAG4) of cPDPN are responsible for the binding of PMab-52 to cPDPN.

  2. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.

    Science.gov (United States)

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2015-05-01

    Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted

  3. Microarray glycan profiling reveals algal fucoidan epitopes in diverse marine metazoans

    DEFF Research Database (Denmark)

    Asunción Salmeán, Armando; Hervé, Cécile; Jørgensen, Bodil

    2017-01-01

    Despite the biological importance and pharmacological potential of glycans from marine organisms, there are many unanswered questions regarding their distribution, function, and evolution. Here we describe microarray-based glycan profiling of a diverse selection of marine animals using antibodies...... raised against fucoidan isolated from a brown alga. We demonstrate the presence of two fucoidan epitopes in six animals belonging to three phyla including Porifera, Molusca, and Chordata. We studied the spatial distribution of these epitopes in Cliona celata ("boring sponge") and identified...

  4. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    DEFF Research Database (Denmark)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo

    2017-01-01

    and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation....... The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots...

  5. Determination of critical epitope of PcMab-47 against human podocalyxin

    Directory of Open Access Journals (Sweden)

    Shunsuke Itai

    2018-07-01

    Full Text Available Podocalyxin (PODXL is a type I transmembrane protein, which is highly glycosylated. PODXL is expressed in some types of human cancer tissues including oral, breast, and lung cancer tissues and may promote tumor growth, invasion, and metastasis. We previously produced PcMab-47, a novel anti-PODXL monoclonal antibody (mAb which reacts with endogenous PODXL-expressing cancer cell lines and normal cells independently of glycosylation in Western blot, flow cytometry, and immunohistochemical analysis. In this study, we used enzyme-linked immunosorbent assay (ELISA, flow cytometry, and immunohistochemical analysis to determine the epitope of PcMab-47. The minimum epitope of PcMab-47 was found to be Asp207, His208, Leu209, and Met210. A blocking peptide containing this minimum epitope completely neutralized PcMab-47 reaction against oral cancer cells by flow cytometry and immunohistochemical analysis. These findings could lead to the production of more functional anti-PODXL mAbs, which are advantageous for antitumor activities.

  6. Determination of critical epitope of PcMab-47 against human podocalyxin.

    Science.gov (United States)

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari

    2018-07-01

    Podocalyxin (PODXL) is a type I transmembrane protein, which is highly glycosylated. PODXL is expressed in some types of human cancer tissues including oral, breast, and lung cancer tissues and may promote tumor growth, invasion, and metastasis. We previously produced PcMab-47, a novel anti-PODXL monoclonal antibody (mAb) which reacts with endogenous PODXL-expressing cancer cell lines and normal cells independently of glycosylation in Western blot, flow cytometry, and immunohistochemical analysis. In this study, we used enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of PcMab-47. The minimum epitope of PcMab-47 was found to be Asp207, His208, Leu209, and Met210. A blocking peptide containing this minimum epitope completely neutralized PcMab-47 reaction against oral cancer cells by flow cytometry and immunohistochemical analysis. These findings could lead to the production of more functional anti-PODXL mAbs, which are advantageous for antitumor activities.

  7. Essential C-Terminal region of the baculovirus minor capsid protein VP80 binds DNA

    NARCIS (Netherlands)

    Marek, M.; Merten, O.W.; Francis-Devaraj, F.; Oers, van M.M.

    2012-01-01

    The essential Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) minor capsid protein VP80 has been recently shown to interact with the virus-triggered, nuclear F-actin cytoskeleton. A role for VP80 in virus morphogenesis has been proposed in the maturation of progeny nucleocapsids and

  8. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry.

    Science.gov (United States)

    Planatscher, Hannes; Supper, Jochen; Poetz, Oliver; Stoll, Dieter; Joos, Thomas; Templin, Markus F; Zell, Andreas

    2010-06-25

    Mass spectrometry (MS) based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. For small datasets (a few hundred proteins) it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  9. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  10. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  11. Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities.

