Conformal invariant quantum field theory and composite field operators
International Nuclear Information System (INIS)
Kurak, V.
1976-01-01
The present status of conformal invariance in quantum field theory is reviewed from a non group theoretical point of view. Composite field operators dimensions are computed in some simple models and related to conformal symmetry
Quantum Conformal Algebras and Closed Conformal Field Theory
Anselmi, D
1999-01-01
We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...
Quantum Hamiltonian reduction and conformal field theories
International Nuclear Information System (INIS)
Bershadsky, M.
1991-01-01
It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity
Conformal invariance in the quantum field theory
International Nuclear Information System (INIS)
Kurak, V.
1975-09-01
Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt
Comments on conformal Killing vector fields and quantum field theory
International Nuclear Information System (INIS)
Brown, M.R.; Ottewill, A.C.; Siklos, S.T.C.
1982-01-01
We give a comprehensive analysis of those vacuums for flat and conformally flat space-times which can be defined by timelike, hypersurface-orthogonal, conformal Killing vector fields. We obtain formulas for the difference in stress-energy density between any two such states and display the correspondence with the renormalized stress tensors. A brief discussion is given of the relevance of these results to quantum-mechanical measurements made by noninertial observers moving through flat space
Conformal invariance in quantum field theory
International Nuclear Information System (INIS)
Grensing, G.
1978-01-01
We study the transformation law of interacting fields under the universal covering group of the conformal group. It is defined with respect to the representations of the discrete series. These representations are field representations in the sense that they act on finite component fields defined over Minkowski space. The conflict with Einstein causality is avoided as in the case of free fields with canonical dimension. Furthermore, we determine the conformal invariant two-point function of arbitrary spin. Our result coincides with that obtained by Ruehl. In particular, we investigate the two-point function of symmetric and traceless tensor fields and give the explicit form of the trace terms
The quantum symmetry of rational conformal field theories
Directory of Open Access Journals (Sweden)
César Gómez
1991-04-01
Full Text Available The quantum group symmetry of the c ˇ1 Rational Conformal Field Theory, in its Coulomb gas version, is formulated in terms of a new type of screened vertex operators, which define the representation spaces of a quantum group Q. The conformal properties of these operators show a deep interplay between the quantum group Q and the Virasoro algebra.The R-matrix, the comultiplication rules and the quantum Clebsch-Gordan coefficients of Q are obtained using contour deformation techniques. Finally, the relation between the chiral vertex operators and the quantum Clebsch-Gordan coefficients is shown.
Lagrangian model of conformal invariant interacting quantum field theory
International Nuclear Information System (INIS)
Lukierski, J.
1976-01-01
A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3
A conformal field theory description of fractional quantum Hall states
Ardonne, E.
2002-01-01
In this thesis, we give a description of fractional quantum Hall states in terms of conformal field theory (CFT). As was known for a long time, the Laughlin states could be written in terms of correlators of chiral vertex operators of a c=1 CFT. It was shown by G. Moore and N. Read that more general
Particle versus field structure in conformal quantum field theories
International Nuclear Information System (INIS)
Schroer, Bert
2000-06-01
I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
A quantum group structure in integrable conformal field theories
International Nuclear Information System (INIS)
Smit, D.J.
1990-01-01
We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
Computing black hole entropy in loop quantum gravity from a conformal field theory perspective
International Nuclear Information System (INIS)
Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo
2009-01-01
Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity
Conformal quantum field theory: From Haag-Kastler nets to Wightman fields
International Nuclear Information System (INIS)
Joerss, M.
1996-07-01
Starting from a chiral conformal Haag-Kastler net of local observables on two-dimensional Minkowski space-time, we construct associated pointlike localizable charged fields which intertwine between the superselection sectors with finite statistics of the theory. This amounts to a proof of the spin-statistics theorem, the PCT theorem, the Bisognano-Wichmann identification of modular operators, Haag duality in the vacuum sector, and the existence of operator product expansions. Our method consists of the explicit use of the representation theory of the universal covering group of SL(2,R). A central role is played by a ''conformal cluster theorem'' for conformal two-point functions in algebraic quantum field theory. Generalizing this ''conformal cluster theorem'' to the n-point functions of Haag-Kastler theories, we can finally construct from a chiral conformal net of algebras a compelte set of conformal n-point functions fulfilling the Wightman axioms. (orig.)
Flat connection, conformal field theory and quantum group
International Nuclear Information System (INIS)
Kato, Mitsuhiro.
1989-07-01
General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL 2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs
Quantum groups and algebraic geometry in conformal field theory
International Nuclear Information System (INIS)
Smit, T.J.H.
1989-01-01
The classification of two-dimensional conformal field theories is described with algebraic geometry and group theory. This classification is necessary in a consistent formulation of a string theory. (author). 130 refs.; 4 figs.; schemes
Quantum Yang-Mills theory of Riemann surfaces and conformal field theory
International Nuclear Information System (INIS)
Killingback, T.P.
1989-01-01
It is shown that Yang-Mills theory on a smooth surface, when suitably quantized, is a topological quantum field theory. This topological gauge theory is intimately related to two-dimensional conformal field theory. It is conjectured that all conformal field theories may be obtained from Yang-Mills theory on smooth surfaces. (orig.)
Conformal field theory and 2D quantum gravity
International Nuclear Information System (INIS)
Distler, J.; Kawai, Hikaru
1989-01-01
Inspired by the recent work of Knizhnik, Polyakov and Zamolodchikov on the solution of 2D quantum gravity in the 'light cone' gauge, we present a proposal for solving the theory in the usual conformal gauge. Our results for the critical exponents of the theory agree with the genus-zero results of KPZ. Since our formalism naturally generalizes to higher-genus Riemann surfaces, we obtain the critical exponents for all genera. The corresponding results for the supersymmetric case are presented. We also show how to calculate correlation functions in these theories. (orig.)
On the existence of pointlike localized fields in conformally invariant quantum physics
International Nuclear Information System (INIS)
Joerss, M.
1992-11-01
In quantum field theory the existence of pointlike localizable objects called 'fields' is a preassumption. Since charged fields are in general not observable this situation is unsatisfying from a quantum physics point of view. Indeed in any quantum theory the existence of fields should follow from deeper physical concepts and more natural first principles like stability, locality, causality and symmetry. In the framework of algebraic quantum field theory with Haag-Kastler nets of local observables this is presented for the case of conformal symmetry in 1+1 dimensions. Conformal fields are explicitly constructed as limits of observables localized in finite regions of space-time. These fields then allow to derive a geometric identification of modular operators, Haag duality in the vacuum sector, the PCT-theorem and an equivalence theorem for fields and algebras. (orig.)
Conformal generally covariant quantum field theory. The scalar field and its Wick products
Energy Technology Data Exchange (ETDEWEB)
Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-06-15
In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale {mu} appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)
Conformal generally covariant quantum field theory. The scalar field and its Wick products
International Nuclear Information System (INIS)
Pinamonti, N.
2008-06-01
In this paper we generalize the construction of generally covariant quantum theories given in [R. Brunetti, K. Fredenhagen, R. Verch, Commun. Math. Phys. 237, 31 (2003)] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought as natural transformations in the sense of category theory. We show that, the Wick monomials without derivatives (Wick powers), can be interpreted as fields in this generalized sense, provided a non trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale μ appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields. (orig.)
Path operator algebras in conformal quantum field theories
International Nuclear Information System (INIS)
Roesgen, M.
2000-10-01
Two different kinds of path algebras and methods from noncommutative geometry are applied to conformal field theory: Fusion rings and modular invariants of extended chiral algebras are analyzed in terms of essential paths which are a path description of intertwiners. As an example, the ADE classification of modular invariants for minimal models is reproduced. The analysis of two-step extensions is included. Path algebras based on a path space interpretation of character identities can be applied to the analysis of fusion rings as well. In particular, factorization properties of character identities and therefore of the corresponding path spaces are - by means of K-theory - related to the factorization of the fusion ring of Virasoro- and W-algebras. Examples from nonsupersymmetric as well as N=2 supersymmetric minimal models are discussed. (orig.)
Conformal techniques for OPE in asymptotically free quantum field theory
International Nuclear Information System (INIS)
Craigie, N.S.; Dobrev, V.K.
1982-06-01
We discuss the relationship between the short-distance behaviour of vertex functions and conformal invariance in asymptotically free theories. We show how conformal group techniques can be used to derive spectral representations of wave functions and vertex functions in QCD. (author)
Global operator expansions in conformally invariant relativistic quantum field theory
International Nuclear Information System (INIS)
Schoer, B.; Swieca, J.A.; Voelkel, A.H.
1974-01-01
A global conformal operator expansions in the Minkowski region in several models and their formulation in the general theory is presented. Whereas the vacuum expansions are termwise manisfestly conformal invariant, the expansions away from the vacuum do not share this property
K theoretical approach to the fusion rules of conformal quantum field theories
International Nuclear Information System (INIS)
Recknagel, A.
1993-09-01
Conformally invariant quantum field theories are investigated using concepts of the algebraic approach to quantum field theory as well as techniques from the theory of operator algebras. Arguments from the study of statistical lattice models in one and two dimensions, from recent developments in algebraic quantum field theory, and from other sources suggest that there exists and intimate connection between conformal field theories and a special class of C*-algebras, the so-called AF-algebras. For a series of Virasoro minimal models, this correspondence is made explicit by constructing path representations of the irreducible highest weight modules. We then focus on the K 0 -invariant of these path AF-algebras and show how its functorial properties allow to exploit the abstract theory of superselection sectors in order to derive the fusion rules of the W-algebras hidden in the Virasoro minimal models. (orig.)
An introduction to conformal invariance in quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Boyanovsky, D.; Naon, C.M.
1990-01-01
The subject of conformal invariance provides an extraordinarly successful and productive symbiosis between statistical mechanics and quantum field theory. The main goal of this paper, which is tailored to a wide audience, is to give an introduction to such vast subject (C.P.)
Braided structure in 4-dimensional conformal quantum field theory
International Nuclear Information System (INIS)
Schroer, Bert
2001-03-01
Higher dimensional conformal QFT possesses an intersting braided structure which different from the d=1+1 models, is restricted to the timelike region and therefore easily escapes euclidean action methods. It lies behind the spectrum of anamalous which may be viewed as a kind of substitute for a missing particle interpretation in the presence of interactions. (author)
International Nuclear Information System (INIS)
Luescher, M.
1975-11-01
Let phi 1 (x) and phi 2 (y) be two local fields in a conformal quantum field theory (CQFT) in two-dimensional spacetime. It is then shown that the vector-valued distribution phi 1 (x) phi 2 (y) /0 > is a boundary value of a vector-valued holomorphic function which is defined on a large conformally invariant domain. By group theoretical arguments alone it is proved that phi 1 (x) phi 2 (y) /0 > can be expanded into conformal partial waves. These have all the properties of a global version of Wilson's operator product expansions when applied to the vacuum state /0 >. Finally, the corresponding calculations are carried out more explicitly in the Thirring model. Here, a complete set of local conformally covariant fields is found, which is closed under vacuum expansion of any two of its elements (a vacuum expansion is an operator product expansion applied to the vacuum). (orig.) [de
Space- and time-like superselection rules in conformal quantum field theory
International Nuclear Information System (INIS)
Schroer, Bert
2000-11-01
In conformally invariant quantum field theories one encounters besides the standard DHR superselection theory based on spacelike (Einstein-causal) commutation relations and their Haag duality another timelike (Huygens) based superselection structure. Whereas the DHR theory based on spacelike causality of observables confirmed the Lagrangian internal symmetry picture on the level of the physical principles of local quantum physics, the attempts to understand the timelike based superselection charges associated with the center of the conformal covering group in terms of timelike localized charges lead to a more dynamical role of charges outside the DR theorem and even outside the Coleman-Mandula setting. The ensuing plektonic timelike structure of conformal theories explains the spectrum of the anomalous scale dimensions in terms of admissible braid group representations, similar to the explanation of the possible anomalous spin spectrum expected from the extension of the DHR theory to stringlike d=1+2 plektonic fields. (author)
Backreaction from non-conformal quantum fields in de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem; Verdaguer, Enric [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Universitat de Barcelona, Av Diagonal 647, 08028 Barcelona (Spain); Roura, Albert [Theoretical Division, T-8, Los Alamos National Laboratory, M.S. B285, Los Alamos, NM 87545 (United States)
2008-08-07
We study the backreaction on the mean field geometry due to a non-conformal quantum field in a Robertson-Walker background. In the regime of small mass and small deviation from conformal coupling, we compute perturbatively the expectation value of the stress tensor of the field for a variety of vacuum states, and use it to obtain explicitly the semiclassical gravity solutions for isotropic perturbations around de Sitter spacetime, which is found to be stable. Our results clearly show the crucial role of the non-local terms that appear in the effective action: they cancel the contribution from local terms proportional to the logarithm of the scale factor which would otherwise become dominant at late times and prevent the existence of a stable self-consistent de Sitter solution. Finally, the opposite regime of a strongly non-conformal field with a large mass is also considered.
Extensions of conformal symmetry in two-dimensional quantum field theory
International Nuclear Information System (INIS)
Schoutens, C.J.M.
1989-01-01
Conformal symmetry extensions in a two-dimensional quantum field theory are the main theme of the work presented in this thesis. After a brief exposition of the formalism for conformal field theory, the motivation for studying extended symmetries in conformal field theory is presented in some detail. Supersymmetric extensions of conformal symmetry are introduced. An overview of the algebraic superconformal symmetry is given. The relevance of higher-spin bosonic extensions of the Virasoro algebra in relation to the classification program for so-called rational conformal theories is explained. The construction of a large class of bosonic extended algebras, the so-called Casimir algebras, are presented. The representation theory of these algebras is discussed and a large class of new unitary models is identified. The superspace formalism for O(N)-extended superconformal quantum field theory is presented. It is shown that such theories exist for N ≤ 4. Special attention is paid to the case N = 4 and it is shown that the allowed central charges are c(n + ,n - ) = 6n + n - /(n + ,n - ), where n + and n - are positive integers. A different class of so(N)-extended superconformal algebras is analyzed. The representation theory is studied and it is established that certain free field theories provide realizations of the algebras with level S = 1. Finally the so-called BRST construction for extended conformal algebras is considered. A nilpotent BRST charge is constructed for a large class of algebras, which contains quadratically nonlinear algebras that fall outside the traditional class if finitely generated Lie (super)algebras. The results are especially relevant for the construction of string models based on extended conformal symmetry. (author). 118 refs.; 7 tabs
Implications of conformal invariance for quantum field theories in d>2
International Nuclear Information System (INIS)
Osborn, H.
1994-01-01
Recently obtained results for two and three point functions for quasi-primary operators in conformally invariant theories in arbitrary dimensions d are described. As a consequence the three point function for the energy momentum tensor has three linearly independent forms for general d compatible with conformal invariance. The corresponding coefficients may be regarded as possible generalisations of the Virasoro central charge to d larger than 2. Ward identities which link two linear combinations of the coefficients to terms appearing in the energy momentum tensor trace anomaly on curved space are discussed. The requirement of positivity for expectation values of the energy density is also shown to lead to positivity conditions which are simple for a particular choice of the three coefficients. Renormalisation group like equations which express the constraints of broken conformal invariance for quantum field theories away from critical points are postulated and applied to two point functions. (orig.)
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
International Nuclear Information System (INIS)
Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan
2008-01-01
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively
International Nuclear Information System (INIS)
Hislop, P.D.
1988-01-01
The Tomita modular operators and the duality property for the local von Neumann algebras in quantum field models describing free massless particles with arbitrary helicity are studied. It is proved that the representation of the Poincare group in each model extends to a unitary representation of SU(2, 2), a covering group of the conformal group. An irreducible set of ''standard'' linear fields is shown to be covariant with respect to this representation. The von Neumann algebras associated with wedge, double-cone, and lightcone regions generated by these fields are proved to be unitarily equivalent. The modular operators for these algebras are obtained in explicit form using the conformal covariance and the results of Bisognano and Wichmann on the modular structure of the wedge algebras. The modular automorphism groups are implemented by one-parameter groups of conformal transformations. The modular conjugation operators are used to prove the duality property for the double-cone algebras and the timelike duality property for the lightcone algebras. copyright 1988 Academic Press, Inc
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories
Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2010-06-01
Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.
Thermalization and revivals after a quantum quench in conformal field theory.
Cardy, John
2014-06-06
We consider a quantum quench in a finite system of length L described by a 1+1-dimensional conformal field theory (CFT), of central charge c, from a state with finite energy density corresponding to an inverse temperature β≪L. For times t such that ℓ/2
Infinite additional symmetries in two-dimensional conformal quantum field theory
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1986-01-01
This paper investigates additional symmetries in two-dimensional conformal field theory generated by spin s = 1/2, 1,...,3 currents. For spins s = 5/2 and s = 3, the generators of the symmetry form associative algebras with quadratic determining relations. ''Minimal models'' of conforma field theory with such additional symmetries are considered. The space of local fields occurring in a conformal field theory with additional symmetry corresponds to a certain (in general, reducible) representation of the corresponding algebra of the symmetry
Conformal field theories and critical phenomena
International Nuclear Information System (INIS)
Xu, Bowei
1993-01-01
In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Conformal constraint in canonical quantum gravity
t Hooft, G.
2010-01-01
Perturbative canonical quantum gravity is considered, when coupled to a renormalizable model for matter fields. It is proposed that the functional integral over the dilaton field should be disentangled from the other integrations over the metric fields. This should generate a conformally invariant
Infinite additional symmetries in the two-dimensional conformal quantum field theory
International Nuclear Information System (INIS)
Apikyan, S.A.
1987-01-01
Additional symmetries in the two-dimensional conformal field theory, generated by currents (2,3/2,5/2) and (2,3/2,3) have been studied. It has been shown that algebra (2,3/2,5/2) is the direct product of algebras (2,3/2) and (2,5/2), and algebra (2,3/2,3) is the direct product of algebras (2,3/2) and (2,3). Associative algebra, formed by multicomponent symmetry generators of spin 3 for SO(3) has also been found
Towards conformal loop quantum gravity
International Nuclear Information System (INIS)
Wang, Charles H-T
2006-01-01
A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity
Conformal field theory in conformal space
International Nuclear Information System (INIS)
Preitschopf, C.R.; Vasiliev, M.A.
1999-01-01
We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Luna Acosta, German Aurelio
The masses of observed hadrons are fitted according to the kinematic predictions of Conformal Relativity. The hypothesis gives a remarkably good fit. The isospin SU(2) gauge invariant Lagrangian L(,(pi)NN)(x,(lamda)) is used in the calculation of d(sigma)/d(OMEGA) to 2nd-order Feynman graphs for simplified models of (pi)N(--->)(pi)N. The resulting infinite mass sums over the nucleon (Conformal) families are done via the Generalized-Sommerfeld-Watson Transform Theorem. Even though the models are too simple to be realistic, they indicate that if (DELTA)-internal lines were to be included, 2nd-order Feynman graphs may reproduce the experimental data qualitatively. The energy -dependence of the propagator and couplings in Conformal QFT is different from that of ordinary QFT. Suggestions for further work are made in the areas of ultra-violet divergences and OPEC calculations.
Parafermionic conformal field theory
International Nuclear Information System (INIS)
Kurak, V.
1989-09-01
Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt
Strings, conformal fields and topology
International Nuclear Information System (INIS)
Kaku, Michio
1991-01-01
String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts
Lemkul, Justin A; MacKerell, Alexander D
2017-05-09
Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.
Holographic applications of logarithmic conformal field theories
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-01-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in
Dilogarithm identities in conformal field theory
International Nuclear Information System (INIS)
Nahm, W.; Recknagel, A.; Terhoeven, M.
1992-11-01
Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds. (orig.)
The logarithmic conformal field theories
International Nuclear Information System (INIS)
Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.
1997-01-01
We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)
Inflationary cosmology from quantum conformal gravity
International Nuclear Information System (INIS)
Jizba, Petr; Kleinert, Hagen; Scardigli, Fabio
2015-01-01
We analyze the functional integral for quantum conformal gravity and show that, with the help of a Hubbard-Stratonovich transformation, the action can be broken into a local quadratic-curvature theory coupled to a scalar field. A one-loop effective-action calculation reveals that strong fluctuations of the metric field are capable of spontaneously generating a dimensionally transmuted parameter which, in the weak-field sector of the broken phase, induces a Starobinsky-type f(R)-model with a gravi-cosmological constant. A resulting non-trivial relation between Starobinsky's parameter and the gravi-cosmological constant is highlighted and implications for cosmic inflation are briefly discussed and compared with the recent PLANCK and BICEP2 data. (orig.)
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
An introduction to conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Fitzwilliam College, Cambridge
2000-01-01
A comprehensive introduction to two-dimensional conformal field theory is given. The structure of the meromorphic subtheory is described in detail, and a number of examples are presented explicitly. Standard constructions such as the coset and the orbifold construction are explained. The concept of a representation of the meromorphic theory is introduced, and the role of Zhu's algebra in classifying highest weight representations is elucidated. The fusion product of two representations and the corresponding fusion rules are defined, and Verlinde's formula is explained. Finally, higher correlation functions are considered, and the polynomial relations of Moore and Seiberg and the quantum group structure of chiral conformal field theory are discussed. The treatment is relatively general and also allows for a description of less well known classes of theories such as logarithmic conformal field theories. (author)
Quantum cosmology of a conformal multiverse
Robles-Pérez, Salvador J.
