Spherically symmetric conformal gravity and "gravitational bubbles"
Berezin, V A; Eroshenko, Yu N
2016-01-01
The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equation are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the "gravitational bubbles", which is compact and with zero Weyl tensor. The second class is more general, with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly the same features of non-vacuum solu...
Conformal Killing Vectors Of Plane Symmetric Four Dimensional Lorentzian Manifolds
Khan, Suhail; Bokhari, Ashfaque H; Khan, Gulzar Ali; Mathematics, Department of; Peshawar, University of; Pakhtoonkhwa, Peshawar Khyber; Pakistan.,; Petroleum, King Fahd University of; Minerals,; 31261, Dhahran; Arabia, Saudi
2015-01-01
In this paper, we investigate conformal Killing's vectors (CKVs) admitted by some plane symmetric spacetimes. Ten conformal Killing's equations and their general forms of CKVs are derived along with their conformal factor. The existence of conformal Killing's symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. Considering the cases of time-like and inheriting CKVs, we obtain spacetimes admitting plane conformal symmetry. Integrability conditions are solved completely for some known non-conformally flat and conformally flat classes of plane symmetric spacetimes. A special vacuum plane symmetric spacetime is obtained, and it is shown that for such a metric CKVs are just the homothetic vectors (HVs). Among all the examples considered, there exists only one case with a six dimensional algebra of special CKVs admitting one proper CKV. In all other examples of non-conformally flat metrics, no proper ...
Conformal killing vectors of plane symmetric four dimensional lorentzian manifolds
Energy Technology Data Exchange (ETDEWEB)
Khan, Suhail; Hussain, Tahir; Khan, Gulzar Ali [University of Peshawar, Department of Mathematics, Peshawar, Khyber Pakhtoonkhwa (Pakistan); Bokhari, Ashfaque H. [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran (Saudi Arabia)
2015-11-15
In this paper, we investigate conformal Killing vectors (CKVs) admitted by some plane symmetric spacetimes. Ten conformal Killing's equations and their general forms of CKVs are derived along with their conformal factor. The existence of conformal Killing symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. Considering the cases of time-like and inheriting CKVs, we obtain spacetimes admitting plane conformal symmetry. Integrability conditions are solved completely for some known non-conformally flat and conformally flat classes of plane symmetric spacetimes. A special vacuum plane symmetric spacetime is obtained, and it is shown that for such a metric CKVs are just the homothetic vectors (HVs). Among all the examples considered, there exists only one case with a six dimensional algebra of special CKVs admitting one proper CKV. In all other examples of non-conformally flat metrics, no proper CKV is found and CKVs are either HVs or Killing's vectors (KVs). In each of the three cases of conformally flat metrics, a fifteen dimensional algebra of CKVs is obtained of which eight are proper CKVs. (orig.)
Conformally symmetric traversable wormholes in f( G) gravity
Sharif, M.; Fatima, H. Ismat
2016-11-01
We discuss non-static conformally symmetric traversable wormholes for spherically symmetric spacetime using the model f(G)=α Gn, where n>0 and α is an arbitrary constant. We investigate wormhole solutions by taking two types of shape function and found that physically realistic wormholes exist only for even values of n. We also check the validity of flare-out condition, required for wormhole construction, for the shape functions deduced from two types of equation of state. It is found that this condition is satisfied by these functions in all cases except phantom case with non-static conformal symmetry.
Wagh, S M; Muktibodh, P S; Govinder, K S
2001-01-01
In this paper, we find all the Conformal Killing Vectors (CKVs) and their Lie Algebra for the recently reported [cqg1] spherically symmetric, shear-free separable metric spacetimes with non-vanishing energy or heat flux. We also solve the geodesic equatios of motion for the spacetime under consideration.
Early radiative properties of the developments of time-symmetric conformally flat initial data
Energy Technology Data Exchange (ETDEWEB)
Kroon, Juan Antonio Valiente [Max Planck Institut fuer Gravitationsphysik, Albert Einstein Institut, Am Muehlenberg 1, 14476 Golm (Germany)
2003-03-07
Using a representation of spatial infinity based on the properties of conformal geodesics, the first terms of an expansion for the Bondi mass for the development of time-symmetric, conformally flat initial data are calculated. As is to be expected, the Bondi mass agrees with the ADM at the sets where null infinity 'touches' spatial infinity. The second term in the expansion is proportional to the sum of the squared norms of the Newman-Penrose constants of the spacetime. On the basis of this result it is argued that these constants may provide a measure of the incoming radiation contained in the spacetime. This is illustrated by means of the Misner and Brill-Lindquist datasets. (letter to the editor)
The contribution of symmetrization to the intensification of Tropical Cyclones
Miller, Henry A.
2001-01-01
Operational ability to forecast tropical cyclone motion is much better than the ability to forecast intensity change. Several recent works have studied the mechanisms that bring about the symmetrization of various types of asymmetries in tropical cyclones. This study was conducted to add to that knowledge by examining the transfers of kinetic energy between scales and how those energy transfers alter the wind structure of the cyclone. Adding to the understanding of how this process can alter ...
Qureshi, Muhammad Amer; Mahomed, K S
2016-01-01
A study of proper teleparallel conformal vector field in spherically symmetric static space-times is given using the direct integration technique and diagonal tetrads. In this study we show that the above space-times do not admit proper teleparallel conformal vector fields.
From $\\mathcal{PT}$ -symmetric quantum mechanics to conformal field theory
Indian Academy of Sciences (India)
Patrick Dorey; Clare Dunning; Roberto Tateo
2009-08-01
One of the simplest examples of a $\\mathcal{PT}$-symmetric quantum system is the scaling Yang–Lee model, a quantum field theory with cubic interaction and purely imaginary coupling. We give a historical review of some facts about this model in ≤ 2 dimensions, from its original definition in connection with phase transitions in the Ising model and its relevance to polymer physics, to the role it has played in studies of integrable quantum field theory and $\\mathcal{PT}$-symmetric quantum mechanics. We also discuss some more general results on $\\mathcal{PT}$-symmetric quantum mechanics and the ODE/IM correspondence, and mention applications to magnetic systems and cold atom physics.
Study of the geodesic equations of a spherical symmetric spacetime in conformal Weyl gravity
Hoseini, Bahareh; Saffari, Reza; Soroushfar, Saheb
2017-03-01
A set of analytic solutions of the geodesic equation in a spherical conformal spacetime is presented. Solutions of this geodesics can be expressed in terms of the Weierstrass \\wp function and the Kleinian σ function. Using conserved energy and angular momentum we can characterize the different orbits. Also, considering parametric diagrams and effective potentials, we plot some possible orbits. Moreover, with the help of analytical solutions, we investigate the light deflection for such an escape orbit. Finally, by using periastron advance we get to an upper bound for magnitude of γ.
Harko, T.; Mak, M. K.
2005-10-01
A class of exact solutions of the gravitational field equations in the vacuum on the brane are obtained by assuming the existence of a conformal Killing vector field, with non-static and non-central symmetry. In this case, the general solution of the field equations can be obtained in a parametric form in terms of the Bessel functions. The behavior of the basic physical parameters describing the non-local effects generated by the gravitational field of the bulk (dark radiation and dark pressure) is also considered in detail, and the equation of state satisfied at infinity by these quantities is derived. As a physical application of the obtained solutions we consider the behavior of the angular velocity of a test particle moving in a stable circular orbit. The tangential velocity of the particle is a monotonically increasing function of the radial distance and, in the limit of large values of the radial coordinate, tends to a constant value, which is independent on the parameters describing the model. Therefore, a brane geometry admitting a one-parameter group of conformal motions may provide an explanation for the dynamics of the neutral hydrogen clouds at large distances from the galactic center, which is usually explained by postulating the existence of the dark matter.
Conformation of hindered piperidines: Spectroscopic evidence for contribution of boat conformations
Indian Academy of Sciences (India)
A Thangamani; J Jayabharathi; A Manimekalai
2010-07-01
High resolution 1H and 13C NMR resonance assignments and conformational assignments were carried out for four (3)-benzyl-(2),(6)-bis(aryl)piperidin-4-ones 1-4 and their four -nitroso-(3)-benzyl-(2),(6)-bis(aryl)piperidin-4-ones 5-8. In addition to conventional 1D NMR methods, 2D shiftcorrelated NMR techniques (1H-1H COSY and 1H-13C COSY) were used for signal assignments. At room temperature the (3)-benzyl-(2),(6)-bis(aryl)piperidin-4-ones 1-4 exist in only one isomeric form whereas their -nitroso derivatives 5-8 exist in two isomeric forms. The preferred conformations of both the isomeric forms of nitrosamines were determined by comparison of the spectral data with those of the corresponding parent amines 1-4 and with the aid of substituent parameters. The results indicate the presence of an equilibrium mixture of boat forms B1 and B2 for Z isomers of 5-8. For the E isomers of 5-8, boat form B1 is predicted to be the major conformer. The piperidin-4-ones 1-4 exist in normal chair conformations with equatorial orientations of all the substituents.
Quéva, Julien
2015-01-01
This article investigates the properties of a set of conformally invariant equations on conformally flat Einstein spacetimes. These equations are shown to be gauge invariant if $d=4$. We provide a conformally invariant gauge condition to that equation which generalizes in a simple manner, on those spacetimes, the Eastwood-Singer gauge condition. A byproduct of this conformally invariant gauge fixing equation is an alternate proof of Branson's factorization formula of GJMS operators on Einstein manifolds for $d=4$. A field strength $F$ is built upon the field $A$, its properties are worked out in details.
Institute of Scientific and Technical Information of China (English)
WEI Xiang; ZENG Xian'gang; ZHOU Haimeng
2006-01-01
The stability of GCN4 leucine zipper and its four mutants in guanidine hydrochloride was detected to verify the contributions of different a position amino acid residues in polypeptide sequences to the forming and stability of parallel coiled coils. The changes of the circular dichroism spectra show that the displacement of the a position polar asparagine and the increase of asparagine in the GCN4 leucine zipper can reduce the α-helix content of the coiled coil structure. The mutants are less stable than the natural peptide in guanidine hydrochloride. The results show that the interaction between the polar asparagine contributes to the conformational stability of the coiled coil. Both the conformation and the number of polar residues in the coiled coil also affect the α-helix content and its resistance to the denaturant. The conclusions provide evidence describing the folding process of proteins including coiled coils in vivo.
Gurunathan, Kaushik; Levitus, Marcia
2009-01-01
The use of Fluorescence Correlation Spectroscopy (FCS) to study conformational dynamics in diffusing biopolymers requires that the contributions to the signal due to translational diffusion are separated from those due to conformational dynamics. A simple approach that has been proposed to achieve this goal involves the analysis of fluctuations in Fluorescence Resonance Energy Transfer (FRET) efficiency. In this work, we investigate the applicability of this methodology by combining Monte Carlo simulations and experiments. Results show that diffusion does not contribute to the measured fluctuations in FRET efficiency in conditions where the relaxation time of the kinetic process is much shorter than the mean transit time of the molecules in the optical observation volume. However, in contrast to what has been suggested in previous work, the contributions of diffusion are otherwise significant. Neglecting the contributions of diffusion can potentially lead to an erroneous interpretation of the kinetic mechanisms. As an example, we demonstrate that the analysis of FRET fluctuations in terms of a purely kinetic model would generally lead to the conclusion that the system presents complex kinetic behavior even for an idealized two-state system PMID:20030305
Non-vacuum conformal family contributions to R\\'enyi entropy in two-dimensional CFT
Zhang, Jia-ju
2016-01-01
We calculate the contributions of a general non-vacuum conformal family to R\\'enyi entropy in two-dimensional conformal field theory (CFT). The primary operator of the conformal family can be either non-chiral or chiral, and we denote its scaling dimension by $\\Delta$. For the case of two short intervals on complex plane, we expand the R\\'enyi mutual information by the cross ratio $x$ to order $x^{2\\Delta+2}$. For the case of one interval on torus with the temperature being low, we expand the R\\'enyi entropy by $q=\\exp(-2\\pi\\beta/L)$, with $\\beta$ being the inverse temperature and $L$ being the spatial period, to order $q^{\\Delta+2}$. We require that the scaling dimension $\\Delta$ cannot be too small. For two intervals on complex plane we need $\\Delta>1$, and for one interval on torus we need $\\Delta>2$. We work in small Newton constant limit in gravity side and large central charge limit in CFT side, and find matches of gravity and CFT results.
Energy Technology Data Exchange (ETDEWEB)
Laederach,A.; Shcherbakova, I.; Jonikas, M.; Altman, R.; Brenowitz, M.
2007-01-01
We distinguish the contribution of the electrostatic environment, initial conformational ensemble, and macromolecular stability on the folding mechanism of a large RNA using a combination of time-resolved 'Fast Fenton' hydroxyl radical footprinting and exhaustive kinetic modeling. This integrated approach allows us to define the folding landscape of the L-21 Tetrahymena thermophila group I intron structurally and kinetically from its earliest steps with unprecedented accuracy. Distinct parallel pathways leading the RNA to its native form upon its Mg2+-induced folding are observed. The structures of the intermediates populating the pathways are not affected by variation of the concentration and type of background monovalent ions (electrostatic environment) but are altered by a mutation that destabilizes one domain of the ribozyme. Experiments starting from different conformational ensembles but folding under identical conditions show that whereas the electrostatic environment modulates molecular flux through different pathways, the initial conformational ensemble determines the partitioning of the flux. This study showcases a robust approach for the development of kinetic models from collections of local structural probes.
Bambhaniya, Gulab; Goswami, Srubabati; Mitra, Manimala
2015-01-01
We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw dominance for the light neutrino masses, the triplet of comparable or smaller mass than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio $r\\lesssim {\\cal O}(1)$ is still experimentally allowed and can be explored in the future LFV experiments. Similarly, the contribution of a relatively light triplet to the LNV process of neutrinoless double beta decay could be significant, disfavouring a part of the model parameter space otherwise allowed by LFV constraints. Nevertheless, we find regions of parameter space consistent with b...
Zmitrewicz, Robert J; Neptune, Richard R; Sasaki, Kotaro
2007-01-01
Energy storage and return (ESAR) foot-ankle prostheses have been developed in an effort to improve gait performance in lower-limb amputees. However, little is known about their effectiveness in providing the body segment mechanical energetics normally provided by the ankle muscles. The objective of this theoretical study was to use muscle-actuated forward dynamics simulations of unilateral transtibial amputee and non-amputee walking to identify the contributions of ESAR prostheses to trunk support, forward propulsion and leg swing initiation and how individual muscles must compensate in order to produce a normal, symmetric gait pattern. The simulation analysis revealed the ESAR prosthesis provided the necessary trunk support, but it could not provide the net trunk forward propulsion normally provided by the plantar flexors and leg swing initiation normally provided by the biarticular gastrocnemius. To compensate, the residual leg gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in early stance and late stance into pre-swing, respectively, while the residual iliopsoas delivered increased energy to the leg in pre- and early swing to help initiate swing. In the intact leg, the soleus, gluteus maximus and rectus femoris delivered increased energy to the trunk for forward propulsion in the first half of stance, while the iliopsoas increased the leg energy it delivered in pre- and early swing. Thus, the energy stored and released by the ESAR prosthesis combined with these muscle compensations was able to produce a normal, symmetric gait pattern, although various neuromuscular and musculoskeletal constraints may make such a pattern non-optimal.
Burns, Shaun Michael; Hough, Sigmund; Boyd, Briana L; Hill, Justin
2010-06-01
Men constitute 82% of the approximately 250,000 people in the United States living with a spinal cord injury. Unfortunately, however, little is known about the impact of men's adherence to gender norms on their adjustment to such injuries. The present investigation examined the utility of masculine norms in explaining variance in depression beyond that accounted for by commonly identified predictors of men's adjustment following spinal cord injury. As hypothesized, results suggested that men's adherence to masculine norms accounted for unique variance in their depression scores beyond that contributed by social support, environmental barriers/access, and erectile functioning. Respondents who adhered to norms stressing the primacy of men's work demonstrated lower rates of depression, whereas those who conformed to norms for self-reliance demonstrated higher depression scores. The authors discuss future research directions and potential psychotherapeutic strategies for working with men with spinal cord injuries.
Directory of Open Access Journals (Sweden)
Aaron Fong
2013-02-01
Full Text Available Previous theoretical studies of Mislow’s doubly-bridged biphenyl ketone 1 and dihydrodimethylphenanthrene 2 have determined significant entropic contributions to their normal (1 and inverse (2 conformational kinetic isotope effects (CKIEs. To broaden our investigation, we have used density functional methods to characterize the potential energy surfaces and vibrational frequencies for ground and transition structures of additional systems with measured CKIEs, including [2.2]-metaparacyclophane-d (3, 1,1'-binaphthyl (4, 2,2'-dibromo-[1,1'-biphenyl]-4,4'-dicarboxylic acid (5, and the 2-(N,N,N-trimethyl-2'-(N,N-dimethyl-diaminobiphenyl cation (6. We have also computed CKIEs in a number of systems whose experimental CKIEs are unknown. These include analogs of 1 in which the C=O groups have been replaced with CH2 (7, O (8, and S (9 atoms and ring-expanded variants of 2 containing CH2 (10, O (11, S (12, or C=O (13 groups. Vibrational entropy contributes to the CKIEs in all of these systems with the exception of cyclophane 3, whose isotope effect is predicted to be purely enthalpic in origin and whose Bigeleisen-Mayer ZPE term is equivalent to ΔΔ H‡. There is variable correspondence between these terms in the other molecules studied, thus identifying additional examples of systems in which the Bigeleisen-Mayer formalism does not correlate with ΔH/ΔS dissections.
A charged spherically symmetric solution
Indian Academy of Sciences (India)
K Moodley; S D Maharaj; K S Govinder
2003-09-01
We ﬁnd a solution of the Einstein–Maxwell system of ﬁeld equations for a class of accelerating, expanding and shearing spherically symmetric metrics. This solution depends on a particular ansatz for the line element. The radial behaviour of the solution is fully speciﬁed while the temporal behaviour is given in terms of a quadrature. By setting the charge contribution to zero we regain an (uncharged) perfect ﬂuid solution found previously with the equation of state =+ constant, which is a generalisation of a stiff equation of state. Our class of charged shearing solutions is characterised geometrically by a conformal Killing vector.
Andrabi, Munazah; Mizuguchi, Kenji; Ahmad, Shandar
2014-05-01
Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA-binding proteins by superimposing DNA-bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA-binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Copyright © 2013 Wiley Periodicals, Inc.
Enthalpy-entropy contribution to carcinogen-induced DNA conformational heterogeneity.
Liang, Fengting; Cho, Bongsup P
2010-01-19
DNA damage by adduct formation is a critical step for the initiation of carcinogenesis. Aromatic amines are strong inducers of environmental carcinogenesis. Their DNA adducts are known to exist in an equilibrium between the major groove (B) and base-displaced stacked (S) conformations. However, the factors governing such heterogeneity remain unclear. Here we conducted extensive calorimetry/NMR/CD studies on the model DNA lesions caused by fluorinated 2-aminfluorene (FAF) and 4-aminobiphenyl (FABP) in order to gain thermodynamic and kinetic insights into the S/B conformational equilibrium. We demonstrate that there are large differences in enthalpy-entropy compensations for FABP and FAF. The small and flexible FABP exclusively adopts the less perturbed B conformer with small enthalpy (DeltaDeltaH-2.7 kcal/mol)/entropy (DeltaDeltaS-0.7 eu) change. In contrast, FAF stacks better and exists as a mixture of B and S conformers with large enthalpy (DeltaDeltaH-13.4 kcal/mol)/entropy (DeltaDeltaS-34.2 eu) compensation. van't Hoff analysis of dynamic (19)F NMR data indicated DeltaH(BS) = 4.1 kcal/mol in favor of the B conformer and DeltaS(BS) = 15.6 cal mol(-1) K(-1) in favor of the intercalated S conformer. These findings demonstrate that the favorable entropy of the S conformer over B conformer determines the S/B population ratios at physiological temperatures.
Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun
2017-02-26
Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs.
Erritali, Mohammed; Ouahidi, Bouabid El; 10.5121/ijdps.2011.2509
2011-01-01
This work presents a contribution to secure the routing protocol GPSR (Greedy Perimeter Stateless Routing) for vehicular ad hoc networks, we examine the possible attacks against GPSR and security solutions proposed by different research teams working on ad hoc network security. Then, we propose a solution to secure GPSR packet by adding a digital signature based on symmetric cryptography generated using the AES algorithm and the MD5 hash function more suited to a mobile environment.
Luna Acosta, German Aurelio
The masses of observed hadrons are fitted according to the kinematic predictions of Conformal Relativity. The hypothesis gives a remarkably good fit. The isospin SU(2) gauge invariant Lagrangian L(,(pi)NN)(x,(lamda)) is used in the calculation of d(sigma)/d(OMEGA) to 2nd-order Feynman graphs for simplified models of (pi)N(--->)(pi)N. The resulting infinite mass sums over the nucleon (Conformal) families are done via the Generalized-Sommerfeld-Watson Transform Theorem. Even though the models are too simple to be realistic, they indicate that if (DELTA)-internal lines were to be included, 2nd-order Feynman graphs may reproduce the experimental data qualitatively. The energy -dependence of the propagator and couplings in Conformal QFT is different from that of ordinary QFT. Suggestions for further work are made in the areas of ultra-violet divergences and OPEC calculations.
Do Descriptive Norms Solve Social Dilemmas? Conformity and Contributions in Collective Action Groups
Irwin, Kyle; Simpson, Brent
2013-01-01
Collective action researchers have focused on injunctive norms that specify approved behavior as a panacea for collective action problems. We investigate whether descriptive norms (similar behavior) can also solve these problems. We argue that descriptive norms generate social identification, which then sustains conformity to expectations.…
Note on non-vacuum conformal family contributions to Rényi entropy in two-dimensional CFT
Zhang, Jia-ju
2017-06-01
We calculate the contributions of a general non-vacuum conformal family to Rényi entropy in two-dimensional conformal field theory (CFT). The primary operator of the conformal family can be either non-chiral or chiral, and we denote its scaling dimension by Δ. For the case of two short intervals on a complex plane, we expand the Rényi mutual information by the cross ratio x to order x 2Δ+2. For the case of one interval on a torus with low temperature, we expand the Rényi entropy by q=exp(-2πβ/L), with β being the inverse temperature and L being the spatial period, to order q Δ+2. To make the result meaningful, we require that the scaling dimension Δ cannot be too small. For two intervals on a complex plane we need Δ > 1, and for one interval on a torus we need Δ > 2. We work in the small Newton constant limit on the gravity side and so a large central charge limit on the CFT side, and find matches of gravity and CFT results. Supported by ERC Starting Grant 637844-HBQFTNCER
Institute of Scientific and Technical Information of China (English)
许达允; 全哲勇; 金光植
2014-01-01
In Riemannian manifold,we defined a semi-symmetric proj ective conformal connection and consid-ered its properties.In particular cases,this connection reduces to several connections:semi-symmetric proj ec-tive connection,semi-symmetric conformal connection,symmetric proj ective conformal connection,proj ective connection,conformal connection and Levi-Civita connection.We also found forms of a semi-symmetric pro-j ective conformal connection satisfying the Schur’s theorem.And we considered necessary and sufficient condi-tion that a Riemannian manifold with a semi-symmetric proj ective conformal connection be a Riemannian mani-fold with constant curvature.%在黎曼流形上定义了一个半对称射影共形联络，并研究了其性质，同时指出这种联络在特殊情形下可成半对称射影联络、半对称共形联络、对称射影共形联络、射影联络、共形联络以及 Levi-Civita联络。在此基础上提出了几种能够满足 Schur定理的半对称射影共形联络的形式，并证明半对称射影共形联络的黎曼流形是常曲率黎曼流形的充分必要条件。
Bonaventura, Celia; Henkens, Robert; Friedman, Joel; Siburt, Claire J Parker; Kraiter, Daniel; Crumbliss, Alvin L
2011-10-01
The structural basis of the extreme pH dependence of oxygen binding to Root effect Hbs is a long-standing puzzle in the field of protein chemistry. A previously unappreciated role of steric factors in the Root effect was revealed by a comparison of pH effects on oxygenation and oxidation processes in human Hb relative to Spot (Leiostomus xanthurus) and Carp (Cyprinodon carpio) Hbs. The Root effect confers five-fold increased pH sensitivity to oxygenation of Spot and Carp Hbs relative to Hb A(0) in the absence of anionic effectors, and even larger relative elevations of pH sensitivity of oxygenation in the presence of 0.2M phosphate. Remarkably, the Root effect was not evident in the oxidation of the Root effect Hbs. This finding rules out pH-dependent alterations in the thermodynamic properties of the heme iron, measured in the anaerobic oxidation reaction, as the basis of the Root effect. The alternative explanation supported by these results is that the elevated pH sensitivity of oxygenation of Root effect Hbs is attributable to globin-dependent steric effects that alter oxygen affinity by constraining conformational fluidity, but which have little influence on electron exchange via the heme edge. This elegant mode of allosteric control can regulate oxygen affinity within a given quaternary state, in addition to modifying the T-R equilibrium. Evolution of Hb sequences that result in proton-linked steric barriers to heme oxygenation could provide a general mechanism to account for the appearance of the Root effect in the structurally diverse Hbs of many species. Copyright © 2011 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Casadio, R.; Fariselli, P.; Vivarelli, F. [Univ. of Bologna (Italy); Compiani, M. [Univ. of Camerino (Italy)
1995-12-31
Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from crystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental {Delta}G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol{sup -1} rather independently of the residue sequence, with an average error per protein of about 9 kcal mol{sup -1}.
Casadio, R; Compiani, M; Fariselli, P; Vivarelli, F
1995-01-01
Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from chrystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental delta G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol-1 rather independently of the residue sequence, with an average error per protein of about 9 kcal mol-1.
Wen, Bo; Lampe, Jed N.; Roberts, Arthur G.; Atkins, William M.; Rodrigues, A. David; Nelson, Sidney D.
2007-01-01
dinucleotide phosphate consumption at a saturating reductase concentration. In conclusion, our data strongly suggest that cysteine 98 in the B-C loop region significantly contributes to conformational integrity and catalytic activity of CYP3A4, and that this residue or residues nearby might be involved in an interaction with P450 reductase. PMID:16959210
Vasiljević, Gorazd
2014-01-01
This BSc thesis deals with certain topics from graph theory. When we talk about studying graphs, we usually mean studying their structure and their structural properties. By doing that, we are often interested in automorphisms of a graph (symmetries), which are permutations of its vertex set, preserving adjacency. There exist graphs, which are symmetric enough, so that automorhism group acts transitively on their vertex set. This means that for any pair of vertices of the graph, there is an a...
DEFF Research Database (Denmark)
Abramyan, Ara M.; Stolzenberg, Sebastian; Li, Zheng
2017-01-01
Cocaine, a widely abused psychostimulant, inhibits the dopamine transporter (DAT) by trapping the protein in an outward-open conformation, whereas atypical DAT inhibitors such as benztropine have low abuse liability and prefer less outward-open conformations. Here, we use a spectrum...... of computational modeling and simulation approaches to obtain the underlying molecular mechanism in atomistic detail. Interestingly, our quantum mechanical calculations and molecular dynamics (MD) simulations suggest that a benztropine derivative JHW007 prefers a different stereoisomeric conformation of tropane...... in binding to DAT compared to that of a cocaine derivative, CFT. To further investigate the different inhibition mechanisms of DAT, we carried out MD simulations in combination with Markov state modeling analysis of wild-type and Y156F DAT in the absence of any ligand or the presence of CFT or JHW007. Our...
Bartels, Jochen; Lipatov, Lev
2013-01-01
We investigate the analytic structure of the $2\\to5$ scattering amplitude in the planar limit of $\\mathcal{N}=4$ SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the $2\\to5$ scattering amplitude.
Energy Technology Data Exchange (ETDEWEB)
Bartels, Jochen; Kormilitzin, Andrey [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Lipatov, Lev [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation)
2013-11-15
We investigate the analytic structure of the 2 {yields} 5 scattering amplitude in the planar limit of N=4 SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the 2 {yields} 5 scattering amplitude.
Energy Technology Data Exchange (ETDEWEB)
Yungan Tao; Lefkopoulos, Dimitri; Ibrahima, Diallo; Bridier, Andre; Polizzi, Maria del Pilar; Wibault, Pierre; Crevoisier, Renaud de; Arriagada, Rodrigo; Bourhis, Jean (Dept. of Radiotherapy, Institut Gustave-Roussy, Villejuif (France))
2008-03-15
High-energy external radiotherapy has become one of the most common treatment in localized prostate cancer. We compared the difference of dose distribution, mainly at the 5-30 Gy dose level, in the irradiated pelvic volume among three modalities of radiotherapy for patients with prostate cancer: conventional, conformal and intensity-modulated radiotherapy (IMRT). We selected six patients with prostate cancer treated by conformal radiotherapy at the doses of 46 Gy to PTVN (prostate and seminal vesicles), and 70 Gy to PTV-T (prostate). The conventional technique: an 8-field arrangement was used; the conformal technique 4 fields with a boost through 6 fields. For IMRT, a five-beam arrangement was used. Dose-volume histograms (DVH) were analyzed and compared among the three techniques. The IMRT technique significantly increased the pelvic volume covered by the isodose surfaces below 15 Gy as compared with the conventional and conformal techniques. The mean absolute increase for the pelvic volume included between 5-30 Gy for the IMRT technique, was about 2 900 ml as compared with the conventional technique. However, IMRT significantly reduced the irradiated volume of the rectum in the dose range of 5 to 40 Gy, also significantly reduced the irradiated volume of bladder and femoral heads, and obtained a similar or improved isodose distribution in the PTVs. In addition, the use of IMRT slightly increased the relative dose delivered to the body volume outside the pelvis, as estimated by the use of specific software. A long-term follow-up will be needed to evaluate potential late treatment complications related to the use of IMRT and the low or moderate irradiation dose level obtained in the pelvis and in the whole body
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of total degree d as a sum of powers of linear forms (Waring’s problem), incidence properties on secant varieties of the Veronese variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester’s approach from the dual point of view...
Maloney, Alexander; Maxfield, Henry; Ng, Gim Seng
2017-06-01
We investigate the constraints of crossing symmetry on CFT correlation functions. Four point conformal blocks are naturally viewed as functions on the upper-half plane, on which crossing symmetry acts by PSL(2, Z ) modular transformations. This allows us to construct a unique, crossing symmetric function out of a given conformal block by averaging over PSL(2, Z ). In some two dimensional CFTs the correlation functions are precisely equal to the modular average of the contributions of a finite number of light states. For example, in the two dimensional Ising and tri-critical Ising model CFTs, the correlation functions of identical operators are equal to the PSL(2, Z ) average of the Virasoro vacuum block; this determines the 3 point function coefficients uniquely in terms of the central charge. The sum over PSL(2, Z ) in CFT2 has a natural AdS3 interpretation as a sum over semi-classical saddle points, which describe particles propagating along rational tangles in the bulk. We demonstrate this explicitly for the correlation function of certain heavy operators, where we compute holographically the semi-classical conformal block with a heavy internal operator.
Symmetric Powers of Symmetric Bilinear Forms
Institute of Scientific and Technical Information of China (English)
Se(a)n McGarraghy
2005-01-01
We study symmetric powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties and compute their classical invariants. We relate these to earlier results on exterior powers of such forms.
Gauge Natural Formulation of Conformal Theory of Gravity
Campigotto, M.; Fatibene, L.
2014-01-01
We consider conformal gravity as a gauge natural theory. We study its conservation laws and superpotentials. We also consider the Mannheim and Kazanas spherically symmetric vacuum solution and discuss conserved quantities associated to conformal and diffeomorphism symmetries.
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Spherically symmetric brane spacetime with bulk gravity
Chakraborty, Sumanta; SenGupta, Soumitra
2015-01-01
Introducing term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with gravity in the bulk.
Chambler, A F; Chapman-Sheath, P J; Pearse, M F; Hollingdale, J
1997-10-01
Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol.