    Science.gov (United States)

    Starchenka, S; Bell, A J; Mwange, J; Skinner, M A; Heath, M D

    2017-01-01

    Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an 'immunodominant' Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept

  12. Broadly reactive human CD8 T cells that recognize an epitope conserved between VZV, HSV and EBV.

    Directory of Open Access Journals (Sweden)

    Christopher Chiu

    2014-03-01

    Full Text Available Human herpesviruses are important causes of potentially severe chronic infections for which T cells are believed to be necessary for control. In order to examine the role of virus-specific CD8 T cells against Varicella Zoster Virus (VZV, we generated a comprehensive panel of potential epitopes predicted in silico and screened for T cell responses in healthy VZV seropositive donors. We identified a dominant HLA-A*0201-restricted epitope in the VZV ribonucleotide reductase subunit 2 and used a tetramer to analyze the phenotype and function of epitope-specific CD8 T cells. Interestingly, CD8 T cells responding to this VZV epitope also recognized homologous epitopes, not only in the other α-herpesviruses, HSV-1 and HSV-2, but also the γ-herpesvirus, EBV. Responses against these epitopes did not depend on previous infection with the originating virus, thus indicating the cross-reactive nature of this T cell population. Between individuals, the cells demonstrated marked phenotypic heterogeneity. This was associated with differences in functional capacity related to increased inhibitory receptor expression (including PD-1 along with decreased expression of co-stimulatory molecules that potentially reflected their stimulation history. Vaccination with the live attenuated Zostavax vaccine did not efficiently stimulate a proliferative response in this epitope-specific population. Thus, we identified a human CD8 T cell epitope that is conserved in four clinically important herpesviruses but that was poorly boosted by the current adult VZV vaccine. We discuss the concept of a "pan-herpesvirus" vaccine that this discovery raises and the hurdles that may need to be overcome in order to achieve this.

  13. Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Kristin N. Parent

    2018-02-01

    Full Text Available The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.

  14. Allergen and Epitope Targets of Mouse-Specific T Cell Responses in Allergy and Asthma

    Directory of Open Access Journals (Sweden)

    Véronique Schulten

    2018-02-01

    Full Text Available Mouse allergy has become increasingly common, mainly affecting laboratory workers and inner-city households. To date, only one major allergen, namely Mus m 1, has been described. We sought to identify T cell targets in mouse allergic patients. PBMC from allergic donors were expanded with either murine urine or epithelial extract and subsequently screened for cytokine production (IL-5 and IFNγ in response to overlapping peptides spanning the entire Mus m 1 sequence, peptides from various Mus m 1 isoforms [major urinary proteins (MUPs], peptides from mouse orthologs of known allergens from other mammalian species and peptides from proteins identified by immunoproteomic analysis of IgE/IgG immunoblots of mouse urine and epithelial extracts. This approach let to the identification of 106 non-redundant T cell epitopes derived from 35 antigens. Three major T cell-activating regions were defined in Mus m 1 alone. Moreover, our data show that immunodominant epitopes were largely shared between Mus m 1 and other MUPs even from different species, suggesting that sequence conservation in different allergens is a determinant for immunodominance. We further identified several novel mouse T cell antigens based on their homology to known mammalian allergens. Analysis of cohort-specific T cell responses revealed that rhinitis and asthmatic patients recognized different epitope repertoires. Epitopes defined herein can be formulated into an epitope “megapool” used to diagnose mouse allergy and study mouse-specific T cell responses directly ex vivo. This analysis of T cell epitopes provides a good basis for future studies to increase our understanding of the immunopathology associated with MO-allergy and asthma.

  15. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  16. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome

    DEFF Research Database (Denmark)

    Bresciani, Anne Gøther; Paul, Sinu; Schommer, Nina

    2016-01-01

    or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably...... as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially...

  17. Usefulness of the nonself-self algorithm of HLA epitope immunogenicity in the specificity analysis of monospecific antibodies induced during pregnancy

    Directory of Open Access Journals (Sweden)

    Rene J Duquesnoy

    2015-05-01

    Full Text Available Background HLAMatchmaker is a program to analyze the epitope specificities of HLA antibodies. It considers each HLA allele as a string of eplets. Intralocus and interlocus comparisons between donor and recipient alleles offer a structural assessment of compatibility and an analysis of allele panel reactivity patterns can generate information about epitope specificities of HLA antibodies. However, HLAMatchmaker cannot always generate conclusive interpretations of reactivity patterns of all monospecific antibodies which by definition recognize single epitopes. Hypothesis We have therefore developed a new antibody analysis approach that utilizes the nonself-self algorithm of HLA epitope immunogenicity. It is based in the concept that HLA antibodies originate from B-cells with immunoglobulin receptors to self HLA epitopes on one given allele and which can be activated by epitopes defined by a few nonself residue differences whereas the remainder of the structural epitope of the immunizing allele consists of self residues. Methods Three human monoclonal class I antibodies from HLA typed women sensitized during pregnancy were tested in Ig-binding assays with single alleles on a Luminex platformFindings Three new HLA epitopes were identified; they are defined by combinations of nonself and self residues for one allele of the antibody producer. Conclusion The nonself-self paradigm of HLA epitope immunogenicity offers a second approach to analyze HLA antibody specificities.