2017-09-01
This paper studies the cosmology of a homogeneous and isotropic spacetime endorsed with a conformally coupled massless scalar field. We find six different solutions of the Friedmann equation that represent six different types of universes, and all of them are periodically distributed along the complex time axis. From a classical point of view, they are then isolated, separated by Euclidean regions that represent quantum mechanical barriers. Quantum mechanically, however, there is a nonzero probability for the state of the universes to tunnel out through a Euclidean instanton and suffer a sudden transition to another state of the spacetime. We compute the probability of transition for this and other nonlocal processes like the creation of universes in entangled pairs and, generally speaking, in multipartite entangled states. We obtain the quantum state of a single universe within the formalism of the Wheeler-DeWitt equation and give the semiclassical state of the universes that describes the quantum mechanics of a scalar field propagating in a de Sitter background spacetime. We show that the superposition principle of the quantum mechanics of matter fields alone is an emergent feature of the semiclassical description of the universe that is not valid, for instance, in the spacetime foam. We use the third quantization formalism to describe the creation of an entangled pair of universes with opposite signs of the momentum conjugated to the scale factor. Each universe of the entangled pair represents an expanding spacetime in terms of the Wentzel-Kramers-Brillouin (WKB) time experienced by internal observers in their particle physics experiments. We compute the effective value of the Friedmann equation of the background spacetime of the two entangled universes, and thus, the effect that the entanglement would have in their expansion rates. We analyze as well the effects of the interuniversal entanglement in the properties of the scalar fields that propagate in each
2D conformal field theories and holography
International Nuclear Information System (INIS)
Freidel, Laurent; Krasnov, Kirill
2004-01-01
It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions
On the Conformable Fractional Quantum Mechanics
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
On conformal invariance in gauge theories. Quantum electrodynamics
International Nuclear Information System (INIS)
Zaikov, R.P.
1983-01-01
In the present paper another nontrivial model of the conformal quantum electrodynamics is proposed. The main hypothesis is that the electromagnetic potential together with an additional zero scale, dimensional scalar field is transformed by a nonbasic and, consequently, nondecomposable representation of the conformal group. There are found nontrivial conformal covariant two-point functions and an invariant action from which equations of motion are derived. There is considered the covariant procedure of quantization and it is shown that the norm of one-particle physical states is positive definite
Conformal FDTD modeling wake fields
Energy Technology Data Exchange (ETDEWEB)
Jurgens, T.; Harfoush, F.
1991-05-01
Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.
Topics in conformal field theory
International Nuclear Information System (INIS)
Kiritsis, E.B.
1988-01-01
In this work two major topics in Conformal Field Theory are discussed. First a detailed investigation of N = 2 Superconformal theories is presented. The structure of the representations of the N = 2 superconformal algebras is investigated and the character formulae are calculated. The general structure of N = 2 superconformal theories is elucidated and the operator algebra of the minimal models is derived. The first minimal system is discussed in more detail. Second, applications of the conformal techniques are studied in the Ashkin-Teller model. The c = 1 as well as the c = 1/2 critical lines are discussed in detail
Conformal symmetry in quantum finance
International Nuclear Information System (INIS)
Romero, Juan M; Lavana, Ulises; Miranda, Elio Martínez
2014-01-01
The quantum finance symmetries are studied. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited and the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schrödinger algebra representation is constructed. In addition, it is shown that the operators of this last representation are not hermitian and not conserved.
Arithmetics, geometry and conformal fields
Itzykson, Claude
1992-03-17
The last few years have witnessed a remarkeble conjunction of methods in such diverse domains as strings and topological field theory, two dimensional statistical physics, classical and quantum integrable systems. The lectures will aim to present some of the underlying mathematics at an elementary and pedagogical level, for their intrinsic value.
Exclusion Statistics in Conformal Field Theory Spectra
International Nuclear Information System (INIS)
Schoutens, K.
1997-01-01
We propose a new method for investigating the exclusion statistics of quasiparticles in conformal field theory (CFT) spectra. The method leads to one-particle distribution functions, which generalize the Fermi-Dirac distribution. For the simplest SU(n) invariant CFTs we find a generalization of Gentile parafermions, and we obtain new distributions for the simplest Z N -invariant CFTs. In special examples, our approach reproduces distributions based on 'fractional exclusion statistics' in the sense of Haldane. We comment on applications to fractional quantum Hall effect edge theories. copyright 1997 The American Physical Society
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
Introduction to twisted conformal fields
International Nuclear Information System (INIS)
Kazama, Y.
1988-01-01
A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development
Conformal Transformations and Conformal Killing Fields
Definition 1.1 A semi-Riemannian manifold is a pair (M,g) consisting of a differentiate (i.e. C∞) manifold M and a differentiable tensor field g which assigns to each point a ∈ M a non-degenerate and symmetric bilinear form on the tangent space TaM: g_a :T_a M × T_a M to R.
Logarithmic conformal field theory through nilpotent conformal dimensions
International Nuclear Information System (INIS)
Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.
2001-01-01
We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.
Fradkin, Eduardo; Moore, Joel E
2006-08-04
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.
Energy flow in non-equilibrium conformal field theory
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
Massless fields in curved space-time: The conformal formalism
International Nuclear Information System (INIS)
Castagnino, M.A.; Sztrajman, J.B.
1986-01-01
A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome
Irreversibility and higher-spin conformal field theory
Anselmi, Damiano
2000-08-01
I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
Twisted conformal field theories and Morita equivalence
Energy Technology Data Exchange (ETDEWEB)
Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it
2009-04-01
The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
Quantum critical phenomena and conformal invariance
International Nuclear Information System (INIS)
Zhe Chang.
1995-05-01
We show that the Abelian bosonization of continuum limit of the 1D Hubbard model corresponds to the 2D explicitly conformal invariant Gaussian model at weak coupling limit. A universality argument is used to extend the equivalence to an entire segment of the critical line of the strongly correlated electron system. An integral equation satisfied by the mapping function between critical lines of the 1D Hubbard model and 2D Gaussian model is obtained and then solved in some limiting cases. By making use of the fact that the free Hubbard system reduces to four fermions and each of them is related to a c = 1/2 conformal field theory, we present exactly the partition function of the Hubbard model on a finite 1D lattice. (author). 16 refs
Elementary quantum field theory
International Nuclear Information System (INIS)
Thirring, W.; Henley, E.M.
1975-01-01
The first section of the book deals with the mathematical and physical description of a quantum field with the Bose-Einstein statistics and discusses observables, invariants of the field, and inner symmetries. The second section develops further methods for solvable interactions of a quantum field with static source. Section 3 explains with the aid of the Chew-Low model especially pion-nucleon scattering, static properties of nucleons, electromagnetic phenomena, and nuclear forces. (BJ/LN) [de
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Riemann monodromy problem and conformal field theories
International Nuclear Information System (INIS)
Blok, B.
1989-01-01
A systematic analysis of the use of the Riemann monodromy problem for determining correlators (conformal blocks) on the sphere is presented. The monodromy data is constructed in terms of the braid matrices and gives a constraint on the noninteger part of the conformal dimensions of the primary fields. To determine the conformal blocks we need to know the order of singularities. We establish a criterion which tells us when the knowledge of the conformal dimensions of primary fields suffice to determine the blocks. When zero modes of the extended algebra are present the analysis is more difficult. In this case we give a conjecture that works for the SU(2) WZW case. (orig.)
Irreversibility and higher-spin conformal field theory
Anselmi, D
2000-01-01
I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...
Defects in conformal field theory
International Nuclear Information System (INIS)
Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco
2016-01-01
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
Defects in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)
2016-04-15
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
Analytic aspects of rational conformal field theories
International Nuclear Information System (INIS)
Kiritsis, E.B.; Lawrence Berkeley Lab., CA
1990-01-01
The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)
Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M
2016-11-18
The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.
Fusion rules in conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.
1993-06-01
Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)
Black Hole Entropy from Conformal Field Theory in Any Dimension
International Nuclear Information System (INIS)
Carlip, S.
1999-01-01
Restricted to a black hole horizon, the open-quotes gaugeclose quotes algebra of surface deformations in general relativity contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum theory of gravity must transform accordingly, i.e., they must admit a conformal field theory description. Applying Cardy close-quote s formula for the asymptotic density of states, I use this result to derive the Bekenstein-Hawking entropy. This method is universal it holds for any black hole, and requires no details of quantum gravity but it is also explicitly statistical mechanical, based on counting microscopic states. copyright 1999 The American Physical Society
Quantum fields in curved space
International Nuclear Information System (INIS)
Birrell, N.D.; Davies, P.C.W.
1982-01-01
The book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Quantum field theory in Minkowski space, quantum field theory in curved spacetime, flat spacetime examples, curved spacetime examples, stress-tensor renormalization, applications of renormalization techniques, quantum black holes and interacting fields are all discussed in detail. (U.K.)
International Nuclear Information System (INIS)
Degiovanni, P.
1990-01-01
We compute the modular properties of the possible genus-one characters of some Rational Conformal Field Theories starting from their fusion rules. We show that the possible choices of S matrices are indexed by some automorphisms of the fusion algebra. We also classify the modular invariant partition functions of these theories. This gives the complete list of modular invariant partition functions of Rational Conformal Field Theories with respect to the A N (1) level one algebra. (orig.)
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1989-01-01
Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)
Sadovskii, Michael V
2013-01-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
International Nuclear Information System (INIS)
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
Coadjoint orbits and conformal field theory
International Nuclear Information System (INIS)
Taylor, W. IV.
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Nonrelativistic Conformed Symmetry in 2 + 1 Dimensional Field Theory.
Bergman, Oren
This thesis is devoted to the study of conformal invariance and its breaking in non-relativistic field theories. It is a well known feature of relativistic field theory that theories which are conformally invariant at the classical level can acquire a conformal anomaly upon quantization and renormalization. The anomaly appears through the introduction of an arbitrary, but dimensionful, renormalization scale. One does not usually associate the concepts of renormalization and anomaly with nonrelativistic quantum mechanics, but there are a few examples where these concepts are useful. The most well known case is the two-dimensional delta -function potential. In two dimensions the delta-function scales like the kinetic term of the Hamiltonian, and therefore the problem is classically conformally invariant. Another example of classical conformal invariance is the famous Aharonov-Bohm (AB) problem. In that case each partial wave sees a 1/r^2 potential. We use the second quantized formulation of these problems, namely the nonrelativistic field theories, to compute Green's functions and derive the conformal anomaly. In the case of the AB problem we also solve an old puzzle, namely how to reproduce the result of Aharonov and Bohm in perturbation theory. The thesis is organized in the following manner. Chapter 1 is an introduction to nonrelativistic field theory, nonrelativistic conformal invariance, contact interactions and the AB problem. In Chapter 2 we discuss nonrelativistic scalar field theory, and how its quantization produces the anomaly. Chapter 3 is devoted to the AB problem, and the resolution of the perturbation puzzle. In Chapter 4 we generalize the discussion of Chapter 3 to particles carrying nonabelian charges. The structure of the nonabelian theory is much richer, and deserves a separate discussion. We also comment on the issues of forward scattering and single -valuedness of wavefunctions, which are important for Chapter 3 as well. (Copies available
An introduction to conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1995-01-01
The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)
Conformal field theory between supersymmetry and indecomposable structures
Energy Technology Data Exchange (ETDEWEB)
Eberle, H.
2006-07-15
examples to give the representation content and the fusion algebra of general augmented c{sub p,q} models as a conjecture. Finally, we open a new connection between logarithmic conformal field theory and quantum spin chains by relating some representations of the augmented c{sub 2,3}=0 model to the representation content of a c=0 model which describes an XXZ quantum spin chain. (orig.)
Conformal field theory between supersymmetry and indecomposable structures
International Nuclear Information System (INIS)
Eberle, H.
2006-07-01
the fusion algebra of general augmented c p,q models as a conjecture. Finally, we open a new connection between logarithmic conformal field theory and quantum spin chains by relating some representations of the augmented c 2,3 =0 model to the representation content of a c=0 model which describes an XXZ quantum spin chain. (orig.)
Nilpotent weights in conformal field theory
Directory of Open Access Journals (Sweden)
S. Rouhani
2001-12-01
Full Text Available Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.
Recent progress in irrational conformal field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1993-09-01
In this talk, I will review the foundations of irrational conformal field theory (ICFT), which includes rational conformal field theory as a small subspace. Highlights of the review include the Virasoro master equation, the Ward identities for the correlators of ICFT and solutions of the Ward identities. In particular, I will discuss the solutions for the correlators of the g/h coset construction and the correlators of the affine-Sugawara nests on g contains h 1 contains hor-ellipsis contains h n . Finally, I will discuss the recent global solution for the correlators of all the ICFT's in the master equation
Noncommutative conformally coupled scalar field cosmology and its commutative counterpart
International Nuclear Information System (INIS)
Barbosa, G.D.
2005-01-01
We study the implications of a noncommutative geometry of the minisuperspace variables for the Friedmann-Robertson-Walker universe with a conformally coupled scalar field. The investigation is carried out by means of a comparative study of the universe evolution in four different scenarios: classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative, the last two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is discussed by drawing a parallel between its realizations in two possible frameworks for physical interpretation: the NC frame, where it is manifest in the universe degrees of freedom, and in the C frame, where it is manifest through θ-dependent terms in the Hamiltonian. As a result of our comparative analysis, we find that noncommutative geometry can remove singularities in the classical context for sufficiently large values of θ. Moreover, under special conditions, the classical noncommutative model can admit bouncing solutions characteristic of the commutative quantum Friedmann-Robertson-Walker universe. In the quantum context, we find nonsingular universe solutions containing bounces or being periodic in the quantum commutative model. When noncommutativity effects are turned on in the quantum scenario, they can introduce significant modifications that change the singular behavior of the universe solutions or that render them dynamical whenever they are static in the commutative case. The effects of noncommutativity are completely specified only when one of the frames for its realization is adopted as the physical one. Nonsingular solutions in the NC frame can be mapped into singular ones in the C frame
Causality Constraints in Conformal Field Theory
CERN. Geneva
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...
Causality constraints in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)
2016-05-17
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Kleinert, Hagen
2016-01-01
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...
Conformal anomalies and the Einstein field equations
Energy Technology Data Exchange (ETDEWEB)
Godazgar, Hadi [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany); Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany)
2017-04-28
We compute corrections to the Einstein field equations which are induced by the anomalous effective actions associated to the type A conformal anomaly, both for the (non-local) Riegert action, as well as for the local action with dilaton. In all cases considered we find that these corrections can be very large.
International Nuclear Information System (INIS)
Shirkov, D.V.
1989-08-01
A comprehensive discussion of several topics vital for the structure of a modern Quantum Field Theory are discussed, namely: physical content of the notion of a Quantum Field; meaning of infinite renormalization; renormalizability as quantizability; the influence of several principles of quantum nature (quantizability, gauge dynamics, supersymmetry) on quantum fields dynamics; main trends of QFT evolution; present status of QFT and its frontier role in physics. (author). 15 refs, 1 fig
Relational motivation for conformal operator ordering in quantum cosmology
International Nuclear Information System (INIS)
Anderson, Edward
2010-01-01
Operator ordering in quantum cosmology is a major as-yet unsettled ambiguity with not only formal but also physical consequences. We determine the Lagrangian origin of the conformal invariance that underlies the conformal operator-ordering choice in quantum cosmology. This arises particularly naturally and simply from relationalist product-type actions (such as the Jacobi action for mechanics or Baierlein-Sharp-Wheeler-type actions for general relativity), for which all that is required is for the kinetic and potential factors to rescale in compensation to each other. These actions themselves mathematically sharply implement philosophical principles relevant to whole-universe modelling, so that the motivation for conformal operator ordering in quantum cosmology is thereby substantially strengthened. Relationalist product-type actions also give emergent times which amount to recovering Newtonian, proper and cosmic time in various contexts. The conformal scaling of these actions directly tells us how emergent time scales; if one follows suit with the Newtonian time or the lapse in the more commonly used difference-type Euler-Lagrange or Arnowitt-Deser-Misner-type actions, one sees how these too obey a more complicated conformal invariance. Moreover, our discovery of the conformal scaling of the emergent time permits relating how this simplifies equations of motion with how affine parametrization simplifies geodesics.
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Moduli spaces of unitary conformal field theories
International Nuclear Information System (INIS)
Wendland, K.
2000-08-01
We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Conformally covariant composite operators in quantum chromodynamics
International Nuclear Information System (INIS)
Craigie, N.S.; Dobrev, V.K.; Todorov, I.T.
1983-03-01
Conformal covariance is shown to determine renormalization properties of composite operators in QCD and in the C 6 3 -model at the one-loop level. Its relevance to higher order (renormalization group improved) perturbative calculations in the short distance limit is also discussed. Light cone operator product expansions and spectral representations for wave functions in QCD are derived. (author)
The unitary conformal field theory behind 2D Asymptotic Safety
Energy Technology Data Exchange (ETDEWEB)
Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)
2016-02-25
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.
Introduction to quantum field theory
Alvarez-Gaumé, Luís
1994-01-01
The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
Microcanonical quantum field theory
International Nuclear Information System (INIS)
Strominger, A.
1983-01-01
Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent
Quantum fields and dissipation
International Nuclear Information System (INIS)
Henning, P.
1996-06-01
The description of thermal or non-equilibrium systems necessitates a quantum field theory which differs from the usual approach in two aspects: 1. The Hilbert space is doubled; 2. Stable quasi-particles do not exist in interacting systems. A mini-review of these two aspects is given from a practical viewpoint including two applications. For thermal states it is shown how infrared divergences occuring in perturbative quasi-particle theories are avoided, whereas for non-equilibrium states a memory effect is shown to arise in the thermalization. (orig.)
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Duality and modular invariance in rational conformal field theories
International Nuclear Information System (INIS)
Li Miao.
1990-03-01
We investigate the polynomial equations which should be satisfied by the duality data for a rational conformal field theory. We show that by these duality data we can construct some vector spaces which are isomorphic to the spaces of conformal blocks. One can construct explicitly the inner product for the former if one deals with a unitary theory. These vector spaces endowed with an inner product are the algebraic reminiscences of the Hilbert spaces in a Chern-Simons theory. As by-products, we show that the polynomial equations involving the modular transformations for the one-point blocks on the torus are not independent. And along the way, we discuss the reconstruction of the quantum group in a rational conformal theory. Finally, we discuss the solution of structure constants for a physical theory. Making some assumption, we obtain a neat solution. And this solution in turn implies that the quantum groups of the left sector and of the right sector must be the same, although the chiral algebras need not to be the same. Some examples are given. (orig.)
Boundary conformal field theory and the worldsheet approach to D-branes
Recknagel, Andreas
2013-01-01
Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and...
Supersymmetric gauge theories, quantization of Mflat, and conformal field theory
International Nuclear Information System (INIS)
Teschner, J.; Vartanov, G.S.
2013-02-01
We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.
Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula
Milsted, Ashley; Vidal, Guifre
2017-12-01
We study the emergence of two-dimensional conformal symmetry in critical quantum spin chains on the finite circle. Our goal is to characterize the conformal field theory (CFT) describing the universality class of the corresponding quantum phase transition. As a means to this end, we propose and demonstrate automated procedures which, using only the lattice Hamiltonian H =∑jhj as an input, systematically identify the low-energy eigenstates corresponding to Virasoro primary and quasiprimary operators, and assign the remaining low-energy eigenstates to conformal towers. The energies and momenta of the primary operator states are needed to determine the primary operator scaling dimensions and conformal spins, an essential part of the conformal data that specifies the CFT. Our techniques use the action, on the low-energy eigenstates of H , of the Fourier modes Hn of the Hamiltonian density hj. The Hn were introduced as lattice representations of the Virasoro generators by Koo and Saleur [Nucl. Phys. B 426, 459 (1994), 10.1016/0550-3213(94)90018-3]. In this paper, we demonstrate that these operators can be used to extract conformal data in a nonintegrable quantum spin chain.
Logarithmic conformal field theory: beyond an introduction
International Nuclear Information System (INIS)
Creutzig, Thomas; Ridout, David
2013-01-01
This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model M(1,2), related to the triplet model W(1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess–Zumino–Witten model based on sl-hat (2) at k=−(1/2), related to the bosonic βγ ghost system; and the Wess–Zumino–Witten model for the Lie supergroup GL(1∣1), related to SL(2∣1) at k=−(1/2) and 1, the Bershadsky–Polyakov algebra W 3 (2) and the Feigin–Semikhatov algebras W n (2) . These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models W(q,p), the fractional level Wess–Zumino–Witten models, and the Wess–Zumino–Witten models on Lie supergroups (excluding OSP(1∣2n)). In this review, the emphasis lies on the representation theory of the underlying chiral algebra and the modular data pertaining to the characters of the representations. Each of the archetypal logarithmic conformal field theories is
The localized quantum vacuum field
International Nuclear Information System (INIS)
Dragoman, D
2008-01-01
A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles
The localized quantum vacuum field
Energy Technology Data Exchange (ETDEWEB)
Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com
2008-03-15
A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.
