WorldWideScience

Sample records for conformal imprint lithography

  1. Large area nanoimprint by substrate conformal imprint lithography (SCIL)

    Science.gov (United States)

    Verschuuren, Marc A.; Megens, Mischa; Ni, Yongfeng; van Sprang, Hans; Polman, Albert

    2017-06-01

    Releasing the potential of advanced material properties by controlled structuring materials on sub-100-nm length scales for applications such as integrated circuits, nano-photonics, (bio-)sensors, lasers, optical security, etc. requires new technology to fabricate nano-patterns on large areas (from cm2 to 200 mm up to display sizes) in a cost-effective manner. Conventional high-end optical lithography such as stepper/scanners is highly capital intensive and not flexible towards substrate types. Nanoimprint has had the potential for over 20 years to bring a cost-effective, flexible method for large area nano-patterning. Over the last 3-4 years, nanoimprint has made great progress towards volume production. The main accelerator has been the switch from rigid- to wafer-scale soft stamps and tool improvements for step and repeat patterning. In this paper, we discuss substrate conformal imprint lithography (SCIL), which combines nanometer resolution, low patterns distortion, and overlay alignment, traditionally reserved for rigid stamps, with the flexibility and robustness of soft stamps. This was made possible by a combination of a new soft stamp material, an inorganic resist, combined with an innovative imprint method. Finally, a volume production solution will be presented, which can pattern up to 60 wafers per hour.

  2. Programmable imprint lithography template

    Science.gov (United States)

    Cardinale, Gregory F [Oakland, CA; Talin, Albert A [Livermore, CA

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  3. Roll-to-roll UV imprint lithography for flexible electronics

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Barbu, I.; Meinders, E.R.; Bremen, A. van; Iosad, N.; Werf, R. van der; Onvlee, H.

    2011-01-01

    We propose a roll-to-roll UV imprint lithography tool as a way to pattern flexible PET foil with µm-resolution. As a way to overcome dimensional instability of the foil and its effect on overlay, a self-align approach was investigated, that permits to make several layers in a single lithography

  4. 3D Simulation of Nano-Imprint Lithography

    DEFF Research Database (Denmark)

    Román Marín, José Manuel; Rasmussen, Henrik K.; Hassager, Ole

    2010-01-01

    A proof of concept study of the feasibility of fully three-dimensional (3D) time-dependent simulation of nano-imprint lithography of polymer melt, where the polymer is treated as a structured liquid, has been presented. Considering the flow physics of the polymer as a structured liquid, we have...

  5. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  6. Inspection of imprint lithography patterns for semiconductor and patterned media

    Science.gov (United States)

    Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.

    2010-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology

  7. Imprint lithography: lab curiosity or the real NGL

    Science.gov (United States)

    Resnick, Douglas J.; Dauksher, William J.; Mancini, David P.; Nordquist, Kevin J.; Bailey, Todd C.; Johnson, Stephen C.; Stacey, Nicholas A.; Ekerdt, John G.; Willson, C. Grant; Sreenivasan, S. V.; Schumaker, Norman E.

    2003-06-01

    The escalating cost for Next Generation Lithography (NGL) tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990s, several resarech groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as Step and Flash Imprint Lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of teh wafer and template. This paper traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry.

  8. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  9. 450mm wafer patterning with jet and flash imprint lithography

    Science.gov (United States)

    Thompson, Ecron; Hellebrekers, Paul; Hofemann, Paul; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-09-01

    The next step in the evolution of wafer size is 450mm. Any transition in sizing is an enormous task that must account for fabrication space, environmental health and safety concerns, wafer standards, metrology capability, individual process module development and device integration. For 450mm, an aggressive goal of 2018 has been set, with pilot line operation as early as 2016. To address these goals, consortiums have been formed to establish the infrastructure necessary to the transition, with a focus on the development of both process and metrology tools. Central to any process module development, which includes deposition, etch and chemical mechanical polishing is the lithography tool. In order to address the need for early learning and advance process module development, Molecular Imprints Inc. has provided the industry with the first advanced lithography platform, the Imprio® 450, capable of patterning a full 450mm wafer. The Imprio 450 was accepted by Intel at the end of 2012 and is now being used to support the 450mm wafer process development demands as part of a multi-year wafer services contract to facilitate the semiconductor industry's transition to lower cost 450mm wafer production. The Imprio 450 uses a Jet and Flash Imprint Lithography (J-FILTM) process that employs drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for markets including NAND Flash memory, patterned media for hard disk drives and displays. This paper reviews the recent performance of the J-FIL technology (including overlay, throughput and defectivity), mask development improvements provided by Dai Nippon Printing, and the application of the technology to a 450mm lithography platform.

  10. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei; Lin, Liang; Xu, Yelong; Guo, Xu; Liu, Xiaoping; Ge, Haixiong; Lu, Minghui; Cui, Bo; Chen, Yanfeng

    2014-01-01

    manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage

  11. Double-layer imprint lithography on wafers and foils from the submicrometer to the millimeter scale

    NARCIS (Netherlands)

    Moonen, P.F.; Yakimets, I.; Peter, M.; Meinders, E.R.; Huskens, J.

    2011-01-01

    In this paper, a thermal imprint technique, double-layer nanoimprint lithography (dlNIL), is introduced, allowing complete filling of features in the dimensional range of submicrometer to millimeter. The imprinting and filling quality of dlNIL was studied on Si substrates as a model system and

  12. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei

    2014-03-01

    Nanoimprint lithography (NIL) is a cost-efficient nanopatterning technology because of its promising advantages of high throughput and high resolution. However, accurate multilevel overlay capability of NIL required for integrated circuit manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage in the manufacture of the coplanar structures, such as integrated plasmonic devices. In this paper, we develop a new process of planar self-alignment imprint lithography (P-SAIL) to fabricate the metallic and dielectric structures on the same plane. P-SAIL transfers the multilevel imprint processes to a single-imprint process which offers higher efficiency and less cost than existing manufacturing methods. Such concept is demonstrated in an example of fabricating planar plasmonic structures consisting of different materials. © 2014 Springer-Verlag Berlin Heidelberg.

  13. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, S.; Luttge, R.

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  14. Reactive Imprint Lithography: Combined Topographical Patterning and Chemical Surface Functionalization of Polystyrene-block-poly(tert-butyl acrylate) Films

    NARCIS (Netherlands)

    Duvigneau, Joost; Cornelissen, Stijn; Bardajı´Valls, Nuria; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    Here, reactive imprint lithography (RIL) is introduced as a new, one-step lithographic tool for the fabrication of large-area topographically patterned, chemically activated polymer platforms. Films of polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) are imprinted with PDMS master stamps at

  15. Fabrication of tunable diffraction grating by imprint lithography with photoresist mold

    Science.gov (United States)

    Yamada, Itsunari; Ikeda, Yusuke; Higuchi, Tetsuya

    2018-05-01

    We fabricated a deformable transmission silicone [poly(dimethylsiloxane)] grating using a two-beam interference method and imprint lithography and evaluated its optical characteristics during a compression process. The grating pattern with 0.43 μm depth and 1.0 μm pitch was created on a silicone surface by an imprinting process with a photoresist mold to realize a simple, low-cost fabrication process. The first-order diffraction transmittance of this grating reached 10.3% at 632.8 nm wavelength. We also measured the relationship between the grating period and compressive stress to the fabricated elements. The grating period changed from 1.0 μm to 0.84 μm by 16.6% compression of the fabricated element in one direction, perpendicular to the grooves, and the first-order diffraction transmittance was 8.6%.

  16. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    Science.gov (United States)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  17. Nanostructured Polymer Brushes by UV-Assisted Imprint Lithography and Surface-Initiated Polymerization for Biological Functions

    NARCIS (Netherlands)

    Benetti, Edmondo Maria; Acikgoz, C.; Sui, Xiaofeng; Vratzov, Boris; Hempenius, Mark A.; Huskens, Jurriaan; Vancso, Gyula J.

    2011-01-01

    Functional polymer brush nanostructures are obtained by combining step-and-flash imprint lithography (SFIL) with controlled, surface-initiated polymerization (CSIP). Patterning is achieved at length scales such that the smallest elements have dimensions in the sub-100 nm range. The patterns exhibit

  18. Nano imprint lithography of textures for light trapping in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Notta, J.B.; Pex, P.P.A.C. [ECN-Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands); Schipper, W.; Wilde, R. [Nanoptics GmbH, Innungsstrasse 5, 21244 Buchholz (Germany)

    2012-09-15

    Nano Imprint Lithography (NIL) is a versatile and commercially viable technology for fabrication of structures for light trapping in solar cells. We demonstrate the applicability of NIL in thin film silicon solar cells in substrate configuration, where NIL is used to fabricate a textured rear contact of the solar cells. We applied random structures, based on the natural texture of SnO:F grown by APCVD, and designed 2D periodic structures and show that for single junction {mu}c-Si cells these textured rear contacts lead to an increase of Jsc of more than 40 % in comparison to cells with flat rear contacts. Cells on optimized periodic textures showed higher fill factors which can be attributed to reduced microcrack formation, leading to less shunting in comparison to cells on random textures.

  19. UV curing imprint lithography for micro-structure in MEMS manufacturing

    International Nuclear Information System (INIS)

    Ding Yucheng; Liu Hongzhong; Lu Bingheng; Qiu Zhihui

    2006-01-01

    Imprint lithography has been gaining popularity as a new method to fabricate microelectro mechanical systems. The main advantages of the IL are its extremely low set-up cost, high replicating accuracy and extended fabricating critical dimension. Compare to traditional optical lithography, IL has the advantages of being able to fabricate complex pattern structure with high-aspect ratio. However, the thermal and loading errors can reduce pattern transferring fidelity. In this paper, UV curing method is used in IL process which can avoid the heat distortion of tools. Additionally, a six-step loading process for template pressing into resist film is developed. The performance of this process include: the loading locus is continuous with very high accuracy (10nm), the press releasing control (accuracy up to 1 psi) can reduce and avoid the distortion of template structure and stage supports. This process can achieve a residual layer with thickness of 20nm and avoid the elastic stamp distorted (under 20nm) at the same time. The press force can reach up to 300 psi for 6 cm 2 pattern size but the friction force during demould process can be reduced to 30 psi. Experimental results reveal that it is a novel and robust process with high fidelity in micro/nano structures manufacturing

  20. One-step sol-gel imprint lithography for guided-mode resonance structures.

    Science.gov (United States)

    Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng

    2016-03-04

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.

  1. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  2. One-step sol–gel imprint lithography for guided-mode resonance structures

    International Nuclear Information System (INIS)

    Huang, Yin; Liu, Longju; Lu, Meng; Johnson, Michael; C Hillier, Andrew

    2016-01-01

    Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol–gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol–gel thin film in a single step. An organic–inorganic hybrid sol–gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol–gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol–gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol–gel thin film. (paper)

  3. High-resolution imprint and soft lithography for patterning self-assembling systems

    NARCIS (Netherlands)

    Duan, X.

    2010-01-01

    This thesis contributes to the continuous development of patterning strategies in several different areas of unconventional nanofabrication. A series of soft lithography approaches (microcontact printing, nanomolding in capillaries), nanoimprint lithography (NIL), and capillary force lithography

  4. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    Science.gov (United States)

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  5. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    Science.gov (United States)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  6. Fabrication of 3D nano-structures using reverse imprint lithography

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  7. Fabrication of 3D nano-structures using reverse imprint lithography

    International Nuclear Information System (INIS)

    Han, Kang-Soo; Cho, Joong-Yeon; Lee, Heon; Hong, Sung-Hoon; Kim, Kang-In; Choi, Kyung-woo

    2013-01-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED. (paper)

  8. Recognition of conformational changes in beta-lactoglobulin by molecularly imprinted thin films.

    Science.gov (United States)

    Turner, Nicholas W; Liu, Xiao; Piletsky, Sergey A; Hlady, Vladimir; Britt, David W

    2007-09-01

    Pathogenesis in protein conformational diseases is initiated by changes in protein secondary structure. This molecular restructuring presents an opportunity for novel shape-based detection approaches, as protein molecular weight and chemistry are otherwise unaltered. Here we apply molecular imprinting to discriminate between distinct conformations of the model protein beta-lactoglobulin (BLG). Thermal- and fluoro-alcohol-induced BLG isoforms were imprinted in thin films of 3-aminophenylboronic acid on quartz crystal microbalance chips. Enhanced rebinding of the template isoform was observed in all cases when compared to the binding of nontemplate isoforms over the concentration range of 1-100 microg mL(-1). Furthermore, it was observed that the greater the changes in the secondary structure of the template protein the lower the binding of native BLG challenges to the imprint, suggesting a strong steric influence in the recognition system. This feasibility study is a first demonstration of molecular imprints for recognition of distinct conformations of the same protein.

  9. RIMS (real-time imprint monitoring by scattering of light) study of pressure, temperature and resist effects on nanoimprint lithography

    International Nuclear Information System (INIS)

    Yu Zhaoning; Gao He; Chou, Stephen Y

    2007-01-01

    To optimize nanoimprint lithography (NIL), it is essential to be able to characterize and control the NIL process in situ and in real time. Recently we have developed a real-time imprint monitoring by the scattering-of-light (RIMS) approach, which allows us to detect the degree of resist deformation and the duration of resist penetration by a mould during the imprint process in real time. In this paper we report the performances of RIMS under a broad range of working conditions. RIMS data shows that the resist penetration is facilitated by increasing processing temperature, pressure and the resist film thickness; a prolonged pre-NIL resist baking step, on the other hand, has the effect of slowing it down. Our results provide further demonstration of the effectiveness of this method under different working conditions. RIMS measurements show not only how long an imprint takes to complete, but also how an imprint progresses with time and how it is affected by differences in processing parameters. These measurements provide information crucial for a better understanding and process optimization in NIL

  10. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    Science.gov (United States)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  11. Reflectance spectra characteristics from an SPR grating fabricated by nano-imprint lithography technique for biochemical nanosensor applications

    Science.gov (United States)

    Setiya Pradana, Jalu; Hidayat, Rahmat

    2018-04-01

    In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.

  12. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    Science.gov (United States)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  13. Recognition of Conformational Changes in β-Lactoglobulin by Molecularly Imprinted Thin Films

    Science.gov (United States)

    Turner, Nicholas W.; Liu, Xiao; Piletsky, Sergey A.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Pathogenesis in protein conformational diseases is initiated by changes in protein secondary structure. This molecular restructuring presents an opportunity for novel shape-based detection approaches, as protein molecular weight and chemistry are otherwise unaltered. Here we apply molecular imprinting to discriminate between distinct conformations of the model protein β-lactoglobulin (BLG). Thermal- and fluoro-alcohol-induced BLG isoforms were imprinted in thin films of 3-aminophenylboronic acid on quartz crystal microbalance chips. Enhanced rebinding of the template isoform was observed in all cases when compared to the binding of nontemplate isoforms over the concentration range of 1–100 µg mL−1. Furthermore, it was observed that the greater the changes in the secondary structure of the template protein the lower the binding of native BLG challenges to the imprint, suggesting a strong steric influence in the recognition system. This feasibility study is a first demonstration of molecular imprints for recognition of distinct conformations of the same protein. PMID:17665947

  14. Investigation of GaN-based light emitting diodes with nano-hole patterned sapphire substrate (NHPSS) by nano-imprint lithography

    International Nuclear Information System (INIS)

    Huang, H.W.; Lin, C.H.; Huang, J.K.; Lee, K.Y.; Lin, C.F.; Yu, C.C.; Tsai, J.Y.; Hsueh, R.; Kuo, H.C.; Wang, S.C.

    2009-01-01

    In this paper, gallium-nitride (GaN)-based light-emitting diodes (LEDs) with nano-hole patterned sapphire (NHPSS) by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with NHPSS increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.33, and the wall-plug efficiency is 30% higher at 20 mA indicating that the LED with NHPSS had larger light extraction efficiency. In addition, by examining the radiation patterns, the LED with NHPSS shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices using the technique of nano-imprint lithography.

  15. Imprinting.

    Science.gov (United States)

    McCabe, Brian J

    2013-07-01

    Imprinting is a type of learning by which an animal restricts its social preferences to an object after exposure to that object. Filial imprinting occurs shortly after birth or hatching and sexual imprinting, around the onset of sexual maturity; both have sensitive periods. This review is concerned mainly with filial imprinting. Filial imprinting in the domestic chick is an effective experimental system for investigating mechanisms underlying learning and memory. Extensive evidence implicates a restricted part of the chick forebrain, the intermediate and medial mesopallium (IMM), as a memory store for visual imprinting. After imprinting to a visual stimulus, neuronal responsiveness in IMM is specifically biased toward the imprinting stimulus. Both this bias and the strength of imprinting measured behaviorally depend on uninterrupted sleep shortly after training. When learning-related changes in IMM are lateralized they occur predominantly or completely on the left side. Ablation experiments indicate that the left IMM is responsible for long-term storage of information about the imprinting stimulus; the right side is also a store but additionally is necessary for extra storage outside IMM, in a region necessary for flexible use of information acquired through imprinting. Auditory imprinting gives rise to biochemical, neuroanatomical, and electrophysiological changes in the medio-rostral nidopallium/mesopallium, anterior to IMM. Auditory imprinting has not been shown to produce learning-related changes in IMM. Imprinting may be facilitated by predispositions. Similar predispositions for faces and biological motion occur in domestic chicks and human infants. WIREs Cogn Sci 2013, 4:375-390. doi: 10.1002/wcs.1231 For further resources related to this article, please visit the WIREs website. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Stamp design effect on 100 nm feature size for 8 inch NanoImprint lithography

    International Nuclear Information System (INIS)

    Landis, S; Chaix, N; Gourgon, C; Perret, C; Leveder, T

    2006-01-01

    Sub-100 nm resolution on a 200 mm silicon stamp has been hot embossed into commercial Sumitomo NEB 22 resist. A single pattern, exposed with electron beam lithography, has been considered to define the stamp and thus make it possible to point out the impact of stamp design on the printing. These results may be considered as a first attempt to define rules to solve the proximity printing effects (PPEs). Moreover, a large range of initial resist thickness, from 56 to 506 nm, has been spin coated to assess the effect of polymer flow properties for the stamp cavity filling and the printed defects. A detailed analysis of the printed resist in dense hole patterns showed that the application volume conservation is enough to calculate the residual layer thickness as the height of the printed resist feature. Good accordance has been obtained between the theoretical approach and experimental results. Moreover, the impact of the pattern symmetry breakdown on mould deformation is clearly shown in this paper in the printed areas as well as in the unprinted areas

  17. Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film

    International Nuclear Information System (INIS)

    Sohn, Ki-Ju; Lee, Woo Il; Park, Jae Hong; Jang, Hyun-Ik; Lee, Dong-Eon

    2013-01-01

    Thermal roll-to-roll imprint lithography (R2RIL) is a simple and low-cost process for the mass production of micro/nanopatterns. However, in that it relies on highly viscous thermoplastic resists, it is limited in its ability to imprint precise patterns at a high speed. Moreover, the concentrated imprint force applied in R2RIL can damage the resist material which is structurally vulnerable at high process temperatures. Therefore, it is important to understand the temperature- and time-dependent characteristics of the resist material as well as the imprinting mechanism when using thermal R2RIL. In this work, the effects of the process temperature and rolling speed on thermal R2RIL of polycarbonate (PC) films were investigated to improve the process efficiency. Micro-scale line patterns were successfully transferred onto PC films from nickel (Ni) mold stamps. Consequently, line patterns with widths in the range of 5–80 µm were achieved at a traveling speed of 28.6 mm s –1 and process temperature of 150 °C, which is just above the glass transition temperature (T g ). In addition, the patterning performance was investigated for different temperatures, rolling speeds and pattern sizes. The imprinted pattern profiles were measured by an alpha-step surface profiler to investigate the patterning performance. The results show that a much better imprint performance was achieved at 150 °C, compared to the result at temperatures below T g . The physical mechanisms of thermal R2RIL on a PC film were studied by a finite-element analysis and the patterning process was successfully demonstrated by a visco-plastic deformation model. (paper)

  18. Patterning lead zirconate titanate nanostructures at sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding

    NARCIS (Netherlands)

    Khan, Sajid; Göbel, Ole; Blank, David H.A.; ten Elshof, Johan E.

    2009-01-01

    Patterned sol-gel-derived lead zirconate titanate (PZT) thin films with lateral resolutions down to 100 nm on silicon are reported. Both an imprint and a transfer-molding method were employed. The formed patterns after annealing were characterized with scanning electron microscopy, atomic force

  19. A poly(dimethylsiloxane)-coated flexible mold for nanoimprint lithography

    International Nuclear Information System (INIS)

    Lee, Nae Yoon; Kim, Youn Sang

    2007-01-01

    In this paper, we introduce an anti-adhesion poly(dimethylsiloxane) (PDMS)-coated flexible mold and its applications for room-temperature imprint lithography. The flexible mold is fabricated using an ultraviolet-curable prepolymer on a flexible substrate, and its surface is passivated with a thin layer of PDMS to impart an anti-adhesion property. The highly flexible mold enables conformal contact with a substrate on which a low-viscosity polymer resist is spin-cast in a thin layer. Large-area imprinting is then realized at room temperature under significantly reduced pressure. The mold was durable even after repetitive imprinting of over 200 times. Also, we show a double imprinting on the substrate with a PDMS-coated replica polymeric mold having 500 nm line patterns. This enables the formation of matrix patterns with varying feature heights in less than 7 min

  20. Nano lithography

    CERN Document Server

    Landis, Stefan

    2013-01-01

    Lithography is an extremely complex tool - based on the concept of "imprinting" an original template version onto mass output - originally using relatively simple optical exposure, masking, and etching techniques, and now extended to include exposure to X-rays, high energy UV light, and electron beams - in processes developed to manufacture everyday products including those in the realms of consumer electronics, telecommunications, entertainment, and transportation, to name but a few. In the last few years, researchers and engineers have pushed the envelope of fields including optics, physics,

  1. Unified Modeling Language description of the object-oriented multi-scale adaptive finite element method for Step-and-Flash Imprint Lithography Simulations

    International Nuclear Information System (INIS)

    Paszynski, Maciej; Gurgul, Piotr; Sieniek, Marcin; Pardo, David

    2010-01-01

    In the first part of the paper we present the multi-scale simulation of the Step-and-Flash Imprint Lithography (SFIL), a modern patterning process. The simulation utilizes the hp adaptive Finite Element Method (hp-FEM) coupled with Molecular Statics (MS) model. Thus, we consider the multi-scale problem, with molecular statics applied in the areas of the mesh where the highest accuracy is required, and the continuous linear elasticity with thermal expansion coefficient applied in the remaining part of the domain. The degrees of freedom from macro-scale element's nodes located on the macro-scale side of the interface have been identified with particles from nano-scale elements located on the nano-scale side of the interface. In the second part of the paper we present Unified Modeling Language (UML) description of the resulting multi-scale application (hp-FEM coupled with MS). We investigated classical, procedural codes from the point of view of the object-oriented (O-O) programming paradigm. The discovered hierarchical structure of classes and algorithms makes the UML project as independent on the spatial dimension of the problem as possible. The O-O UML project was defined at an abstract level, independent on the programming language used.

  2. Novel conformal organic antireflective coatings for advanced I-line lithography

    Science.gov (United States)

    Deshpande, Shreeram V.; Nowak, Kelly A.; Fowler, Shelly; Williams, Paul; Arjona, Mikko

    2001-08-01

    Flash memory chips are playing a critical role in semiconductor devices due to increased popularity of hand held electronic communication devices such as cell phones and PDAs (personal Digital Assistants). Flash memory offers two primary advantages in semiconductor devices. First, it offers flexibility of in-circuit programming capability to reduce the loss from programming errors and to significantly reduce commercialization time to market for new devices. Second, flash memory has a double density memory capability through stacked gate structures which increases the memory capability and thus saves significantly on chip real estate. However, due to stacked gate structures the requirements for manufacturing of flash memory devices are significantly different from traditional memory devices. Stacked gate structures also offer unique challenges to lithographic patterning materials such as Bottom Anti-Reflective Coating (BARC) compositions used to achieve CD control and to minimize standing wave effect in photolithography. To be applicable in flash memory manufacturing a BARC should form a conformal coating on high topography of stacked gate features as well as provide the normal anti-reflection properties for CD control. In this paper we report on a new highly conformal advanced i-line BARC for use in design and manufacture of flash memory devices. Conformal BARCs being significantly thinner in trenches than the planarizing BARCs offer the advantage of reducing BARC overetch and thus minimizing resist thickness loss.

  3. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Back, Franziska [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany); Bockmeyer, Matthias; Rudigier-Voigt, Eveline [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Löbmann, Peer [Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-07-01

    Nanostructured sol–gel films with high-temperature stability are used in the area of electronics, photonics or biomimetic materials as light-trapping architectures in solar cells, displays, waveguides or as superhydrophobic surfaces with a lotus effect. In this work, high-temperature stable 2-μm nanostructured surfaces were prepared by ultraviolet-based nanoimprint lithography using an alkoxysilane binder incorporating modified silica nanoparticles. Material densification during thermal curing and microstructural evolution which are destined for a high structural fidelity of nanostructured films were investigated in relation to precursor chemistry, particle morphology and particle content of the imprint resist. The mechanism for densification and shrinkage of the films was clarified and correlated with the structural fidelity to explain the influence of the geometrical design on the optical properties. A high internal coherence of the microstructure of the nanostructured films results in a critical film thickness of > 5 μm. The structured glassy layers with high inorganic content show thermal stability up to 800 °C and have a high structural fidelity > 90% with an axial shrinkage of 16% and a horizontal shrinkage of 1%. This material allows the realization of highly effective light-trapping architectures for polycrystalline silicon thin-film solar cells on glass but also for the preparation of 2D photonic crystals for telecommunication wavelengths. - Highlights: • Fundamental research • Hybrid sol–gel material with high-temperature stability and contour accuracy • Ensuring of cost-efficient and industrially feasible processing • Application in photonic and photovoltaic.

  4. The changing face of glucagon fibrillation: Structural polymorphism and conformational imprinting

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Dikov, D.; Flink, J.L.

    2006-01-01

    is not the result of the global energy minimization, but rather kinetically controlled by solvent conditions and seed-imprinting. Fibrillar polymorphism, which is being reported for an increasing number of proteins, probably reflects that fibrils have not been under evolutionary constraints to retain a single...

  5. EUV lithography

    CERN Document Server

    Bakshi, Vivek

    2018-01-01

    Extreme ultraviolet lithography (EUVL) is the principal lithography technology-beyond the current 193-nm-based optical lithography-aiming to manufacture computer chips, and recent progress has been made on several fronts: EUV light sources, scanners, optics, contamination control, masks and mask handling, and resists. This book covers the fundamental and latest status of all aspects of EUVL used in the field. Since 2008, when SPIE Press published the first edition of EUVL Lithography, much progress has taken place in the development of EUVL as the choice technology for next-generation lithography. In 2008, EUVL was a prime contender to replace 193-nm-based optical lithography in leading-edge computer chip making, but not everyone was convinced at that point. Switching from 193-nm to 13.5-nm wavelengths was a much bigger jump than the industry had attempted before. It brought several difficult challenges in all areas of lithography-light source, scanner, mask, mask handling, optics, optics metrology, resist, c...

  6. Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

    Directory of Open Access Journals (Sweden)

    Hyojeong Kim

    2017-11-01

    Full Text Available We present a method to increase the stability of DNA nanostructure templates through conformal coating with a nanometer-thin protective inorganic oxide layer created using atomic layer deposition (ALD. DNA nanotubes and origami triangles were coated with ca. 2 nm to ca. 20 nm of Al2O3. Nanoscale features of the DNA nanostructures were preserved after the ALD coating and the patterns are resistive to UV/O3 oxidation. The ALD-coated DNA templates were used for a direct pattern transfer to poly(L-lactic acid films.

  7. Molecular Imprinting Techniques Used for the Preparation of Biosensors

    Directory of Open Access Journals (Sweden)

    Gizem Ertürk

    2017-02-01

    Full Text Available Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications.

  8. Nanoimprint lithography for microfluidics manufacturing

    Science.gov (United States)

    Kreindl, Gerald; Matthias, Thorsten

    2013-12-01

    The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.

  9. DWDM laser arrays fabricated using thermal nanoimprint lithography on Indium Phosphide substrates

    DEFF Research Database (Denmark)

    Smistrup, K.; Nørregaard, J.; Mironov, A.

    2013-01-01

    by including a lambda quarter shift at the center of the grating. The need for phase shifts and multiple wavelengths eliminates some lithography methods such as holography. Typically, these lasers are produced by e-beam lithography (EBL). We present a production method based on thermal nanoimprint lithography...... during the imprint process and the narrow temperature window for imprint and separation (80°C and 55°C) ensures minimal issues with thermal mismatch between the InP substrate and the Si stamp. The imprinted InP wafers were processed in NeoPhotonics standard process line to create working lasers...

  10. Nano-Imprint Lithography: Nanonex NX-2000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: NanoimprinterThis tool creates a pattern in a thin resist by embossing from a mold. The pattern is later transferred to the wafer by reactive...

  11. Lithography for VLSI

    CERN Document Server

    Einspruch, Norman G

    1987-01-01

    VLSI Electronics Microstructure Science, Volume 16: Lithography for VLSI treats special topics from each branch of lithography, and also contains general discussion of some lithographic methods.This volume contains 8 chapters that discuss the various aspects of lithography. Chapters 1 and 2 are devoted to optical lithography. Chapter 3 covers electron lithography in general, and Chapter 4 discusses electron resist exposure modeling. Chapter 5 presents the fundamentals of ion-beam lithography. Mask/wafer alignment for x-ray proximity printing and for optical lithography is tackled in Chapter 6.

  12. Analysis of technology and development plan on Lithography process of display industry and semiconductor

    International Nuclear Information System (INIS)

    2005-02-01

    This reports the seminar on Lithography in 2005, which includes these contents; Introduction of Lithography, equipment in NNFC, Exposure technology with fabrication, basic and application optics, RET and Lens aberrations, Alignment and Overlay and Metrology, Resist process with prime, mechanism, issues, resist technology and track system, Mask and OPC such as mask, fabrication, mask technology, proximity effect and OPC, Next generation, Lithography with NGL, Immersion and imprint. In the last, there are questions and answers.

  13. A compact system for large-area thermal nanoimprint lithography using smart stamps

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Hansen, Ole; Kristensen, Anders

    2008-01-01

    We present a simple apparatus for thermal nanoimprint lithography. In this work, the stamp is designed to significantly reduce the requirements for pressure application on the external imprint system. By MEMS-based processing, an air cavity inside the stamp is created, and the required pressure...... for successful imprint is reduced. Additionally, the stamp is capable of performing controlled demolding after imprint. Due to the complexity of the stamp, a compact and cost-effective imprint apparatus can be constructed. The design and fabrication of the advanced stamp as well as the simple imprint equipment...