  18. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    International Nuclear Information System (INIS)

    Patterson, Edward I.; Dombrovski, Andrew K.; Swarbrick, Crystall M.D.; Raidal, Shane R.; Forwood, Jade K.

    2013-01-01

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediate nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface

  19. Thermodynamic Mechanism for the Evasion of Antibody Neutralization in Flaviviruses

    Science.gov (United States)

    2015-01-01

    Mutations in the epitopes of antigenic proteins can confer viral resistance to antibody-mediated neutralization. However, the fundamental properties that characterize epitope residues and how mutations affect antibody binding to alter virus susceptibility to neutralization remain largely unknown. To address these questions, we used an ensemble-based algorithm to characterize the effects of mutations on the thermodynamics of protein conformational fluctuations. We applied this method to the envelope protein domain III (ED3) of two medically important flaviviruses: West Nile and dengue 2. We determined an intimate relationship between the susceptibility of a residue to thermodynamic perturbations and epitope location. This relationship allows the successful identification of the primary epitopes in each ED3, despite their high sequence and structural similarity. Mutations that allow the ED3 to evade detection by the antibody either increase or decrease conformational fluctuations of the epitopes through local effects or long-range interactions. Spatially distant interactions originate in the redistribution of conformations of the ED3 ensembles, not through a mechanically connected array of contiguous amino acids. These results reconcile previous observations of evasion of neutralization by mutations at a distance from the epitopes. Finally, we established a quantitative correlation between subtle changes in the conformational fluctuations of the epitope and large defects in antibody binding affinity. This correlation suggests that mutations that allow viral growth, while reducing neutralization, do not generate significant structural changes and underscores the importance of protein fluctuations and long-range interactions in the mechanism of antibody-mediated neutralization resistance. PMID:24950171

  20. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    International Nuclear Information System (INIS)

    Nalcacioglu, Remziye; Marks, Hendrik; Vlak, Just M.; Demirbag, Zihni; Oers, Monique M. van

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an immediate-early gene and confirmed that the major capsid protein (MCP) is a late gene. Transcription of DNApol initiated 35 nt upstream and that of MCP 14 nt upstream of the translational start site. In a luciferase reporter gene assay both promoters were active only when cells were infected with CIV. For DNApol sequences between position -27 and -6, relative to the transcriptional start site, were essential for promoter activity. Furthermore, mutation of a G within the sequence TTGTTTT located just upstream of the DNApol transcription initiation site reduced the promoter activity by 25%. Sequences crucial for MCP promoter activity are located between positions -53 and -29

  1. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus

    NARCIS (Netherlands)

    Minten, Inge J.; Wilke, Koos D.M.; Hendriks, Linda J.A.; van Hest, Jan C.M.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria

    2011-01-01

    The cowpea chlorotic mottle virus (CCMV) is a versatile building block for the construction of nanoreactors and functional materials. Upon RNA removal, the capsid can be reversibly assembled and disassembed by adjusting the pH. At pH 5.0 the capsid is in the native assembled conformation, while at

  2. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  3. Production of highly knotted DNA by means of cosmid circularization inside phage capsids

    Directory of Open Access Journals (Sweden)

    Trigueros Sonia

    2007-12-01

    Full Text Available Abstract Background The formation of DNA knots is common during biological transactions. Yet, functional implications of knotted DNA are not fully understood. Moreover, potential applications of DNA molecules condensed by means of knotting remain to be explored. A convenient method to produce abundant highly knotted DNA would be highly valuable for these studies. Results We had previously shown that circularization of the 11.2 kb linear DNA of phage P4 inside its viral capsid generates complex knots by the effect of confinement. We demonstrate here that this mechanism is not restricted to the viral genome. We constructed DNA cosmids as small as 5 kb and introduced them inside P4 capsids. Such cosmids were then recovered as a complex mixture of highly knotted DNA circles. Over 250 μg of knotted cosmid were typically obtained from 1 liter of bacterial culture. Conclusion With this biological system, DNA molecules of varying length and sequence can be shaped into very complex and heterogeneous knotted forms. These molecules can be produced in preparative amounts suitable for systematic studies and applications.