Quantum metamorphosis of conformal symmetry in N=4 super Yang-Mills theory
International Nuclear Information System (INIS)
Kuzenko, S.M.; McArthur, I.N.
2002-01-01
In gauge theories, not all rigid symmetries of the classical action can be maintained manifestly in the quantization procedure, even in the absence of anomalies. If this occurs for an anomaly-free symmetry, the effective action is invariant under a transformation that differs from its classical counterpart by quantum corrections. As shown by Fradkin and Palchik years ago, such a phenomenon occurs for conformal symmetry in quantum Yang-Mills theories with vanishing beta function, such as the N=4 super Yang-Mills theory. More recently, Jevicki et al. demonstrated that the quantum metamorphosis of conformal symmetry sheds light on the nature of the AdS/CFT correspondence. In this paper, we derive the conformal Ward identity for the bosonic sector of the N=4 super Yang-Mills theory using the background field method. We then compute the leading quantum modification of the conformal transformation for a specific Abelian background which is of interest in the context of the AdS/CFT correspondence. In the case of scalar fields, our final result agrees with that of Jevicki et al. The resulting vector and scalar transformations coincide with those which are characteristic of a D3-brane embedded in AdS 5 xS 5 . (author)
Large quantum Fourier transforms are never exactly realized by braiding conformal blocks
International Nuclear Information System (INIS)
Freedman, Michael H.; Wang, Zhenghan
2007-01-01
Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set {U(2), controlled-NOT}, the discrete Fourier transforms F N =(ω ij ) NxN , i,j=0,1,...,N-1, ω=e 2πi at ∼sol∼ at N , can be realized exactly by quantum circuits of size O(n 2 ), n=ln N, and so can the discrete sine or cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms F N and the discrete sine or cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that an approximation is unavoidable in the implementation of Fourier transforms by braiding conformal blocks
Boundary conditions in rational conformal field theories
International Nuclear Information System (INIS)
Behrend, Roger E.; Pearce, Paul A.; Petkova, Valentina B.; Zuber, Jean-Bernard
2000-01-01
We develop further the theory of Rational Conformal Field Theories (RCFTs) on a cylinder with specified boundary conditions emphasizing the role of a triplet of algebras: the Verlinde, graph fusion and Pasquier algebras. We show that solving Cardy's equation, expressing consistency of a RCFT on a cylinder, is equivalent to finding integer valued matrix representations of the Verlinde algebra. These matrices allow us to naturally associate a graph G to each RCFT such that the conformal boundary conditions are labelled by the nodes of G. This approach is carried to completion for sl(2) theories leading to complete sets of conformal boundary conditions, their associated cylinder partition functions and the A-D-E classification. We also review the current status for WZW sl(3) theories. Finally, a systematic generalisation of the formalism of Cardy-Lewellen is developed to allow for multiplicities arising from more general representations of the Verlinde algebra. We obtain information on the bulk-boundary coefficients and reproduce the relevant algebraic structures from the sewing constraints
Long, partial-short, and special conformal fields
Energy Technology Data Exchange (ETDEWEB)
Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)
2016-05-17
In the framework of metric-like approach, totally symmetric arbitrary spin bosonic conformal fields propagating in flat space-time are studied. Depending on the values of conformal dimension, spin, and dimension of space-time, we classify all conformal field as long, partial-short, short, and special conformal fields. An ordinary-derivative (second-derivative) Lagrangian formulation for such conformal fields is obtained. The ordinary-derivative Lagrangian formulation is realized by using double-traceless gauge fields, Stueckelberg fields, and auxiliary fields. Gauge-fixed Lagrangian invariant under global BRST transformations is obtained. The gauge-fixed BRST Lagrangian is used for the computation of partition functions for all conformal fields. Using the result for the partition functions, numbers of propagating D.o.F for the conformal fields are also found.
Remarks on the quantization of conformal fields
International Nuclear Information System (INIS)
Bakas, I.
1988-01-01
The quantization of a general (b,c) system in two dimensions is formulated in terms of an infinite hierarchy of modules for the Virasoro algebra that interpolate between the space of classical conformal fields of weight j and the Dirac sea of semi-infinite forms. This provides a natural framework in which to study the relation between algebraic geometry and representations of the Virasoro algebra with central charge c j = -2(6j 2 -6j+1). The importance of the construction is discussed in the context of string theory. (orig.)
Relating c 0 conformal field theories
International Nuclear Information System (INIS)
Guruswamy, S.; Ludwig, A.W.W.
1998-03-01
A 'canonical mapping' is established between the c = -1 system of bosonic ghosts at the c = 2 complex scalar theory and, a similar mapping between the c = -2 system of fermionic ghosts and the c = 1 Dirac theory. The existence of this mapping is suggested by the identity of the characters of the respective theories. The respective c 0 theories share the same space of states, whereas the spaces of conformal fields are different. Upon this mapping from their c 0) complex scalar and the Dirac theories inherit hidden nonlocal sl(2) symmetries. (author)
International Nuclear Information System (INIS)
Fredenhagen, K.; Joerss, M.
1994-10-01
Starting from a chiral conformal Haag-Kastler net on 2 dimensional Minkowski space we construct associated pointlike localized fields. This amounts to a proof of the existence of operator product expansions. We derive the result in two ways. One is based on the geometrical identification of the modular structure, the other depends on a ''conformal cluster theorem'' of the conformal two-point-functions in algebraic quantum field theory. The existence of the fields then implies important structural properties of the theory, as PCT-invariance, the Bisognano-Wichmann identification of modular operators, Haag duality and additivity. (orig.)
Introductory lectures on Conformal Field Theory and Strings
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1990-01-01
The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these
Introductory lectures on conformal field theory and strings
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1990-01-01
The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
This thesis is organized in the following way. In Chapter 2 we will give a brief introduction to conformal field theory along the lines of standard quantum field theory, without any claims to originality. We introduce the important concepts of the stress-energy tensor, the Virasoro algebra, and primary fields. The general principles are demonstrated by fermionic and bosonic free field theories. This also allows us to discuss some general aspects of moduli spaces of CFT's. In particular, we describe in some detail the space of iiiequivalent toroidal comi)actificalions, giving examples of the quantum equivalences that we already mentioned. In Chapter 3 we will reconsider general quantum field theory from a more geometrical point of view, along the lines of the so-called operator formalism. Crucial to this approach will be the consideration of topology changing amplitudes. After a simple application to 2d topological theories, we proceed to give our second introduction to CFT, stressing the geometry behind it. In Chapter 4 the so-called rational conformal field theories are our object of study. These special CFT's have extended symmetries with only a finite number of representations. If an interpretation as non-linear sigma model exists, this extra symmetry can be seen as a kind of resonance effect due to the commensurability of the size of the string and the target space-time. The structure of rational CFT's is extremely rigid, and one of our results will be that the operator content of these models is—up to some discrete choices—completely determined by the symmetry algebra. The study of rational models is in its rigidity very analogous to finite group theory. In Chapter 5 this analogy is further pursued and substantiated. We will show how one can construct from general grounds rational conformal field theories from finite groups. These models are abstract versions of non-linear o-models describing string propagation on 'orbifoids.' An orbifold is a singular
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
Quantum principles in field interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1986-01-01
The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions
Arbitrary spin conformal fields in (A)dS
International Nuclear Information System (INIS)
Metsaev, R.R.
2014-01-01
Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
Dirac, Jordan and quantum fields
International Nuclear Information System (INIS)
Darrigol, O.
1985-01-01
The case of two principal physicists of quantum mechanics is specially chose: Paul Dirac and Pascual Jordan. They gave a signification and an importance very different to the notion of quantum field, and in particular to the quantized matter wave one. Through their formation and motivation differences, such as they are expressed in their writings, this deep difference is tentatively understood [fr
Takiff superalgebras and conformal field theory
International Nuclear Information System (INIS)
Babichenko, Andrei; Ridout, David
2013-01-01
A class of non-semisimple extensions of Lie superalgebras is studied. They are obtained by adjoining to the superalgebra its adjoint representation as an Abelian ideal. When the superalgebra is of affine Kac–Moody type, a generalization of Sugawara’s construction is shown to give rise to a copy of the Virasoro algebra and so, presumably, to a conformal field theory. Evidence for this is detailed for the extension of the affinization of the superalgebra gl( 1|1): its highest weight irreducible modules are classified using spectral flow, the irreducible supercharacters are computed and a continuum version of the Verlinde formula is verified to give non-negative integer structure coefficients. Interpreting these coefficients as those of the Grothendieck ring of fusion, partial results on the true fusion ring and its indecomposable structures are deduced. (paper)
Noncommutative Geometry in M-Theory and Conformal Field Theory
Energy Technology Data Exchange (ETDEWEB)
Morariu, Bogdan [Univ. of California, Berkeley, CA (United States)
1999-05-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U_{q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun_{q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.
Noncommutative Geometry in M-Theory and Conformal Field Theory
International Nuclear Information System (INIS)
Morariu, Bogdan
1999-01-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U q (SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun q (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models
Quantum phenomena in gravitational field
Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.
2011-10-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.
Quantum phenomena in gravitational field
International Nuclear Information System (INIS)
Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.
2010-01-01
The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Genus two partition functions of extremal conformal field theories
International Nuclear Information System (INIS)
Gaiotto, Davide; Yin Xi
2007-01-01
Recently Witten conjectured the existence of a family of 'extremal' conformal field theories (ECFTs) of central charge c = 24k, which are supposed to be dual to three-dimensional pure quantum gravity in AdS 3 . Assuming their existence, we determine explicitly the genus two partition functions of k = 2 and k = 3 ECFTs, using modular invariance and the behavior of the partition function in degenerating limits of the Riemann surface. The result passes highly nontrivial tests and in particular provides a piece of evidence for the existence of the k = 3 ECFT. We also argue that the genus two partition function of ECFTs with k ≤ 10 are uniquely fixed (if they exist)
Circular Wilson loops in defect conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Aguilera-Damia, Jeremías; Correa, Diego H. [Instituto de Física La Plata, CONICET, Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Giraldo-Rivera, Victor I. [International Centre for Theoretical Sciences (ICTS-TIFR),Shivakote, Hesaraghatta Hobli, Bengaluru 560089 (India)
2017-03-06
We study a D3-D5 system dual to a conformal field theory with a codimension-one defect that separates regions where the ranks of the gauge groups differ by k. With the help of this additional parameter, as observed by Nagasaki, Tanida and Yamaguchi, one can define a double scaling limit in which the quantum corrections are organized in powers of λ/k{sup 2}, which should allow to extrapolate results between weak and strong coupling regimes. In particular we consider a radius R circular Wilson loop placed at a distance L, whose internal space orientation is given by an angle χ. We compute its vacuum expectation value and show that, in the double scaling limit and for small χ and small L/R, weak coupling results can be extrapolated to the strong coupling limit.
Integrable structures in quantum field theory
International Nuclear Information System (INIS)
Negro, Stefano
2016-01-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)
Supergauge symmetry in local quantum field theory
International Nuclear Information System (INIS)
Ferrara, S.
1974-01-01
The extension of supergauge symmetry to four-dimensional space-time allows to investigate the possible role of this symmetry in conventional local quantum field theory. The supergauge algebra is obtained by adding to the conformal group of space-time two Majorana spinor generators and the chiral charge. The commutation properties of the algebra are used to derive the most general form of the superfield. This field contains two Majorana spinors, two scalar fields, a chiral doublet, and a real vector field called the vector superfield. The covariant derivatives defined, together with the scalar and vector multiplets are the basic ingredients used in order to build up supergauge symmetric Lagrangians. It is shown that the only possible fields which can be considered as supergauge invariant Lagrangians are the F and D components of the scalar and vector multiplets respectively
Boundary states in c=-2 logarithmic conformal field theory
International Nuclear Information System (INIS)
Bredthauer, Andreas; Flohr, Michael
2002-01-01
Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c=-2 in detail, we show that our method leads to consistent results. In particular, it allows to define boundary states corresponding to both, indecomposable representations as well as their irreducible subrepresentations
Quantum groups, quantum categories and quantum field theory
Fröhlich, Jürg
1993-01-01
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
Conformal Vector Fields on Doubly Warped Product Manifolds and Applications
Directory of Open Access Journals (Sweden)
H. K. El-Sayied
2016-01-01
Full Text Available This article aimed to study and explore conformal vector fields on doubly warped product manifolds as well as on doubly warped spacetime. Then we derive sufficient conditions for matter and Ricci collineations on doubly warped product manifolds. A special attention is paid to concurrent vector fields. Finally, Ricci solitons on doubly warped product spacetime admitting conformal vector fields are considered.
C-metric solution for conformal gravity with a conformally coupled scalar field
Energy Technology Data Exchange (ETDEWEB)
Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-02-15
The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.
Note on Weyl versus conformal invariance in field theory
Energy Technology Data Exchange (ETDEWEB)
Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)
2017-12-15
It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)
Quantum theory of noncommutative fields
International Nuclear Information System (INIS)
Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.
2003-01-01
Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)
Very special conformal field theories and their holographic duals
Nakayama, Yu
2018-03-01
Cohen and Glashow introduced the notion of very special relativity as viable space-time symmetry of elementary particle physics. As a natural generalization of their idea, we study the subgroup of the conformal group, dubbed very special conformal symmetry, which is an extension of the very special relativity. We classify all of them and construct field theory examples as well as holographic realization of the very special conformal field theories.
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
International Nuclear Information System (INIS)
Chung, Stephen-wei.
1993-01-01
The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint
Conformal transformation and symplectic structure of self-dual fields
International Nuclear Information System (INIS)
Yang Kongqing; Luo Yan
1996-01-01
Considered two dimensional self-dual fields, the symplectic structure on the space of solutions is given. It is shown that this structure is Poincare invariant. The Lagrangian of two dimensional self-dual field is invariant under infinite one component conformal group, then this symplectic structure is also invariant under this conformal group. The conserved currents in geometrical formalism are also obtained
Wu, Xiangyang
1999-07-01
The heterocyclic amine 2-amino-3-methylimidazo (4, 5-f) quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It induces tumors in mammals and is probably involved in human carcinogenesis, because of great exposure to such food carcinogens. IQ is biochemically activated to a derivative which reacts with DNA to form a covalent adduct. This adduct may deform the DNA and consequently cause a mutation. which may initiate carcinogenesis. To understand this cancer initiating event, it is necessary to obtain atomic resolution structures of the damaged DNA. No such structures are available experimentally due to synthesis difficulties. Therefore, we employ extensive molecular mechanics and dynamics calculations for this purpose. The major IQ-DNA adduct in the specific DNA sequence d(5'G1G2C G3CCA3') - d(5'TGGCGCC3') with IQ modified at G3 is studied. The d(5'G1G2C G3CC3') sequence has recently been shown to be a hot-spot for mutations when IQ modification is at G3. Although this sequence is prone to -2 deletions via a ``slippage mechanism'' even when unmodified, a key question is why IQ increases the mutation frequency of the unmodified DNA by about 104 fold. Is there a structural feature imposed by IQ that is responsible? The molecular mechanics and dynamics program AMBER for nucleic acids with the latest force field was chosen for this work. This force field has been demonstrated to reproduce well the B-DNA structure. However, some parameters, the partial charges, bond lengths and angles, dihedral parameters of the modified residue, are not available in the AMBER database. We parameterized the force field using high level ab initio quantum calculations. We created 800 starting conformations which uniformly sampled in combination at 18° intervals three torsion angles that govern the IQ-DNA orientations, and energy minimized them. The most important structures are abnormal; the IQ damaged guanine is rotated out of its standard B
Conformal quantum mechanics and holography in noncommutative space-time
Gupta, Kumar S.; Harikumar, E.; Zuhair, N. S.
2017-09-01
We analyze the effects of noncommutativity in conformal quantum mechanics (CQM) using the κ-deformed space-time as a prototype. Up to the first order in the deformation parameter, the symmetry structure of the CQM algebra is preserved but the coupling in a canonical model of the CQM gets deformed. We show that the boundary conditions that ensure a unitary time evolution in the noncommutative CQM can break the scale invariance, leading to a quantum mechanical scaling anomaly. We calculate the scaling dimensions of the two and three point functions in the noncommutative CQM which are shown to be deformed. The AdS2 / CFT1 duality for the CQM suggests that the corresponding correlation functions in the holographic duals are modified. In addition, the Breitenlohner-Freedman bound also picks up a noncommutative correction. The strongly attractive regime of a canonical model of the CQM exhibit quantum instability. We show that the noncommutativity softens this singular behaviour and its implications for the corresponding holographic duals are discussed.
Introduction to conformal field theory. With applications to string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Plauschinn, Erik
2009-01-01
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)
Conformal field theories, representations and lattice constructions
International Nuclear Information System (INIS)
Dolan, L.; Montague, P.
1996-01-01
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z 2 -twisted theories, H(Λ) and H(Λ) respectively, which may be constructed from a suitable even Euclidean lattice Λ. Similarly, one may construct lattices Λ C and Lambda C by analogous constructions from a doubly-even binary code C. In the case when C is self-dual, the corresponding lattices are also. Similarly, H(Λ) and H(Λ) are self-dual if and only if Λ is. We show that H(Λ C ) has a natural triality structure, which induces an isomorphism H(Λ C )≡H(Λ C ) and also a triality structure on H(Λ C ). For C the Golay code, Λ C is the Leech lattice, and the triality on H(Λ C ) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories H(Λ) and H(Λ) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code. (orig.). With 8 figs., 2 tabs
Two-dimensional conformal field theory and beyond. Lessons from a continuing fashion
International Nuclear Information System (INIS)
Todorov, I.
2000-01-01
Two-dimensional conformal field theory (CFT) has several sources: the search for simple examples of quantum field theory, tile description of surface critical phenomena, the study of (super)string vacua (which made it particularly fashionable). In the present overview of tile subject we emphasize the role of CFT in bridging the gap between mathematics and quantum field theory and discuss some new physical concepts that emerged in the study of CFT models: anomalous dimensions, rational CFT, braid group statistics. In an aside, at tile end of the paper, we share tile misgivings, recently expressed by Penrose, about some dominant trends in fundamental theoretical physics. (author)
From quantum gravity to quantum field theory via noncommutative geometry
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Extended U(1) conformal field theories and Zk-parafermions
International Nuclear Information System (INIS)
Furlan, P.; Paunov, R.R.; Todorov, I.T.
1992-01-01
A constructive approach is developed for studying local chiral algebras generated by a pair of oppositely charged fields ψ(z, ±g) such that the operator product expansion (OPE) of ψ(z 1 ,g) ψ(z 2 , -g) involves a U (1) current. The main tool in the study is the factorization property of the charged fields (exhibited in [PT 2.3]) for Virasoro central charge c k -parafermions. The case Δ 2 =4(Δ 1 -1), where Δ sν =Δ K-ν (Δ 0 =0) ore conformal dimensions of the parafemionic currents, is studied in detail. For Δ Τ = 2Τ(1 - Δ/k) the theory is related to GEPNER'S [GE] Z 2 [SO (k)] parafermions and the corresponding quantum field theroretic (QFT) representations of the chiral algebra are displayed. The Coulomb gas method of [CR] is further developed to include an explicit construction of the basic parafermionic current φ of wight Δ = Δ 1 . The characters of the positive energy representations of the local chiral algebra are written as sums of products of Kac,s string functions and classical Θ-functions. (orig.)
q-deformed conformal and Poincare algebras on quantum 4-spinors
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Uematsu, Tsuneo
1993-01-01
We investigate quantum deformation of conformal algebras by constructing the quantum space for sl q (4). The differential calculus on the quantum space and the action of the quantum generators are studied. We derive deformed su(2, 2) algebra from the deformed sl(4) algebra using the quantum 4-spinor and its conjugate spinor. The quantum 6-vector in so q (4, 2) is constructed as a tensor product of two sets of 4-spinors. We obtain the q-deformed conformal algebra with the suitable assignment of the generators which satisfy the reality condition. The deformed Poincare algebra is derived through a contraction procedure. (orig.)
Quantum effects in strong fields
International Nuclear Information System (INIS)
Roessler, Lars
2014-01-01
This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.
String-localized quantum fields
International Nuclear Information System (INIS)
Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de
2009-01-01
Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)
Observer dependence of quantum states in relativistic quantum field theories
International Nuclear Information System (INIS)
Malin, S.
1982-01-01
Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems
The quantum double in integrable quantum field theory
International Nuclear Information System (INIS)
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
Mixed global anomalies and boundary conformal field theories
Numasawa, Tokiro; Yamaguchi, Satoshi
2017-01-01
We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...
Topics in quantum field theory
Dams, C.J.F.
2006-01-01
In this PhD-thesis some topics in quantum field theory are considered. The first chapter gives a background to these topics. The second chapter discusses renormalization. In particular it is shown how loop calculations can be performed when using the axial gauge fixing. Fermion creation and
Electric fields and quantum wormholes
Engelhardt, D.; Freivogel, B.; Iqbal, N.
2015-01-01
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a
Black Hole Monodromy and Conformal Field Theory
Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.