Maloney, Alexander; Ng, Gim Seng
2016-01-01
We investigate the constraints of crossing symmetry on CFT correlation functions. Four point conformal blocks are naturally viewed as functions on the upper-half plane, on which crossing symmetry acts by PSL(2,Z) modular transformations. This allows us to construct a unique, crossing symmetric function out of a given conformal block by averaging over PSL(2,Z). In some two dimensional CFTs the correlation functions are precisely equal to the modular average of the contributions of a finite number of light states. For example, in the two dimensional Ising and tri-critical Ising model CFTs, the correlation functions of identical operators are equal to the PSL(2,Z) average of the Virasoro vacuum block; this determines the 3 point function coefficients uniquely in terms of the central charge. The sum over PSL(2,Z) in CFT2 has a natural AdS3 interpretation as a sum over semi-classical saddle points, which describe particles propagating along rational tangles in the bulk. We demonstrate this explicitly for the corre...
Canteaut, Anne; Videau, Marion
2005-01-01
http://www.ieee.org/; We present an extensive study of symmetric Boolean functions, especially of their cryptographic properties. Our main result establishes the link between the periodicity of the simplified value vector of a symmetric Boolean function and its degree. Besides the reduction of the amount of memory required for representing a symmetric function, this property has some consequences from a cryptographic point of view. For instance, it leads to a new general bound on the order of...
DÍaz, R.; Rivas, M.
2010-01-01
In order to study Boolean algebras in the category of vector spaces we introduce a prop whose algebras in set are Boolean algebras. A probabilistic logical interpretation for linear Boolean algebras is provided. An advantage of defining Boolean algebras in the linear category is that we are able to study its symmetric powers. We give explicit formulae for products in symmetric and cyclic Boolean algebras of various dimensions and formulate symmetric forms of the inclusion-exclusion principle.
Conformal Nets II: Conformal Blocks
Bartels, Arthur; Douglas, Christopher L.; Henriques, André
2017-03-01
Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.
Conformal Nets II: Conformal Blocks
Bartels, Arthur; Douglas, Christopher L.; Henriques, André
2017-08-01
Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.
Inverse Symmetric Inflationary Attractors
Odintsov, S D
2016-01-01
We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
Exact gravitational lensing in conformal gravity and Schwarzschild-de Sitter spacetime
Lim, Yen-Kheng
2016-01-01
An exact solution is obtained for the gravitational bending of light in static, spherically symmetric metrics which includes the Schwarzschild-de Sitter (SdS) spacetime and also the Mannheim-Kazanas (MK) metric of conformal Weyl gravity. From the exact solution, we obtain a small bending-angle approximation for a lens system where the source, lens and observer are co-aligned. This expansion improves previous calculations where we systematically avoid parameter ranges which correspond to non-existent null trajectories. The linear coefficient $\\gamma$ characteristic to conformal gravity is shown to contribute enhanced deflection compared to the angle predicted by General Relativity for small $\\gamma$.
DEFF Research Database (Denmark)
Ryttov, Thomas Aaby; Sannino, Francesco
2010-01-01
fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1977-08-01
Causally symmetric spacetimes are spacetimes with J/sup +/(S) isometric to J/sup -/(S) for some set S. We discuss certain properties of these spacetimes, showing for example that, if S is a maximal Cauchy surface with matter everywhere on S, then the spacetime has singularities in both J/sup +/(S) and J/sup -/(S). We also consider totally vicious spacetimes, a class of causally symmetric spacetimes for which I/sup +/(p) =I/sup -/(p) = M for any point p in M. Two different notions of stability in general relativity are discussed, using various types of causally symmetric spacetimes as starting points for perturbations.
Symmetrization and Applications
Kesavan, S
2006-01-01
The study of isoperimetric inequalities involves a fascinating interplay of analysis, geometry and the theory of partial differential equations. Several conjectures have been made and while many have been resolved, a large number still remain open.One of the principal tools in the study of isoperimetric problems, especially when spherical symmetry is involved, is Schwarz symmetrization, which is also known as the spherically symmetric and decreasing rearrangement of functions. The aim of this book is to give an introduction to the theory of Schwarz symmetrization and study some of its applicat
Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo
2014-11-01
The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.
This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions
Directory of Open Access Journals (Sweden)
Nikolay Ivantchev
2013-10-01
Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.
Puente, Elsa
2011-01-01
For $n \\geq 1$, the twistor space $\\mathfrak{Z}(\\mathbb{S}^{2n})$ of the conformal $2n$-sphere is biholomorphic to the Zariski closure, taken in the complex Grassmannian manifold $\\mathbf{G}(n+1, 2n+2)$, of the set of graphs of skew-symmetric linear endomorphism of $\\mathbb{C}^{n+1}$. We use this fact to describe a natural stratification of the twistor space $\\mathfrak{Z}(\\mathbb{S}^{2n})$ with $n \\geq 3$, in terms of what we have called {\\it generalised complex orthogonal Stiefel manifolds} of $\\mathbb{C}^{n+1}$. In particular, the twistor space $\\mathfrak{Z}(\\mathbb{S}^{6})$ is biholomorphic to a non-singular complex quadric hypersurface in $\\mathbb{P}^{7}$. We explicitly construct a real-analytic foliation, by linear 3-folds, of this quadric hypersurface such that the quotient space is isomorphic to the 6-sphere with its standard metric. This foliation is Riemannian with respect to the Fubini-Study metric and isometrically equivalent to the twistor fibration over the 6-sphere.
N>=2 symmetric superpolynomials
Alarie-Vézina, L; Mathieu, P
2015-01-01
The theory of symmetric functions has been extended to the case where each variable is paired with an anticommuting one. The resulting expressions, dubbed superpolynomials, provide the natural N=1 supersymmetric version of the classical bases of symmetric functions. Here we consider the case where two independent anticommuting variables are attached to each ordinary variable. The N=2 super-version of the monomial, elementary, homogeneous symmetric functions, as well as the power sums, are then constructed systematically (using an exterior-differential formalism for the multiplicative bases), these functions being now indexed by a novel type of superpartitions. Moreover, the scalar product of power sums turns out to have a natural N=2 generalization which preserves the duality between the monomial and homogeneous bases. All these results are then generalized to an arbitrary value of N. Finally, for N=2, the scalar product and the homogenous functions are shown to have a one-parameter deformation, a result that...
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Symmetric tensor decomposition
Brachat, Jerome; Mourrain, Bernard; Tsigaridas, Elias
2009-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on th...
Multiparty Symmetric Sum Types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Progressive symmetric erythrokeratoderma
Directory of Open Access Journals (Sweden)
Gharpuray Mohan
1990-01-01
Full Text Available Four patients had symmetrically distributed hyperkeratotic plaques on the trunk and extremities; The lesions in all of them had appeared during infancy, and after a brief period of progression, had remained static, All of them had no family history of similar skin lesions. They responded well to topical applications of 6% salicylic acid in 50% propylene glycol. Unusual features in these cases of progressive symmetric erythrokeratoderma were the sparing of palms and soles, involvement of the trunk and absence of erythema.
Anisotropic stellar models admitting conformal motion
Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali
2017-04-01
We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.
Kataev, A L
2013-01-01
Conformal symmetry based relations between the concrete perturbative QED and QCD approximations of the polarized Bjorken, the Ellis-Jaffe, the Gross-Llewellyn Smith sum rules and of the Adler functions of the axial vector and vector channels are derived. They are based on application of the operator product expansion to three triangle AVV Green functions, constructed from the non-singlet axial vector-vector-vector currents, the {\\it singlet} axial-vector and two {\\it non-singlet} vector currents and the {\\it non-singlet} axial-vector-vector and {\\it singlet} vector currents, in the limit when the conformal symmetry of gauge models with fermions is unbroken. We specify the conditions when the conformal symmetry is valid in the U(1) and $SU(N_c)$ models. The identity between perturbative approximations of the Bjorken, Ellis-Jaffe and the Gross-Llewellyn Smith sum rules, which follow from this theoretical limit, is proved. The expressions for the $O(\\alpha^4)$ and $O(\\alpha_s^3)$ conformal symmetry based contrib...
Conformal invariance and Hojman conserved quantities of canonical Hamilton systems
Institute of Scientific and Technical Information of China (English)
Liu Chang; Liu Shi-Xing; Mei Feng-Xiang; Guo Yong-Xin
2009-01-01
This paper discusses the conformal invariance by infinitesimal transformations of canonical Hamilton systems. The necessary and sufficient conditions of conformal invariance being Lie symmetrical simultaneously by the action of infinitesimal transformations are given. The determining equations of the conformal invariance are gained. Then the Hojman conserved quantities of conformal invariance by special infinitesimal transformations are obtained. Finally an illustrative example is given to verify the results.
Symmetric Spaces in Supergravity
Ferrara, Sergio
2008-01-01
We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.
Distributed Searchable Symmetric Encryption
Bösch, Christoph; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter; Jonker, Willem
2014-01-01
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Gutierrez, German [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico)
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Directory of Open Access Journals (Sweden)
Frauendiener Jörg
2000-08-01
Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
Frauendiener, Jörg
2004-12-01
The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.
Directory of Open Access Journals (Sweden)
Frauendiener Jörg
2004-01-01
Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.
Composite spherically symmetric configurations in Jordan-Brans-Dicke theory
Kozyrev, S
2010-01-01
In this article, a study of the scalar field shells in relativistic spherically symmetric configurations has been performed. We construct the composite solution of Jordan-Brans-Dicke field equation by matching the conformal Brans solutions at each junction surfaces. This approach allows us to associate rigorously with all solutions as a single glued "space", which is a unique differentiable manifold M^4.
Lagrangian formulation of symmetric space sine-Gordon models
Bakas, Ioannis; Shin, H J; Park, Q Han
1996-01-01
The symmetric space sine-Gordon models arise by conformal reduction of ordinary 2-dim \\sigma-models, and they are integrable exhibiting a black-hole type metric in target space. We provide a Lagrangian formulation of these systems by considering a triplet of Lie groups F \\supset G \\supset H. We show that for every symmetric space F/G, the generalized sine-Gordon models can be derived from the G/H WZW action, plus a potential term that is algebraically specified. Thus, the symmetric space sine-Gordon models describe certain integrable perturbations of coset conformal field theories at the classical level. We also briefly discuss their vacuum structure, Backlund transformations, and soliton solutions.
Generating functions for symmetric and shifted symmetric functions
Jing, Naihuan; Rozhkovskaya, Natasha
2016-01-01
We describe generating functions for several important families of classical symmetric functions and shifted Schur functions. The approach is originated from vertex operator realization of symmetric functions and offers a unified method to treat various families of symmetric functions and their shifted analogues.
Generating functions for symmetric and shifted symmetric functions
Jing, Naihuan; Rozhkovskaya, Natasha
2016-01-01
We describe generating functions for several important families of classical symmetric functions and shifted Schur functions. The approach is originated from vertex operator realization of symmetric functions and offers a unified method to treat various families of symmetric functions and their shifted analogues.
EQUIFOCAL HYPERSURFACES IN SYMMETRIC SPACES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This note investigates the multiplicity problem of principal curvatures of equifocal hyper surfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.
Homogenous finitary symmetric groups
Directory of Open Access Journals (Sweden)
Otto. H. Kegel
2015-03-01
Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Symmetric Extended Ockham Algebras
Institute of Scientific and Technical Information of China (English)
T.S. Blyth; Jie Fang
2003-01-01
The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30
Symmetrization Selection Rules, 1
Page, P R
1996-01-01
We introduce a category of strong and electromagnetic interaction selection rules for the two-body connected decay and production of exotic J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, ... hybrid and four-quark mesons. The rules arise from symmetrization in states in addition to Bose symmetry and CP invariance. Examples include various decays to \\eta'\\eta, \\eta\\pi, \\eta'\\pi and four-quark interpretations of a 1^{-+} signal.
Symmetrization Selection Rules, 2
Page, P R
1996-01-01
We introduce strong interaction selection rules for the two-body decay and production of hybrid and conventional mesons coupling to two S-wave hybrid or conventional mesons. The rules arise from symmetrization in states in the limit of non-relativistically moving quarks. The conditions under which hybrid coupling to S-wave states is suppressed are determined by the rules, and the nature of their breaking is indicated.
Axial symmetry and conformal Killing vectors
Mars, M; Mars, Marc; Senovilla, Jose M.M.
1993-01-01
Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in conformally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, we prove that in axisymmetric spacetimes with another symmetry (such as stationary and axisymmetric or cylindrically symmetric spacetimes) and a conformal symmetry, the commutator of the axial Killing vector with the two others mush vanish or else the symmetry is larger than that originally considered. The results are completely general and do not depend on Einstein's equations or any particular matter content.
Spherically symmetric brane spacetime with bulk f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Sumanta [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2015-01-01
Introducing f(R) term in the five-dimensional bulk action we derive effective Einstein's equation on the brane using Gauss-Codazzi equation. This effective equation is then solved for different conditions on dark radiation and dark pressure to obtain various spherically symmetric solutions. Some of these static spherically symmetric solutions correspond to black hole solutions, with parameters induced from the bulk. Specially, the dark pressure and dark radiation terms (electric part of Weyl curvature) affect the brane spherically symmetric solutions significantly. We have solved for one parameter group of conformal motions where the dark radiation and dark pressure terms are exactly obtained exploiting the corresponding Lie symmetry. Various thermodynamic features of these spherically symmetric space-times are studied, showing existence of second order phase transition. This phenomenon has its origin in the higher curvature term with f(R) gravity in the bulk. (orig.)
Koide, Takaki; Yamamoto, Naoyuki; Taira, Kazuma B; Yasui, Hiroyuki
2016-01-01
Orally ingested peptides are generally digested in the gastrointestinal (GI) tract and absorbed in the form of oligopeptides. We previously reported that intravenously administered collagen-like triple-helical peptides circulated in the bloodstream and were excreted in their intact forms in urine nearly quantitatively. In the present study, we investigated the fates of orally administered collagen-like peptides in rats. (Pro-Hyp-Gly)10 (Hyp: 4-hydroxyproline), which formed a stable triple-helical structure, was stable in the GI tract, and 72.3±13.0% of the peptide was excreted in the feces. Its recovery ratio was similar to that of all-D-(Pro-Pro-Gly)10 (75.1±15.7%), the indigestible control. In contrast, (Pro-Hyp-Gly)5 and (Pro-Pro-Gly)10, the random coil conformations of which were dominant at body temperature, were not detected in fecal samples, indicating that they were digested by proteases. The high stability of the triple-helical conformation in mammalian bodies suggests the potential use of collagen-like peptides as novel scaffolds of peptide drugs.
Letellier, R; Ghomi, M; Taillandier, E
1989-02-01
A calculated approach based on the Higgs method for assigning the vibration modes of an infinite helicoidal polymeric chain has been performed on the basis of a reliable valence force field. The calculated results allowed the phosphate-backbone marker modes of the A and B forms, to be interpreted. In the dynamic models used, the bases have been omitted and no interchain interaction was considered. The calculation can also interprete quite satisfactorily the characteristic Raman peaks and infrared bands in the 1250-700 cm-1 spectral region arising from the sugar or sugar-phosphate association and reproduce their evolution upon the B----A DNA conformational transition. They clearly show that the phosphate-backbone modes in the above mentioned spectral region constitute the optical branches of the phonon dispersion curves with no detectable variation in the first Brillouin-zone.
Symmetrically Constrained Compositions
Beck, Matthias; Lee, Sunyoung; Savage, Carla D
2009-01-01
Given integers $a_1, a_2, ..., a_n$, with $a_1 + a_2 + ... + a_n \\geq 1$, a symmetrically constrained composition $\\lambda_1 + lambda_2 + ... + lambda_n = M$ of $M$ into $n$ nonnegative parts is one that satisfies each of the the $n!$ constraints ${\\sum_{i=1}^n a_i \\lambda_{\\pi(i)} \\geq 0 : \\pi \\in S_n}$. We show how to compute the generating function of these compositions, combining methods from partition theory, permutation statistics, and lattice-point enumeration.
Static validation of licence conformance policies
DEFF Research Database (Denmark)
Hansen, Rene Rydhof; Nielson, Flemming; Nielson, Hanne Riis
2008-01-01
Policy conformance is a security property gaining importance due to commercial interest like Digital Rights Management. It is well known that static analysis can be used to validate a number of more classical security policies, such as discretionary and mandatory access control policies, as well...... as communication protocols using symmetric and asymmetric cryptography. In this work we show how to develop a Flow Logic for validating the conformance of client software with respect to a licence conformance policy. Our approach is sufficiently flexible that it extends to fully open systems that can admit new...
Exact String-Like Solutions in Conformal Gravity
Verbin, Y
2010-01-01
The Cylindrically-symmetric static vacuum equations of Conformal Gravity are solved for the case of additional boost symmetry along the axis. We present the complete family of solutions which describe the exterior gravitational field of line sources in Conformal Gravity. We also analyze the null geodesics in these spaces.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Sirsi, Swarnamala; Hegde, Subramanya
2011-01-01
Quantum computation on qubits can be carried out by an operation generated by a Hamiltonian such as application of a pulse as in NMR, NQR. Quantum circuits form an integral part of quan- tum computation. We investigate the nonlocal operations generated by a given Hamiltonian. We construct and study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power. Our work addresses the problem of analyzing the quantum evolution in the special case of two qubit symmetric states. Such a symmetric space can be considered to be spanned by the angular momentum states {|j = 1,m>;m = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of newly defined Hermitian operators Mk's (k= 0.....8) which are constructed out of angular momentum operators Jx, Jy, Jz. These operators constitute a linearly independent set of traceless matrices (except for M0). Further...
Directory of Open Access Journals (Sweden)
Giuseppe Di Maio
2008-04-01
Full Text Available The subject of hyperspace topologies on closed or closed and compact subsets of a topological space X began in the early part of the last century with the discoveries of Hausdorff metric and Vietoris hit-and-miss topology. In course of time, several hyperspace topologies were discovered either for solving some problems in Applied or Pure Mathematics or as natural generalizations of the existing ones. Each hyperspace topology can be split into a lower and an upper part. In the upper part the original set inclusion of Vietoris was generalized to proximal set inclusion. Then the topologization of the Wijsman topology led to the upper Bombay topology which involves two proximities. In all these developments the lower topology, involving intersection of finitely many open sets, was generalized to locally finite families but intersection was left unchanged. Recently the authors studied symmetric proximal topology in which proximity was used for the first time in the lower part replacing intersection with its generalization: nearness. In this paper we use two proximities also in the lower part and we obtain the lower Bombay hypertopology. Consequently, a new hypertopology arises in a natural way: the symmetric Bombay topology which is the join of a lower and an upper Bombay topology.
Czerminski, Ryszard; Roitberg, Adrian; Choi, Chyung; Ulitsky, Alexander; Elber, Ron
1991-10-01
Two computational approaches to study plausible conformations of biological molecules and the transitions between them are presented and discussed. The first approach is a new search algorithm which enhances the sampling of alternative conformers using a mean field approximation. It is argued and demonstrated that the mean field approximation has a small effect on the location of the minima. The method is a combination of the LES protocol (Locally Enhanced Sampling) and simulated annealing. The LES method was used in the past to study the diffusion pathways of ligands from buried active sites in myoglobin and leghemoglobin to the exterior of the protein. The present formulation of LES and its implementation in a Molecular Dynamics program is described. An application for side chain placement in a tetrapeptide is presented. The computational effort associated with conformational searches using LES grows only linearly with the number of degrees of freedom, whereas in the exact case the computational effort grows exponentially. Such saving is of course associated with a mean field approximation. The second branch of studies pertains to the calculation of reaction paths in large and flexible biological systems. An extensive mapping of minima and barriers for two different tetrapeptides is calculated from the known minima and barriers of alanine tetrapeptide which we calculated recently.1 The tetrapeptides are useful models for the formation of secondary structure elements since they are the shortest possible polymers of this type which can still form a complete helical turn. The tetrapeptides are isobutyryl-val(χ1=60)-ala-ala and isobutyryl-val(χ1=-60)-ala-ala. Properties of the hundreds of minima and of the hundreds intervening barriers are discussed. Estimates for thermal transition times between the many conformers (and times to explore the complete phase space) are calculated and compared. It is suggested that the most significant effect of the side chain size is
Supergravitational conformal Galileons
Deen, Rehan; Ovrut, Burt
2017-08-01
The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios
The Symmetricity of Normal Modes in Symmetric Complexes
Song, Guang
2016-01-01
In this work, we look at the symmetry of normal modes in symmetric structures, particularly structures with cyclic symmetry. We show that normal modes of symmetric structures have different levels of symmetry, or symmetricity. One novel theoretical result of this work is that, for a ring structure with $m$ subunits, the symmetricity of the normal modes falls into $m$ groups of equal size, with normal modes in each group having the same symmetricity. The normal modes in each group can be computed separately, using a much smaller amount of memory and time (up to $m^3$ less), thus making it applicable to larger complexes. We show that normal modes with perfect symmetry or anti-symmetry have no degeneracy while the rest of the modes have a degeneracy of two. We show also how symmetry in normal modes correlates with symmetry in structure. While a broken symmetry in structure generally leads to a loss of symmetricity in symmetric normal modes, the symmetricity of some symmetric normal modes is preserved even when s...
Conformal continuations and wormhole instability in scalar-tensor gravity
Bronnikov, K A
2004-01-01
We study the stability of static, spherically symmetric, traversable wormholes existing due to conformal continuations in a class of scalar-tensor theories with zero scalar field potential (so that Fisher's well-known scalar-vacuum solution holds in the Einstein conformal frame). Specific examples of such wormholes are those with nonminimally (e.g., conformally) coupled scalar fields. All boundary conditions for scalar and metric perturbations are taken into account. All such wormholes are shown to be unstable under spherically symmetric perturbations. The instability is proved analytically with the aid of the theory of self-adjoint operators in Hilbert space and is confirmed by a numerical computation.
Plane symmetric cosmological models
Yadav, Anil Kumar; Ray, Saibal; Mallick, A
2016-01-01
In this work, we perform the Lie symmetry analysis on the Einstein-Maxwell field equations in plane symmetric spacetime. Here Lie point symmetries and optimal system of one dimensional subalgebras are determined. The similarity reductions and exact solutions are obtained in connection to the evolution of universe. The present study deals with the electromagnetic energy of inhomogeneous universe where $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, it is assumed that the free gravitational field is Petrov type-II non-degenerate. The electromagnetic field tensor $F_{12}$ is found to be positive and increasing function of time. As a special case, to validate the solution set, we discuss some physical and geometric properties of a specific sub-model.
Institute of Scientific and Technical Information of China (English)
傅育熙
1998-01-01
An alternative presentation of the π－calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π－calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.
Synthesis of novel symmetrical macrocycle via oxidative homocoupling of bisalkyne
Energy Technology Data Exchange (ETDEWEB)
Kamalulazmy, Nurulain; Hassan, Nurul Izzaty [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)
2014-09-03
A novel symmetrical macrocycle has been synthesised via oxidative homocoupling of bisalkyne, diprop-2-ynyl pyridine-2,6-dicarboxylate mediated by copper (I) iodide (CuI) and 4-dimethylaminopyridine (DMAP). The precursor compound was synthesised from 2,6-pyridine dicarbonyl dichloride and propargyl alcohol in the presence of triethylamine. The reaction mixture was stirred overnight and further purified via column chromatograpy with 76% yield. Single crystal for X-ray study was obtained by recrystallization from acetone. Subsequently, a symmetrical macrocycle was synthesised from oxidative homocoupling of precursor compound in open atmosphere. The crude product was purified by column chromatography to furnish macrocycle compound with 5% yield. Both compounds were characterised by IR, {sup 1}H and {sup 13}C NMR and mass spectral techniques. The unusual conformation of the bisalkyne and twisted conformation of designed macrocycle has influence the percentage yield. This has been studied thoroughly by X-ray crystallography and electronic structure calculations.
Institute of Scientific and Technical Information of China (English)
Liu Chang; Mei Feng-Xiang; Guo Yong-Xin
2009-01-01
This paper studies the conformal invariance by infinitesimal point transformations of non-conservative Lagrange systems. It gives the necessary and sufficient conditions of conformal invariance by the action of infinitesimal point transformations being Lie symmetric simultaneously. Then the Noether conserved quantities of conformal invariance are obtained. Finally an illustrative example is given to verify the results.
Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman
2017-09-01
Dynamical coupling between water and amino acid side-chain residues in solvation dynamics is investigated by selecting residues often used as natural probes, namely tryptophan, tyrosine and histidine, located at different positions on protein surface. Such differently placed residues are found to exhibit different timescales of relaxation. The total solvation response measured by the probe is decomposed in terms of its interactions with (i) protein core, (ii) side-chain and (iii) water. Significant anti cross-correlation among these contributions are observed. When the motion of the protein side-chains is quenched, solvation either becomes faster or slower depending on the location of the probe.
Representation of Fuzzy Symmetric Relations
1986-03-19
Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649
Parallel Symmetric Eigenvalue Problem Solvers
2015-05-01
Plemmons G. Golub and A. Sameh. High-speed computing : scientific appli- cations and algorithm design. University of Illinois Press, Champaign, Illinois , 1988...16. SECURITY CLASSIFICATION OF: Sparse symmetric eigenvalue problems arise in many computational science and engineering applications such as...Eigenvalue Problem Solvers Report Title Sparse symmetric eigenvalue problems arise in many computational science and engineering applications such as
Conformal gravity and "gravitational bubbles"
Berezin, V A; Eroshenko, Yu N
2015-01-01
We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...
Structural Flexibility and Conformation Features of Cyclic Dinucleotides in Aqueous Solutions.
Che, Xing; Zhang, Jun; Zhu, Yanyu; Yang, Lijiang; Quan, Hui; Gao, Yi Qin
2016-03-17
Cyclic dinucleotides are able to trigger the innate immune system by activating STING. It was found that the binding affinity of asymmetric 2'3'-cGAMP to symmetric dimer of STING is 3 orders of magnitude higher than that of the symmetric 3'3'-cyclic dinucleotides. Such a phenomenon has not been understood yet. Here we show that the subtle changes in phosphodiester linkage of CDNs lead to their distinct structural properties which correspond to the varied binding affinities. 2'-5' and/or 3'-5' linked CDNs adopt specific while different types of ribose puckers and backbone conformations. That ribose conformations and base types have different propensities for anti or syn glycosidic conformations further affects the overall flexibility of CDNs. The counterbalance between backbone ring tension and electrostatic repulsion, both affected by the ring size, also contributes to the different flexibility of CDNs. Our calculations reveal that the free energy cost for 2'3'-cGAMP to adopt the STING-bound structure is smaller than that for 3'3'-cGAMP and cyclic-di-GMP. These findings may serve as a reference for design of CDN-analogues as vaccine adjuvants. Moreover, the cyclization pattern of CDNs closely related to their physiological roles suggests the importance of understanding structural properties in the study of protein-ligand interactions.
Scaling model for symmetric star polymers
Ramachandran, Ram; Rai, Durgesh K.; Beaucage, Gregory
2010-03-01
Neutron scattering data from symmetric star polymers with six poly (urethane-ether) arms, chemically bonded to a C-60 molecule are fitted using a new scaling model and scattering function. The new scaling function can describe both good solvent and theta solvent conditions as well as resolve deviations in chain conformation due to steric interactions between star arms. The scaling model quantifies the distinction between invariant topological features for this star polymer and chain tortuosity which changes with goodness of solvent and steric interaction. Beaucage G, Phys. Rev. E 70 031401 (2004).; Ramachandran R, et al. Macromolecules 41 9802-9806 (2008).; Ramachandran R, et al. Macromolecules, 42 4746-4750 (2009); Rai DK et al. Europhys. Lett., (Submitted 10/2009).
Conformal Toda theory with a boundary
Fateev, Vladimir
2010-01-01
We investigate sl(n) conformal Toda theory with maximally symmetric boundaries. There are two types of maximally symmetric boundary conditions, due to the existence of an order two automorphism of the W(n>2) algebra. In one of the two cases, we find that there exist D-branes of all possible dimensions 0 =2) algebra. We also comment on the issue of the existence of a boundary action, using the calculus of constrained functional forms, and derive the generating function of the B"acklund transformation for sl(3) Toda classical mechanics, using the minisuperspace limit of the bulk one-point function.
Black hole evaporation in conformal gravity
Bambi, Cosimo; Porey, Shiladitya; Rachwal, Leslaw
2016-01-01
We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.
Leptogenesis in left-right symmetric theories
Joshipura, A S; Rodejohann, W
2001-01-01
The masses and mixing of the light left-handed neutrinos can be related to those of the heavy right-handed neutrinos in left-right symmetric theories. Properties of the light neutrinos are measured in terrestrial experiments and the CP-violating decays of their heavy counterparts produce a baryon asymmetry via the well-known leptogenesis mechanism. The left-handed Higgs triplet, present in left-right symmetric theories, modifies the usual see-saw formula. It is possible to relate the lepton asymmetry to the light neutrino parameters when the triplet and the top quark through the usual see-saw mechanism give dominant contribution to the neutrino mass matrix. We find that in this situation the small angle MSW and vacuum solutions produce reasonable asymmetry, whereas the large angle MSW case requires extreme fine-tuning of the three phases in the mixing matrix.
Leptogenesis in left-right symmetric theories
Energy Technology Data Exchange (ETDEWEB)
Joshipura, Anjan S. E-mail: anjan@prl.ernet.in; Paschos, Emmanuel A. E-mail: paschos@physik.uni-dortmund.de; Rodejohann, Werner E-mail: rodejoha@xena.physik.uni-dortmund.de
2001-09-17
The masses and mixing of the light left-handed neutrinos can be related to those of the heavy right-handed neutrinos in left-right symmetric theories. Properties of the light neutrinos are measured in terrestrial experiments and the CP-violating decays of their heavy counterparts produce a baryon asymmetry via the well-known leptogenesis mechanism. The left-handed Higgs triplet, present in left-right symmetric theories, modifies the usual see-saw formula. It is possible to relate the lepton asymmetry to the light neutrino parameters when the triplet and the top quark through the usual see-saw mechanism give the dominant contribution to the neutrino mass matrix. We find that in this situation the small angle MSW and vacuum solutions produce reasonable asymmetry, whereas the large angle MSW case requires extreme fine-tuning of the three phases in the mixing matrix.
(FIELD) SYMMETRIZATION SELECTION RULES
Energy Technology Data Exchange (ETDEWEB)
P. PAGE
2000-08-01
QCD and QED exhibit an infinite set of three-point Green's functions that contain only OZI rule violating contributions, and (for QCD) are subleading in the large N{sub c} expansion. We prove that the QCD amplitude for a neutral hybrid {l_brace}1,3,5. . .{r_brace}{+-} exotic current to create {eta}{pi}{sup 0} only comes from OZI rule violating contributions under certain conditions, and is subleading in N{sub c}.
PT-symmetric deformations of integrable models.
Fring, Andreas
2013-04-28
We review recent results on new physical models constructed as PT-symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-Sutherland type and nonlinear integrable field equations of Korteweg-de Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero-Moser-Sutherland models, we provide three alternative deformations: a complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real-valued field equations of nonlinear integrable systems; and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of Korteweg-de Vries type are studied with regard to different kinds of PT-symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.
MINIMIZATION PROBLEM FOR SYMMETRIC ORTHOGONAL ANTI-SYMMETRIC MATRICES
Institute of Scientific and Technical Information of China (English)
Yuan Lei; Anping Liao; Lei Zhang
2007-01-01
By applying the generalized singular value decomposition and the canonical correlation decomposition simultaneously, we derive an analytical expression of the optimal approximate solution (X), which is both a least-squares symmetric orthogonal anti-symmetric solution of the matrix equation ATXA ＝ B and a best approximation to a given matrix X*.Moreover, a numerical algorithm for finding this optimal approximate solution is described in detail, and a numerical example is presented to show the validity of our algorithm.