  4. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines.

    Directory of Open Access Journals (Sweden)

    Helen Fox

    2017-01-01

    Full Text Available While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models.

  5. Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1.

    Science.gov (United States)

    Stamogiannos, Athanasios; Maben, Zachary; Papakyriakou, Athanasios; Mpakali, Anastasia; Kokkala, Paraskevi; Georgiadis, Dimitris; Stern, Lawrence J; Stratikos, Efstratios

    2017-03-14

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that is important for the generation of antigenic epitopes and major histocompatibility class I-restricted adaptive immune responses. ERAP1 processes a vast variety of different peptides but still shows length and sequence selectivity, although the mechanism behind these properties is poorly understood. X-ray crystallographic analysis has revealed that ERAP1 can assume at least two distinct conformations in which C-terminal domain IV is either proximal or distal to active site domain II. To improve our understanding of the role of this conformational change in the catalytic mechanism of ERAP1, we used site-directed mutagenesis to perturb key salt bridges between domains II and IV. Enzymatic analysis revealed that these mutations, although located away from the catalytic site, greatly reduce the catalytic efficiency and change the allosteric kinetic behavior. The variants were more efficiently activated by small peptides and bound a competitive inhibitor with weaker affinity and faster dissociation kinetics. Molecular dynamics analysis suggested that the mutations affect the conformational distribution of ERAP1, reducing the population of closed states. Small-angle X-ray scattering indicated that both the wild type and the ERAP1 variants are predominantly in an open conformational state in solution. Overall, our findings suggest that electrostatic interactions between domains II and IV in ERAP1 are crucial for driving a conformational change that regulates the structural integrity of the catalytic site. The extent of domain opening in ERAP1 probably underlies its specialization for antigenic peptide precursors and should be taken into account in inhibitor development efforts.

  6. Processing of the VP1/2A Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette

    2013-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3Cpro to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm...... the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction...

  7. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Wu Shipo

    2012-06-01

    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  8. MuPeXI: prediction of neo-epitopes from tumor sequencing data

    DEFF Research Database (Denmark)

    Bjerregaard, Anne-Mette; Nielsen, Morten; Hadrup, Sine Reker

    2017-01-01

    Personalization of immunotherapies such as cancer vaccines and adoptive T cell therapy depends on identification of patient-specific neo-epitopes that can be specifically targeted. MuPeXI, the mutant peptide extractor and informer, is a program to identify tumor-specific peptides and assess...... their potential to be neo-epitopes. The program input is a file with somatic mutation calls, a list of HLA types, and optionally a gene expression profile. The output is a table with all tumor-specific peptides derived from nucleotide substitutions, insertions, and deletions, along with comprehensive annotation...

  9. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study.

    Science.gov (United States)

    Khan, M A; Hossain, M U; Rakib-Uz-Zaman, S M; Morshed, M N

    2015-07-01

    Ebola viruses (EBOVs) have been identified as an emerging threat in recent year as it causes severe haemorrhagic fever in human. Epitope-based vaccine design for EBOVs remains a top priority because a mere progress has been made in this regard. Another reason is the lack of antiviral drug and licensed vaccine although there is a severe outbreak in Central Africa. In this study, we aimed to design an epitope-based vaccine that can trigger a significant immune response as well as to prognosticate inhibitor that can bind with potential drug target sites using various immunoinformatics and docking simulation tools. The capacity to induce both humoral and cell-mediated immunity by T cell and B cell was checked for the selected protein. The peptide region spanning 9 amino acids from 42 to 50 and the sequence TLASIGTAF were found as the most potential B and T cell epitopes, respectively. This peptide could interact with 12 HLAs and showed high population coverage up to 80.99%. Using molecular docking, the epitope was further appraised for binding against HLA molecules to verify the binding cleft interaction. In addition with this, the allergenicity of the epitopes was also evaluated. In the post-therapeutic strategy, docking study of predicted 3D structure identified suitable therapeutic inhibitor against targeted protein. However, this computational epitope-based peptide vaccine designing and target site prediction against EBOVs open up a new horizon which may be the prospective way in Ebola viruses research; the results require validation by in vitro and in vivo experiments. © 2015 John Wiley & Sons Ltd.