2013-01-01
The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event
Markov traces and II1 factors in conformal field theory
International Nuclear Information System (INIS)
Boer, J. de; Goeree, J.
1991-01-01
Using the duality equations of Moore and Seiberg we define for every primary field in a Rational Conformal Field Theory a proper Markov trace and hence a knot invariant. Next we define two nested algebras and show, using results of Ocneanu, how the position of the smaller algebra in the larger one reproduces part of the duality data. A new method for constructing Rational Conformal Field Theories is proposed. (orig.)
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Chameleon fields, wave function collapse and quantum gravity
International Nuclear Information System (INIS)
Zanzi, A
2015-01-01
Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)
Kamachi, Takashi; Yoshizawa, Kazunari
2016-02-22
A conformational search program for finding low-energy conformations of large noncovalent complexes has been developed. A quantitatively reliable semiempirical quantum mechanical PM6-DH+ method, which is able to accurately describe noncovalent interactions at a low computational cost, was employed in contrast to conventional conformational search programs in which molecular mechanical methods are usually adopted. Our approach is based on the low-mode method whereby an initial structure is perturbed along one of its low-mode eigenvectors to generate new conformations. This method was applied to determine the most stable conformation of transition state for enantioselective alkylation by the Maruoka and cinchona alkaloid catalysts and Hantzsch ester hydrogenation of imines by chiral phosphoric acid. Besides successfully reproducing the previously reported most stable DFT conformations, the conformational search with the semiempirical quantum mechanical calculations newly discovered a more stable conformation at a low computational cost.
Plastino, A.; Rocca, M. C.
2018-05-01
We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.
DEFF Research Database (Denmark)
Abdali, Salim; Jensen, Morten Østergaard; Bohr, Henrik
2003-01-01
This paper describes a theoretical and experimental study of [Leu]enkephalin conformations with respect to the quantum estates of the atomic structure of the peptide. Results from vibrational absorption measurements and quantum calculations are used to outline a quantum picture and to assign vibr...
Three level constraints on conformal field theories and string models
International Nuclear Information System (INIS)
Lewellen, D.C.
1989-05-01
Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs
Notes on the Verlinde formula in nonrational conformal field theories
International Nuclear Information System (INIS)
Jego, Charles; Troost, Jan
2006-01-01
We review and extend evidence for the validity of a generalized Verlinde formula, in particular, nonrational conformal field theories. We identify a subset of representations of the chiral algebra in nonrational conformal field theories that give rise to an analogue of the relation between modular S-matrices and fusion coefficients in rational conformal field theories. To that end we review and extend the Cardy-type brane calculations in bosonic and supersymmetric Liouville theory (and its duals) as well as in H 3 + . We analyze the three-point functions of Liouville theory and of H 3 + in detail to directly identify the fusion coefficients from the operator product expansion. Moreover, we check the validity of a proposed generic formula for localized brane one-point functions in nonrational conformal field theories
Modular groups in quantum field theory
International Nuclear Information System (INIS)
Borchers, H.-J.
2000-01-01
The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)
Conformal field theory and its application to strings
International Nuclear Information System (INIS)
Verlinde, E.P.
1988-01-01
Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes
A course on quantum field theory and local observables
International Nuclear Information System (INIS)
Schroer, Bert
1997-03-01
A monograph on Quantum Field Theory and Local Observables is presented, aiming to unify two presently largely disconnected branches of QFT, as follows: the standard (canonical, functional) approach which is mainly perturbative in the sense of an infinitesimal 'deformation' of free fields; nonperturbative constructions of low-dimensional models as the form factor-bootstrap approach (which for the time being is limited to factorable models in d=1+1 spacetime dimensions) and the non-Lagrangian constructions of conformal chiral QFT's
Conformal and Lie superalgebras motivated from free fermionic fields
International Nuclear Information System (INIS)
Ma, Shukchuen
2003-01-01
In this paper, we construct six families of conformal superalgebras of infinite type, motivated from free quadratic fermonic fields with derivatives, and we prove their simplicity. The Lie superalgebras generated by these conformal superalgebras are proven to be simple except for a few special cases in the general linear superalgebras and the type-Q lie superalgebras, in which these Lie superalgebras have a one-dimensional centre and the quotient Lie superalgebras modulo the centre are simple. Certain natural central extensions of these families of conformal superalgebras are also given. Moreover, we prove that these conformal superalgebras are generated by their finite-dimensional subspaces of minimal weight in a certain sense. It is shown that a conformal superalgebra is simple if and only if its generated Lie superalgebra does not contain a proper nontrivial ideal with a one-variable structure
Quantum fields on the computer
1992-01-01
This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.
Quantum field theory on brane backgrounds
International Nuclear Information System (INIS)
Flachi, A.
2001-11-01
The development of higher dimensional quantum field theories is reviewed from the older Kaluza-Klein theory to the new brane models, emphasising their relevance in modern particle physics. The issue of spontaneous symmetry breaking in the Randall-Sundrum model is considered. The role of the coupling between bulk fields and the curvature is investigated and a model in favour of bulk symmetry breaking is presented. The lowest order quantum corrections arising from a quantized scalar field in the Randall-Sundrum spacetime are computed. A careful discussion of the boundary conditions as well as the renormalization is provided. The massless case is also discussed and a proof of the vanishing of the conformal anomaly in this model is given. An analysis of the self-consistency is presented and the radius stabilization problem studied. It is shown that quantum effects may provide a stabilization of the radius, nevertheless, when the hierarchy problem is simultaneously solved, fine tuning of the brane tensions is necessary. The previous results are extended in order to include the contribution to the one-loop effective action from fermions. The boundary conditions are discussed and their relation with gauge invariance accurately examined. The possibility of breaking the gauge symmetries by using Wilson-loops is investigated. The analysis of the self- consistency is extended when the contribution of fermions is included, and it is shown that also in this case it is not possible to stabilize the radius and simultaneously solving the hierarchy problem, unless the brane tensions are fine tuned to a high degree. (author)
Quantum mechanics of Proca fields
International Nuclear Information System (INIS)
Zamani, Farhad; Mostafazadeh, Ali
2009-01-01
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
Learning quantum field theory from elementary quantum mechanics
International Nuclear Information System (INIS)
Gosdzinsky, P.; Tarrach, R.
1991-01-01
The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Automorphisms of W-algebras and extended rational conformal field theories
International Nuclear Information System (INIS)
Honecker, A.
1992-11-01
Many extended conformal algebras with one generator in addition to the Virasoro field as well as Casimir algebras have non-trivial outer automorphisms which enables one to impose 'twisted' boundary conditions on the chiral fields. We study their effect on the highest weight representations. We give formulae for the enlarged rational conformal field theories in both series of W-algebras with two generators and conjecture a general formula for the additional models in the minimal series of Casimir algebras. A third series of W-algebras with two generators which includes the spin three algebra at c = -2 also has finitely many additional fields in the twisted sector although the model itself is apparently not rational. The additional fields in the twisted sector have applications in statistical mechanics as we demonstrate for Z n -quantum spin chains with a particular type of boundary conditions. (orig.)
Mathematical aspects of field quantization. Quantum electrodynamics
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1983-01-01
Fundamental mathematical aspects of quantum field theory are discussed. A brief review of various approaches to mathematical problems of quantum electrodynamics is given, preceded by a more extensive account of the development of ideas on the mathematical nature of quantum fields in general, providing an appropriate historical context. (author)
Electromagnetic field and the theory of conformal and biholomorphic invariants
International Nuclear Information System (INIS)
Lawrynowicz, J.
1976-01-01
This paper contains sections on: 1. Conformal invariance and variational principles in electrodynamics. 2. The principles of Dirichlet and Thomson as a physical motivation for the methods of conformal capacities and extremal lengths. 3. Extension to pseudoriemannian manifolds. 4. Extension to hermitian manifolds. 5. An extension of Schwarz's lemma for hermitian manifolds and its physical significance. 6. Variation of ''complex'' capacities within the admissible class of plurisubharmonic functions. The author concentrates on motivations and interpretations connected with the electromagnetic field. (author)
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Numerical calculations in quantum field theories
International Nuclear Information System (INIS)
Rebbi, C.
1984-01-01
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references
Conformal field theories, Coulomb gas picture and integrable models
International Nuclear Information System (INIS)
Zuber, J.B.
1988-01-01
The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Analytic aspects of quantum fields
Bytsenko, A A; Elizalde, E; Moretti, V; Zerbini, S
2003-01-01
One of the aims of this book is to explain in a basic manner the seemingly difficult issues of mathematical structure using some specific examples as a guide. In each of the cases considered, a comprehensible physical problem is approached, to which the corresponding mathematical scheme is applied, its usefulness being duly demonstrated. The authors try to fill the gap that always exists between the physics of quantum field theories and the mathematical methods best suited for its formulation, which are increasingly demanding on the mathematical ability of the physicist. Contents: Survey of Pa
Quantum fermions and quantum field theory from classical statistics
International Nuclear Information System (INIS)
Wetterich, Christof
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
Superstrings, conformal field theories and holographic duality
International Nuclear Information System (INIS)
Benichou, R.
2009-06-01
The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting
Stochastic geometry of critical curves, Schramm-Loewner evolutions and conformal field theory
International Nuclear Information System (INIS)
Gruzberg, Ilya A
2006-01-01
Conformally invariant curves that appear at critical points in two-dimensional statistical mechanics systems and their fractal geometry have received a lot of attention in recent years. On the one hand, Schramm (2000 Israel J. Math. 118 221 (Preprint math.PR/9904022)) has invented a new rigorous as well as practical calculational approach to critical curves, based on a beautiful unification of conformal maps and stochastic processes, and by now known as Schramm-Loewner evolution (SLE). On the other hand, Duplantier (2000 Phys. Rev. Lett. 84 1363; Fractal Geometry and Applications: A Jubilee of Benot Mandelbrot: Part 2 (Proc. Symp. Pure Math. vol 72) (Providence, RI: American Mathematical Society) p 365 (Preprint math-ph/0303034)) has applied boundary quantum gravity methods to calculate exact multifractal exponents associated with critical curves. In the first part of this paper, I provide a pedagogical introduction to SLE. I present mathematical facts from the theory of conformal maps and stochastic processes related to SLE. Then I review basic properties of SLE and provide practical derivation of various interesting quantities related to critical curves, including fractal dimensions and crossing probabilities. The second part of the paper is devoted to a way of describing critical curves using boundary conformal field theory (CFT) in the so-called Coulomb gas formalism. This description provides an alternative (to quantum gravity) way of obtaining the multifractal spectrum of critical curves using only traditional methods of CFT based on free bosonic fields
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Conformal field theories near a boundary in general dimensions
International Nuclear Information System (INIS)
McAvity, D.M.
1995-01-01
The implications of restricted conformal invariance under conformal transformations preserving a plane boundary are discussed for general dimensions d. Calculations of the universal function of a conformal invariant ξ which appears in the two-point function of scalar operators in conformally invariant theories with a plane boundary are undertaken to first order in the ε=4-d expansion for the operator φ 2 in φ 4 theory. The form for the associated functions of ξ for the two-point functions for the basic field φ α and the auxiliary field λ in the N→∞ limit of the O(N) non-linear sigma model for any d in the range 2 α φ β and λλ. Using this method the form of the two-point function for the energy-momentum tensor in the conformal O(N) model with a plane boundary is also found. General results for the sum of the contributions of all derivative operators appearing in the operator product expansion, and also in a corresponding boundary operator expansion, to the two-point functions are also derived making essential use of conformal invariance. (orig.)
Exploring perturbative conformal field theory in Mellin space
Energy Technology Data Exchange (ETDEWEB)
Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)
2017-01-24
We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.
Conformal field theory with two kinds of Bosonic fields and two linear dilatons
International Nuclear Information System (INIS)
Kamani, Davoud
2010-01-01
We consider a two-dimensional conformal field theory which contains two kinds of the bosonic degrees of freedom. Two linear dilaton fields enable to study a more general case. Various properties of the model such as OPEs, central charge, conformal properties of the fields and associated algebras will be studied. (author)
Indecomposability parameters in chiral logarithmic conformal field theory
International Nuclear Information System (INIS)
Vasseur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert
2011-01-01
Work of the last few years has shown that the key algebraic features of Logarithmic Conformal Field Theories (LCFTs) are already present in some finite lattice systems (such as the XXZ spin-1/2 chain) before the continuum limit is taken. This has provided a very convenient way to analyze the structure of indecomposable Virasoro modules and to obtain fusion rules for a variety of models such as (boundary) percolation etc. LCFTs allow for additional quantum numbers describing the fine structure of the indecomposable modules, and generalizing the 'b-number' introduced initially by Gurarie for the c=0 case. The determination of these indecomposability parameters (or logarithmic couplings) has given rise to a lot of algebraic work, but their physical meaning has remained somewhat elusive. In a recent paper, a way to measure b for boundary percolation and polymers was proposed. We generalize this work here by devising a general strategy to compute matrix elements of Virasoro generators from the numerical analysis of lattice models and their continuum limit. The method is applied to XXZ spin-1/2 and spin-1 chains with open (free) boundary conditions. They are related to gl(n+m|m) and osp(n+2m|2m)-invariant superspin chains and to non-linear sigma models with supercoset target spaces. These models can also be formulated in terms of dense and dilute loop gas. We check the method in many cases where the results were already known analytically. Furthermore, we also confront our findings with a construction generalizing Gurarie's, where logarithms emerge naturally in operator product expansions to compensate for apparently divergent terms. This argument actually allows us to compute indecomposability parameters in any logarithmic theory. A central result of our study is the construction of a Kac table for the indecomposability parameters of the logarithmic minimal models LM(1,p) and LM(p,p+1).
Towards quantum gravity via quantum field theory. Problems and perspectives
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
Quantum measurement and algebraic quantum field theories
International Nuclear Information System (INIS)
DeFacio, B.
1976-01-01
It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories
Supergravity, Non-Conformal Field Theories and Brane-Worlds
Gherghetta, Tony; Gherghetta, Tony; Oz, Yaron
2002-01-01
We consider the supergravity dual descriptions of non-conformal super Yang-Mills theories realized on the world-volume of Dp-branes. We use the dual description to compute stress-energy tensor and current correlators. We apply the results to the study of dilatonic brane-worlds described by non-conformal field theories coupled to gravity. We find that brane-worlds based on D4 and D5 branes exhibit a localization of gauge and gravitational fields. We calculate the corrections to the Newton and Coulomb laws in these theories.
From classical to quantum fields
Baulieu, Laurent; Sénéor, Roland
2017-01-01
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...
Global dimensions for Lie groups at level k and their conformally exceptional quantum subgroups
Coquereaux, Robert
2010-01-01
We obtain formulae giving global dimensions for fusion categories defined by Lie groups G at level k and for the associated module-categories obtained via conformal embeddings. The results can be expressed in terms of Lie quantum superfactorials of type G. The later are related, for the type Ar, to the quantum Barnes function.
Globally conformal invariant gauge field theory with rational correlation functions
Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.
2003-01-01
Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.
Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.
Features of finite quantum field theories
International Nuclear Information System (INIS)
Boehm, M.; Denner, A.
1987-01-01
We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)
Towards the classification of conformal field theories in arbitrary dimension
Anselmi, D
2000-01-01
I identify the subclass of higher-dimensional conformal field theories that is most similar to two-dimensional conformal field theory. In this subclass the domain of validity of the recently proposed formula for the irreversibility of the renormalization-group flow is suitably enhanced. The trace anomaly is quadratic in the Ricci tensor and contains a unique central charge. This implies, in particular, a relationship between the coefficient in front of the Euler density (charge a) and the stress-tensor two-point function (charge c). I check the prediction in detail in four, six and eight dimensions, and then in arbitrary dimension. In four and six dimensions there is agreement with results from the AdS/CFT correspondence. A by-product is a mathematical algorithm to construct conformal invariants.
Conformal field theory construction for non-Abelian hierarchy wave functions
Tournois, Yoran; Hermanns, Maria
2017-12-01
The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.
Introduction to conformal field theory and string theory
International Nuclear Information System (INIS)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs
New unified field theory based on the conformal group
Energy Technology Data Exchange (ETDEWEB)
Pessa, E [Rome Univ. (Italy). Ist. di Matematica
1980-10-01
Based on a six-dimensional generalization of Maxwell's equations, a new unified theory of the electromagnetic and gravitational field is developed. Additional space-time coordinates are interpreted only as mathematical tools in order to obtain a linear realization of the four-dimensional conformal group.
Gaussian free fields at the integer quantum Hall plateau transition
Energy Technology Data Exchange (ETDEWEB)
Bondesan, R., E-mail: roberto.bondesan@phys.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Wieczorek, D.; Zirnbauer, M.R. [Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)
2017-05-15
In this work we put forward an effective Gaussian free field description of critical wavefunctions at the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of old and new identities that hold exactly at the lattice level and hinge on the correspondence between the Chalker–Coddington network model and a supersymmetric vertex model.
Quantum field theory of universe
International Nuclear Information System (INIS)
Hosoya, Akio; Morikawa, Masahiro.
1988-08-01
As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)
Quantum fields and processes a combinatorial approach
Gough, John
2018-01-01
Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson-Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom-Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson-Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists, quant...
Quantum fields and processes a combinatorial approach
Gough, John
2018-01-01
Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson–Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom–Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson–Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists,...
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
Nonlocal quantum field theory and stochastic quantum mechanics
International Nuclear Information System (INIS)
Namsrai, K.
1986-01-01
This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)
Relativistic quantum mechanics of leptons and fields
International Nuclear Information System (INIS)
Grandy, W.T. Jr.
1991-01-01
This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory
The Toda lattice hierarchy and deformation of conformal field theories
International Nuclear Information System (INIS)
Fukuma, M.
1990-01-01
In this paper, the authors point out that the Toda lattice hierarchy known in soliton theory is relevant for the description of the deformations of conformal field theories while the KP hierarchy describes unperturbed conformal theories. It is shown that the holomorphic parts of the conserved currents in the perturbed system (the Toda lattice hierarchy) coincide with the conserved currents in the KP hierarchy and can be written in terms of the W-algebraic currents. Furthermore, their anti-holomorphic counterparts are obtained
Conformal field theory and 2D critical phenomena. Part 1
International Nuclear Information System (INIS)
Zamolodchikov, A.B.; Zamolodchikov, Al.B.
1989-01-01
Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs
Effect of External Electric Field Stress on Gliadin Protein Conformation
Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya
2013-01-01
A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...
Quantum-chemical study on the bioactive conformation of epothilones.
Jiménez, Verónica A
2010-12-27
Herein, I report a DFT study on the bioactive conformation of epothilone A based on the analysis of 92 stable conformations of free and bound epothilone to a reduced model of tubulin receptor. The equilibrium structures and relative energies were studied using B3LYP and X3LYP functionals and the 6-31G(d) standard basis set, which was considered appropriate for the size of the systems under study. Calculated relative energies of free and bound epothilones led me to propose a new model for the bioactive conformation of epothilone A, which accounts for several structure-activity data.
Direct approach to operator conformal constructions: from fermions to primary fields
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
I discuss the direct solution of Sugawara and coset constructions, including a path to construction of the primary fields. The basic tools are (1) a construction of affine-conformal highest-weight states, pretensors and tensors form quantum-irreducible representations of the currents of affine g, and (2) construction of primary fields by factorization and boosting of the pretensors. Large classes of pretensors are easily obtained in fermionic constructions, and guesswork is minimized with factorization of bosonized fermionic pretensors: The simplest case constructs conformal-weights h g =mN(n--N)/2n of SU m (n) and h K =mN(n--N)/n of SU m (n)direct-product SU m (n)/SU 2m (n) and extension to simply-laced g is clear. More general cases are left for future study. copyright Academic Prss, Inc. 1989
On osp(2|2) conformal field theories
International Nuclear Information System (INIS)
Ding Xiangmao; Gould, Mark D; Mewton, Courtney J; Zhang Yaozhong
2003-01-01
We study the conformal field theories corresponding to current superalgebras osp(2|2) (1) k and osp(2|2) (2) k . We construct the free field realizations, screen currents and primary fields of these current superalgebras at general level k. All the results for osp(2|2) (2) k are new, and the results for the primary fields of osp(2|2) (1) k also seem to be new. Our results are expected to be useful in the supersymmetric approach to Gaussian disordered systems such as the random bond Ising model and the Dirac model
Conformal consistency relations for single-field inflation
International Nuclear Information System (INIS)
Creminelli, Paolo; Noreña, Jorge; Simonović, Marko
2012-01-01
We generalize the single-field consistency relations to capture not only the leading term in the squeezed limit — going as 1/q 3 , where q is the small wavevector — but also the subleading one, going as 1/q 2 . This term, for an (n+1)-point function, is fixed in terms of the variation of the n-point function under a special conformal transformation; this parallels the fact that the 1/q 3 term is related with the scale dependence of the n-point function. For the squeezed limit of the 3-point function, this conformal consistency relation implies that there are no terms going as 1/q 2 . We verify that the squeezed limit of the 4-point function is related to the conformal variation of the 3-point function both in the case of canonical slow-roll inflation and in models with reduced speed of sound. In the second case the conformal consistency conditions capture, at the level of observables, the relation among operators induced by the non-linear realization of Lorentz invariance in the Lagrangian. These results mean that, in any single-field model, primordial correlation functions of ζ are endowed with an SO(4,1) symmetry, with dilations and special conformal transformations non-linearly realized by ζ. We also verify the conformal consistency relations for any n-point function in models with a modulation of the inflaton potential, where the scale dependence is not negligible. Finally, we generalize (some of) the consistency relations involving tensors and soft internal momenta
Conformally covariant massless spin-two field equations
International Nuclear Information System (INIS)
Drew, M.S.; Gegenberg, J.D.