Long, partial-short, and special conformal fields
Metsaev, R R
2016-01-01
In the framework of metric-like approach, totally symmetric arbitrary spin bosonic conformal fields propagating in flat space-time are studied. Depending on the values of conformal dimension, spin, and dimension of space-time, we classify all conformal field as long, partial-short, short, and special conformal fields. An ordinary-derivative (second-derivative) Lagrangian formulation for such conformal fields is obtained. The ordinary-derivative Lagrangian formulation is realized by using double-traceless gauge fields, Stueckelberg fields, and auxiliary fields. Gauge-fixed Lagrangian invariant under global BRST transformations is obtained. The gauge-fixed BRST Lagrangian is used for the computation of partition functions for all conformal fields. Using the result for the partition functions, numbers of propagating D.o.F for the conformal fields are also found.
Static cylindrical symmetry and conformal flatness
Herrera, L; Marcilhacy, G; Santos, N O
2004-01-01
We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful static cylindrically symmmetric distributions of matter, smoothly matched to Levi-Civita vacuum spacetime. It is shown that the conformally flat solution with equal principal stresses represents an incompressible fluid. It is also proved that any conformally flat cylindrically symmetric static source cannot be matched through Darmois conditions to the Levi-Civita spacetime. Further evidence is given that when the Newtonian mass per unit length reaches 1/2 the spacetime has plane symmetry.
Energy Technology Data Exchange (ETDEWEB)
Guedes, O
2005-04-15
With the difficulties encountered for the exploration of complex shape surfaces, particularly in nuclear industry, the ultrasonic conformable phased array transducer allows a non destructive evaluation of parts with 3D complex parts. For this, one can use the Smart Contact Transducer principle to generate an ultrasonic field by adaptive dynamic focalisation, with a matrix array composed of independent elements moulded in a soft resin. This work deals with the electro-acoustic conception, with the realization of such a prototype and with the study of it's mechanical and acoustic behaviour. The array design is defined using a radiation model adapted to the simulation of contact sources on a free surface. Once one have defined the shape of the radiating elements, a vibratory analysis using finite elements method allows the determination of the emitting structure with 1-3 piezocomposite, witch leads to the realization of emitting-receiving elements. With the measurement of the field transmitted by such elements, we deduced new hypothesis to change the model of radiation. Thus one can take into account normal and tangential stresses calculated with finite element modelling at the interface between the element and the propagation medium, to use it with the semi-analytical model. Some vibratory phenomena dealing with fluid coupling of contact transducers have been studied, and the prediction of the transverse wave radiation profile have been improved. The last part of this work deals with the realization of the first prototype of the conformable phased array transducer. For this a deformation measuring system have been developed, to determine the position of each element on real time with the displacement of the transducer on complex shape surfaces. With those positions, one can perform the calculation of the a delay law intended for the adaptive dynamic focusing of the desired ultrasonic field. The conformable phased array transducer have been characterized in
Conformal transformations and conformal invariance in gravitation
Dabrowski, Mariusz P; Blaschke, David B
2008-01-01
Conformal transformations are frequently used tools in order to study relations between various theories of gravity and Einstein relativity. Because of that, in this paper we discuss the rules of conformal transformations for geometric quantities in general relativity. In particular, we discuss the conformal transformations of the matter energy-momentum tensor. We thoroughly discuss the latter and show the subtlety of the conservation law (i.e., the geometrical Bianchi identity) imposed in one of the conformal frames in reference to the other. The subtlety refers to the fact that conformal transformation ``creates'' an extra matter term composed of the conformal factor which enters the conservation law. In an extreme case of the flat original spacetime the matter is ``created'' due to work done by the conformal transformation to bend the spacetime which was originally flat. We also discuss how to construct the conformally invariant gravity which, in the simplest version, is a special case of the Brans-Dicke t...
Yoon, Jungjoo; Mirica, Liviu M; Stack, T Daniel P; Solomon, Edward I
2004-10-06
The magnetic and electronic properties of a spin-frustrated ground state of an antiferromagnetically coupled 3-fold symmetric trinuclear copper complex (TrisOH) is investigated using a combination of variable-temperature variable-field magnetic circular dichroism (VTVH MCD) and powder/single-crystal EPR. Direct evidence for a low-lying excited S = (1)/(2) state from the zero-field split ground (2)E state is provided by the nonlinear dependence of the MCD intensity on 1/T and the nesting of the VTVH MCD isotherms. A consistent zero-field splitting (Delta) value of approximately 65 cm(-1) is obtained from both approaches. In addition, the strong angular dependence of the single-crystal EPR spectrum, with effective g-values from 2.32 down to an unprecedented 1.2, requires in-state spin-orbit coupling of the (2)E state via antisymmetric exchange. The observable EPR intensities also require lowering of the symmetry of the trimer structure, likely reflecting a magnetic Jahn-Teller effect. Thus, the Delta of the ground (2)E state is shown to be governed by the competing effects of antisymmetric exchange (G = 36.0 +/- 0.8 cm(-1)) and symmetry lowering (delta = 17.5 +/- 5.0 cm(-1)). G and delta have opposite effects on the spin distribution over the three metal sites where the former tends to delocalize and the latter tends to localize the spin of the S(tot) = (1)/(2) ground state on one metal center. The combined effects lead to partial delocalization, reflected by the observed EPR parallel hyperfine splitting of 74 x 10(-4) cm(-1). The origin of the large G value derives from the efficient superexchange pathway available between the ground d(x2-y2) and excited d(xy) orbitals of adjacent Cu sites, via strong sigma-type bonds with the in-plane p-orbitals of the bridging hydroxy ligands. This study provides significant insight into the orbital origin of the spin Hamiltonian parameters of a spin-frustrated ground state of a trigonal copper cluster.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The conformal geometry of regular hypersurfaces in the conformal space is studied.We classify all the conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in the conformal space up to conformal equivalence.
Bootstrap bound for conformal multi-flavor QCD on lattice
Nakayama, Yu
2016-01-01
The recent work by Iha et al shows an upper bound on mass anomalous dimension $\\gamma_m$ of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in $SU(N_F)_V$ symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in $SU(N_f)_L \\times SU(N_f)_R$ symmetric conformal field theories. For $N_f=8$, our bound implies $\\gamma_m < 1.31$ to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.
Bootstrap bound for conformal multi-flavor QCD on lattice
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 171-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
2016-07-08
The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ{sub m} of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU(N{sub F}){sub V} symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU(N{sub f}){sub L}×SU(N{sub f}){sub R} symmetric conformal field theories. For N{sub f}=8, our bound implies γ{sub m}<1.31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.
Conformal invariant saturation
Navelet, H
2002-01-01
We show that, in onium-onium scattering at (very) high energy, a transition to saturation happens due to quantum fluctuations of QCD dipoles. This transition starts when the order alpha^2 correction of the dipole loop is compensated by its faster energy evolution, leading to a negative interference with the tree level amplitude. After a derivation of the the one-loop dipole contribution using conformal invariance of the elastic 4-gluon amplitude in high energy QCD, we obtain an exact expression of the saturation line in the plane (Y,L) where Y is the total rapidity and L, the logarithm of the onium scale ratio. It shows universal features implying the Balitskyi - Fadin - Kuraev - Lipatov (BFKL) evolution kernel and the square of the QCD triple Pomeron vertex. For large L, only the higher BFKL Eigenvalue contributes, leading to a saturation depending on leading log perturbative QCD characteristics. For initial onium scales of same order, however, it involves an unlimited summation over all conformal BFKL Eigen...
Yellapu, Nandakumar; Mahto, Manoj Kumar; Valasani, Koteswara Rao; Sarma, P V G K; Matcha, Bhaskar
2015-01-01
Mutations in the glucokinase (GK) gene play a critical role in the establishment of type 2 diabetes. In our earlier study, R308K mutation in GK in a clinically proven type 2 diabetic patient showed, structural and functional variations that contributed immensely to the hyperglycemic condition. In the extension of this work, a cohort of 30 patients with established type 2 diabetic condition were chosen and the exons 10 and 11 of GK were PCR-amplified and sequenced. The sequence alignment showed A379S, D400Y, E300A, E395A, E395G, H380N, I348N, L301M, M298I, M381G, M402R, R308K, R394P, R397S, and S398R mutations in 12 different patients. The structural analysis of these mutated GKs, showed a variable number of β-α-β units, hairpins, β-bulges, strands, helices, helix-helix interactions, β-turns, and γ-turns along with the RMSD variations when compared to wild-type GK. Molecular modeling studies revealed that the substrate showed variable binding orientations and could not fit into the active site of these mutated structures; moreover, it was expelled out of the conformations. Therefore, these structural variations in GK due to mutations could be one of the strongest reasons for the hyperglycemic levels in these type 2 diabetic patients.
Particle-vortex symmetric liquid
Mulligan, Michael
2016-01-01
We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Equivalence of the Hawking temperature in conformal frames
Energy Technology Data Exchange (ETDEWEB)
Marques, Glauber Tadaiesky [Universidade Federal Rural da Amazonia-Brazil, ICIBE-LASIC, Belem/PA (Brazil); Rodrigues, Manuel E. [Universidade Federal do Espirito Santo, Centro de Ciencias Exatas, Departamento de Fisica, Vitoria/ES (Brazil)
2012-02-15
The conformal invariance of the Hawking temperature, conjectured for the asymptotically flat and stationary black holes by Jacobson and Kang, is semiclassically evaluated for a simple particular case of symmetrical spherically and non-asymptotically flat black hole. By using the Bogoliubov coefficients, the metric euclideanization, the reflection coefficient and the gravitational anomaly, as methods of calculating the Hawking temperature, we find that it is invariant under a specific conformal transformation of the metric. We briefly discuss the results for each method. (orig.)
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
Dynamical systems and spherically symmetric cosmological models
He, Yanjing
2006-06-01
In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented
Duality symmetric string and M-theory
Berman, David S.; Thompson, Daniel C.
2015-03-01
We review recent developments in duality symmetric string theory. We begin with the world-sheet doubled formalism which describes strings in an extended spacetime with extra coordinates conjugate to winding modes. This formalism is T-duality symmetric and can accommodate non-geometric T-fold backgrounds which are beyond the scope of Riemannian geometry. Vanishing of the conformal anomaly of this theory can be interpreted as a set of spacetime equations for the background fields. These equations follow from an action principle that has been dubbed Double Field Theory (DFT). We review the aspects of generalised geometry relevant for DFT. We outline recent extensions of DFT and explain how, by relaxing the so-called strong constraint with a Scherk-Schwarz ansatz, one can obtain backgrounds that simultaneously depend on both the regular and T-dual coordinates. This provides a purely geometric higher dimensional origin to gauged supergravities that arise from non-geometric compactification. We then turn to M-theory and describe recent progress in formulating an En(n) U-duality covariant description of the dynamics. We describe how spacetime may be extended to accommodate coordinates conjugate to brane wrapping modes and the construction of generalised metrics in this extended space that unite the bosonic fields of supergravity into a single object. We review the action principles for these theories and their novel gauge symmetries. We also describe how a Scherk-Schwarz reduction can be applied in the M-theory context and the resulting relationship to the embedding tensor formulation of maximal gauged supergravities.
Arbitrary spin conformal fields in (A)dS
Metsaev, R R
2014-01-01
Totally symmetric arbitrary conformal spin fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate explicitly that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. Explicit interrelation between Poincar\\'e basis conformal fields and (A)dS basis conformal fields is obtained. Covariant Lorentz-like and de-Donder like gauge conditions considerably simplifying the Lagrangian of conformal fields are proposed. Using such gauge conditions, we explain how the partition function of conformal field is obtained in the framework of our approach.
Generalized Collective Inference with Symmetric Clique Potentials
Gupta, Rahul; Dewan, Ajit A
2009-01-01
Collective graphical models exploit inter-instance associative dependence to output more accurate labelings. However existing models support very limited kind of associativity which restricts accuracy gains. This paper makes two major contributions. First, we propose a general collective inference framework that biases data instances to agree on a set of {\\em properties} of their labelings. Agreement is encouraged through symmetric clique potentials. We show that rich properties leads to bigger gains, and present a systematic inference procedure for a large class of such properties. The procedure performs message passing on the cluster graph, where property-aware messages are computed with cluster specific algorithms. This provides an inference-only solution for domain adaptation. Our experiments on bibliographic information extraction illustrate significant test error reduction over unseen domains. Our second major contribution consists of algorithms for computing outgoing messages from clique clusters with ...
Non-conformable, partial and conformable transposition
DEFF Research Database (Denmark)
König, Thomas; Mäder, Lars Kai
2013-01-01
Although member states are obliged to transpose directives into domestic law in a conformable manner and receive considerable time for their transposition activities, we identify three levels of transposition outcomes for EU directives: conformable, partially conformable and non-conformable....... Compared with existing transposition models, which do not distinguish between different transposition outcomes, we examine the factors influencing each transposition process by means of a competing risk analysis. We find that preference-related factors, in particular the disagreement of a member state...... and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...
Axially Symmetric, Spatially Homothetic Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2002-01-01
We show that the existence of appropriate spatial homothetic Killing vectors is directly related to the separability of the metric functions for axially symmetric spacetimes. The density profile for such spacetimes is (spatially) arbitrary and admits any equation of state for the matter in the spacetime. When used for studying axisymmetric gravitational collapse, such solutions do not result in a locally naked singularity.
Shearfree Spherically Symmetric Fluid Models
Sharif, M
2013-01-01
We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.
Particle-vortex symmetric liquid
Mulligan, Michael
2017-01-01
We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
Vassiliev Invariants from Symmetric Spaces
DEFF Research Database (Denmark)
Biswas, Indranil; Gammelgaard, Niels Leth
We construct a natural framed weight system on chord diagrams from the curvature tensor of any pseudo-Riemannian symmetric space. These weight systems are of Lie algebra type and realized by the action of the holonomy Lie algebra on a tangent space. Among the Lie algebra weight systems, they are ......, they are exactly characterized by having the symmetries of the Riemann curvature tensor....
Thermophoresis of Axially Symmetric Bodies
2007-11-02
Sweden Abstract. Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit...derived. Asymptotic solutions are studied. INTRODUCTION Thermophoresis as a phenomenon has been known for a long time, and several authors have approached
Axiomatizations of symmetrically weighted solutions
Kleppe, John; Reijnierse, Hans; Sudhölter, P.
2013-01-01
If the excesses of the coalitions in a transferable utility game are weighted, then we show that the arising weighted modifications of the well-known (pre)nucleolus and (pre)kernel satisfy the equal treatment property if and only if the weight system is symmetric in the sense that the weight of a su
Computationally Efficient Searchable Symmetric Encryption
Liesdonk, van Peter; Sedghi, Saeed; Doumen, Jeroen; Hartel, Pieter; Jonker, Willem; Jonker, Willem; Petkovic, Milan
2010-01-01
Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are
Symmetrical progressive erythro-keratoderma
Directory of Open Access Journals (Sweden)
Sunil Gupta
1999-01-01
Full Text Available A 13-year-old male child had gradually progressive, bilaterall, symmetrical, erythematous hyperkeratotic plaques over knees, elbows, natal cleft, dorsa of hands and feet with palmoplantar keratoderma. High arched palate, fissured tongue and sternal depression (pectus-excavatum were unusual associations.
Understanding symmetrical components for power system modeling
Das, J C
2017-01-01
This book utilizes symmetrical components for analyzing unbalanced three-phase electrical systems, by applying single-phase analysis tools. The author covers two approaches for studying symmetrical components; the physical approach, avoiding many mathematical matrix algebra equations, and a mathematical approach, using matrix theory. Divided into seven sections, topics include: symmetrical components using matrix methods, fundamental concepts of symmetrical components, symmetrical components –transmission lines and cables, sequence components of rotating equipment and static load, three-phase models of transformers and conductors, unsymmetrical fault calculations, and some limitations of symmetrical components.
Logarithmic exotic conformal Galilean algebras
Energy Technology Data Exchange (ETDEWEB)
Henkel, Malte, E-mail: Malte.henkel@univ-lorraine.fr [Groupe de Physique Statistique, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Hosseiny, Ali, E-mail: al_hosseiny@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 19839 (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Rouhani, Shahin, E-mail: rouhani@ipm.ir [Department of Physics, Sharif University of Technology, P.O. Box 11165-9161, Tehran (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2014-02-15
Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra (ECGA) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, specific to conformal Galilean algebras. Logarithmic representations of the non-exotic CGA lead to the expected constraints on scaling dimensions and rapidities and also on the logarithmic contributions in the co-variant two-point functions. On the other hand, the ECGA admits several distinct situations which are distinguished by different sets of constraints and distinct scaling forms of the two-point functions. Two distinct realisations for the spatial rotations are identified as well. This is the first concrete example of a reducible, but non-decomposable representation, without logarithmic terms. Such cases had been anticipated before.
Labeling spherically symmetric spacetimes with the Ricci tensor
Ferrando, Joan Josep; Sáez, Juan Antonio
2017-02-01
We complete the intrinsic characterization of spherically symmetric solutions partially accomplished in a previous paper (Ferrando and Sáez 2010 Class. Quantum Grav. 27 205024). In this approach we consider every compatible algebraic type of the Ricci tensor, and we analyze specifically the conformally flat case for perfect fluid and Einstein–Maxwell solutions. As a direct application we obtain the ideal labeling (exclusively involving explicit concomitants of the metric tensor) of the Schwarzschild interior metric and the Vaidya solution. The Stephani universes and some significative subfamilies are also characterized.
Spherically symmetric black-hole entropy without brick walls
Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang
2003-11-01
Properties of the thermal radiation of black holes are discussed using a new equation of state density motivated by the generalized uncertainty relation in quantum gravity. There is no burst at the last stage of emission from a spherically symmetric black hole. When the new equation of state density is used to investigate the entropy of a bosonic field and fermionic field outside the horizon of a static spherically symmetric black hole, the divergence that appears in the brick-wall model is removed without any cutoff. The entropy proportional to the horizon area is derived from the contribution from the vicinity of the horizon.
Constrained field theories on spherically symmetric spacetimes with horizons
Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman
2017-02-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.
Constrained field theories on spherically symmetric spacetimes with horizons
Fernandes, Karan; Lahiri, Amitabha
2016-01-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory. We find that the constraints are modified on such spacetimes through the presence of additional contributions from the horizon.
Electroweak Baryogenesis in R-symmetric Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
The antipodal sets of compact symmetric spaces
National Research Council Canada - National Science Library
Liu, Xingda; Deng, Shaoqiang
2014-01-01
We study the antipodal set of a point in a compact Riemannian symmetric space. It turns out that we can give an explicit description of the antipodal set of a point in any connected simply connected compact Riemannian symmetric space...
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...... normalisation, where all rules dual to standard ones are permuted up in the derivation. The result is a decomposition theorem having cut elimination and interpolation as corollaries.......We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus...
Symmetric two-coordinate photodiode
Directory of Open Access Journals (Sweden)
Dobrovolskiy Yu. G.
2008-12-01
Full Text Available The two-coordinate photodiode is developed and explored on the longitudinal photoeffect, which allows to get the coordinate descriptions symmetric on the steepness and longitudinal resistance great exactness. It was shown, that the best type of the coordinate description is observed in the case of scanning by the optical probe on the central part of the photosensitive element. The ways of improvement of steepness and linear of its coordinate description were analyzed.
Rotationally symmetric viscous gas flows
Weigant, W.; Plotnikov, P. I.
2017-03-01
The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Accessing the exceptional points of parity-time symmetric acoustics
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-03-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging.
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Tsoupros, G
2000-01-01
The effect of quantum corrections to a conformally invariant field theory for a self-interacting scalar field on a curved manifold with boundary is considered. The analysis is most easily performed in a space of constant curvature the boundary of which is characterised by constant extrinsic curvature. An extension of the spherical formulation in the presence of a boundary is attained through use of the method of images. Contrary to the consolidated vanishing effect in maximally symmetric space-times the contribution of the massless "tadpole" diagram no longer vanishes in dimensional regularisation. As a result, conformal invariance is broken due to boundary-related vacuum contributions. The evaluation of one-loop contributions to the two-point function suggests an extension, in the presence of matter couplings, of the simultaneous volume and boundary renormalisation in the effective action.
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Gauge Choice in Conformal Gravity
Sultana, Joseph; Kazanas, Demosthenes
2017-01-01
In a recent paper (MNRAS 458, 4122 (2016)) K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity (CG), and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length scale, the equivalent Higgs-frame Mannheim-Kazanas metric tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note we point out that the representation of the Mannheim-Kazanas metric in a gauge where it lacks the linear term has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.
Gowdy-Symmetric Vacuum and Electrovacuum Solutions
Hennig, Jörg
2015-01-01
"Smooth Gowdy-symmetric generalized Taub-NUT solutions" are a class of inhomogeneous cosmological vacuum models with a past and a future Cauchy horizon. In this proceedings contribution, we present families of exact solutions within that class, which contain the Taub solution as a special case, and discuss their properties. In particular, we show that, for a special choice of the parameters, the solutions have a curvature singularity with directional behaviour. For other parameter choices, the maximal globally hyperbolic region is singularity-free. We also construct extensions through the Cauchy horizons and analyse the causal structure of the solutions. Finally, we discuss the generalization from vacuum to electrovacuum and present an exact family of solutions for that case.
Symmetric products of mixed Hodge modules
Maxim, Laurentiu; Schuermann, Joerg
2010-01-01
Generalizing a theorem of Macdonald, we show a formula for the mixed Hodge structure on the cohomology of the symmetric products of bounded complexes of mixed Hodge modules by showing the existence of the canonical action of the symmetric group on the multiple external self-products of complexes of mixed Hodge modules. We also generalize a theorem of Hirzebruch and Zagier on the signature of the symmetric products of manifolds to the case of the symmetric products of symmetric parings on bounded complexes with constructible cohomology sheaves where the pairing is not assumed to be non-degenerate.
Singular Value Decomposition for Unitary Symmetric Matrix
Institute of Scientific and Technical Information of China (English)
ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda
2003-01-01
A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.
Ono, Toshiaki; Fushimi, Naomasa; Yamada, Kei; Asada, Hideki
2015-01-01
In terms of Sturm's theorem, we reexamine a marginal stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. MSCOs for some of exact solutions to the Einstein's equation are discussed. Strum's theorem is explicitly applied to the Kottler (often called Schwarzschild-de Sitter) spacetime. Moreover, we analyze MSCOs for a spherically symmetric, static and vacuum solution in Weyl conformal gravity.
Symmetric Teleparallel Gravity: Some Exact Solutions and Spinor Couplings
Adak, Muzaffer; Sert, Özcan; Kalay, Mestan; Sari, Murat
2013-12-01
In this paper, we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian space-time with nonzero nonmetricity, but zero torsion and zero curvature. First, we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then, we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry, the autoparallel curves coincide with those of the Riemannian space-times. Subsequently, we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving Lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our Lagrangian is equivalent to the Einstein-Hilbert Lagrangian for certain values of coupling coefficients. Thus, we arrive at calculating the field equations via independent variations. Then, we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally, we discuss a minimal coupling of a spin-1/2 field to STPG.
Conformant Planning via Symbolic Model Checking
Cimatti, A; 10.1613/jair.774
2011-01-01
We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation ...
Discrete Torsion and Symmetric Products
Dijkgraaf, R
1999-01-01
In this note we point out that a symmetric product orbifold CFT can be twisted by a unique nontrivial two-cocycle of the permutation group. This discrete torsion changes the spins and statistics of corresponding second-quantized string theory making it essentially ``supersymmetric.'' The long strings of even length become fermionic (or ghosts), those of odd length bosonic. The partition function and elliptic genus can be described by a sum over stringy spin structures. The usual cubic interaction vertex is odd and nilpotent, so this construction gives rise to a DLCQ string theory with a leading quartic interaction.
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
High precision NOEs as a probe for low level conformers--a second conformation of strychnine.
Butts, Craig P; Jones, Catharine R; Harvey, Jeremy N
2011-01-28
A second conformer of strychnine, with a very low population (2.5%), has been identified experimentally, and confirmed by computation, demonstrating the ability of NOE measurements to discriminate minute contributions to dynamic structure ensembles in solution.
Spectra of conformal sigma models
Energy Technology Data Exchange (ETDEWEB)
Tlapak, Vaclav
2015-04-15
In this thesis the spectra of conformal sigma models defined on (generalized) symmetric spaces are analysed. The spaces where sigma models are conformal without the addition of a Wess-Zumino term are supermanifolds, in other words spaces that include fermionic directions. After a brief review of the general construction of vertex operators and the background field expansion, we compute the diagonal terms of the one-loop anomalous dimensions of sigma models on semi-symmetric spaces. We find that the results are formally identical to the symmetric case. However, unlike for sigma models on symmetric spaces, off diagonal terms that lead to operator mixing are also present. These are not computed here. We then present a detailed analysis of the one-loop spectrum of the supersphere S{sup 3} {sup vertical} {sup stroke} {sup 2} sigma model as one of the simplest examples. The analysis illustrates the power and simplicity of the construction. We use this data to revisit a duality with the OSP(4 vertical stroke 2) Gross-Neveu model that was proposed by Candu and Saleur. With the help of a recent all-loop result for the anomalous dimension of (1)/(2)BPS operators of Gross-Neveu models, we are able to recover the entire zero-mode spectrum of the supersphere model. We also argue that the sigma model constraints and its equations of motion are implemented correctly in the Gross-Neveu model, including the one-loop data. The duality is further supported by a new all-loop result for the anomalous dimension of the ground states of the sigma model. However, higher-gradient operators cannot be completely recovered. It is possible that this discrepancy is related to a known instability of the sigma model. The instability of sigma models is due to symmetry preserving high-gradient operators that become relevant at arbitrarily small values of the coupling. This feature has been observed long ago in one-loop calculations of the O(N)-vector model and soon been realized to be a generic
Symmetric instability in the Gulf Stream
Thomas, Leif N.; Taylor, John R.; Ferrari, Raffaele; Joyce, Terrence M.
2013-07-01
Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may contribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably stratified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the observations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts. SI is a shear instability that draws its energy from geostrophic flows. A parameterization for the rate of kinetic energy (KE) extraction by SI applied to the observations suggests that SI could result in a net dissipation of 33 mW m-2 and 1 mW m-2 for surveys with strong and weak fronts, respectively. The surveys also showed signs of baroclinic instability (BCI) in the SBL, namely thermally direct vertical circulations that advect biomass and PV. The vertical circulation was inferred using the omega equation and used to estimate the rate of release of available potential energy (APE) by BCI. The rate of APE release was found to be comparable in magnitude to the net dissipation associated with SI. This result points to an
Schwarz Methods: To Symmetrize or Not to Symmetrize
Holst, Michael
2010-01-01
A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of non-variational and non-convergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.
Transitive conformal holonomy groups
Alt, Jesse
2011-01-01
For $(M,[g])$ a conformal manifold of signature $(p,q)$ and dimension at least three, the conformal holonomy group $\\mathrm{Hol}(M,[g]) \\subset O(p+1,q+1)$ is an invariant induced by the canonical Cartan geometry of $(M,[g])$. We give a description of all possible connected conformal holonomy groups which act transitively on the M\\"obius sphere $S^{p,q}$, the homogeneous model space for conformal structures of signature $(p,q)$. The main part of this description is a list of all such groups which also act irreducibly on $\\R^{p+1,q+1}$. For the rest, we show that they must be compact and act decomposably on $\\R^{p+1,q+1}$, in particular, by known facts about conformal holonomy the conformal class $[g]$ must contain a metric which is locally isometric to a so-called special Einstein product.
Conformal window and Landau singularities
Grunberg, G
2001-01-01
A physical characterization of Landau singularities is emphasized, which should trace the lower boundary N_f^* of the conformal window in QCD and supersymmetric QCD. A natural way to disentangle ``perturbative'' from ``non-perturbative'' contributions below N_f^* is suggested. Assuming an infrared fixed point is present in the perturbative part of the QCD coupling even in some range below N_f^* leads to the condition gamma(N_f^*)=1, where gamma is the critical exponent. Using the Banks-Zaks expansion, one gets 4
Fine Spectra of Symmetric Toeplitz Operators
Directory of Open Access Journals (Sweden)
Muhammed Altun
2012-01-01
Full Text Available The fine spectra of 2-banded and 3-banded infinite Toeplitz matrices were examined by several authors. The fine spectra of n-banded triangular Toeplitz matrices and tridiagonal symmetric matrices were computed in the following papers: Altun, “On the fine spectra of triangular toeplitz operators” (2011 and Altun, “Fine spectra of tridiagonal symmetric matrices” (2011. Here, we generalize those results to the (2+1-banded symmetric Toeplitz matrix operators for arbitrary positive integer .
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Symmetric functions and Hall polynomials
MacDonald, Ian Grant
1998-01-01
This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...
A Minimally Symmetric Higgs Boson
Low, Ian
2014-01-01
Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)xU(1) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal in all models where the Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB). Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.
Computing symmetric colorings of the dihedral group
Zelenyuk, Yuliya
2016-06-01
A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.
[Dosimetric evaluation of conformal radiotherapy: conformity factor].
Oozeer, R; Chauvet, B; Garcia, R; Berger, C; Felix-Faure, C; Reboul, F
2000-01-01
The aim of three-dimensional conformal therapy (3DCRT) is to treat the Planning Target Volume (PTV) to the prescribed dose while reducing doses to normal tissues and critical structures, in order to increase local control and reduce toxicity. The evaluation tools used for optimizing treatment techniques are three-dimensional visualization of dose distributions, dose-volume histograms, tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). These tools, however, do not fully quantify the conformity of dose distributions to the PTV. Specific tools were introduced to measure this conformity for a given dose level. We have extended those definitions to different dose levels, using a conformity index (CI). CI is based on the relative volumes of PTV and outside the PTV receiving more than a given dose. This parameter has been evaluated by a clinical study including 82 patients treated for lung cancer and 82 patients treated for prostate cancer. The CI was low for lung dosimetric studies (0.35 at the prescribed dose 66 Gy) due to build-up around the GTV and to spinal cord sparing. For prostate dosimetric studies, the CI was higher (0.57 at the prescribed dose 70 Gy). The CI has been used to compare treatment plans for lung 3DCRT (2 vs 3 beams) and prostate 3DCRT (4 vs 7 beams). The variation of CI with dose can be used to optimize dose prescription.
Indian Academy of Sciences (India)
Varsha Daftardar-Gejji
2001-05-01
Brinkmann [1] has shown that conformally related distinct Ricci flat solutions are -waves. Brinkmann's result has been generalized to include the conformally invariant source terms. It has been shown that [4] if $g_{ik}$ and $\\overline{g}_{ik}$ ($=^{-2}g_{ik}$, : a scalar function), are distinct metrics having the same Einstein tensor, $G_{ik}=\\overline{G}_{ik}$, then both represent (generalized) $pp$-waves and $_{i}$ is a null convariantly constant vector of $g_{ik}$. Thus $pp$-waves are the only candidates which yield conformally related nontrivial solutions of $G_{ik}=T_{ik}=\\overline{G}_{ik}$, with $T_{ik}$ being conformally invariant source. In this paper the functional form of the conformal factor for the conformally related $pp$-waves/generalized $pp$-waves has been obtained. It has been shown that the most general $pp$-wave, conformally related to ${\\rm d}s^{2}=-2{\\rm d}u[{\\rm d}v-m{\\rm d}y+H{\\rm d}u]+P^{-2}[{\\rm d}y^{2}+{\\rm d}z^{2}]$, turns out to the $(au+b)^{-2}{\\rm d}s^{2}$, where , are constants. Only in the special case when $m=0$, $H=1$, and $P=P(y,z)$, the conformal factor is $(au+b)^{-2}$ or $(a(u+v)+b)^{-2}$.
Conformational stability of calreticulin
DEFF Research Database (Denmark)
Jørgensen, C.S.; Trandum, C.; Larsen, N.
2005-01-01
The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....
Automorphism groups of causal symmetric spaces of Cayley type and bounded symmetric domains
Institute of Scientific and Technical Information of China (English)
Soji; Kaneyuki
2005-01-01
Symmetric spaces of Cayley type are a higher dimensional analogue of a onesheeted hyperboloid in R3. They form an important class of causal symmetric spaces. To a symmetric space of Cayley type M, one can associate a bounded symmetric domain of tube type D. We determine the full causal automorphism group of M. This clarifies the relation between the causal automorphism group and the holomorphic automorphism group of D.