  10. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    International Nuclear Information System (INIS)

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-01-01

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP C ) into a disease associated form (PrP Sc ). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrP C or a β-sheet rich, protease resistant form similar to PrP Sc . Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP Sc from PrP C . This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  11. Characterization of CD4 T Cell Epitopes of Infliximab and Rituximab Identified from Healthy Donors

    Directory of Open Access Journals (Sweden)

    Moustafa Hamze

    2017-05-01

    Full Text Available The chimeric antibodies anti-CD20 rituximab (Rtx and anti-TNFα infliximab (Ifx induce antidrug antibodies (ADAs in many patients with inflammatory diseases. Because of the key role of CD4 T lymphocytes in the initiation of antibody responses, we localized the CD4 T cell epitopes of Rtx and Ifx. With the perspective to anticipate immunogenicity of therapeutic antibodies, identification of the CD4 T cell epitopes was performed using cells collected in healthy donors. Nine T cell epitopes were identified in the variable chains of both antibodies by deriving CD4 T cell lines raised against either Rtx or Ifx. The T cell epitopes often exhibited a good affinity for human leukocyte antigen (HLA-DR molecules and were part of the peptides identified by MHC-associated peptide proteomics assay from HLA-DR molecules of dendritic cells (DCs loaded with the antibodies. Two-third of the T cell epitopes identified from the healthy donors stimulated peripheral blood mononuclear cells from patients having developed ADAs against Rtx or Ifx and promoted the secretion of a diversity of cytokines. These data emphasize the predictive value of evaluating the T cell repertoire of healthy donors and the composition of peptides bound to HLA-DR of DCs to anticipate and prevent immunogenicity of therapeutic antibodies.

  12. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  13. Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Directory of Open Access Journals (Sweden)

    Joos Thomas

    2010-06-01

    Full Text Available Abstract Background Mass spectrometry (MS based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency. Results We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties. Conclusions For small datasets (a few hundred proteins it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.

  14. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    NARCIS (Netherlands)

    Nalcacioglu, R.; Marks, H.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an

  15. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    International Nuclear Information System (INIS)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-01-01

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV F , we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy

  16. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Luque, Daniel; Terrón, María C. [Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Calder, Lesley J. [National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA (United Kingdom); Melero, José A., E-mail: jmelero@isciii.es [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain)

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  17. RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature.

    Science.gov (United States)

    Hosono-Fukao, Tomomi; Ohtake-Niimi, Shiori; Nishitsuji, Kazuchika; Hossain, Md Motarab; van Kuppevelt, Toin H; Michikawa, Makoto; Uchimura, Kenji

    2011-11-01

    RB4CD12 is a phage display antibody that recognizes a heparan sulfate (HS) glycosaminoglycan epitope. The epitope structure is proposed to contain a trisulfated disaccharide, [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-], which supports HS binding to various macromolecules such as growth factors and cytokines in central nervous tissues. Chemically modified heparins that lack the trisulfated disaccharides failed to inhibit the RB4CD12 recognition of HS chains. To determine the localization of the RB4CD12 anti-HS epitope in the brain, we performed an immunohistochemical analysis for cryocut sections of mouse brain. The RB4CD12 staining signals were colocalized with laminin and were detected abundantly in the vascular basement membrane. Bacterial heparinases eliminated the RB4CD12 staining signals. The RB4CD12 epitope localization was confirmed by immunoelectron microscopy. Western blotting analysis revealed that the size of a major RB4CD12-positive molecule is ∼460 kDa in a vessel-enriched fraction of the mouse brain. Disaccharide analysis with reversed-phase ion-pair HPLC showed that [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-] trisulfated disaccharide residues are present in HS purified from the vessel-enriched brain fraction. These results indicated that the RB4CD12 anti-HS epitope exists in large quantities in the brain vascular basement membrane. Copyright © 2011 Wiley-Liss, Inc.

  18. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  19. Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.