1980-01-01
An explicit proof is constructed to show that the field equations for a symmetric tensor field hsub(ab) describing massless spin-2 particles in Minkowski space-time are not covariant under the 15-parameter group SOsub(4,2); this group is usually associated with conformal transformations on flat space, and here it will be considered as a global gauge group which acts upon matter fields defined on space-time. Notwithstanding the above noncovariance, the equations governing the rank-4 tensor Ssub(abcd) constructed from hsub(ab) are shown to be covariant provided the contraction Ssub(ab) vanishes. Conformal covariance is proved by demonstrating the covariance of the equations for the equivalent 5-component complex field; in fact, covariance is proved for a general field equation applicable to massless particles of any spin >0. It is shown that the noncovariance of the hsub(ab) equations may be ascribed to the fact that the transformation behaviour of hsub(ab) is not the same as that of a field consisting of a gauge only. Since this is in contradistinction to the situation for the electromagnetic-field equations, the vector form of the electromagnetic equations is cast into a form which can be duplicated for the hsub(ab)-field. This procedure results in an alternative, covariant, field equation for hsub(ab). (author)
Sewing constraints for conformal field theories on surfaces with boundaries
International Nuclear Information System (INIS)
Lewellen, D.C.
1992-01-01
In a conformal field theory, correlation functions on any Riemann surface are in principle unambiguously defined by sewing together three-point functions on the sphere, provided that the four-point functions on the sphere are crossing symmetric, and the one-point functions on the torus are modular covariant. In this work we extend Sonoda's proof of this result to conformal field theories defined on surfaces with boundaries. Four additional sewing constraints arise; three on the half-plane and one on the cylinder. These relate the various OPE coefficients in the theory (bulk, boundary, and bulk-boundary) to one another. In rational theories these relations can be expressed in terms of data arising solely within the bulk theory: The matrix S which implements modular transformations on the characters, and the matrices implementing duality transformations on the four-point conformal-block functions. As an example we solve these relations for the boundary and bulk-boundary structure constants in the Ising model with all possible conformally invariant boundary conditions. The role of the basic sewing constraints in the construction of open string theories is discussed. (orig.)
Energy-momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Fujikawa, K.
1981-01-01
The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise
Energy-momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Fujikawa, Kazuo.
1980-12-01
The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)
Optimized dose conformation of multi-leaf collimator fields
International Nuclear Information System (INIS)
Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.
1996-01-01
Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some
Conformal FDTD modeling of 3-D wake fields
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1991-01-01
Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors
Mixed-symmetry fields in AdS(5), conformal fields, and AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, Moscow 119991 (Russian Federation)
2015-01-15
Mixed-symmetry arbitrary spin massive, massless, and self-dual massive fields in AdS(5) are studied. Light-cone gauge actions for such fields leading to decoupled equations of motion are constructed. Light-cone gauge formulation of mixed-symmetry anomalous conformal currents and shadows in 4d flat space is also developed. AdS/CFT correspondence for normalizable and non-normalizable modes of mixed-symmetry AdS fields and the respective boundary mixed-symmetry anomalous conformal currents and shadows is studied. We demonstrate that the light-cone gauge action for massive mixed-symmetry AdS field evaluated on solution of the Dirichlet problem amounts to the light-cone gauge 2-point vertex of mixed-symmetry anomalous shadow. Also we show that UV divergence of the action for mixed-symmetry massive AdS field with some particular value of mass parameter evaluated on the Dirichlet problem amounts to the action of long mixed-symmetry conformal field, while UV divergence of the action for mixed-symmetry massless AdS field evaluated on the Dirichlet problem amounts to the action of short mixed-symmetry conformal field. We speculate on string theory interpretation of a model which involves short low-spin conformal fields and long higher-spin conformal fields.
Introduction to two dimensional conformal and superconformal field theory
International Nuclear Information System (INIS)
Shenker, S.H.
1986-01-01
Some of the basic properties of conformal and superconformal field theories in two dimensions are discussed in connection with the string and superstring theories built from them. In the first lecture the stress-energy tensor, the Virasoro algebra, highest weight states, primary fields, operator products coefficients, bootstrap ideas, and unitary and degenerate representations of the Virasoro algebra are discussed. In the second lecture the basic structure of superconformal two dimensional field theory is sketched and then the Ramond Neveu-Schwarz formulation of the superstring is described. Some of the issues involved in constructing the fermion vertex in this formalism are discussed
A course on quantum field theory and local observables
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Frankfurt Univ., Berlin (Germany). Inst. fuer Theoretische Physik
1997-03-01
A monograph on Quantum Field Theory and Local Observables is presented, aiming to unify two presently largely disconnected branches of QFT, as follows: the standard (canonical, functional) approach which is mainly perturbative in the sense of an infinitesimal `deformation` of free fields; nonperturbative constructions of low-dimensional models as the form factor-bootstrap approach (which for the time being is limited to factorable models in d=1+1 spacetime dimensions) and the non-Lagrangian constructions of conformal chiral QFT`s
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Higher Curvature Gravity from Entanglement in Conformal Field Theories
Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles
2018-05-01
By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.
Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano
2016-09-13
We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.
On the group theoretical meaning of conformal field theories in the framework of coadjoint orbits
International Nuclear Information System (INIS)
Aratyn, H.; Nissimov, E.; Pacheva, S.
1990-01-01
We present a unifying approach to conformal field theories and other geometric models within the formalism of coadjoint orbits of infinite dimensional Lie groups with central extensions. Starting from the previously obtained general formula for the symplectic action in terms of two fundamental group one-cocycles, we derive the most general form of the Polyakov-Wiegmann composition laws for any geometric model. These composition laws are succinct expressions of all pertinent Noether symmetries. As a basic consequence we obtain Ward identities allowing for the exact quantum solvability of any geometric model. (orig.)
Towers of algebras in rational conformal field theories
International Nuclear Information System (INIS)
Gomez, C.; Sierra, G.
1991-01-01
This paper reports on Jones fundamental construction applied to rational conformal field theories. The Jones algebra which emerges in this application is realized in terms of duality operations. The generators of the algebra are an open version of Verlinde's operators. The polynomial equations appear in this context as sufficient conditions for the existence of Jones algebra. The ADE classification of modular invariant partition functions is put in correspondence with Jones classification of subfactors
The solutions of affine and conformal affine Toda field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1994-02-01
We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Classical field approach to quantum weak measurements.
Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco
2014-03-21
By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.
Relating the archetypes of logarithmic conformal field theory
International Nuclear Information System (INIS)
Creutzig, Thomas; Ridout, David
2013-01-01
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought
Relating the archetypes of logarithmic conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)
2013-07-21
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.
Conformal coupling of gravitational wave field to curvature
International Nuclear Information System (INIS)
Grishchuk, L.P.; Yudin, V.
1980-01-01
Conformal properties of the equations for weak gravitational waves in a curved space--time are investigated. The basic equations are derived in the linear approximation from Einstein's equations. They represent, in fact, the equations for the second-rank tensor field h/sub alphabeta/, restricted by the auxiliary conditions h/sub α//sup β//sub ;/α =0, hequivalentγ/sub alphabeta/h/sup alphabeta/=0, and embedded into the background space--time with the metric tensor γ/sub alphabeta/. It is shown that the equations for h/sub alphabeta/ are not conformally invariant under the transformations gamma-circumflex/sub alphabeta/ =e/sup 2sigma/γ/sub alphabeta/ and h/sub alphabeta/ =e/sup sigma/h/sub alphabeta/, except for those metric rescalings which transform the Ricci scalar R of the original background space--time into e/sup -2sigma/R, where R is the Ricci scalar of the conformally related background space--time. The general form of the equations for h/sub alphabeta/ which are conformally invariant have been deduced. It is shown that these equations cannot be derived in the linear approximation from any tensor equations which generalize the Einstein equations
A new way of visualising quantum fields
Linde, Helmut
2018-05-01
Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.
Supersymmetric gauge theories, quantization of M{sub flat}, and conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Teschner, J.; Vartanov, G.S.
2013-02-15
We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.
Quantum fields and Poisson processes. Pt. 2
International Nuclear Information System (INIS)
Bertrand, J.; Gaveau, B.; Rideau, G.
1985-01-01
Quantum field evolutions are written as expectation values with respect to Poisson processes in two simple models; interaction of two boson fields (with conservation of the number of particles in one field) and interaction of a boson with a fermion field. The introduction of a cutt-off ensures that the expectation values are well-defined. (orig.)
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2005-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2017-12-01
We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.
Conformal conservation laws for second-order scalar fields
International Nuclear Information System (INIS)
Blakeskee, J.S.; Logan, J.D.
1976-01-01
It is considered an action integral over space-time whose Lagrangian depends upon a scalar field an upon derivatives of the field function up to second order. From invariance identities obtained by the authors in an earlier work it is shown how a new proof of Noether's theorem for this second-order problem follows in the multiple integral case. Finally, conservation laws are written down in the case that the given action integral be invariant under the fifteen-parameter special conformal group
Group field theory and simplicial quantum gravity
International Nuclear Information System (INIS)
Oriti, D
2010-01-01
We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.
Relativistic quantum mechanics an introduction to relativistic quantum fields
Maiani, Luciano
2016-01-01
Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.
Associative-algebraic approach to logarithmic conformal field theories
International Nuclear Information System (INIS)
Read, N.; Saleur, Hubert
2007-01-01
We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non-semisimple associative algebras appearing in their lattice regularizations (as discussed in a companion paper [N. Read, H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, cond-mat/0701259]). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n) and gl(n+1 vertical bar n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=-2 and c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau-Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields
Bootstrapping conformal field theories with the extremal functional method.
El-Showk, Sheer; Paulos, Miguel F
2013-12-13
The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.
Local relativistic invariant flows for quantum fields
International Nuclear Information System (INIS)
Albeverio, S.; Hoeegh-Krahn, R.; Sirugue, M.
1983-01-01
For quantum fields with trigonometric interaction in arbitrary space dimension we construct a representation of the Lorentz group by automorphisms on a Banach space generated by the Weyl algebra. (orig.)
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
Quantum field theory for the gifted amateur
Lancaster, Tom
2014-01-01
Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...
An introduction to relativistic quantum field theory
Schweber, Silvan S
1961-01-01
Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Quantum field in η-ξ spacetime
International Nuclear Information System (INIS)
Gui, Y.
1990-01-01
A new spacetime, η-ξ spacetime, is constructed. The quantum field in η-ξ spacetime is discussed. It is shown that the vacuum state of quantum field in η-ξ spacetime is a thermal state for an inertial observer in Minkowski spacetime, and the vacuum Green's functions in η-ξ spacetime are just the thermal Green's functions in usual statistical mechanics
Twistors and four-dimensional conformal field theory
International Nuclear Information System (INIS)
Singer, M.A.
1990-01-01
This is a report (with technical details omitted) on work concerned with generalizations to four dimensions of two-dimensional Conformed Field Theory. Accounts of this and related material are contained elsewhere. The Hilbert space of the four-dimensional theory has a natural interpretation in terms of massless spinor fields on real Minkowski space. From the twistor point of view this follows from the boundary CR-manifold P being precisely the space of light rays in real compactified Minkowski space. All the amplitudes can therefore be regarded as defined on Hilbert spaces built from Lorentzian spinor fields. Thus the twistor picture provides a kind of halfway house between the Lorentzian and Euclidean field theories. (author)
Heterotic string solutions and coset conformal field theories
Giveon, Amit; Tseytlin, Arkady A
1993-01-01
We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...
Moessbauer neutrinos in quantum mechanics and quantum field theory
International Nuclear Information System (INIS)
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Moessbauer neutrino oscillations. First, we compute the combined rate Γ of Moessbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ is identical to the one obtained previously [1] for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Moessbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Moessbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.
Conformal fields. From Riemann surfaces to integrable hierarchies
International Nuclear Information System (INIS)
Semikhatov, A.M.
1991-01-01
I discuss the idea of translating ingredients of conformal field theory into the language of hierarchies of integrable differential equations. Primary conformal fields are mapped into (differential or matrix) operators living on the phase space of the hierarchy, whereas operator insertions of, e.g., a current or the energy-momentum tensor, become certain vector fields on the phase space and thus acquire a meaning independent of a given Riemann surface. A number of similarities are observed between the structures arising on the hierarchy and those of the theory on the world-sheet. In particular, there is an analogue of the operator product algebra with the Cauchy kernel replaced by its 'off-shell' hierarchy version. Also, hierarchy analogues of certain operator insertions admit two (equivalent, but distinct) forms, resembling the 'bosonized' and 'fermionized' versions respectively. As an application, I obtain a useful reformulation of the Virasoro constraints of the type that arise in matrix models, as a system of equations on dressing (or Lax) operators (rather than correlation functions, i.e., residues or traces). This also suggests an interpretation in terms of a 2D topological field theory, which might be extended to a correspondence between Virasoro-constrained hierarchies and topological theories. (orig.)
Quantum deformations of conformal algebras with mass-like deformation parameters
International Nuclear Information System (INIS)
Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek; Minnaert, Pierre
1998-01-01
We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2)≅su(2,2) reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices
Towards chaos criterion in quantum field theory
Kuvshinov, V. I.; Kuzmin, A. V.
2002-01-01
Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
OPE convergence in non-relativistic conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Goldberger, Walter D.; Khandker, Zuhair University; Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Physics Department, Boston University,Boston, MA 02215 (United States)
2015-12-09
Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic “radial quantization” Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.
On the large N limit of conformal field theory
International Nuclear Information System (INIS)
Halpern, M.B.
2003-01-01
Following recent advances in large N matrix mechanics, I discuss here the free (Cuntz) algebraic formulation of the large N limit of two-dimensional conformal field theories of chiral adjoint fermions and bosons. One of the central results is a new affine free algebra which describes a large N limit of su(N) affine Lie algebra. Other results include the associated free-algebraic partition functions and characters, a free-algebraic coset construction, free-algebraic construction of osp(1|2), free-algebraic vertex operator constructions in the large N Bose systems, and a provocative new free-algebraic factorization of the ordinary Koba-Nielsen factor
From the geometric quantization to conformal field theory
International Nuclear Information System (INIS)
Alekseev, A.; Shatashvili, S.
1990-01-01
Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)
Old and new topics in conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1991-01-01
These notes reflect the structure of the lectures given at the Kathmandu Summer School. They are made of two parts: the first is intended to be an elementary (and standard) introduction to conformal field theory, following the approach of Belavin, Polyakov and Zamolodchikov [1], together with a short and biaised review of some significant results. For the sake of brevity, the author shall not provide detailed references in that part. The second part presents some recent developments on some relations between c.f.t. and classical integrable systems (of KdV type), the so-called W-algebras and related results on the structure of singular vectors. (author)
The integrable structure of nonrational conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-02-15
Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)
Scalar field collapse in a conformally flat spacetime
Energy Technology Data Exchange (ETDEWEB)
Chakrabarti, Soumya; Banerjee, Narayan [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India)
2017-03-15
The collapse scenario of a scalar field along with a perfect fluid distribution was investigated for a conformally flat spacetime. The theorem for the integrability of an anharmonic oscillator has been utilized. For a pure power-law potential of the form φ{sup n+1}, it was found that a central singularity is formed which is covered by an apparent horizon for n > 0 and n < -3. Some numerical results have also been presented for a combination of two different powers of φ in the potential. (orig.)
Quantum processes: A Whiteheadian interpretation of quantum field theory
Bain, Jonathan
Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
The Conformal Template and New Perspectives for Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC
2007-03-06
Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N{sub C} {yields} 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and
The Conformal Template and New Perspectives for Quantum Chromodynamics
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2007-01-01
Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N C → 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
The Minkowski and conformal superspaces the classical and quantum descriptions
Fioresi, Rita
2015-01-01
This book is aimed at graduate students and researchers in physics and mathematics who seek to understand the basics of supersymmetry from a mathematical point of view. It provides a bridge between the physical and mathematical approaches to the superworld. The physicist who is devoted to learning the basics of supergeometry can find a friendly approach here, since only the concepts that are strictly necessary are introduced. On the other hand, the mathematician who wants to learn from physics will find that all the mathematical assumptions are firmly rooted in physical concepts. This may open up a channel of communication between the two communities working on different aspects of supersymmetry. Starting from special relativity and Minkowski space, the idea of conformal space and superspace is built step by step in a mathematically rigorous way, and always connecting with the ideas and notation used in physics. While the book is mainly devoted to these important physical examples of superspaces, it can also ...
Quantum field theory in a semiotic perspective
International Nuclear Information System (INIS)
Dosch, H.G.
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Higher genus partition functions of meromorphic conformal field theories
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Volpato, Roberto
2009-01-01
It is shown that the higher genus vacuum amplitudes of a meromorphic conformal field theory determine the affine symmetry of the theory uniquely, and we give arguments that suggest that also the representation content with respect to this affine symmetry is specified, up to automorphisms of the finite Lie algebra. We illustrate our findings with the self-dual theories at c = 16 and c = 24; in particular, we give an elementary argument that shows that the vacuum amplitudes of the E 8 x E 8 theory and the Spin(32)/Z 2 theory differ at genus g = 5. The fact that the discrepancy only arises at rather high genus is a consequence of the modular properties of higher genus amplitudes at small central charges. In fact, we show that for c ≤ 24 the genus one partition function specifies already the partition functions up to g ≤ 4 uniquely. Finally we explain how our results generalise to non-meromorphic conformal field theories.
Conformal field theory, triality and the Monster group
International Nuclear Information System (INIS)
Dolan, L.; Goddard, P.; Montague, P.
1990-01-01
From an even self-dual N-dimensional lattice, Λ, it is always possible to construct two (chiral) conformal field theories, an untwisted theory H (Λ), and a Z 2 -twisted theory H (Λ), constructed using the reflection twist. (N must be a multiple of 8 and the theories are modular invariant if it is a multiple of 24.) Similarly, from a doubly-even self-dual binary code C, it is possible to construct two even self-dual lattices, an untwisted one Λ C and a twisted one anti Λ C . It is shown that H(Λ C ) always has a triality structure, and that this triality induces first an isomorphism H(anti Λ C )≅H(Λ C ) and, through this, a triality of H(anti Λ C ). In the case where C is the Golay code, anti Λ C is the Leech lattice and the induced triality is the extra symmetry necessary to generate the Monster group from (an extension of) Conway's group. Thus it is demonstrated that triality is a generic symmetry. The induced isomorphism accounts for all 9 of the coincidences between the 48 conformal field theories H(Λ) and H(Λ) with N=24. (orig.)
Dilogarithm identities in conformal field theory and group homology
International Nuclear Information System (INIS)
Dupont, J.L.
1994-01-01
Recently, Rogers' dilogarithm identities have attracted much attention in the setting of conformal field theory as well as lattice model calculations. One of the connecting threads is an identity of Richmond-Szekeres that appeared in the computation of central charges in conformal field theory. We show that the Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin (equivalent to an identity found earlier by Lewin) can be interpreted as a lift of a generator of the third integral homology of a finite cyclic subgroup sitting inside the projective special linear group of all 2x2 real matrices viewed as a discrete group. This connection allows us to clarify a few of the assertions and conjectures stated in the work of Nahm-Recknagel-Terhoven concerning the role of algebraic K-theory and Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related to hyperbolic 3-manifolds as suggested but is more appropriately related to the group manifold of the universal covering group of the projective special linear group of all 2x2 real matrices viewed as a topological group. This also resolves the weaker version of the conjecture as formulated by Kirillov. We end with a summary of a number of open conjectures on the mathematical side. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Weyer, Holger
2010-12-17
We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent nonperturbative renormalization group (RG) flow the coarse graining operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG ow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity (QEG) in the ''conformally reduced'' theory which discards all degrees of freedom contained in the metric except the conformal one. The conformally reduced Einstein-Hilbert approximation has exactly the same qualitative properties as in the full Einstein-Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety. Without the extra field dependence the resulting RG flow is that of a simple {phi}{sup 4}-theory. We employ the Local Potential Approximation for the conformal factor to generalize the RG flow on an infinite dimensional theory space. Again we find a Gaussian as well as a non-Gaussian fixed point which provides further evidence for the viability of the asymptotic safety scenario. The analog of the invariant cubic in the curvature which spoils perturbative renormalizability is seen to be unproblematic for the asymptotic safety of the conformally reduced theory. The scaling fields and dimensions of both fixed points are obtained explicitly and possible implications for the predictivity of the theory are discussed. Since the RG flow depends on the topology of the
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
Conformal Fabrication of Colloidal Quantum Dot Solids for Optically Enhanced Photovoltaics
Labelle, André J.