  14. Metrology for Grayscale Lithography

    International Nuclear Information System (INIS)

    Murali, Raghunath

    2007-01-01

    Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed

  15. Imprinting disorders

    DEFF Research Database (Denmark)

    Eggermann, Thomas; Perez de Nanclares, Guiomar; Maher, Eamonn R

    2015-01-01

    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA...... sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical...

  16. Reverse-contact UV nanoimprint lithography for multilayered structure fabrication

    DEFF Research Database (Denmark)

    Kehagias, N.; Reboud, V.; Chansin, G.

    2007-01-01

    In this paper, we report results on a newly developed nanofabrication technique, namely reverse-contact UV nanoimprint lithography. This technique is a combination of nanoimprint lithography and contact printing lithography. In this process, a lift-off resist and a UV cross-linkable polymer...... are spin-coated successively onto a patterned UV mask-mould. These thin polymer films are then transferred from the mould to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mould and the substrate, the unexposed...... polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp. This method delivers resist pattern transfer without a residual layer, thereby rending unnecessary the etching steps typically needed in the imprint lithography techniques for three...

  17. Reverse-contact UV nanoimprint lithography for multilayered structure fabrication

    International Nuclear Information System (INIS)

    Kehagias, N; Reboud, V; Chansin, G; Zelsmann, M; Jeppesen, C; Schuster, C; Kubenz, M; Reuther, F; Gruetzner, G; Torres, C M Sotomayor

    2007-01-01

    In this paper, we report results on a newly developed nanofabrication technique, namely reverse-contact UV nanoimprint lithography. This technique is a combination of nanoimprint lithography and contact printing lithography. In this process, a lift-off resist and a UV cross-linkable polymer are spin-coated successively onto a patterned UV mask-mould. These thin polymer films are then transferred from the mould to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mould and the substrate, the unexposed polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp. This method delivers resist pattern transfer without a residual layer, thereby rending unnecessary the etching steps typically needed in the imprint lithography techniques for three-dimensional patterning. Three-dimensional woodpile-like structures were successfully fabricated with this new technique

  18. Genome Imprinting

    Indian Academy of Sciences (India)

    the cell nucleus (mitochondrial and chloroplast genomes), and. (3) traits governed ... tively good embryonic development but very poor development of membranes and ... Human homologies for the type of situation described above are naturally ..... imprint; (b) New modifications of the paternal genome in germ cells of each ...

  19. Generic nano-imprint process for fabrication of nanowire arrays

    NARCIS (Netherlands)

    Pierret, A.; Hocevar, M.; Diedenhofen, S.L.; Algra, R.E.; Vlieg, E.; Timmering, E.C.; Verschuuren, M.A.; Immink, W.G.G.; Verheijen, M.A.; Bakkers, E.P.A.M.

    2010-01-01

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2inch substrates. After lift-off organic residues remain on the surface, which induce the growth of

  20. Atom lithography of Fe

    NARCIS (Netherlands)

    Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2004-01-01

    Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to

  1. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  2. A compact system for large-area thermal nanoimprint lithography using smart stamps

    International Nuclear Information System (INIS)

    Pedersen, R H; Hansen, O; Kristensen, A

    2008-01-01

    We present a simple apparatus for thermal nanoimprint lithography. In this work, the stamp is designed to significantly reduce the requirements for pressure application on the external imprint system. By MEMS-based processing, an air cavity inside the stamp is created, and the required pressure for successful imprint is reduced. Additionally, the stamp is capable of performing controlled demolding after imprint. Due to the complexity of the stamp, a compact and cost-effective imprint apparatus can be constructed. The design and fabrication of the advanced stamp as well as the simple imprint equipment is presented. Test imprints of micrometer- and nanometer-scale structures are performed and characterized with respect to uniformity across a large area (35 mm radius). State-of-the-art uniformity for µm-scale features is demonstrated

  3. Lithography alternatives meet design style reality: How do they "line" up?

    Science.gov (United States)

    Smayling, Michael C.

    2016-03-01

    Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to

  4. The development of 8 inch roll-to-plate nanoimprint lithography (8-R2P-NIL) system

    Science.gov (United States)

    Lee, Lai Seng; Mohamed, Khairudin; Ooi, Su Guan

    2017-07-01

    Growth in semiconductor and integrated circuit industry was observed in the past decennium of years for industrial technology which followed Moore's law. The line width of nanostructure to be exposed was influenced by the essential technology of photolithography. Thus, it is crucial to have a low cost and high throughput manufacturing process for nanostructures. Nanoimprint Lithography technique invented by Stephen Y. Chou was considered as major nanolithography process to be used in future integrated circuit and integrated optics. The drawbacks of high imprint pressure, high imprint temperature, air bubbles formation, resist sticking to mold and low throughput of thermal nanoimprint lithography on silicon wafer have yet to be solved. Thus, the objectives of this work is to develop a high throughput, low imprint force, room temperature UV assisted 8 inch roll to plate nanoimprint lithography system capable of imprinting nanostructures on 200 mm silicon wafer using roller imprint with flexible mold. A piece of resist spin coated silicon wafer was placed onto vacuum chuck drives forward by a stepper motor. A quartz roller wrapped with a piece of transparent flexible mold was used as imprint roller. The imprinted nanostructures were cured by 10 W, 365 nm UV LED which situated inside the quartz roller. Heat generated by UV LED was dissipated by micro heat pipe. The flexible mold detaches from imprinted nanostructures in a 'line peeling' pattern and imprint pressure was measured by ultra-thin force sensors. This system has imprinting speed capability ranging from 0.19 mm/s to 5.65 mm/s, equivalent to imprinting capability of 3 to 20 pieces of 8 inch wafers per hour. Speed synchronization between imprint roller and vacuum chuck was achieved by controlling pulse rate supplied to stepper motor which drive the vacuum chuck. The speed different ranging from 2 nm/s to 98 nm/s is achievable. Vacuum chuck height was controlled by stepper motor with displacement of 5 nm/step.

  5. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam

    2013-12-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were imprinted in a thermoplastic polymer by thermal nanoimprint lithography. Optical measurements were performed using spectroscopic ellipsometry in the spectral region of 1.5-4 eV. The geometrical profiles of the imprinted structures were reconstructed using the Rigorous Coupled-Wave Analysis (RCWA) to model the diffraction phenomena by periodic gratings. The technique was also adapted for large scale evaluation of the imprint process. Uniqueness of the solution was examined by analyzing the diffraction of the structure at different experimental conditions, for instance at various angles of incidence. © 2013 Elsevier B.V. All rights reserved.

  6. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  7. Lithography for enabling advances in integrated circuits and devices.

    Science.gov (United States)

    Garner, C Michael

    2012-08-28

    Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.

  8. A 3D-printed device for polymer nanoimprint lithography

    Science.gov (United States)

    Caño-García, Manuel; Geday, Morten A.; Gil-Valverde, Manuel; Megías Zarco, Antonio; Otón, José M.; Quintana, Xabier

    2018-02-01

    Nanoimprint lithography (NIL) is an imprinting technique which has experienced an increasing popularity due to its versatility in fabrication processes. Commercial NIL machines are readily available achieving high quality results; however, these machines involve a relatively high investment. Hence, small laboratories often choose to perform NIL copies in a more rudimentary and cheaper way. A new simple system is presented in this document. It is based on two devices which can be made in-house in plastic by using a 3D printer or in aluminum. Thus, the overall manufacturing complexity is vastly reduced. The presented system includes pressure control and potentially temperature control. Replicas have been made using a sawtooth grating master with a pitch around half micrometre. High quality patterns with low density of imperfections have been achieved in 2.25 cm2 surfaces. The material chosen for the negative intermediary mould is PDMS. Tests of the imprint have been performed using the commercial hybrid polymer Ormostamp®.

  9. Electron-beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)

  10. Electron beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs

  11. Roll-to-roll UV imprint for bottom-up transistor fabrication

    NARCIS (Netherlands)

    Maury, P.; Turkenburg, D.H.; Stroeks, N.; Giesen, P.; Wijnen, M.; Tacken, R.; Meinders, E.R.; Werf, R. van der

    2011-01-01

    We propose a design to fabricate transistors on flexible substrates in a bottom-up fashion using R2R UV-imprint lithography. The design consists of a template composed of multilevel as well as gray level features, the later used to facilitate device interconnection. A hard mold is fabricated by LBR

  12. Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography

    International Nuclear Information System (INIS)

    Altun, Ali Ozhan; Jeong, Jun-Ho; Rha, Jong-Joo; Kim, Ki-Don; Lee, Eung-Sug

    2007-01-01

    Cubic boron nitride (c-BN) is one of the hardest known materials (second after diamond). It has a high level of chemical resistance and high UV transmittance. In this study, a stamp for ultra-violet nanoimprint lithography (UV-NIL) was fabricated using a bi-layered BN film deposited on a quartz substrate. Deposition of the BN was done using RF magnetron sputtering. A hexagonal boron nitride (h-BN) layer was deposited for 30 min before c-BN was deposited for 30 min. The thickness of the film was measured as 160 nm. The phase of the c-BN layer was investigated using Fourier transform infrared (FTIR) spectrometry, and it was found that the c-BN layer has a 40% cubic phase. The deposited film was patterned using focused ion beam (FIB) lithography for use as a UV-NIL stamp. Line patterns were fabricated with the line width and line distance set at 150 and 150 nm, respectively. The patterning process was performed by applying different currents to observe the effect of the current value on the pattern profile. The fabricated patterns were investigated using AFM, and it was found that the pattern fabricated by applying a current value of 50 picoamperes (pA) has a better profile with a 65 nm line depth. The UV transmittance of the 160 nm thick film was measured to be 70-86%. The hardness and modulus of the BN was measured to be 12 and 150 GPa, respectively. The water contact angle of the stamp surface was measured at 75 0 . The stamp was applied to UV-NIL without coating with an anti-adhesion layer. Successful imprinting was proved via scanning electron microscope (SEM) images of the imprinted resin

  13. X-ray lithography

    International Nuclear Information System (INIS)

    Malek, C.K.

    1989-01-01

    Any type of lithography is a means of printing a pattern. The suitable lithographic tool is defined according to what kind of application the replication technique is aimed at, that is to say, what size of pattern, on what type of substrate and how many substrates are desired. The trend in all the fields of science and fabrication is to go towards smaller dimensions. Especially in the case of advanced device fabrication in the semiconductor industry, the reduction of dimensions results in a higher density of integrated circuits that will result in lower cost per function and improved performance. Lithography is used to define areas that are usually protected by a resist pattern in relief on a substrate and is followed by a process which transfers the aerial pattern from the resist to the bulk substrate as, for example, in microelectronics, in between two steps of the process or levels that are used for selective diffusion of impurities to produce the desired electrical characteristics, etching, metallization

  14. Congenital imprinting disorders

    DEFF Research Database (Denmark)

    Eggermann, Thomas; Netchine, Irène; Temple, I Karen

    2015-01-01

    Imprinting disorders (IDs) are a group of eight rare but probably underdiagnosed congenital diseases affecting growth, development and metabolism. They are caused by similar molecular changes affecting regulation, dosage or the genomic sequence of imprinted genes. Each ID is characterised...... by specific clinical features, and, as each appeared to be associated with specific imprinting defects, they have been widely regarded as separate entities. However, they share clinical characteristics and can show overlapping molecular alterations. Nevertheless, IDs are usually studied separately despite...... EUCID.net (European network of congenital imprinting disorders) now aims to promote better clinical care and scientific investigation of imprinting disorders by establishing a concerted multidisciplinary alliance of clinicians, researchers, patients and families. By encompassing all IDs and establishing...

  15. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura

    2017-01-13

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  16. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura; Alabastri, Alessandro; Bonanni, Simon; Majewska, Roksana; Dattoli, Elisabetta; Barberio, Marianna; Candeloro, Patrizio; Perozziello, Gerardo; Mollace, Vincenzo; Di Fabrizio, Enzo M.; Gentile, Francesco

    2017-01-01

    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  17. High throughput nanoimprint lithography for semiconductor memory applications

    Science.gov (United States)

    Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun

    2017-03-01

    Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non

  18. Thermo-curable epoxy systems for nanoimprint lithography

    International Nuclear Information System (INIS)

    Wu, Chun-Chang; Hsu, Steve Lien-Chung

    2010-01-01

    In this work, we have used solvent-free thermo-curable epoxy systems for low-pressure and moderate-temperature nanoimprint lithography (NIL). The curing kinetic parameters and conversion of diglycidyl ether of bisphenol A (DGEBA) resin with different ambient-cure 930 and 954 hardeners were studied by the isothermal DSC technique. They are useful for the study of epoxy resins in the imprinting application. The DGEBA/930 and DGEBA/954 epoxy resists can be imprinted to obtain high-density nano- and micro-scale patterns on a flexible indium tin oxide/poly(ethylene terephthalate) (ITO/PET) substrate. The DGEBA/930 epoxy resin is not only suitable for resist material, but also for plastic mold material. Highly dense nanometer patterns can be successfully imprinted using a UV-curable resist from the DGEBA/930 epoxy mold. Using the replicated DGEBA/930 epoxy mold instead of the expensive master can prevent brittle failure of the silicon molds in the NIL

  19. [Neurobiology of imprinting].

    Science.gov (United States)

    Ohki-Hamazaki, Hiroko

    2012-06-01

    Imprinting is an example of learning and memory acquisition in infancy. In the case of precocial birds, such as geese, ducks, and chickens, the baby birds learn the characteristics of the first moving object that they see within a critical period, and they imprint on it and follow it around. We analyzed the neural basis of this behavior in order to understand the neural mechanism of learning and memory in infancy. Information pertaining to a visual imprinting stimulus is recognized and processed in the visual Wulst, a region that corresponds to the mammalian visual cortex. It is then transmitted to the posterior region of the telencephalon, followed by the core region of the hyperpallium densocellulare (HDCo), periventricular region of the hyperpallium densocellulare (HDPe), and finally, the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. Memory is stored in the IMM. After imprint training, plastic changes are observed in the visual Wulst as well as in the neurons of this circuit. HDCo cells, located at the center of this circuit, express N-methyl-D-aspartate (NMDA) receptors containing the NMDA receptor (NR) 2B subunit; the expression of this receptor increased after the imprint training. Inhibition of this receptor in the cells of the HDCo region leads to failure of imprinting and inactivation of this circuit. Thus, NMDA receptors bearing the NR2B subunit play a critical role in plastic changes in this circuit and in induction of imprinting.

  20. Generic nano-imprint process for fabrication of nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Aurelie; Hocevar, Moira; Algra, Rienk E; Timmering, Eugene C; Verschuuren, Marc A; Immink, George W G; Verheijen, Marcel A; Bakkers, Erik P A M [Philips Research Laboratories Eindhoven, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Diedenhofen, Silke L [FOM Institute for Atomic and Molecular Physics c/o Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Vlieg, E, E-mail: e.p.a.m.bakkers@tue.nl [IMM, Solid State Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2010-02-10

    A generic process has been developed to grow nearly defect-free arrays of (heterostructured) InP and GaP nanowires. Soft nano-imprint lithography has been used to pattern gold particle arrays on full 2 inch substrates. After lift-off organic residues remain on the surface, which induce the growth of additional undesired nanowires. We show that cleaning of the samples before growth with piranha solution in combination with a thermal anneal at 550 deg. C for InP and 700 deg. C for GaP results in uniform nanowire arrays with 1% variation in nanowire length, and without undesired extra nanowires. Our chemical cleaning procedure is applicable to other lithographic techniques such as e-beam lithography, and therefore represents a generic process.

  1. Interfacial pattern changes of imprinted multilayered material in milli- and microscales

    Science.gov (United States)

    Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.

  2. Photoinhibition superresolution lithography

    Science.gov (United States)

    Forman, Darren Lawrence

    While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy

  3. Alternative nano-structured thin-film materials used as durable thermal nanoimprint lithography templates

    Science.gov (United States)

    Bossard, M.; Boussey, J.; Le Drogoff, B.; Chaker, M.

    2016-02-01

    Nanoimprint templates made of diamond-like carbon (DLC) and amorphous silicon carbide (SiC) thin films and fluorine-doped associated materials, i.e. F-DLC and F-SiC were investigated in the context of thermal nanoimprint lithography (NIL) with respect to their release properties. Their performances in terms of durability and stability were evaluated and compared to those of conventional silicon or silica molds coated with antisticking molecules applied as a self-assembled monolayer. Plasma-enhanced chemical vapor deposition parameters were firstly tuned to optimize mechanical and structural properties of the DLC and SiC thin films. The impact of the amount of fluorine dopant on the deposited thin films properties was then analyzed. A comparative analysis of DLC, F-DLC as well as SiC and F-SiC molds was then carried out over multiple imprints, performed into poly (methyl methacrylate) (PMMA) thermo-plastic resist. The release properties of un-patterned films were evaluated by the measurement of demolding energies and surface energies, associated with a systematic analysis of the mold surface contamination. These analyses showed that the developed materials behave as intrinsically easy-demolding and contamination-free molds over series of up to 40 imprints. To our knowledge, it is the first time that such a large number of imprints has been considered within an exhaustive comparative study of materials for NIL. Finally, the developed materials went through standard e-beam lithography and plasma etching processes to obtain nanoscale-patterned templates. The replicas of those patterned molds, imprinted into PMMA, were shown to be of high fidelity and good stability after several imprints.

  4. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia; Palard, Marylene; Mathew, Leo; Hussain, Muhammad Mustafa; Willson, Grant Grant; Tutuc, Emanuel; Banerjee, Sanjay Kumar

    2012-01-01

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  5. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  6. SOR Lithography in West Germany

    Science.gov (United States)

    Heuberger, Anton

    1989-08-01

    The 64 Mbit DRAM will represent the first generation of integrated circuits which cannot be produced reasonably by means of optical lithography techniques. X-ray lithography using synchrotron radiation seems to be the most promising method in overcoming the problems in the sub-0.5 micron range. The first year of production of the 64 Mbit DRAM will be 1995 or 1996. This means that X-ray lithography has to show its applicability in an industrial environment by 1992 and has to prove that the specifications of a 64 Mbit DRAM technology can actually be achieved. Part of this task is a demonstration of production suitable equipment such as the X-ray stepper, including an appropriate X-ray source and measurement and inspection tools. The most important bottlenecks on the way toward reaching these goals are linked to the 1 x scale mask technology, especially the pattern definition accuracy and zero level of printing defects down to the order of magnitude of 50 nm. Specifically, fast defect detection methods on the basis of high resolution e-beam techniques and repair methods have to be developed. The other problems of X-ray lithography, such as high quality single layer X-ray resists, X-ray sources and stepper including alignment are either well on the way or are already solved.

  7. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  8. An assessment of the process capabilities of nanoimprint lithography

    Science.gov (United States)

    Balla, Tobias; Spearing, S. Mark; Monk, Andrew

    2008-09-01

    Nanoimprint lithography (NIL) is an emerging nanofabrication tool, able to replicate imprint patterns quickly and at high volumes. The present study was performed in order to define the capabilities of NIL, based on a study of published research and to identify the application areas where NIL has the greatest potential. The process attributes of different NIL process chains were analysed, and their process capabilities were compared to identify trends and process limitations. The attributes chosen include the line width, relief height, initial resist thickness, residual layer thickness, imprint area and line width tolerances. In each case well-defined limits can be identified, which are a direct result of the mechanisms involved in the NIL process. These quantitative results were compared with the assessments of individuals in academia and within the microfabrication industry. The results suggest NIL is most suited to producing photonic, microfluidic and patterned media applications, with photonic applications the closest to market. NIL needs to address overlay alignment issues for wider use, while an analysis is needed for each market, as to whether NIL adds value.

  9. Fluid management in roll-to-roll nanoimprint lithography

    Science.gov (United States)

    Jain, A.; Bonnecaze, R. T.

    2013-06-01

    The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.

  10. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  11. The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk, E-mail: gyjung@gist.ac.k, E-mail: jslee@gist.ac.k [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu Gwangju 500-712 (Korea, Republic of)

    2009-09-09

    We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.

  12. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  13. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu Wei; Hu Min; Ou Fungsuong; Li Zhiyong; Williams, R Stanley

    2010-01-01

    We demonstrated a cost-effective and deterministic method of patterning 3D cone arrays over a large area by using nanoimprint lithography (NIL). Cones with tip radius of less than 10 nm were successfully duplicated onto the UV-curable imprint resist materials from the silicon cone templates. Such cone structures were shown to be a versatile platform for developing reliable, highly sensitive surface enhanced Raman spectroscopy (SERS) substrates. In contrast to the silicon nanocones, the SERS substrates based on the Au coated cones made by the NIL offered significant improvement of the SERS signal. A further improvement of the SERS signal was observed when the polymer cones were imprinted onto a reflective metallic mirror surface. A sub-zeptomole detection sensitivity for a model molecule, trans-1,2-bis(4-pyridyl)-ethylene (BPE), on the Au coated NIL cone surfaces was achieved.

  14. Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography

    NARCIS (Netherlands)

    Zhao, Yiping; Berenschot, Johan W.; de Boer, M.; de Boer, Meint J.; Jansen, Henricus V.; Tas, Niels Roelof; Huskens, Jurriaan; Elwenspoek, Michael Curt

    2008-01-01

    The fabrication of a stamp reinforced with silicon nitride is presented for its use in nanoimprint lithography. The fabrication process is based on edge lithography using conventional optical lithography and wet anisotropic etching of 110 silicon wafers. SiO2 nano-ridges of 20 nm in width were

  15. Lithography requirements in complex VLSI device fabrication

    International Nuclear Information System (INIS)

    Wilson, A.D.

    1985-01-01

    Fabrication of complex very large scale integration (VLSI) circuits requires continual advances in lithography to satisfy: decreasing minimum linewidths, larger chip sizes, tighter linewidth and overlay control, increasing topography to linewidth ratios, higher yield demands, increased throughput, harsher device processing, lower lithography cost, and a larger part number set with quick turn-around time. Where optical, electron beam, x-ray, and ion beam lithography can be applied to judiciously satisfy the complex VLSI circuit fabrication requirements is discussed and those areas that are in need of major further advances are addressed. Emphasis will be placed on advanced electron beam and storage ring x-ray lithography

  16. Topological imprint for periodic orbits

    International Nuclear Information System (INIS)

    Martín, Jesús San; Moscoso, Ma José; Gómez, A González

    2012-01-01

    The more self-crossing points an orbit has the more complex it is. We introduce the topological imprint to characterize crossing points and focus on the period-doubling cascade. The period-doubling cascade topological imprint determines the topological imprint for orbits in chaotic bands. In addition, there is a closer link between this concept and the braids studied by Lettelier et al (2000 J. Phys. A: Math. Gen. 33 1809–25). (paper)

  17. Maskless, resistless ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Qing [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  18. Maskless, resistless ion beam lithography

    International Nuclear Information System (INIS)

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O 2 + , BF 2 + , P + etc., for surface modification and doping applications. With optimized source condition, around 85% of BF 2 + , over 90% of O 2 + and P + have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He + beam is as high as 440 A/cm 2 · Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O 2 + ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O 2 + ions with the dose of 10 15 cm -2 . The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P

  19. Molecular scale modeling of polymer imprint nanolithography.

    Science.gov (United States)

    Chandross, Michael; Grest, Gary S

    2012-01-10

    We present the results of large-scale molecular dynamics simulations of two different nanolithographic processes, step-flash imprint lithography (SFIL), and hot embossing. We insert rigid stamps into an entangled bead-spring polymer melt above the glass transition temperature. After equilibration, the polymer is then hardened in one of two ways, depending on the specific process to be modeled. For SFIL, we cross-link the polymer chains by introducing bonds between neighboring beads. To model hot embossing, we instead cool the melt to below the glass transition temperature. We then study the ability of these methods to retain features by removing the stamps, both with a zero-stress removal process in which stamp atoms are instantaneously deleted from the system as well as a more physical process in which the stamp is pulled from the hardened polymer at fixed velocity. We find that it is necessary to coat the stamp with an antifriction coating to achieve clean removal of the stamp. We further find that a high density of cross-links is necessary for good feature retention in the SFIL process. The hot embossing process results in good feature retention at all length scales studied as long as coated, low surface energy stamps are used.

  20. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  1. High resolution beam profiling of X-ray free electron laser radiation by polymer imprint development.

    Science.gov (United States)

    Rösner, Benedikt; Döring, Florian; Ribič, Primož R; Gauthier, David; Principi, Emiliano; Masciovecchio, Claudio; Zangrando, Marco; Vila-Comamala, Joan; De Ninno, Giovanni; David, Christian

    2017-11-27

    High resolution metrology of beam profiles is presently a major challenge at X-ray free electron lasers. We demonstrate a characterization method based on beam imprints in poly (methyl methacrylate). By immersing the imprints formed at 47.8 eV into organic solvents, the regions exposed to the beam are removed similar to resist development in grayscale lithography. This allows for extending the sensitivity of the method by more than an order of magnitude compared to the established analysis of imprints created solely by ablation. Applying the Beer-Lambert law for absorption, the intensity distribution in a micron-sized focus can be reconstructed from one single shot with a high dynamic range, exceeding 10 3 . The procedure described here allows for beam characterization at free electron lasers revealing even faint beam tails, which are not accessible when using ablation imprint methods. We demonstrate the greatly extended dynamic range on developed imprints taken in focus of conventional Fresnel zone plates and spiral zone plates producing beams with a topological charge.

  2. Design for manufacturability with advanced lithography

    CERN Document Server

    Yu, Bei

    2016-01-01

    This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL).  The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography.  Unlike books that discuss DFM from the product level, or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms. Enables readers to tackle the challenge of layout decompositions for different patterning techniques; Presents a coherent framework, including standard cell compliance and detailed placement, to enable Triple Patterning Lithography (TPL) friendly design; Includes coverage of the design for manufacturability with E-Beam lithography.

  3. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  4. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern ...

  5. Recent Advances in Imprinting Disorders

    DEFF Research Database (Denmark)

    Soellner, L; Begemann, M; Mackay, D J G

    2017-01-01

    Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations...... and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different...

  6. Resistless Fabrication of Nanoimprint Lithography (NIL Stamps Using Nano-Stencil Lithography

    Directory of Open Access Journals (Sweden)

    Juergen Brugger

    2013-10-01

    Full Text Available In order to keep up with the advances in nano-fabrication, alternative, cost-efficient lithography techniques need to be implemented. Two of the most promising are nanoimprint lithography (NIL and stencil lithography. We explore here the possibility of fabricating the stamp using stencil lithography, which has the potential for a cost reduction in some fabrication facilities. We show that the stamps reproduce the membrane aperture patterns within ±10 nm and we validate such stamps by using them to fabricate metallic nanowires down to 100 nm in size.

  7. Flexible and disposable plasmonic refractive index sensor using nanoimprint lithography

    Science.gov (United States)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-03-01

    Nanostructure based plasmonic sensors are highly demanding in various areas due to their label-free and real-time detection capability. In this work, we developed an inexpensive flexible plasmonic sensor using optical disc nanograting via soft UV-nanoimprint lithography (UV-NIL). The polydimethylsiloxane (PDMS) stamp was used to transfer the nanograting structure from digital versatile discs (DVDs) to flexible and transparent polyethylene terephthalate (PET) substrate. Further, the plasmonic sensing substrate was obtained after coating a gold thin film on the top of the imprinted sample. The surface plasmon resonance (SPR) modes excited on gold coated nanograting structure appeared as a dip in the reflectance spectra measured at normal incident of white light in ambient air medium. Electromagnetic simulation based on finite element method (FEM) was used to understand and analyze the excited SPR modes and it is a very close agreement with the experimental results. The bulk refractive index (RI) sensing was performed by the sensor chip using water-glycerol mixture with different concentrations. Experimentally, the bulk RI sensitivity was found to be 797+/-17 nm/RIU.

  8. Multifunctional guest-host particles engineered by reversal nanoimprint lithography

    Science.gov (United States)

    Ha, Uh-Myong; Kaban, Burhan; Tomita, Andreea; Krekić, Kristijan; Klintuch, Dieter; Pietschnig, Rudolf; Ehresmann, Arno; Holzinger, Dennis; Hillmer, Hartmut

    2018-03-01

    Particulate polymeric microfibers with incorporated europium(III)oxide (Eu2O3) nanoparticles were introduced as a magneto-photoluminescent multifunctional material fabricated via reversal nanoimprint lithography. To specifically address the volume properties of these guest-host particles, the guest, Eu2O3, was milled down to an average particle size of 350 nm in diameter and mixed with the host-polymer, AMONIL®, before in situ hardening in the imprint stamp. The variation of the fabrication process parameters, i.e. delay time, spin coating speed, as well as the concentration of Eu2O3 nanoparticles was proven to have a significant impact on both the structure quality and the stamp release of the microfibers with respect to the formation of a thinner residual layer. Structural characterization performed by SEM revealed optimum fabrication process parameters for a homogeneous spatial distribution of Eu2O3 nanoparticles within the microfibers while simultaneously avoiding the formation of undesired agglomerates. The magneto-photoluminescent properties of Eu2O3 nanoparticles, i.e. a red emission at 613 nm and a paramagnetic response, were found to be superimposed to the optic and the diamagnetic behaviors of AMONIL®. The results imply that guest-host interdependence of these properties can be excluded and that the suggested technique enables for specific tailoring of particulate multifunctional materials with focus on their volume properties.

  9. Study of nanoimprint lithography (NIL) for HVM of memory devices

    Science.gov (United States)

    Kono, Takuya; Hatano, Masayuki; Tokue, Hiroshi; Kobayashi, Kei; Suzuki, Masato; Fukuhara, Kazuya; Asano, Masafumi; Nakasugi, Tetsuro; Choi, Eun Hyuk; Jung, Wooyung

    2017-03-01

    A low cost alternative lithographic technology is desired to meet the decreasing feature size of semiconductor devices. Nano-imprint lithography (NIL) is one of the candidates for alternative lithographic technologies.[1][2][3] NIL has such advantages as good resolution, critical dimension (CD) uniformity and low line edge roughness (LER). On the other hand, the critical issues of NIL are defectivity, overlay, and throughput. In order to introduce NIL into the HVM, it is necessary to overcome these three challenges simultaneously.[4]-[12] In our previous study, we have reported a dramatic improvement in NIL process defectivity on a pilot line tool, FPA-1100 NZ2. We have described that the NIL process for 2x nm half pitch is getting closer to the target of HVM.[12] In this study, we report the recent evaluation of the NIL process performance to judge the applicability of NIL to memory device fabrications. In detail, the CD uniformity and LER are found to be less than 2nm. The overlay accuracy of the test device is less than 7nm. A defectivity level of below 1pcs./cm2 has been achieved at a throughput of 15 wafers per hour.

  10. Biological imprinting: Some genetic considerations

    African Journals Online (AJOL)

    Mohammad Saad Zaghloul Salem

    2014-06-21

    Jun 21, 2014 ... Role of chromatin in imprinting . .... flict theory in placental mammals assumes that paternal alleles in pregnancy ... The theory also postulates that maternal alleles, on ..... postulating contributory roles of mitDNA in mediation of.