More on the conformal mapping of quasi-local masses: The Hawking-Hayward case
Hammad, Fayçal
2016-01-01
The conformal transformation of the Hawking-Hayward quasi-local mass is reexamined. It has been found recently that the conformal transformation of the latter exhibits the 'wrong' conformal factor compared to the way usual masses transform under conformal transformations of spacetime. We show, in analogy with what was found recently for the Misner-Sharp mass, that unlike the purely geometric definition of the Hawking-Hayward mass, the latter exhibits the 'right' conformal factor whenever expressed in terms of its material content via the field equations. The case of conformally invariant scalar-tensor theories of gravity is also examined. The equivalence between the Misner-Sharp mass and the Hawking-Hayward mass for spherically symmetric spacetimes manifests itself by giving identical peculiar behaviors under conformal transformations.
More on the conformal mapping of quasi-local masses: the Hawking-Hayward case
Hammad, Fayçal
2016-12-01
The conformal transformation of the Hawking-Hayward quasi-local mass is re-examined. It has been found recently that the conformal transformation of the latter exhibits the ‘wrong’ conformal factor compared to the way usual masses transform under conformal transformations of spacetime. We show, in analogy with what was found recently for the Misner-Sharp mass, that unlike the purely geometric definition of the Hawking-Hayward mass, the latter exhibits the ‘right’ conformal factor whenever expressed in terms of its material content via the field equations. The case of conformally invariant scalar-tensor theories of gravity is also examined. The equivalence between the Misner-Sharp mass and the Hawking-Hayward mass for spherically symmetric spacetimes manifests itself by giving identical peculiar behaviors under conformal transformations.
Solar system tests for linear massive conformal gravity
Faria, F F
2016-01-01
We first find the linearized gravitational field of a static spherically symmetric mass distribution in massive conformal gravity. Then we test this field with two solar system experiments: deflection of light by the sun and radar echo delay. The result is that the linear massive conformal gravity agrees with the linear general relativistic observations in the solar system. However, besides the standard general relativistic deflection of light, the theory gives an extra deflection at galactic scales. It is likely that this additional deflection replaces the effects of dark matter in general relativity.
Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book
Energy Technology Data Exchange (ETDEWEB)
De Wagter, C. [ed.
1995-12-01
The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.
Partially locally rotationally symmetric perfect fluid cosmologies
Mustapha, N; Van Elst, H; Marklund, M; Mustapha, Nazeem; Ellis, George F R; Elst, Henk van; Marklund, Mattias
2000-01-01
We show that there are no new consistent perfect fluid cosmologies with the kinematic variables and the electric and magnetic parts of the Weyl curvature all rotationally symmetric about a common axis in an open neighbourhood ${\\cal U}$ of an event. The consistent solutions of this kind are either locally rotationally symmetric, or are subcases of the Szekeres model.
CANONICAL EXTENSIONS OF SYMMETRIC LINEAR RELATIONS
Sandovici, Adrian; Davidson, KR; Gaspar, D; Stratila, S; Timotin, D; Vasilescu, FH
2006-01-01
The concept of canonical extension of Hermitian operators has been recently introduced by A. Kuzhel. This paper deals with a generalization of this notion to the case of symmetric linear relations. Namely, canonical regular extensions of symmetric linear relations in Hilbert spaces are studied. The
Symmetric products, permutation orbifolds and discrete torsion
Bántay, P
2000-01-01
Symmetric product orbifolds, i.e. permutation orbifolds of the full symmetric group S_{n} are considered by applying the general techniques of permutation orbifolds. Generating functions for various quantities, e.g. the torus partition functions and the Klein-bottle amplitudes are presented, as well as a simple expression for the discrete torsion coefficients.
Inversion-symmetric topological insulators
Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei
2011-06-01
We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion
Joglekar, Yogesh N
2010-01-01
We study the properties of a parity- and time-reversal- (PT) symmetric tight-binding chain of size N with position-dependent hopping amplitude. In contrast to the fragile PT-symmetric phase of a chain with constant hopping and imaginary impurity potentials, we show that, under very general conditions, our model is {\\it always} in the PT-symmetric phase. We numerically obtain the energy spectrum and the density of states of such a chain, and show that they are widely tunable. By studying the size-dependence of inverse participation ratios, we show that although the chain is not translationally invariant, most of its eigenstates are extended. Our results indicate that tight-binding models with non-Hermitian PT-symmetric hopping have a robust PT-symmetric phase and rich dynamics.
Classification of Entanglement in Symmetric States
Aulbach, Martin
2011-01-01
Quantum states that are symmetric with respect to permutations of their subsystems appear in a wide range of physical settings, and they have a variety of promising applications in quantum information science. In this thesis the entanglement of symmetric multipartite states is categorised, with a particular focus on the pure multi-qubit case and the geometric measure of entanglement. An essential tool for this analysis is the Majorana representation, a generalisation of the single-qubit Bloch sphere representation, which allows for a unique representation of symmetric n qubit states by n points on the surface of a sphere. Here this representation is employed to search for the maximally entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an intuitive visual understanding of the upper bound on the maximal symmetric entanglement is given. Furthermore, it will be seen that the Majorana representation facilitates the characterisation of entanglement equivalence classes such as Stoc...
Social conformity despite individual preferences for distinctiveness.
Smaldino, Paul E; Epstein, Joshua M
2015-03-01
We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.
Even, J.; Bertault, M.; Girard, A.; Délugeard, Y.
1996-12-01
DNP is a symmetrical disubstituted polymerizable diacetylene RCCCCR where R is CH 2O(NO 2) 2. The monomer crystal of DNP undergoes a ferroelectric phase transition at low temperature; it disappears in fully polymerized DNP crystal because polymerization changes the diacetylene backbone conformation. We show that hydrostatic isotropic pressure also stabilizes the ferroelectric phase in the DNP monomer crystal by enhancing van der Waals interactions between side groups.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Symmetric Structure in Logic Programming
Institute of Scientific and Technical Information of China (English)
Jin-Zhao Wu; Harald Fecher
2004-01-01
It is argued that some symmetric structure in logic programs could be taken into account when implementing semantics in logic programming. This may enhance the declarative ability or expressive power of the semantics. The work presented here may be seen as representative examples along this line. The focus is on the derivation of negative information and some other classic semantic issues. We first define a permutation group associated with a given logic program. Since usually the canonical models used to reflect the common sense or intended meaning are minimal or completed models of the program, we expose the relationships between minimal models and completed models of the original program and its so-called G-reduced form newly-derived via the permutation group defined. By means of this G-reduced form, we introduce a rule to assume negative information termed G-CWA, which is actually a generalization of the GCWA. We also develop the notions of G-definite, G-hierarchical and G-stratified logic programs, which are more general than definite, hierarchical and stratified programs, and extend some well-known declarative and procedural semantics to them, respectively.
PT-Symmetric Quantum Electrodynamics
Bender, C M; Milton, K A; Shajesh, K V; Bender, Carl M.; Cavero-Pelaez, Ines; Milton, Kimball A.
2005-01-01
The Hamiltonian for quantum electrodynamics becomes non-Hermitian if the unrenormalized electric charge $e$ is taken to be imaginary. However, if one also specifies that the potential $A^\\mu$ in such a theory transforms as a pseudovector rather than a vector, then the Hamiltonian becomes PT symmetric. The resulting non-Hermitian theory of electrodynamics is the analog of a spinless quantum field theory in which a pseudoscalar field $\\phi$ has a cubic self-interaction of the form $i\\phi^3$. The Hamiltonian for this cubic scalar field theory has a positive spectrum, and it has recently been demonstrated that the time evolution of this theory is unitary. The proof of unitarity requires the construction of a new operator called C, which is then used to define an inner product with respect to which the Hamiltonian is self-adjoint. In this paper the corresponding C operator for non-Hermitian quantum electrodynamics is constructed perturbatively. This construction demonstrates the unitarity of the theory. Non-Hermit...
Substring-Searchable Symmetric Encryption
Directory of Open Access Journals (Sweden)
Chase Melissa
2015-06-01
Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.
Steiner symmetrization and the initial coefficients of univalent functions
Energy Technology Data Exchange (ETDEWEB)
Dubinin, Vladimir N [Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)
2010-09-07
We establish the inequality |a{sub 1}|{sup 2}-Rea{sub 1}a{sub -1}{>=}|a{sub 1}*|{sup 2}-Rea{sub 1}*a{sub -1}* for the initial coefficients of any function f(z)=a{sub 1}z+a{sub 0}+a{sub -1}/z+? meromorphic and univalent in the domain D={l_brace}z:|z|>1{r_brace}, where a{sub 1}* and a{sub -1}* are the corresponding coefficients in the expansion of the function f*(z) that maps the domain D conformally and univalently onto the exterior of the result of the Steiner symmetrization with respect to the real axis of the complement of the set f(D). The Polya-Szego inequality |a{sub 1}|{>=}|a{sub 1}*| is already known. We describe some applications of our inequality to functions of class {Sigma}.
Novel C3-symmetric molecular scaffolds with potential facial differentiation.
Hennrich, Gunther; Lynch, Vincent M; Anslyn, Eric V
2002-05-17
The conversion of 1,3,5-substituted benzene and mesitylene by electrophilic aromatic substitution and Sonogashira cross-coupling, respectively, furnished the C3-symmetric, hexasubstituted benzene derivatives 1 and 2 with an alternating substitution pattern. Based on the molecular scaffolds obtained, the two systems serve as model compounds for novel receptor molecules with distinct geometric features. X-ray structures have been obtained for 1 and 2, which are discussed in regard to their aptitude as receptor platforms or supramolecular building blocks. By looking at the rotational barriers for the functional groups placed around the molecular scaffolds by variable temperature 1H NMR spectroscopy, 1 and 2 turn out to exist in rapidly interconverting conformations. The alignment of these potential binding groups around the molecular scaffolds should be strongly biased by specific interactions with suitable guest molecules.
Donawa, M E
1996-05-01
The CE-marking procedure requires that manufacturers draw up a written declaration of conformity before placing their products on the market. However, some companies do not realize that this is a requirement for all devices. Also, there is no detailed information concerning the contents and format of the EC declaration of conformity in the medical device Directives or in EC guidance documentation. This article will discuss some important aspects of the EC declaration of conformity and some of the guidance that is available on its contents and format.
Symmetric Partial Derivatives%对称偏导数
Institute of Scientific and Technical Information of China (English)
徐永平
2001-01-01
In this paper, symmetric partial derivatives and symmetric total differential of a function of several variables are defined. The relationship between partial derivative and the symmetric partial derivative, the total differential and the symmetric total derivative are discussed. By means of the concept of symmetric partial derivatives, the existence theorem of the total differential of a function of several is obtained.
Conformal expansions and renormalons
Gardi, E; Gardi, Einan; Grunberg, Georges
2001-01-01
The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.
Animal culture: chimpanzee conformity?
van Schaik, Carel P
2012-05-22
Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity.
The symmetric extendibility of quantum states
Nowakowski, Marcin L.
2016-09-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.
Random matrix theory and symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Caselle, M.; Magnea, U
2004-05-01
In this review we discuss the relationship between random matrix theories and symmetric spaces. We show that the integration manifolds of random matrix theories, the eigenvalue distribution, and the Dyson and boundary indices characterizing the ensembles are in strict correspondence with symmetric spaces and the intrinsic characteristics of their restricted root lattices. Several important results can be obtained from this identification. In particular the Cartan classification of triplets of symmetric spaces with positive, zero and negative curvature gives rise to a new classification of random matrix ensembles. The review is organized into two main parts. In Part I the theory of symmetric spaces is reviewed with particular emphasis on the ideas relevant for appreciating the correspondence with random matrix theories. In Part II we discuss various applications of symmetric spaces to random matrix theories and in particular the new classification of disordered systems derived from the classification of symmetric spaces. We also review how the mapping from integrable Calogero-Sutherland models to symmetric spaces can be used in the theory of random matrices, with particular consequences for quantum transport problems. We conclude indicating some interesting new directions of research based on these identifications.
Quantum massive conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)
2016-04-15
We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)
Delineating the conformal window
DEFF Research Database (Denmark)
Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael
2011-01-01
We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....
Faraoni, Valerio
2013-01-01
A massive scalar field in a curved spacetime can propagate along the light cone, a causal pathology, which can, in principle, be eliminated only if the scalar couples conformally to the Ricci curvature of spacetime. This property mandates conformal coupling for the field driving inflation in the early universe. During slow-roll inflation, this coupling can cause super-acceleration and, as a signature, a blue spectrum of primordial gravitational waves.
Bond, Rod
2005-01-01
Abstract This paper reviews theory and research on the relationship between group size and conformity and presents a meta-analysis of 125 Asch-type conformity studies. It questions the assumption of a single function made in formal models of social influence and proposes instead that the function will vary depending on which social influence process predominates. It is argued that normative influence is lik...
Conformism and Wealth Distribution
Mino, Kazuo; Nakamoto, Yasuhiro
2014-01-01
This paper explores the role of consumption externalities in a neoclassical growth model in which households have heterogeneous preferences. We fi?nd that the degree of conformism in consumption held by each household signifi?cantly affects the speed of convergence of the aggregate economy as well as the patterns of wealth distribution in the steady state equilibrium. In particular, a higher degree of consumption conformism accelerates the convergence speed of the economy towards the steady s...
Directory of Open Access Journals (Sweden)
Valerio Faraoni
2013-07-01
Full Text Available A massive scalar field in a curved spacetime can propagate along the light cone, a causal pathology, which can, in principle, be eliminated only if the scalar couples conformally to the Ricci curvature of spacetime. This property mandates conformal coupling for the field driving inflation in the early universe. During slow-roll inflation, this coupling can cause super-acceleration and, as a signature, a blue spectrum of primordial gravitational waves.
Scalar-tensor gravity and conformal continuations
Bronnikov, K A
2002-01-01
Global properties of vacuum static, spherically symmetric configurations are studied in a general class of scalar-tensor theories (STT) of gravity in various dimensions. The conformal mapping between the Jordan and Einstein frames is used as a tool. Necessary and sufficient conditions are found for the existence of solutions admitting a conformal continuation (CC). The latter means that a singularity in the Einstein-frame manifold maps to a regular surface S_(trans) in the Jordan frame, and the solution is then continued beyond this surface. S_(trans) can be an ordinary regular sphere or a horizon. In the second case, S_(trans) proves to connect two epochs of a Kantowski-Sachs type cosmology. It is shown that, in an arbitrary STT, with arbitrary potential functions $U(\\phi)$, the list of possible types of causal structures of vacuum space-times is the same as in general relativity with a cosmological constant. This is true even for conformally continued solutions. It is found that when S_(trans) is an ordinar...
Scale Factor Duality for Conformal Cyclic Cosmologies
dS, U Camara; Sotkov, G M
2016-01-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged K\\"ahler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension ...
Scale factor duality for conformal cyclic cosmologies
Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.
2016-11-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
Scale factor duality for conformal cyclic cosmologies
Energy Technology Data Exchange (ETDEWEB)
Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M. [Departamento de Física - CCE,Universidade Federal de Espirito Santo, 29075-900, Vitoria ES (Brazil)
2016-11-16
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
Conformational sampling techniques.
Hatfield, Marcus P D; Lovas, Sándor
2014-01-01
The potential energy hyper-surface of a protein relates the potential energy of the protein to its conformational space. This surface is useful in determining the native conformation of a protein or in examining a statistical-mechanical ensemble of structures (canonical ensemble). In determining the potential energy hyper-surface of a protein three aspects must be considered; reducing the degrees of freedom, a method to determine the energy of each conformation and a method to sample the conformational space. For reducing the degrees of freedom the choice of solvent, coarse graining, constraining degrees of freedom and periodic boundary conditions are discussed. The use of quantum mechanics versus molecular mechanics and the choice of force fields are also discussed, as well as the sampling of the conformational space through deterministic and heuristic approaches. Deterministic methods include knowledge-based statistical methods, rotamer libraries, homology modeling, the build-up method, self-consistent electrostatic field, deformation methods, tree-based elimination and eigenvector following routines. The heuristic methods include Monte Carlo chain growing, energy minimizations, metropolis monte carlo and molecular dynamics. In addition, various methods to enhance the conformational search including the deformation or smoothing of the surface, scaling of system parameters, and multi copy searching are also discussed.
A class of symmetric controlled quantum operations
Vaccaro, J A; Huelga, S F; Vaccaro, John A.
2001-01-01
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric.
A class of symmetric controlled quantum operations
Energy Technology Data Exchange (ETDEWEB)
Vaccaro, John A.; Steuernagel, O.; Huelga, S.F. [Division of Physics and Astronomy, Department of Physical Sciences, University of Hertfordshire, Hatfield (United Kingdom)
2001-09-07
Certain quantum gates, such as the controlled-NOT gate, are symmetric in terms of the operation of the control system upon the target system and vice versa. However, no operational criteria yet exist for establishing whether or not a given quantum gate is symmetrical in this sense. We consider a restricted, yet broad, class of two-party controlled gate operations for which the gate transforms a reference state of the target into one of an orthogonal set of states. We show that for this class of gates it is possible to establish a simple necessary and sufficient condition for the gate operation to be symmetric. (author)
Nilpotent orbits in real symmetric pairs
Dietrich, Heiko; Ruggeri, Daniele; Trigiante, Mario
2016-01-01
In the classification of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determining the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of SL_2(R)^4 acting on the fourth tensor power of the natural 2-dimensional SL_2(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model.
One loop partition function of six dimensional conformal gravity using heat kernel on AdS
Energy Technology Data Exchange (ETDEWEB)
Lovreković, Iva [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)
2016-10-13
We compute the heat kernel for the Laplacians of symmetric transverse traceless fields of arbitrary spin on the AdS background in even number of dimensions using the group theoretic approach introduced in http://dx.doi.org/10.1007/JHEP11(2011)010 and apply it on the partition function of six dimensional conformal gravity. The obtained partition function consists of the Einstein gravity, conformal ghost and two modes that contain mass.
PT-Symmetric Quantum Field Theory
Milton, K A
2003-01-01
In the context of the PT-symmetric version of quantum electrodynamics, it is argued that the C operator introduced in order to define a unitary inner product has nothing to do with charge conjugation.
Symmetric centres of braided monoidal categories
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper introduces the concept of‘symmetric centres' of braided monoidal categories. Let H be a Hopf algebra with bijective antipode over a field k. We address the symmetric centre of the Yetter-Drinfel'd module category HH(yD) and show that a left Yetter-Drinfel'd module M belongs to the symmetric centre of HH(yD) if and only if M is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of H(M) to induce the braid of (H(H)(A),(○)A,A,φ,l,r), or equivalently, the braid of (A#H(H),(○)A,A,φ,l,r), where A is a quantum commutative H-module algebra.
Martingale Rosenthal inequalities in symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Astashkin, S V [Samara State University, Samara (Russian Federation)
2014-12-31
We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.
Resistor Networks based on Symmetrical Polytopes
National Research Council Canada - National Science Library
Moody, Jeremy; Aravind, P.K
2015-01-01
This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors...
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
Success and decisiveness on proper symmetric games
Freixas Bosch, Josep; Pons Vallès, Montserrat
2015-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/s10100-013-0332-5 This paper provides a complete study for the possible rankings of success and decisiveness for individuals in symmetric voting systems, assuming anonymous and independent probability distributions. It is proved that for any pair of symmetric voting systems it is always possible to rank success and decisiveness in opposite order whenever the common probability of voting for “acceptance...
Institute of Scientific and Technical Information of China (English)
Jian WANG
2009-01-01
The study of symmetric property in the L2-sense for the non-positive definite operator is motivated by the theory of probability and analysis. This paper presents some sufficient conditions for the existence of symmetric measure for Lévy type operator. Some new examples are illustrated. The present study is an important step for considering various ergodic properties and functional inequalities of Lévy type operator.
Scattering properties of PT-symmetric objects
Miri, Mohammad-Ali; Facao, Margarida; Abouraddy, Ayman F; Bakry, Ahmed; Razvi, Mir A N; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N
2016-01-01
We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.
Mirror-Symmetric Matrices and Their Application
Institute of Scientific and Technical Information of China (English)
李国林; 冯正和
2002-01-01
The well-known centrosymmetric matrices correctly reflect mirror-symmetry with no component or only one component on the mirror plane. Mirror-symmetric matrices defined in this paper can represent mirror-symmetric structures with various components on the mirror plane. Some basic properties of mirror-symmetric matrices were studied and applied to interconnection analysis. A generalized odd/even-mode decomposition scheme was developed based on the mirror reflection relationship for mirror-symmetric multiconductor transmission lines (MTLs). The per-unit-length (PUL) impedance matrix Z and admittance matrix Y can be divided into odd-mode and even-mode PUL matrices. Thus the order of the MTL system is reduced from n to k and k+p, where p(≥0)is the conductor number on the mirror plane. The analysis of mirror-symmetric matrices is related to the theory of symmetric group, which is the most effective tool for the study of symmetry.
Non-conformally flat initial data for binary compact objects
Uryu, Koji; Friedman, John L; Gourgoulhon, Eric; Shibata, Masaru
2009-01-01
A new method is described for constructing initial data for a binary neutron-star (BNS) system in quasi-equilibrium circular orbit. Two formulations for non-conformally flat data, waveless (WL) and near-zone helically symmetric (NHS), are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all the metric components including the spatially non-conformally flat part, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational BNSs with matter approximated by a parametrized equations of state that uses a few segments of polytropic equations of state. WL/NHS formulations correct the results from the conformally flat -- Isenberg-Wilson-Mathews (IWM) -- formulation. Binding energy or total angular momentum of solution sequences computed within the IWM formulation are...
Conformational analysis of polymethine dyes derived from the 2-azaazulene
Ryabitskii, Aleksey B.; Bricks, Julia L.; Kachkovskii, Aleksey D.; Kurdyukov, Vladimir V.
2012-01-01
A systematic investigation of the conformational structure was performed for the series of symmetrical and unsymmetrical mono-, tri-, pentamethine cyanines, and styryl dyes bearing 2-azaazulenium terminal group. The rotation energy barriers of terminal groups were determined via the dynamic variable temperature NMR experiments. The conformational transformation energy was calculated by quantum chemical methods (B3LYP and M05-2X) both for the cases of considering the solvent influence and not tacking it into account. Based on the comparison of theoretical and experimental data, relative electron-donating abilities and geometrical features of the heterocyclic terminal groups in 2-azaazulenium dyes were estimated. The arrangement of certain heterocyclic nuclei in order of basicity by considering the results of the dynamic NMR investigations was proposed. Influence of the conjugated chain length and the solvent nature on the conformational lability of the investigated dye molecules was discussed.
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
theories including those with boundaries, supersymmetry and galilean relativity. Gurarie has written an historical overview of his seminal contributions to this field, putting his results (and those of his collaborators) in the context of understanding applications to condensed matter physics. This includes the link between the non-diagonalisability of L0 and logarithmic singularities, a study of the c → 0 catastrophe, and a proposed resolution involving supersymmetric partners for the stress-energy tensor and its logarithmic partner field. Henkel and Rouhani describe a direction in which logarithmic singularities are observed in correlators of non-relativistic field theories. Their review covers the appropriate modifications of conformal invariance that are appropriate to non-equilibrium statistical mechanics, strongly anisotropic critical points and certain variants of TMG. The main variation away from the standard relativistic idea of conformal invariance is that time is explicitly distinguished from space when considering dilations and this leads to a variety of algebraic structures to explore. In this review, the link between non-diagonalisable representations and logarithmic singularities in correlators is generalised to these algebras, before two applications of the theory are discussed. Huang and Lepowsky give a non-technical overview of their work on braided tensor structures on suitable categories of representations of vertex operator algebras. They also place their work in historic context and compare it to related approaches. The authors sketch their construction of the so-called P(z)-tensor product of modules of a vertex operator algebra, and the construction of the associativity isomorphisms for this tensor product. They proceed to give a guide to their works leading to the first authorrsquo;s proof of modularity for a class of vertex operator algebras, and to their works, joint with Zhang, on logarithmic intertwining operators and the resulting tensor
Salzmann, Viktoria; Inaba, Mayu; Cheng, Jun; Yamashita, Yukiko M
2013-12-01
In the homeostatic state, adult stem cells divide either symmetrically to increase the stem cell number to compensate stem cell loss, or asymmetrically to maintain the population while producing differentiated cells. We have investigated the mode of stem cell division in the testes of Drosophila melanogaster by lineage tracing and confirm the presence of symmetric stem cell division in this system. We found that the rate of symmetric division is limited to 1-2% of total germline stem cell (GSC) divisions, but it increases with expression of a cell adhesion molecule, E-cadherin, or a regulator of the actin cytoskeleton, Moesin, which may modulate adhesiveness of germ cells to the stem cell niche. Our results indicate that the decision regarding asymmetric vs. symmetric division is a dynamically regulated process that contributes to tissue homeostasis, responding to the needs of the tissue.
Consistency Relations for the Conformal Mechanism
Creminelli, Paolo; Khoury, Justin; Simonović, Marko
2012-01-01
We systematically derive the consistency relations associated to the non-linearly realized symmetries of theories with spontaneously broken conformal symmetry but with a linearly-realized de Sitter subalgebra. These identities relate (N+1)-point correlation functions with a soft external Goldstone to N-point functions. These relations have direct implications for the recently proposed conformal mechanism for generating density perturbations in the early universe. We study the observational consequences, in particular a novel one-loop contribution to the four-point function, relevant for the stochastic scale-dependent bias and CMB mu-distortion.
Consistency relations for the conformal mechanism
Energy Technology Data Exchange (ETDEWEB)
Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Joyce, Austin; Khoury, Justin [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Simonović, Marko, E-mail: creminel@ictp.it, E-mail: joyceau@sas.upenn.edu, E-mail: jkhoury@sas.upenn.edu, E-mail: marko.simonovic@sissa.it [SISSA, via Bonomea 265, 34136, Trieste (Italy)
2013-04-01
We systematically derive the consistency relations associated to the non-linearly realized symmetries of theories with spontaneously broken conformal symmetry but with a linearly-realized de Sitter subalgebra. These identities relate (N+1)-point correlation functions with a soft external Goldstone to N-point functions. These relations have direct implications for the recently proposed conformal mechanism for generating density perturbations in the early universe. We study the observational consequences, in particular a novel one-loop contribution to the four-point function, relevant for the stochastic scale-dependent bias and CMB μ-distortion.
Vacuum energy sequestering and conformal symmetry
Ben-Dayan, Ido; Richter, Robert; Ruehle, Fabian; Westphal, Alexander
2016-05-01
In a series of recent papers Kaloper and Padilla proposed a mechanism to sequester standard model vacuum contributions to the cosmological constant. We study the consequences of embedding their proposal into a fully local quantum theory. In the original work, the bare cosmological constant Λ and a scaling parameter λ are introduced as global fields. We find that in the local case the resulting Lagrangian is that of a spontaneously broken conformal field theory where λ plays the role of the dilaton. A vanishing or a small cosmological constant is thus a consequence of the underlying conformal field theory structure.
Game Theory and Social Psychology: Conformity Games
Alessio, Danielle; Kilgour, D. Marc
2011-11-01
Game models can contribute to understanding of how social biases and pressures to conform can lead to puzzling behaviour in social groups. A model of the psychological biases false uniqueness and false consensus is set out. The model predicts the phenomenon of pluralistic ignorance, which is well-studied in social psychology, showing how it arises as a result of the prevalence of false uniqueness and the desire to conform. An efficient method is developed for finding Nash equilibria of the model under certain restrictions.
Boundary Conformal Field Theory
Cardy, J L
2004-01-01
Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.
Ketov, Sergei V
1995-01-01
Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general
Social anxiety, stress type, and conformity among adolescents
Directory of Open Access Journals (Sweden)
Peng eZhang
2016-05-01
Full Text Available Social anxiety and stress type can influence strong conformity among adolescents; however, the interaction between them is not clear. In this study, 152 adolescents were recruited and assigned one of two conditions: an interaction and a judgment condition. In the interaction condition, adolescents with high social anxiety were less likely to conform when completing a modified Asch task, compared to adolescents who had low social anxiety. In the judgment condition, adolescents with high social anxiety were more likely to conform to the opinions from the unanimous majority. The results suggest that adolescents with high social anxiety may show different styles of strong conformity with the change of stress type. We believe that socially anxious adolescents avoid potential social situations with weaker conformity, while avoiding negative evaluations from others with stronger conformity. These findings contribute to a better understanding of the social dysfunctions among adolescents with high social anxiety and provide a new direction for clinical interventions.
Social Anxiety, Stress Type, and Conformity among Adolescents
Zhang, Peng; Deng, Yanhe; Yu, Xue; Zhao, Xin; Liu, Xiangping
2016-01-01
Social anxiety and stress type can influence strong conformity among adolescents; however, the interaction between them is not clear. In this study, 152 adolescents were recruited and assigned one of two conditions: an interaction and a judgment condition. In the interaction condition, adolescents with high social anxiety (HSA) were less likely to conform when completing a modified Asch task, compared to adolescents who had low social anxiety. In the judgment condition, adolescents with HSA were more likely to conform to the opinions from the unanimous majority. The results suggest that adolescents with HSA may show different styles of strong conformity with the change of stress type. We believe that socially anxious adolescents avoid potential social situations with weaker conformity, while avoiding negative evaluations from others with stronger conformity. These findings contribute to a better understanding of the social dysfunctions among adolescents with HSA and provide a new direction for clinical interventions. PMID:27242649
Social Anxiety, Stress Type, and Conformity among Adolescents.
Zhang, Peng; Deng, Yanhe; Yu, Xue; Zhao, Xin; Liu, Xiangping
2016-01-01
Social anxiety and stress type can influence strong conformity among adolescents; however, the interaction between them is not clear. In this study, 152 adolescents were recruited and assigned one of two conditions: an interaction and a judgment condition. In the interaction condition, adolescents with high social anxiety (HSA) were less likely to conform when completing a modified Asch task, compared to adolescents who had low social anxiety. In the judgment condition, adolescents with HSA were more likely to conform to the opinions from the unanimous majority. The results suggest that adolescents with HSA may show different styles of strong conformity with the change of stress type. We believe that socially anxious adolescents avoid potential social situations with weaker conformity, while avoiding negative evaluations from others with stronger conformity. These findings contribute to a better understanding of the social dysfunctions among adolescents with HSA and provide a new direction for clinical interventions.
Comparison of conforming and nonconforming retrieved glenoid components.
Nho, Shane J; Ala, Owen L; Dodson, Christopher C; Figgie, Mark P; Wright, Timothy M; Craig, Edward V; Warren, Russell F
2008-01-01
The purpose of this study was to compare differences in wear performance of conforming and nonconforming glenoid designs, using clinical, radiographic, and retrieved polyethylene glenoid component outcome Sixty-three glenoids met the study criteria, and each glenoid was assigned to the conforming group (if the radii of curvature of the humeral and glenoid components were identical) or the nonconforming group (if a mismatch existed between the radii of curvature). The mean length of implantation was 5.6 +/- 5.5 years in the conforming group and 3.1 +/- 3.1 years for the nonconforming group (P conforming group and 2.4 +/- 1.2 in the nonconforming one (P conforming group had greater abrasion and delamination scores (P conformity contributes to differences observed from retrieved polyethylene glenoid components, which are consistent with differences in performance that may influence loosening.
Ubiquitin chain conformation regulates recognition and activity of interacting proteins.