2015-05-26
© 2015 American Chemical Society. Colloidal quantum dots (CQD) are an attractive thin-film material for photovoltaic applications due to low material costs, ease of fabrication, and size-tunable band gap. Unfortunately, today they suffer from a compromise between light absorption and photocarrier extraction, a fact that currently prevents the complete harvest of incoming above-band-gap solar photons. We have investigated the use of structured substrates and/or electrodes to increase the effective light path through the active material and found that these designs require highly conformal application of the light-absorbing films to achieve the greatest enhancement. This conformality requirement derives from the need for maximal absorption enhancement combined with shortest-distance charge transport. Here we report on a means of processing highly conformal layer-by-layer deposited CQD absorber films onto microstructured, light-recycling electrodes. Specifically, we engineer surface hydrophilicity to achieve conformal deposition of upper layers atop underlying ones. We show that only with the application of conformal coating can we achieve optimal quantum efficiency and enhanced power conversion efficiency in structured-electrode CQD cells.
Quality for quantum free fields
International Nuclear Information System (INIS)
Leyland, Pen; Roberts, John; Testard, Daniel; Centre National de la Recherche Scientifique, 13 - Marseille
1978-07-01
A proof is given concerning duality for the free neutral scalar boson field (abstract duality). Then real subspaces of a complex Hilbert space and the Von Neumann algebra associated with real subspaces are considered. Lastly duality for free fields (free electromagnetic field and free scalar field of any mass) is studied
Microcanonical formulation of quantum field theories
International Nuclear Information System (INIS)
Iwazaki, A.
1984-03-01
A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)
The sewing technique for strings and conformal field theories
International Nuclear Information System (INIS)
Di Vecchia, P.
1989-01-01
We discuss recent results obtained from the sewing procedure for strings and conformal field theories. They are summarized by the N Point [String] g loop Vertex V N;g , that is the 'generating functional' of all correlation functions [scattering amplitudes] of the theory on a genus g Riemann surface. We discuss V N;g for free bosonic theory with arbitrary background charge and for fermionic and bosonic bc systems. By saturating those vertices with highest weight states we obtain in a simple way the correlation functions of the corresponding primary fields on genus g Riemann surfaces that reproduce known results including the correlation functions of a bosonic bc system, that present a number of peculiarities. We construct also V N;g for the bosonic and fermionic string. In particular this technique allows one to explicitly construct the measure of integration over the moduli and to study the various pinching limits in order to check the finiteness of superstring theories. (orig.)
Self field electromagnetism and quantum phenomena
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
On the duality condition for quantum fields
International Nuclear Information System (INIS)
Bisognano, J.J.; Wichmann, E.H.
1976-01-01
A general quantum field theory is considered in which the fields are assumed to be operator-valued tempered distributions. The system of fields may include any number of boson fields and fermion fields. A theorem which relates certain complex Lorentz transformations to the TCP transformation is stated and proved. With reference to this theorem, duality conditions are considered, and it is shown that such conditions hold under various physically reasonable assumptions about the fields. Extensions of the algebras of field operators are discussed with reference to the duality conditions. Local internal symmetries are discussed, and it is shown that these commute with the Poincare group and with the TCP transformation
Stochastic Loewner evolution as an approach to conformal field theory
International Nuclear Information System (INIS)
Mueller-Lohmann, Annekathrin
2008-01-01
The main focus on this work lies on the relationship between two-dimensional boundary Conformal Field Theories (BCFTs) and SCHRAMM-LOEWNER Evolutions (SLEs) as motivated by their connection to the scaling limit of Statistical Physics models at criticality. The BCFT approach used for the past 25 years is based on the algebraic formulation of local objects such as fields and their correlations in these models. Introduced in 1999, SLE describes the physical properties from a probabilistic point of view, studying measures on growing curves, i.e. global objects such as cluster interfaces. After a short motivation of the topic, followed by a more detailed introduction to two-dimensional boundary Conformal Field Theory and SCHRAMM-LOEWNER Evolution, we present the results of our original work. We extend the method of obtaining SLE variants for a change of measure of the single SLE to derive the most general BCFT model that can be related to SLE. Moreover, we interpret the change of the measure in the context of physics and Probability Theory. In addition, we discuss the meaning of bulk fields in BCFT as bulk force-points for the SLE variant SLE (κ, vector ρ). Furthermore, we investigate the short-distance expansion of the boundary condition changing fields, creating cluster interfaces that can be described by SLE, with other boundary or bulk fields. Thereby we derive new SLE martingales related to the existence of boundary fields with vanishing descendant on level three. We motivate that the short-distance scaling law of these martingales as adjustment of the measure can be interpreted as the SLE probability of curves coming close to the location of the second field. Finally, we extend the algebraic κ-relation for the allowed variances in multiple SLE, arising due to the commutation requirement of the infinitesimal growth operators, to the joint growth of two SLE traces. The analysis straightforwardly suggests the form of the infinitesimal LOEWNER mapping of joint
Entanglement entropy of non-unitary integrable quantum field theory
Directory of Open Access Journals (Sweden)
Davide Bianchini
2015-07-01
Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3logℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.
Conformal description of spinning particles
International Nuclear Information System (INIS)
Todorov, I.T.
1986-01-01
This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)
From here to criticality: Renormalization group flow between two conformal field theories
International Nuclear Information System (INIS)
Leaf-Herrmann, W.A.
1993-01-01
Using non-perturbative techniques, we study the renormalization group trajectory between two conformal field theories. Specifically, we investigate a perturbation of the A 3 superconformal minimal model such that in the infrared limit the theory flows to the A 2 model. The correlation functions in the topological sector of the theory are computed numerically along the trajectory, and these results are compared to the expected asymptotic behavior. Excellent agreement is found, and the characteristic features of the infrared theory, including the central charge and the normalized operator product expansion coefficients, are obtained. We also review and discuss some aspects of the geometrical description of N=2 supersymmetric quantum field theories recently uncovered by Cecotti and Vafa. (orig.)
Constructions of quantum fields with anyonic statistics
International Nuclear Information System (INIS)
Plaschke, M.
2015-01-01
From the principles of algebraic quantum field theory it follows that in low dimensions particles are not necessarily bosons or fermions, but their statistics can in general be governed by the braid group. Such particles are called anyons and their possible statistics is intimately related to their localization properties and their covariance with respect to rotations. This work is concerned with the explicit construction of quantum fields with anyonic statistics which are localized in various different regions on two- and three-dimensional Minkowski space, and we will analyze the connection between localization, statistics and spin. The reason why this is considerably more difficult than for bosons or fermions is the no-go theorem regarding free cone-localized anyons in d=2+1. This problem is approached in this work from different directions leaving out some of the underlying assumptions one makes in the abstract algebraic quantum field theory. Despite a similar no-go theorem for free local anyons, it is in two dimensions possible to construct compactly localized quantum field nets with anyonic commutation relations for every mass m ≥ 0 and every statistics parameter by using the theory of loop groups and implementable Bogoliubov transformations. This does not work in higher dimensions so in d=2+1 we will first construct polarization free generators, which are only wedge-local, using a recent work about multiplicative deformations of free quantum fields on the Fock space. By generalizing this procedure to the charged case it is possible to extend the set of admissible deformations and end up with fields satisfying anyonic commutation relations, which are covariant w.r.t a Poincaré group representation with arbitrary real-valued spin. Another approach, which further demonstrates the connection between localization, statistics and spin of quantum field nets, is to focus first only on the rotational degrees of freedom and construct field operators on the circle
Spectral methods in quantum field theory
International Nuclear Information System (INIS)
Graham, Noah; Quandt, Markus; Weigel, Herbert
2009-01-01
This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Quantum field theory in a nutshell
Zee, A
2010-01-01
Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
International Nuclear Information System (INIS)
Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin
2012-01-01
The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of writing down geometric scalars in terms of the conformal mode. Using this general effective action, we compute the two-point function for the Goldstone and a fiducial weight-0 field, as well as some sample three-point functions involving these fields
Dipole-magnet field models based on a conformal map
Directory of Open Access Journals (Sweden)
P. L. Walstrom
2012-10-01
Full Text Available In general, generation of charged-particle transfer maps for conventional iron-pole-piece dipole magnets to third and higher order requires a model for the midplane field profile and its transverse derivatives (soft-edge model to high order and numerical integration of map coefficients. An exact treatment of the problem for a particular magnet requires use of measured magnetic data. However, in initial design of beam transport systems, users of charged-particle optics codes generally rely on magnet models built into the codes. Indeed, if maps to third order are adequate for the problem, an approximate analytic field model together with numerical map coefficient integration can capture the important features of the transfer map. The model described in this paper is based on the fact that, except at very large distances from the magnet, the magnetic field for parallel pole-face magnets with constant pole gap height and wide pole faces is basically two dimensional (2D. The field for all space outside of the pole pieces is given by a single (complex analytic expression and includes a parameter that controls the rate of falloff of the fringe field. Since the field function is analytic in the complex plane outside of the pole pieces, it satisfies two basic requirements of a field model for higher-order map codes: it is infinitely differentiable at the midplane and also a solution of the Laplace equation. It is apparently the only simple model available that combines an exponential approach to the central field with an inverse cubic falloff of field at large distances from the magnet in a single expression. The model is not intended for detailed fitting of magnetic field data, but for use in numerical map-generating codes for studying the effect of extended fringe fields on higher-order transfer maps. It is based on conformally mapping the area between the pole pieces to the upper half plane, and placing current filaments on the pole faces. An
Twisted boundary states in c=1 coset conformal field theories
International Nuclear Information System (INIS)
Ishikawa, Hiroshi; Yamaguchi, Atsushi
2003-01-01
We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the charge-conjugation modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n) 1 +so(2n) 1 /so(2n) 2 , which is equivalent to the orbifold S 1 /Z 2 at a particular radius. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield conformal boundary states that preserve only the Virasoro algebra. (author)
Bell-type quantum field theories
International Nuclear Information System (INIS)
Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino
2005-01-01
In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)
Boundary effects on quantum field theories
International Nuclear Information System (INIS)
Lee, Tae Hoon
1991-01-01
Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)
Classical trajectories and quantum field theory
International Nuclear Information System (INIS)
Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno
2005-01-01
The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)
Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM
2007-12-15
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)
Schroedinger representation in quantum field theory
International Nuclear Information System (INIS)
Luescher, M.
1985-01-01
Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)
Topics in quantum field theory and cosmology
International Nuclear Information System (INIS)
Brandenberger, R.H.
1983-01-01
This thesis contains a study of topics in quantum field theory and cosmology in the context of the new inflationary universe scenario. It presents a review of the quantum field theory methods used in the new cosmological models. The following chapters are a detailed study of energy density fluctuations in the early universe. Hawking radiation is derived as the source of initial perturbations in two complementary ways. The following section presents a new gauge invariant framework to study the growth of fluctuations outside the horizon. This framework is applied to the new inflationary universe in the final chapter. The introduction gives a brief outline of the new cosmological models
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
Quantum field theory and the internal states of elementary particles
CSIR Research Space (South Africa)
Greben, JM
2011-01-01
Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...
Connections on the state-space over conformal field theories
International Nuclear Information System (INIS)
Ranganathan, K.; Sonoda, H.; Zwiebach, B.
1994-01-01
Motivated by the problem of background independence of closed string field theory we study geometry on the infinite vector bundle of local fields over the space of conformal field theories (CFTs). With any connection we can associate an excluded domain D for the integral of marginal operators, and an operator one-form ω μ . The pair (D, ω μ ) determines the covariant derivative of any correlator of local fields. We obtain interesting classes of connections in which ω μ 's can be written in terms of CFT data. For these connections we compute their curvatures in terms of four-point correlators, D, and ω μ . Among these connections three are of particular interest. A flat, metric compatible connection Γ, and connections c and c with non-vanishing curvature, with the latter metric compatible. The flat connection cannot be used to do parallel transport over a finite distance. Parallel transport with either c or c, however, allows us to construct a CFT in the state-space of another CFT a finite distance away. The construction is given in the form of perturbation theory manifestly free of divergences. (orig.)
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories
Buican, Matthew; Laczko, Zoltan
2018-02-01
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.
Buican, Matthew; Laczko, Zoltan
2018-02-23
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Modular constraints on conformal field theories with currents
Bae, Jin-Beom; Lee, Sungjay; Song, Jaewon
2017-12-01
We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite programming. In particular, we find the bounds on the twist gap for the non-current primaries depend dramatically on the presence of holomorphic currents, showing numerous kinks and peaks. Various rational CFTs are realized at the numerical boundary of the twist gap, saturating the upper limits on the degeneracies. Such theories include Wess-Zumino-Witten models for the Deligne's exceptional series, the Monster CFT and the Baby Monster CFT. We also study modular constraints imposed by W -algebras of various type and observe that the bounds on the gap depend on the choice of W -algebra in the small central charge region.
Free ◻{sup k} scalar conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Brust, Christopher [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario N2L 2Y5 (Canada); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)
2017-02-13
We consider the generalizations of the free U(N) and O(N) scalar conformal field theories to actions with higher powers of the Laplacian ◻{sup k}, in general dimension d. We study the spectra, Verma modules, anomalies and OPE of these theories. We argue that in certain d and k, the spectrum contains zero norm operators which are both primary and descendant, as well as extension operators which are neither primary nor descendant. In addition, we argue that in even dimensions d≤2k, there are well-defined operator algebras which are related to the ◻{sup k} theories and are novel in that they have a finite number of single-trace states.
Conformal Field Theory, Automorphic Forms and Related Topics
Weissauer, Rainer; CFT 2011
2014-01-01
This book, part of the series Contributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster, and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the MAThematics Center Heidelberg (MATCH).
Conformal field theory and functions of hypergeometric type
International Nuclear Information System (INIS)
Isachenkov, Mikhail
2016-03-01
Conformal field theory provides a universal description of various phenomena in natural sciences. Its development, swift and successful, belongs to the major highlights of theoretical physics of the late XX century. In contrast, advances of the theory of hypergeometric functions always assumed a slower pace throughout the centuries of its existence. Functional identities studied by this mathematical discipline are fascinating both in their complexity and beauty. This thesis investigates the interrelation of two subjects through a direct analysis of three CFT problems: two-point functions of the 2d strange metal CFT, three-point functions of primaries of the non-rational Toda CFT and kinematical parts of Mellin amplitudes for scalar four-point functions in general dimensions. We flash out various generalizations of hypergeometric functions as a natural mathematical language for two of these problems. Several new methods inspired by extensions of classical results on hypergeometric functions, are presented.
Conformal field theory and functions of hypergeometric type
Energy Technology Data Exchange (ETDEWEB)
Isachenkov, Mikhail
2016-03-15
Conformal field theory provides a universal description of various phenomena in natural sciences. Its development, swift and successful, belongs to the major highlights of theoretical physics of the late XX century. In contrast, advances of the theory of hypergeometric functions always assumed a slower pace throughout the centuries of its existence. Functional identities studied by this mathematical discipline are fascinating both in their complexity and beauty. This thesis investigates the interrelation of two subjects through a direct analysis of three CFT problems: two-point functions of the 2d strange metal CFT, three-point functions of primaries of the non-rational Toda CFT and kinematical parts of Mellin amplitudes for scalar four-point functions in general dimensions. We flash out various generalizations of hypergeometric functions as a natural mathematical language for two of these problems. Several new methods inspired by extensions of classical results on hypergeometric functions, are presented.
Mean Field Analysis of Quantum Annealing Correction.
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A
2016-06-03
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.
Wilson lines in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.
2014-07-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Wilson lines in quantum field theory
International Nuclear Information System (INIS)
Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der
2014-01-01
Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.
Field emission from finite barrier quantum structures
Energy Technology Data Exchange (ETDEWEB)
Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)
2014-10-01
We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.
Warped conformal field theory as lower spin gravity
Hofman, Diego M.; Rollier, Blaise
2015-08-01
Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space-times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton-Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL (2, R) × U (1) Chern-Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
Warped conformal field theory as lower spin gravity
Directory of Open Access Journals (Sweden)
Diego M. Hofman
2015-08-01
Full Text Available Two dimensional Warped Conformal Field Theories (WCFTs may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non-AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R×U(1 Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non-AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals.
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field
Quantum field theories in two dimensions collected works of Alexei Zamolodchikov
Pugai, Yaroslav; Zamolodchikov, Alexander
2012-01-01
Volume 1 is a collection of reprinted works of Alexei Zamolodchikov who was a prominent theoretical physicist of his time. It contains his works on conformal field theories, 2D quantum gravity, and Liouville theory. These original contributions of Alexei Zamolodchikov have a profound effect on shaping the fast developing areas of theoretical physics. His ideas are expressed lucidly, such as the recursive relation for conformal blocks and the structure of conformal bootstrap in Liouville theory, including the boundary Liouville theory. These ideas are at the foundation of the subject and they are of great interest to a wide community of physicists and mathematicians working in diverse areas. This volume is a part of the 2-volume collection of remarkable research papers that can be used as an advanced textbook by graduate students specializing in string theory, conformal field theory and integrable models of QFT. It is also highly relevant to experts in these fields. Volume 2 includes Alexei Zamolodchikov's w...
Introductory lectures on quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Vasquez-Mozo, M.A.
2011-01-01
In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)
Wilson lines in quantum field theory
Cherednikov, Igor O; Veken, Frederik F van der
2014-01-01
The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.
On Noethers theorem in quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Doplicher, S.; Longo, R.
1985-03-01
Extending an earlier construction of local generators of symmetries in (S. Doplicher, 1982) to space-time and supersymmetries, we establish a weak form of Noethers theorem in quantum field theory. We also comment on the physical significance of the 'split property', underlying our analysis, and discuss some local aspects of superselection rules following from our results. (orig./HSI)
Quantum field theory and multiparticle systems
International Nuclear Information System (INIS)
Trlifaj, M.
1981-01-01
The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)
Infrared difficulties with thermal quantum field theories
International Nuclear Information System (INIS)
Grandou, T.
1997-01-01
Reviewing briefly the two main difficulties encountered in thermal quantum field theories at finite temperature when dealing with the Braaten-Pisarski (BP) resummation program, the motivation is introduced of an analysis relying on the bare perturbation theory, right from the onset. (author)
Finiteness of quantum field theories and supersymmetry
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)
Representation theory of current algebra and conformal field theory on Riemann surfaces
International Nuclear Information System (INIS)
Yamada, Yasuhiko
1989-01-01
We study conformal field theories with current algebra (WZW-model) on general Riemann surfaces based on the integrable representation theory of current algebra. The space of chiral conformal blocks defined as solutions of current and conformal Ward identities is shown to be finite dimensional and satisfies the factorization properties. (author)
Quantum effects and elimination of the conformal anomaly in anisotropic space-time
International Nuclear Information System (INIS)
Grib, A.A.; Nesteruk, A.V.
1988-01-01
In homogeneous anisotropic space-time the connection between the problem of the elimination of infrared divergences and the conformal anomaly of the regularized energy-momentum tensor is studied. It is shown that removal of the infrared divergence by means of a cutoff leads to the absence of a conformal anomaly. A physical interpretation of the infrared cutoff as a shift in the particle-energy spectrum by an amount equal to the effective temperature of the gravitational field is proposed
Bulk Renormalization Group Flows and Boundary States in Conformal Field Theories
Directory of Open Access Journals (Sweden)
John Cardy
2017-08-01
Full Text Available We propose using smeared boundary states $e^{-\\tau H}|\\cal B\\rangle$ as variational approximations to the ground state of a conformal field theory deformed by relevant bulk operators. This is motivated by recent studies of quantum quenches in CFTs and of the entanglement spectrum in massive theories. It gives a simple criterion for choosing which boundary state should correspond to which combination of bulk operators, and leads to a rudimentary phase diagram of the theory in the vicinity of the RG fixed point corresponding to the CFT, as well as rigorous upper bounds on the universal amplitude of the free energy. In the case of the 2d minimal models explicit formulae are available. As a side result we show that the matrix elements of bulk operators between smeared Ishibashi states are simply given by the fusion rules of the CFT.
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
Quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Gibbons, G.W.
1978-04-01
The purpose of this article is to outline what the extension of such a treatment to curved space entails and to discuss what essentially new features arise when one takes into account the quantum mechanical nature of gravitating systems. I shall throughout assume a classical, unquantized gravitational field and confine the discussion to matter fields although similar techniques and ideas may be applied to 'gravitons' - that is linearized perturbations of the metric propagating on some fixed, unperturbed, background. (orig./WL) [de
Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning
2015-01-01
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
Quantum field theory and parastatistics
International Nuclear Information System (INIS)
Ohnuki, Y.; Kamefuchi, S.
1982-01-01
This book is an introduction to the second quantization of the wave functions of particles obeying the parastatistics. After a general introduction to the canonical quantization for the case of paracommutation relations the nonrelativistic field theory is considered. Thereafter the extension to the relativistic range is discussed. Finally some special problems in connection with parafields are considered. (HSI)
Supercomputers and quantum field theory
International Nuclear Information System (INIS)
Creutz, M.
1985-01-01
A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
The algebraic versus geometric approach to quantum field theory
International Nuclear Information System (INIS)
Schroer, B.