  11. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  12. Fabrication of subwavelength metallic structures by using a metal direct imprinting process

    International Nuclear Information System (INIS)

    Hsieh, C W; Hsiung, H Y; Lu, Y T; Sung, C K; Wang, W H

    2007-01-01

    This work employs a metal direct imprinting process, which possesses the characteristics of simplicity, low-cost and high resolution, for the fabrication of subwavelength structures on a metallic thin film. Herein, the mould featuring periodic line structures is manufactured by using E-beam lithography and followed by a dry etching process; meanwhile, the thin film is fabricated by sputtering Al on a silicon substrate. AFM section analyses are employed to measure imprinting depths of the subwavelength metallic structures and it is found that the uniformity of the imprinting depths is affected by the designed patterns, the material property of thin film and mould deformation. The process temperature and the mould filling that influence the transferred quality are investigated. In addition, TEM is also utilized to examine defects in the subwavelength metallic structures. Finally, good quality subwavelength metallic structures are fabricated under a pressure of 300 MPa for 60 s at room temperature. In this study, we have demonstrated that subwavelength metallic structures with a minimum linewidth of less than 100 nm on the Al thin film are successfully constructed by the metal direct imprinting process

  13. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  14. Masks for extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y.

    1998-01-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed

  15. Endosperm imprinting: a child custody battle?

    Science.gov (United States)

    Becraft, Philip W

    2012-02-07

    Endosperm gene imprinting has long been speculated to control nutrient allocation to seeds. For the first time, an imprinted gene directly involved in this process has been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Foster parenting, human imprinting and conventional handling ...

    African Journals Online (AJOL)

    p2492989

    Foster parenting, human imprinting and conventional handling affects survival and early .... bird may subsequently direct its sexual attention to those humans on whom it was imprinted (Bubier et al., ..... The mind through chicks' eyes: memory,.

  17. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    Science.gov (United States)

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  18. 77 FR 25082 - Picture Permit Imprint Indicia

    Science.gov (United States)

    2012-04-27

    ... POSTAL SERVICE 39 CFR Part 111 Picture Permit Imprint Indicia AGENCY: Postal Service\\TM\\. ACTION... Service, Domestic Mail Manual (DMM[supreg]) 604.5 to add picture permit imprint indicia standards allowing...: The use of picture permit imprint indicia is designed to improve the effectiveness of a mailpiece by...

  19. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  20. Conformal Infinity.

    Science.gov (United States)

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  1. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  2. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  3. Conformal Infinity

    OpenAIRE

    Frauendiener, J?rg

    2000-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory...

  4. Data sharing system for lithography APC

    Science.gov (United States)

    Kawamura, Eiichi; Teranishi, Yoshiharu; Shimabara, Masanori

    2007-03-01

    We have developed a simple and cost-effective data sharing system between fabs for lithography advanced process control (APC). Lithography APC requires process flow, inter-layer information, history information, mask information and so on. So, inter-APC data sharing system has become necessary when lots are to be processed in multiple fabs (usually two fabs). The development cost and maintenance cost also have to be taken into account. The system handles minimum information necessary to make trend prediction for the lots. Three types of data have to be shared for precise trend prediction. First one is device information of the lots, e.g., process flow of the device and inter-layer information. Second one is mask information from mask suppliers, e.g., pattern characteristics and pattern widths. Last one is history data of the lots. Device information is electronic file and easy to handle. The electronic file is common between APCs and uploaded into the database. As for mask information sharing, mask information described in common format is obtained via Wide Area Network (WAN) from mask-vender will be stored in the mask-information data server. This information is periodically transferred to one specific lithography-APC server and compiled into the database. This lithography-APC server periodically delivers the mask-information to every other lithography-APC server. Process-history data sharing system mainly consists of function of delivering process-history data. In shipping production lots to another fab, the product-related process-history data is delivered by the lithography-APC server from the shipping site. We have confirmed the function and effectiveness of data sharing systems.

  5. Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes

    International Nuclear Information System (INIS)

    Genua, A; AlduncIn, J A; Pomposo, J A; Grande, H; Kehagias, N; Reboud, V; Sotomayor, C; Mondragon, I; Mecerreyes, D

    2007-01-01

    In this work the growth of polymer brushes was combined with nanoimprint lithography (NIL) in order to obtain new functional nanopatterns. First, a functional thermoplastic methacrylic copolymer poly(methyl methacrylate-co-2-bromoisobutyryl-oxy-ethyl methacrylate) was synthesized. This copolymer was successfully patterned by NIL using a silicon stamp at 160 deg. C and 60 bar. Next, hydrophilic polymer brushes based on poly(3-sulfopropylmethacrylate) and hydrophobic polymer brushes based on a poly(fluorinated methacrylate) were grown on the imprinted surfaces. The surface properties of the patterned polymer were accordingly modified and, as a consequence, the water contact angle was modified from 80.3 deg. to 32.5 deg. in the case of the hydrophilic brushes and to 118.1 deg. in the case of the hydrophobic brushes. As an application we demonstrated the use of hydrophobic polymer brushes in order to modify the surface of polymeric stamps for NIL with self-demoulding properties

  6. Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp

    International Nuclear Information System (INIS)

    Dutta, R.K.; Kan, J.A. van; Bettiol, A.A.; Watt, F.

    2007-01-01

    It is essential to have a simplified and a rapid method for fabricating micro/nano structures in different kinds of polymeric materials. Though it is possible to fabricate arrays of microlens directly by P beam writing (PBW), it is restricted to a few types of resist materials. Therefore we have fabricated a Ni electroplated metallic stamp comprising of arrays of inverse/negative features of microlenses. The metallic stamp of about 500 μm thick is made on a silicon wafer coated with 10 μm thick polymethylglutarimide (PMGI) resist and the desired structures are written by PBW followed by thermal reflow and Ni electroplating. An array of microlenses is imprinted on a polycarbonate (PC) substrate by the Nanoimprint Lithography (NIL) technique and the replicated microlenses featuring various numerical apertures, diameters and pitches are characterized

  7. Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting

    International Nuclear Information System (INIS)

    Li, Xiangming; Shao, Jinyou; Tian, Hongmiao; Ding, Yucheng; Li, Xiangmeng

    2011-01-01

    We propose a novel method for fabricating high-aspect-ratio micro-/nano-structures by dielectrophoresis-electrocapillary force (DEP-ECF)-driven UV-imprinting. The force of DEP-ECF, acting on an air–liquid interface and an air–liquid–solid three-phase contact line, is generated by applying voltage between an electrically conductive mold and a substrate, and tends to pull the dielectric liquid (a UV-curable pre-polymer) into the mold micro-cavities. The existence of DEP-ECF is explained theoretically and demonstrated experimentally by the electrically induced reduction of the contact angle. Furthermore, DEP-ECF is proven to play a critical role in forcing the polymer to fill into the mold cavities by the real-time observation of the dynamic filling process. Using the DEP-ECF-driven UV-imprinting process, high-aspect-ratio polymer micro-/nano-structures (more than 10:1) are fabricated with high consistency. This patterning method can overcome the drawbacks of the mechanically induced mold deformation and position shift in conventional imprinting lithography and maximize the pattern uniformity which is usually poor in capillary force lithography

  8. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  9. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells.

    Science.gov (United States)

    Zhao, Xin; Liu, Xiaoliang; Wang, Guanjun; Wen, Xue; Zhang, Xiaoying; Hoffman, Andrew R; Li, Wei; Hu, Ji-Fan; Cui, Jiuwei

    2016-08-09

    Insulin-like growth factor II (IGF2) is maternally imprinted in most tissues, but the epigenetic regulation of the gene in cancer stem cells (CSCs) has not been defined. To study the epigenetic mechanisms underlying self-renewal, we isolated CSCs and non-CSCs from colon cancer (HT29, HRT18, HCT116), hepatoma (Hep3B), breast cancer (MCF7) and prostate cancer (ASPC) cell lines. In HT29 and HRT18 cells that show loss of IGF2 imprinting (LOI), IGF2 was biallelically expressed in the isolated CSCs. Surprisingly, we also found loss of IGF2 imprinting in CSCs derived from cell lines HCT116 and ASPC that overall demonstrate maintenance of IGF2 imprinting. Using chromatin conformation capture (3C), we found that intrachromosomal looping between the IGF2 promoters and the imprinting control region (ICR) was abrogated in CSCs, in parallel with loss of IGF2 imprinting in these CSCs. Loss of imprinting led to increased IGF2 expression in CSCs, which have a higher rate of colony formation and greater resistance to chemotherapy and radiotherapy in vitro. These studies demonstrate that IGF2 LOI is a common feature in CSCs, even when the stem cells are derived from a cell line in which the general population of cells maintain IGF2 imprinting. This finding suggests that aberrant IGF2 imprinting may be an intrinsic epigenetic control mechanism that enhances stemness, self-renewal and chemo/radiotherapy resistance in cancer stem cells.

  10. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  11. Familiarity interferes with filial imprinting

    NARCIS (Netherlands)

    vanKampen, HS; deVos, GJ

    1996-01-01

    The present study was performed to investigate whether and how pre-exposure to an object affects subsequent filial imprinting to that object. In Experiment 1 junglefowl chicks (Gallus gallus spadiceus) were first exposed to either a red object alone (control group), or a red and a yellow object

  12. Imprinted Polymers in Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  13. EUV lithography : historical perspective and road ahead

    NARCIS (Netherlands)

    Banine, V.Y.

    2014-01-01

    Lithography, in the form of carved type printing, can be dated as far back as the 3rd century AD. Starting from the 19th century it played a major role as the basis for dissemination and preservation of knowledge in the form of printed books, maps, newspapers, etc. In the mid 20th century, with the

  14. Helium ion lithography principles and performance

    NARCIS (Netherlands)

    Drift, E. van der; Maas, D.J.

    2012-01-01

    Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From

  15. New Results on Plasma Activated Bonding of Imprinted Polymer Features for Bio MEMS Applications

    International Nuclear Information System (INIS)

    Kettner, P; Pelzer, R L; Glinsner, T; Farrens, S; Lee, D

    2006-01-01

    Nanoimprint Lithography is a well-acknowledged low cost, high resolution, large area 3D patterning process for polymers. It includes the most promising methods: high pressure hot embossing (HE) and UV-Nanoimprint Lithography (UV-NIL). Curing of the imprinted structures is either done by cooling down below the glass transition temperature of the thermoplastic polymer in case of HE or by subsequent UV-light exposure and cross-linking in case of UV-NIL. Both techniques allow rapid prototyping for high volume production of fully patterned substrates for a wide range of materials. The advantages of using polymer substrates over common Micro-Electro-Mechanical Systems (MEMS) processing materials like glass, silicon or quartz are: bio-compatible surfaces, easy manufacturability, low cost for high volume production, suitable for use in micro- and nano-fabrication, low conductivity, wide range of optical properties just to name a few. We will present experimental results on HE processes with PMMA as well as UV-NIL imprints in selected UV-curable resists. In the second part of the work we will describe the bonding techniques for packaging of the micro or nano structures. Packaging of the imprinted features is a key technology for a wide variety of field of applications: μ-TAS, biochemistry, micro-mixers, micro-reactors, electrophoresis cells, life science, micro-optical and nano-optical applications (switches) nanofluidics, data storage, etc. for features down to sub-100 nm range. Most bonding techniques for polymer use adhesives as intermediate layers. We will demonstrate a promising technique for dense and very strong bonds using plasma activation of polymers and glass. This bonding technology allows for bonding at low temperatures well below the glass transition temperature of the polymers, which will ensure that the structures are not deformed

  16. Molecular Imprinting of Macromolecules for Sensor Applications.

    Science.gov (United States)

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  17. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor

    International Nuclear Information System (INIS)

    Ganesan, Ramakrishnan; Dinachali, Saman Safari; Lim, Su Hui; Saifullah, M S M; He, Chaobin; Low, Hong Yee; Chong, Wee Tit; Lim, Andrew H H; Yong, Jin Jie; Thian, Eng San

    2012-01-01

    Nanostructuring of Al 2 O 3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al 2 O 3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al 2 O 3 . Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ∼100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al 2 O 3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol–gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides. (paper)

  18. Imprinting and recalling cortical ensembles.

    Science.gov (United States)

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  19. Conformality lost

    International Nuclear Information System (INIS)

    Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.

    2009-01-01

    We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.

  20. Mask-induced aberration in EUV lithography

    Science.gov (United States)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  1. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena

    2014-01-01

    in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke......, the room temperature is controlled to an accuracy of 0.1 degrees in order to minimize the thermally induced drift of the beam during pattern writing. We present process results in a standard positive tone resist and pattern transfer through etch to a Silicon substrate. Even though the electron beam...... of electrons in the substrate will influence the patterning. We present solutions to overcome these obstacles....

  2. Scanning probe lithography for nanoimprinting mould fabrication

    International Nuclear Information System (INIS)

    Luo Gang; Xie Guoyong; Zhang Yongyi; Zhang Guoming; Zhang Yingying; Carlberg, Patrick; Zhu Tao; Liu Zhongfan

    2006-01-01

    We propose a rational fabrication method for nanoimprinting moulds by scanning probe lithography. By wet chemical etching, different kinds of moulds are realized on Si(110) and Si(100) surfaces according to the Si crystalline orientation. The structures have line widths of about 200 nm with a high aspect ratio. By reactive ion etching, moulds with patterns free from the limitation of Si crystalline orientation are also obtained. With closed-loop scan control of a scanning probe microscope, the length of patterned lines is more than 100 μm by integrating several steps of patterning. The fabrication process is optimized in order to produce a mould pattern with a line width about 10 nm. The structures on the mould are further duplicated into PMMA resists through the nanoimprinting process. The method of combining scanning probe lithography with wet chemical etching or reactive ion etching (RIE) provides a resistless route for the fabrication of nanoimprinting moulds

  3. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments

    OpenAIRE

    Dai, Shuxi; Zhang, Dianbo; Shi, Qing; Han, Xiao; Wang, Shujie; Du, Zuliang

    2013-01-01

    Three-dimensional hierarchical ZnO films with lotus-leaf-like micro/nano structures were successfully fabricated via a biomimetic route combining sol-gel technique, soft lithography and hydrothermal treatments. PDMS mold replicated from a fresh lotus leaf was used to imprint microscale pillar structures directly into a ZnO sol film. Hierarchical ZnO micro/nano structures were subsequently fabricated by a low-temperature hydrothermal growth of secondary ZnO nanorod arrays on the micro-structur...

  4. Interference lithography for optical devices and coatings

    Science.gov (United States)

    Juhl, Abigail Therese

    Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self-healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self

  5. Hard-tip, soft-spring lithography.

    Science.gov (United States)

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications.

  6. Compact synchrotron radiation depth lithography facility

    Science.gov (United States)

    Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.

    1992-01-01

    X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.

  7. Nano-imprint gold grating as refractive index sensor

    International Nuclear Information System (INIS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-01-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  8. Regular cell design approach considering lithography-induced process variations

    OpenAIRE

    Gómez Fernández, Sergio

    2014-01-01

    The deployment delays for EUVL, forces IC design to continue using 193nm wavelength lithography with innovative and costly techniques in order to faithfully print sub-wavelength features and combat lithography induced process variations. The effect of the lithography gap in current and upcoming technologies is to cause severe distortions due to optical diffraction in the printed patterns and thus degrading manufacturing yield. Therefore, a paradigm shift in layout design is mandatory towards ...

  9. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-01-01

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties that simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.

  10. Plasmonic direct writing lithography with a macroscopical contact probe

    Science.gov (United States)

    Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling

    2018-05-01

    In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.

  11. Dynamic Properties of Individual Carbon Nanotube Emitters for Maskless Lithography

    National Research Council Canada - National Science Library

    Ribaya, Bryan P; Niemann, Darrell L; Makarewicz, Joseph; Gunther, Norman G; Nguyen, Cattien V; Rahman, Mahmud

    2008-01-01

    .... The individual CNT's low electron beam energy spread and high brightness values make it particularly desirable for advanced applications such as electron microscopy and electron beam lithography...

  12. Designing Fingers in Simulation based on Imprints

    DEFF Research Database (Denmark)

    Wolniakowski, Adam; Krüger, Norbert; Werner, Andrzej

    process of doing so. This method takes root in the idea of using the imprint to produce the finger geometry. We furthermore provide a verification of our newly introduced imprinting method and a comparison to the previously introduced parametrized geometry method. This verification is done through a set...

  13. Imprinting disorders after assisted reproductive technologies

    DEFF Research Database (Denmark)

    Lidegaard, Øjvind; Pinborg, Anja; Andersen, Anders Nyboe

    2006-01-01

    To assess the evidence of an increased risk of imprinting diseases in children born after use of assisted reproductive technologies.......To assess the evidence of an increased risk of imprinting diseases in children born after use of assisted reproductive technologies....

  14. Designing Fingers in Simulation based on Imprints

    DEFF Research Database (Denmark)

    Wiuf Schwartz, Lukas Christoffer Malte; Wolniakowski, Adam; Werner, Andrzej

    2017-01-01

    process of doing so. This method takes root in the idea of using the imprint to produce the finger geometry. We furthermore provide a verification of our newly introduced imprinting method and a comparison to the previously introduced parametrized geometry method. This verification is done through a set...

  15. Review: Biological imprinting: Some genetic considerations | Saad ...

    African Journals Online (AJOL)

    ... as for interpretation of possible mechanisms implicated in its occurrence. Keywords: Genetic imprinting; Mutations; Re-sense mutation; Epigenetic alterations; DNA methylation/demethylation; Parthenogenesis; Position-effect variegation; Post-fertilization genomic imprinting; microRNA; Chromatin modifications; Pyknons ...

  16. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  17. 21 CFR 206.10 - Code imprint required.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... imprint that, in conjunction with the product's size, shape, and color, permits the unique identification...

  18. The imprinted brain: how genes set the balance between autism and psychosis.

    Science.gov (United States)

    Badcock, Christopher

    2011-06-01

    The imprinted brain theory proposes that autism spectrum disorder (ASD) represents a paternal bias in the expression of imprinted genes. This is reflected in a preference for mechanistic cognition and in the corresponding mentalistic deficits symptomatic of ASD. Psychotic spectrum disorder (PSD) would correspondingly result from an imbalance in favor of maternal and/or X-chromosome gene expression. If differences in gene expression were reflected locally in the human brain as mouse models and other evidence suggests they are, ASD would represent not so much an 'extreme male brain' as an extreme paternal one, with PSD correspondingly representing an extreme maternal brain. To the extent that copy number variation resembles imprinting and aneuploidy in nullifying or multiplying the expression of particular genes, it has been found to conform to the diametric model of mental illness peculiar to the imprinted brain theory. The fact that nongenetic factors such as nutrition in pregnancy can mimic and/or interact with imprinted gene expression suggests that the theory might even be able to explain the notable effect of maternal starvation on the risk of PSD - not to mention the 'autism epidemic' of modern affluent societies. Finally, the theory suggests that normality represents balanced cognition, and that genius is an extraordinary extension of cognitive configuration in both mentalistic and mechanistic directions. Were it to be proven correct, the imprinted brain theory would represent one of the biggest single advances in our understanding of the mind and of mental illness that has ever taken place, and would revolutionize psychiatric diagnosis, prevention and treatment - not to mention our understanding of epigenomics.

  19. Image-projection ion-beam lithography

    International Nuclear Information System (INIS)

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified

  20. Plasma sources for EUV lithography exposure tools

    International Nuclear Information System (INIS)

    Banine, Vadim; Moors, Roel

    2004-01-01

    The source is an integral part of an extreme ultraviolet lithography (EUVL) tool. Such a source, as well as the EUVL tool, has to fulfil extremely high demands both technical and cost oriented. The EUVL tool operates at a wavelength in the range 13-14 nm, which requires a major re-thinking of state-of-the-art lithography systems operating in the DUV range. The light production mechanism changes from conventional lamps and lasers to relatively high temperature emitting plasmas. The light transport, mainly refractive for DUV, should become reflective for EUV. The source specifications are derived from the customer requirements for the complete tool, which are: throughput, cost of ownership (CoO) and imaging quality. The EUVL system is considered as a follow up of the existing DUV based lithography technology and, while improving the feature resolution, it has to maintain high wafer throughput performance, which is driven by the overall CoO picture. This in turn puts quite high requirements on the collectable in-band power produced by an EUV source. Increased, due to improved feature resolution, critical dimension (CD) control requirements, together with reflective optics restrictions, necessitate pulse-to-pulse repeatability, spatial stability control and repetition rates, which are substantially better than those of current optical systems. All together the following aspects of the source specification will be addressed: the operating wavelength, the EUV power, the hot spot size, the collectable angle, the repetition rate, the pulse-to-pulse repeatability and the debris induced lifetime of components

  1. Fabrication of biopolymer cantilevers using nanoimprint lithography

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis

    2011-01-01

    The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...... challenge was the high adhesion between PLLA and silicon stamp. Optimized stamp fabrication and the deposition of a 125 nm thick fluorocarbon anti-stiction coating on the PLLA allowed the fabrication of biopolymer cantilevers. Resonance frequency measurements were used to estimate the Young’s modulus...

  2. Manipulation of heat-diffusion channel in laser thermal lithography.

    Science.gov (United States)

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  3. Neural basis of imprinting behavior in chicks.

    Science.gov (United States)

    Nakamori, Tomoharu; Maekawa, Fumihiko; Sato, Katsushige; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2013-01-01

    Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This "imprinting" behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  4. Molecularly Imprinted Polymer Synthesis Using RAFT Polymerisation

    International Nuclear Information System (INIS)

    Cormack, P.A.G.; Faizatul Shimal Mehamod; Faizatul Shimal Mehamod

    2013-01-01

    In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material. (author)

  5. Fabrication of nano-sized metal patterns on flexible polyethylene-terephthalate substrate using bi-layer nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Jung, Ho Yong [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jeong, Jun-Ho [Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials, Yuseong-gu Daejeon, 305-343 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.k [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2009-05-29

    Polymer films are widely used as a substrate for displays and for solar cells since they are cheap, transparent and flexible, and their material properties are easy to design. Polyethylene-terephthalate (PET) is especially useful for various applications requiring transparency, flexibility and good thermal and chemical resistance. In this study, nano-sized metal patterns were fabricated on flexible PET film by using nanoimprint lithography (NIL). Water-soluble poly-vinyl alcohol (PVA) resin was used as a planarization and sacrificial layer for the lift-off process, as it does not damage the PET films and can easily be etched off by using oxygen plasma. NIL was used to fabricate the nano-sized patterns on the non-planar or flexible substrate. Finally, a nano-sized metal pattern was successfully formed by depositing the metal layer over the imprinted resist patterns and applying the lift-off process, which is economic and environmentally friendly, to the PET films.

  6. Synthesis of Plaster for moulers's elaboration of imprint denture

    International Nuclear Information System (INIS)

    Hamiane, M; Rabahi, N; Saidi, M; Salhi, M

    2012-01-01

    Our goal was the synthesis of plaster from local raw materials to be used in denture mouler's. The plaster type α and β was synthesis by hydrothermal and dry method from gypsum (CaSO4. 2H2O) of the west Algerian. After crushing and mineralogical analysis, gypsum has undergone through cooking in an oven at a temperature (T = 200 ° C), for a time t = 4 hours. The synthesis and characterization of the product has involved several ways investigated as diffraction RX, X-ray fluorescence, time taken, electron microscope (MEB), hardness, SSB, compressive and bending strength and Ph. A digester horizontal type Toni - technical laboratory was used for the synthesis of plasterα. The results are conformable with the standard and plaster synthesized can be a basic material in the manufacture of moulers imprint denture.

  7. Synthesis of Plaster for moulers's elaboration of imprint denture

    Science.gov (United States)

    Hamiane, M.; Rabahi, N.; Saidi, M.; Salhi, M.

    2012-02-01

    Our goal was the synthesis of plaster from local raw materials to be used in denture mouler's. The plaster type α and β was synthesis by hydrothermal and dry method from gypsum (CaSO4. 2H2O) of the west Algerian. After crushing and mineralogical analysis, gypsum has undergone through cooking in an oven at a temperature (T = 200 ° C), for a time t = 4 hours. The synthesis and characterization of the product has involved several ways investigated as diffraction RX, X-ray fluorescence, time taken, electron microscope (MEB), hardness, SSB, compressive and bending strength and Ph. A digester horizontal type Toni - technical laboratory was used for the synthesis of plasterα. The results are conformable with the standard and plaster synthesized can be a basic material in the manufacture of moulers imprint denture.

  8. Conformal Tachyons

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...

  9. An electron undulating ring for VLSI lithography

    International Nuclear Information System (INIS)

    Tomimasu, T.; Mikado, T.; Noguchi, T.; Sugiyama, S.; Yamazaki, T.

    1985-01-01

    The development of the ETL storage ring ''TERAS'' as an undulating ring has been continued to achieve a wide area exposure of synchrotron radiation (SR) in VLSI lithography. Stable vertical and horizontal undulating motions of stored beams are demonstrated around a horizontal design orbit of TERAS, using two small steering magnets of which one is used for vertical undulating and another for horizontal one. Each steering magnet is inserted into one of the periodic configulation of guide field elements. As one of useful applications of undulaing electron beams, a vertically wide exposure of SR has been demonstrated in the SR lithography. The maximum vertical deviation from the design orbit nCcurs near the steering magnet. The maximum vertical tilt angle of the undulating beam near the nodes is about + or - 2mrad for a steering magnetic field of 50 gauss. Another proposal is for hith-intensity, uniform and wide exposure of SR from a wiggler installed in TERAS, using vertical and horizontal undulating motions of stored beams. A 1.4 m long permanent magnet wiggler has been installed for this purpose in this April

  10. Wafer-shape metrics based foundry lithography

    Science.gov (United States)

    Kim, Sungtae; Liang, Frida; Mileham, Jeffrey; Tsai, Damon; Bouche, Eric; Lee, Sean; Huang, Albert; Hua, C. F.; Wei, Ming Sheng

    2017-03-01

    As device shrink, there are many difficulties with process integration and device yield. Lithography process control is expected to be a major challenge due to tighter overlay and focus control requirement. The understanding and control of stresses accumulated during device fabrication has becoming more critical at advanced technology nodes. Within-wafer stress variations cause local wafer distortions which in turn present challenges for managing overlay and depth of focus during lithography. A novel technique for measuring distortion is Coherent Gradient Sensing (CGS) interferometry, which is capable of generating a high-density distortion data set of the full wafer within a time frame suitable for a high volume manufacturing (HVM) environment. In this paper, we describe the adoption of CGS (Coherent Gradient Sensing) interferometry into high volume foundry manufacturing to overcome these challenges. Leveraging this high density 3D metrology, we characterized its In-plane distortion as well as its topography capabilities applied to the full flow of an advanced foundry manufacturing. Case studies are presented that summarize the use of CGS data to reveal correlations between in-plane distortion and overlay variation as well as between topography and device yield.

  11. Advanced coatings for next generation lithography

    Science.gov (United States)

    Naujok, P.; Yulin, S.; Kaiser, N.; Tünnermann, A.

    2015-03-01

    Beyond EUV lithography at 6.X nm wavelength has a potential to extend EUVL beyond the 11 nm node. To implement B-based mirrors and to enable their industrial application in lithography tools, a reflectivity level of > 70% has to be reached in near future. The authors will prove that transition from conventional La/B4C to promising LaN/B4C multilayer coatings leads to enhanced optical properties. Currently a near normal-incidence reflectivity of 58.1% @ 6.65 nm is achieved by LaN/B4C multilayer mirrors. The introduction of ultrathin diffusion barriers into the multilayer design to reach the targeted reflectivity of 70% was also tested. The optimization of multilayer design and deposition process for interface-engineered La/C/B4C multilayer mirrors resulted in peak reflectivity of 56.8% at the wavelength of 6.66 nm. In addition, the thermal stability of several selected multilayers was investigated and will be discussed.

  12. Nanostructured surfaces using thermal nanoimprint lithography: Applications in thin membrane technology, piezoelectric energy harvesting and tactile pressure sensing

    Science.gov (United States)

    Nabar, Bhargav Pradip

    Nanoimprint lithography (NIL) is emerging as a viable contender for fabrication of large-scale arrays of 5-500 nm features. The work presented in this dissertation aims to leverage the advantages of NIL for realization of novel Nano Electro Mechanical Systems (NEMS). The first application is a nanoporous membrane blood oxygenator system. A fabrication process for realization of thin nanoporous membranes using thermal nanoimprint lithography is presented. Suspended silicon nitride membranes were fabricated by Low-Pressure Chemical Vapor Deposition (LPCVD) in conjunction with a potassium hydroxide-based bulk micromachining process. Nanoscale features were imprinted into a commercially available thermoplastic polymer resist using a pre-fabricated silicon mold. The pattern was reversed and transferred to a thin aluminum oxide layer by means of a novel two stage lift-off technique. The patterned aluminum oxide was used as an etch mask in a CHF3/He based reactive ion etch process to transfer the pattern to silicon nitride. Highly directional etch profiles with near vertical sidewalls and excellent Si3N4/Al2O3 etch selectivity was observed. One-micrometer-thick porous membranes with varying dimensions of 250x250 microm2 to 450x450 microm 2 and pore diameter of 400 nm have been engineered and evaluated. Results indicate that the membranes have consistent nanopore dimensions and precisely defined porosity, which makes them ideal as gas exchange interfaces in blood oxygenation systems as well as other applications such as dialysis. Additionally, bulk -- micromachined microfluidic channels have been developed for uniform, laminar blood flow with minimal cell trauma. NIL has been used for ordered growth of crystalline nanostructures for sensing and energy harvesting. Highly ordered arrays of crystalline ZnO nanorods have been fabricated using a polymer template patterned by thermal nanoimprint lithography, in conjunction with a low temperature hydrothermal growth process. Zinc

  13. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  14. Ferroelectric capacitor with reduced imprint

    Science.gov (United States)

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  15. Molecularly Imprinted Polymer Technology: A Powerful, Generic ...

    African Journals Online (AJOL)

    Molecularly Imprinted Polymer Technology: A Powerful, Generic, Facile and Cost Effective Alternative for Enantio-recognition and Separation: A Glance at Advances and Applications. ... Tanzania Journal of Science. Journal Home · ABOUT ...

  16. The role of imprinted genes in humans

    OpenAIRE

    Ishida, Miho; Moore, Gudrun E.