    Science.gov (United States)

    Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis

    2016-10-01

    The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid

  20. Identification of linear B-cell epitopes on goose parvovirus non-structural protein.

    Science.gov (United States)

    Yu, Tian-Fei; Ma, Bo; Wang, Jun-Wei

    2016-10-15

    Goose parvovirus (GPV) infection can cause a highly contagious and lethal disease in goslings and muscovy ducklings which is widespread in all major goose (Anser anser) and Muscovy duck (Cairina moschata) farming countries, leading to a huge economic loss. Humoral immune responses play a major role in GPV immune protection during GPV infection. However, it is still unknown for the localization and immunological characteristics of B-cell epitopes on GPV non-structural protein (NSP). Therefore, in this study, the epitopes on the NSP of GPV were identified by means of overlapping peptides expressed in Escherichia coli in combination with Western blot. The results showed that the antigenic epitopes on the GPV NSP were predominantly localized in the C-terminal (aa 485-627), and especially, the fragment NS (498-532) was strongly positive. These results may facilitate future investigations on the function of NSP of GPV and the development of immunoassays for the diagnosis of GPV infection. Copyright © 2016. Published by Elsevier B.V.

  1. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  2. Identification of two novel rabbit hemorrhagic disease virus (RHDV) B cell epitopes and evaluation of its immunoprotection against RHDV.

    Science.gov (United States)

    DeSheng, Kong; HuaiRan, Liu; JiaSen, Liu; Zuo, Yu; Qian, Jiang; DongChun, Guo; XiaoLiang, Hu; FengJie, Wang; QianQian, Huang; LianDong, Qu

    2015-07-01

    The VP60 protein of rabbit hemorrhagic disease virus (RHDV) is a structural protein with important roles in viral replication and assembly. In this study, we immunized BALB/c mice with the RHDV-TP strain. Six monoclonal antibodies (mAbs) were selected and characterized by enzyme-linked immunosorbent assay, Western blotting, and indirectly immunofluorescence analysis (IFA). All six mAbs (AD4, AG10, BC9, BE8, BH3, and DE2) had positive reactions with recombinant VP60 as analyzed by IFA, but only two (AG10 and DE2) reacted with denatured RHDV by Western blotting. Fifty-four partially overlapping fragments of the VP60 gene were expressed with His or Glutathione S-transferase (GST) tags to identify the epitopes recognized by AG10 and DE2. These two epitopes were located at the C-terminal of VP60 and were longer (64 and 53 amino acids, respectively) than normal B cell epitopes. However, both AG10 and DE2 also interacted with RHDV2 VP60 expressed in insect cells. Amino acid alignments of the AG10 and DE2 epitope regions between RHDV and RHDV2 VP60 indicated several mutations, suggesting that the epitopes recognized by the mAbs AG10 and DE2 were discontinuous. Epitope immunogenicity was evaluated by inoculating specific pathogen-free rabbits with saline, purified DE2 epitope, or RHDV inactive vaccine. Rabbits immunized with the DE2 epitope developed high levels of RHDV-specific antibodies but no cellular immune response and died after challenge with RHDV-HYD isolate. Despite their lack of neutralizing activity, these mAb reagents and epitopes may have useful clinical applications and will be valuable tools in further studies of the structure and function of the RHDV VP60 protein.

  3. Identifikasi epitop dari Streptococcus mutans terhadap sekretori Imunoglobulin A saliva (The identification of Streptococcus mutans epitopes to secretory Immunoglobulin A saliva

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2005-09-01

    Full Text Available S. mutans is one of the etiology agent of dental caries, these bacteria have a surface protein of about 185 kDa named Ag I/II. The secretory of sIgA saliva to Ag I/II of S.mutans has shown to be able to prevent colonization in human oral cavity. Peptides derived from the 824 to 853 residues of the P region of antigen I/II S. mutans related to the pathogenesis of dental caries. The aim of this study was to identify the overlapping sequence of amino acids (epitope derived from the 624 to 853 residues of P of antigen I/II S. mutans to sIgA saliva on caries and caries-free subject in a observational cross sectional study. The P region of antigen I/II S.mutans was cut into 22 peptides of 9 mer sequences with an overlapping of 8 mer and an offset of 1 mer, synthesized on polyethylene pins and tested for the reactivity with an ELISA indirect method to sIgA saliva on caries and caries-free subject. The results of this study showed that amino acid sequences with TPPVKP (832–837 and TAPTKPTY (838–845 were reactive to sIgA saliva on caries and caries-free subject. The conclusion of this study was that the overlapping common sequence of amino acid (epitopes corresponding to TPPVKP (832–837 and TAPTKPTY (838–845 was identified as caries marker epitopes in human.