Ye, Yu; Blaser, Georg; Horrocks, Mathew H; Ruedas-Rama, Maria J; Ibrahim, Shehu; Zhukov, Alexander A; Orte, Angel; Klenerman, David; Jackson, Sophie E; Komander, David
2012-12-13
Mechanisms of protein recognition have been extensively studied for single-domain proteins, but are less well characterized for dynamic multidomain systems. Ubiquitin chains represent a biologically important multidomain system that requires recognition by structurally diverse ubiquitin-interacting proteins. Ubiquitin chain conformations in isolation are often different from conformations observed in ubiquitin-interacting protein complexes, indicating either great dynamic flexibility or extensive chain remodelling upon binding. Using single-molecule fluorescence resonance energy transfer, we show that Lys 63-, Lys 48- and Met 1-linked diubiquitin exist in several distinct conformational states in solution. Lys 63- and Met 1-linked diubiquitin adopt extended 'open' and more compact 'closed' conformations, and ubiquitin-binding domains and deubiquitinases (DUBs) select pre-existing conformations. By contrast, Lys 48-linked diubiquitin adopts predominantly compact conformations. DUBs directly recognize existing conformations, but may also remodel ubiquitin chains to hydrolyse the isopeptide bond. Disruption of the Lys 48-diubiquitin interface changes conformational dynamics and affects DUB activity. Hence, conformational equilibria in ubiquitin chains provide an additional layer of regulation in the ubiquitin system, and distinct conformations observed in differently linked polyubiquitin may contribute to the specificity of ubiquitin-interacting proteins.
Predicting bioactive conformations and binding modes of macrocycles
Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen
2016-10-01
Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.
Conformational stability of calreticulin
DEFF Research Database (Denmark)
Jørgensen, Charlotte S; Trandum, Christa; Larsen, Nanna Brink
2005-01-01
The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C-...
A CONFORMATIONAL ELASTICITY THEORY
Institute of Scientific and Technical Information of China (English)
无
1998-01-01
A new statistical theory based on the rotational isomeric state model describing the chain conformational free energy has been proposed. This theory can be used to predict different tensions of rubber elongation for chemically different polymers, and the energy term during the elongation of natural rubber coincides with the experimental one.
Chen, Huanyang; Tyc, Tomas
2011-01-01
Conformal invisibility devices are only supposed to work within the validity range of geometrical optics. Here we show by numerical simulations and analytical arguments that for certain quantized frequencies they are nearly perfect even in a regime that clearly violates geometrical optics. The quantization condition follows from the analogy between the Helmholtz equation and the stationary Schrodinger equation.
Conformal supermultiplets without superpartners
Jarvis, Peter
2011-01-01
We consider polynomial deformations of Lie superalgebras and their representations. For the class A(n-1,0) ~ sl(n/1), we identify families of superalgebras of quadratic and cubic type, consistent with Jacobi identities. For such deformed superalgebras we point out the possibility of zero step supermultiplets, carried on a single, irreducible representation of the even (Lie) subalgebra. For the conformal group SU(2,2) in 1+3-dimensional spacetime, such irreducible (unitary) representations correspond to standard conformal fields (j_1,j_2;d), where (j_1,j_2) is the spin and d the conformal dimension; in the massless class j_1 j_2=0, and d=j_1+j_2+1. We show that these repesentations are zero step supermultiplets for the superalgebra SU_(2)(2,2/1), the quadratic deformation of conformal supersymmetry SU(2,2/1). We propose to elevate SU_(2)(2,2/1) to a symmetry of the S-matrix. Under this scenario, low-energy standard model matter fields (leptons, quarks, Higgs scalars and gauge fields) descended from such confor...
Pervushin, V
2001-01-01
The inflation-free solution of problems of the modern cosmology (horizon, cosmic initial data, Planck era, arrow of time, singularity,homogeneity, and so on) is considered in the conformal-invariant unified theory given in the space with geometry of similarity where we can measure only the conformal-invariant ratio of all quantities. Conformal General Relativity is defined as the $SU_c(3)\\times SU(2)\\times U(1)$-Standard Model where the dimensional parameter in the Higgs potential is replaced by a dilaton scalar field described by the negative Penrose-Chernikov-Tagirov action. Spontaneous SU(2) symmetry breaking is made on the level of the conformal-invariant angle of the dilaton-Higgs mixing, and it allows us to keep the structure of Einstein's theory with the equivalence principle. We show that the lowest order of the linearized equations of motion solves the problems mentioned above and describes the Cold Universe Scenario with the constant temperature T and z-history of all masses with respect to an obser...
Conformational changes in biopolymers
Ivanov, Vassili
2005-12-01
Biopolymer conformational changes are involved in many biological processes. This thesis summarizes some theoretical and experimental approaches which I have taken at UCLA to explore conformational changes in biopolymers. The reversible thermal denaturation of the DNA double helix is, perhaps, the simplest example of biopolymer conformational change. I have developed a statistical mechanics model of DNA melting with reduced degrees of freedom, which allows base stacking interaction to be taken into account and treat base pairing and stacking separately. Unlike previous models, this model describes both the unpairing and unstacking parts of the experimental melting curves and explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type. I developed a basic kinetic model for irreversible thermal denaturation of F-actin, which incorporates depolymerization of F-actin from the ends and breaking of F-actin fiber in the middle. The model explains the cooperativity of F-actin thermal denaturation observed by D. Pavlov et al. in differential calorimetry measurements. CG-rich DNA sequences form left-handed Z-DNA at high ionic strength or upon binding of polyvalent ions and some proteins. I studied experimentally the B-to-Z transition of the (CG)6 dodecamer. Improvement of the locally linearized model used to interpret the data gives evidence for an intermediate state in the B-to-Z transition of DNA, contrary to previous research on this subject. In the past 15 years it has become possible to study the conformational changes of biomolecules using single-molecule techniques. In collaboration with other lab members I performed a single-molecule experiment, where we monitored the displacement of a micrometer-size bead tethered to a surface by a DNA probe undergoing the conformational change. This technique allows probing of conformational changes with subnanometer accuracy. We applied the method to detect
Classical irregular blocks, Hill's equation and PT-symmetric periodic complex potentials
Piatek, Marcin; Pietrykowski, Artur R.
2016-07-01
The Schrödinger eigenvalue problems for the Whittaker-Hill potential {Q}_2(x) = 1/2{h}^2 cos 4x + 4hμ cos 2x and the periodic complex potential {Q}_1(x)=1/4{h}^2{e}^{-} 4ix} + 2{h}^2 cos 2x are studied using their realizations in two-dimensional conformal field theory (2dCFT). It is shown that for the weak coupling (small) h ∈ ℝ and non-integer Floquet parameter ν ∉ ℤ spectra of hamiltonians ℋi = - d2/d x 2 + Q i( x), i = 1, 2 and corresponding two linearly independent eigenfunctions are given by the classical limit of the "single flavor" and "two flavors" ( N f = 1 , 2) irregular conformal blocks. It is known that complex nonhermitian hamiltonians which are PT-symmetric (= invariant under simultaneous parity P and time reversal T transformations) can have real eigenvalues. The hamiltonian ℋ1 is PT-symmetric for h, x ∈ ℝ. It is found that ℋ1 has a real spectrum in the weak coupling region for ν ∈ ℝ ℤ. This fact in an elementary way follows from a definition of the N f = 1 classical irregular block. Thus, ℋ1 can serve as yet another new model for testing postulates of PT-symmetric quantum mechanics.
Conformal anomaly of super Wilson loop
Energy Technology Data Exchange (ETDEWEB)
Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)
2012-09-11
Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.
Symmetric cryptographic protocols for extended millionaires' problem
Institute of Scientific and Technical Information of China (English)
LI ShunDong; WANG DaoShun; DAI YiQi
2009-01-01
Yao's millionaires' problem is a fundamental problem in secure multiparty computation, and its solutions have become building blocks of many secure multiparty computation solutions. Unfortunately,most protocols for millionaires' problem are constructed based on public cryptography, and thus are inefficient. Furthermore, all protocols are designed to solve the basic millionaires' problem, that is,to privately determine which of two natural numbers is greater. If the numbers are real, existing solutions do not directly work. These features limit the extensive application of the existing protocols. This study introduces and refines the first symmetric cryptographic protocol for the basic millionaires' problem, and then extends the symmetric cryptographic protocol to privately determining which of two real numbers is greater, which are called the extended millionaires' problem, and proposes corresponding Constructed based on symmetric cryptography, these protocols are very efficient.
Chiral light by symmetric optical antennas
Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre
2014-01-01
Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...
The Robust Assembly of Small Symmetric Nanoshells.
Wagner, Jef; Zandi, Roya
2015-09-01
Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits. Our model of nanoshell assembly shows that the spontaneous curvature regulates the size of the shell while the mechanical properties of the subunit determine the symmetry of the assembled structure. Understanding the minimum requirements for the formation of closed nanoshells is a necessary step toward engineering of nanocontainers, which will have far-reaching impact in both material science and medicine.
INERTIA SETS OF SYMMETRIC SIGN PATTERN MATRICES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A sign pattern matrix is a matrixwhose entries are from the set {+ ,- ,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generally investigate the inertia sets of symmetric sign pattern matrices. In particular, nonnegative fri-diagonal sign patterns and the square sign pattern with all + entries are examined. An algorithm is given for generating nonnegative real symmetric Toeplitz matrices with zero diagonal of orders n≥3 which have exactly two negative eigenvalues. The inertia set of the square pattern with all + off-diagonal entries and zero diagonal entries is then analyzed. The types of inertias which can be in the inertia set of any sign pattern are also obtained in the paper. Specifically, certain compatibility and consecutiveness properties are established.
Symmetric States on the Octonionic Bloch Ball
Graydon, Matthew
2012-02-01
Finite-dimensional homogeneous self-dual cones arise as natural candidates for convex sets of states and effects in a variety of approaches towards understanding the foundations of quantum theory in terms of information-theoretic concepts. The positive cone of the ten-dimensional Jordan-algebraic spin factor is one particular instantiation of such a convex set in generalized frameworks for quantum theory. We consider a projection of the regular 9-simplex onto the octonionic projective line to form a highly symmetric structure of ten octonionic quantum states on the surface of the octonionic Bloch ball. A uniform subnormalization of these ten symmetric states yields a symmetric informationally complete octonionic quantum measurement. We discuss a Quantum Bayesian reformulation of octonionic quantum formalism for the description of two-dimensional physical systems. We also describe a canonical embedding of the octonionic Bloch ball into an ambient space for states in usual complex quantum theory.
Local neighborliness of the symmetric moment curve
Lee, Seung Jin
2011-01-01
A centrally symmetric analogue of the cyclic polytope, the bicyclic polytope, was defined in [BN08]. The bicyclic polytope is defined by the convex hull of finitely many points on the symmetric moment curve where the set of points has a symmetry about the origin. In this paper, we study the Barvinok-Novik orbitope, the convex hull of the symmetric moment curve. It was proven in [BN08] that the orbitope is locally $k$-neighborly, that is, the convex hull of any set of $k$ distinct points on an arc of length not exceeding $\\phi_k$ in $\\mathbb{S}^1$ is a $(k-1)$-dimensional face of the orbitope for some positive constant $\\phi_k$. We prove that we can choose $\\phi_k $ bigger than $\\gamma k^{-3/2} $ for some positive constant $\\gamma$.
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
Revisiting the optical $PT$-symmetric dimer
Morales, J D Huerta; López-Aguayo, S; Rodríguez-Lara, B M
2016-01-01
Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of $\\mathcal{PT}$-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical $\\mathcal{PT}$-symmetric dimer, a two-waveguide coupler were the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar $N$-waveguide couplers that are the optical realization of Lorentz group in 2+1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of Ehrenfest theorem.
PT-Symmetric Optomechanically-Induced Transparency
Jing, H; Özdemir, S K; Zhang, J; Lü, X -Y; Peng, B; Yang, L; Nori, F
2014-01-01
Optomechanically-induced transparency (OMIT) and the associated slow-light propagation provide the basis for storing photons in nanofabricated phononic devices. Here we study OMIT in parity-time (PT)-symmetric microresonators with a tunable gain-to-loss ratio. This system features a reversed, non-amplifying transparency: inverted-OMIT. When the gain-to-loss ratio is steered, the system exhibits a transition from the PT-symmetric phase to the broken-PT-symmetric phase. We show that by tuning the pump power at fixed gain-to-loss ratio or the gain-to-loss ratio at fixed pump power, one can switch from slow to fast light and vice versa. Moreover, the presence of PT-phase transition results in the reversal of the pump and gain dependence of transmission rates. These features provide new tools for controlling light propagation using optomechanical devices.
Radiative corrections in symmetrized classical electrodynamics
Van Meter JR; Kerman; Chen; Hartemann
2000-12-01
The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.
A Conformal Extension Theorem based on Null Conformal Geodesics
Lübbe, Christian
2008-01-01
In this article we describe the formulation of null geodesics as null conformal geodesics and their description in the tractor formalism. A conformal extension theorem through an isotropic singularity is proven by requiring the boundedness of the tractor curvature and its derivatives to sufficient order along a congruence of null conformal geodesic. This article extends earlier work by Tod and Luebbe.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
Synthesis of cyclically symmetric five-ports
DEFF Research Database (Denmark)
Guldbrandsen, Tom
1994-01-01
A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found......A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found...
Active Sound Localization in a Symmetric Environment
Directory of Open Access Journals (Sweden)
Jordan Brindza
2013-07-01
Full Text Available Localization for humanoid robots becomes difficult when events that disrupt robot positioning information occur. This holds especially true in symmetric environments because landmark data may not be sufficient to determine orientation. We propose a system of localizing humanoid robots in a known, symmetric environment using a Rao-Blackwellized particle filter and a sound localization system. This system was used in the RoboCup Standard Platform League, and has been found to reduce the amount of own-goals scored as compared with the previously used localization system without sound.
Time-Symmetric Approach to Gravity
Chu, S Y
1998-01-01
Quantization of the time symmetric system of interacting strings requires that gravity, just as electromagnetism in Wheeler-Feynman's time symmetric electro- dynamics, also be an "adjunct field" instead of an independent entity. The "adjunct field" emerges, at a scale large compared to that of the strings, as a "statistic" that summarizes how the string positions in the underlying space- time are "compactified" into those in Minkowski space. We are able to show, WITHOUT adding a scalar curvature term to the string action, that the "adjunct gravitational field" satisfies Einstein's equation with no cosmological term.
Benign symmetric lipomatosis of the knees
Institute of Scientific and Technical Information of China (English)
Zhiqiang Yin; Di Wu; Yixin Ge; Meihua Zhang; Zhigang Bi; Dan Luo
2008-01-01
Benign symmetric lipomatosis(BSL) is a rare disease characterized by the presence of multiple, symmetric and nonencapsulated fat masses in the face, neck and other areas. It is commonly seen in middle-aged Caucasian Mediterranean males, while its etiology is still not clear. The majority of the patients with BSL have a history of alcohol abuse and hepatopathy. BSL of the limbs is very rare. This article reports a unique case of a 60-year-old Chinese woman with involvement of the knees confirmed by the results of magnetic resonance imaging(MRI) and histopathology, which was not described previously in published literatures.
Inflation in spherically symmetric inhomogeneous models
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1986-11-01
Exact analytical solutions of Einstein's equations are found for a spherically symmetric inhomogeneous metric in the presence of a massless scalar field with a flat potential. The process of isotropization and homogenization is studied in detail. It is found that the time dependence of the metric becomes de Sitter for large times. Two cases are studied. The first deals with a homogeneous scalar field, while the second with a spherically symmetric inhomogeneous scalar field. In the former case the metric is of the Robertson-Walker form, while the latter is intrinsically inhomogeneous. 16 refs.
Conformal mapping and convergence of Krylov iterations
Energy Technology Data Exchange (ETDEWEB)
Driscoll, T.A.; Trefethen, L.N. [Cornell Univ., Ithaca, NY (United States)
1994-12-31
Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.
Transportation Conformity Training and Presentations
EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.
From integrable to conformal theory
Energy Technology Data Exchange (ETDEWEB)
Babelon, O. (Paris-6 Univ., 75 (France). Lab. de Physique Theorique et Hautes Energies)
1990-12-01
Working in the context of Toda field theory, we establish the relationship between their integrability properties and their conformal structure, thereby clarifying the role of the Yang-Baxter equation in conformal field theory. (orig.).
Chen, Huanyang; Li, Hui
2011-01-01
Plane mirror can make one object into two for observers on the object's side. Yet, there seems no way to achieve the same effect for observers from all directions. In this letter, we will design a new class of gradient index lenses from multivalued optical conformal mapping. We shall call them the conformal lenses. Such lenses can transform one source into two (or even many) omnidirectionally. Like the overlapped illusion optics does, they can even transform multiple sources into one. Rather than using negative index materials, implementation here only needs isotropic positive index materials like other gradient index lenses. One obvious drawback however, is that they have singular permittivity values which restrict them to functioning at one single frequency. This however, needs not be the case when applying transmutation methods, which enable the lenses to work in a broadband frequency range.
Multiscale conformal pattern transfer
Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre
2016-06-01
We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.
Conformational flexibility of aspartame.
Toniolo, Claudio; Temussi, Pierandrea
2016-05-01
L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.
Conformal Complementarity Maps
Barbón, José L F
2013-01-01
We study quantum cosmological models for certain classes of bang/crunch singularities, using the duality between expanding bubbles in AdS with a FRW interior cosmology and perturbed CFTs on de Sitter space-time. It is pointed out that horizon complementarity in the AdS bulk geometries is realized as a conformal transformation in the dual deformed CFT. The quantum version of this map is described in full detail in a toy model involving conformal quantum mechanics. In this system the complementarity map acts as an exact duality between eternal and apocalyptic Hamiltonian evolutions. We calculate the commutation relation between the Hamiltonians corresponding to the different frames. It vanishes only on scale invariant states.
Conformal boundaries of warped products
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2006-01-01
In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....
Two Additional Remarks on Conformism
Schlicht, Ekkehart
2014-01-01
Abstract This note offers two comments on the article “Social Influences towards Conformism in Economic Experiments” by Hargreaves Heap that is to appear in the Economics e-Journal. One relates to the concept of conformism, the other lines out some phenomena where an explicit recognition of group processes, such as conformism, may be analytically helpful.
A model problem for conformal parameterizations of the Einstein constraint equations
Maxwell, David
2009-01-01
We investigate the possibility that the conformal and conformal thin sandwich (CTS) methods can be used to parameterize the set of solutions of the vacuum Einstein constraint equations. To this end we develop a model problem obtained by taking the quotient of certain symmetric data on conformally flat tori. Specializing the model problem to a three-parameter family of conformal data we observe a number of new phenomena for the conformal and CTS methods. Within this family, we obtain a general existence theorem so long as the mean curvature does not change sign. When the mean curvature changes sign, we find that for certain data solutions exist if and only if the transverse-traceless tensor is sufficiently small. When such solutions exist, there are generically more than one. Moreover, the theory for mean curvatures changing sign is shown to be extremely sensitive with respect to the value of a coupling constant in the Einstein constraint equations.
Gel electrophoresis of DNA partially denatured at the ends: what are the dominant conformations?
Sean, David; Slater, Gary W
2013-03-01
Gel electrophoresis of a partially denatured dsDNA fragment is studied using Langevin Dynamics computer simulations. For simplicity, the denatured ssDNA sections are placed at the ends of the fragment in a symmetrical fashion. A squid-like conformation is found to sometimes cause the fragment to completely block in the gel. In fact, this conformation is the principal cause of the steep reduction in mobility observed in the simulations. As the field is increased, it is found that the occurrence of this conformation dominates the migration dynamics. Although the squid conformation seems to be more stable at high fields, the field can eventually force the fragments to thread through the gel pores regardless. We qualitatively explore the behavior of this squid-like conformation across a range of fields and degrees of denaturation, and we discuss the relevance of our findings for TGGE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fields, Strings, Matrices and Symmetric Products
Dijkgraaf, R.
1999-01-01
In these notes we review the role played by the quantum mechanics and sigma models of symmetric product spaces in the light-cone quantization of quantum field theories, string theory and matrix theory. Lectures given at the Institute for Theoretical Physics, UC Santa Barbara, January 1998 and the Spring School on String Theory and Mathematics, Harvard University, May 1998.
How Symmetrical Assumptions Advance Strategic Management Research
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Hallberg, Hallberg
2014-01-01
We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other appl...
Noncommutative spherically symmetric spacetimes at semiclassical order
Fritz, Christopher
2016-01-01
Working within the recent formalism of Poisson-Riemannian geometry, we completely solve the case of generic spherically symmetric metric and spherically symmetric Poisson-bracket to find a unique answer for the quantum differential calculus, quantum metric and quantum Levi-Civita connection at semiclassical order $O(\\lambda)$. Here $\\lambda$ is the deformation parameter, plausibly the Planck scale. We find that $r,t,dr,dt$ are all forced to be central, i.e. undeformed at order $\\lambda$, while for each value of $r,t$ we are forced to have a fuzzy sphere of radius $r$ with a unique differential calculus which is necessarily nonassociative at order $\\lambda^2$. We give the spherically symmetric quantisation of the FLRW cosmology in detail and also recover a previous analysis for the Schwarzschild black hole, now showing that the quantum Ricci tensor for the latter vanishes at order $\\lambda$. The quantum Laplace-Beltrami operator for spherically symmetric models turns out to be undeformed at order $\\lambda$ whi...
efficient and convenient synthesis of symmetrical carboxylic ...
African Journals Online (AJOL)
Preferred Customer
An efficient and convenient procedure for the synthesis of symmetrical .... solution was stirred for 16 h at 35 °C followed by filtration and washing with ... obtained hydrous zirconia sample was ground to fine powder and immersed in 1 M H2SO4 ..... Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim; 2002.
Designing new symmetrical facial oligothiophene amphiphiles
Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H
2013-01-01
In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr
Tautological Integrals on Symmetric Products of Curves
Institute of Scientific and Technical Information of China (English)
Zhi Lan WANG
2016-01-01
We propose a conjecture on the generating series of Chern numbers of tautological bundles on symmetric products of curves and establish the rank 1 and rank −1 case of this conjecture. Thus we compute explicitly the generating series of integrals of Segre classes of tautological bundles of line bundles on curves, which has a similar structure as Lehn’s conjecture for surfaces.
Jordan algebraic approach to symmetric optimization
Vieira, M.V.C.
2007-01-01
In this thesis we present a generalization of interior-point methods for linear optimization based on kernel functions to symmetric optimization. It covers the three standard cases of conic optimization: linear optimization, second-order cone optimization and semi-definite optimization. We give an
Symmetrized solutions for nonlinear stochastic differential equations
Directory of Open Access Journals (Sweden)
G. Adomian
1981-01-01
Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.
Spectrum generating algebra of the symmetric top
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1998-03-02
We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top. (orig.) 8 refs.
Spectrum generating algebra of the symmetric top
Bijker, R
1997-01-01
We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top.
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
2001-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we e
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating...
Unary self-verifying symmetric difference automata
CSIR Research Space (South Africa)
Marais, Laurette
2016-07-01
Full Text Available We investigate self-verifying nondeterministic finite automata, in the case of unary symmetric difference nondeterministic finite automata (SV-XNFA). We show that there is a family of languages Ln=2 which can always be represented non...
Exterior Powers of Symmetric Bilinear Forms
Institute of Scientific and Technical Information of China (English)
Seán McGarraghy
2002-01-01
We study exterior powers of classes of symmetric bilinear forms in the Witt-Grothendieck ring of a field of characteristic not equal to 2, and derive their basic properties. The exterior powers are used to obtain annihilating polynomials for quadratic forms in the Witt ring.
PT -symmetric model of immune response
Bender, Carl M.; Ghatak, Ananya; Gianfreda, Mariagiovanna
2017-01-01
The study of PT -symmetric physical systems began in 1998 as a complex generalization of conventional quantum mechanics, but beginning in 2007 experiments began to be published in which the predicted PT phase transition was clearly observed in classical rather than in quantum-mechanical systems. This paper examines the classical PT phase transition in dynamical-system models that are moderately accurate representations of antigen-antibody systems. A surprising conclusion that can be drawn from these models is that it might be possible treat a serious disease in which the antigen concentration grows out of bounds (and the host dies) by injecting a small dose of a second (different) antigen. In this case a PT -symmetric analysis shows there are two possible favorable outcomes. In the unbroken-PT -symmetric phase the disease becomes chronic and is no longer lethal, while in the appropriate broken-PT -symmetric phase the concentration of lethal antigen goes to zero and the disease is completely cured.
Realizability of stationary spherically symmetric transonic accretion
Ray, A K; Ray, Arnab K.
2002-01-01
The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.
Adaptively Secure Computationally Efficient Searchable Symmetric Encryption
Sedghi, S.; Liesdonk, van P.; Doumen, J.M.; Hartel, P.H.; Jonker, W.
2009-01-01
Searchable encryption is a technique that allows a client to store documents on a server in encrypted form. Stored documents can be retrieved selectively while revealing as little information as possible to the server. In the symmetric searchable encryption domain, the storage and the retrieval are
On balanced truncation for symmetric nonlinear systems
Fujimoto, K.; Scherpen, Jacqueline M.A.
2014-01-01
This paper is concerned with model order reduction based on balanced realization for symmetric nonlinear systems. A new notion of symmetry for nonlinear systems was characterized recently. It plays an important role in linear systems theory and is expected to provide new insights to nonlinear system
Fundamental group of locally symmetric varieties
Sankaran, G K
1995-01-01
Take a bounded symmetric domain D and an arithmetic subgroup \\Gamma of {\\rm Aut}(D). Take the quotient D/\\Gamma, compactify and resolve the singularities. We study the fundamental group of the compact complex manifolds that result from this procedure, and in particular the case of Siegel modular threefolds.
Qp-spaces on bounded symmetric domains
Directory of Open Access Journals (Sweden)
Jonathan Arazy
2008-01-01
Full Text Available We generalize the theory of Qp spaces, introduced on the unit disc in 1995 by Aulaskari, Xiao and Zhao, to bounded symmetric domains in Cd, as well as to analogous Moebius-invariant function spaces and Bloch spaces defined using higher order derivatives; the latter generalization contains new results even in the original context of the unit disc.
Onthe static and spherically symmetric gravitational field
Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra
Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.
Some aspects of symmetric Gamma process mixtures
Naulet, Zacharie; Barat, Eric
2015-01-01
In this article, we present some specific aspects of symmetric Gamma process mixtures for use in regression models. We propose a new Gibbs sampler for simulating the posterior and we establish adaptive posterior rates of convergence related to the Gaussian mean regression problem.
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Techniques to elucidate the conformation of prions
Institute of Scientific and Technical Information of China (English)
Martin; L; Daus
2015-01-01
Proteinaceous infectious particles(prions) are unique pathogens as they are devoid of any coding nucleic acid.Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed.
Spacetime Conformal Fluctuations and Quantum Dephasing
Bonifacio, Paolo M.
2009-06-01
Any quantum system interacting with a complex environment undergoes decoherence. Empty space is filled with vacuum energy due to matter fields in their ground state and represents an underlying environment that any quantum particle has to cope with. In particular quantum gravity vacuum fluctuations should represent a universal source of decoherence. To study this problem we employ a stochastic approach that models spacetime fluctuations close to the Planck scale by means of a classical, randomly fluctuating metric (random gravity framework). We enrich the classical scheme for metric perturbations over a curved background by also including matter fields and metric conformal fluctuations. We show in general that a conformally modulated metric induces dephasing as a result of an effective nonlinear newtonian potential obtained in the appropriate nonrelativistic limit of a minimally coupled Klein-Gordon field. The special case of vacuum fluctuations is considered and a quantitative estimate of the expected effect deduced. Secondly we address the question of how conformal fluctuations could physically arise. By applying the random gravity framework we first show that standard GR seems to forbid spontaneous conformal metric modulations. Finally we argue that a different result follows within scalar-tensor theories of gravity such as e.g. Brans-Dicke theory. In this case a conformal modulation of the metric arises naturally as a result of the fluctuations in the Brans-Dicke field and quantum dephasing of a test particle is expected to occur. For large negative values of the coupling parameter the conformal fluctuations may also contribute to alleviate the well known problem of the large zero point energy due to quantum matter fields.
Indian Academy of Sciences (India)
Thyageshwar Chandran; Alok Sharma; M Vijayan
2015-12-01
The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPS, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPS of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The -glycosylation of the lectin involves a plant-specific glycan while that in toxic type H RIPS of known structure involves a glycan which is animal as well as plant specific.
Babourova, O V; Kudlaev, P E
2016-01-01
On the basis of the Poincare-Weyl gauge theory of gravitation, a new conformal Weyl-Dirac theory of gravitation is proposed, which is a gravitational theory in Cartan-Weyl spacetime with the Dirac scalar field representing the dark matter model. A static approximate axially symmetric solution of the field equations in vacuum is obtained. On the base of this solution in the Newtonian approximation one considers the problem of rotation velocities in spiral components of galaxies.
Symmetric key structural residues in symmetric proteins with beta-trefoil fold.
Directory of Open Access Journals (Sweden)
Jianhui Feng
Full Text Available To understand how symmetric structures of many proteins are formed from asymmetric sequences, the proteins with two repeated beta-trefoil domains in Plant Cytotoxin B-chain family and all presently known beta-trefoil proteins are analyzed by structure-based multi-sequence alignments. The results show that all these proteins have similar key structural residues that are distributed symmetrically in their structures. These symmetric key structural residues are further analyzed in terms of inter-residues interaction numbers and B-factors. It is found that they can be distinguished from other residues and have significant propensities for structural framework. This indicates that these key structural residues may conduct the formation of symmetric structures although the sequences are asymmetric.
OSI Conformance Testing for Bibliographic Applications.
Arbez, Gilbert; Swain, Leigh
1990-01-01
Describes the development of Open Systems Interconnection (OSI) conformance testing sites, conformance testing tools, and conformance testing services. Discusses related topics such as interoperability testing, arbitration testing, and international harmonization of conformance testing. A glossary is included. (24 references) (SD)
Alim, Karen; Shraiman, Boris I; Boudaoud, Arezki
2016-01-01
Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.
DEFF Research Database (Denmark)
Gjerdrum Pedersen, Esben Rahbek; Neergaard, Peter; Thusgaard Pedersen, Janni
2013-01-01
This paper analyses how large Danish companies are responding to new governmental regulation which requires them to report on corporate social responsibility (CSR). The paper is based on an analysis of 142 company annual reports required by the new Danish regulation regarding CSR reporting, plus ...... in CSR reporting practices. Finally, it is argued that non-conformance with the new regulatory requirements is not solely about conscious resistance but may also be caused by, for example, lack of awareness, resource limitations, misinterpretations, and practical difficulties....
Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki
2016-10-01
Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.
Jarvis, P D
2006-01-01
We present a conformal theory of a dissipationless relativistic fluid in 2 space-time dimensions. The theory carries with it a representation of the algebra of 2-$D$ area-preserving diffeomorphisms in the target space of the complex scalar potentials. A complete canonical description is given, and the central charge of the current algebra is calculated. The passage to the quantum theory is discussed in some detail; as a result of operator ordering problems, full quantization at the level of the fields is as yet an open problem.
Expanding and nonexpanding conformal wormholes, in scalar-tensor theory
Dogru, Melis Ulu; Yilmaz, Ihsan
2015-06-01
We study spherically symmetric spacetime with anisotropic fluid in the scalar-tensor theory of gravity based on Lyra geometry. We suggest two different solutions of field equations for the theory by using Casimir effect. Obtained static and nonstatic solutions are similar to nonexpanding Lorentzian wormhole and expanding FRW-type wormhole, respectively. Furthermore, we study singularities of obtained solutions. We emphasize whether the expanding and nonexpanding wormholes conform with Big Rip or Big Crunch scenarios. Also, physical and geometrical properties of the solutions have been discussed.
Spectral and conformational studies on 3-pyridinealdazine by DFT approach
Arulmani, R.; Balachander, R.; Vijaya, P.; Sankaran, K. R.
2015-03-01
3-Pyridinealdazine was synthesized and characterized by FT-IR, 1H, 13C NMR and mass spectroscopy. The conformations of azine was determined theoretically besides selected geometrical parameters, HOMO-LUMO energies, polarizability, hyperpolarizability, natural bond orbital (NBO), atomic charges, Mulliken charges and atom in molecule (AIM) analysis were also calculated. The optimized geometry of the symmetrical azine, HOMO-LUMO and molecular electrostatic potential (MEP) surface were also evaluated using B3LYP/6-31G(d,p) basis set. 13C NMR data were also computed using Gaussian-03 package and compared with the observed values according to density functional theory (DFT) method and analyzed.