    2013-01-01

    Detailed comprehensive molecular analysis using families and multiple matched tissues is essential to determine whether imprinted genes have a functional role in humans. See research article: http://genomebiology.com/2011/12/3/R25

  17. Innovative SU-8 Lithography Techniques and Their Applications

    Directory of Open Access Journals (Sweden)

    Jeong Bong Lee

    2014-12-01

    Full Text Available SU-8 has been widely used in a variety of applications for creating structures in micro-scale as well as sub-micron scales for more than 15 years. One of the most common structures made of SU-8 is tall (up to millimeters high-aspect-ratio (up to 100:1 3D microstructure, which is far better than that made of any other photoresists. There has been a great deal of efforts in developing innovative unconventional lithography techniques to fully utilize the thick high aspect ratio nature of the SU-8 photoresist. Those unconventional lithography techniques include inclined ultraviolet (UV exposure, back-side UV exposure, drawing lithography, and moving-mask UV lithography. In addition, since SU-8 is a negative-tone photoresist, it has been a popular choice of material for multiple-photon interference lithography for the periodic structure in scales down to deep sub-microns such as photonic crystals. These innovative lithography techniques for SU-8 have led to a lot of unprecedented capabilities for creating unique micro- and nano-structures. This paper reviews such innovative lithography techniques developed in the past 15 years or so.

  18. Cosmological imprints of pre-inflationary particles

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, Anastasia; Itzhaki, Nissan; Kovetz, Ely D., E-mail: anastasia.fialkov@gmail.com, E-mail: nitzhaki@post.tau.ac.il, E-mail: elykovetz@gmail.com [Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2010-02-01

    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies.

  19. Cosmological imprints of pre-inflationary particles

    International Nuclear Information System (INIS)

    Fialkov, Anastasia; Itzhaki, Nissan; Kovetz, Ely D.

    2010-01-01

    We study some of the cosmological imprints of pre-inflationary particles. We show that each such particle provides a seed for a spherically symmetric cosmic defect. The profile of this cosmic defect is fixed and its magnitude is linear in a single parameter that is determined by the mass of the pre-inflationary particle. We study the CMB and peculiar velocity imprints of this cosmic defect and suggest that it could explain some of the large scale cosmological anomalies

  20. Gas Sensors Based on Molecular Imprinting Technology

    OpenAIRE

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-01-01

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological mac...

  1. Extension of optical lithography by mask-litho integration with computational lithography

    Science.gov (United States)

    Takigawa, T.; Gronlund, K.; Wiley, J.

    2010-05-01

    Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.

  2. Immersion lithography defectivity analysis at DUV inspection wavelength

    Science.gov (United States)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  3. Molecularly Imprinted Polymers: Present and Future Prospective

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-09-01

    Full Text Available Molecular Imprinting Technology (MIT is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs, the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.

  4. Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography.

    Science.gov (United States)

    Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara

    2016-05-24

    Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.

  5. Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers

    International Nuclear Information System (INIS)

    Simão, Claudia; Khunsin, Worawut; Kehagias, Nikolaos; Sotomayor Torres, Clivia M; Salaun, Mathieu; Zelsmann, Marc; Morris, Michael A

    2014-01-01

    Directed self-assembly of block copolymer polystyrene-b-polyethylene oxide (PS-b-PEO) thin film was achieved by a one-pot methodology of solvent vapor assisted nanoimprint lithography (SAIL). Simultaneous solvent-anneal and imprinting of a PS-b-PEO thin film on silicon without surface pre-treatments yielded a 250 nm line grating decorated with 20 nm diameter nanodots array over a large surface area of up to 4′ wafer scale. The grazing-incidence small-angle x-ray scattering diffraction pattern showed the fidelity of the NIL stamp pattern replication and confirmed the periodicity of the BCP of 40 nm. The order of the hexagonally arranged nanodot lattice was quantified by SEM image analysis using the opposite partner method and compared to conventionally solvent-annealed block copolymer films. The imprint-based SAIL methodology thus demonstrated an improvement in ordering of the nanodot lattice of up to 50%, and allows significant time and cost reduction in the processing of these structures. (papers)

  6. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  7. Sequential infiltration synthesis for advanced lithography

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Seth B.; Elam, Jeffrey W.; Tseng, Yu-Chih; Peng, Qing

    2017-10-10

    A plasma etch resist material modified by an inorganic protective component via sequential infiltration synthesis (SIS) and methods of preparing the modified resist material. The modified resist material is characterized by an improved resistance to a plasma etching or related process relative to the unmodified resist material, thereby allowing formation of patterned features into a substrate material, which may be high-aspect ratio features. The SIS process forms the protective component within the bulk resist material through a plurality of alternating exposures to gas phase precursors which infiltrate the resist material. The plasma etch resist material may be initially patterned using photolithography, electron-beam lithography or a block copolymer self-assembly process.

  8. Recent advances in X-ray lithography

    International Nuclear Information System (INIS)

    Cerrina, F.

    1992-01-01

    We report some significant developments in the area of X-ray technology, in the area of the modeling of image formation, in distortion control and in mask replication. Early simple models have been replaced by complete optical calculations based on physical optics and including all relevant factors. These models provide good agreement with the available experimental results. In the area of mask distortions, the use of finite element analysis models has clarified the roles played by the various sources of stress and explained in greater detail the origin of temperature changes. These progress have paved the way to the optimization of the exposure system and to the achievement of the large exposure latitude potential of X-ray lithography. (author)

  9. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  10. Accelerated yield learning in agressive lithography

    Science.gov (United States)

    Monahan, Kevin M.; Ashkenaz, Scott M.; Chen, Xing; Lord, Patrick J.; Merrill, Mark A.; Quattrini, Rich; Wiley, James N.

    2000-06-01

    As exposure wavelengths decrease from 248 nm to 193, 157, and even 13 nm (EUV), small process defects can cause collapse of the lithographic process window near the limits of resolution, particularly for the gate and contact structures in high- performance devices. Such sensitivity poses a challenge for lithography process module control. In this work, we show that yield loss can be caused by a combination of macro, micro, CD, and overlay defects. A defect is defined as any yield- affecting process variation. Each defect, regardless of cause, is assumed to have a specific 'kill potential.' The accuracy of the lithographic yield model can be improved by identifying those defects with the highest kill potential or, more importantly, those that pose the highest economic risk. Such economic considerations have led us to develop a simple heuristic model for understanding sampling strategies in defect metrology and for linking metrology capability to yield and profitability.

  11. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  12. Photonic integrated circuits: new challenges for lithography

    Science.gov (United States)

    Bolten, Jens; Wahlbrink, Thorsten; Prinzen, Andreas; Porschatis, Caroline; Lerch, Holger; Giesecke, Anna Lena

    2016-10-01

    In this work routes towards the fabrication of photonic integrated circuits (PICs) and the challenges their fabrication poses on lithography, such as large differences in feature dimension of adjacent device features, non-Manhattan-type features, high aspect ratios and significant topographic steps as well as tight lithographic requirements with respect to critical dimension control, line edge roughness and other key figures of merit not only for very small but also for relatively large features, are highlighted. Several ways those challenges are faced in today's low-volume fabrication of PICs, including the concept multi project wafer runs and mix and match approaches, are presented and possible paths towards a real market uptake of PICs are discussed.

  13. Pattern imprinting in CMOS static RAMs from Co-60 irradiation

    International Nuclear Information System (INIS)

    Schott, J.T.; Zugich, M.H.

    1987-01-01

    Total dose irradiation of various CMOS SRAMs is shown to imprint the pattern stored in the memory during irradiation. This imprinted pattern is the preferred state of the memory at subsequent power-up. Imprinting can occur at dose levels significantly below the failure level of the devices and is consistent with the bias dependent radiation induced threshold shifts of the individual transistors of the memory cells. However, before total imprinting occurs, other unusual imprinting phenomena can occur, such as a reverse imprinting effect seen in SOS memories, which is probably related to the bias dependence of back-channel leakage

  14. Integrating nanosphere lithography in device fabrication

    Science.gov (United States)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  15. Histamine-imprinted microspheres: Comparison between conventional and raft-mediated polymerization techniques

    International Nuclear Information System (INIS)

    Romano, Edwin F. Jr.; So, Regina C.; Holdsworth, Clovia I.

    2015-01-01

    Molecularly imprinted microspheres (MIM) were synthesized via conventional free radical polymerization (CTP) and RAFT-mediated controlled radical polymerization (CRP) method using histamine as the template molecule. Optimal polymerization conditions were achieved using 4%(w/w) monomer feed concentration with 80=90% EGDMA as crosslinker, and histamine: MAA ratio of 1:4 in acetonitrile at 60°C for 24 hours. The size of CTP-M90 and CTP-M80 imprinted microspheres are comparable with that of RAFT polymer CRP-M80 at 264.5 ±12 nm in the swollen (DLS-DMSO) and collapsed state (SEM). For the CTP method, the presence of the template allows for a bigger particle size compared to the non-imprinted counterpart (NIM). Further, controlled growth was observed for the CRP technique, where the size of the imprinted microsphere, CRP-M80, is comparable to CRP-N80. The binding studies of CTP and CRP microspheres toward histamine were studied at concentrations well below biding with buffer concentration of 25mM at pH7. Results showed that the binding isotherms were found to conform to the Freundlich model. Moreover, results revealed that the difference in binding capacity (N) between MIM and NIM imparted by the imprinting process is significantly higher in CTP-80 (26 μmol/g) than both CTP-90 and CRP-80 (9 μmol/g). Non-competitive and competitive binding assays with L-histidine, imidazole, and tryptamine using CTP-80 and CRP-80 were also carried out. MIMs were shown to exhibit binding preference towards the template. (author)

  16. Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.

    Science.gov (United States)

    Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S

    2014-11-17

    Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.

  17. Fabrication of a cost-effective polymer nanograting as a disposable plasmonic biosensor using nanoimprint lithography

    Science.gov (United States)

    Mohapatra, Saswat; Kumari, Sudha; Moirangthem, Rakesh S.

    2017-07-01

    A simple and cost-effective flexible plasmonic sensor is developed using a gold-coated polymer nanograting structure prepared via soft UV nanoimprint lithography. The sub-wavelength nanograting patterns of digital versatile discs were used as a template to prepare the polydimethylsiloxane stamp. The plasmonic sensing substrate was achieved after coating a gold thin film on top of the imprinted nanograting sample. The surface plasmon resonance (SPR) modes excited on the gold-coated nanograting structure appeared as a dip in the reflectance spectrum measured at normal incidence under white light illumination in the ambient air medium. Electromagnetic simulation based on the finite element method was carried out to analyze the excited SPR modes. The simulated result shows very close agreement with the experimental data. The performance of the sensor with respect to changing the surrounding dielectric medium yields a bulk refractive index sensitivity of 788  ±  21 nm per refractive index unit. Further, label-free detection of proteins using a plasmonic sensing substrate was demonstrated by monitoring specific interactions between bovine serum albumin (BSA) and anti-BSA proteins, which gave a detection limit of 123 pg mm-2 with respect to target anti-BSA protein binding. Thus, our proposed plasmonic sensor has potential for the development of an economical and highly sensitive label-free optical biosensing device for biomedical applications.

  18. Applications of Cold Cathode PIG Ion Source in Lithography

    International Nuclear Information System (INIS)

    Bassal, N.I.

    2012-01-01

    The cold cathode Penning ion source (PIG) of axial type could be modified to produce ion and electron beam with a considerable amount to use it in the lithography process. Lithography is a new applications of ion/electron beam at which one can use the ion/ or electron beam as a pencil to write and draw on a metal surface. The electron beam takes 1/3 the time needed for ion beam to make good picture. So that with the help of ion/or electron beam lithography one can mark tools, parts, instruments, and equipment with names, numbers, designs, trademark or brand name in few seconds. It is an easy process, quick and an inexpensive method. Firstly, operating characteristics of this ion source is studied. Lithography application of ion source with optimum conditions is done. Later, the hardness and the tensile strength is measured and each of them increases with increasing time

  19. Laser interference lithography with highly accurate interferometric alignment

    NARCIS (Netherlands)

    van Soest, Frank J.; van Wolferen, Hendricus A.G.M.; Hoekstra, Hugo; de Ridder, R.M.; Worhoff, Kerstin; Lambeck, Paul

    It is shown experimentally that in laser interference lithography, by using a reference grating, respective grating layers can be positioned with high relative accuracy. A 0.001 degree angular and a few nanometers lateral resolution have been demonstrated.

  20. Double transfer UV-curing nanoimprint lithography

    International Nuclear Information System (INIS)

    Shen, Yiming; Yao, Lei; Li, Zhiwei; Kou, Junlong; Cui, Yushuang; Bian, Jie; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng; Li, Wen-Di; Wu, Wei

    2013-01-01

    A challenge in the fabrication of nanostructures into non-planar substrates is to form a thin, uniform resist film on non-planar surfaces. This is critical to the fabrication of nanostructures via a lithographic technique due to the subsequent pattern transfer process. Here we report a new double transfer UV-curing nanoimprint technique that can create a nanopatterned thin film with a uniform residual layer not only on flat substrates but also on highly curved surfaces. Surface relief gratings with pitches down to 200 nm are successfully imprinted on the cylindrical surface of optical fibers, and further transferred into a SiO 2 matrix using reactive ion etching (RIE), demonstrating that our technique is applicable for fabricating high-resolution nanostructures on non-planar substrates. (paper)

  1. Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials

    Science.gov (United States)

    Le Boulbar, E. D.; Chausse, P. J. P.; Lis, S.; Shields, P. A.

    2017-06-01

    Nanostructured materials are essential for many recent electronic, magnetic and optical devices. Lithography is the most common step used to fabricate organized and well calibrated nanostructures. However, feature sizes less than 200 nm usually require access to deep ultraviolet photolithography, e-beam lithography or soft lithography (nanoimprinting), which are either expensive, have low-throughput or are sensitive to defects. Low-cost, high-throughput and low-defect-density techniques are therefore of interest for the fabrication of nanostructures. In this study, we investigate the potential of displacement Talbot lithography for the fabrication of specific structures of interest within plasmonic and metamaterial research fields. We demonstrate that nanodash arrays and `fishnet'-like structures can be fabricated by using a double exposure of two different linear grating phase masks. Feature sizes can be tuned by varying the exposure doses. Such lithography has been used to fabricate metallic `fishnet'-like structures using a lift-off technique. This proof of principle paves the way to a low-cost, high-throughput, defect-free and large-scale technique for the fabrication of structures that could be useful for metamaterial and plasmonic metasurfaces. With the development of deep ultraviolet displacement Talbot lithography, the feature dimensions could be pushed lower and used for the fabrication of optical metamaterials in the visible range.

  2. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  3. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.; Semple, James; Jagadamma, Lethy Krishnan; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.; deMello, John C.

    2014-01-01

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  4. Imprint cytology: A boon in tissue diagnosis

    Directory of Open Access Journals (Sweden)

    Charusheela Rajesh Gore

    2017-01-01

    Full Text Available Background: The technique of imprint cytology has provided great impetus to cytodiagnosis due to its simplicity, cost effectiveness, rapid results. It plays a significant role in the rapid diagnosis of the lesions. Objectives: To analyze the sensitivity and specificity of imprint cytology and thereby to evaluate its diagnostic utility. Materials and Methods: The prospective study was carried out in a tertiary care hospital. It included 105 cases. Both benign and malignant lesions from different organ systems were included in the study. Various techniques like touch imprints scrape cytology and squash preparations were used according to the nature of tissue sample. The cytodiagnosis was correlated with histopathological (HP diagnosis to evaluate the sensitivity and specificity of imprint cytology. Results: Maximum lesions were of central nervous system (25.7% followed by breast, head, and neck. Imprint cytology diagnosis had sensitivity of 95.5% with 100% specificity for detection of benign and malignant lesions. Overall accuracy of detecting type of lesion was 98.1%. Total discordance with HP diagnosis was found in 1.9% of cases. Conclusion: The use of smear technique in intraoperative diagnosis provides a rapid and efficient means of pathological assessment which in experienced hand, is capable of obtaining a high degree of accuracy. Its use is highly recommended routinely.

  5. Causal imprinting in causal structure learning.

    Science.gov (United States)

    Taylor, Eric G; Ahn, Woo-Kyoung

    2012-11-01

    Suppose one observes a correlation between two events, B and C, and infers that B causes C. Later one discovers that event A explains away the correlation between B and C. Normatively, one should now dismiss or weaken the belief that B causes C. Nonetheless, participants in the current study who observed a positive contingency between B and C followed by evidence that B and C were independent given A, persisted in believing that B causes C. The authors term this difficulty in revising initially learned causal structures "causal imprinting." Throughout four experiments, causal imprinting was obtained using multiple dependent measures and control conditions. A Bayesian analysis showed that causal imprinting may be normative under some conditions, but causal imprinting also occurred in the current study when it was clearly non-normative. It is suggested that causal imprinting occurs due to the influence of prior knowledge on how reasoners interpret later evidence. Consistent with this view, when participants first viewed the evidence showing that B and C are independent given A, later evidence with only B and C did not lead to the belief that B causes C. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  7. Epigenetic Mechanisms of Genomic Imprinting: Common Themes in the Regulation of Imprinted Regions in Mammals, Plants, and Insects

    Directory of Open Access Journals (Sweden)

    William A. MacDonald

    2012-01-01

    Full Text Available Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.

  8. Metal films with imprinted nanostructures by template stripping

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    We present a novel template stripping procedure for fabricating metal films with imprinted nanostructures. The basic idea is to deposit a gold film onto a nano-structured substrate and subsequently strip the film from the substrate surface thereby revealing imprinted nanostructures in the film...... result is a thin gold film with imprinted nano-cavities....

  9. Using IMPRINT to Guide Experimental Design with Simulated Task Environments

    Science.gov (United States)

    2015-06-18

    USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN OF SIMULATED TASK ENVIRONMENTS THESIS Gregory...ENG-MS-15-J-052 USING IMPRINT TO GUIDE EXPERIMENTAL DESIGN WITH SIMULATED TASK ENVIRONMENTS THESIS Presented to the Faculty Department...Civilian, USAF June 2015 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-J-052 USING IMPRINT

  10. Producing superfluid circulation states using phase imprinting

    Science.gov (United States)

    Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène

    2018-04-01

    We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.

  11. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  12. Molecularly Imprinted Microrods via Mesophase Polymerization

    Directory of Open Access Journals (Sweden)

    Ortensia Ilaria Parisi

    2017-12-01

    Full Text Available The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs with a rod-like geometry via “mesophase polymerization”. The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS, water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  13. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  14. Weak interfaces for UV cure nanoimprint lithography

    Science.gov (United States)

    Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa

    2008-03-01

    Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.

  15. Smartphone Sensors for Stone Lithography Authentication

    Directory of Open Access Journals (Sweden)

    Giuseppe Schirripa Spagnolo

    2014-05-01

    Full Text Available Nowadays mobile phones include quality photo and video cameras, access to wireless networks and the internet, GPS assistance and other innovative systems. These facilities open them to innovative uses, other than the classical telephonic communication one. Smartphones are a more sophisticated version of classic mobile phones, which have advanced computing power, memory and connectivity. Because fake lithographs are flooding the art market, in this work, we propose a smartphone as simple, robust and efficient sensor for lithograph authentication. When we buy an artwork object, the seller issues a certificate of authenticity, which contains specific details about the artwork itself. Unscrupulous sellers can duplicate the classic certificates of authenticity, and then use them to “authenticate” non-genuine works of art. In this way, the buyer will have a copy of an original certificate to attest that the “not original artwork” is an original one. A solution for this problem would be to insert a system that links together the certificate and the related specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this article we propose an innovative method for the authentication of stone lithographs. We use the color spots distribution captured by means of a smartphone camera as a non-cloneable texture of the specific artworks and an information management system for verifying it in mobility stone lithography.

  16. Evaporative Lithography in Open Microfluidic Channel Networks

    KAUST Repository

    Lone, Saifullah

    2017-02-24

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  17. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  18. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  19. Reflective masks for extreme ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  20. Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

    Directory of Open Access Journals (Sweden)

    Manuel R. Gonçalves

    2011-08-01

    Full Text Available We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost.Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.

  1. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  2. Conformal Einstein spaces

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.; Tod, K.P.

    1985-01-01

    Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)

  3. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  4. Superspace conformal field theory

    International Nuclear Information System (INIS)

    Quella, Thomas

    2013-07-01

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  5. Catalytic silica particles via template-directed molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P.

    2000-02-22

    The surfaces of silica particle were molecularly imprinted with an {alpha}-chymotrypsin transition-state analogue (TSA) by utilizing the technique of template-directed synthesis of mineralized materials. The resulting catalytic particles hydrolyzed amides in an enantioselective manner. A mixture of a nonionic surfactant and the acylated chymotrysin TSA, with the TSA acting as the headgroup at the surfactant-water interface, was used to form a microemulsion for silica particle formation. Incorporation of amine-, dihydroimidazole-, and carboxylate-terminated trialkoxysilanes into the particles during imprinting resulted in enhancement of the rates of amide hydrolysis. Acylated imprint molecules formed more effective imprints in the presence of the functionalized silanes than nonacylated imprint molecules. Particles surface-imprinted with the chymotrypsin TSA were selective for the trypsin substrate, and particles surface-imprinted with the L-isomer of the enzyme TSA were enantioselective for the D-isomer of the substrate.

  6. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  7. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  8. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  9. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  10. Foster parenting, human imprinting and conventional handling ...

    African Journals Online (AJOL)

    ... the present study indicates that improvements can be made by adopting alternative approaches. Further studies are needed to ascertain how foster parenting and imprinting may be utilized to optimize chick performance, including the long-term consequences of these practices. Keywords: Parental care, Struthio camelus, ...

  11. Molecular Imprinting Applications in Forensic Science.

    Science.gov (United States)

    Yılmaz, Erkut; Garipcan, Bora; Patra, Hirak K; Uzun, Lokman

    2017-03-28

    Producing molecular imprinting-based materials has received increasing attention due to recognition selectivity, stability, cast effectiveness, and ease of production in various forms for a wide range of applications. The molecular imprinting technique has a variety of applications in the areas of the food industry, environmental monitoring, and medicine for diverse purposes like sample pretreatment, sensing, and separation/purification. A versatile usage, stability and recognition capabilities also make them perfect candidates for use in forensic sciences. Forensic science is a demanding area and there is a growing interest in molecularly imprinted polymers (MIPs) in this field. In this review, recent molecular imprinting applications in the related areas of forensic sciences are discussed while considering the literature of last two decades. Not only direct forensic applications but also studies of possible forensic value were taken into account like illicit drugs, banned sport drugs, effective toxins and chemical warfare agents in a review of over 100 articles. The literature was classified according to targets, material shapes, production strategies, detection method, and instrumentation. We aimed to summarize the current applications of MIPs in forensic science and put forth a projection of their potential uses as promising alternatives for benchmark competitors.

  12. Fabrication of Monolithic Bridge Structures by Vacuum-Assisted Capillary-Force Lithography

    KAUST Repository

    Kwak, Rhokyun; Jeong, Hoon Eui; Suh, Kahp Y.

    2009-01-01

    Monolithic bridge structures were fabricated by using capillary-force lithography (CFL), which was developed for patterning polymers over a large area by combining essential features of nanoimprint lithography and capillarity. A patterned soft mold

  13. The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals

    Directory of Open Access Journals (Sweden)

    Dunham Ian

    2007-09-01

    Full Text Available Abstract Background The evolution of genomic imprinting, the parental-origin specific expression of genes, is the subject of much debate. There are several theories to account for how the mechanism evolved including the hypothesis that it was driven by the evolution of X-inactivation, or that it arose from an ancestrally imprinted chromosome. Results Here we demonstrate that mammalian orthologues of imprinted genes are dispersed amongst autosomes in both monotreme and marsupial karyotypes. Conclusion These data, along with the similar distribution seen in birds, suggest that imprinted genes were not located on an ancestrally imprinted chromosome or associated with a sex chromosome. Our results suggest imprinting evolution was a stepwise, adaptive process, with each gene/cluster independently becoming imprinted as the need arose.

  14. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...... the transposition process. We therefore conclude that a stronger focus on an effective sanctioning mechanism is warranted for safeguarding compliance with directives....

  15. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  16. Development of Blue Laser Direct-Write Lithography System

    Directory of Open Access Journals (Sweden)

    Hao-Wen Chang

    2012-01-01

    Full Text Available The optical lithography system researched in this study adopted the laser direct-write lithography technology with nano-positioning stage by using retailing blue ray optical pickup head contained 405nm wavelength and 0.85 numerical aperture of focus lens as the system lighting source. The system employed a photodiode received the focusing error signal reflected by the glass substrate to identify specimen position and automatic focused control with voice coil motor. The pattern substrate was loaded on a nano-positioning stage; input pattern path automatically and collocate with inner program at the same time. This research has successfully developed a blue laser lithography process system. The single spot size can be narrowed down to 3.07 μm and the linewidth is 3.3μm, time of laser control can reach to 450 ns and the exposure pattern can be controlled by program as well.

  17. Graphene nanoribbon superlattices fabricated via He ion lithography

    International Nuclear Information System (INIS)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-01-01

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He + -beam lithography can texture graphene with less damage

  18. Graphene nanoribbon superlattices fabricated via He ion lithography

    Energy Technology Data Exchange (ETDEWEB)

    Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Fragneaud, Benjamin [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil); Gustavo Cançado, Luiz [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Winston, Donald [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Miao, Feng [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); National Laboratory of Solid State Microstructures, School of Physics, National Center of Microstructures and Quantum Manipulation, Nanjing University, Nanjing 210093 (China); Alberto Achete, Carlos [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de janeiro, Rio de Janeiro RJ 21941-972 (Brazil); Medeiros-Ribeiro, Gilberto [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States)

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  19. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  20. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD).

    Science.gov (United States)

    Ince, Gozde Ozaydin; Armagan, Efe; Erdogan, Hakan; Buyukserin, Fatih; Uzun, Lokman; Demirel, Gokhan

    2013-07-24

    Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.

  1. Investigation of the physics of diamond MEMS : diamond allotrope lithography

    International Nuclear Information System (INIS)

    Zalizniak, I.; Olivero, P.; Jamieson, D.N.; Prawer, S.; Reichart, P.; Rubanov, S.; Petriconi, S.

    2005-01-01

    We propose a novel lithography process in which ion induced phase transfomations of diamond form sacrificial layers allowing the fabrication of small structures including micro-electromechanical systems (MEMS). We have applied this novel lithography to the fabrication of diamond microcavities, cantilevers and optical waveguides. In this paper we present preliminary experiments directed at the fabrication of suspended diamond disks that have the potential for operation as optical resonators. Such structures would be very durable and resistant to chemical attack with potential applications as novel sensors for extreme environments or high temperature radiation detectors. (author). 3 refs., 3 figs

  2. Quantum lithography beyond the diffraction limit via Rabi-oscillations

    Science.gov (United States)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2011-03-01

    We propose a quantum optical method to do the sub-wavelength lithography. Our method is similar to the traditional lithography but adding a critical step before dissociating the chemical bound of the photoresist. The subwavelength pattern is achieved by inducing the multi-Rabi-oscillation between the two atomic levels. The proposed method does not require multiphoton absorption and the entanglement of photons. This method is expected to be realizable using current technology. This work is supported by a grant from the Qatar National Research Fund (QNRF) under the NPRP project and a grant from the King Abdulaziz City for Science and Technology (KACST).

  3. Functionalized SU-8 patterned with X-ray Lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Romanato, F.

    2005-01-01

    spontaneous emission light source that couples out light normal to the chip plane. In addition we examine the influence of the x-ray irradiation on the fluorescence of thin films of dye doped SU-8. The dye embedded in the SU-8 is optically excited during, characterization by an external light source tuned......In this work we demonstrate the feasibility of x-ray lithography on SU-8 photoresist doped with the laser dye Rhodamine 6G, while retaining the photoactive properties of the embedded dye. Two kinds of structures are fabricated via soft x-ray lithography and characterized: a laser and in amplified...

  4. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Science.gov (United States)

    Paliwal, Anupam; Temkin, Alexis M; Kerkel, Kristi; Yale, Alexander; Yotova, Iveta; Drost, Natalia; Lax, Simon; Nhan-Chang, Chia-Ling; Powell, Charles; Borczuk, Alain; Aviv, Abraham; Wapner, Ronald; Chen, Xiaowei; Nagy, Peter L; Schork, Nicholas; Do, Catherine; Torkamani, Ali; Tycko, Benjamin

    2013-08-01

    Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.

  5. [Werkgartner's muzzle imprint mark--a literature study].

    Science.gov (United States)

    Geserick, Gunther; Vendura, Klaus; Wirth, Ingo

    2009-01-01

    Since Werkgartner described and correctly interpreted the muzzle imprint mark around the gunshot entrance wound in 1922, this finding has been generally accepted as a sign of a contact shot. In further studies, it could finally be clarified that the muzzle imprint mark is caused by the expansive power of the powder gases with pressure on and abrasion of the skin at the muzzle (weapon imprint). Its shape depends on the firearm, the ammunition and the anatomical conditions, but does not require a bullet. Examinations under a magnifying glass microscope and histological investigations can complete the macroscopic findings. Occasionally, the muzzle imprint mark requires a certain "drying period" in order to become clearly visible. In rare cases, muzzle imprint marks also form on textiles perforated by the projectile. Characteristically shaped muzzled imprint marks can provide clues to the type of the firearm and its position at the time of discharge.

  6. Potential roles for transposable elements in creating imprinted expression.

    Science.gov (United States)

    Anderson, Sarah N; Springer, Nathan M

    2018-04-01

    Changes in gene expression can have profound effects on phenotype. Nature has provided many complex patterns of gene regulation such as imprinting. Imprinted genes exhibit differences in the expression of the maternal and paternal alleles, even though they reside in the same nucleus with access to the same trans-acting factors. Significant attention has been focused on the potential reasons that imprinted expression could be beneficial and stabilized by selection. However, less attention has focused on understanding how imprinted expression might arise or decay. We discuss the evidence for frequent turnover of imprinted expression based on evolutionary analyses in plants and the potential role for transposable elements (TEs) in creating imprinted expression patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  8. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Uzun, Lokman; Uzek, Recep; Şenel, Serap; Say, Ridvan; Denizli, Adil

    2013-01-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring

  9. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Uzek, Recep; Şenel, Serap [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Say, Ridvan [Anadolu University, Department of Chemistry, 26470, Eskisehir (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey)

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring.

  10. Report on the fifth workshop on synchrotron x ray lithography

    Science.gov (United States)

    Williams, G. P.; Godel, J. B.; Brown, G. S.; Liebmann, W.

    Semiconductors comprise a greater part of the United States economy than the aircraft, steel, and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990s. X ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin, and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the exposure tool, that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x ray lithography and set a time frame, the other to focus on sources.

  11. Fabrication of periodically ordered diamond nanostructures by microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2587-2592 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : CVD growth * diamond * microsphere lithography * selective area deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014

  12. Structure formation in atom lithography using geometric collimation

    NARCIS (Netherlands)

    Meijer, T.; Beardmore, J.P.; Fabrie, C.G.C.H.M.; van Lieshout, J.P.; Notermans, R.P.M.J.W.; Sang, R.T.; Vredenbregt, E.J.D.; Leeuwen, van K.A.H.