1990-06-01
Some recent developments in algebraic QFT are reviewed and confronted with results obtained by geometric methods. In particular a critical evaluation of the present status of the quantum symmetry discussion is given and the possible relation of the (Gepner-Witten) modularity in conformal QFT 2 and the Tomita modularity (existence of quantum reflections) of the algebraic approach is commented on. (author) 34 refs
Einstein gravity 3-point functions from conformal field theory
Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-12-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.
Remarks on twisted noncommutative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2006-04-15
We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)
Quantum Field Theory at non zero temperature
International Nuclear Information System (INIS)
Alvarez-Estrada, R.
1989-01-01
The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)
Non standard analysis, polymer models, quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1984-01-01
We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)
On finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1984-01-01
The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)
Toward finite quantum field theories
International Nuclear Information System (INIS)
Rajpoot, S.; Taylor, J.G.
1986-01-01
The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)
An introduction to conformal field theory in two dimensions and string theory
International Nuclear Information System (INIS)
Wadia, S.R.
1989-01-01
This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields
Quantum field theory, horizons and thermodynamics
International Nuclear Information System (INIS)
Sciama, D.W.; Candelas, P.; Deutsch, D.
1981-01-01
The aim of the article is to obtain an intuitive understanding of the recently explored deep connections between thermal physics, quantum field theory and general relativity. A special case in which a detector moves with constant acceleration through a quantum vacuum is examined to clarify the fact that such a detector becomes thermally excited, with a temperature proportional to its acceleration. An elementary physical explanation of this fundamental result is provided. The uniformly accelerated observer finds his space-time manifold bounded by an event horizon and so realizes a 'model' black hole. Real black holes also have thermal properties when quantum effects are taken into account; these are described and the correspondences with the accelerated case are pointed out. In particular, an elementary account is given of the thermal Hawking radiation emitted by the black holes formed by collapsed stars. (author)
Progress in the axiomatic quantum field theory
International Nuclear Information System (INIS)
Vladimirov, V.S.; Polivanov, M.K.
1975-01-01
The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras
Energy Technology Data Exchange (ETDEWEB)
Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)
2004-07-01
Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual
Group contractions in quantum field theory
International Nuclear Information System (INIS)
Concini, C. De; Vitiello, G.
1979-01-01
General theorems are given for SU(n) and SO(n). A projective geometry argument is also presented with disclosure of the occurrence a group contraction mechanism as a geometric consequence of spontaneous breakdown of symmetry. It is also shown that a contraction of the conformal group gives account of the number of degrees of freedom of an n-pseudoparticle system in an Euclidean SU(2) gauge invariant Yang-Mills theory, in agreement with the result obtained by algebraic geometry methods. Low-energy theorems and ordered states symmetry patterns are observable manifestations of group contractions. These results seem to support the conjecture that the transition from quantum to classical physics involves a group contraction mechanism. (author)
Partition function of free conformal fields in 3-plet representation
Energy Technology Data Exchange (ETDEWEB)
Beccaria, Matteo [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento & INFN,Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)
2017-05-10
Simplest examples of AdS/CFT duality correspond to free CFTs in d dimensions with fields in vector or adjoint representation of an internal symmetry group dual in the large N limit to a theory of massless or massless plus massive higher spins in AdS{sub d+1}. One may also study generalizations when conformal fields belong to higher dimensional representations, i.e. carry more than two internal symmetry indices. Here we consider the case of the 3-fundamental (“3-plet”) representation. One motivation is a conjectured connection to multiple M5-brane theory: heuristic arguments suggest that it may be related to an (interacting) CFT of 6d (2,0) tensor multiplets in 3-plet representation of large N symmetry group that has an AdS{sub 7} dual. We compute the singlet partition function Z on S{sup 1}×S{sup d−1} for a free field in 3-plet representation of U(N) and analyse its novel large N behaviour. The large N limit of the low temperature expansion of Z which is convergent in the vector and adjoint cases here is only asymptotic, reflecting the much faster growth of the number of singlet operators with dimension, indicating a phase transition at very low temperature. Indeed, while the critical temperatures in the vector (T{sub c}∼N{sup γ}, γ>0) and adjoint (T{sub c}∼1) cases are finite, we find that in the 3-plet case T{sub c}∼(log N){sup −1}, i.e. it approaches zero at large N. We discuss some details of large N solution for the eigenvalue distribution. Similar conclusions apply to higher p-plet representations of U(N) or O(N) and also to the free p-tensor theories invariant under [U(N)]{sup p} or [O(N)]{sup p} with p≥3.
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
International Nuclear Information System (INIS)
Cheng Hung; Tsai Ercheng
1986-01-01
We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)
Popularity, likeability, and peer conformity: Four field experiments
Gommans, R.; Sandstrom, M.J.; Stevens, G.W.J.M.; Bogt, T.F.M. ter; Cillessen, A.H.N.
2017-01-01
Adolescents tend to alter their attitudes and behaviors to match those of others; a peer influence process named peer conformity. This study investigated to what extent peer conformity depended on the status (popularity and likeability) of the influencer and the influencee. The study consisted of
Studies on quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Zhang, S.
1987-01-01
This dissertation is a summary of research in various areas of theoretical physics and is divided into three parts. In the first part, quantum fluctuations of the recently proposed superconducting cosmic strings are studied. It is found that vortices on the string world sheet represent an important class of fluctuation modes which tend to disorder the system. Both heuristic arguments and detailed renormalization group analysis reveal that these vortices do not appear in bound pairs but rather from a gas of free vortices. Based on this observation we argue that this fluctuation mode violates the topological conservation law on which superconductivity is based. Anomalies and topological aspects of supersymmetric quantum field theories are studied in the second part of this dissertation. Using the superspace formulation of the N = 1 spinning string, we obtain a path integral measure which is free from the world-sheet general coordinate as well as the supersymmetry anomalies and therefore determine the conformal anomaly and critical dimension of the spinning string. We also apply Fujikawa's formalism to computer the chiral anomaly in conformal as well as ordinary supergravity. Finally, we given a Noether-method construction of the supersymmetrized Chern-Simons term in five dimensional supergravity. In the last part of this dissertation, the soliton excitations in the quarter-filled Peierls-Hubbard model are investigated in both the large and the small U limit. For a strictly one dimensional system at zero temperature, we find that solitons in both limits are in one-to-one correspondence, while in the presence of weak three dimensional couplings or at finite temperature, the large U systems differ qualitatively from the small U systems in that the spin associated with the solitons ceases to be a sharp quantum observable
Wavelet-Based Quantum Field Theory
Directory of Open Access Journals (Sweden)
Mikhail V. Altaisky
2007-11-01
Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Quantum fields in curved space-times
International Nuclear Information System (INIS)
Ashtekar, A.; Magnon, A.
1975-01-01
The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)
Loops in AdS from conformal field theory
Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric
2017-07-01
We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
The utility of quantum field theory
International Nuclear Information System (INIS)
Dine, Michael
2001-01-01
This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)
On the conformal transformation in *gλμ-unified field theory
International Nuclear Information System (INIS)
Lee, Il Young
1986-01-01
Chung gave the complete set of the general solutions of Einstein's equations in the Einstein's * g λμ -unified field theory for all classes and all possible indices of interia. In the present paper we shall investigate how the conformal transformation enforces the connection and give the complete relations between connections in * g λμ -unified field theory. Also we shall investigate how S λ is transformed by the conformal transformation and give conformally invariant connection. (Author)
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Recent developments in quantum field theory
International Nuclear Information System (INIS)
Ambjoern, J.; Petersen, J.L.; Durhuus, B.J.
1985-01-01
This is the second volume in a set of three containing the proceedings of 3 conferences held in Copenhagen, to mark the centennial of Niels Bohr. The purpose of this symposium was to bring together theoretical particle physicists to discuss the present status and, in particular, the latest developments in quantum field theory, in their broadest aspects. This volume contains the main 19 lectures and reflects the contemporary status of a line of development, one of whose initiators was Niels Bohr. (orig.)
The amplitude of quantum field theory
International Nuclear Information System (INIS)
Medvedev, B.V.; Pavlov, V.P.; Polivanov, M.K.; Sukhanov, A.D.
1989-01-01
General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number
Relative entanglement entropies in 1+1-dimensional conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Ruggiero, Paola; Calabrese, Pasquale [International School for Advanced Studies (SISSA) and INFN,Via Bonomea 265, 34136, Trieste (Italy)
2017-02-08
We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(ρ{sub 1}∥ρ{sub 0}) between two given reduced density matrices ρ{sub 1} and ρ{sub 0} of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(ρ{sub 1}ρ{sub 0}{sup n−1}) and define a set of Rényi relative entropies S{sub n}(ρ{sub 1}∥ρ{sub 0}). We compute these quantities for integer values of the parameter n and derive via the replica limit the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i∂ϕ, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement.
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Quantum Ising chains with boundary fields
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea
2015-01-01
We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)
Infinite-component conformal fields. Spectral representation of the two-point function
International Nuclear Information System (INIS)
Zaikov, R.P.; Tcholakov, V.
1975-01-01
The infinite-component conformal fields (with respect to the stability subgroup) are considered. The spectral representation of the conformally invariant two-point function is obtained. This function is nonvanishing as/lso for one ''fundamental'' and one infinite-component field
Malpetti, Daniele; Roscilde, Tommaso
2017-02-01
The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical
Light-cone AdS/CFT-adapted approach to AdS fields/currents, shadows, and conformal fields
Energy Technology Data Exchange (ETDEWEB)
Metsaev, R.R. [Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninsky prospect 53, Moscow 119991 (Russian Federation)
2015-10-16
Light-cone gauge formulation of fields in AdS space and conformal field theory in flat space adapted for the study of AdS/CFT correspondence is developed. Arbitrary spin mixed-symmetry fields in AdS space and arbitrary spin mixed-symmetry currents, shadows, and conformal fields in flat space are considered on an equal footing. For the massless and massive fields in AdS and the conformal fields in flat space, simple light-cone gauge actions leading to decoupled equations of motion are found. For the currents and shadows, simple expressions for all 2-point functions are also found. We demonstrate that representation of conformal algebra generators on space of currents, shadows, and conformal fields can be built in terms of spin operators entering the light-cone gauge formulation of AdS fields. This considerably simplifies the study of AdS/CFT correspondence. Light-cone gauge actions for totally symmetric arbitrary spin long conformal fields in flat space are presented. We apply our approach to the study of totally antisymmetric (one-column) and mixed-symmetry (two-column) fields in AdS space and currents, shadows, and conformal fields in flat space.
Noncommutative time in quantum field theory
International Nuclear Information System (INIS)
Salminen, Tapio; Tureanu, Anca
2011-01-01
We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.
Quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Jegerlehner, F.
1975-01-01
At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de
On quantum field theory in gravitational background
International Nuclear Information System (INIS)
Haag, R.; Narnhofer, H.; Stein, U.
1984-02-01
We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
Black holes, magnetic fields and particle creation. [Quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Gibbons, G W [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics
1976-10-01
Wald has given a classical argument suggesting that a rotating black hole immersed in a uniform magnetic field B will acquire a charge Q = 2JB where J is the angular momentum of the hole. The note contains a quantum field theoretic treatment of this process. For fields B greater than B/sub 0/ = 4 x 10/sup 13/ G the black hole will rapidly emit charged particles to achieve the equilibrium value. If B is less than the critical value the charge will remain zero.
Nonequilibrium fermion production in quantum field theory
International Nuclear Information System (INIS)
Pruschke, Jens
2010-01-01
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Non equilibrium quantum fields in cosmology
International Nuclear Information System (INIS)
Paz, J.P.
1991-01-01
The authors discuss the general framework used to construct a quantum mechanical model of the inflationary phase transition. The emer-gence of classical behavior in the longwavelength modes of the inflation is one of the facts that these models should address. For some toy examples (in which the inflation interacts with an environment consti-tuted by other fields) decoherence is shown of the modes with physical wavelength greater than the horizon. The authors use an approach based on a master equation. They take advantage of the similarities that exist between the master equation for the toy cosmological models and the one for the simple Quantum Brownian Motion. Recent results are discussed obtained for the general QBM problem (in which the environment has a generic spectral density). (author). 10 refs
Quaternionic non abelian relativistic quantum fields in four dimensions
International Nuclear Information System (INIS)
Albeverio, S.; Hoeegh-Krohn, R.
1986-01-01
We give a simple construction of certain Lie-group valued Euclidean Markov random fields and quantum fields in four dimensions. These fields can be looked upon as non abelian extensions of electromagnetic fields. (orig.)
Solutions of q-deformed equations with quantum conformal symmetry and nonzero spin
International Nuclear Information System (INIS)
Dobrev, V.K.; Gushterski, R.I.; Petrov, S.T.
1998-09-01
We consider the construction of explicit solutions of a hierarchy of q-deformed equations which are (conditionally) quantum conformal invariant. We give two types of solutions - polynomial solutions and solutions in terms of q-deformations of the plane wave. We use two q-deformations of the plane wave as a formal power series in the noncommutative coordinates of q-Minkowski space-time and four-momenta. One q-plane wave was proposed earlier by the first named author and B.S. Kostadinov, the other is new. The difference between the two is that they are written in conjugated bases. These q-plane waves are used here for the construction of solutions of the massless Dirac equation - one is used for the neutrino, the other for the antineutrino. It is also interesting that the neutrino solutions are deformed only through the q-pane wave, while the prefactor is classical. Thus, we can speak of a definite left-right asymmetry of the quantum conformal deformation of the neutrino-antineutrino system. (author)
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Fulling, S A [Texas A and M University (United States)
2006-05-21
Parts I and II develop the basic classical and quantum kinematics of fields and other dynamical systems. The presentation is conducted in the utmost generality, allowing for dynamical quantities that may be anticommuting (supernumbers) and theories subject to the most general possible gauge symmetry. The basic ingredients are action functionals and the Peierls bracket, a manifestly covariant replacement for the Poisson bracket and equal-time commutation relations. For DeWitt the logical progression is Peierls bracket {yields} Schwinger action principle {yields} Feynman functional integral although he points out that the historical development was in the opposite order. It must be pointed out that the Peierls-Schwinger-DeWitt approach, despite some advantages over initial-value formulations, has some troubles of its own. In particular, it has never completely escaped from the arena of scattering theory, the paradigm of conventional particle physics. One is naturally led to study matrix elements between an 'in-vacuum' and an 'out-vacuum' though such concepts are murky in situations, such as big bangs and black holes, where the ambient geometry is not asymptotically static in the far past and future. The newest material in the treatise appears in two chapters in part II devoted to the interpretation of quantum theory, incorporating some unpublished work of David Deutsch on the meaning of probability in physics. Parts III through V apply the formalism in depth to successively more difficult classes of systems: quantum mechanics, linear (free) fields, and interacting fields. DeWitt's characteristic tools of effective actions, heat kernels, and ghost fields are developed. Chapters 26 and 31 outline new approaches developed in collaboration with DeWitt's recent students C Molina-Paris and C Y Wang, respectively. The most of parts VI and VII consist of special topics, such as anomalies, particle creation by external fields, Unruh acceleration
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Fulling, S A
2006-01-01
Parts I and II develop the basic classical and quantum kinematics of fields and other dynamical systems. The presentation is conducted in the utmost generality, allowing for dynamical quantities that may be anticommuting (supernumbers) and theories subject to the most general possible gauge symmetry. The basic ingredients are action functionals and the Peierls bracket, a manifestly covariant replacement for the Poisson bracket and equal-time commutation relations. For DeWitt the logical progression is Peierls bracket → Schwinger action principle → Feynman functional integral although he points out that the historical development was in the opposite order. It must be pointed out that the Peierls-Schwinger-DeWitt approach, despite some advantages over initial-value formulations, has some troubles of its own. In particular, it has never completely escaped from the arena of scattering theory, the paradigm of conventional particle physics. One is naturally led to study matrix elements between an 'in-vacuum' and an 'out-vacuum' though such concepts are murky in situations, such as big bangs and black holes, where the ambient geometry is not asymptotically static in the far past and future. The newest material in the treatise appears in two chapters in part II devoted to the interpretation of quantum theory, incorporating some unpublished work of David Deutsch on the meaning of probability in physics. Parts III through V apply the formalism in depth to successively more difficult classes of systems: quantum mechanics, linear (free) fields, and interacting fields. DeWitt's characteristic tools of effective actions, heat kernels, and ghost fields are developed. Chapters 26 and 31 outline new approaches developed in collaboration with DeWitt's recent students C Molina-Paris and C Y Wang, respectively. The most of parts VI and VII consist of special topics, such as anomalies, particle creation by external fields, Unruh acceleration temperature, black holes, and
A general field-covariant formulation of quantum field theory
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
From PT-symmetric quantum mechanics to conformal field theory
Indian Academy of Sciences (India)
Author Affiliations. Patrick Dorey1 Clare Dunning2 Roberto Tateo3. Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK; IMSAS, University of Kent, Canterbury CT2 7NF, UK; Dip. di Fisica Teorica and INFN, Università di Torino, Via P. Giuria 1, 10125 Torino,Italy ...
A relativistic theory for continuous measurement of quantum fields
International Nuclear Information System (INIS)
Diosi, L.
1990-04-01
A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs
Functional representations for quantized fields
International Nuclear Information System (INIS)
Jackiw, R.
1988-01-01
This paper provides information on Representing transformations in quantum theory bosonic quantum field theories: Schrodinger Picture; Represnting Transformations in Bosonic Quantum Field Theory; Two-Dimensional Conformal Transformations, Schrodinger picture representation, Fock space representation, Inequivalent Schrodinger picture representations; Discussion, Self-Dual and Other Models; Field Theory in de Sitter Space. Fermionic Quantum Field Theories: Schroedinger Picture; Schrodinger Picture Representation for Two-Dimensional; Conformal Transformations; Fock Space Dynamics in the Schrodinger Picture; Fock Space Evaluation of Anomalous Current and Conformal Commutators
BRST structure of two dimensional conformal field theories
International Nuclear Information System (INIS)
Rivelles, V.O.
1987-09-01
We present a procedure to obtain the BRST charge for the representations of the Virassoro algebra. For C ≤ 1 the BRST charge has in general terms containing products of more than three ghosts. It is nilpotent for any allowed value of the central charge and conformal weight of the representation. (Author) [pt
Quantum entanglement in strong-field ionization
Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila
2017-10-01
We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.
Boundaries immersed in a scalar quantum field
International Nuclear Information System (INIS)
Actor, A.A.; Bender, I.
1996-01-01
We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
Quantum fields at finite temperature and density
International Nuclear Information System (INIS)
Blaizot, J.P.
1991-01-01
These lectures are an elementary introduction to standard many-body techniques applied to the study of quantum fields at finite temperature and density: perturbative expansion, linear response theory, quasiparticles and their interactions, etc... We emphasize the usefulness of the imaginary time formalism in a wide class of problems, as opposed to many recent approaches based on real time. Properties of elementary excitations in an ultrarelativistic plasma at high temperature or chemical potential are discussed, and recent progresses in the study of the quark-gluon plasma are briefly reviewed
A new tool in the classification of rational conformal field theories
International Nuclear Information System (INIS)
Christe, P.; Ravanini, F.
1988-10-01
The fact that in any rational conformal field theory (RCFT) 4-point functions on the sphere must satisfy an ordinary differential equation gives a simple condition on the conformal dimensions of primary fields. We discuss how this can help in the classification program of RCFT. As an example all associative fusion rules with less than four non-trivial primary fields and N ijk <<1 are discussed. Another application to the classification of chiral algebras is briefly mentioned. (orig.)
The foundational origin of integrability in quantum field theory
International Nuclear Information System (INIS)
Schroer, Bert; FU-Berlin
2012-02-01
There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
Relativistic quantum information in detectors–field interactions
International Nuclear Information System (INIS)
Hu, B L; Lin, Shih-Yuin; Louko, Jorma
2012-01-01
We review Unruh–DeWitt detectors and other models of detector–field interaction in a relativistic quantum field theory setting as a tool for extracting detector–detector, field–field and detector–field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. In particular, we highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behavior. (paper)
Quantum field theory in stationary coordinate systems
International Nuclear Information System (INIS)
Pfautsch, J.D.
1981-01-01
Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge
Realization of vector fields for quantum groups as pseudodifferential operators on quantum spaces
International Nuclear Information System (INIS)
Chu, Chong-Sun; Zumino, B.
1995-01-01
The vector fields of the quantum Lie algebra are described for the quantum groups GL q (n), SL q (N) and SO q (N) as pseudodifferential operators on the linear quantum spaces covariant under the corresponding quantum group. Their expressions are simple and compact. It is pointed out that these vector fields satisfy certain characteristic polynomial identities. The real forms SU q (N) and SO q (N,R) are discussed in detail
Virasoro conformal blocks and thermality from classical background fields
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A. Liam [Stanford Institute for Theoretical Physics, Stanford University,Via Pueblo, Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory,Sand Hill Road, Menlo Park, CA 94025 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,Charles Street, Baltimore, MD 21218 (United States); Walters, Matthew T. [Department of Physics, Boston University,Commonwealth Avenue, Boston, MA 02215 (United States)
2015-11-30
We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. We comment on the implications of our results for the universality of black hole thermality in AdS{sub 3}, or equivalently, the eigenstate thermalization hypothesis for CFT{sub 2} at large central charge.