Conformal couplings of a scalar field to higher curvature terms
Oliva, Julio
2011-01-01
We present a simple way of constructing conformal couplings of a scalar field to higher order Euler densities. This is done by constructing a four-rank tensor involving the curvature and derivatives of the field, which transforms covariantly under local Weyl rescalings. The equation of motion for the field, as well as its energy momentum tensor are shown to be of second order. The field equations for the spherically symmetric ansatz are integrated, and for generic non-homogeneous couplings, the solution is given in terms of a polynomial equation, in close analogy with Lovelock theories.
Mojaza, Matin; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary o...
Wormhole supported by dark energy admitting conformal motion
Bhar, Piyali; Rahaman, Farook; Manna, Tuhina; Banerjee, Ayan
2016-12-01
In this article, we study the possibility of sustaining static and spherically symmetric traversable wormhole geometries admitting conformal motion in Einstein gravity, which presents a more systematic approach to search a relation between matter and geometry. In wormhole physics, the presence of exotic matter is a fundamental ingredient and we show that this exotic source can be dark energy type which support the existence of wormhole spacetimes. In this work we model a wormhole supported by dark energy which admits conformal motion. We also discuss the possibility of the detection of wormholes in the outer regions of galactic halos by means of gravitational lensing. Studies of the total gravitational energy for the exotic matter inside a static wormhole configuration are also performed.
Wormhole supported by dark energy admitting conformal motion
Energy Technology Data Exchange (ETDEWEB)
Bhar, Piyali [Government General Degree College, Singur, Department of Mathematics, Hooghly, West Bengal (India); Rahaman, Farook; Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Manna, Tuhina [St. Xavier' s College, Department of Mathematics and Statistics (Commerce Evening), Kolkata, West Bengal (India)
2016-12-15
In this article, we study the possibility of sustaining static and spherically symmetric traversable wormhole geometries admitting conformal motion in Einstein gravity, which presents a more systematic approach to search a relation between matter and geometry. In wormhole physics, the presence of exotic matter is a fundamental ingredient and we show that this exotic source can be dark energy type which support the existence of wormhole spacetimes. In this work we model a wormhole supported by dark energy which admits conformal motion. We also discuss the possibility of the detection of wormholes in the outer regions of galactic halos by means of gravitational lensing. Studies of the total gravitational energy for the exotic matter inside a static wormhole configuration are also performed. (orig.)
Generating time dependent conformally coupled Einstein-scalar solutions
Sultana, Joseph
2015-07-01
Using the correspondence between a minimally coupled scalar field and an effective stiff perfect fluid with or without a cosmological constant, we present a simple method for generating time dependent Einstein-scalar solutions with a conformally coupled scalar field that has vanishing or non-vanishing potential. This is done by using Bekenstein's transformation on Einstein-scalar solutions with minimally coupled massless scalar fields, and its later generalization by Abreu et al. to massive fields. In particular we obtain two new spherically symmetric time dependent solutions to the coupled system of Einstein's and the conformal scalar field equations, with one of the solutions having a Higgs' type potential for the scalar field, and we study their properties.
Conformal field theories with infinitely many conservation laws
Energy Technology Data Exchange (ETDEWEB)
Todorov, Ivan [Institut des Hautes Etudes Scientifiques F-91440, Bures-sur-Yvette (France)
2013-02-15
Globally conformal invariant quantum field theories in a D-dimensional space-time (D even) have rational correlation functions and admit an infinite number of conserved (symmetric traceless) tensor currents. In a theory of a scalar field of dimension D-2 they were demonstrated to be generated by bilocal normal products of free massless scalar fields with an O(N), U(N), or Sp(2N) (global) gauge symmetry [B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, 'Unitary positive energy representations of scalar bilocal fields,' Commun. Math. Phys. 271, 223-246 (2007); e-print arXiv:math-ph/0604069v3; and 'Infinite dimensional Lie algebras in 4D conformal quantum field theory,' J. Phys. A Math Theor. 41, 194002 (2008); e-print arXiv:0711.0627v2 [hep-th
REPRESENTATION OF SYMMETRIC SUPER-MARTINGALE MULTIPLICATIVE FUNCTIONALS
Institute of Scientific and Technical Information of China (English)
金蒙为; 应坚刚
2002-01-01
The authors introduce concepts of even and odd additive functionals and prove that an even martingale continuous additive functional of a symmetric Markov process vanishes identically.A representation for symmetric super-martingale multiplicative functionals are also given.
The Symmetric Solutions of Affiliated Value Model
Institute of Scientific and Technical Information of China (English)
Che Ka-jia; Li Zhi-chen
2004-01-01
In a symmetric affiliated value model, this paper analyses High-Technology industrial firms' competitive strategy in research and development (R&D). We obtain the symmetric Bayesian Nash Equilibrium functions with or without government's prize:b1(x)=v(x,x)Fn-1(x|x)-∫x0Fn-1(y|y)dv(y,y), b2(x)=∫x0[v(y,y)+v0]dFn-1(y|y), and b3(x)=∫x0v(y,y)(fn-1(y|y))/(1-Fn-1(y|y))dy. We find the firm's investment level will increase in prize, only when the constant prize v0≥v(y,y)(Fn-1(y|y))/(1-Fn-1(y|y)), does the firm invest more aggressively with constant prize than with variable prize.
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
Four-qubit PPT entangled symmetric states
Tura, J; Hyllus, P; Kuś, M; Samsonowicz, J; Lewenstein, M
2012-01-01
We solve an open question of the existence of four-qubit entangled symmetric states with positive partial transpositions (PPT states). We reach this goal with two different approaches. First, we propose a half-analytical-half-numerical method that allows to construct multipartite PPT entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states. Second, we adapt the algorithm allowing to search for extremal elements in the convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we search for extremal four-qubit PPTESS and show that generically they have ranks (5,7,8). Finally, we provide an exhaustive characterization of these states with respect to their separability properties.
Nonlinear electrodynamics as a symmetric hyperbolic system
Abalos, Fernando; Goulart, Érico; Reula, Oscar
2015-01-01
Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the point-wise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that, the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a non-empty intersection. Namely that there exist families of symmetrizers in the sense of Geroch which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well-posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet and Euler-Heisenberg.
Replica symmetric spin glass field theory
Energy Technology Data Exchange (ETDEWEB)
Temesvari, T. [Research Group for Theoretical Physics of the Hungarian Academy of Sciences, Eoetvoes University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary)]. E-mail: temtam@helios.elte.hu
2007-06-18
A new powerful method to test the stability of the replica symmetric spin glass phase is proposed by introducing a replicon generator function g(v). Exact symmetry arguments are used to prove that its extremum is proportional to the inverse spin glass susceptibility. By the idea of independent droplet excitations a scaling form for g(v) can be derived, whereas it can be exactly computed in the mean field Sherrington-Kirkpatrick model. It is shown by a first order perturbative treatment that the replica symmetric phase is unstable down to dimensions d < or approx. 6, and the mean field scaling function proves to be very robust. Although replica symmetry breaking is escalating for decreasing dimensionality, a mechanism caused by the infrared divergent replicon propagator may destroy the mean field picture at some low enough dimension.
Replica symmetric spin glass field theory
Temesvári, T.
2007-06-01
A new powerful method to test the stability of the replica symmetric spin glass phase is proposed by introducing a replicon generator function g(v). Exact symmetry arguments are used to prove that its extremum is proportional to the inverse spin glass susceptibility. By the idea of independent droplet excitations a scaling form for g(v) can be derived, whereas it can be exactly computed in the mean field Sherrington-Kirkpatrick model. It is shown by a first order perturbative treatment that the replica symmetric phase is unstable down to dimensions d≲6, and the mean field scaling function proves to be very robust. Although replica symmetry breaking is escalating for decreasing dimensionality, a mechanism caused by the infrared divergent replicon propagator may destroy the mean field picture at some low enough dimension.
Polymer-based symmetric electrochromic devices
Energy Technology Data Exchange (ETDEWEB)
Arbizzani, Catia; Cerroni, Maria Grazia [Department of Chemistry `G. Ciamician`, University of Bologna, via Selmi 2, 40126 Bologna (Italy); Mastragostino, Marina [Department of Physical Chemistry, University of Palermo, via Archirafi 26, 20123 Palermo (Italy)
1998-12-30
The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompanied by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3`,4`-d]thiophene) (pDTT1) and poly(dithieno[3,4-b:2`,3`-d]thiophene) (pDTT3) are reported and discussed
Matrix calculus for axially symmetric polarized beam.
Matsuo, Shigeki
2011-06-20
The Jones calculus is a well known method for analyzing the polarization of a fully polarized beam. It deals with a beam having spatially homogeneous polarization. In recent years, axially symmetric polarized beams, where the polarization is not homogeneous in its cross section, have attracted great interest. In the present article, we show the formula for the rotation of beams and optical elements on the angularly variant term-added Jones calculus, which is required for analyzing axially symmetric beams. In addition, we introduce an extension of the Jones calculus: use of the polar coordinate basis. With this calculus, the representation of some angularly variant beams and optical elements are simplified and become intuitive. We show definitions, examples, and conversion formulas between different notations.
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
Maximally Symmetric Spacetimes emerging from thermodynamic fluctuations
Bravetti, A; Quevedo, H
2015-01-01
In this work we prove that the maximally symmetric vacuum solutions of General Relativity emerge from the geometric structure of statistical mechanics and thermodynamic fluctuation theory. To present our argument, we begin by showing that the pseudo-Riemannian structure of the Thermodynamic Phase Space is a solution to the vacuum Einstein-Gauss-Bonnet theory of gravity with a cosmological constant. Then, we use the geometry of equilibrium thermodynamics to demonstrate that the maximally symmetric vacuum solutions of Einstein's Field Equations -- Minkowski, de-Sitter and Anti-de-Sitter spacetimes -- correspond to thermodynamic fluctuations. Moreover, we argue that these might be the only possible solutions that can be derived in this manner. Thus, the results presented here are the first concrete examples of spacetimes effectively emerging from the thermodynamic limit over an unspecified microscopic theory without any further assumptions.
Chirally symmetric strong and electroweak interactions
Rajpoot, Subhash
1988-07-01
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3) L×SU(3) R×SU(2) L×SU(2) R×U(1) B- L where quantum chromodynamics originates in the chiral colour group SU(3) L×SU(3) R and the electroweak interaction originates in the ambidextrous electroweak interaction group SU L×SU(2) R×U(1) B- L. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2) L×SU(2) R. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3) C×U(1) em and give masses to all the quarks and leptons of the theory. All fermion masses are “see-saw” masses.
Cusped Wilson lines in symmetric representations
Correa, Diego H; Trancanelli, Diego
2015-01-01
We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank-$k$ symmetric representation of the gauge group $U(N)$ for ${\\cal N} = 4$ super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and $k\\sqrt{\\lambda}\\gg N$. This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of $k\\gg N$, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large $k$, independently of the contour on which they are supported.
The quantum capacity with symmetric side channels
Smith, G; Winter, A; Smith, Graeme; Smolin, John A.; Winter, Andreas
2006-01-01
We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity communication when assisted by the family of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few genuinely 1-LOCC monotonic entanglement measures.
Static spherically symmetric wormholes with isotropic pressure
Cataldo, Mauricio; Rodríguez, Pablo
2016-01-01
In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there is no spherically symmetric traversable wormholes sustained by sources with a linear equation of state $p=\\omega \\rho$ for the isotropic pressure, independently of the form of the redshift function $\\phi(r)$. We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.
Spherically Symmetric, Self-Similar Spacetimes
Wagh, S M; Wagh, Sanjay M.; Govinder, Keshlan S.
2001-01-01
Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.
Expansion-free Cylindrically Symmetric Models
Sharif, M
2013-01-01
This paper investigates cylindrically symmetric distribution of an-isotropic fluid under the expansion-free condition, which requires the existence of vacuum cavity within the fluid distribution. We have discussed two family of solutions which further provide two exact models in each family. Some of these solutions satisfy Darmois junction condition while some show the presence of thin shell on both boundary surfaces. We also formulate a relation between the Weyl tensor and energy density.
Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
Quantum unharmonic symmetrical oscillators using elliptic functions
Energy Technology Data Exchange (ETDEWEB)
Sanchez, A.M.; Bejarano, J.d.
1986-04-21
The authors study in the JWKB approximation the energy levels of the symmetric anharmonic oscillators V(x) Ax/sup 2/ + Bx/sup 4/ for different signs and values of A and B. Comparisons are made with published results for specific cases and with numerical calculations. An additional example is given of exact value, to add to the very rare catalogue of known examples.
Resistor Networks based on Symmetrical Polytopes
Directory of Open Access Journals (Sweden)
Jeremy Moody
2015-03-01
Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.
Symmetrical peripheral gangrene associated with peripartum cardiomyopathy
Directory of Open Access Journals (Sweden)
Ajay Jaryal
2013-01-01
Full Text Available Symmetrical peripheral gangrene (SPG is a rare clinical entity. It was first described in late 19 th century and since then has been reported with array of medical conditions mainly those complicated with shock, sepsis, and disseminated intravascular coagulation (DIC. Here in, we describe a parturient with peripartum cardiomyopathy (PPCM and SPG. Clinicians should be aware of this entity as early recognition can help in reducing morbidity and mortality.
On integrability of strings on symmetric spaces
Energy Technology Data Exchange (ETDEWEB)
Wulff, Linus [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)
2015-09-17
In the absence of NSNS three-form flux the bosonic string on a symmetric space is described by a symmetric space coset sigma-model. Such models are known to be classically integrable. We show that the integrability extends also to cases with non-zero NSNS flux (respecting the isometries) provided that the flux satisfies a condition of the form H{sub abc}H{sup cde}∼R{sub ab}{sup de}. We then turn our attention to the type II Green-Schwarz superstring on a symmetric space. We prove that if the space preserves some supersymmetry there exists a truncation of the full superspace to a supercoset space and derive the general form of the superisometry algebra. In the case of vanishing NSNS flux the corresponding supercoset sigma-model for the string is known to be integrable. We prove that the integrability extends to the full string by augmenting the supercoset Lax connection with terms involving the fermions which are not captured by the supercoset model. The construction is carried out to quadratic order in these fermions. This proves the integrability of strings on symmetric spaces supported by RR flux which preserve any non-zero amount of supersymmetry. Finally we also construct Lax connections for some supercoset models with non-zero NSNS flux describing strings in AdS{sub 2,3}×S{sup 2,3}×S{sup 2,3}×T{sup 2,3,4} backgrounds preserving eight supersymmetries.
Coefficients of symmetric square L-functions
Institute of Scientific and Technical Information of China (English)
LAU; Yuk-Kam
2010-01-01
Let λsym2f(n) be the n-th coefficient in the Dirichlet series of the symmetric square L-function associated with a holomorphic primitive cusp form f.We prove Ω± results for λsym2f(n) and evaluate the number of positive(resp.,negative) λsym2f(n) in some intervals.
Time-symmetric electrodynamics and quantum measurement
Pegg, D. T.
The application of the Wheeler-Feynman theory of time-symmetric electrodynamics to obtain definite answers to questions concerning the objective existence of quantum states in an optical EPR type of experiment is discussed. This theory allows the influence of the detector on the system being studied to be taken into account. The result is an entirely fresh understanding of experiments of the Kocher-Commins type.
Symmetric Wilson Loops beyond leading order
Chen-Lin, Xinyi
2016-01-01
We study the circular Wilson loop in the symmetric representation of U(N) in $\\mathcal{N} = 4$ super-Yang-Mills (SYM). In the large N limit, we computed the exponentially-suppressed corrections for strong coupling, which suggests non-perturbative physics in the dual holographic theory. We also computed the next-to-leading order term in 1/N, and the result matches with the exact result from the k-fundamental representation.
Symmetric categorial grammar: residuation and Galois connections
Moortgat, Michael
2010-01-01
The Lambek-Grishin calculus is a symmetric extension of the Lambek calculus: in addition to the residuated family of product, left and right division operations of Lambek's original calculus, one also considers a family of coproduct, right and left difference operations, related to the former by an arrow-reversing duality. Communication between the two families is implemented in terms of linear distributivity principles. The aim of this paper is to complement the symmetry between (dual) resid...
Entropy, subentropy and the elementary symmetric functions
Jozsa, Richard; Mitchison, Graeme
2013-01-01
We use complex contour integral techniques to study the entropy H and subentropy Q as functions of the elementary symmetric polynomials, revealing a series of striking properties. In particular for these variables, derivatives of -Q are equal to derivatives of H of one higher order and the first derivatives of H and Q are seen to be completely monotone functions. It then follows that exp (-H) and exp(-Q) are Laplace transforms of infinitely divisible probability distributions.
Compensator configurations for load currents' symmetrization
Rusinaru, D.; Manescu, L. G.; Dinu, R. C.
2016-02-01
This paper approaches aspects regarding the mitigation effects of asymmetries in 3-phase 3-wire networks. The measure consisting in connecting of load current symmetrization devices at the load coupling point is presented. A time-variation of compensators parameters is determined as a function of the time-recorded electrical values. The general sizing principle of the load current symmetrization reactive components is based on a simple equivalent model of the unbalanced 3-phase loads. By using these compensators a certain control of the power components transits is ensured in the network. The control is based on the variations laws of the compensators parameters as functions of the recorded electrical values: [B] = [T]·[M]. The link between compensator parameters and measured values is ensured by a transformation matrix [T] for each operation conditions of the supply network. Additional conditions for improving of energy and efficiency performance of the compensator are considered: i.e. reactive power compensation. The compensator sizing algorithm was implemented into a MATLAB environment software, which generate the time-evolution of the parameters of load current symmetrization device. The input data of application takes into account time-recording of the electrical values. By using the compensator sizing software, some results were achieved for the case of a consumer connected at 20 kV busbar of a distribution substation, during 24 hours measurement session. Even the sizing of the compensators aimed some additional network operation aspects (power factor correction) correlated with the total or major load symmetrizations, the harmonics aspects of the network values were neglected.
Classification Models for Symmetric Key Cryptosystem Identification
Directory of Open Access Journals (Sweden)
Shri Kant
2012-01-01
Full Text Available The present paper deals with the basic principle and theory behind prevalent classification models and their judicious application for symmetric key cryptosystem identification. These techniques have been implemented and verified on varieties of known and simulated data sets. After establishing the techniques the problems of cryptosystem identification have been addressed.Defence Science Journal, 2012, 62(1, pp.38-45, DOI:http://dx.doi.org/10.14429/dsj.62.1440
SVD row or column symmetric matrix
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new architecture for row or column symmetric matrix called extended matrix is defined, and a precise correspondence of the singular values and singular vectors between the extended matrix and its original (namely, the mother matrix) is derived. As an illustration of potential, we show that, for a class of extended matrices, the singular value decomposition using the mother matrix rather than the extended matrix per se can save the CPU time and memory without loss of numerical precision.
QR factorization for row or column symmetric matrix
Institute of Scientific and Technical Information of China (English)
ZOU; Hongxing(邹红星); WANG; Dianjun(王殿军); DAI; Qionghai(戴琼海); LI; Yanda(李衍达)
2003-01-01
The problem of fast computing the QR factorization of row or column symmetric matrix isconsidered. We address two new algorithms based on a correspondence of Q and R matrices between the rowor column symmetric matrix and its mother matrix. Theoretical analysis and numerical evidence show that, fora class of row or column symmetric matrices, the QR factorization using the mother matrix rather than therow or column symmetric matrix per se can save dramatically the CPU time and memory without loss of anynumerical precision.
Distal symmetrical polyneuropathy: definition for clinical research.
England, J D; Gronseth, G S; Franklin, G; Miller, R G; Asbury, A K; Carter, G T; Cohen, J A; Fisher, M A; Howard, J F; Kinsella, L J; Latov, N; Lewis, R A; Low, P A; Sumner, A J
2005-01-01
The objective of this report was to develop a case definition of "distal symmetrical polyneuropathy" to standardize and facilitate clinical research and epidemiological studies. A formalized consensus process was employed to reach agreement after a systematic review and classification of evidence from the literature. The literature indicates that symptoms alone have relatively poor diagnostic accuracy in predicting the presence of polyneuropathy; signs are better predictors of polyneuropathy than symptoms; and single abnormalities on examination are less sensitive than multiple abnormalities in predicting the presence of polyneuropathy. The combination of neuropathic symptoms, signs, and electrodiagnostic findings provides the most accurate diagnosis of distal symmetrical polyneuropathy. A set of case definitions was rank ordered by likelihood of disease. The highest likelihood of polyneuropathy (useful for clinical trials) occurs with a combination of multiple symptoms, multiple signs, and abnormal electrodiagnostic studies. A modest likelihood of polyneuropathy (useful for field or epidemiological studies) occurs with a combination of multiple symptoms and multiple signs when the results of electrodiagnostic studies are not available. A lower likelihood of polyneuropathy occurs when electrodiagnostic studies and signs are discordant. For research purposes, the best approach for defining distal symmetrical polyneuropathy is a set of case definitions rank ordered by estimated likelihood of disease. The inclusion of this formalized case definition in clinical and epidemiological research studies will ensure greater consistency of case selection.
Neutrino Mass Matrix Predicted From Symmetric Texture
Bando, M; Bando, Masako; Obara, Midori
2003-01-01
Within the framework of grand unified theories, we make full analysis of symmetric texture to see if such texture can reproduce large neutrino mixings, which have recently been confirmed by the observed solar and atmospheric neutrino oscillation experiments. It is found that so-called symmetric texture with anomalous U(1) family symmetry with Froggatt-Nielsen mechanism does not provide a natural explanation of two large mixing angles. On the contrary we should adopt "zero texture" which have been extensively studied by many authors and only this scenario can reproduce two large mixing angles naturally. Under such "zero texture" with minimal symmetric Majorana matrix, all the neutrino masses and mixing angles, 6 quantities, are expressed in terms of up-quark masses, $m_t,m_c,m_u$ with two adjustable parameters. This provides interesting relations among neutrio mixing angles, $\\tan^2 2\\theta_{12} \\simeq \\frac{144m_c}{m_t} \\tan^2 2\\theta_{23} \\cos^2 \\theta_{23}, \\quad \\sin^2 \\theta_{13} \\simeq \\frac{4m_c}{m_t}\\s...
Holographic entanglement entropy for 4D conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Astaneh, Amin Faraji [Department of Physics, Sharif University of Technology,P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mozaffar, M. Reza Mohammadi [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2014-02-04
Using the proposal for holographic entanglement entropy in higher derivative gravities, we compute holographic entanglement entropy for the conformal gravity in four dimensions which turns out to be finite. However, if one subtracts the contribution of the four dimensional Gauss-Bonnet term, the corresponding entanglement entropy has a divergent term and indeed restricted to an Einstein solution of the conformal gravity, the resultant entanglement entropy is exactly the same as that in the Einstein gravity. We will also make a comment on the first law of the entanglement thermodynamics for the conformal gravity in four dimensions.
The Exponent Set of Central Symmetric Primitive Matrices
Institute of Scientific and Technical Information of China (English)
陈佘喜; 胡亚辉
2004-01-01
This paper first establishes a distance inequality of the associated diagraph of a central symmetric primitive matrix, then characters the exponent set of central symmetric primitive matrices, and proves that the exponent set of central symmetric primitive matrices of order n is {1, 2,… ,n-1}. There is no gap in it.
Kashiwara-Vergne-Rouviere methods for symmetric spaces
Torossian, Charles
2002-01-01
This article follows our previous work on Campbell-Hausdorff formula. We study the case of symmetric spaces. We recover, by using a Kontsevich's deformation of the Baker-Campbell-Hausdorff formula, Rouviere's results on the convolution of invariant distributions, for solvable symmetric spaces and "very symmetric spaces".
Kashiwara-Vergne-Rouviere methods for symmetric spaces
Torossian, Charles
2002-01-01
This article follows our previous work on Campbell-Hausdorff formula. We study the case of symmetric spaces. We recover, by using a Kontsevich's deformation of the Baker-Campbell-Hausdorff formula, Rouviere's results on the convolution of invariant distributions, for solvable symmetric spaces and "very symmetric spaces".
Complete affine connection in the causal boundary: static, spherically symmetric spacetimes
Harris, Steven (Stacey) G.
2017-02-01
The boundary at I^+, future null infinity, for a standard static, spherically symmetric spactime is examined for possible linear connections. Two independent methods are employed, one for treating I^+ as the future causal boundary, and one for treating it as a conformal boundary (the latter is subsumed in the former, which is of greater generality). Both methods provide the same result: a constellation of various possible connections, depending on an arbitrary choice of a certain function, a sort of gauge freedom in obtaining a natural connection on I^+; choosing that function to be constant (for instance) results in a complete connection. Treating I^+ as part of the future causal boundary, the method is to impute affine connections on null hypersurfaces going out to I^+, in terms of a transverse vector field on each null hypersurface (there is much gauge freedom on choice of the transverse vector fields). Treating I^+ as part of a conformal boundary, the method is to make a choice of conformal factor that makes the boundary totally geodesic in the enveloping manifold (there is much gauge freedom in choice of that conformal factor). Similar examination is made of other boundaries, such as timelike infinity and timelike and spacelike singularities. These are much simpler, as they admit a unique connection from a similar limiting process (i.e., no gauge freedom); and that connection is complete.
Subtleties Concerning Conformal Tractor Bundles
Graham, C Robin
2012-01-01
The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.
Dimensional Reduction for Conformal Blocks
Hogervorst, Matthijs
2016-01-01
We consider the dimensional reduction of a CFT, breaking multiplets of the d-dimensional conformal group SO(d+1,1) up into multiplets of SO(d,1). This leads to an expansion of d-dimensional conformal blocks in terms of blocks in d-1 dimensions. In particular, we obtain a formula for 3d conformal blocks as an infinite sum over 2F1 hypergeometric functions with closed-form coefficients.
Comparative Incidence of Conformational, Neurodegenerative Disorders.
Directory of Open Access Journals (Sweden)
Jesús de Pedro-Cuesta
Full Text Available The purpose of this study was to identify incidence and survival patterns in conformational neurodegenerative disorders (CNDDs.We identified 2563 reports on the incidence of eight conditions representing sporadic, acquired and genetic, protein-associated, i.e., conformational, NDD groups and age-related macular degeneration (AMD. We selected 245 papers for full-text examination and application of quality criteria. Additionally, data-collection was completed with detailed information from British, Swedish, and Spanish registries on Creutzfeldt-Jakob disease (CJD forms, amyotrophic lateral sclerosis (ALS, and sporadic rapidly progressing neurodegenerative dementia (sRPNDd. For each condition, age-specific incidence curves, age-adjusted figures, and reported or calculated median survival were plotted and examined.Based on 51 valid reported and seven new incidence data sets, nine out of eleven conditions shared specific features. Age-adjusted incidence per million person-years increased from ≤1.5 for sRPNDd, different CJD forms and Huntington's disease (HD, to 1589 and 2589 for AMD and Alzheimer's disease (AD respectively. Age-specific profiles varied from (a symmetrical, inverted V-shaped curves for low incidences to (b those increasing with age for late-life sporadic CNDDs and for sRPNDd, with (c a suggested, intermediate, non-symmetrical inverted V-shape for fronto-temporal dementia and Parkinson's disease. Frequently, peak age-specific incidences from 20-24 to ≥90 years increased with age at onset and survival. Distinct patterns were seen: for HD, with a low incidence, levelling off at middle age, and long median survival, 20 years; and for sRPNDd which displayed the lowest incidence, increasing with age, and a short median disease duration.These results call for a unified population view of NDDs, with an age-at-onset-related pattern for acquired and sporadic CNDDs. The pattern linking age at onset to incidence magnitude and survival might
Symmetric multi-component diffusion modeling for Magnum PSI
Peerenboom, Kim; van Dijk, Jan; Goedheer, Wim; van der Mullen, Joost
2011-10-01
Magnum PSI is a linear plasma generator for studying plasma surface interaction in conditions as expected in the ITER divertor. In Magnum PSI, the diffusive fluxes do not follow the simple Fick law for diffusion, due to coupling of the fluxes between species and directions, and ambipolar and magnetic fields. Instead they are described by the Stefan-Maxwell equations. In our contribution, we will address the numerical issues associated with solving the Stefan-Maxwell equations and the resulting set of continuity equations for the species. In particular, we will present a symmetric approach where all species are treated as independent unknowns and no species are singled out in order to account for mass and charge conservation. Modeling results of Magnum PSI using this approach will be presented.
Loop Virasoro Lie conformal algebra
Energy Technology Data Exchange (ETDEWEB)
Wu, Henan, E-mail: wuhenanby@163.com; Chen, Qiufan; Yue, Xiaoqing [Department of Mathematics, Tongji University, Shanghai 200092 (China)
2014-01-15
The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.
Domènech, Guillem
2016-01-01
From higher dimensional theories, e.g. string theory, one expects the presence of non-minimally coupled scalar fields. We review the notion of conformal frames in cosmology and emphasize their physical equivalence, which holds at least at a classical level. Furthermore, if there is a field, or fields, which dominates the universe, as it is often the case in cosmology, we can use such notion of frames to treat our system, matter and gravity, as two different sectors. On one hand, the gravity sector which describes the dynamics of the geometry and on the other hand the matter sector which has such geometry as a playground. We use this interpretation to build a model where the fact that a curvaton couples to a particular frame metric could leave an imprint in the CMB.
Reflections on Conformal Spectra
Kim, Hyungrok; Ooguri, Hirosi
2015-01-01
We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions $\\Delta_0$ of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite $\\Delta_0$ as well as for large $\\Delta_0$. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.
Reflections on Conformal Spectra
CERN. Geneva
2015-01-01
We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink
One-Loop Divergences in 6D Conformal Gravity
Pang, Yi
2012-01-01
Using Exact Renormalization Group Equation approach and background field method, we investigate the one-loop problem in a six-dimensional conformal gravity theory whose Lagrangian takes the same form as holographic Weyl anomaly of multiple coincident M5-branes. We choose the backgrounds to be the symmetric Einstein spaces including S6, CP3, S2 \\times S4, S2 \\times CP2, S3 \\times S3 and S2 \\times S2 \\times S2. Evaluating the functional sums gives power-law and logarithmic divergences. We extract from the specific values of logarithmic divergence on above backgrounds, the coefficient in front of Euler density and two linear equations constraining the coefficients in front of three type-B conformal invariants. As a test of the effectiveness of Exact Renormalization Group Equation approach to quantum conformal gravity, we reexaminethe one-loop problem in four-dimensional conformal gravity and confirm the logarithmic divergence derived from generalized Schwinger-DeWitt method.
Microscopic insights into the NMR relaxation-based protein conformational entropy meter.
Kasinath, Vignesh; Sharp, Kim A; Wand, A Joshua
2013-10-09
Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven proteins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion--the NMR-derived generalized order parameters--as a proxy from which to derive changes in protein conformational entropy.
Directory of Open Access Journals (Sweden)
Marcia Moraes
2008-01-01
Full Text Available Este trabalho visa discutir os modos de pesquisar com um grupo de deficientes visuais. O artigo relata o trabalho de uma Oficina de Expressão Corporal com jovens deficientes visuais. Nos referimos às pesquisas de Latour, Despret e Stengers para discutir os modos de produção de conhecimento com deficientes visuais. Partimos de uma problematização de um modo de intervir que considera o campo de pesquisa como algo fora de nós. A partir da antropologia simétrica de Latour, concluímos indicando que intervir é produzir realidades inéditas e que o papel do pesquisador é seguir os atores em ação.This paper aims to discuss how to carry out research with a group of visual handicapped youth. The text describes the work of a Corporal Expression Workshop with visual handicapped youth. To discuss the modes of producing knowledge with visual handicapped youth, we refer to Latour, Despret and Stengers. We start by problemizing the research field as something that is outside of our realm. Our final considerations, based on Latour's symmetric anthropology, indicate that to intervene is to produce unedited realities and that the work of the researcher is to follow the actors in action.