    2011-01-01

    Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally

  13. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  14. Combined electron beam and UV lithography in SU-8

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Thamdrup, Lasse Højlund; Mironov, Andrej

    2007-01-01

    We present combined electron beam and UV lithography (CEUL) in SU-8 as a fast and flexible lithographic technique for prototyping of functional polymer devices and pattern transfer applications. CEUL is a lithographic technique suitable for defining both micrometer and nanometer scale features...

  15. Silicon Nanowire Fabrication Using Edge and Corner Lithography

    NARCIS (Netherlands)

    Yagubizade, H.; Berenschot, Johan W.; Jansen, Henricus V.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    This paper presents a wafer scale fabrication method of single-crystalline silicon nanowires (SiNWs) bound by <111> planes using a combination of edge and corner lithography. These are methods of unconventional nanolithography for wafer scale nano-patterning which determine the size of nano-features

  16. Fabrication of nanoparticle and protein nanostructures using nanoimprint lithography

    NARCIS (Netherlands)

    Maury, P.A.

    2007-01-01

    Nanoimprint lithography (NIL) was used as a tool to pattern self-assembled monolayers (SAMs) on silicon substrates because of its ability to pattern in the micrometer and nanometer ranges. The resulting polymer template behaved as a physical barrier preventing the formation of a SAM in the covered

  17. Fast thermal nanoimprint lithography by a stamp with integrated heater

    DEFF Research Database (Denmark)

    Tormen, Massimo; Malureanu, Radu; Pedersen, Rasmus Haugstrup

    2008-01-01

    We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 μs 25 Hz...

  18. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  19. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    Science.gov (United States)

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  1. GATM, the human ortholog of the mouse imprinted Gatm gene, escapes genomic imprinting in placenta

    Directory of Open Access Journals (Sweden)

    Toshinobu Miyamoto

    2005-03-01

    Full Text Available The GATM gene encodes L-arginine:glycine amidinotransferase, which catalyzes the conversion of L-arginine into guanidinoacetate, the rate-limiting step in the synthesis of creatine. Since, deficiencies in creatine synthesis and transport lead to certain forms of mental retardation in human, the human GATM gene appears to be involved in brain development. Recently it has been demonstrated that the mouse Gatm is expressed during development and is imprinted with maternal expression in the placenta and yolk sac, but not in embryonic tissues. We investigated the imprinting status of the human GATM by analyzing its expression in four human placentas. GATM was biallelically expressed, thus suggesting that this gene escapes genomic imprinting in placentas, differently from what has been reported in mouse extra-embryonic tissues.

  2. Protein assay structured on paper by using lithography

    Science.gov (United States)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  3. IMPRINT Analysis of an Unmanned Air System Geospatial Information Process

    National Research Council Canada - National Science Library

    Hunn, Bruce P; Schweitzer, Kristin M; Cahir, John A; Finch, Mary M

    2008-01-01

    ... intelligence, geospatial analysis cell. The Improved Performance Research Integration Tool (IMPRINT) modeling program was used to understand this process and to assess crew workload during several test scenarios...

  4. Synthesis of a Molecularly Imprinted Polymer for Dioxin

    Directory of Open Access Journals (Sweden)

    Magda Brattoli

    2006-08-01

    Full Text Available A molecularly imprinted polymer for recognising selectively 2,3,7,8-tetrachlorodibenzodioxin (TCDD was made by a new non-covalent method employing a“dummy” template. The proposed way represents a simplification of a synthetic schemeproposed by Lübke et al.[1] for covalent imprinting. Comparison of extraction yields of thenovel polymer, a non imprinted polymer and an imprinting polymer, prepared by theoriginal procedure demonstrates the binding capacity of the proposed polymer, which is inprinciple applicable to solid phase extraction (SPE of dioxin.

  5. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  6. Thickenings and conformal gravity

    Science.gov (United States)

    Lebrun, Claude

    1991-07-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M].

  7. Thickenings and conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, C. (State Univ. of New York, Stony Brook, NY (USA). Dept. of Mathematics)

    1991-07-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason (B-M). (orig.).

  8. Thickenings and conformal gravity

    International Nuclear Information System (INIS)

    LeBrun, C.

    1991-01-01

    A twistor correspondence is given for complex conformal space-times with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is algebraically general, these equations are precisely the conformal version of Einstein's vacuum equations with cosmological constant. This gives a fully curved version of the linearized correspondence of Baston and Mason [B-M]. (orig.)

  9. Conformal transformations in superspace

    International Nuclear Information System (INIS)

    Dao Vong Duc

    1977-01-01

    The spinor extension of the conformal algebra is investigated. The transformation law of superfields under the conformal coordinate inversion R defined in the superspace is derived. Using R-technique, the superconformally covariant two-point and three-point correlation functions are found

  10. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  11. Conformity index: A review

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre

    2006-01-01

    We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear

  12. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  13. Optimization algorithm that generates the lowest ΔEab values to a reference standard based on spectral measurements of solid inks in offset lithography

    DEFF Research Database (Denmark)

    Jensen, Søren Tapdrup

    2014-01-01

    ISO 12647-2 specifies CIELAB values for primary and secondary colors, but only tolerances for the primary solid colors. Press operators in lithography still favor density measurements for process control to assure quality and reproducibility during a production run. Since there is no direct...... relationship between density and CIELAB measurements, there is a gap between what the standard specifies and what the industry is actually doing. This research investigates the possibility of using the tolerances specified for the primary colors to achieve a better conformance of the secondary colors...

  14. Role of imprint/exfoliative cytology in ulcerated skin neoplasms.

    Science.gov (United States)

    Ramakrishnaiah, Vishnu Prasad Nelamangala; Babu, Ravindra; Pai, Dinker; Verma, Surendra Kumar

    2013-12-01

    Imprint cytology is a method of studying cells by taking an imprint from the cut surface of a wedge biopsy specimen or from the resected margins of a surgical specimen. It is rapid, simple and fairly accurate. Exfoliative cytology is an offshoot from the imprint cytology where in cells obtained from the surface of ulcers, either by scrape or brush, are analyzed for the presence of malignant cells. We undertook this study to see the role of imprint/exfoliative cytology in the diagnosis of ulcerated skin neoplasm and to check the adequacy of resected margins intra-operatively. This was a prospective investigative study conducted from September 2003 to July 2005. All patients presenting to surgical clinic with ulcerated skin and soft tissue tumours were included in the study. A wedge biopsy obtained from the ulcer and imprint smears were taken from the cut surface. Exfoliative cytology was analyzed from the surface smears. Wedge biopsy specimen was sent for histopathological (HPE) examination. The cytology and HPE were analyzed by a separate pathologist. Imprint cytology was also used to check the adequacy of resected margins in case of wide excision. This was compared with final HPE. Total of 107 patients was included in the present study and 474 imprint smears were done, with an average of 4.43 slides per lesion. Out of 59 wide excision samples, 132 imprint smears were prepared for assessing resected margins accounting for an average of 2.24 slides per each excised lesion. On combining imprint cytology with exfoliative cytology the overall sensitivity, specificity and positive predictive value were 90.38 %, 100 % and 90.38 % respectively. Only one out of 59 cases had a positive resected margin which was not picked by imprint cytology. Imprint cytology can be used for rapid and accurate diagnosis of various skin malignancies. It can also be used to check the adequacy of the resected margin intraoperatively.

  15. Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Endo, Tatsuro; Ueda, China; Hisamoto, Hideaki; Kajita, Hiroshi; Okuda, Norimichi; Tanaka, Satoru

    2013-01-01

    We have fabricated polymer-based 2-dimensional photonic crystals that play a key role in enhancing the fluorescence of DNA intercalators. Highly ordered 2-dimensional photonic crystals possessing triangle-shaped and nm-sized hole arrays were fabricated on a 100 μm thick polymer film using nano-imprint lithography. Samples of double-stranded DNAs (sizes: 4361 and 48502 bp; concentration: 1 pM to 10 nM) were adsorbed on the surface of the 2-dimensional photonic crystal by electrostatic interactions and then treated with intercalators. It is found that the fluorescence intensity of the intercalator is enhanced by a factor of up to 10 compared to the enhancement in the absence of the 2-dimensional photonic crystal. Fluorescence intensity increases with increasing length and concentration of the DNAs. If the 2-dimensional photonic crystal is used as a Bragg reflection mirror, the enhancement of fluorescence intensity can be easily observed using a conventional spectrofluorometer. These results suggest that the printed photonic crystal offers a great potential for highly sensitive intercalator-based fluorescent detection of DNAs. (author)

  16. Measurement of pull-off force on imprinted nanopatterns in an inert liquid

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Lee, Dong Eon; Lee, Woo Il; Suh, Kahp Y

    2010-01-01

    We report on the measurement of the pull-off force on nanoscale patterns that are formed by thermal nanoimprint lithography (t-NIL). Various patterns with feature sizes in the range of 50-900 nm were fabricated on silicon substrates using a rigiflex polymeric mold of ultraviolet curable polyurethane acrylate (PUA, Young's modulus ∼ 1 GPa) or perfluoropolyether (PFPE, Young's modulus ∼ 10.5 MPa) and a resist layer of polystyrene (PS) of three different molecular weights (M w = 18 100, 211 600 and 2043 000). The pull-off force was measured in non-polar, non-reactive perfluorodecalin (PFD) solvent between a sharp atomic force microscopy (AFM) tip and an imprinted pattern. Our experimental data demonstrated that the measured pull-off forces were in good agreement with a simple adhesion model based on Lifshitz theory. Also, the force on the pressed region (valley) is higher than that on the cavity region (hill), with the ratio (hill/valley) decreasing with the decrease of pattern size and the increase of molecular weight. The confinement effects were more pronounced for smaller patterns ( w = 211 600 and 2043 000) presumably due to sluggish movement of polymer chains into nano-cavities. Finally, the experimental observations were compared with molecular dynamic simulations based on a simplified amorphous polyethylene model.

  17. Selectively Patterning Polymer Opal Films via Microimprint Lithography.

    Science.gov (United States)

    Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J

    2014-11-01

    Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.

  18. Investigation of the AZ 5214E photoresist by the laser interference, EBDW and NSOM lithographies

    Energy Technology Data Exchange (ETDEWEB)

    Škriniarová, J., E-mail: jaroslava.skriniarova@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Pudiš, D. [Department of Physics, University of Žilina, Žilina (Slovakia); Andok, R. [Department of E-Beam Lithography, Institute of Informatics, Slovak Academy of Sciences, Bratislava (Slovakia); Lettrichová, I. [Department of Physics, University of Žilina, Žilina (Slovakia); Uherek, F. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Applicability of the AZ 5214E photoresist for three different lithographies. • Useful for the fabrication of 1D and 2D periodic and irregular structures. • 2D structures with 260 nm period achieved by the laser interference lithography. • Structures with period below 500 nm achieved with the e-beam direct-write lithography. • Holes of 270 nm diameter made by the near-field scanning optical microscopy lithography. - Abstract: In this paper we show a comparison of chosen lithographies used for the AZ 5214E photoresist, which is normally UV sensitive but has also been investigated for its sensitivity to e-beam exposure. Three lithographies, the E-Beam Direct Write lithography (EBDW), laser Interference Lithography (IL) and the non-contact Near-field Scanning Optical Microscopy (NSOM) lithography, are discussed here and the results on exposed arrays of simple patterns are shown. With the EBDW and IL we achieved periods of the structures around half-micron, and we demonstrate attainability of dimensions smaller or comparable than usually achieved by a standard optical photolithography with the investigated photoresist. With the non-contact NSOM lithography structures with periods slightly above a micron were achieved.

  19. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  20. Imprinting alterations in sperm may not significantly influence ART outcomes and imprinting patterns in the cord blood of offspring.

    Science.gov (United States)

    Tang, Li; Liu, Zichao; Zhang, Ruopeng; Su, Cunmei; Yang, Wenjuan; Yao, Youlin; Zhao, Shuhua

    2017-01-01

    An increase in imprinting disorders in children conceived though assisted reproductive technologies (ARTs) has been the subject of several reports. The transmission of imprinting errors from the sperm of infertile fathers is believed to be a possible reason for the increased occurrence of these disorders. However, whether the imprinting alterations in sperm affect ART outcomes and the imprinting of offspring is unclear. In the current study, we analyzed the methylation of H19, SNRPN and KCNQ1OT1 by pyrosequencing sperm samples from 97 infertile patients and 31 proven fertile males as well as cord blood samples from 13 infantswho were conceived by infertile parents through intracytoplasmic sperm injection (ICSI) and 30 healthy newborns who were conceived naturally. After four cases were excluded owing to the lack of a sequencing signal, the infertile patients were subgrouped into normal (69 cases) and abnormal (24 cases) imprinting groups according to the reference range set by the control group. Between the groups, there were no significant differences in ART outcomes. Significantly different levels of methylation were detected in H19, but none of the imprinted genes were determined to be outside of the methylation reference range set by the values derived from the naturally conceived controls. Three CpG loci were found to be significantly hypomethylated in the maternally imprinted gene KCNQ1OT1 in two patients from the abnormal imprinting group, none of which were caused by sperm imprinting errors. In addition, the paternal H19 gene exhibited discrepant methylation patterns between the sperm controls and the cord blood controls. Our data suggest that increased imprinting errors in the sperm of infertile patients do not have an obvious influence on ART outcomes or the imprinting of offspring.

  1. Imprinting diseases and IVF: Danish National IVF cohort study

    DEFF Research Database (Denmark)

    Lidegaard, Ojvind; Pinborg, Anja; Andersen, Anders Nyboe

    2005-01-01

    The aim of this study was to compare the frequency of imprinting diseases in children born after IVF with the incidence in naturally conceived children.......The aim of this study was to compare the frequency of imprinting diseases in children born after IVF with the incidence in naturally conceived children....

  2. Characterization of Conserved and Nonconserved Imprinted Genes in Swine

    Science.gov (United States)

    Genomic imprinting results in the silencing of a subset of mammalian alleles due to parent-of-origin inheritance. Due to the nature of their expression patterns they play a critical role in placental and early embryonic development. In order to increase our understanding of imprinted genes specifi...

  3. Synthesis of molecular imprinted beta cyclodextrins oligomers in water

    DEFF Research Database (Denmark)

    Yu, Donghong; Nielsen, Anne Louise; Bach, Lone

    2003-01-01

    compounds in aqueous solution and, therefore, molecular imprinting of cyclodextrins polymers in aqueous solution is of great interest. In this paper, molecular imprinting of beta cyclodextrins has been performed in water by use of diiodobenzene as template and epichlorohydrin as a crosslinker. Inclusion...

  4. Mycotoxin analysis using imprinted materials technology: Recent developments

    Science.gov (United States)

    Molecular imprinting technology is an attractive, cost effective, and robust alternative to address the limitations of highly selective natural receptors, such as antibodies and aptamers. The field of molecular imprinting has seen a recent surge in growth with several commercially available products...

  5. Imprinting can cause a maladaptive preference for infectious conspecifics.

    Science.gov (United States)

    Stephenson, Jessica F; Reynolds, Michael

    2016-04-01

    Recognizing and associating with specific individuals, such as conspecifics or kin, brings many benefits. One mechanism underlying such recognition is imprinting: the long-term memory of cues encountered during development. Typically, juveniles imprint on cues of nearby individuals and may later associate with phenotypes matching their 'recognition template'. However, phenotype matching could lead to maladaptive social decisions if, for instance, individuals imprint on the cues of conspecifics infected with directly transmitted diseases. To investigate the role of imprinting in the sensory ecology of disease transmission, we exposed juvenile guppies,Poecilia reticulata, to the cues of healthy conspecifics, or to those experiencing disease caused by the directly transmitted parasite Gyrodactylus turnbulli In a dichotomous choice test, adult 'disease-imprinted' guppies preferred to associate with the chemical cues of G. turnbulli-infected conspecifics, whereas 'healthy-imprinted' guppies preferred to associate with cues of uninfected conspecifics. These responses were only observed when stimulus fish were in late infection, suggesting imprinted fish responded to cues of disease, but not of infection alone. We discuss how maladaptive imprinting may promote disease transmission in natural populations of a social host. © 2016 The Author(s).

  6. DNA replication: stalling a fork for imprinting and switching

    DEFF Research Database (Denmark)

    Egel, Richard

    2004-01-01

    Mating-type switching in fission yeast has long been known to be directed by a DNA 'imprint'. This imprint has now been firmly characterized as a protected site-specific and strand-specific nick. New work also links the widely conserved Swi1-Swi3 complex to the protection of stalled replication...

  7. Influence of surface-imprinted nanoparticles on trypsin activity.

    Science.gov (United States)

    Guerreiro, António; Poma, Alessandro; Karim, Kal; Moczko, Ewa; Takarada, Jessica; de Vargas-Sansalvador, Isabel Perez; Turner, Nicholas; Piletska, Elena; de Magalhães, Cristiana Schmidt; Glazova, Natalia; Serkova, Anastasia; Omelianova, Aleksandra; Piletsky, Sergey

    2014-09-01

    Here, the modulation of enzyme activity is presented by protein-imprinted nanoparticles produced using a solid-phase approach. Using trypsin as target, binding of the nanoparticles to the enzyme results in its inhibition or in stabilization, depending on the orientation of the immobilized enzyme used during imprinting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    OpenAIRE

    Schweiger, Bianca; Kim, Jungtae; Kim, Young; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueo...

  9. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Shunsuke Suzuki

    2007-04-01

    Full Text Available Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10 is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii, but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus, suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.

  10. Conformal sequestering simplified

    International Nuclear Information System (INIS)

    Schmaltz, Martin; Sundrum, Raman

    2006-01-01

    Sequestering is important for obtaining flavor-universal soft masses in models where supersymmetry breaking is mediated at high scales. We construct a simple and robust class of hidden sector models which sequester themselves from the visible sector due to strong and conformally invariant hidden dynamics. Masses for hidden matter eventually break the conformal symmetry and lead to supersymmetry breaking by the mechanism recently discovered by Intriligator, Seiberg and Shih. We give a unified treatment of subtleties due to global symmetries of the CFT. There is enough review for the paper to constitute a self-contained account of conformal sequestering

  11. Conformally connected universes

    International Nuclear Information System (INIS)

    Cantor, M.; Piran, T.

    1983-01-01

    A well-known difficulty associated with the conformal method for the solution of the general relativistic Hamiltonian constraint is the appearance of an aphysical ''bag of gold'' singularity at the nodal surface of the conformal factor. This happens whenever the background Ricci scalar is too large. Using a simple model, it is demonstrated that some of these singular solutions do have a physical meaning, and that these can be considered as initial data for Universe containing black holes, which are connected, in a conformally nonsingular way with each other. The relation between the ADM mass and the horizon area in this solution supports the cosmic censorship conjecture. (author)

  12. Comparative anatomy of chromosomal domains with imprinted and non-imprinted allele-specific DNA methylation.

    Directory of Open Access Journals (Sweden)

    Anupam Paliwal

    2013-08-01

    Full Text Available Allele-specific DNA methylation (ASM is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons, one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs, each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS peaks near CTCF binding sites with ASM.

  13. XUV free-electron laser-based projection lithography systems

    Energy Technology Data Exchange (ETDEWEB)

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  14. A new lithography of functional plasma polymerized thin films

    International Nuclear Information System (INIS)

    Kim, Sung-O

    2001-01-01

    The preparation of the resist for the vacuum lithography was carried out by plasma polymerization. The resist manufactured by plasma polymerization is a monomer produced by MMA (Methyl methacrylate). The functional groups of MMA appeared in the PPMMA (Plasma Polymerized Methyl methacrylate) as well, and this was confirmed through an analysis using FT-IR. The polymerization rate increased as a function of the plasma power and decreased as a function of the system pressure. The sensitivity and contrast of the plasma polymerized thin films were 15 μC/cm2 and 4.3 respectively. The size of the pattern manufactured by Vacuum Lithography using the plasma polymerized thin films was 100 nm

  15. Challenges of anamorphic high-NA lithography and mask making

    Science.gov (United States)

    Hsu, Stephen D.; Liu, Jingjing

    2017-06-01

    Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10

  16. Maskless, parallel patterning with zone-plate array lithography

    International Nuclear Information System (INIS)

    Carter, D. J. D.; Gil, Dario; Menon, Rajesh; Mondol, Mark K.; Smith, Henry I.; Anderson, Erik H.

    1999-01-01

    Zone-plate array lithography (ZPAL) is a maskless lithography scheme that uses an array of shuttered zone plates to print arbitrary patterns on a substrate. An experimental ultraviolet ZPAL system has been constructed and used to simultaneously expose nine different patterns with a 3x3 array of zone plates in a quasidot-matrix fashion. We present exposed patterns, describe the system design and construction, and discuss issues essential to a functional ZPAL system. We also discuss another ZPAL system which operates with 4.5 nm x radiation from a point source. We present simulations which show that, with our existing x-ray zone plates and this system, we should be able to achieve 55 nm resolution. (c) 1999 American Vacuum Society

  17. Seamless-merging-oriented parallel inverse lithography technology

    International Nuclear Information System (INIS)

    Yang Yiwei; Shi Zheng; Shen Shanhu

    2009-01-01

    Inverse lithography technology (ILT), a promising resolution enhancement technology (RET) used in next generations of IC manufacture, has the capability to push lithography to its limit. However, the existing methods of ILT are either time-consuming due to the large layout in a single process, or not accurate enough due to simply block merging in the parallel process. The seamless-merging-oriented parallel ILT method proposed in this paper is fast because of the parallel process; and most importantly, convergence enhancement penalty terms (CEPT) introduced in the parallel ILT optimization process take the environment into consideration as well as environmental change through target updating. This method increases the similarity of the overlapped area between guard-bands and work units, makes the merging process approach seamless and hence reduces hot-spots. The experimental results show that seamless-merging-oriented parallel ILT not only accelerates the optimization process, but also significantly improves the quality of ILT.

  18. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  19. Metal layer mask patterning by force microscopy lithography

    International Nuclear Information System (INIS)

    Filho, H.D. Fonseca; Mauricio, M.H.P.; Ponciano, C.R.; Prioli, R.

    2004-01-01

    The nano-lithography of a metallic surface in air by atomic force microscopy while operated in contact mode and equipped with a diamond tip is presented. The aluminum mask was prepared by thermal deposition on arsenic sulfide films. The analysis of the scratches performed by the tip on the metallic mask show that the depth of the lithographed pattern increases with the increase of the applied normal force. The scanning velocity is also shown to influence the AFM patterning process. As the scanning velocity increases, the scratch depth and width decreases. Nano-indentations performed with the diamond tip show that the plastically deformed surface increases with the increase of the duration of the applied force. The use of the nano-lithography method to create nano-structures is discussed

  20. V-groove plasmonic waveguides fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Fernandez-Cuesta, I.; Nielsen, R.B.; Boltasseva, Alexandra

    2007-01-01

    Propagation of channel plasmon-polariton modes in the bottom of a metal V groove has been recently demonstrated. It provides a unique way of manipulating light at nanometer length scale. In this work, we present a method based on nanoimprint lithography that allows parallel fabrication of integra...... of integrated optical devices composed of metal V grooves. This method represents an improvement with respect to previous works, where the V grooves were fabricated by direct milling of the metal, in terms of robustness and throughput. © 2007 American Vacuum Society......Propagation of channel plasmon-polariton modes in the bottom of a metal V groove has been recently demonstrated. It provides a unique way of manipulating light at nanometer length scale. In this work, we present a method based on nanoimprint lithography that allows parallel fabrication...

  1. Fluorescense Anisotropy Studies of Molecularly Imprinted Polymer Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2005-08-03

    Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences in fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.

  2. The superconducting x-ray lithography source program at Brookhaven

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G. P.; Heese, R. N.; Vignola, G.; Murphy, J. B.; Godel, J. B.; Hsieh, H.; Galayda, J.; Seifert, A.; Knotek, M. L.

    1989-07-01

    A compact electron storage ring with superconducting dipole magnets, is being developed at the National Synchrotron Light Source at Brookhaven. The parameters of the source have been optimized for its future use as an x-ray source for lithography. This first ring is a prototype which will be used to study the operating characteristics of machines of this type with particular attention being paid to low-energy injection and long beam lifetime.

  3. ILT optimization of EUV masks for sub-7nm lithography

    Science.gov (United States)

    Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin

    2017-06-01

    The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

  4. Topology optimization for optical projection lithography with manufacturing uncertainties

    DEFF Research Database (Denmark)

    Zhou, Mingdong; Lazarov, Boyan Stefanov; Sigmund, Ole

    2014-01-01

    to manufacturing without additional optical proximity correction (OPC). The performance of the optimized device is robust toward the considered process variations. With the proposed unified approach, the design for photolithography is achieved by considering the optimal device performance and manufacturability......This article presents a topology optimization approach for micro-and nano-devices fabricated by optical projection lithography. Incorporating the photolithography process and the manufacturing uncertainties into the topology optimization process results in a binary mask that can be sent directly...

  5. Computational Design of Molecularly Imprinted Polymers

    Science.gov (United States)

    Subrahmanyam, Sreenath; Piletsky, Sergey A.

    Artificial receptors have been in use for several decades as sensor elements, in affinity separation, and as models for investigation of molecular recognition. Although there have been numerous publications on the use of molecular modeling in characterization of their affinity and selectivity, very few attempts have been made on the application of molecular modeling in computational design of synthetic receptors. This chapter discusses recent successes in the use of computational design for the development of one particular branch of synthetic receptors - molecularly imprinted polymers.

  6. Genomic imprinting of IGF2 in marsupials is methylation dependent

    Directory of Open Access Journals (Sweden)

    Imumorin Ikhide

    2008-05-01

    Full Text Available Abstract Background- Parent-specific methylation of specific CpG residues is critical to imprinting in eutherian mammals, but its importance to imprinting in marsupials and, thus, the evolutionary origins of the imprinting mechanism have been the subject of controversy. This has been particularly true for the imprinted Insulin-like Growth Factor II (IGF2, a key regulator of embryonic growth in vertebrates and a focal point of the selective forces leading to genomic imprinting. The presence of the essential imprinting effector, DNMT3L, in marsupial genomes and the demonstration of a differentially methylated region (DMR in the retrotransposon-derived imprinted gene, PEG10, in tammar wallaby argue for a role for methylation in imprinting, but several studies have found no evidence of parent-specific methylation at other imprinted loci in marsupials. Results- We performed the most extensive search to date for allele-specific patterns of CpG methylation within CpG isochores or CpG enriched segments across a 22 kilobase region surrounding the IGF2 gene in the South American opossum Monodelphis domestica. We identified a previously unknown 5'-untranslated exon for opossum IGF2, which is flanked by sequences defining a putative neonatal promoter, a DMR and an active Matrix Attachment Region (MAR. Demethylation of this DMR in opossum neonatal fibroblasts results in abherrant biallelic expression of IGF2. Conclusion- The demonstration of a DMR and an active MAR in the 5' flank of opossum IGF2 mirrors the regulatory features of the 5' flank of Igf2 in mice. However, demethylation induced activation of the maternal allele of IGF2 in opossum differs from the demethylation induced repression of the paternal Igf2 allele in mice. While it can now be concluded that parent-specific DNA methylation is an epigentic mark common to Marsupialia and Eutheria, the molecular mechanisms of transcriptional silencing at imprinted loci have clearly evolved along independent

  7. Functional mapping imprinted quantitative trait loci underlying developmental characteristics

    Directory of Open Access Journals (Sweden)

    Li Gengxin

    2008-03-01

    Full Text Available Abstract Background Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology. Results Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight. Conclusion The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.

  8. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Rasheva Vanya

    2010-07-01

    Full Text Available Abstract Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;fLJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;fLJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104

  9. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  10. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  11. Low Cost Lithography Tool for High Brightness LED Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  12. 32nm 1-D regular pitch SRAM bitcell design for interference-assisted lithography

    Science.gov (United States)

    Greenway, Robert T.; Jeong, Kwangok; Kahng, Andrew B.; Park, Chul-Hong; Petersen, John S.

    2008-10-01

    As optical lithography advances into the 45nm technology node and beyond, new manufacturing-aware design requirements have emerged. We address layout design for interference-assisted lithography (IAL), a double exposure method that combines maskless interference lithography (IL) and projection lithography (PL); cf. hybrid optical maskless lithography (HOMA) in [2] and [3]. Since IL can generate dense but regular pitch patterns, a key challenge to deployment of IAL is the conversion of existing designs to regular-linewidth, regular-pitch layouts. In this paper, we propose new 1-D regular pitch SRAM bitcell layouts which are amenable to IAL. We evaluate the feasibility of our bitcell designs via lithography simulations and circuit simulations, and confirm that the proposed bitcells can be successfully printed by IAL and that their electrical characteristics are comparable to those of existing bitcells.

  13. Low cost ESR based X-ray beamline for lithography experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, S.; Doumas, A.; Truncale, M. (Grumman Corp., Bethpage, NY (United States). Space and Electronics Div.)

    1992-08-01

    Any application of the electron storage ring (ESR) based X-ray lithography technology requires an X-ray radiation transport system to transfer the synchrotron radiation into a spectrum defined by the lithography process requirements. Structure of this transport system (i.e. the beamline) depends on the nature of the application. In this paper a beamline conceptual design will be discussed. The beamline is intended for the developmment of X-ray lithography technology. (orig.).

  14. Nm-scale diamond-like-carbon (DLC) templates for use in soft lithography

    International Nuclear Information System (INIS)

    Watson, G.S.; Myhra, S.; Brown, C.L.; Watson, J.A.

    2005-01-01

    An emerging set of methods known collectively as soft lithography is now being utilised for a large variety of applications including micromolding, microfluidic networks and microcontact printing. In particular stamps and elastomeric elements can be formed by exposure of a polymer to a template. Established lithographic techniques used in the microelectronic industry, such as photolithography, are generally used to fabricate such master templates at the micron scale. In this study we demonstrate the use of diamond-like-carbon (DLC) as a template for producing polymer micro/nano stamps and 3D polymer structures. Intricate surface relief patterns can be formed on the DLC surface from lithographic techniques by atomic force microscopy (AFM) operated in the electrical conductivity mode. A number of polymers can be used to transfer patterns. One of the most widely used polymers for pattern transfer has been polydimethylsiloxane (PDMS). The elastomer is chemically resistant, has a low surface energy and readily conforms to different surface topographies. Obtaining a master is the limiting factor in the production of PDMS replicas. (author). 2 refs., 4 figs

  15. Molecular mechanisms of memory in imprinting.

    Science.gov (United States)

    Solomonia, Revaz O; McCabe, Brian J

    2015-03-01

    Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Science.gov (United States)

    2010-12-28

    ... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644

  17. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    Science.gov (United States)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Kang, Yeona; Zhang, Lingxi; Rigas, Basil; Division of Gastroenterology, School of Medicine Team

    2013-03-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. In addition, we use biosensor to discriminate normal fibrinogen and damaged fibrinogen, which is critical for the detection of bleeding disorder. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  18. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Nada F., E-mail: Nada_fah1@yahoo.com [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt); Hamed, Maher M.; Abdel-Mageed, Ali M. [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt)

    2010-05-14

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  19. Neuronal plasticity and multisensory integration in filial imprinting.