Particles and energy fluxes from a conformal field theory perspective
International Nuclear Information System (INIS)
Fabbri, A.; Navarro-Salas, J.; Olmo, G.J.
2004-01-01
We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogoliubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy
An invitation to quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, Luis; Vazquez-Mozo, Miguel A.
2012-01-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
Jets and Metastability in Quantum Mechanics and Quantum Field Theory
Farhi, David
I give a high level overview of the state of particle physics in the introduction, accessible without any background in the field. I discuss improvements of theoretical and statistical methods used for collider physics. These include telescoping jets, a statistical method which was claimed to allow jet searches to increase their sensitivity by considering several interpretations of each event. We find that indeed multiple interpretations extend the power of searches, for both simple counting experiments and powerful multivariate fitting experiments, at least for h → bb¯ at the LHC. Then I propose a method for automation of background calculations using SCET by appropriating the technology of Monte Carlo generators such as MadGraph. In the third chapter I change gears and discuss the future of the universe. It has long been known that our pocket of the standard model is unstable; there is a lower-energy configuration in a remote part of the configuration space, to which our universe will, eventually, decay. While the timescales involved are on the order of 10400 years (depending on how exactly one counts) and thus of no immediate worry, I discuss the shortcomings of the standard methods and propose a more physically motivated derivation for the decay rate. I then make various observations about the structure of decays in quantum field theory.
Quantum field theory lectures of Sidney Coleman
Derbes, David; Griffiths, David; Hill, Brian; Sohn, Richard; Ting, Yuan-Sen
2018-01-01
Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the ancient Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Boundary conformal field theory analysis of the H+3 model
International Nuclear Information System (INIS)
Adorf, Hendrik
2008-01-01
The central topic of this thesis is the study of consistency conditions for the maximally symmetric branes of the H + 3 model. It is carried out by deriving constraints in the form of so-called shift equations and analysing their solutions. This results in explicit expressions for the one point functions in the various brane backgrounds. The brane spectrum becomes organized in certain continuous and discrete series. In the first part, we give an introduction to two dimensional conformal field theory (CFT) in the framework of vertex operator algebras and their modules. As this approach has been developed along with rational CFT, we pay attention to adapt it to the special needs of the nonrational H + 3 model. Part two deals with boundary CFT only. We start with a review of some basic techniques of boundary CFT and the Cardy-Lewellen sewing relations that will be at the heart of all following constructions. Afterwards, we introduce the systematics of brane solutions that we are going to follow. With the distinction between regular and irregular one point functions, we propose a new additional pattern according to which the brane solutions must be organized. We argue that all isospin dependencies must be subjected to the sewing constraints. At this point, the programme to be carried out is established and we are ready to derive the missing 1/2-shift equations for the various types of AdS 2 branes in order to make the list of this kind of equation complete. Then we address the b -2 /2-shift equations. It turns out that their derivation is not straightforward: One needs to extend the initial region of definition of a certain (boundary CFT) two point function to a suitable patch. Therefore, a continuation prescription has to be assumed. The most natural candidate is analytic continuation. We show that it can be carried out, although it is rather technical and involves the use of certain generalized hypergeometric functions in two variables. In this way, we derive a
Correlation inequalities for the Yukawa2 quantum field theory
International Nuclear Information System (INIS)
Rosen, L.
1981-01-01
Correlation inequalities have been useful in statistical mechanics and quantum field theory. In particular, in the case of strongly coupled bose quantum field models such as P(phi) 2 , correlation inequalities provide the best control of the infinite volume limit. The author reports on work in which the FKG inequality was established in the Yukawa 2 quantum field theory. An elementary proof of the first Griffiths inequality is also given. (Auth.)
International Nuclear Information System (INIS)
Frohlich, J.
1976-01-01
We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.
Quantum revivals in the motion of electron in magnetic field
International Nuclear Information System (INIS)
Filipowicz, P.; Mostowski, J.
1981-01-01
We show that the motion of a relativistic electron in constant homogeneous magnetic field exhibits quasiperiodic behaviour (quantum revivals) and discuss the possibility of their observation. (author)
Solutions of deformed d'Alembert equation with quantum conformal symmetry
International Nuclear Information System (INIS)
Dobrev, V.K.; Kostadinov, B.S.
1997-10-01
We construct explicit solutions of a conditionally quantum conformal invariant q-d'Alembert equation proposed earlier by one of us. We give two types of solutions - polynomial solutions and a q-deformation of the plane wave. The latter is a formal power series in the noncommutative coordinates of q-Minkowski space-time and four-momenta. This q-plane wave has analogous properties to the classical one, in particular, it has the properties of q-Lorentz covariance, and it satisfies the q-d'Alembert equation on the q-Lorentz covariant momentum cone. On the other hand, our q-plane wave is not an exponent or q-exponent. Thus, it differs conceptually from the classical plane wave and may serve as a regularization. (author)
Boundary effects in quantum field theory
International Nuclear Information System (INIS)
Deutsch, D.; Candelas, P.
1979-01-01
Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary
Differential equation for genus-two characters in arbitrary rational conformal field theories
International Nuclear Information System (INIS)
Mathur, S.D.; Sen, A.
1989-01-01
We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)
Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
International Nuclear Information System (INIS)
Fouxon, Itzhak; Oz, Yaron
2008-01-01
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
Minimal Representations and Reductive Dual Pairs in Conformal Field Theory
International Nuclear Information System (INIS)
Todorov, Ivan
2010-01-01
A minimal representation of a simple non-compact Lie group is obtained by 'quantizing' the minimal nilpotent coadjoint orbit of its Lie algebra. It provides context for Roger Howe's notion of a reductive dual pair encountered recently in the description of global gauge symmetry of a (4-dimensional) conformal observable algebra. We give a pedagogical introduction to these notions and point out that physicists have been using both minimal representations and dual pairs without naming them and hence stand a chance to understand their theory and to profit from it.
Non-singular string-cosmologies from exact conformal field theories
International Nuclear Information System (INIS)
Vega, H.J. de; Larsen, A.L.; Sanchez, N.
2001-01-01
Non-singular two and three dimensional string cosmologies are constructed using the exact conformal field theories corresponding to SO(2,1)/SO(1,1) and SO(2,2)/SO(2,1). All semi-classical curvature singularities are canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge. However, considering different patches of the global manifolds, allows the construction of non-singular space-times with cosmological interpretation. In both two and three dimensions, we construct non-singular oscillating cosmologies, non-singular expanding and inflationary cosmologies including a de Sitter (exponential) stage with positive scalar curvature as well as non-singular contracting and deflationary cosmologies. Similarities between the two and three dimensional cases suggest a general picture for higher dimensional coset cosmologies: Anisotropy seems to be a generic unavoidable feature, cosmological singularities are generically avoided and it is possible to construct non-singular cosmologies where some spatial dimensions are experiencing inflation while the others experience deflation
Protected gates for topological quantum field theories
International Nuclear Information System (INIS)
Beverland, Michael E.; Pastawski, Fernando; Preskill, John; Buerschaper, Oliver; Koenig, Robert; Sijher, Sumit
2016-01-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group
Electromagnetic fields on a quantum scale. I.
Grimes, Dale M; Grimes, Craig A
2002-10-01
This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.
Effective and fundamental quantum fields at criticality
Energy Technology Data Exchange (ETDEWEB)
Scherer, Michael
2010-10-28
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
Effective and fundamental quantum fields at criticality
International Nuclear Information System (INIS)
Scherer, Michael
2010-01-01
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.
2018-02-01
In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.
Directory of Open Access Journals (Sweden)
Hovorun D. M.
2011-04-01
Full Text Available Aim. To determine the lifetime of the mutagenic cytosine derivatives through the investigation of the physicochemical mechanisms of their intramolecular proton transfer. Methods. Non-empirical quantum chemistry, the analysis of the electron density by means of Bader’s atoms in molecules (AIM theory and physicochemical kinetics were used. Results. It is shown that the modification of all investigated compounds, except DCyt, prevents their pairing in both mutagenic and canonical tautomeric forms with a base which is an interacting partner. This effect can inhibit their mutagenic potential. It is also established that Watson-Crick tautomeric hypothesis can be formally expanded for the investigated molecules so far as a lifetime of the mutagenic tautomers much more exceeds characteristic time for the incorporation of one nucleotides pair by DNA biosynthesis machinery. It seems that just within the frame of this hypothesis it will be possible to give an adequate explanation of the mechanisms of mutagenic action of N4-aminocytosine, N4-methoxycytosine, N4-hydroxycytosine and N4dehydrocytosine, which have much more energy advantageous imino form in comparison with amino form. Conclusions. For the first time the comprehensive conformational analysis of a number of classical mutagens, namely cytosine derivatives, has been performed using the methods of non-empirical quantum chemistry at the MP2/6-311++G (2df,pd//B3LYP/6-311++G(d,p level of theory
Temporal description of thermal quantum fields
International Nuclear Information System (INIS)
Umezawa, H.; Yamanaka, Y.
1992-01-01
In this paper, making use of time-dependent Bogoliubov transformations, the authors develop a calculation technique for time-dependent non-equilibrium systems of quantum fields in a time-representation (t-representation). The corrected one-body propagator in the t-representation turns out to have the form B - 1 (diagonal matrix) B (B being a thermal Bogoliubov matrix). Applying the usual on-shell concept to the diagonal matrix part of the self-energy, we formulate a self-consistent renormalization scheme. This renormalization determines the vacuum and leads to a kinetic equation for the number density parameter, which reduces to the Boltzmann equation in the lowest approximation. This gives the authors the increasing entropy in time (the second law of thermodynamics)
Euclidean quantum field theory and the Hawking effect
International Nuclear Information System (INIS)
Lapedes, A.S.
1978-01-01
Complex analytic continuation in a time variable in order to define a Feynman propagator is investigated in a general relativistic context. When external electric fields are present a complex analytic continuation in the electric charge is also introduced. The new Euclidean formalism is checked by reproducing Schwinger's special relativistic result for pair creation by an external, homogenous, electric field, and then applied to the Robinson-Bertotti universe. The Robinson-Bertotti universe, although unphysical, provides an interesting theoretical laboratory in which to investigate quantum effects, much as the unphysical Taub-NUT (Newman-Unti-Tamburino) universe does for purely classical general relativity. A conformally related problem of pair creation by a supercritically charged nucleus is also considered, and a sensible resolution is obtained to this classic problem. The essential mathematical point throughout is the use of the Feynman path-integral form of the propagator to motivate replacing hyperbolic equations by elliptic equations. The unique, bounded solution for the elliptic Green's function is then analytically continued back to physical values to define the Feynman Green's function
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Thermal quantum discord of spins in an inhomogeneous magnetic field
International Nuclear Information System (INIS)
Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan
2011-01-01
In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.
International Nuclear Information System (INIS)
Baseilhac, P.; Fateev, V.A.
1998-01-01
We calculate the vacuum expectation values of local fields for the two-parameter family of integrable field theories introduced and studied by Fateev (1996). Using this result we propose an explicit expression for the vacuum expectation values of local operators in parafermionic sine-Gordon models and in integrable perturbed SU(2) coset conformal field theories. (orig.)
Lectures on algebraic quantum field theory and operator algebras
International Nuclear Information System (INIS)
Schroer, Bert
2001-04-01
In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)
Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction
International Nuclear Information System (INIS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory
Conformal use of retarded Green's functions for the Maxwell field in de Sitter space
International Nuclear Information System (INIS)
Faci, S.; Huguet, E.; Renaud, J.
2011-01-01
We propose a new propagation formula for the Maxwell field in de Sitter space which exploits the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Green's function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.
Dirac's equation and the nature of quantum field theory
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2012-01-01
This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.
Relativistic quantum chaos-An emergent interdisciplinary field.
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
Relativistic quantum chaos—An emergent interdisciplinary field
Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso
2018-05-01
Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.
International Nuclear Information System (INIS)
Hueffel, H.
2004-01-01
The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)
Quantum golden field theory - Ten theorems and various conjectures
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
Ten theorems and few conjectures related to quantum field theory as applied to high energy physics are presented. The work connects classical quantum field theory with the golden mean renormalization groups of non-linear dynamics and E-Infinity theory
Revisiting the conformal invariance of the scalar field: From Minkowski space to de Sitter space
International Nuclear Information System (INIS)
Huguet, E.; Queva, J.; Renaud, J.
2008-01-01
In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal [i.e. SO(2,d)] invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO(2,d). It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms
Dimension shifting operators and null states in 2D conformally invariant field theories
International Nuclear Information System (INIS)
Gervais, J.L.
1986-01-01
We discuss the existence and properties of differential operators which transform covariant operators into covariant operators of different weights in two-dimensional conformally invariant field theories. We relate them to null states and the vanishing of the Kac determinant in representations of the conformal algebra, and to the existence of differential equations for Green functions of covariant operators. In this framework, we rederive the essential features of our earlier work on dual models with shifted intercept, which in euclidean space-time gives explicit solutions of the conformal bootstrap equations where all operators are marginal. (orig.)
Classical Solutions in Quantum Field Theory
International Nuclear Information System (INIS)
Mann, Robert
2013-01-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons-–kinks, vortices, and magnetic monopoles-–and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is
Group of local biholomorphisms of C/sup 1/ and conformal field theory on the operator formalism
Energy Technology Data Exchange (ETDEWEB)
Budzynski, R.J.; Klimek, S.; Sadowski, P.
1989-01-01
Motivated by the operator formulation of conformal field theory on Riemann surfaces, we study the properties of the infinite dimensional group of local biholomorphic transformations (conformal reparametrizations) of C/sup 1/ and develop elements of its representation theory.
Directory of Open Access Journals (Sweden)
Seied R Mahdavi
2012-01-01
Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.
Fedosov quantization and perturbative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Collini, Giovanni
2016-12-12
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.
N=8 supersingleton quantum field theory
International Nuclear Information System (INIS)
Bergshoeff, E.; Salam, A.; Sezgin, E.; Tanii, Yoshiaki.
1988-06-01
We quantise the N=8 supersymmetric singleton field theory which is formulated on the boundary of the four dimensional anti de Sitter spacetime (AdS 4 ). The theory has rigid OSp(8,4) symmetry which acts as a superconformal group on the boundary of AdS 4 . We show that the generators of this symmetry satisfy the full quantum OSp(8,4) algebra. The spectrum of the theory contains massless states of all higher integer and half-integer spin which fill the irreducible representations of OSp(8,4) with highest spin s max =2,4,6,... Remarkably, these are in one to one correspondence with the generators of Vasiliev's infinite dimensional extended higher spin superalgebra shs(8,4), suggesting that we may have stumbled onto a field theoretic realization of this algebra. We also discuss the possibility of a connection between the N=8 supersingleton theory with the eleven dimensional supermembrane in an AdS 4 xS 7 background. (author). 34 refs
Perturbative quantum field theory via vertex algebras
International Nuclear Information System (INIS)
Hollands, Stefan; Olbermann, Heiner
2009-01-01
In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.
Conformal scalar fields and chiral splitting on super Riemann surfaces
International Nuclear Information System (INIS)
D'Hoker, E.; Phong, D.H.
1989-01-01
We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)
Modular invariance and (quasi)-Galois symmetry in conformal field theory
International Nuclear Information System (INIS)
Schellekens, A.N.
1995-01-01
A brief heuristic explanation is given of recent work with Juergen Fuchs, Beatriz Gato-Rivera and Christoph Schweigert on the construction of modular invariant partition functions from Galois symmetry in conformal field theory. A generalization, which we call quasi-Galois symmetry, is also described. As an application of the latter, the invariants of the exceptional algebras at level g (for example E s level 30) expected from conformal embeddings are presented. (orig.)
Properties of partial-wave amplitudes in conformal invariant field theories
Ferrara, Sergio; Grillo, A F
1975-01-01
Analyticity properties of partial-wave amplitudes of the conformal group O/sub D,2/ (D not necessarily integer) in configuration space are investigated. The presence of Euclidean singularities in the Wilson expansion in conformal invariant field theories is discussed, especially in connection with the program of formulating dynamical bootstrap conditions coming from the requirement of causality. The exceptional case of D-2 is discussed in detail. (18 refs).
An algebraic approach towards the classification of 2 dimensional conformal field theories
International Nuclear Information System (INIS)
Bouwknegt, P.G.
1988-01-01
This thesis treats an algebraic method for the construction of 2-dimensional conformal field theories. The method consists of the study of the representation theory of the Virasoro algebra and suitable extensions of this. The classification of 2-dimensional conformal field theories is translated into the classification of combinations of representations which satisfy certain consistence conditions (unitarity and modular invariance). For a certain class of 2-dimensional field theories, namely the one with central charge c = 1 from the theory of Kac-Moody algebra's. there exist indications, but as yet mainly hope, that this construction will finally lead to a classification of 2-dimensional conformal field theories. 182 refs.; 2 figs.; 26 tabs
Exploring conformational space using a mean field technique with ...
Indian Academy of Sciences (India)
PRAKASH KUMAR
2007-06-21
Jun 21, 2007 ... structure of a peptide or protein have their fundamental theoretical ..... MOLS procedure has not considered such intermolecular interactions. ..... Takada S 2001 Protein Folding Simulation With Solvent-Induced. Force Field: ...
Einstein and interpretation of quantum field theory
International Nuclear Information System (INIS)
Kashlyun, F.
1982-01-01
The main problems of the quantum theory, the basis of which was laid by Planck in 1900 as a result of the discovery of elementary quantum of action, are examined. The most important Einstein contributions to the quantum theory are enumerated. The Einstein work about the light quanta, proved wave-particle dualism, stated one of the most complicated problems to the physics. The work on the specific heat capacity of solids shows that the quantum theory should be beyond the limits of the narrow range of the problems on black radiation. The works on the equilibrium of radiation have convincingly demonstrates statistical character of the radiation processes and have marked the way to Heizenberg form of the quantum mechanics. Einstein generalized the idea of wave-particle dualism to the ordinary gas. It helped to prepare the Schroedinger form of quantum mechanics
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
Probing a quantum field in a photon box
International Nuclear Information System (INIS)
Raimond, J M; Meunier, T; Bertet, P; Gleyzes, S; Maioli, P; Auffeves, A; Nogues, G; Brune, M; Haroche, S
2005-01-01
Einstein often performed thought experiments with 'photon boxes', storing fields for unlimited times. This is yet but a dream. We can nevertheless store quantum microwave fields in superconducting cavities for billions of periods. Using circular Rydberg atoms, it is possible to probe in a very detailed way the quantum state of these trapped fields. Cavity quantum electrodynamics tools can be used for a direct determination of the Husimi Q and Wigner quasi-probability distributions. They provide a very direct insight into the classical or non-classical nature of the field
Bianchi type-I model with conformally invariant scalar and electromagnetic field
International Nuclear Information System (INIS)
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-01-01
A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt
From Quantum Mechanics to Quantum Field Theory: The Hopf route
Energy Technology Data Exchange (ETDEWEB)
Solomon, A I [Physics and Astronomy Department, Open University, Milton Keynes MK7 6AA (United Kingdom); Duchamp, G H E [Institut Galilee, LIPN, CNRS UMR 7030 99 Av. J.-B. Clement, F-93430 Villetaneuse (France); Blasiak, P; Horzela, A [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Division of Theoretical Physics, ul. Eliasza-Radzikowskiego 152, PL 31-342 Krakow (Poland); Penson, K A, E-mail: a.i.solomon@open.ac.uk, E-mail: gduchamp2@free.fr, E-mail: pawel.blasiak@ifj.edu.pl, E-mail: andrzej.horzela@ifj.edu.pl, E-mail: penson@lptl.jussieu.fr [Lab.de Phys.Theor. de la Matiere Condensee, University of Paris VI (France)
2011-03-01
We show that the combinatorial numbers known as Bell numbers are generic in quantum physics. This is because they arise in the procedure known as Normal ordering of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, inter alia. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the exponential generating function of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function. We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function. Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems.
The quantum harmonic oscillator on a circle and a deformed quantum field theory
International Nuclear Information System (INIS)
Rego-Monteiro, M.A.
2001-05-01
We construct a deformed free quantum field theory with an standard Hilbert space based on a deformed Heisenberg algebra. This deformed algebra is a Heisenberg-type algebra describing the first levels of the quantum harmonic oscillator on a circle of large length L. The successive energy levels of this quantum harmonic oscillator on a circle of large length L are interpreted, similarly to the standard quantum one-dimensional harmonic oscillator on an infinite line, as being obtained by the creation of a quantum particle of frequency w at very high energies. (author)
Galois and simple current symmetries in conformal field theory
International Nuclear Information System (INIS)
Schweigert, C.
1995-01-01
In this thesis various aspects of rational field theories are studied. In part I explicit examples for N=2 superconformal field theories are constructed by means of the coset approach. By means of these models string vacua are constructed, and the massless spectra of the string compactifications based on these models are computed. The symmetry of the S matrix, which implements the modular transformation on the space of characters is the subject of Part II. The developed methods are applied to the fusion rings of WZW theories. (HSI)
Near-field strong coupling of single quantum dots.
Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert
2018-03-01
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.