Replacement between conformity and counter-conformity in consumption decisions.
Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica
2013-02-01
This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.
Conformation characters of gel sheets with rotational symmetry: the role of boundary
Zhai, Xiaobo; Zhao, Shumin
2014-01-01
In this paper, we systemically study the conformation characters of rotational symmetric gel sheets with free boundary and investigate the role of boundary on the equilibrium conformation. In gel sheet the boundary provides a residual strain which leads to re-distribution of stress and impacts the shape of equilibrium conformation accordingly. For sheet with boundary, the in-plane stretching energy is far larger than the bending energy in some cases. It is intrinsic different from closed membrane. In gel sheets, the boundary doesn't only quantitatively amend to the elastic energy. The residual strain on boundary cooperates with bending and stretching to determine the equilibrium conformation rather than just the last two factors. Furthermore, on the boundary of gel sheet, there is an additional energy induced by boundary line tension $\\gamma $. If $\\gamma =0$, there is $10\\%$ difference of elastic energy from the experimental result. Finally, we discuss the effects of such line tension $\\gamma $ and propose a...
Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model
Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2015-01-01
We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.
Experimental demonstration of PT-symmetric stripe lasers
Gu, Zhiyuan; Lyu, Quan; Li, Meng; Xiao, Shumin; Song, Qinghai
2015-01-01
Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained tremendous research attention. While the PT symmetric absorber has been observed in microwave metamaterials, the experimental demonstration of PT symmetric laser is still absent. Here we experimentally study PT-symmetric laser absorber in stripe waveguide. Using the concept of PT symmetry to exploit the light amplification and absorption, PT-symmetric laser absorbers have been successfully obtained. Different from the single-mode PT symmetric lasers, the PT-symmetric stripe lasers have been experimentally confirmed by comparing the relative wavelength positions and mode spacing under different pumping conditions. When the waveguide is half pumped, the mode spacing is doubled and the lasing wavelengths shift to the center of every two initial lasing modes. All these observations are consistent with the theoretical predictions and confirm the PT-symmetry breaking well.
Water drives peptide conformational transitions
Nerukh, Dmitry
2011-01-01
Transitions between metastable conformations of a dipeptide are investigated using classical molecular dynamics simulation with explicit water molecules. The distribution of the surrounding water at different moments before the transitions and the dynamical correlations of water with the peptide's configurational motions indicate that water is the main driving force of the conformational changes.
Counselor Identity: Conformity or Distinction?
McLaughlin, Jerry E.; Boettcher, Kathryn
2009-01-01
The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.
Counselor Identity: Conformity or Distinction?
McLaughlin, Jerry E.; Boettcher, Kathryn
2009-01-01
The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.
Symmetric Euler orientation representations for orientational averaging.
Mayerhöfer, Thomas G
2005-09-01
A new kind of orientation representation called symmetric Euler orientation representation (SEOR) is presented. It is based on a combination of the conventional Euler orientation representations (Euler angles) and Hamilton's quaternions. The properties of the SEORs concerning orientational averaging are explored and compared to those of averaging schemes that are based on conventional Euler orientation representations. To that aim, the reflectance of a hypothetical polycrystalline material with orthorhombic crystal symmetry was calculated. The calculation was carried out according to the average refractive index theory (ARIT [T.G. Mayerhöfer, Appl. Spectrosc. 56 (2002) 1194]). It is shown that the use of averaging schemes based on conventional Euler orientation representations leads to a dependence of the result from the specific Euler orientation representation that was utilized and from the initial position of the crystal. The latter problem can be overcome partly by the introduction of a weighing factor, but only for two-axes-type Euler orientation representations. In case of a numerical evaluation of the average, a residual difference remains also if a two-axes type Euler orientation representation is used despite of the utilization of a weighing factor. In contrast, this problem does not occur if a symmetric Euler orientation representation is used as a matter of principle, while the result of the averaging for both types of orientation representations converges with increasing number of orientations considered in the numerical evaluation. Additionally, the use of a weighing factor and/or non-equally spaced steps in the numerical evaluation of the average is not necessary. The symmetrical Euler orientation representations are therefore ideally suited for the use in orientational averaging procedures.
Communities and classes in symmetric fractals
Krawczyk, M J
2014-01-01
Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analysed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.
Quantum asymmetric cryptography with symmetric keys
Gao, Fei; Wen, Qiaoyan; Qin, Sujuan; Zhu, Fuchen
2009-12-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.
Quantum asymmetric cryptography with symmetric keys
Gao, Fei; Wen, Qiao-Yan; Qin, Su-Juan; Zhu, Fu-Chen
2008-01-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstr...
Quantum asymmetric cryptography with symmetric keys
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on quantum encryption,we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme,which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore,the state-estimation attack to a prior QPKC scheme is demonstrated.
Congruence Permutable Symmetric Extended de Morgan Algebras
Institute of Scientific and Technical Information of China (English)
Jie FANG
2006-01-01
An algebra A is said to be congruence permutable if any two congruences on it are per-mutable. This property has been investigated in several varieties of algebras, for example, de Morgan algebras, p-algebras, Kn,o-algebras. In this paper, we study the class of symmetric extended de Morgan algebras that are congruence permutable. In particular we consider the case where A is finite, and show that A is congruence permutable if and only if it is isomorphic to a direct product of finitely many simple algebras.
Quantum asymmetric cryptography with symmetric keys
Institute of Scientific and Technical Information of China (English)
GAO Fei; WEN QiaoYan; QIN SuJuan; ZHU FuChen
2009-01-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.
Stability of Reflection Symmetric Collapsing Structures
Sharif, M
2015-01-01
In this paper, we explore instability regions of non-static axial reflection symmetric spacetime with anisotropic source in the interior. We impose linear perturbation on the Einstein field equations and dynamical equations to establish the collapse equation. The effects of different physical factors like energy density and anisotropic stresses on the instability regions are studied under Newtonian and post-Newtonian limits. We conclude that stiffness parameter has a significant role in this analysis while the reflection terms increase instability ranges of non-static axial collapse.
Design of spherical symmetric gradient index lenses
Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción
2012-10-01
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.
Degenerate Neutrinos in Left Right Symmetric Theory
Joshipura, Anjan S.
1994-01-01
Various hints on the neutrino masses namely, ({\\em i}) the solar neutrino deficit ({\\em ii}) the atmospheric neutrino deficit ({\\em iii}) the need for the dark matter and/or ({\\em iv}) the non-zero neutrinoless double beta decay collectively imply that all the three neutrinos must be nearlty degenerate. This feature can be understood in the left right symmetric theory. We present a model based on the group $SU(2)_{L}\\times SU(2)_R\\times U(1)_{B-L}\\times SU(2)_H$ which can explain the required...
Symmetric Structure of Induction Motor Systems
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
In this paper, symmetric structure of induction motor system in stationary αβ0 coordinates is studied bythe geometric approach. The results show that the system possesses symmetry (G, θ, Ф) and infinitesimal symme-try. Under certain conditions, the system can be transformed into a form possessing state-space symmetry (G, Ф)and infinitesimal state-space symmetry by means of state feedback and input coordinate base transform. The resultscan be extended to the fifth order induction motor system fed by hysteresis-band current-controlled PWM inverter.
Specialization of Quadratic and Symmetric Bilinear Forms
Knebusch, Manfred
2010-01-01
The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed for fields of characteristic different from 2, are explored here without this restriction. In addition to chapters on specialization theory, generic splitting t
Jackson's Theorem on Bounded Symmetric Domains
Institute of Scientific and Technical Information of China (English)
Ming Zhi WANG; Guang Bin REN
2007-01-01
Polynomial approximation is studied on bounded symmetric domain Ω in C n for holo-morphic function spaces X ,such as Bloch-type spaces,Bergman-type spaces,Hardy spaces,Ω algebra and Lipschitz space.We extend the classical Jackson ’s theorem to several complex variables:E k f,X ) ω (1 /k,f,X ),where E k f,X )is the deviation of the best approximation of f ∈X by polynomials of degree at mostk with respect to the X -metric and ω (1/k,f,X )is the corresponding modulus of continuity.
SU(2) Invariants of Symmetric Qubit States
Sirsi, Swarnamala
2011-01-01
Density matrix for N-qubit symmetric state or spin-j state (j = N/2) is expressed in terms of the well known Fano statistical tensor parameters. Employing the multiaxial representation [1], wherein a spin-j density matrix is shown to be characterized by j(2j+1) axes and 2j real scalars, we enumerate the number of invariants constructed out of these axes and scalars. These invariants are explicitly calculated in the particular case of pure as well as mixed spin-1 state.
Synthesis of controllers for symmetric systems
Ameur Abid, Chiheb; Zouari, Belhassen
2010-11-01
This article deals with supervisory control problem for coloured Petri (CP) nets. Considering a CP-net, we build a condensed version of the ordinary state-space, namely the symbolic reachability graph (SRG). This latter graph allows to cope with state-space explosion problem for symmetric systems. The control specification can be expressed in terms of either forbidden states or forbidden sequences of transitions. According to these specifications, we derive the controller by applying the theory of regions on the basis of the SRG. Thanks to expressiveness power of CP-nets, the obtained controller to be connected to the plant model is reduced to one single place.
Scalar Resonances in Axially Symmetric Spacetimes
Ranea-Sandoval, Ignacio F
2015-01-01
We study properties of resonant solutions to the scalar wave equation in several axially symmetric spacetimes. We prove that non-axial resonant modes do not exist neither in the Lanczos dust cylinder, the $(2+1)$ extreme BTZ spacetime nor in a class of simple rotating wormhole solutions. Moreover, we find unstable solutions to the wave equation in the Lanczos dust cylinder and in the $r^2 <0$ region of the extreme $(2+1)$ BTZ spacetime, two solutions that possess closed timelike curves. Similarities with previous results obtained for the Kerr spacetime are explored.
Nanotribology of Symmetric and Asymmetric Liquid Lubricants
Directory of Open Access Journals (Sweden)
Shinji Yamada
2010-03-01
Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.
Recursion Relations for Conformal Blocks
Penedones, João; Yamazaki, Masahito
2016-09-12
In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in s.......e. they are independent on the specific matter representation.......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Imaging of conformational changes
Energy Technology Data Exchange (ETDEWEB)
Michl, Josef [Univ. of Colorado, Boulder, CO (United States)
2016-03-13
Control of intramolecular conformational change in a small number of molecules or even a single one by an application of an outside electric field defined by potentials on nearby metal or dielectric surfaces has potential applications in both 3-D and 2-D nanotechnology. Specifically, the synthesis, characterization, and understanding of designed solids with controlled built-in internal rotational motion of a dipole promises a new class of materials with intrinsic dielectric, ferroelectric, optical and optoelectronic properties not found in nature. Controlled rotational motion is of great interest due to its expected utility in phenomena as diverse as transport, current flow in molecular junctions, diffusion in microfluidic channels, and rotary motion in molecular machines. A direct time-resolved observation of the dynamics of motion on ps or ns time scale in a single molecule would be highly interesting but is also very difficult and has yet to be accomplished. Much can be learned from an easier but still challenging comparison of directly observed initial and final orientational states of a single molecule, which is the basis of this project. The project also impacts the understanding of surface-enhanced Raman spectroscopy (SERS) and single-molecule spectroscopic detection, as well as the synthesis of solid-state materials with tailored properties from designed precursors.
Latosinski, Adam; Meissner, Krzysztof A; Nicolai, Hermann
2015-01-01
We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos in such a way that the scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3)$_N$ which is broken explicitly only by the Yukawa interaction coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of such an enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3)$_N$ symmetry are natural Dark M...
Eikonalization of Conformal Blocks
Fitzpatrick, A Liam; Walters, Matthew T; Wang, Junpu
2015-01-01
Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the $t$-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the `eikonalization' of conformal blocks. We show that when an operator $T$ appears in the OPE $\\mathcal{O}(x) \\mathcal{O}(0)$, then the large spin $\\ell$ Fock space states $[TT \\cdots T]_{\\ell}$ also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an $\\langle \\mathcal{O} \\mathcal{O} \\mathcal{O} \\mathcal{O} \\rangle$ correlator build the classical `$T$ field' in the dual AdS description. In some limits the sum of all Fock space exchanges can be represented as the exponential of a single $T$ exchange in the 4-pt correlator of $\\mathcal{O}$. Our results should be useful for systematizing $1/\\ell$ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading $\\log \\ell$...
Universality of Sparse d>2 Conformal Field Theory at Large N
Belin, Alexandre; Kruthoff, Jorrit; Michel, Ben; Shaghoulian, Edgar; Shyani, Milind
2016-01-01
We derive necessary and sufficient conditions for large-$N$ conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on $\\mathbb{T}^d$ and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.
Universality of sparse d > 2 conformal field theory at large N
Belin, Alexandre; de Boer, Jan; Kruthoff, Jorrit; Michel, Ben; Shaghoulian, Edgar; Shyani, Milind
2017-03-01
We derive necessary and sufficient conditions for large N conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on T^d and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.
Renormalon's Contribution to Effective Couplings
Suzuki, H
1998-01-01
When an asymptotically non-free theory possesses a mass scale, the ultraviolet (UV) renormalon gives rise to non-perturbative contributions to dimension-four operators and dimensionless couplings, thus has a similar effect as the instanton. We illustrate this phenomenon in O(N) symmetric massive briefly compared with non-perturbative corrections in the magnetic picture of the Seiberg-Witten theory.
Regular Submanifolds in Conformal Space Qnp
Institute of Scientific and Technical Information of China (English)
Changxiong NIE; Chuanxi WU
2012-01-01
The authors study the regular submanifolds in the conformal space Qnp and introduce the submanifold theory in the conformal space Qnp.The first variation formula of the Willmore volume functional of pseudo-Riemannian submanifolds in the conformal space Qnp is given.Finally,the conformal isotropic submanifolds in the conformal space Qnp are classified.
Conformational thermodynamics of biomolecular complexes: The histogram-based method
Das, Amit; Sikdar, Samapan; Ghosh, Mahua; Chakrabarti, J.
2015-09-01
Conformational changes in biomacromolecules govern majority of biological processes. Complete characterization of conformational contributions to thermodynamics of complexation of biomacromolecules has been challenging. Although, advances in NMR relaxation experiments and several computational studies have revealed important aspects of conformational entropy changes, efficient and large-scale estimations still remain an intriguing facet. Recent histogram-based method (HBM) offers a simple yet rigorous route to estimate both conformational entropy and free energy changes from same set of histograms in an efficient manner. The HBM utilizes the power of histograms which can be generated as accurately as desired from an arbitrarily large sample space from atomistic simulation trajectories. Here we discuss some recent applications of the HBM, using dihedral angles of amino acid residues as conformational variables, which provide good measure of conformational thermodynamics of several protein-peptide complexes, obtained from NMR, metal-ion binding to an important metalloprotein, interfacial changes in protein-protein complex and insight to protein function, coupled with conformational changes. We conclude the paper with a few future directions worth pursuing.
Symmetric-key cryptosystem with DNA technology
Institute of Scientific and Technical Information of China (English)
LU MingXin; LAI XueJia; XIAO GuoZhen; QIN Lei
2007-01-01
DNA cryptography is a new field which has emerged with progress in the research of DNA computing. In our study, a symmetric-key cryptosystem was designed by applying a modern DNA biotechnology, microarray, into cryptographic technologies. This is referred to as DNA symmetric-key cryptosystem (DNASC). In DNASC,both encryption and decryption keys are formed by DNA probes, while its ciphertext is embedded in a specially designed DNA chip (microarray). The security of this system is mainly rooted in difficult biology processes and problems, rather than conventional computing technology, thus it is unaffected by changes from the attack of the coming quantum computer. The encryption process is a fabrication of a specially designed DNA chip and the decryption process is the DNA hybridization.In DNASC, billions of DNA probes are hybridized and identified at the same time,thus the decryption process is conducted in a massive, parallel way. The great potential in vast parallelism computation and the extraordinary information density of DNA are displayed in DNASC to some degree.
Analysis of non-symmetrical flapping airfoils
Tay, W. B.; Lim, K. B.
2009-08-01
Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non-symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil’s shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter’s wing.
Chirally symmetric strong and electroweak interactions
Energy Technology Data Exchange (ETDEWEB)
Rajpoot, S.
1988-07-21
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3)/sub L/xSU(3)/sub R/xSU(2)/sub L/xSU(2)/sub R/xU(1)/sub B-L/ where quantum chromodynamics originates in the chiral colour group SU(3)/sub L/xSU(3)/sub R/ and the electroweak interaction originates in the ambidextrous electroweak interaction group SU(2)/sub L/xSU(2)/sub R/xU(1)/sub B-L/. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2)/sub L/xSU(2)/sub R/. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3)/sup C/xU(1)/sub em/ and give masses to all the quarks and leptons of the theory. All fermion masses are 'see-saw' masses.
Spacetime completeness of non-singular black holes in conformal gravity
Bambi, Cosimo; Rachwal, Leslaw
2016-01-01
We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new types of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring sin...
Mutual information after a local quench in conformal field theory
Asplund, Curtis T
2013-01-01
We compute the entanglement entropy and mutual information for two disjoint intervals in two-dimensional conformal field theories as a function of time after a local quench, using the replica trick and boundary conformal field theory. We obtain explicit formulae for the universal contributions, which are leading in the regimes of, for example, close or well-separated intervals of fixed length. The results are largely consistent with the quasiparticle picture, in which entanglement above that present in the ground state is carried by pairs of entangled, freely propagating excitations. We also calculate the mutual information for two disjoint intervals in a proposed holographic local quench, whose holographic energy-momentum tensor matches the conformal field theory one. We find that the holographic mutual information shows qualitative differences from the conformal field theory results and we discuss possible interpretations of this.
The Wald entropy and 6d conformal anomaly
Directory of Open Access Journals (Sweden)
Amin Faraji Astaneh
2015-10-01
Full Text Available We analyze the Wald entropy for different forms of the conformal anomaly in six dimensions. In particular we focus on the anomaly which arises in a holographic calculation of Henningson and Skenderis. The various presentations of the anomaly differ by some total derivative terms. We calculate the corresponding Wald entropy for surfaces which do not have an Abelian O(2 symmetry in the transverse direction although the extrinsic curvature vanishes. We demonstrate that for this class of surfaces the Wald entropy is different for different forms of the conformal anomaly. The difference is due to the total derivative terms present in the anomaly. We analyze the conformal invariance of the Wald entropy for the holographic conformal anomaly and demonstrate that the violation of the invariance is due to the contributions of the total derivative terms in the anomaly. Finally, we make more precise the general form for the Hung–Myers–Smolkin discrepancy.
Techni-dilaton at Conformal Edge
Hashimoto, Michio
2010-01-01
Techni-dilaton (TD) was proposed long ago in the technicolor (TC) near criticality/conformality. To reveal the critical behavior of TD, we explicitly compute the nonperturbative contributions to the scale anomaly $$ and to the techni-gluon condensate $$, which are generated by the dynamical mass m of the techni-fermions. Our computation is based on the (improved) ladder Schwinger-Dyson equation, with the gauge coupling $\\alpha$ replaced by the two-loop running one $\\alpha(\\mu)$ having the Caswell-Banks-Zaks IR fixed point $\\alpha_*$: $\\alpha(\\mu) \\simeq \\alpha = \\alpha_*$ for the IR region $m /m^4\\to const \
Conformal Patterson-Walker metrics
Hammerl, Matthias; Šilhan, Josef; Taghavi-Chabert, Arman; Žádník, Vojtěch
2016-01-01
The classical Patterson-Walker construction of a split-signature (pseudo-)Riemannian structure from a given torsion-free affine connection is generalized to a construction of a split-signature conformal structure from a given projective class of connections. A characterization of the induced structures is obtained. We achieve a complete description of Einstein metrics in the conformal class formed by the Patterson-Walker metric. Finally, we describe all symmetries of the conformal Patterson-Walker metric. In both cases we obtain descriptions in terms of geometric data on the original structure.
Manufacturing and metrology for IR conformal windows and domes
Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate
2017-05-01
Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.
RECONSTRUCTION OF SYMMETRIC B-SPLINE CURVES AND SURFACES
Institute of Scientific and Technical Information of China (English)
ZHU Weidong; KE Yinglin
2007-01-01
A method to reconstruct Symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using Symmetric knot vector and Symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a Symmetric knot vector is selected in order to get Symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be Symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.
PT-Symmetric Versus Hermitian Formulations of Quantum Mechanics
Bender, C M; Milton, K A; Bender, Carl M.; Chen, Jun-Hua; Milton, Kimball A.
2006-01-01
A non-Hermitian Hamiltonian that has an unbroken PT symmetry can be converted by means of a similarity transformation to a physically equivalent Hermitian Hamiltonian. This raises the following question: In which form of the quantum theory, the non-Hermitian or the Hermitian one, is it easier to perform calculations? This paper compares both forms of a non-Hermitian $ix^3$ quantum-mechanical Hamiltonian and demonstrates that it is much harder to perform calculations in the Hermitian theory because the perturbation series for the Hermitian Hamiltonian is constructed from divergent Feynman graphs. For the Hermitian version of the theory, dimensional continuation is used to regulate the divergent graphs that contribute to the ground-state energy and the one-point Green's function. The results that are obtained are identical to those found much more simply and without divergences in the non-Hermitian PT-symmetric Hamiltonian. The $\\mathcal{O}(g^4)$ contribution to the ground-state energy of the Hermitian version ...
(Anti)symmetric matter and superpotentials from IIBorientifolds
Energy Technology Data Exchange (ETDEWEB)
Landsteiner, Karl; Lazaroiu, Calin; Tatar, Radu
2003-10-09
We study the IIB engineering of N=1 gauge theories with unitary gauge group and matter in the adjoint and (anti)symmetric representations. We show that such theories can be obtained as Z{sub 2} orientifolds of certain Calabi-Yau A{sub 2} fibrations, and discuss the explicit T-duality transformation to an orientifolded Hanany-Witten construction. The low energy dynamics is described by a geometric transition of the orientifolded background. Unlike previously studied cases, we show that the orientifold 5-''plane'' survives the transition, thus bringing a nontrivial contribution to the effective superpotential. We extract this contribution by using matrix model results and compare with geometric data. A Higgs branch of our models recovers the engineering of SO/Sp theories with adjoint matter through an O5-''plane'' T-dual to an O6-plane. We show that the superpotential agrees with that produced by engineering through an O5-''plane'' dual to an O4-plane, even though the orientifold of this second construction is replaced by fluxes after the transition.
Rotation Symmetric Bent Boolean Functions for n = 2p
Cusick, T. W.; Sanger, E. M.
2017-01-01
It has been conjectured that there are no homogeneous rotation symmetric bent Boolean functions of degree greater than two. In this paper we begin by proving that sums of short-cycle rotation symmetric bent Boolean functions must contain a specific degree two monomial rotation symmetric Boolean function. We then prove most cases of the conjecture in n=2p, p>2 prime, variables and extend this work to the nonhomogeneous case.
National Automated Conformity Inspection Process -
Department of Transportation — The National Automated Conformity Inspection Process (NACIP) Application is intended to expedite the workflow process as it pertains to the FAA Form 81 0-10 Request...
Graphene-based conformal devices.
Park, Yong Ju; Lee, Seoung-Ki; Kim, Min-Seok; Kim, Hyunmin; Ahn, Jong-Hyun
2014-08-26
Despite recent progress in bendable and stretchable thin-film transistors using novel designs and materials, the development of conformal devices remains limited by the insufficient flexibility of devices. Here, we demonstrate the fabrication of graphene-based conformal and stretchable devices such as transistor and tactile sensor on a substrate with a convoluted surface by scaling down the device thickness. The 70 nm thick graphene-based conformal devices displayed a much lower bending stiffness than reported previously. The demonstrated devices provided excellent conformal coverage over an uneven animal hide surface without the need for an adhesive. In addition, the ultrathin graphene devices formed on the three-dimensionally curved animal hide exhibited stable electrical characteristics, even under repetitive bending and twisting. The advanced performance and flexibility demonstrated here show promise for the development and adoption of wearable electronics in a wide range of future applications.
Conformity Adequacy Review: Region 5
Resources are for air quality and transportation government and community leaders. Information on the conformity SIP adequacy/inadequacy of state implementation plans (SIPs) in EPA Region 5 (IL, IN, MI, OH, WI) is provided here.
Some Progress in Conformal Geometry
Directory of Open Access Journals (Sweden)
Sun-Yung A. Chang
2007-12-01
Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Entangled Markov Chains generated by Symmetric Channels
Miyadera, T
2006-01-01
A notion of entangled Markov chain was introduced by Accardi and Fidaleo in the context of quantum random walk. They proved that, in the finite dimensional case, the corresponding states have vanishing entropy density, but they did not prove that they are entangled. In the present note this entropy result is extended to the infinite dimensional case under the assumption of finite speed of hopping. Then the entanglement problem is discussed for spin 1/2, entangled Markov chains generated by a binary symmetric channel with hopping probability $1-q$. The von Neumann entropy of these states, restricted on a sublattice is explicitly calculated and shown to be independent of the size of the sublattice. This is a new, purely quantum, phenomenon. Finally the entanglement property between the sublattices ${\\cal A}(\\{0,1,...,N\\})$ and ${\\cal A}(\\{N+1\\})$ is investigated using the PPT criterium. It turns out that, for $q\
Symmetric Satellite Swarms and Choreographic Crystals.
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick
2016-01-08
In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems.
Invisibility in PT-symmetric complex crystals
Energy Technology Data Exchange (ETDEWEB)
Longhi, Stefano, E-mail: longhi@fisi.polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy)
2011-12-02
Bragg scattering in sinusoidal PT-symmetric complex crystals of finite thickness is theoretically investigated by the derivation of exact analytical expressions for reflection and transmission coefficients in terms of modified Bessel functions of first kind. The analytical results indicate that unidirectional invisibility, recently predicted for such crystals by coupled-mode theory (Z Lin et al 2011 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.106.213901), breaks down for crystals containing a large number of unit cells. In particular, for a given modulation depth in a shallow sinusoidal potential, three regimes are encountered as the crystal thickness is increased. At short lengths the crystal is reflectionless and invisible when probed from one side (unidirectional invisibility), whereas at intermediate lengths the crystal remains reflectionless but not invisible; for longer crystals both unidirectional reflectionless and invisibility properties are broken. (paper)
Degenerate Neutrinos in Left Right Symmetric Theory
Joshipura, A S
1995-01-01
Various hints on the neutrino masses namely, ({\\em i}) the solar neutrino deficit ({\\em ii}) the atmospheric neutrino deficit ({\\em iii}) the need for the dark matter and/or ({\\em iv}) the non-zero neutrinoless double beta decay collectively imply that all the three neutrinos must be nearlty degenerate. This feature can be understood in the left right symmetric theory. We present a model based on the group $SU(2)_{L}\\times SU(2)_R\\times U(1)_{B-L}\\times SU(2)_H$ which can explain the required departures from degeneracy in neutrino masses and large mixing among them without assuming any of the mixing in the quark or charged lepton sector to be large as would be expected in a typical $SO(10)$ model.
Tensor eigenvalues and entanglement of symmetric states
Bohnet-Waldraff, F.; Braun, D.; Giraud, O.
2016-10-01
Tensor eigenvalues and eigenvectors have been introduced in the recent mathematical literature as a generalization of the usual matrix eigenvalues and eigenvectors. We apply this formalism to a tensor that describes a multipartite symmetric state or a spin state, and we investigate to what extent the corresponding tensor eigenvalues contain information about the multipartite entanglement (or, equivalently, the quantumness) of the state. This extends previous results connecting entanglement to spectral properties related to the state. We show that if the smallest tensor eigenvalue is negative, the state is detected as entangled. While for spin-1 states the positivity of the smallest tensor eigenvalue is equivalent to separability, we show that for higher values of the angular momentum there is a correlation between entanglement and the value of the smallest tensor eigenvalue.
SEARCHABLE SYMMETRIC ENCRYPTION: REVIEW AND EVALUATION
Directory of Open Access Journals (Sweden)
YAP JOE EARN
2011-08-01
Full Text Available Searchable Symmetric Encryption (SSE allows a user to search over their encrypted data on a third party storage provider privately. There are several existing SSE schemes have been proposed to achieve this goal. This paper concerns with three currentSSE schemes, which are the Practical Techniques for Searches in Encrypted Data (PTSED, the Secure Index(SI, and the Fuzzy Keyword Search over Encrypted Data in the Cloud Computing (FKS-EDCC.The objective of this paper is to introduce a review of the three schemes with a discussion in the advantages and disadvantages of each.This paper also implements aprototype over an SI-based secure file searching system using java language. The performance of the system has been evaluated and discussed according to the false-positive rate.
Symmetric Functional Model for Extensions of Hermitian
Ryzhov, V
2006-01-01
This paper offers the functional model of a class of non-selfadjoint extensions of a Hermitian operator with equal deficiency indices. The explicit form of dilation of a dissipative extension is offered and the symmetric form of Sz.Nagy-Foia\\c{s} model as developed by B.~Pavlov is constructed. A variant of functional model for a general non-selfadjoint non-dissipative extension is formulated. We illustrate the theory by two examples: singular perturbations of the Laplace operator in~$L_2(\\Real^3)$ by a finite number of point interactions, and the Schr\\"odinger operator on the half axis~$(0, \\infty)$ in the Weyl limit circle case at infinity.
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors.
Ciphertext verification security of symmetric encryption schemes
Institute of Scientific and Technical Information of China (English)
HU ZhenYu; SUN FuChun; JIANG JianChun
2009-01-01
This paper formally discusses the security problem caused by the ciphertext verification,presenting a new security notion named IND-CVA (indistinguishability under ciphertext verification attacks) to chap acterize the privacy of encryption schemes in this situation.Allowing the adversary to access to both encryption oracle and ciphertext verification oracle,the new notion IND-CVA is slightly stronger than IND-CPA (indistinguishability under chosen-plaintext attacks) but much weaker than IND-CCA (indistinguishability under chosen-ciphertext attacks),and can be satisfied by most of the popular symmetric encryption schemes such as OTP (one-time-pad),CBC (cipher block chaining) and CTR (counter).An MAC (message authentication scheme) is usually combined with an encryption to guarantee secure communication (e.g.SSH,SSL and IPSec).However,with the notion of IND-CVA,this paper shows that a secure MAC can spoil the privacy in some cases.
Minimal Left-Right Symmetric Dark Matter.
Heeck, Julian; Patra, Sudhanwa
2015-09-18
We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.
Pseudo-Z symmetric space-times
Energy Technology Data Exchange (ETDEWEB)
Mantica, Carlo Alberto, E-mail: carloalberto.mantica@libero.it [Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Suh, Young Jin, E-mail: yjsuh@knu.ac.kr [Department of Mathematics, Kyungpook National University, Taegu 702-701 (Korea, Republic of)
2014-04-15
In this paper, we investigate Pseudo-Z symmetric space-time manifolds. First, we deal with elementary properties showing that the associated form A{sub k} is closed: in the case the Ricci tensor results to be Weyl compatible. This notion was recently introduced by one of the present authors. The consequences of the Weyl compatibility on the magnetic part of the Weyl tensor are pointed out. This determines the Petrov types of such space times. Finally, we investigate some interesting properties of (PZS){sub 4} space-time; in particular, we take into consideration perfect fluid and scalar field space-time, and interesting properties are pointed out, including the Petrov classification. In the case of scalar field space-time, it is shown that the scalar field satisfies a generalized eikonal equation. Further, it is shown that the integral curves of the gradient field are geodesics. A classical method to find a general integral is presented.
Symmetrizers and antisymmetrizers for the BMW algebra
Dipper, Richard; Stoll, Friederike
2011-01-01
Let $n\\in\\mathds{N}$ and $B_n(r,q)$ be the generic Birman-Murakami-Wenzl algebra with respect to indeterminants $r$ and $q$. It is known that $B_n(r,q)$ has two distinct linear representations generated by two central elements of $B_n(r,q)$ called the symmetrizer and antisymmetrizer of $B_n(r,q)$. These generate for $n\\geq 3$ the only one dimensional one sided ideals of $B_n(r,q)$ and generalize the corresponding notion for Hecke algebras of type $A$. In this paper the coefficients of these elements with respect to the graphical basis of $B_n(r,q)$ are determined explicitly.