    Science.gov (United States)

    Town, Stephen Michael; McCabe, Brian John

    2011-03-10

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus.

  20. Neuronal Plasticity and Multisensory Integration in Filial Imprinting

    Science.gov (United States)

    Town, Stephen Michael; McCabe, Brian John

    2011-01-01

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus. PMID:21423770

  1. Conformity and statistical tolerancing

    Science.gov (United States)

    Leblond, Laurent; Pillet, Maurice

    2018-02-01

    Statistical tolerancing was first proposed by Shewhart (Economic Control of Quality of Manufactured Product, (1931) reprinted 1980 by ASQC), in spite of this long history, its use remains moderate. One of the probable reasons for this low utilization is undoubtedly the difficulty for designers to anticipate the risks of this approach. The arithmetic tolerance (worst case) allows a simple interpretation: conformity is defined by the presence of the characteristic in an interval. Statistical tolerancing is more complex in its definition. An interval is not sufficient to define the conformance. To justify the statistical tolerancing formula used by designers, a tolerance interval should be interpreted as the interval where most of the parts produced should probably be located. This tolerance is justified by considering a conformity criterion of the parts guaranteeing low offsets on the latter characteristics. Unlike traditional arithmetic tolerancing, statistical tolerancing requires a sustained exchange of information between design and manufacture to be used safely. This paper proposes a formal definition of the conformity, which we apply successively to the quadratic and arithmetic tolerancing. We introduce a concept of concavity, which helps us to demonstrate the link between tolerancing approach and conformity. We use this concept to demonstrate the various acceptable propositions of statistical tolerancing (in the space decentring, dispersion).

  2. Axiomatic conformal field theory

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Goddard, P.

    2000-01-01

    A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)

  3. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material.

    Science.gov (United States)

    He, Yunhua; Lu, Jiuru; Liu, Mei; Du, Jianxiu

    2005-07-01

    A new molecular imprinting-chemiluminescence method for the determination of trimethoprim was developed, in which trimethoprim-imprinted polymer was used as the molecular recognition material and the CL reaction of trimethoprim with potassium permanganate in acidic medium was used as the detection system. The CL intensity responds linearly to the concentration of trimethoprim within the 5.0 x 10(-8)-5.0 x 10(-6) g mL(-1) range (r= 0.9983) with a detection limit of 2 x 10(-8) g mL(-1). The relative standard deviation for the determination of 1.0 x 10(-7) g mL(-1) trimethoprim solutions is 4.8% (n= 9). The method has been applied to the determination of trimethoprim in pharmaceutical preparations and body fluids, and satisfactory results were obtained.

  4. The changing face of glucagon fibrillation: Structural polymorphism and conformational imprinting

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Dikov, D.; Flink, J.L.

    2006-01-01

    concentration) appear less thermostable than those formed under more challenging conditions (high temperatures, low glucagon or low salt concentrations). Properties of preformed fibrils used for seeding are inherited in a prion-like manner. Thus, we conclude that the structure of fibrils formed by glucagon...

  5. Imprinted Expression of SNRPN in Human Preimplantation Embryos

    OpenAIRE

    Huntriss, John; Daniels, Robert; Bolton, Virginia; Monk, Marilyn

    1998-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurogenetic disorders arising from a loss of expression of imprinted genes within the human chromosome region 15q11-q13. Recent evidence suggests that the SNRPN gene, which is defective in PWS, plays a central role in the imprinting-center regulation of the PWS/AS region. To increase our understanding of the regulation of expression of this imprinted gene, we have developed single-cell-sensitive procedures for...

  6. Extended conformal algebras

    International Nuclear Information System (INIS)

    Goddard, Peter

    1990-01-01

    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  7. Algebraic conformal field theory

    International Nuclear Information System (INIS)

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1991-11-01

    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  8. Modeling Conformal Growth in Photonic Crystals and Comparing to Experiment

    Science.gov (United States)

    Brzezinski, Andrew; Chen, Ying-Chieh; Wiltzius, Pierre; Braun, Paul

    2008-03-01

    Conformal growth, e.g. atomic layer deposition (ALD), of materials such as silicon and TiO2 on three dimensional (3D) templates is important for making photonic crystals. However, reliable calculations of optical properties as a function of the conformal growth, such as the optical band structure, are hampered by difficultly in accurately assessing a deposited material's spatial distribution. A widely used approximation ignores ``pinch off'' of precursor gas and assumes complete template infilling. Another approximation results in non-uniform growth velocity by employing iso-intensity surfaces of the 3D interference pattern used to create the template. We have developed an accurate model of conformal growth in arbitrary 3D periodic structures, allowing for arbitrary surface orientation. Results are compared with the above approximations and with experimentally fabricated photonic crystals. We use an SU8 polymer template created by 4-beam interference lithography, onto which various amounts of TiO2 are grown by ALD. Characterization is performed by analysis of cross-sectional scanning electron micrographs and by solid angle resolved optical spectroscopy.

  9. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  10. Computer-aided design and synthesis of magnetic molecularly imprinted polymers with high selectivity for the removal of phenol from water.

    Science.gov (United States)

    Yang, Wenming; Liu, Lukuan; Ni, Xiaoni; Zhou, Wei; Huang, Weihong; Liu, Hong; Xu, Wanzhen

    2016-02-01

    A molecular simulation method was introduced to compute the phenol-monomer pre-assembled system of a molecularly imprinted polymer. The interaction type and intensity between phenol and monomer were evaluated by combining binding energy and charge transfer with complex conformation. The simulation results indicate that interaction energies are simultaneously affected by the type of monomer and the ratio between phenol and monomers. At the same time, we considered that by increasing the amount of functional monomer is not always better for preparing molecularly imprinter polymers. In this study, three kinds of novel magnetic phenol-imprinted polymers with favorable specific adsorption effects were prepared by the surface imprinting technique combined with atom transfer radical polymerization. Various measures were selected to characterize the structure and morphology to obtain the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance, which follows the Elovich model from the kinetic analysis and the Sips equation from the isothermal analysis. To further verify the reliability and accuracy of the simulation results, the effects of different monomers on the adsorption selectivity were also determined. They display higher selectivity towards phenol than 4-nitrophenol.The results from the simulation of the pre-assembled complexes are in reasonable agreement with those from the experiment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dilatonic imprints on exact gravitational wave signatures

    Science.gov (United States)

    McCarthy, Fiona; KubizÅák, David; Mann, Robert B.

    2018-05-01

    By employing the moduli space approximation, we analytically calculate the gravitational wave signatures emitted upon the merger of two extremally charged dilatonic black holes. We probe several values of the dilatonic coupling constant a , and find significant departures from the Einstein-Maxwell (a =0 ) counterpart studied in [Phys. Rev. D 96, 061501 (2017), 10.1103/PhysRevD.96.061501]. For (low-energy) string theory black holes (a =1 ) there are no coalescence orbits and only a memory effect is observed, whereas for an intermediate value of the coupling (a =1 /√{3 } ) the late-time merger signature becomes exponentially suppressed, compared to the polynomial decay in the a =0 case without a dilaton. Such an imprint shows a clear difference between the case with and without a scalar field (as, for example, predicted by string theory) in black hole mergers.

  12. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography

    Directory of Open Access Journals (Sweden)

    Cian Cummins

    2017-09-01

    Full Text Available The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP feature patterning. An elegant route is demonstrated using directed self-assembly (DSA of BCPs for the fabrication of aligned tungsten trioxide (WO3 nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL silsesquioxane (SSQ-based trenches were utilized in order to align a cylinder forming poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP BCP soft template. We outline WO3 nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm contacted WO3 nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

  13. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography.

    Science.gov (United States)

    Cummins, Cian; Bell, Alan P; Morris, Michael A

    2017-09-30

    The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO₃) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)- block -poly(4-vinylpyridine) (PS- b -P4VP) BCP soft template. We outline WO₃ nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO₃ nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

  14. Imbalance aware lithography hotspot detection: a deep learning approach

    Science.gov (United States)

    Yang, Haoyu; Luo, Luyang; Su, Jing; Lin, Chenxi; Yu, Bei

    2017-07-01

    With the advancement of very large scale integrated circuits (VLSI) technology nodes, lithographic hotspots become a serious problem that affects manufacture yield. Lithography hotspot detection at the post-OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained satisfactory performance, with the extreme scaling of transistor feature size and layout patterns growing in complexity, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc feature extraction in a machine learning framework may lose important information when predicting potential errors in ultra-large-scale integrated circuit masks. We present a deep convolutional neural network (CNN) that targets representative feature learning in lithography hotspot detection. We carefully analyze the impact and effectiveness of different CNN hyperparameters, through which a hotspot-detection-oriented neural network model is established. Because hotspot patterns are always in the minority in VLSI mask design, the training dataset is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained model with high classification accuracy may still suffer from a high number of false negative results (missing hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply hotspot upsampling and random-mirror flipping before training the network. Experimental results show that our proposed neural network model achieves comparable or better performance on the ICCAD 2012 contest benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.

  15. Durable diamond-like carbon templates for UV nanoimprint lithography

    International Nuclear Information System (INIS)

    Tao, L; Ramachandran, S; Nelson, C T; Overzet, L J; Goeckner, M; Lee, G; Hu, W; Lin, M; Willson, C G; Wu, W

    2008-01-01

    The interaction between resist and template during the separation process after nanoimprint lithography (NIL) can cause the formation of defects and damage to the templates and resist patterns. To alleviate these problems, fluorinated self-assembled monolayers (F-SAMs, i.e. tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane or FDTS) have been employed as template release coatings. However, we find that the FDTS coating undergoes irreversible degradation after only 10 cycles of UV nanoimprint processes with SU-8 resist. The degradation includes a 28% reduction in surface F atoms and significant increases in the surface roughness. In this paper, diamond-like carbon (DLC) films were investigated as an alternative material not only for coating but also for direct fabrication of nanoimprint templates. DLC films deposited on quartz templates in a plasma enhanced chemical vapor deposition system are shown to have better chemical and physical stability than FDTS. After the same 10 cycles of UV nanoimprints, the surface composition as well as the roughness of DLC films were found to be unchanged. The adhesion energy between the DLC surface and SU-8 is found to be smaller than that of FDTS despite the slightly higher total surface energy of DLC. DLC templates with 40 nm features were fabricated using e-beam lithography followed by Cr lift-off and reactive ion etching. UV nanoimprinting using the directly patterned DLC templates in SU-8 resist demonstrates good pattern transfer fidelity and easy template-resist separation. These results indicate that DLC is a promising material for fabricating durable templates for UV nanoimprint lithography

  16. The origin of the RB1 imprint.

    Directory of Open Access Journals (Sweden)

    Deniz Kanber

    Full Text Available The human RB1 gene is imprinted due to a differentially methylated CpG island in intron 2. This CpG island is part of PPP1R26P1, a truncated retrocopy of PPP1R26, and serves as a promoter for an alternative RB1 transcript. We show here by in silico analyses that the parental PPP1R26 gene is present in the analysed members of Haplorrhini, which comprise Catarrhini (Old World Monkeys, Small apes, Great Apes and Human, Platyrrhini (New World Monkeys and tarsier, and Strepsirrhini (galago. Interestingly, we detected the retrocopy, PPP1R26P1, in all Anthropoidea (Catarrhini and Platyrrhini that we studied but not in tarsier or galago. Additional retrocopies are present in human and chimpanzee on chromosome 22, but their distinct composition indicates that they are the result of independent retrotransposition events. Chimpanzee and marmoset have further retrocopies on chromosome 8 and chromosome 4, respectively. To examine the origin of the RB1 imprint, we compared the methylation patterns of the parental PPP1R26 gene and its retrocopies in different primates (human, chimpanzee, orangutan, rhesus macaque, marmoset and galago. Methylation analysis by deep bisulfite sequencing showed that PPP1R26 is methylated whereas the retrocopy in RB1 intron 2 is differentially methylated in all primates studied. All other retrocopies are fully methylated, except for the additional retrocopy on marmoset chromosome 4, which is also differentially methylated. Using an informative SNP for the methylation analysis in marmoset, we could show that the differential methylation pattern of the retrocopy on chromosome 4 is allele-specific. We conclude that the epigenetic fate of a PPP1R26 retrocopy after integration depends on the DNA sequence and selective forces at the integration site.

  17. Subwavelength optical lithography via classical light: A possible implementation

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Hemmer, P. R.; Zubairy, M. Suhail

    2018-04-01

    The resolution of an interferometric optical lithography system is about the half wavelength of the illumination light. We proposed a method based on Doppleron resonance to achieve a resolution beyond half wavelength [Phys. Rev. Lett. 96, 163603 (2006), 10.1103/PhysRevLett.96.163603]. Here, we analyze a possible experimental demonstration of this method in the negatively charged silicon-vacancy (SiV-) system by considering realistic experimental parameters. Our results show that quarter wavelength resolution and beyond can be achieved in this system even in room temperature without using perturbation theory.

  18. Application status and prospect of X-ray lithography technology

    International Nuclear Information System (INIS)

    Xie Changqing; Chen Dapeng; Liu Ming; Ye Tianchun; Yi Futing

    2004-01-01

    Because of its many merits, such as high resolution, large depth of focus, large field size, high throughput, large process latitude, easy extendibility to 50 nm and below ground rule, and so on, the Proximity X-ray Lithography (PXL) is very attractive for the 100 nm and smaller ground rule integrated circuit manufacturing. In this paper, the international research and development status of PXL is briefly introduced firstly, and both its application status and prospect in nanoelectronics research, Monolithic Microwave Integrated Circuits (MMIC) production and silicon-based Ultra Large Scale Integrated Circuits (ULSIC) production are described, and the recent research progress in home PXL is also presented briefly. (authors)

  19. Multichannel silicon WDM ring filters fabricated with DUV lithography

    Science.gov (United States)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  20. Masks for high aspect ratio x-ray lithography

    International Nuclear Information System (INIS)

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-01-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding

  1. Shadow edge lithography for nanoscale patterning and manufacturing

    International Nuclear Information System (INIS)

    Bai, John G; Chang, C-L; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2007-01-01

    We demonstrate a wafer-scale nanofabrication method using the shadow effect in physical vapor deposition. An analytical model is presented to predict the formation of nanoscale gaps created by the shadow effect of a prepatterned edge on a deposition plane. The theoretical prediction agrees quantitatively with the widths of the fabricated nanogaps and nanochannels. In the diffusion experiments, both λ-DNA and fluorescein molecules were successfully introduced into the nanochannels. The proposed shadow edge lithography has potential to be a candidate for mass-producing nanostructures

  2. Combined e-beam lithography using different energies

    Czech Academy of Sciences Publication Activity Database

    Krátký, Stanislav; Kolařík, Vladimír; Horáček, Miroslav; Meluzín, Petr; Král, Stanislav

    2017-01-01

    Roč. 177, JUN (2017), s. 30-34 ISSN 0167-9317 R&D Projects: GA TA ČR TE01020233; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : grayscale e-beam lithography * mix and match process * absorbed energy density * resist sensitivity * micro-optical elements Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 1.806, year: 2016

  3. Dimensional characterization of biperiodic imprinted structures using optical scatterometry

    KAUST Repository

    Gereige, Issam; Pietroy, David; Eid, Jessica; Gourgon, Cé cile

    2013-01-01

    In this paper, we report on the characterization of biperiodic imprinted structures using a non-destructive optical technique commonly called scatterometry. The nanostructures consist of periodic arrays of square and circular dots which were

  4. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    Science.gov (United States)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  5. [Evolution of genomic imprinting in mammals: what a zoo!].

    Science.gov (United States)

    Proudhon, Charlotte; Bourc'his, Déborah

    2010-05-01

    Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.

  6. Investigating the Incorporation of Personality Constructs into IMPRINT

    National Research Council Canada - National Science Library

    Dickason, David; Sargent, Bob; Bagnall, Tim

    2009-01-01

    ... in the Army, for use in Navy ship acquisitions. The objective of this study was to determine if it was feasible to incorporate non-cognitive attributes such as stress tolerance into IMPRINT for use as human performance moderators...

  7. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    National Research Council Canada - National Science Library

    Low, Tammy K

    2006-01-01

    .... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...

  8. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  9. Wavelength selection for multilayer coatings for the lithography generation beyond extreme ultraviolet

    NARCIS (Netherlands)

    Makhotkin, Igor Alexandrovich; Zoethout, E.; Louis, Eric; Yakunin, A.M.; Muellender, S.; Bijkerk, Frederik

    2012-01-01

    Reducing the operating wavelength in advanced photolitho- graphy while maintaining the lithography machine’s produc- tivity has been a traditional way to enable improved imaging for the last 20 years. The transition from 13.5 nm to 6.5 to 6.9 nm optical lithography offers a possibility to combine

  10. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  11. Taming the conformal zoo

    International Nuclear Information System (INIS)

    Moore, G.; Seiberg, N.

    1989-01-01

    All known rational conformal field theories may be obtained from (2+1)-dimensional Chern-Simons gauge theories by appropriate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2+1)-dimensional Chern-Simons gauge theories. (orig.)

  12. Conformal special relativity

    International Nuclear Information System (INIS)

    Maia, M.D.

    2006-01-01

    It is shown that the information loss/recovery theorem based on the ADS/CFT correspondence is not consistent with the stability of the Schwarzschild or Reissner-Nordstrom black holes. Nonetheless, the conformal invariance of Yang-Mills theory points to new relativity principle compatible with quantum unitarity near those black holes

  13. Animal culture: chimpanzee conformity?

    Science.gov (United States)

    van Schaik, Carel P

    2012-05-22

    Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Parafermionic conformal field theory

    International Nuclear Information System (INIS)

    Kurak, V.

    1989-09-01

    Conformal parafermionic field theories are reviewed with emphasis on the computation of their OPE estructure constants. It is presented a simple computational of these for the Z(N) parafermions, unveilling their Lie algebra content. (A.C.A.S.) [pt

  15. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  16. Highly selective determination of methylmercury with methylmercury-imprinted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yongwen [Department of Chemistry, Shanxi Datong University, Datong 037009 (China)]. E-mail: dtlyw@263.net; Zai Yunhui [School of Chemistry and Chemical Engineering of Lanzhou University, Lanzhou 730000 (China); Chang Xijun [School of Chemistry and Chemical Engineering of Lanzhou University, Lanzhou 730000 (China); Guo Yong [Department of Chemistry, Shanxi Datong University, Datong 037009 (China); Meng Shuangming [Department of Chemistry, Shanxi Datong University, Datong 037009 (China); Feng Feng [Department of Chemistry, Shanxi Datong University, Datong 037009 (China)

    2006-08-11

    Methylmercury-imprinted and non-imprinted polymers were prepared by formation monomer complex of methylmercury with (4-ethenylphenyl)-4-formate-6-phenyl-2,2'-bipyridine and thermally polymerizing with divinylbenzene (crosslinker) in the presence of 2,2'-azobisisobutyronitrile as initiator and subsequently leached with the acidic thiourea solution (1.0 mol L{sup -1} of thiourea and 4.0 mol L{sup -1} of HCl). In the same way, non-imprinted copolymers were prepared without methylmercury chloride added. The separation and preconcentration characteristics of the polymers for methylmercury were investigated by batch and column procedures. The results demonstrated that the methylmercury-imprinted polymers had higher adsorption capacity (170 {mu}mol g{sup -1} of dry microbeads) and good selectivity for methylmercury compared to non-imprinted polymers. The distribution ratio (D) values of the methylmercury-imprinted polymers increased for methylmercury with respect to both D values of Hg(II), Cu(II), Zn(II), Cd(II) and non-imprinted polymers. The relatively selective factor ({alpha} {sub r}) values of CH{sub 3}Hg{sup +}/Hg(II), CH{sub 3}Hg{sup +}/Cu(II), CH{sub 3}Hg{sup +}/Zn(II), and CH{sub 3}Hg{sup +}/Cd(II) are 24.0, 46.7, 50.7, and 40.2, which are greater than 1. The methylmercury-imprinted polymers can be used at least twenty times with recoveries no less than 95%. Based on the packed columns with methylmercury-imprinted polymers, a highly selective solid-phase extraction (SPE) and preconcentration method for methylmercury was developed. The metal ion imprinted polymer solid-phase extraction (MIIP-SPE) preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 22 {mu}g L{sup -1}. The detection limit and quantification limit were 0.041 and 0.093 {mu}g L{sup -1} (3{sigma}) for cold vapor atomic absorption spectrometry (CVAAS). The relative standard deviation of the 10 replicate determinations was 3.5% for the

  17. New molecular imprinted voltammetric sensor for determination of ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Gupta, Vinod Kumar, E-mail: vinodfcy@iitr.ac.in [Indian Institute of Technology, Department of Chemistry, Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa); Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100 mM phenol as monomer in the presence of phosphate buffer solution (pH 6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10{sup −11} − 1.5 × 10{sup −9} M and 1.6 × 10{sup −11} M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. - Highlights: • Ochratoxin A-imprinted electrochemical sensor is developed for the sensitive detection of ochratoxin A • The nanomaterial and ochratoxin A-imprinted surfaces were characterized by several methods • Ochratoxin A-imprinted electrochemical sensor is sensitive and selective in analysis of food • Ochratoxin A-imprinted electrochemical sensor is preferred to the other methods.

  18. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  19. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  20. New molecular imprinted voltammetric sensor for determination of ochratoxin A

    International Nuclear Information System (INIS)

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100 mM phenol as monomer in the presence of phosphate buffer solution (pH 6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10"−"1"1 − 1.5 × 10"−"9 M and 1.6 × 10"−"1"1 M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. - Highlights: • Ochratoxin A-imprinted electrochemical sensor is developed for the sensitive detection of ochratoxin A • The nanomaterial and ochratoxin A-imprinted surfaces were characterized by several methods • Ochratoxin A-imprinted electrochemical sensor is sensitive and selective in analysis of food • Ochratoxin A-imprinted electrochemical sensor is preferred to the other methods

  1. Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.

    Science.gov (United States)

    Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam

    2016-01-01

    Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.

  2. Design of molecular imprinted polymers compatible with aqueous environment.

    Science.gov (United States)

    Piletska, Elena V; Guerreiro, Antonio R; Romero-Guerra, Maria; Chianella, Iva; Turner, Anthony P F; Piletsky, Sergey A

    2008-01-21

    The main problem of poor water compatibility of molecularly imprinted polymers (MIPs) was addressed in examples describing design of synthetic receptors with high affinity for drugs of abuse. An extensive potentiometric titration of 10 popular functional monomers and corresponding imprinted and blank polymers was conducted in order to evaluate the subtleties of functional groups ionisation under aqueous conditions. It was found that polymers prepared using 2-trifluoromethacrylic acid (TFMAA) in combination with toluene as porogen possess superior properties which make them suitable for effective template recognition in water. The potential impact of phase separation during polymerisation on formation of high quality imprints has been discussed. Three drugs of abuse such as cocaine, deoxyephedrine and methadone were used as template models in polymer preparation for the practical validation of obtained results. The polymer testing showed that synthesized molecularly imprinted polymers have high affinity and selectivity for corresponding templates in aqueous environment, with imprinting factors of 2.6 for cocaine and 1.4 for methadone and deoxyephedrine. Corresponding blank polymers were unable to differentiate between analytes, suggesting that imprinting phenomenon was responsible for the recognition properties.

  3. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    Science.gov (United States)

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  4. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    Directory of Open Access Journals (Sweden)

    Bianca Schweiger

    2015-02-01

    Full Text Available Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP and non-imprinted polymer (NIP layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  5. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    International Nuclear Information System (INIS)

    Kim, Jungkwun; Allen, Mark G; Yoon, Yong-Kyu

    2016-01-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array. (paper)

  7. Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial.

    Science.gov (United States)

    Chen, Xi; Zhang, Cheng; Yang, Fan; Liang, Gaofeng; Li, Qiaochu; Guo, L Jay

    2017-10-24

    In this work, a special hyperbolic metamaterial (HMM) metamaterial is investigated for plasmonic lithography of period reduction patterns. It is a type II HMM (ϵ ∥ 0) whose tangential component of the permittivity ϵ ∥ is close to zero. Due to the high anisotropy of the type II epsilon-near-zero (ENZ) HMM, only one plasmonic mode can propagate horizontally with low loss in a waveguide system with ENZ HMM as its core. This work takes the advantage of a type II ENZ HMM composed of aluminum/aluminum oxide films and the associated unusual mode to expose a photoresist layer in a specially designed lithography system. Periodic patterns with a half pitch of 58.3 nm were achieved due to the interference of third-order diffracted light of the grating. The lines were 1/6 of the mask with a period of 700 nm and ∼1/7 of the wavelength of the incident light. Moreover, the theoretical analyses performed are widely applicable to structures made of different materials such as silver as well as systems working at deep ultraviolet wavelengths including 193, 248, and 365 nm.

  8. New self-assembly strategies for next generation lithography

    Science.gov (United States)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  9. Fabrication of nanochannels on polyimide films using dynamic plowing lithography

    Science.gov (United States)

    Stoica, Iuliana; Barzic, Andreea Irina; Hulubei, Camelia

    2017-12-01

    Three distinct polyimide films were analyzed from the point of view of their morphology in order to determine if their surface features can be adapted for applications where surface anisotropy is mandatory. Channels of nanometric dimensions were created on surface of the specimens by using a less common atomic force microscopy (AFM) method, namely Dynamic Plowing Lithography (DPL). The changes generated by DPL procedure were monitored through the surface texture and other functional parameters, denoting the surface orientation degree and also bearing and fluid retention properties. The results revealed that in the same nanolithography conditions, the diamine and dianhydride moieties have affected the characteristics of the nanochannels. This was explained based on the aliphatic/aromatic nature of the monomers and the backbone flexibility. The reported data are of great importance in designing custom nanostructures with enhanced anisotropy on surface of polyimide films for liquid crystal orientation or guided cell growth purposes. At the end, to track the effect of the nanolithography process on the tip sharpness, degradation and contamination, the blind tip reconstruction was performed on AFM probe, before and after lithography experiments, using TGT1 test grating AFM image.

  10. The DARPA compact Superconducting X-Ray Lithography Source features

    International Nuclear Information System (INIS)

    Heese, R.; Kalsi, S.; Leung, E.

    1991-01-01

    Under DARPA sponsorship, a compact Superconducting X-Ray Lithography Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. This source is optimized for lithography work for sub-micron high density computer chips, and is about the size of a billiard table (1.5 m x 4.0 m). The machine has a racetrack configuration with two 180 degree bending magnets being designed and built by General Dynamics under a subcontract with Grumman Corporation. The machine will have 18 photon ports which would deliver light peaked at a wave length of 10 Angstroms. Grumman is commercializing the SXLS device and plans to book orders for delivery of industrialized SXLS (ISXLS) versions in 1995. This paper will describe the major features of this device. The commercial machine will be equipped with a fully automated user-friendly control systems, major features of which are already working on a compact warm dipole ring at BNL. This ring has normal dipole magnets with dimensions identical to the SXLS device, and has been successfully commissioned

  11. Layout compliance for triple patterning lithography: an iterative approach

    Science.gov (United States)

    Yu, Bei; Garreton, Gilda; Pan, David Z.

    2014-10-01

    As the semiconductor process further scales down, the industry encounters many lithography-related issues. In the 14nm logic node and beyond, triple patterning lithography (TPL) is one of the most promising techniques for Metal1 layer and possibly Via0 layer. As one of the most challenging problems in TPL, recently layout decomposition efforts have received more attention from both industry and academia. Ideally the decomposer should point out locations in the layout that are not triple patterning decomposable and therefore manual intervention by designers is required. A traditional decomposition flow would be an iterative process, where each iteration consists of an automatic layout decomposition step and manual layout modification task. However, due to the NP-hardness of triple patterning layout decomposition, automatic full chip level layout decomposition requires long computational time and therefore design closure issues continue to linger around in the traditional flow. Challenged by this issue, we present a novel incremental layout decomposition framework to facilitate accelerated iterative decomposition. In the first iteration, our decomposer not only points out all conflicts, but also provides the suggestions to fix them. After the layout modification, instead of solving the full chip problem from scratch, our decomposer can provide a quick solution for a selected portion of layout. We believe this framework is efficient, in terms of performance and designer friendly.

  12. Integrated lithography to prepare periodic arrays of nano-objects

    International Nuclear Information System (INIS)

    Sipos, Áron; Szalai, Anikó; Csete, Mária

    2013-01-01

    We present an integrated lithography method to prepare versatile nano-objects with variable shape and nano-scaled substructure, in wavelength-scaled periodic arrays with arbitrary symmetry. The idea is to illuminate colloid sphere monolayers by polarized beams possessing periodic lateral intensity modulations. Finite element method was applied to determine the effects of the wavelength, polarization and angle of incidence of the incoming beam, and to predict the characteristics of nano-objects, which can be fabricated on thin metal layer covered substrates due to the near-field enhancement under silica colloid spheres. The inter-object distance is controlled by varying the relative orientation of the periodic intensity modulation with respect to the silica colloid sphere monolayer. It is shown that illuminating silica colloid sphere monolayers by two interfering beams, linear patterns made of elliptical holes appear in case of linear polarization, while circularly polarized beams result in co-existent rounded objects, as more circular nano-holes and nano-crescents. The size of the nano-objects and their sub-structure is determined by the spheres diameter and by the wavelength. We present various complex plasmonic patterns made of versatile nano-objects that can be uniquely fabricated applying the inherent symmetry breaking possibilities in the integrated lithography method.

  13. X-ray lithography for micro and nanotechnology at RRCAT

    International Nuclear Information System (INIS)

    Shukla, Rahul; Dhamgaye, V.P.; Jain, V.K.; Lodha, G.S.