  4. A new series of HAPs as anti-HBV agents targeting at capsid assembly.

    Science.gov (United States)

    Yang, Xiu-yan; Xu, Xiao-qian; Guan, Hua; Wang, Li-li; Wu, Qin; Zhao, Guo-ming; Li, Song

    2014-09-01

    A series of novel Heteroaryldihydropyrimidines (HAPs) derivatives were designed and synthesized as potent inhibitors of HBV capsid assembly. These compounds were prepared from efforts to optimize an earlier series of HAPs, and compounds Mo1, Mo7, Mo8, Mo10, Mo12, and Mo13 demonstrated potent inhibition of HBV DNA replication at submicromolar range. Copyright © 2014. Published by Elsevier Ltd.

  5. [Chemical modification of allergen leading to changes in its epitopic activity].

    Science.gov (United States)

    Babakhin, A A; Gushchin, I S; Andreev, S M; Petrukhina, A I; Viler, A V; Stokinger, B; Nolte, G; Dubuske, L M; Khaitov, R M; Petrpv, R V

    1999-01-01

    Modification of a model allergen ovalbumin (OA) with succinylation led to a decrease of its allergenicity measured by passive cutaneous anaphylaxis reaction, RAST inhibition assay and basophil histamine release. Modified OA stimulated OA-specific T-cell hybrid 3DO-548 to produce IL-2 at the same level as in case of non-modified OA. Modified OA did not induce anti-OA IgE, but did induce anti-OA IgG antibodies. This approach to chemical modification of allergen-selective blockade of B-cell epitopes while not affecting T-cell epitopes suggests new opportunities in creation of safe and effective allergovaccines.

  6. Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-02-01

    Full Text Available Abstract Background HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An in silico approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin. Results Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide. Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100% conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2. Conclusions The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was

  7. Expression of Hemagglutinin–Neuraminidase and fusion epitopes of Newcastle Disease Virus in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Amir Ghaffar Shahriari

    2016-07-01

    Conclusion: Developments in genetic engineering have led to plant-based systems for recombinant vaccine production. In this research, tobacco plant was used to express F and HN epitopes of NDV. Our results indicate that for the production of recombinant vaccine, it is a novel strategy to use concatenated epitopes without their genetic fusion onto larger scaffold structure such as viral coat protein.

  8. Identification of one B-cell epitope from NS1 protein of duck Tembusu virus with monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Jinfeng Ti

    Full Text Available This study describes the identification of one linear B-cell epitope on TMUV NS1 protein with monoclonal antibody (mAb 3G2 by indirect enzyme-linked immunosorbent assay (ELISA. In this study, NS1 protein was expressed in prokaryotic expression system and purified. One mAb against NS1 protein was generated from Balb/c mice immunized with recombinant protein NS1. A set of 35 partially-overlapping polypeptides covering the entire NS1 protein was expressed with PGEX-6P-1 vector and screened with mAb 3G2. One polypeptide against the mAb was acquired and identified by indirect ELISA and western-blot. To map the epitope accurately, one or two amino acid residues were removed from the carboxy and amino terminal of polypeptide sequentially. A series of truncated oligopeptides were expressed and purified. The minimal determinant of the linear B cell epitope was recognized and identified with mAb 3G2. The accurate linear B-cell epitope was 269DEKEIV274 located in NS1 protein. Furthermore, sequence alignment showed that the epitope was highly conserved and specific among TMUV strains and other flavivirus respectively. The linear B-cell epitope of TMUV NS1 protein could benefit the development of new vaccines and diagnostic assays.

  9. Epitope mapping of the domains of human angiotensin converting enzyme.

    Science.gov (United States)

    Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E

    2006-06-01

    Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.

  10. Multi-level Strategy for Identifying Proteasome-Catalyzed Spliced Epitopes Targeted by CD8+ T Cells during Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Anouk C.M. Platteel

    2017-08-01

    Full Text Available Proteasome-catalyzed peptide splicing (PCPS generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design.

  11. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  12. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity

    Directory of Open Access Journals (Sweden)