Symmetric Morse potential is exactly solvable
Sasaki, Ryu
2016-01-01
Morse potential $V_M(x)= g^2\\exp (2x)-g(2h+1)\\exp(x)$ is defined on the full line, $-\\infty
Symmetric Circular Matchings and RNA Folding
DEFF Research Database (Denmark)
Hofacker, Ivo L.; Reidys, Christian; Stadler, Peter F.
2012-01-01
RNA secondary structures can be computed as optimal solutions of certain circular matching problems. An accurate treatment of this energy minimization problem has to account for the small --- but non-negligible --- entropic destabilization of secondary structures with non-trivial automorphisms....... Such intrinsic symmetries are typically excluded from algorithmic approaches, however, because the effects are small, they play a role only for RNAs with symmetries at sequence level, and they appear only in particular settings that are less frequently used in practical application, such as circular folding...... or the co-folding of two or more identical RNAs. Here, we show that the RNA folding problem with symmetry terms can still be solved with polynomial-time algorithms. Empirically, the fraction of symmetric ground state structures decreases with chain length, so that the error introduced by neglecting...
Exact Spherically Symmetric Solutions in Massive Gravity
Berezhiani, Z; Nesti, F; Pilo, L
2008-01-01
A phase of massive gravity free from pathologies can be obtained by coupling the metric to an additional spin-two field. We study the gravitational field produced by a static spherically symmetric body, by finding the exact solution that generalizes the Schwarzschild metric to the case of massive gravity. Besides the usual 1/r term, the main effects of the new spin-two field are a shift of the total mass of the body and the presence of a new power-like term, with sizes determined by the mass and the shape (the radius) of the source. These modifications, being source dependent, give rise to a dynamical violation of the Strong Equivalence Principle. Depending on the details of the coupling of the new field, the power-like term may dominate at large distances or even in the ultraviolet. The effect persists also when the dynamics of the extra field is decoupled.
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
FFLP problem with symmetric trapezoidal fuzzy numbers
Directory of Open Access Journals (Sweden)
Reza Daneshrad
2015-04-01
Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.
Topological Analyses of Symmetric Eruptive Prominences
Panasenco, O.; Martin, S. F.
Erupting prominences (filaments) that we have analyzed from Hα Doppler data at Helio Research and from SOHO/EIT 304 Å, show strong coherency between their chirality, the direction of the vertical and lateral motions of the top of the prominences, and the directions of twisting of their legs. These coherent properties in erupting prominences occur in two patterns of opposite helicity; they constitute a form of dynamic chirality called the ``roll effect." Viewed from the positive network side as they erupt, many symmetrically-erupting dextral prominences develop rolling motion toward the observer along with right-hand helicity in the left leg and left-hand helicity in the right leg. Many symmetricaly-erupting sinistral prominences, also viewed from the positive network field side, have the opposite pattern: rolling motion at the top away from the observer, left-hand helical twist in the left leg, and right-hand twist in the right leg. We have analysed the motions seen in the famous movie of the ``Grand Daddy" erupting prominence and found that it has all the motions that define the roll effect. From our analyses of this and other symmetric erupting prominences, we show that the roll effect is an alternative to the popular hypothetical configuration of an eruptive prominence as a twisted flux rope or flux tube. Instead we find that a simple flat ribbon can be bent such that it reproduces nearly all of the observed forms. The flat ribbon is the most logical beginning topology because observed prominence spines already have this topology prior to eruption and an initial long magnetic ribbon with parallel, non-twisted threads, as a basic form, can be bent into many more and different geometrical forms than a flux rope.
Entanglement Equivalence of $N$-qubit Symmetric States
Mathonet, P; Godefroid, M; Lamata, L; Solano, E; Bastin, T
2009-01-01
We study the interconversion of multipartite symmetric $N$-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or GHZ entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric $N$-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Integrable nonlinear parity-time symmetric optical oscillator
Hassan, Absar U; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N
2016-01-01
The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time symmetric systems. Unlike other saturable parity time symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.
Nonlinear dynamic analysis of quasi-symmetric anisotropic structures
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.
Universal Entanglement and Boundary Geometry in Conformal Field Theory
Herzog, Christopher P; Jensen, Kristan
2015-01-01
Employing a conformal map to hyperbolic space cross a circle, we compute the universal contribution to the vacuum entanglement entropy (EE) across a sphere in even-dimensional conformal field theory. Previous attempts to derive the EE in this way were hindered by a lack of knowledge of the appropriate boundary terms in the trace anomaly. In this paper we show that the universal part of the EE can be treated as a purely boundary effect. As a byproduct of our computation, we derive an explicit form for the A-type anomaly contribution to the Wess-Zumino term for the trace anomaly, now including boundary terms. In d=4 and 6, these boundary terms generalize earlier bulk actions derived in the literature. We also find a new B-type boundary central charge for d=4 conformal field theories.
Universal Entanglement Entropy in 2D Conformal Quantum Critical Points
Energy Technology Data Exchange (ETDEWEB)
Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah
2008-12-05
We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.
Conformal anomalies and gravitational waves
Meissner, Krzysztof A.; Nicolai, Hermann
2017-09-01
We argue that the presence of conformal anomalies in gravitational theories can lead to observable modifications to Einstein's equations via the induced anomalous effective actions, whose non-localities can overwhelm the smallness of the Planck scale. The fact that no such effects have been seen in recent cosmological or gravitational wave observations therefore imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. We then show that a complete cancellation of conformal anomalies in D = 4 for both the C2 invariant and the Euler (Gauss-Bonnet) invariant E4 can only be achieved for N-extended supergravity multiplets with N ⩾ 5, as well as for M theory compactified to four dimensions. Although there remain open questions, in particular concerning the true significance of conformal anomalies in non-conformal theories, as well as their possible gauge dependence for spin s ⩾3/2, these cancellations suggest a hidden conformal structure of unknown type in these theories.
Conformational biosensors reveal GPCR signalling from endosomes.
Irannejad, Roshanak; Tomshine, Jin C; Tomshine, Jon R; Chevalier, Michael; Mahoney, Jacob P; Steyaert, Jan; Rasmussen, Søren G F; Sunahara, Roger K; El-Samad, Hana; Huang, Bo; von Zastrow, Mark
2013-03-28
A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute to the acute G-protein-mediated response. Evidence supporting these various latter hypotheses is indirect or subject to alternative interpretation, and it remains unknown if endosome-localized GPCRs are even present in an active form. Here we describe the application of conformation-specific single-domain antibodies (nanobodies) to directly probe activation of the β2-adrenoceptor, a prototypical GPCR, and its cognate G protein, Gs (ref. 12), in living mammalian cells. We show that the adrenergic agonist isoprenaline promotes receptor and G protein activation in the plasma membrane as expected, but also in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane, and suggest a versatile strategy for probing dynamic conformational change in vivo.
CONFORMANCE IMPROVEMENT USING GELS
Energy Technology Data Exchange (ETDEWEB)
Randall S. Seright
2004-09-30
This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate
CONFORMANCE IMPROVEMENT USING GELS
Energy Technology Data Exchange (ETDEWEB)
Randall S. Seright
2003-09-01
This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the
On Skew-symmetric Preconditioning for Strongly Non-symmetric Linear Systems
Krukier, L.A.; Botchev, M.A.
1996-01-01
To solve iteratively linear system $Au=b$ with large sparse strongly non-symmetric matrix $A$ we propose preconditioning $\\hat A \\hat u = \\hat b$, $\\hat A=(I+\\tau L_1)^{-1} A (I+\\tau U_1)^{-1},\\; \\tau>0$ where respectively lower and upper triangular matrices $L_1$ and $U_1$ are so that $L_1+U_1=1/2(
Conformational fluctuations affect protein alignment in dilute liquid crystal media
DEFF Research Database (Denmark)
Louhivuori, M.; Otten, R.; Lindorff-Larsen, Kresten
2006-01-01
The discovery of dilute liquid crystalline media to align biological macromolecules has opened many new possibilities to study protein and nucleic acid structures by NMR spectroscopy. We inspect the basic alignment phenomenon for an ensemble of protein conformations to deduce relative contributions...... molecular surfaces. Furthermore, we consider the implications of a dynamic bias to structure determination using data from the weak alignment method....
Stroh formalism in analysis of skew-symmetric and symmetric weight functions for interfacial cracks
Morini, Lorenzo; Movchan, Alexander; Movchan, Natalia
2012-01-01
The focus of the article is on analysis of skew-symmetric weight matrix functions for interfacial cracks in two dimensional anisotropic solids. It is shown that the Stroh formalism proves to be an efficient approach to this challenging task. Conventionally, the weight functions, both symmetric and skew-symmetric, can be identified as a non-trivial singular solutions of the homogeneous boundary value problem for a solid with a crack. For a semi-infinite crack, the problem can be reduced to solving a matrix Wiener-Hopf functional equation. Instead, the Stroh matrix representation of displacements and tractions, combined with a Riemann-Hilbert formulation, is used to obtain an algebraic eigenvalue problem, that is solved in a closed form. The proposed general method is applied to the case of a quasi-static semi-infinite crack propagation between two dissimilar orthotropic media: explicit expressions for the weight matrix functions are evaluated and then used in the computation of complex stress intensity factor ...
Enthalpy Differences of the n-Pentane Conformers.
Csontos, József; Nagy, Balázs; Gyevi-Nagy, László; Kállay, Mihály; Tasi, Gyula
2016-06-14
The energy and enthalpy differences of alkane conformers in various temperature ranges have been the subject for both experimental and theoretical studies over the last few decades. It was shown previously for the conformers of butane [G. Tasi et al., J. Chem. Theory Comput. 2012, 8, 479-486] that quantum chemical results can compete with spectroscopic techniques and results obtained even from the most carefully performed experiments could be biased due to the improper statistical model utilized to evaluate the raw experimental data. In the current study, on one hand, the experimental values and their uncertainties for the enthalpy differences for pentane conformers are re-evaluated using the appropriate statistical model. On the other hand, a coupled-cluster-based focal-point analysis has been performed to calculate energy and enthalpy differences for the conformers of pentane. The model chemistry defined in this study includes contributions up to the perturbative quadruple excitations augmented with further small correction terms beyond the Born-Oppenheimer and nonrelativistic approximations. Benchmark quality energy and enthalpy differences for the pentane conformers are given at temperatures 0 and 298.15 K as well as for the various temperature ranges used in the gas-phase experimental measurements. Furthermore, a slight positive shift for the experimental enthalpy differences is also predicted due to an additional Raman active band belonging to the gauche-gauche conformer.
Yu, Rongjun; Sun, Sai
2013-01-01
When people have different opinions in a group, they often adjust their own attitudes and behaviors to match the group opinion, known as social conformity. The affiliation account of normative conformity states that people conform to norms in order to 'fit in', whereas the accuracy account of informative conformity posits that the motive to learn from others produces herding. Here, we test another possibility that following the crowd reduces the experienced negative emotion when the group decision turns out to be a bad one. Using event related potential (ERP) combined with a novel group gambling task, we found that participants were more likely to choose the option that was predominately chosen by other players in previous trials, although there was little explicit normative pressure at the decision stage and group choices were not informative. When individuals' choices were different from others, the feedback related negativity (FRN), an ERP component sensitive to losses and errors, was enhanced, suggesting that being independent is aversive. At the outcome stage, the losses minus wins FRN effect was significantly reduced following conformity choices than following independent choices. Analyses of the P300 revealed similar patterns both in the response and outcome period. Our study suggests that social conformity serves as an emotional buffer that protects individuals from experiencing strong negative emotion when the outcomes are bad.
On the mutual information in conformal field theory
Chen, Bin; Chen, Lin; Hao, Peng-xiang; Long, Jiang
2017-06-01
In this work, we study the universal behaviors in the mutual information of two disjoint spheres in a conformal field theory (CFT). By using the operator product expansion of the spherical twist operator in terms of the conformal family, we show that the large distance expansion of the mutual information can be cast in terms of the conformal blocks. We develop the 1 /n prescription to compute the coefficients before the conformal blocks. For a single conformal family, the leading nonvanishing contribution to the mutual information comes from the bilinear operators. We show that the coefficients of these operators take universal forms and such universal behavior persists in the bilinear operators with derivatives as well. Consequently the first few leading order contributions to the mutual information in CFT take universal forms. To illustrate our framework, we discuss the free scalars and free fermions in various dimensions. For the free scalars, we compute the mutual information to the next-to-leading order and find good agreement with the improved numerical lattice result. For the free fermion, we compute the leading order result, which is of universal form, and find the good match with the numerical study. Our formalism could be applied to any CFT potentially.
Directory of Open Access Journals (Sweden)
Betül BALKAR
2015-08-01
Full Text Available The aim of this study is to determine the opinions of teachers on contributions of school principals’ cultural leadership behaviors to forming symmetric and asymmetric culture. The participants of the study consisted of 27 secondary school teachers working in Gaziantep province. Data of the study were collected through semi - structured interviews and analyzed through content analysis. Contributions of each cultural leader ship behavior to symmetric and asymmetric culture types were determined by taking relations between cultural leadership behaviors and symmetric and asymmetric cultures into consideration in the process of content analysis. According to the findings of the study ; supporting development of teachers and reflecting developments and innovations on schools are among the cultural leadership behaviors contributing to forming asymmetric culture at schools. Interpreting tasks and missions of school and ensuring neces sary environment for keeping social values alive at schools are among the cultural leadership behaviors contributing to forming symmetric culture at schools. Based on the results of the study, it is suggested that school principals should follow developmen ts in educational issues and transfer these developments into school practices. They should place more importance on supporting innovative behaviors of teachers in order to create asymmetric culture at schools.
de Brito, P. E.; Nazareno, H. N.
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…
Molecular insight into conformational transmission of human P-glycoprotein
Energy Technology Data Exchange (ETDEWEB)
Chang, Shan-Yan [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Liu, Fu-Feng, E-mail: fufengliu@tju.edu.cn, E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan, E-mail: fufengliu@tju.edu.cn, E-mail: ysun@tju.edu.cn [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)
2013-12-14
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.
Molecular insight into conformational transmission of human P-glycoprotein
Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan
2013-12-01
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.
Geometric multiaxial representation of N -qubit mixed symmetric separable states
SP, Suma; Sirsi, Swarnamala; Hegde, Subramanya; Bharath, Karthik
2017-08-01
The study of N -qubit mixed symmetric separable states is a longstanding challenging problem as no unique separability criterion exists. In this regard, we take up the N -qubit mixed symmetric separable states for a detailed study as these states are of experimental importance and offer an elegant mathematical analysis since the dimension of the Hilbert space is reduced from 2N to N +1 . Since there exists a one-to-one correspondence between the spin-j system and an N -qubit symmetric state, we employ Fano statistical tensor parameters for the parametrization of the spin-density matrix. Further, we use a geometric multiaxial representation (MAR) of the density matrix to characterize the mixed symmetric separable states. Since the separability problem is NP-hard, we choose to study it in the continuum limit where mixed symmetric separable states are characterized by the P -distribution function λ (θ ,ϕ ) . We show that the N -qubit mixed symmetric separable states can be visualized as a uniaxial system if the distribution function is independent of θ and ϕ . We further choose a distribution function to be the most general positive function on a sphere and observe that the statistical tensor parameters characterizing the N -qubit symmetric system are the expansion coefficients of the distribution function. As an example for the discrete case, we investigate the MAR of a uniformly weighted two-qubit mixed symmetric separable state. We also observe that there exists a correspondence between the separability and classicality of states.
Diastereoselective Desymmetrization of Symmetric Dienes and its Synthetic Application
Directory of Open Access Journals (Sweden)
Kenji Nakahara
2010-03-01
Full Text Available The desymmetrization of symmetric compounds is a useful approach to obtain chiral building blocks. Readily available precursors with a prochiral unit could be converted into complex molecules with multiple stereogenic centers in a single step. In this review, recent advances in the desymmetrization of symmetric dienes in the diastereotopic group differentiating reaction and its synthetic application are presented.
Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics
2007-01-01
The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.
THE FEYNMAN-KAC FORMULA FOR SYMMETRIC MARKOV PROCESSES
Institute of Scientific and Technical Information of China (English)
YINGJIANGANG
1997-01-01
Let X be an m-symmetric Markov process and M a multiplicative functional of X such that the M-subprocess of X is also m-symmetric. The author characterizes the Dirichlet form associated with the subprocess in terms of that associated with X and the bivariate Revuz measure of M.
An axially symmetric solution of metric-affine gravity
Vlachynsky, E J; Obukhov, Yu N; Hehl, F W
1996-01-01
We present an exact stationary {\\it axially symmetric} vacuum solution of metric-affine gravity (MAG) which generalises the recently reported spherically symmetric solution. Besides the metric, it carries nonmetricity and torsion as post-Riemannian geometrical structures. The parameters of the solution are interpreted as mass and angular momentum and as dilation, shear and spin charges.
Schur convexity for a class of symmetric functions
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The Schur convexity and concavity of a class of symmetric functions are discussed, and an open problem proposed by Guan in "Some properties of a class of symmetric functions" is answered. As consequences, some inequalities are established by use of the theory of majorization.
FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE
SIERKSMA, G; TIJSSEN, GA
1992-01-01
This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M. Gr
Axially symmetric solutions in f(R)-gravity
Capozziello, Salvatore; Stabile, Arturo
2009-01-01
Axially symmetric solutions for f(R)-gravity can be derived starting from exact spherically symmetric solutions. The method takes advantage of a complex coordinate transformation previously developed by Newman and Janis in General Relativity. An example is worked out to show the general validity of the approach.
Axially symmetric solutions in f(R)-gravity
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore; De Laurentis, Mariafelicia [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' (Italy); Stabile, Arturo, E-mail: capozziello@na.infn.i [Dipartimento di Ingegneria, Universita del Sannio, Benevento, C.so Garibaldi 107, I-80125 Benevento (Italy)
2010-08-21
Axially symmetric solutions for f(R)-gravity can be derived starting from exact spherically symmetric solutions achieved by Noether symmetries. The method takes advantage of a complex coordinate transformation previously developed by Newman and Janis in general relativity. An example is worked out to show the general validity of the approach. The physical properties of the solution are also considered.
Hawking Radiation from Plane Symmetric Black Hole Covariant Anomaly
Institute of Scientific and Technical Information of China (English)
ZENG Xiao-Xiong; HAN Yi-Wen; YANG Shu-Zheng
2009-01-01
Based on the covariant anomaly cancellation method, which is believed to be more refined than the initial approach of Robinson and Wilczek, we discuss Hawking radiation from the plane symmetric black hole. The result shows that Hawking radiation from the non-spherical symmetric black holes also can be derived from the viewpoint of anomaly.
Wrapping Brownian motion and heat kernels II: symmetric spaces
Maher, David G
2010-01-01
In this paper we extend our previous results on wrapping Brownian motion and heat kernels onto compact Lie groups to various symmetric spaces, where a global generalisation of Rouvi\\`ere's formula and the $e$-function are considered. Additionally, we extend some of our results to complex Lie groups, and certain non-compact symmetric spaces.
The strong symmetric genus of the finite Coxeter groups
2004-01-01
The strong symmetric genus of a finite group G is the smallest genus of a closed orientable topological surface on which G acts faithfully as a group of orientation preserving automorphisms. In this paper we complete the calculation of the strong symmetric genus for each finite Coxeter group excluding the group E8.
Transport coefficients for rigid spherically symmetric polymers or aggregates
Strating, P.; Wiegel, F.W.
1994-01-01
In this paper we investigate the transport properties for rigid spherically symmetric macromolecules, having a segment density distribution falling off as r- lambda . We calculate the rotational and translational diffusion coefficient for a spherically symmetric polymer and the shear viscosity for a
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
P Senthilkumar; G Rajendran
2011-12-01
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Homoclinic orbits for a class of symmetric Hamiltonian systems
Directory of Open Access Journals (Sweden)
Philip Korman
1994-02-01
Full Text Available of Hamiltonian systems that are symmetric with respect to independent variable (time. For the scalar case we prove existence and uniqueness of a positive homoclinic solution. For the system case we prove existence of symmetric homoclinic orbits. We use variational approach.
Conformity Behavior During a Fire Disaster
National Research Council Canada - National Science Library
Duo, Qi; Shen, Huizhang; Zhao, Jidi; Gong, Xiaomin
2016-01-01
..., the number of choices offered for making an escape was negatively related to conformity behavior, and decision-making performance was found to be a dual mediator both between the level of fear activation and conformity behavior and between the number of choices and conformity behavior. Keywords: conformity behavior, fire disaster, fear activation, number...
Group Cohesiveness, Deviation, Stress, and Conformity
1993-08-11
Yuke1son, Weinberg & Jackson , 1984; Carron & Chelladurai, 1981). The classical studies of jury dynamics began to appear within the field of...1987), individuation was negatively correlated with conformity (Santee & Maslach , 1982). Conformity Paradi&ms Host studies of conformity have...appear to affect conformity rates independently of attraction . However, later ~tudies by Dittes and Kelley (1956) and Jackson and Saltzstein (1958
40 CFR 93.154 - Conformity analysis.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Conformity analysis. 93.154 Section 93...) DETERMINING CONFORMITY OF FEDERAL ACTIONS TO STATE OR FEDERAL IMPLEMENTATION PLANS Determining Conformity of General Federal Actions to State or Federal Implementation Plans § 93.154 Conformity analysis. Any...
Conformal Gravity Rotation Curves with a Conformal Higgs Halo
Horne, Keith
2016-01-01
We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) predictions for the rotation curves of galaxies. The Mannheim-Kazanas (MK) metric is a valid vacuum solution of CG's 4-th order Poisson equation only if the Higgs field has a particular radial profile, S(r)=S_0 a/(r+a), decreasing from S_0 at r=0 with radial scale length a. Since particle rest masses scale with S(r)/S_0, their world lines do not follow time-like geodesics of the MK metric g_{\\mu\
New potentials for conformal mechanics
Papadopoulos, G
2012-01-01
We show that V=\\alpha x^2+\\beta x^{-2} arises as a potential of 1-dimensional conformal theories. This class of conformal models includes the DFF model \\alpha=0 and the harmonic oscillator \\beta=0. The construction is based on a different embedding of the conformal symmetry group into the time re-parameterizations from that of the DFF model and its generalizations. Depending on the range of the couplings $\\alpha, \\beta$, these models can have a ground state and a well-defined energy spectrum, and exhibit either a $SL(2,\\bR)$ or a SO(3) conformal symmetry. The latter group can also be embedded in Diff(S^1). We also present several generalizations of these models which include the Calogero models with harmonic oscillator couplings and non-linear models with suitable metric and potential couplings. In addition, we give the conditions on the couplings for a class of gaugetheories to admit a SL(2,\\bR) or SO(3) conformal symmetry. We present examples of such systems with general gauge groups and global symmetries t...
Topological states in partially-PT-symmetric azimuthal potentials
Kartashov, Yaroslav V; Torner, Lluis
2015-01-01
We introduce partially-parity-time-symmetric (pPT-symmetric) azimuthal potentials composed from individual PT-symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potentials excitations carrying topological dislo-cations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such non-conservative ratchet-like structures support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely charged vortex solitons remain equivalent in similar fully PT-symmetric potentials. The vortex solitons in the pPT- and PT-symmetric potentials are shown to feature qualitatively different internal current distributions, which are described by different discrete rotation symmetries of the intensity profiles.
Sphaleron glueballs in NBI theory with symmetrized trace
Dyadichev, V V
2000-01-01
We derive a closed expression for the SU(2) Born-Infeld action with the symmetrized trace for static spherically symmetric purely magnetic configurations. The lagrangian is obtained in terms of elementary functions. Using it, we investigate glueball solutions to the flat space NBI theory and their self-gravitating counterparts. Such solutions, found previously in the NBI model with the 'square root - ordinary trace' lagrangian, are shown to persist in the theory with the symmetrized trace lagrangian as well. Although the symmetrized trace NBI equations differ substantially from those of the theory with the ordinary trace, a qualitative picture of glueballs remains essentially the same. Gravity further reduces the difference between solutions in these two models, and, for sufficiently large values of the effective gravitational coupling, solutions tends to the same limiting form. The black holes in the NBI theory with the symmetrized trace are also discussed.
Symmetric Rearrangements Around Infinity with Applications to Levy Processes
Drewitz, Alexander; Sun, Rongfeng
2011-01-01
We prove a new rearrangement inequality for multiple integrals, which partly generalizes a result of Friedberg and Luttinger (1976) and can be interpreted as involving symmetric rearrangements of domains around infinity. As applications, we prove two comparison results for general Levy processes and their symmetric rearrangements. The first application concerns the survival probability of a point particle in a Poisson field of moving traps following independent Levy motions. We show that the survival probability can only increase if the point particle does not move, and the traps and the Levy motions are symmetrically rearranged. This essentially generalizes an isoperimetric inequality of Peres and Sousi (2011) for the Wiener sausage. In the second application, we show that the q-capacity of a Borel measurable set for a Levy process can only increase if the set and the Levy process are symmetrically rearranged. This result generalizes an inequality obtained by Watanabe (1983) for symmetric Levy processes.
On Stationary Axially Symmetric Solutions in Brans-Dicke Theory
Kirezli, Pınar
2015-01-01
Stationary axially symmetric Brans-Dicke-Maxwell solutions are re-examined in the framework of the Brans-Dicke theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electro-vacuum space-times for this theory. This analysis also permit us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for Brans-Dicke theory from a seed solution of General Relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e. the Kinnersley solution and general magnetized Kerr-Newman type solutions. Some physical properties and circular motion of test particles for a particular subclass of Kinnersley solution, i.e. Kerr-Newman-NUT type ...
Geometric Entanglement of Symmetric States and the Majorana Representation
Aulbach, Martin; Murao, Mio
2010-01-01
Permutation-symmetric quantum states appear in a variety of physical situations, and they have been proposed for quantum information tasks. This article builds upon the results of [New J. Phys. 12, 073025 (2010)], where the maximally entangled symmetric states of up to twelve qubits were explored, and their amount of geometric entanglement determined by numeric and analytic means. For this the Majorana representation, a generalization of the Bloch sphere representation, can be employed to represent symmetric n qubit states by n points on the surface of a unit sphere. Symmetries of this point distribution simplify the determination of the entanglement, and enable the study of quantum states in novel ways. Here it is shown that the duality relationship of Platonic solids has a counterpart in the Majorana representation, and that in general maximally entangled symmetric states neither correspond to anticoherent spin states nor to spherical designs. The usability of symmetric states as resources for measurement-b...
Symmetric metamaterials based on flower-shaped structure
Energy Technology Data Exchange (ETDEWEB)
Tuong, P.V. [Department of Physics, Quantum Photonic Science Research Center and Research Institute for Nature Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Material Sciences, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Park, J.W. [Department of Physics, Quantum Photonic Science Research Center and Research Institute for Nature Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, J.Y. [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, K.W. [Sunmoon University, Asan (Korea, Republic of); Cheong, H. [Sogang University, Seoul (Korea, Republic of); Jang, W.H. [Electromagnetic Wave Institute, Korea Radio Promotion Association, Seoul (Korea, Republic of); Lee, Y.P., E-mail: yplee@hanyang.ac.kr [Department of Physics, Quantum Photonic Science Research Center and Research Institute for Nature Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)
2013-08-15
We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave.
Generation and classification of robust remote symmetric Dicke states
Institute of Scientific and Technical Information of China (English)
Zhu Yan-Wu; Gao Ke-Lin
2008-01-01
In this paper,we present an approach to generating arbitrary symmetric Dicke states with distant trapped ions and linear optics.Distant trapped ions can be prepared in the symmetric Dicke states by using two photon-number-resolving detectors and a polarization beam splitter.The atomic symmetric Dicke states are robust against decoherence,for atoms are in a metastable level.We discuss the experimental feasibility of our scheme with current technology.Finally,we discuss the classification of arbitrary n-qubit symmetric Dicke states under statistical local operation and classical communication and prove the existence of[n/2]inequivalent classes of genuine entanglement of n-qubit symmetric Dicke states.
PELDOR in rotationally symmetric homo-oligomers
Giannoulis, Angeliki; Ward, Richard; Branigan, Emma; Naismith, James H.; Bode, Bela E.
2013-01-01
Nanometre distance measurements by pulsed electron–electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli. PMID:24954956
Randomized Symmetric Crypto Spatial Fusion Steganographic System
Directory of Open Access Journals (Sweden)
Viswanathan Perumal
2016-06-01
Full Text Available The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems.
Integrable Deformations of Strings on Symmetric Spaces
Hollowood, Timothy J; Schmidtt, David M
2014-01-01
A general class of deformations of integrable sigma-models with symmetric space F/G target-spaces are found. These deformations involve defining the non-abelian T dual of the sigma-model and then replacing the coupling of the Lagrange multiplier imposing flatness with a gauged F/F WZW model. The original sigma-model is obtained in the limit of large level. The resulting deformed theories are shown to preserve both integrability and the equations-of-motion, but involve a deformation of the symplectic structure. It is shown that this deformed symplectic structure involves a linear combination of the original Poisson bracket and a generalization of the Faddeev-Reshetikhin Poisson bracket which we show can be re-expressed as two decoupled F current algebras. It is then shown that the deformation can be incorporated into the classical model of strings on R x F/G via a generalization of the Pohlmeyer reduction. In this case, in the limit of large sigma-model coupling it is shown that the theory becomes the relativi...
Axially Symmetric Post-Newtonian Stellar Systems
Directory of Open Access Journals (Sweden)
Camilo Akímushkin
2010-06-01
Full Text Available We introduce a method to obtain self-consistent, axially symmetric disklike stellar models in the first post-Newtonian (1PN approximation. By using in the field equations of the 1PN approximation a distribution function (DF corresponding to a Newtonian model, two fundamental equations determining the 1PN corrections are obtained. The rotation curves of the corrected models differs from the classical ones and the corrections are clearly appreciable with values of the mass and radius of a typical galaxy. On the other hand, the relativistic mass correction can be ignored for all models. Resumen. Presentamos un método para obtener modelos estelares discoidales, axialmente simétricos, auto-consistentes en la primera aproximación post-Newtoniana (1PN. Usando en las ecuaciones de campo de la aproximación 1PN una función de distribución conocida (DF que corresponde a un modelo Newtoniano, se obtienen dos ecuaciones fundamentales para determinar las correcciones 1PN. Las curvas de rotación de los modelos corregidos difieren de las clásicas y las correcciones son claramente apreciables con los valores de la masa y el radio de una galaxia típica. Por otro lado, la corrección relativista de la masa se puede ignorar para todos los modelos.
Plasma Control in Symmetric Mirror Machines
Horton, W.; Rowan, W. L.; Alvarado, Igor; Fu, X. R.; Beklemishev, A. D.
2014-10-01
Plasma confinement in the symmetric rotating mirror plasma at the Budker Institute shows enhanced confinement with high electron temperatures with end plates biasing. Improved confinement is achieved by biasing end plate cells in the expansion tanks so as to achieve an inward pointing radial electric field. The negative potential well produces vortex plasma rotation similar to that in the negative potential well of Ohmic heated tokamaks. This plasma state has similarity with the lower turbulence level regimes documented in the Helimak where negative biasing of the end plates produces an inward radial electric field. To understand this vortex confinement we carry out 3D simulations with nonlinear partial differential equations for the electric potential and density in plasmas with an axially localized region of unfavorable and favorable magnetic curvature. The simulations show that the plasma density rapidly adjusts to be higher in the region of favorable curvature regions and remains relatively well confined while rapidly rotating. The results support the concept of using plasma-biasing electrodes in large expander tanks to achieve enhanced mirror plasma confinement. Supported by US-DoE grant to UT, LANL and the Budker Institute for Nuclear Physics.