    2013-01-01

    At Indus-2 Soft and Deep X-ray Lithography beamline (BL-07) is functional and is capable of developing various high aspect ratio and high resolution structures at micro and nano scale. These micro and nano structures can be made to work as a mechanism, sensor, actuator and transducer for varieties of applications and serve as basic building blocks for the development of X-ray and IR optics, LASERs, lab-on-a-chip, micromanipulators and nanotechnology. To achieve these goals we have started developing high aspect ratio comb-drives, electrostatic micromotors, micro fluidic channels, X-ray optics and novel transducers for RF applications by Deep X-ray Lithography (DXRL). Comb-drive is one of most studied electrostatic device in MEMS (Micro Electro-Mechanical Systems). It can be used as a sensor, actuator, resonator, energy harvester and filter. Analysis and simulation shows that the comb actuator of aspect ratio 16 (air gap 50 μm) will produce nearly 1.25 μm displacement when DC voltage of 100 V is applied. For fabrication, first time in India, Polyimide X-ray mask is realized and exposure and development is done at BL-7 at RRCAT. The displacement increases as gap between comb finger decreases. Further refinement is in progress to get higher output from high aspect ratio (∼ 80) comb actuators (i.e. 1 μm at 5V). The other important design parameters like resonance frequency, capacitance will also be discussed. (author)

  14. Integral characteristics of spectra of ions important for EUV lithography

    International Nuclear Information System (INIS)

    Karazija, R; Kucas, S; Momkauskaite, A

    2006-01-01

    The emission spectrum corresponding to the 4p 5 4d N+1 + 4p 6 4d N-1 4f → 4p 6 4d N transition array is concentrated in a narrow interval of wavelengths. That is due to the existence of an approximate selection rule and quenching of some lines by configuration mixing. Thus such emission of elements near Z = 50 is considered to be the main candidate for the EUV lithography source at λ = 13.5 nm. In the present work the regularities of these transition arrays are considered using their integral characteristics: average energy, total line strength, variance and interval of array containing some part of the total transition probability. Calculations for various ions of elements In, Sn, Sb, Te, I and Xe have been performed in a two-configuration pseudorelativistic approximation, which describes fairly well the main features of the spectra. The variation in the values of the main integral characteristics of the spectra with atomic number and ionization degree gives the possibility of comparing quantitatively the suitability of the emission of various ions for EUV lithography

  15. Direct modification of silicon surface by nanosecond laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Wang, Zuobin, E-mail: wangz@cust.edu.cn [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Zhang, Ziang [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); Yue, Yong [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Li, Dayou [JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Maple, Carsten [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom)

    2013-10-01

    Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.

  16. Dr.LiTHO: a development and research lithography simulator

    Science.gov (United States)

    Fühner, Tim; Schnattinger, Thomas; Ardelean, Gheorghe; Erdmann, Andreas

    2007-03-01

    This paper introduces Dr.LiTHO, a research and development oriented lithography simulation environment developed at Fraunhofer IISB to flexibly integrate our simulation models into one coherent platform. We propose a light-weight approach to a lithography simulation environment: The use of a scripting (batch) language as an integration platform. Out of the great variety of different scripting languages, Python proved superior in many ways: It exhibits a good-natured learning-curve, it is efficient, available on virtually any platform, and provides sophisticated integration mechanisms for existing programs. In this paper, we will describe the steps, required to provide Python bindings for existing programs and to finally generate an integrated simulation environment. In addition, we will give a short introduction into selected software design demands associated with the development of such a framework. We will especially focus on testing and (both technical and user-oriented) documentation issues. Dr.LiTHO Python files contain not only all simulation parameter settings but also the simulation flow, providing maximum flexibility. In addition to relatively simple batch jobs, repetitive tasks can be pooled in libraries. And as Python is a full-blown programming language, users can add virtually any functionality, which is especially useful in the scope of simulation studies or optimization tasks, that often require masses of evaluations. Furthermore, we will give a short overview of the numerous existing Python packages. Several examples demonstrate the feasibility and productiveness of integrating Python packages into custom Dr.LiTHO scripts.

  17. Business dynamics of lithography at very low k1 factors

    Science.gov (United States)

    Harrell, Sam; Preil, Moshe E.

    1999-07-01

    Lithography is the largest capital investment and the largest operating cost component of leading edge semiconductor fabs. In addition, it is the dominant factor in determining the performance of a semiconductor device and is important in determining the yield and thus the economics of a semiconductor circuit. To increase competitiveness and broaden adoption of circuits and the end products in which they are used, there has been and continues to be a dramatic acceleration in the industry roadmap. A critical factor in the acceleration is driving the lithographic images to smaller feature size. There has always been economic tension between the pace of change and the resultant circuit cost. The genius of the semiconductor industry has been in its ability to balance its technology with economic factors and deliver outstanding value to those using the circuits to add value to their end products. The critical question today is whether optical lithography can be successfully and economically extended to maintain and improve the economic benefits of higher complexity circuits. In this paper we will discuss some of these significant tradeoffs required to maintain optically based lithographic progress on the roadmap at acceptable cost.

  18. Fabrication of biomimetic dry-adhesion structures through nanosphere lithography

    Science.gov (United States)

    Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.

    2018-03-01

    Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.

  19. Mask Materials and Designs for Extreme Ultra Violet Lithography

    Science.gov (United States)

    Kim, Jung Sik; Ahn, Jinho

    2018-03-01

    Extreme ultra violet lithography (EUVL) is no longer a future technology but is going to be inserted into mass production of semiconductor devices of 7 nm technology node in 2018. EUVL is an extension of optical lithography using extremely short wavelength (13.5 nm). This short wavelength requires major modifications in the optical systems due to the very strong absorption of EUV light by materials. Refractive optics can no longer be used, and reflective optics is the only solution to transfer image from mask to wafer. This is why we need the multilayer (ML) mirror-based mask as well as an oblique incident angle of light. This paper discusses the principal theory on the EUV mask design and its component materials including ML reflector and EUV absorber. Mask shadowing effect (or mask 3D effect) is explained and its technical solutions like phase shift mask is reviewed. Even though not all the technical issues on EUV mask are handled in this review paper, you will be able to understand the principles determining the performance of EUV masks.

  20. Integration of plant viruses in electron beam lithography nanostructures

    International Nuclear Information System (INIS)

    Alonso, Jose M; Bittner, Alexander M; Ondarçuhu, Thierry

    2013-01-01

    Tobacco mosaic virus (TMV) is the textbook example of a virus, and also of a self-assembling nanoscale structure. This tubular RNA/protein architecture has also found applications as biotemplate for the synthesis of nanomaterials such as wires, as tubes, or as nanoparticle assemblies. Although TMV is, being a biological structure, quite resilient to environmental conditions (temperature, chemicals), it cannot be processed in electron beam lithography (eBL) fabrication, which is the most important and most versatile method of nanoscale structuring. Here we present adjusted eBL-compatible processes that allow the incorporation of TMV in nanostructures made of positive and negative tone eBL resists. The key steps are covering TMV by polymer resists, which are only heated to 50 °C, and development (selective dissolution) in carefully selected organic solvents. We demonstrate the post-lithography biochemical functionality of TMV by selective immunocoating of the viral particles, and the use of immobilized TMV as direct immunosensor. Our modified eBL process should be applicable to incorporate a wide range of sensitive materials in nanofabrication schemes. (paper)

  1. Pattern Definition with DUV-Lithography at DTU Danchip

    DEFF Research Database (Denmark)

    Keil, Matthias; Khomtchenko, Elena; Nyholt, Henrik

    2014-01-01

    Deep ultra violet (DUV) illumination generated with the help of a KrF laser can be utilized to produce components having sizes of some hundreds of nanometers. This light source with its 248nm wavelength is exploited in the DUV-lithography equipment at DTU Danchip in order to fill the resolution gap...... - as shown in fig. 2 - utilizing the possibility of beam shape variations that enables to adapt the resolution and the depth of focus of the stepper to the requirements of the fabricated device. However, generally the highest achievable resolution is dependent on the pattern type - as e.g. pillar, line...... or hole comprising patterns -, its symmetry and the separations between the different structures. The projection lithography tool FPA-3000EX4 from Canon (max. NA=0,6; 1:5 reduction) produces patterns on the wafer within a maximum chip area of 22x22mm2 that can be stitched together with an accuracy of 3σ...

  2. Fabrication of sub-wavelength photonic structures by nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kontio, J.

    2013-11-01

    Nanoimprint lithography (NIL) is a novel but already a mature lithography technique. In this thesis it is applied to the fabrication of nanophotonic devices using its main advantage: the fast production of sub-micron features in high volume in a cost-effective way. In this thesis, fabrication methods for conical metal structures for plasmonic applications and sub-wavelength grating based broad-band mirrors are presented. Conical metal structures, nanocones, with plasmonic properties are interesting because they enable concentrating the energy of light in very tight spots resulting in very high local intensities of electromagnetic energy. The nanocone formation process is studied with several metals. Enhanced second harmonic generation using gold nanocones is presented. Bridged-nanocones are used to enhance Raman scattering from a dye solution. The sub-wavelength grating mirror is an interesting structure for photonics because it is very simple to fabricate and its reflectivity can be extended to the far infrared wavelength range. It also has polarization dependent properties which are used in this thesis to stabilize the output beam of infrared semiconductor disk laser. NIL is shown to be useful a technique in the fabrication of nanophotonic devices in the novel and rapidly growing field of plasmonics and also in more traditional, but still developing, semiconductor laser applications (orig.)

  3. Transportation Conformity Training and Presentations

    Science.gov (United States)

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  4. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  5. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...

  6. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.

  7. Conformal description of spinning particles

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1986-01-01

    This book is an introduction to the application of the conformal group to quantum field theory of particles with spin. After an introduction to the twistor representations of the conformal group of a conformally flat space-time and twistor flag manifolds with Su(2,2) orbits the classical phase space of conformal spinning particles is described. Thereafter the twistor description of classical zero mass fields is considered together with the quantization. (HSI)

  8. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  9. Conformal radiotherapy: a glossary

    International Nuclear Information System (INIS)

    Dubray, B.; Giraud, P.; Beaudre, A.

    1999-01-01

    Most of the concepts and terms related to conformal radiotherapy were produced by English-speaking authors and eventually validated by international groups of experts, whose working language was also English. Therefore, a significant part of this literature is poorly accessible to the French-speaking radiation oncology community. The present paper gathers the 'official' definitions already published in French, along with propositions for the remaining terms which should be submitted to a more formal and representative validation process. (author)

  10. Parental genome dosage imbalance deregulates imprinting in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Pauline E Jullien

    2010-03-01

    Full Text Available In mammals and in plants, parental genome dosage imbalance deregulates embryo growth and might be involved in reproductive isolation between emerging new species. Increased dosage of maternal genomes represses growth while an increased dosage of paternal genomes has the opposite effect. These observations led to the discovery of imprinted genes, which are expressed by a single parental allele. It was further proposed in the frame of the parental conflict theory that parental genome imbalances are directly mirrored by antagonistic regulations of imprinted genes encoding maternal growth inhibitors and paternal growth enhancers. However these hypotheses were never tested directly. Here, we investigated the effect of parental genome imbalance on the expression of Arabidopsis imprinted genes FERTILIZATION INDEPENDENT SEED2 (FIS2 and FLOWERING WAGENINGEN (FWA controlled by DNA methylation, and MEDEA (MEA and PHERES1 (PHE1 controlled by histone methylation. Genome dosage imbalance deregulated the expression of FIS2 and PHE1 in an antagonistic manner. In addition increased dosage of inactive alleles caused a loss of imprinting of FIS2 and MEA. Although FIS2 controls histone methylation, which represses MEA and PHE1 expression, the changes of PHE1 and MEA expression could not be fully accounted for by the corresponding fluctuations of FIS2 expression. Our results show that parental genome dosage imbalance deregulates imprinting using mechanisms, which are independent from known regulators of imprinting. The complexity of the network of regulations between expressed and silenced alleles of imprinted genes activated in response to parental dosage imbalance does not support simple models derived from the parental conflict hypothesis.

  11. Deregulation of an imprinted gene network in prostate cancer.

    Science.gov (United States)

    Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A

    2014-05-01

    Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.

  12. Rational computational design for the development of andrographolide molecularly imprinted polymer

    Science.gov (United States)

    Krishnan, Hemavathi; Islam, K. M. Shafiqul; Hamzah, Zainab; Ahmad, Mohd Noor

    2017-10-01

    Andrographolide is a popular medicinal compound derived from Andrographis Paniculata (AP). Molecularly Imprint Polymer (MIP) is a "Lock and Key" approach, where MIP is the lock and Andrographolide is the key which fits to the MIP lock by both physically and chemically. MIP will be used as selective extraction tool to enrich Andrographolide bioactive compound. Pre-polymerization step is crucial to design MIP. This work investigates molecular interactions and the Gibbs free binding energies on the development of MIP. The structure of Andrographolide (template) and functional monomers were drawn in HyperChem 8.0.10. A hybrid quantum chemical model was used with a few functional monomers. Possible conformations of template and functional monomer as 1:n (n < 4) were designed and simulated to geometrically optimize the complex to the lowest energy in gas phase. The Gibbs free binding energies of each conformation were calculated using semi-empirical PM3 simulation method. Results proved that functional monomers that contain carboxylic group shows higher binding energy compared to those with amine functional group. Itaconic acid (IA) chosen as the best functional monomer at optimum ratio (1:3) of template: monomer to prepare andrographolide MIP. This study demonstrates the importance of studying intermolecular interaction among template, functional monomer and template-monomer ratio in developing MIP.

  13. The "silent" imprint of musical training.

    Science.gov (United States)

    Klein, Carina; Liem, Franziskus; Hänggi, Jürgen; Elmer, Stefan; Jäncke, Lutz

    2016-02-01

    Playing a musical instrument at a professional level is a complex multimodal task requiring information integration between different brain regions supporting auditory, somatosensory, motor, and cognitive functions. These kinds of task-specific activations are known to have a profound influence on both the functional and structural architecture of the human brain. However, until now, it is widely unknown whether this specific imprint of musical practice can still be detected during rest when no musical instrument is used. Therefore, we applied high-density electroencephalography and evaluated whole-brain functional connectivity as well as small-world topologies (i.e., node degree) during resting state in a sample of 15 professional musicians and 15 nonmusicians. As expected, musicians demonstrate increased intra- and interhemispheric functional connectivity between those brain regions that are typically involved in music perception and production, such as the auditory, the sensorimotor, and prefrontal cortex as well as Broca's area. In addition, mean connectivity within this specific network was positively related to musical skill and the total number of training hours. Thus, we conclude that musical training distinctively shapes intrinsic functional network characteristics in such a manner that its signature can still be detected during a task-free condition. Hum Brain Mapp 37:536-546, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds.

    NARCIS (Netherlands)

    Mckeown, P.C.; Laouielle-Duprat, S.; Prins, J.C.P.; Wolff, de P.; Schmid, M.W.; Donoghue, M.T.; Fort, A.; Duszynska, D.; Comte, A.; Lao, N.T.; Wennblom, T.J.; Smant, G.; Köhler, C.; Grossniklaus, U.; Spillane, C.

    2011-01-01

    Background: Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized

  15. Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2013-09-01

    Full Text Available A fluorescent molecularly imprinted nanosensor was obtained by grafting imprinted polymer onto the surface of multi-wall carbon nanotubes and post-imprinting treatment with fluorescein isothiocyanate (FITC. The fluorescence of lysozyme-imprinted polymer (Lys-MIP was quenched more strongly by Lys than that of nonimprinted polymer (NIP, which indicated that the Lys-MIP could recognize Lys. The resulted imprinted material has the ability to selectively sense a target protein, and an imprinting factor of 3.34 was achieved. The Lys-MIP also showed selective detection for Lys among other proteins such as cytochrome C (Cyt C, hemoglobin (HB and bovine serum albumin (BSA due to the imprinted sites in the Lys-MIP. This approach combines the high selectivity of surface molecular imprinting technology and fluorescence, and converts binding events into detectable signals by monitoring fluorescence spectra. Therefore, it will have further applications for Lys sensing.

  16. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.S., E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Kim, J.W. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of); Choi, D.G. [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Han, C.S. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of)

    2011-01-15

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  17. Conformational analysis by intersection: CONAN.

    Science.gov (United States)

    Smellie, Andrew; Stanton, Robert; Henne, Randy; Teig, Steve

    2003-01-15

    As high throughput techniques in chemical synthesis and screening improve, more demands are placed on computer assisted design and virtual screening. Many of these computational methods require one or more three-dimensional conformations for molecules, creating a demand for a conformational analysis tool that can rapidly and robustly cover the low-energy conformational spaces of small molecules. A new algorithm of intersection is presented here, which quickly generates (on average heuristics are applied after intersection to generate a small representative collection of conformations that span the conformational space. In a study of approximately 97,000 randomly selected molecules from the MDDR, results are presented that explore these conformations and their ability to cover low-energy conformational space. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 10-20, 2003

  18. Conformal superalgebras via tractor calculus

    Science.gov (United States)

    Lischewski, Andree

    2015-01-01

    We use the manifestly conformally invariant description of a Lorentzian conformal structure in terms of a parabolic Cartan geometry in order to introduce a superalgebra structure on the space of twistor spinors and normal conformal vector fields formulated in purely algebraic terms on parallel sections in tractor bundles. Via a fixed metric in the conformal class, one reproduces a conformal superalgebra structure that has been considered in the literature before. The tractor approach, however, makes clear that the failure of this object to be a Lie superalgebra in certain cases is due to purely algebraic identities on the spinor module and to special properties of the conformal holonomy representation. Moreover, it naturally generalizes to higher signatures. This yields new formulas for constructing new twistor spinors and higher order normal conformal Killing forms out of existing ones, generalizing the well-known spinorial Lie derivative. Moreover, we derive restrictions on the possible dimension of the space of twistor spinors in any metric signature.

  19. Molecularly Imprinted Polypyrrole Based Impedimentric Sensor for Theophylline Determination

    International Nuclear Information System (INIS)

    Ratautaite, Vilma; Janssens, Stoffel D.; Haenen, Ken; Nesládek, Milos; Ramanaviciene, Almira; Baleviciute, Ieva; Ramanavicius, Arunas

    2014-01-01

    Highlights: • Sensor based on polypyrrole imprinted by theophylline (MIP) deposited on oxygen terminated boron-doped nanocrystalline diamond was developed. • This structure was applied as impedimetric sensor sensitive for theophylline. • Optimal polymer formation conditions suitable for MIP formation were elaborated. • Some analytical parameters were determined and evaluated. - Abstract: In this study development of impedimetric sensor based on oxygen terminated boron-doped nanocrystalline diamond (B:NCD:O) modified with theophylline imprinted polypyrrole is described. Hydrogen peroxide induced chemical formation of polypyrrole molecularly imprinted by theophylline was applied for the modification of conducting silicon substrate covered by B:NCD:O film. Non-imprinted polypyrrole layer was formed on similar substrate in order to prove efficiency of imprinted polypyrrole. Electrochemical impedance spectroscopy was applied for the evaluation of analyte-induced changes in electrochemical capacitance/resistance. The impact of polymerization duration on the capacitance of impedimetric sensor was estimated. A different impedance behavior was observed at different ratio of polymerized monomer and template molecule in the polymerization media. The influence of ethanol as additive to polymerization media on registered changes in capacitance/resistance was evaluated. Degradation of sensor stored in buffer solution was evaluated

  20. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  1. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  2. [The lymph nodes imprint for the diagnosis of lymphoid neoplasms].

    Science.gov (United States)

    Peniche-Alvarado, Carolina; Ramos-Peñafiel, Christian Omar; Martínez-Murillo, Carlos; Romero-Guadarrama, Mónica; Olarte-Carrillo, Irma; Rozen-Fuller, Etta; Martínez-Tovar, Adolfo; Collazo-Jaloma, Juan; Mendoza-García, Carlos Alberto

    2013-01-01

    lymphoma is the most frequent lymphoid neoplasm in our country. Its diagnosis is based on histopathological findings. The lymph node imprint has been used for more than 40 years. The aim was to establish the sensitivity, specificity, positive predictive value and negative predictive value of lymph node imprint and estimate the inter-observer rate. we did an observational, retrospective, prolective study, based on the lymph node imprint obtained by excisional biopsies over a period of 6 years. the inclusion criteria was met on 199 samples, 27.1 % were considered as reactive (n = 54), 16.1 % Hodgkin lymphoma (n = 32), 40.2 % (n = 80) non-Hodgkin lymphoma and 16.6 % (n = 33) as metastatic carcinoma. Comparing with the final histopathology report, the sensitivity and specificity of lymph node imprint were 88 % (0.81-0.95) and 64 % (0.55-0.73) respectively, the positive predictive value was 67 % (0.59-0.76) and the negative predictive value was 86 % (0.79-0.94). The interobserver kappa index was 0.467. the lymph node imprint remains as a useful tool for the diagnosis of lymphoid neoplasm. The agreement between observers was acceptable.

  3. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  4. Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.

    Science.gov (United States)

    Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-12-18

    Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    Science.gov (United States)

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  7. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  8. Innovative Design and Performance Evaluation of Bionic Imprinting Toothed Wheel.

    Science.gov (United States)

    Zhang, Zhihong; Wang, Xiaoyang; Tong, Jin; Stephen, Carr

    2018-01-01

    A highly efficient soil-burrowing dung beetle possesses an intricate outer contour curve on its foreleg end-tooth. This study was carried out based on evidence that this special outer contour curve has the potential of reducing soil penetration resistance and could enhance soil-burrowing efficiency. A toothed wheel is a typical agricultural implement for soil imprinting, to increase its working efficiency; the approach of the bionic geometrical structure was utilized to optimize the innovative shape of imprinting toothed wheel. Characteristics in the dung beetle's foreleg end-tooth were extracted and studied by the edge detection technique. Then, this special outer contour curve was modeled by a nine-order polynomial function and used for the innovative design of imprinting the tooth's cutting edge. Both the conventional and bionic teeth were manufactured, and traction tests in a soil bin were conducted. Taking required draft force and volume of imprinted microbasin as the evaluating indexes, operating efficiency and quality of different toothed wheels were compared and investigated. Results indicate that compared with the conventional toothed wheel, a bionic toothed wheel possesses a better forward resistance reduction property against soil and, meanwhile, can enhance the quality of soil imprinting by increasing the volume of the created micro-basin.

  9. Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes

    Directory of Open Access Journals (Sweden)

    Joanna Czulak

    2013-01-01

    Full Text Available This work presents the preparation and properties of molecularly imprinted polymers (MIPs with catalytic centers that mimic the active sites of metalloenzymes. The MIP synthesis was based on suspension polymerization of functional monomers (4-vinylpyridine and acrylonitrile with trimethylolpropane trimethacrylate as a crosslinker in the presence of transition metal ions and 4-methoxybenzyl alcohol as a template. Four metal ions have been chosen for imprinting from among the microelements that are the most essential in the native enzymes: Cu2+, Co2+, Mn2+, and Zn2+. To prepare catalysts, the required loading of metal ions was obtained during sorption process. The catalysts imprinted with Cu2+, Co2+, and Zn2+ were successfully used for hydroquinone oxidation in the presence of hydrogen peroxide. The Mn2+-imprinted catalyst showed no activity due to the insufficient metal loading. Cu2+ MIP showed the highest efficiency. In case of Cu- and Co-MIP catalysts, their activity was additionally increased by the use of surface imprinting technique.

  10. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    Science.gov (United States)

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  11. Accurate lithography simulation model based on convolutional neural networks

    Science.gov (United States)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  12. X-ray lithography source (SXLS) vacuum system

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Aloia, J.; Hsieh, H.; Kim, T.; Pjerov, S.

    1989-01-01

    In 1988 Brookhaven National Laboratory (BNL) was awarded a contract to design and construct a compact light source for x-ray lithography. This award is part of a technology transfer-to-American-industry program. The contract is for an electron storage ring designed for 690 MeV-500 ma operations. It has a racetrack configuration with a circumference to 8.5 meters. The machine is to be constructed in two phases. Phase I (200 MeV-500ma) will primarily be for low energy injection studies and will incorporate all room temperature magnets. For Phase II the two room temperature dipole magnets will be replaced with (4T) superconducting magnets and operation will be at 690 MeV. This paper describes the vacuum system for this machine. 9 refs

  13. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    International Nuclear Information System (INIS)

    Alayo, Nerea; Bausells, Joan; Pérez-Murano, Francesc; Conde-Rubio, Ana; Labarta, Amilcar; Batlle, Xavier; Borrisé, Xavier

    2015-01-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition. (paper)

  14. Method for the protection of extreme ultraviolet lithography optics

    Science.gov (United States)

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  15. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  16. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.

    Science.gov (United States)

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-06

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  17. High speed hydraulic scanner for deep x-ray lithography

    International Nuclear Information System (INIS)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline

  18. Joint optimization of source, mask, and pupil in optical lithography

    Science.gov (United States)

    Li, Jia; Lam, Edmund Y.

    2014-03-01

    Mask topography effects need to be taken into consideration for more advanced resolution enhancement techniques in optical lithography. However, rigorous 3D mask model achieves high accuracy at a large computational cost. This work develops a combined source, mask and pupil optimization (SMPO) approach by taking advantage of the fact that pupil phase manipulation is capable of partially compensating for mask topography effects. We first design the pupil wavefront function by incorporating primary and secondary spherical aberration through the coefficients of the Zernike polynomials, and achieve optimal source-mask pair under the condition of aberrated pupil. Evaluations against conventional source mask optimization (SMO) without incorporating pupil aberrations show that SMPO provides improved performance in terms of pattern fidelity and process window sizes.

  19. Vitreous carbon mask substrate for X-ray lithography

    Science.gov (United States)

    Aigeldinger, Georg [Livermore, CA; Skala, Dawn M [Fremont, CA; Griffiths, Stewart K [Livermore, CA; Talin, Albert Alec [Livermore, CA; Losey, Matthew W [Livermore, CA; Yang, Chu-Yeu Peter [Dublin, CA

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  20. High speed hydraulic scanner for deep x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline.

  1. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  2. Interpreting cost of ownership for mix-and-match lithography

    Science.gov (United States)

    Levine, Alan L.; Bergendahl, Albert S.

    1994-05-01

    Cost of ownership modeling is a critical and emerging tool that provides significant insight into the ways to optimize device manufacturing costs. The development of a model to deal with a particular application, mix-and-match lithography, was performed in order to determine the level of cost savings and the optimum ways to create these savings. The use of sensitivity analysis with cost of ownership allows the user to make accurate trade-offs between technology and cost. The use and interpretation of the model results are described in this paper. Parameters analyzed include several manufacturing considerations -- depreciation, maintenance, engineering and operator labor, floorspace, resist, consumables and reticles. Inherent in this study is the ability to customize this analysis for a particular operating environment. Results demonstrate the clear advantages of a mix-and-match approach for three different operating environments. These case studies also demonstrate various methods to efficiently optimize cost savings strategies.

  3. Uniformity across 200 mm silicon wafers printed by nanoimprint lithography

    International Nuclear Information System (INIS)

    Gourgon, C; Perret, C; Tallal, J; Lazzarino, F; Landis, S; Joubert, O; Pelzer, R

    2005-01-01

    Uniformity of the printing process is one of the key parameters of nanoimprint lithography. This technique has to be extended to large size wafers to be useful for several industrial applications, and the uniformity of micro and nanostructures has to be guaranteed on large surfaces. This paper presents results of printing on 200 mm diameter wafers. The residual thickness uniformity after printing is demonstrated at the wafer scale in large patterns (100 μm), in smaller lines of 250 nm and in sub-100 nm features. We show that a mould deformation occurs during the printing process, and that this deformation is needed to guarantee printing uniformity. However, the mould deformation is also responsible for the potential degradation of the patterns

  4. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  5. Rapid fabrication of microneedles using magnetorheological drawing lithography.

    Science.gov (United States)

    Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun

    2018-01-01

    Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask

  6. Lithography-induced limits to scaling of design quality

    Science.gov (United States)

    Kahng, Andrew B.

    2014-03-01

    Quality and value of an IC product are functions of power, performance, area, cost and reliability. The forthcoming 2013 ITRS roadmap observes that while manufacturers continue to enable potential Moore's Law scaling of layout densities, the "realizable" scaling in competitive products has for some years been significantly less. In this paper, we consider aspects of the question, "To what extent should this scaling gap be blamed on lithography?" Non-ideal scaling of layout densities has been attributed to (i) layout restrictions associated with multi-patterning technologies (SADP, LELE, LELELE), as well as (ii) various ground rule and layout style choices that stem from misalignment, reliability, variability, device architecture, and electrical performance vs. power constraints. Certain impacts seem obvious, e.g., loss of 2D flexibility and new line-end placement constraints with SADP, or algorithmically intractable layout stitching and mask coloring formulations with LELELE. However, these impacts may well be outweighed by weaknesses in design methodology and tooling. Arguably, the industry has entered a new era in which many new factors - (i) standard-cell library architecture, and layout guardbanding for automated place-and-route: (ii) performance model guardbanding and signoff analyses: (iii) physical design and manufacturing handoff algorithms spanning detailed placement and routing, stitching and RET; and (iv) reliability guardbanding - all contribute, hand in hand with lithography, to a newly-identified "design capability gap". How specific aspects of process and design enablements limit the scaling of design quality is a fundamental question whose answer must guide future RandD investment at the design-manufacturing interface. terface.

  7. Classical extended conformal symmetries

    International Nuclear Information System (INIS)

    Viswanathan, R.

    1990-02-01

    Extensions of the Virasoro algebra are constructed as Poisson brackets of higher spin fields which appear as coefficient fields in certain covariant derivative operators of order N. These differential operators are constructed so as to be covariant under reparametrizations on fields of definite conformal dimension. Factorization of such an N-th order operator in terms of first order operators, together with the inclusion of a spin one U(1) current, is shown to lead to a two-parameter W-algebra. One of these parameters plays the role of interpolating between W-algebras based on different Lie algebras of the same rank. (author). 11 refs

  8. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Science.gov (United States)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  9. Sexual imprinting: what strategies should we expect to see in nature?

    Science.gov (United States)

    Chaffee, Dalton W; Griffin, Hayes; Gilman, R Tucker

    2013-12-01

    Sexual imprinting occurs when juveniles learn mate preferences by observing the phenotypes of other members of their populations, and it is ubiquitous in nature. Imprinting strategies, that is which individuals and phenotypes are observed and how strong preferences become, vary among species. Imprinting can affect trait evolution and the probability of speciation, and different imprinting strategies are expected to have different effects. However, little is known about how and why different imprinting strategies evolve, or which strategies we should expect to see in nature. We used a mathematical model to study how the evolution of sexual imprinting depends on (1) imprinting costs and (2) the sex-specific fitness effects of the phenotype on which individuals imprint. We found that even small fixed costs prevent the evolution of sexual imprinting, but small relative costs do not. When imprinting does evolve, we identified the conditions under which females should evolve to imprint on their fathers, their mothers, or on other members of their populations. Our results provide testable hypotheses for empirical work and help to explain the conditions under which sexual imprinting might evolve to promote speciation. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  10. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...

  11. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  12. Supergravitational conformal Galileons

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt

    2017-08-01

    The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios

  13. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  14. Does genomic imprinting play a role in autoimmunity?

    Science.gov (United States)

    Camprubí, Cristina; Monk, David

    2011-01-01

    In the 19th century Gregor Mendel defined the laws of genetic inheritance by crossing different types of peas. From these results arose his principle of equivalence: the gene will have the same behaviour whether it is inherited from the mother or the father. Today, several key exceptions to this principle are known, for example sex-linked traits and genes in the mitochondrial genome, whose inheritance patterns are referred to as 'non mendelian'. A third, important exception in mammals is that of genomic imprinting, where transcripts are expressed in a monoallelic fashion from only the maternal or the paternal chromosome. In this chapter, we discuss how parent-of-origin effects and genomic imprinting may play a role in autoimmunity and speculate how imprinted miRNAs may influence the expression of many target autoimmune associated genes.