    Zhao Qinjian

    2012-02-01

    Full Text Available Abstract Background Human papillomavirus (HPV vaccines based on major capsid protein L1 are licensed in over 100 countries to prevent HPV infections. The yeast-derived recombinant quadrivalent HPV L1 vaccine, GARDASIL(R, has played an important role in reducing cancer and genital warts since its introduction in 2006. The L1 proteins self-assemble into virus-like particles (VLPs. Results VLPs were subjected to post-purification disassembly and reassembly (D/R treatment during bioprocessing to improve VLP immunoreactivity and stability. The post-D/R HPV16 VLPs and their complex with H16.V5 neutralizing antibody Fab fragments were visualized by cryo electron microscopy, showing VLPs densely decorated with antibody. Along with structural improvements, post-D/R VLPs showed markedly higher antigenicity to conformational and neutralizing monoclonal antibodies (mAbs H16.V5, H16.E70 and H263.A2, whereas binding to mAbs recognizing linear epitopes (H16.J4, H16.O7, and H16.H5 was greatly reduced. Strikingly, post-D/R VLPs showed no detectable binding to H16.H5, indicating that the H16.H5 epitope is not accessible in fully assembled VLPs. An atomic homology model of the entire HPV16 VLP was generated based on previously determined high-resolution structures of bovine papillomavirus and HPV16 L1 pentameric capsomeres. Conclusions D/R treatment of HPV16 L1 VLPs produces more homogeneous VLPs with more virion-like antibody reactivity. These effects can be attributed to a combination of more complete and regular assembly of the VLPs, better folding of L1, reduced non-specific disulfide-mediated aggregation and increased stability of the VLPs. Markedly different antigenicity of HPV16 VLPs was observed upon D/R treatment with a panel of monoclonal antibodies targeting neutralization sensitive epitopes. Multiple epitope-specific assays with a panel of mAbs with different properties and epitopes are required to gain a better understanding of the immunochemical

  13. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph

    2006-01-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  14. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  15. Gaussian fluctuation of the diffusion exponent of virus capsid in a living cell nucleus

    Science.gov (United States)

    Itto, Yuichi

    2018-05-01

    In their work [4], Bosse et al. experimentally showed that virus capsid exhibits not only normal diffusion but also anomalous diffusion in nucleus of a living cell. There, it was found that the distribution of fluctuations of the diffusion exponent characterizing them takes the Gaussian form, which is, quite remarkably, the same form for two different types of the virus. This suggests high robustness of such fluctuations. Here, the statistical property of local fluctuations of the diffusion exponent of the virus capsid in the nucleus is studied. A maximum-entropy-principle approach (originally proposed for a different virus in a different cell) is applied for obtaining the fluctuation distribution of the exponent. Largeness of the number of blocks identified with local areas of interchromatin corrals is also examined based on the experimental data. It is shown that the Gaussian distribution of the local fluctuations can be derived, in accordance with the above form. In addition, it is quantified how the fluctuation distribution on a long time scale is different from the Gaussian distribution.

  16. Interaction of an immunodominant epitope with Ia molecules in T-cell activation

    DEFF Research Database (Denmark)

    Adorini, L; Sette, A; Buus, S

    1988-01-01

    The amino acid sequence corresponding to residues 107-116 of hen egg-white lysozyme (HEL) has been identified as containing an immunodominant T-cell epitope recognized in association with the I-Ed molecule. The immunodominance of this epitope in HEL-primed H-2d mice was demonstrated by analysis o......-120)-peptide was found to be immunogenic in H-2d mice. Thus, a single semiconservative substitution drastically reduces binding capacity and abolishes immunogenicity, suggesting that a strict correlation exists between binding of a peptide to Ia molecules and its immunogenicity....

  17. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    Science.gov (United States)

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  18. Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies

    Science.gov (United States)

    Lech, Patrycja J.; Tobin, Gregory J.; Bushnell, Ruth; Gutschenritter, Emily; Pham, Linh D.; Nace, Rebecca; Verhoeyen, Els; Cosset, François-Loïc; Muller, Claude P.; Russell, Stephen J.; Nara, Peter L.

    2013-01-01

    The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs. PMID:23300970

  19. Thermodynamic characterization of the peptide assembly inhibitor binding to HIV-1 capsid protein

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Durčák, Jindřich; Konvalinka, Jan

    2013-01-01

    Roč. 10, Suppl. 1 (2013), S37-S37 ISSN 1742-4690. [Frontiers of Retrovirology: Complex retorviruses, retroelements and their hosts. 16.09.2013-18.09.2013, Cambridge] R&D Projects: GA ČR GA13-19561S Institutional support: RVO:61388963 Keywords : HIV -1 capsid protein * CAI Subject RIV: EE - Microbiology, Virology http://www.retrovirology.com/content/10/S1/P108

  20. Availability of the B beta(15-21) epitope on cross-linked human fibrin and its plasmic degradation products

    Science.gov (United States)

    Chen, F.; Haber, E.; Matsueda, G. R.

    1992-01-01

    The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.