  15. Recognition of lysozyme using surface imprinted bacterial cellulose nanofibers.

    Science.gov (United States)

    Saylan, Yeşeren; Tamahkar, Emel; Denizli, Adil

    2017-11-01

    Here, we developed the lysozyme imprinted bacterial cellulose (Lyz-MIP/BC) nanofibers via the surface imprinting strategy that was designed to recognize lysozyme. This study includes the molecular imprinting method onto the surface of bacterial cellulose nanofibers in the presence of lysozyme by metal ion coordination, as well as further characterizations methods FTIR, SEM and contact angle measurements. The maximum lysozyme adsorption capacity of Lyz-MIP/BC nanofibers was found to be 71 mg/g. The Lyz-MIP/BC nanofibers showed high selectivity for lysozyme towards bovine serum albumin and cytochrome c. Overall, the Lyz-MIP/BC nanofibers hold great potential for lysozyme recognition due to the high binding capacity, significant selectivity and excellent reusability.

  16. Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography

    Science.gov (United States)

    Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn

    2012-02-01

    In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1-1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.

  17. Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography

    International Nuclear Information System (INIS)

    Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn

    2012-01-01

    In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1–1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.

  18. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  19. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ, Incheon (Korea, Republic of)

    2016-08-15

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

  20. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    International Nuclear Information System (INIS)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee

    2016-01-01

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed

  1. Ward identities for conformal models

    International Nuclear Information System (INIS)

    Lazzarini, S.; Stora, R.

    1988-01-01

    Ward identities which express the symmetry of conformal models are treated. Diffeomorphism invariance or locally holomorphic coordinate transformations are used. Diffeomorphism invariance is then understood in terms of Riemannian geometry. Two different sets of Ward identities expressing diffeomorphism invariance in a conformally invariant way are found for the free bosonic string. Using a geometrical argument, the correct invariance for a large class of conformal models is given

  2. Conformational analysis of lignin models

    International Nuclear Information System (INIS)

    Santos, Helio F. dos

    2001-01-01

    The conformational equilibrium for two 5,5' biphenyl lignin models have been analyzed using a quantum mechanical semiempirical method. The gas phase and solution structures are discussed based on the NMR and X-ray experimental data. The results obtained showed that the observed conformations are solvent-dependent, being the geometries and the thermodynamic properties correlated with the experimental information. This study shows how a systematic theoretical conformational analysis can help to understand chemical processes at a molecular level. (author)

  3. On the linear conformal gravitation

    International Nuclear Information System (INIS)

    Pal'chik, M.Ya.; Fradkin, E.S.

    1984-01-01

    Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained

  4. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  5. Fabrication Process Changes for Performance Improvement of a RF MEMS Resonator: Conformable Contact Lithography, Moire Alignment, and Chlorine Dry Etching

    National Research Council Canada - National Science Library

    Sakai, Mark

    2005-01-01

    .... A CCL process utilizing moire alignment marks is described. An automated moire-based alignment system using Labview software is presented which demonstrates sub-100 nm alignment accuracy for a single alignment mark...

  6. Instantons in conformal gravity

    International Nuclear Information System (INIS)

    Strominger, A.; Horowitz, G.T.; Perry, M.J.

    1984-01-01

    Fe study extrema of the general conformally invariant action: Ssub(c)=∫1/sub(α) 2 Csup(abcd)Csub(abcd)+γRsup(abcd*)Rsup(*)sub(abcd)+iTHETARsup(abcd)*Rsub(abcd). We find the first examples in four dimensions of asymptotically euclidean gravitational instantons. These have arbitrary Euler number and Hirzebruch signature. Some of these instantons represent tunneling between zero-curvature vacua that are not related by small gauge transformations. Others represent tunneling between flat space and topologically non-trivial zero-energy initial data. A general formula for the one-loop determinant is derived in terms of the renormalization group invariant masses, the volume of space-time, the Euler number and the Hirzebruch signature. (orig.)

  7. Conformance and Deviance

    DEFF Research Database (Denmark)

    Gjerdrum Pedersen, Esben Rahbek; Neergaard, Peter; Thusgaard Pedersen, Janni

    2013-01-01

    This paper analyses how large Danish companies are responding to new governmental regulation which requires them to report on corporate social responsibility (CSR). The paper is based on an analysis of 142 company annual reports required by the new Danish regulation regarding CSR reporting, plus 10...... interviews with first-time reporting companies and six interviews with companies that failed to comply with the new law. It is concluded that coercive pressures from government have an impact on CSR reporting practices. Further, the analysis finds traces of mimetic isomorphism which inspires a homogenisation...... in CSR reporting practices. Finally, it is argued that non-conformance with the new regulatory requirements is not solely about conscious resistance but may also be caused by, for example, lack of awareness, resource limitations, misinterpretations, and practical difficulties....

  8. Reflections on Conformal Spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    We use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ0 as well as for large Δ0. We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function. (based on 1510.08772 with Kim & Ooguri). This seminar will be given via videolink

  9. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  10. Conformal Aspects of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.

  11. Logarithmic conformal field theory through nilpotent conformal dimensions

    International Nuclear Information System (INIS)

    Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.

    2001-01-01

    We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor

  12. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  13. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    International Nuclear Information System (INIS)

    Lu Yan; Yan Changling; Gao Shuyan

    2009-01-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  14. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    Science.gov (United States)

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome.

    Science.gov (United States)

    Greally, John M

    2002-01-08

    To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival.

  16. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.com [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China); Yan Changling; Gao Shuyan [College of Chemistry and Environmental Science, Henan Normal University, 46 Jlanshe Road, Xinxiang 453007 (China)

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  17. Pending templates imprinted polymers-hypothesis, synthesis, adsorption, and chromatographic properties.

    Science.gov (United States)

    Yang, Chun; Luan, Xinjie; Zhao, Meifeng; Liu, Guofeng; Wang, Jian; Qu, Qishu; Hu, Xiaoya

    2013-05-01

    This is the first time when protein-imprinted polymers are prepared with "pending templates." The polymers were synthesized in the presence of a real sample (chicken egg white), rather than any known commercial proteins. Compared with a simultaneously synthesized nonimprinted control polymer, the polymers show higher adsorption capacity for abundant components (as "pending templates") in the original sample. Chromatography experiments indicated that the columns made of the imprinted polymers could retain abundant species (imprinted) and separate them from those not imprinted. Thus, the sample could be split into dimidiate subfractions with reduced complexities. "Pending template imprinting" suggests a new way to investigate molecular imprinting, especially to dissect, simplify, and analyze complicated samples through a series of polymers just imprinted by the samples per se. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mask characterization for CDU budget breakdown in advanced EUV lithography

    Science.gov (United States)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2012-11-01

    As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget

  19. Evaluation of EUV resist performance using interference lithography

    Science.gov (United States)

    Buitrago, E.; Yildirim, O.; Verspaget, C.; Tsugama, N.; Hoefnagels, R.; Rispens, G.; Ekinci, Y.

    2015-03-01

    Extreme ultraviolet lithography (EUVL) stands as the most promising solution for the fabrication of future technology nodes in the semiconductor industry. Nonetheless, the successful introduction of EUVL into the extremely competitive and stringent high-volume manufacturing (HVM) phase remains uncertain partly because of the still limiting performance of EUV resists below 16 nm half-pitch (HP) resolution. Particularly, there exists a trade-off relationship between resolution (half-pitch), sensitivity (dose) and line-edge roughness (LER) that can be achieved with existing materials. This trade-off ultimately hampers their performance and extendibility towards future technology nodes. Here we present a comparative study of highly promising chemically amplified resists (CARs) that have been evaluated using the EUV interference lithography (EUV-IL) tool at the Swiss Light Source (SLS) synchrotron facility in the Paul Scherrer Institute (PSI). In this study we have focused on the performance qualification of different resists mainly for 18 nm and 16 nm half-pitch line/space resolution (L/S = 1:1). Among the most promising candidates tested, there are a few choices that allow for 16 nm HP resolution to be achieved with high exposure latitude (up to ~ 33%), low LER (down to 3.3 nm or ~ 20% of critical dimension CD) and low dose-to-size (or best-energy, BE) < 41 mJ/cm2 values. Patterning was even demonstrated down to 12 nm HP with one of CARs (R1UL1) evaluated for their extendibility beyond the 16 nm HP resolution. 11 nm HP patterning with some pattern collapse and well resolved patterns down 12 nm were also demonstrated with another CAR (R15UL1) formulated for 16 nm HP resolution and below. With such resist it was possible even to obtain a small process window for 14 nm HP processing with an EL ~ 8% (BE ~ 37 mJ/cm2, LER ~ 4.5 nm). Though encouraging, fulfilling all of the requirements necessary for high volume production, such as high resolution, low LER, high photon

  20. Replacement between conformity and counter-conformity in consumption decisions.

    Science.gov (United States)

    Chou, Ting-Jui; Chang, En-Chung; Dai, Qi; Wong, Veronica

    2013-02-01

    This study assessed, in a Chinese context, how self-esteem interacts with perceived similarity and uniqueness to yield cognitive dissonance, and whether the dissonance leads to self-reported conformity or counter-conformity behavior. Participants were 408 respondents from 4 major Chinese cities (M age = 33.0 yr., SD = 4.3; 48% men). Self-perceptions of uniqueness, similarity, cognitive dissonance, self-esteem and need to behave in conformity or counter-conformity were measured. A theoretical model was assessed in four situations, relating the ratings of self-esteem and perceived similarity/uniqueness to the way other people at a wedding were dressed, and the resultant cognitive dissonance and conformity/ counter-conformity behavior. Regardless of high or low self-esteem, all participants reported cognitive dissonance when they were told that they were dressed extremely similarly to or extremely differently from the other people attending the wedding. However, the conforming/counter-conforming strategies used by participants to resolve the cognitive dissonance differed. When encountering dissonance induced by the perceived extreme uniqueness of dress, participants with low self-esteem tended to say they would dress next time so as to conform with the way others were dressed, while those with high self-esteem indicated they would continue their counter-conformity in attire. When encountering dissonance induced by the perceived extreme similarity to others, both those with high and low self-esteem tended to say they would dress in an unorthodox manner to surprise other people in the future.

  1. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  2. Progress in coherent lithography using table-top extreme ultraviolet lasers

    Science.gov (United States)

    Li, Wei

    Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution

  3. Convergent and divergent evolution of genomic imprinting in the marsupial Monodelphis domestica

    Directory of Open Access Journals (Sweden)

    Das Radhika

    2012-08-01

    Full Text Available Abstract Background Genomic imprinting is an epigenetic phenomenon resulting in parent-of-origin specific monoallelic gene expression. It is postulated to have evolved in placental mammals to modulate intrauterine resource allocation to the offspring. In this study, we determined the imprint status of metatherian orthologues of eutherian imprinted genes. Results L3MBTL and HTR2A were shown to be imprinted in Monodelphis domestica (the gray short-tailed opossum. MEST expressed a monoallelic and a biallelic transcript, as in eutherians. In contrast, IMPACT, COPG2, and PLAGL1 were not imprinted in the opossum. Differentially methylated regions (DMRs involved in regulating imprinting in eutherians were not found at any of the new imprinted loci in the opossum. Interestingly, a novel DMR was identified in intron 11 of the imprinted IGF2R gene, but this was not conserved in eutherians. The promoter regions of the imprinted genes in the opossum were enriched for the activating histone modification H3 Lysine 4 dimethylation. Conclusions The phenomenon of genomic imprinting is conserved in Therians, but the marked difference in the number and location of imprinted genes and DMRs between metatherians and eutherians indicates that imprinting is not fully conserved between the two Therian infra-classes. The identification of a novel DMR at a non-conserved location as well as the first demonstration of histone modifications at imprinted loci in the opossum suggest that genomic imprinting may have evolved in a common ancestor of these two Therian infra-classes with subsequent divergence of regulatory mechanisms in the two lineages.

  4. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Fei-fei CHEN

    2015-09-01

    Full Text Available Objective: To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods: Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q and time were observed. Results: MIP was prepared successfully bynimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of specific recognition performance on nimodipine. The static adsorption distribution coefficient (KD was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer.Conclusion: Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  5. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik

    2013-01-01

    . In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication...

  6. Pyrogallol-imprinted polymers with methyl methacrylate via precipitation polymerization

    Science.gov (United States)

    Mehamod, Faizatul Shimal; Othman, Nor Amira; Bulat, Ku Halim Ku; Suah, Faiz Bukhari Mohd

    2018-06-01

    Molecular simulation techniques are important to study the understanding of chemical and physical properties of any material. Computational modeling is considered as time reducer in finding the best recipes for Molecularly-Imprinted Polymers (MIPs). In this study, Pyrogallol-imprinted polymers (PIP) and non-imprinted polymers (NIPs) were synthesized via precipitation polymerization using Pyrogallol (Py), methyl methacrylate (MMA), divinylbenzene (DVB) as template, functional monomer and cross-linker, respectively. The recipe was according to the results from computational techniques. The synthesized PIP and NIPs were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and UV-visible spectroscopy (UV-vis). Studies on adsorption isotherm showed that PIP and NIPs follow Scatchard isotherm models. Sorption kinetic study found that PIP and NIPs follow pseudo-second order which indicates the rate-limiting step is the surface adsorption. The imprinting factor of PIP was determined by selectivity study and showed the value of k >1, which proved that PIP was selective toward Pyrogallol compared to NIP.

  7. Imprinting: When Early Life Memories Make Food Smell Bad.

    Science.gov (United States)

    Rayes, Diego; Alkema, Mark J

    2016-05-09

    A recent study has found that pathogen exposure early in the life of the nematode Caenorhabditis elegans leads to a long-lasting aversion that requires distinct sets of neurons for the formation and retrieval of the imprinted memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Prenatal imprinting by environmental toxicants: really an important issue?

    Directory of Open Access Journals (Sweden)

    Karl Ernst v. Mühlendahl

    2015-06-01

    Full Text Available Prenatal imprinting of sexual behaviour and of other traits by environmental toxicants has been one important topic in the ongoing discussions in environmental medicine. This review of the literature shows that, so far, concrete data are sparse and, in part, contradictory.

  9. Surface imprinted beads for the recognition of human serum albumin.

    Science.gov (United States)

    Bonini, Francesca; Piletsky, Sergey; Turner, Anthony P F; Speghini, Adolfo; Bossi, Alessandra

    2007-04-15

    The synthesis of poly-aminophenylboronic acid (ABPA) imprinted beads for the recognition of the protein human serum albumin (HSA) is reported. In order to create homogeneous recognition sites, covalent immobilisation of the template HSA was exploited. The resulting imprinted beads were selective for HSA. The indirect imprinting factor (IF) calculated from supernatant was 1.6 and the direct IF, evaluated from the protein recovered from the beads, was 1.9. The binding capacity was 1.4 mg/g, which is comparable to commercially available affinity materials. The specificity of the HSA recognition was evaluated with competitive experiments, indicating a molar ratio 4.5/1 of competitor was necessary to displace half of the bound HSA. The recognition and binding of the imprinted beads was also tested with a complex sample, human serum and targeted removal of HSA without a loss of the other protein components was demonstrated. The easy preparation protocol of derivatised beads and a good protein recognition properties make the approach an attractive solution to analytical and bio-analytical problems in the field of biotechnology.

  10. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    Science.gov (United States)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  11. Chemical point detection using differential fluorescence from molecularly imprinted polymers

    Science.gov (United States)

    Pestov, Dmitry; Anderson, John E.; Nelson, Jean; Tepper, Gary C.

    2004-12-01

    Fluorescence represents one of the most attractive approaches for chemical sensing due to the abundant light produced by most fluorophores, resulting in excellent detection sensitivity. However, the broad and overlapping emission spectra of target and background species have made it difficult to perform species identification in a field instrument because of the need to perform spectral decomposition and analysis. This paper describes a new chemical sensing strategy based on differential fluorescence measurements from molecularly imprinted polymers, which eliminates the need to perform any spectral analysis. Species identification is accomplished by measuring the differential light output from a pair of polymers-one imprinted to a target species and the other identical, but not imprinted. The imprinted polymer selectively concentrates the target molecule and controls the energy (wavelength) of the emitted fluorescence signal and the differential output eliminates common mode signals associated with non-specific background interference. Because no spectral analysis is required, the sensors can be made extremely small and require very little power. Preliminary performance parameters from a prototype sensor are presented and discussed.

  12. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    Science.gov (United States)

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  13. Shape recognition of microbial cells by colloidal cell imprints

    NARCIS (Netherlands)

    Borovicka, J.; Stoyanov, S.D.; Paunov, V.N.

    2013-01-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called "colloid antibodies", were fabricated by partial fragmentation of silica shells obtained by templating

  14. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  15. Conformal invariance in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E.

    1985-01-01

    N=2 conformal supersymmetry is realized in harmonic superspace, its peculiarities are analyzed. The coordinate group and analytical prepotentials for N=2 conformal supergravity are found. A new version of the N=2 Einstein supergravity with infinite number of auxiliary fields is suggested. A hypermultiplet without central charges and constraints is used as a compensator

  16. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  17. The amino-terminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers

    Science.gov (United States)

    Hu, Yufeng; Chen, Zhenhang; Fu, Yanjun; He, Qingzhong; Jiang, Lun; Zheng, Jiangge; Gao, Yina; Mei, Pinchao; Chen, Zhongzhou; Ren, Xueqin

    2015-03-01

    Flexibility is an intrinsic property of proteins and essential for their biological functions. However, because of structural flexibility, obtaining high-quality crystals of proteins with heterogeneous conformations remain challenging. Here, we show a novel approach to immobilize traditional precipitants onto molecularly imprinted polymers (MIPs) to facilitate protein crystallization, especially for flexible proteins. By applying this method, high-quality crystals of the flexible N-terminus of human fragile X mental retardation protein are obtained, whose absence causes the most common inherited mental retardation. A novel KH domain and an intermolecular disulfide bond are discovered, and several types of dimers are found in solution, thus providing insights into the function of this protein. Furthermore, the precipitant-immobilized MIPs (piMIPs) successfully facilitate flexible protein crystal formation for five model proteins with increased diffraction resolution. This highlights the potential of piMIPs for the crystallization of flexible proteins.

  18. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  19. Conformal algebra of Riemann surfaces

    International Nuclear Information System (INIS)

    Vafa, C.

    1988-01-01

    It has become clear over the last few years that 2-dimensional conformal field theories are a crucial ingredient of string theory. Conformal field theories correspond to vacuum solutions of strings; or more precisely we know how to compute string spectrum and scattering amplitudes by starting from a formal theory (with a proper value of central charge of the Virasoro algebra). Certain non-linear sigma models do give rise to conformal theories. A lot of progress has been made in the understanding of conformal theories. The author discusses a different view of conformal theories which was motivated by the development of operator formalism on Riemann surfaces. The author discusses an interesting recent work from this point of view

  20. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  1. Modular EUV Source for the next generation lithography

    International Nuclear Information System (INIS)

    Sublemontier, O.; Rosset-Kos, M.; Ceccotti, T.; Hergott, J.F.; Auguste, Th.; Normand, D.; Schmidt, M.; Beaumont, F.; Farcage, D.; Cheymol, G.; Le Caro, J.M.; Cormont, Ph.; Mauchien, P.; Thro, P.Y.; Skrzypczak, J.; Muller, S.; Marquis, E.; Barthod, B.; Gaurand, I.; Davenet, M.; Bernard, R.

    2011-01-01

    The present work, performed in the frame of the EXULITE project, was dedicated to the design and characterization of a laser-plasma-produced extreme ultraviolet (EUV) source prototype at 13.5 nm for the next generation lithography. It was conducted in cooperation with two laboratories from CEA, ALCATEL and THALES. One of our approach originalities was the laser scheme modularity. Six Nd:YAG laser beams were focused at the same time on a xenon filament jet to generate the EUV emitting plasma. Multiplexing has important industrial advantages and led to interesting source performances in terms of in-band power, stability and angular emission properties with the filament jet target. A maximum conversion efficiency (CE) value of 0.44% in 2π sr and 2% bandwidth was measured, which corresponds to a maximum in band EUV mean power of 7.7 W at a repetition rate of 6 kHz. The EUV emission was found to be stable and isotropic in these conditions. (authors)

  2. PREVAIL: IBM's e-beam technology for next generation lithography

    Science.gov (United States)

    Pfeiffer, Hans C.

    2000-07-01

    PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.

  3. Scanning probe lithography for fabrication of Ti metal nanodot arrays

    International Nuclear Information System (INIS)

    Jung, B.; Jo, W.; Gwon, M.J.; Lee, E.; Kim, D.-W.

    2010-01-01

    We report fabrication of Ti metal nanodot arrays by scanning probe microscopic indentation. A thin poly-methylmethacrylate (PMMA) layer was spin-coated on Si substrates with thickness of 70 nm. Nanometer-size pore arrays were formed by indenting the PMMA layer using a cantilever of a scanning probe microscope. Protuberances with irregular boundaries appeared during the indentation process. Control of approach and pulling-out speed during indentation was able to dispose of the protrusions. Ti metal films were deposited on the patterned PMMA layers by a radio-frequency sputtering method and subsequently lifted off to obtain metal nanodot arrays. The fabricated metal nanodot arrays have 200 nm of diameter and 500 nm of interdistance, which corresponds to a density of 4x10 8 /cm 2 . Scanning probe-based measurement of current-voltage (I-V) behaviors for a single Ti metal nanodot showed asymmetric characteristics. Applying external bias is likely to induce oxidation of Ti metal, since the conductance decreased and volume change of the dots was observed. I-V behaviors of Ti metal nanodots by conventional e-beam lithography were also characterized for comparison.

  4. Alternative stitching method for massively parallel e-beam lithography

    Science.gov (United States)

    Brandt, Pieter; Tranquillin, Céline; Wieland, Marco; Bayle, Sébastien; Milléquant, Matthieu; Renault, Guillaume

    2015-07-01

    In this study, a stitching method other than soft edge (SE) and smart boundary (SB) is introduced and benchmarked against SE. The method is based on locally enhanced exposure latitude without throughput cost, making use of the fact that the two beams that pass through the stitching region can deposit up to 2× the nominal dose. The method requires a complex proximity effect correction that takes a preset stitching dose profile into account. Although the principle of the presented stitching method can be multibeam (lithography) systems in general, in this study, the MAPPER FLX 1200 tool is specifically considered. For the latter tool at a metal clip at minimum half-pitch of 32 nm, the stitching method effectively mitigates beam-to-beam (B2B) position errors such that they do not induce an increase in critical dimension uniformity (CDU). In other words, the same CDU can be realized inside the stitching region as outside the stitching region. For the SE method, the CDU inside is 0.3 nm higher than outside the stitching region. A 5-nm direct overlay impact from the B2B position errors cannot be reduced by a stitching strategy.

  5. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  6. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.

    Science.gov (United States)

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-17

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  7. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    Directory of Open Access Journals (Sweden)

    Manish Biyani

    2015-07-01

    Full Text Available Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density, ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  8. Epitaxial patterning of thin-films: conventional lithographies and beyond

    International Nuclear Information System (INIS)

    Zhang, Wei; Krishnan, Kannan M

    2014-01-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. (topical review)

  9. Synchrotron Radiation Lithography for Manufacturing Integrated Circuits Beyond 100 nm.

    Science.gov (United States)

    Kinoshita, H; Watanabe, T; Niibe, M

    1998-05-01

    Extreme ultraviolet lithography is a powerful tool for printing features of 0.1 micro m and below; in Japan and the USA there is a growing tendency to view it as the wave of the future. With Schwarzschild optics, replication of a 0.05 micro m pattern has been demonstrated in a 25 micro m square area. With a two-aspherical-mirror system, a 0.15 micro m pattern has been replicated in a ring slit area of 20 mm x 0.4 mm; a combination of this system with illumination optics and synchronized mask and wafer stages has enabled the replication of a 0.15 micro m pattern in an area of 10 mm x 12.5 mm. Furthermore, in the USA, the Sandia National Laboratory has succeeded in fabricating a fully operational NMOS transistor with a gate length of 0.1 micro m. The most challenging problem is the fabrication of mirrors with the required figure error of 0.28 nm. However, owing to advances in measurement technology, mirrors can now be made to a precision that almost satisfies this requirement. Therefore, it is time to move into a rapid development phase in order to obtain a system ready for practical use by the year 2004. In this paper the status of individual technologies is discussed in light of this situation, and future requirements for developing a practical system are considered.

  10. Development of procedures for programmable proximity aperture lithography

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J., E-mail: harry.whitlow@he-arc.ch [Institut des Microtechnologies Appliquées Arc, Haute Ecole Arc Ingénierie, Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Gorelick, S. [VTT Technical Research Centre of Finland, P.O. Box 1000, Tietotie 3, Espoo, FI-02044 VTT (Finland); Puttaraksa, N. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Napari, M.; Hokkanen, M.J.; Norarat, R. [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland)

    2013-07-01

    Programmable proximity aperture lithography (PPAL) with MeV ions has been used in Jyväskylä and Chiang Mai universities for a number of years. Here we describe a number of innovations and procedures that have been incorporated into the LabView-based software. The basic operation involves the coordination of the beam blanker and five motor-actuated translators with high accuracy, close to the minimum step size with proper anti-collision algorithms. By using special approaches, such writing calibration patterns, linearisation of position and careful backlash correction the absolute accuracy of the aperture size and position, can be improved beyond the standard afforded by the repeatability of the translator end-point switches. Another area of consideration has been the fluence control procedures. These involve control of the uniformity of the beam where different approaches for fluence measurement such as simultaneous aperture current and the ion current passing through the aperture using a Faraday cup are used. Microfluidic patterns may contain many elements that make-up mixing sections, reaction chambers, separation columns and fluid reservoirs. To facilitate conception and planning we have implemented a .svg file interpreter, that allows the use of scalable vector graphics files produced by standard drawing software for generation of patterns made up of rectangular elements.

  11. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    Science.gov (United States)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  12. Print-to-pattern dry film photoresist lithography

    International Nuclear Information System (INIS)

    Garland, Shaun P; Murphy, Terrence M Jr; Pan, Tingrui

    2014-01-01

    Here we present facile microfabrication processes, referred to as print-to-pattern dry film photoresist (DFP) lithography, that utilize the combined advantages of wax printing and DFP to produce micropatterned substrates with high resolution over a large surface area in a non-cleanroom setting. The print-to-pattern methods can be performed in an out-of-cleanroom environment making microfabrication much more accessible to minimally equipped laboratories. Two different approaches employing either wax photomasks or wax etchmasks from a solid ink desktop printer have been demonstrated that allow the DFP to be processed in a negative tone or positive tone fashion, respectively, with resolutions of 100 µm. The effect of wax melting on resolution and as a bonding material was also characterized. In addition, solid ink printers have the capacity to pattern large areas with high resolution, which was demonstrated by stacking DFP layers in a 50 mm × 50 mm woven pattern with 1 mm features. By using an office printer to generate the masking patterns, the mask designs can be easily altered in a graphic user interface to enable rapid prototyping. (technical note)

  13. Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach.

    Science.gov (United States)

    Kothary, Pratik; Dou, Xuan; Fang, Yin; Gu, Zhuxiao; Leo, Sin-Yen; Jiang, Peng

    2017-02-01

    Here we report an unconventional colloidal lithography approach for fabricating a variety of periodic polymer nanostructures with tunable geometries and hydrophobic properties. Wafer-sized, double-layer, non-close-packed silica colloidal crystal embedded in a polymer matrix is first assembled by a scalable spin-coating technology. The unusual non-close-packed crystal structure combined with a thin polymer film separating the top and the bottom colloidal layers render great versatility in templating periodic nanostructures, including arrays of nanovoids, nanorings, and hierarchical nanovoids. These different geometries result in varied fractions of entrapped air in between the templated nanostructures, which in turn lead to different apparent water contact angles. Superhydrophobic surfaces with >150° water contact angles and <5° contact angle hysteresis are achieved on fluorosilane-modified polymer hierarchical nanovoid arrays with large fractions of entrapped air. The experimental contact angle measurements are complemented with theoretical predictions using the Cassie's model to gain insights into the fundamental microstructure-dewetting property relationships. The experimental and theoretical contact angles follow the same trends as determined by the unique hierarchical structures of the templated periodic arrays. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  15. Conformal solids and holography

    Science.gov (United States)

    Esposito, A.; Garcia-Saenz, S.; Nicolis, A.; Penco, R.

    2017-12-01

    We argue that a SO( d) magnetic monopole in an asymptotically AdS space-time is dual to a d-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration solidon. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary — the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.

  16. Intensity modulated conformal radiotherapy

    International Nuclear Information System (INIS)

    Noel, Georges; Moty-Monnereau, Celine; Meyer, Aurelia; David, Pauline; Pages, Frederique; Muller, Felix; Lee-Robin, Sun Hae; David, Denis Jean

    2006-12-01

    This publication reports the assessment of intensity-modulated conformal radiotherapy (IMCR). This assessment is based on a literature survey which focussed on indications, efficiency and safety on the short term, on the risk of radio-induced cancer on the long term, on the role in the therapeutic strategy, on the conditions of execution, on the impact on morbidity-mortality and life quality, on the impact on the health system and on public health policies and program. This assessment is also based on the opinion of a group of experts regarding the technical benefit of IMCR, its indications depending on the cancer type, safety in terms of radio-induced cancers, and conditions of execution. Before this assessment, the report thus indicates indications for which the use of IMCR can be considered as sufficient or not determined. It also proposes a technical description of IMCR and helical tomo-therapy, discusses the use of this technique for various pathologies or tumours, analyses the present situation of care in France, and comments the identification of this technique in foreign classifications

  17. 6d Conformal matter

    International Nuclear Information System (INIS)

    Zotto, Michele Del; Heckman, Jonathan J.; Tomasiello, Alessandro; Vafa, Cumrun

    2015-01-01

    A single M5-brane probing G, an ADE-type singularity, leads to a system which has G×G global symmetry and can be viewed as “bifundamental” (G,G) matter. For the A N series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1,0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E 8 ×G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G,G ′ ) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1,0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.

  18. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-01-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  19. Influence of Exogenous Factors on Genomic Imprinting. 2. Effect of Bad Habits of Parents on Genomic Imprinting of the Descendants

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2016-09-01

    Full Text Available The article presents research data, which suggest that alcohol abuse and smoking of parents have an adverse effect on fetal development and the health of the child. These factors disrupt the processes of DNA methylation of imprinted genes, causing an increased risk of intrauterine growth retardation, and of pathological abnormalities in fetal neurogenesis.

  20. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor

    International Nuclear Information System (INIS)

    Aswini, K.K.; Vinu Mohan, A.M.; Biju, V.M.

    2016-01-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template–monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32 μM for the dynamic range of 0.4 to 17 μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. - Highlights: • Molecularly imprinted polymer based theophylline sensor was developed. • Imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) was electrodeposited. • Most stable template-monomer complex was assigned by computational analysis. • Possessed remarkable selectivity in the presence of structurally similar interferents • Employed for theophylline detection from commercially available tablets