WorldWideScience

Sample records for conformal dose distributions

  1. Evaluation of the dose distribution of dynamic conical conformal therapy using a C-arm mounted accelerator

    International Nuclear Information System (INIS)

    Nakagawa, Keiichi; Aoki, Yukimasa; Ohtomo, Kuni

    2001-01-01

    Conformal radiation therapy, which is widely utilized in Japan as a standard, highly precise technique has limited advantage in dose confinement because of its coplanar beam entry. An improved form of conformal therapy is delivered by a linac mounted on a C-arm rotatable gantry. The linac head was designed to move along the C-arm with a maximum angle of 60 degrees. Simultaneous rotation of the gantry creates a Dynamic Conical irradiation technique. Dynamic Conical Conformal Therapy (Dyconic Therapy) was developed by combining the technique with continuous MLC motion based on beam's eye views of the target volume. Dose distributions were measured in a phantom using film densitometry and compared with conventional conformal radiation therapy. The measurements showed that the dose distribution conformed to the target shape identified by CT. In addition, the dose distribution for a cancer patient was evaluated through the use of DVHs generated by a treatment planning system. These measurements showed that the dose distribution along the patient's long axis conformed to the shape of the target volume. DVH analysis, however, did not indicate superiority of the present technique over the conventional technique. Angulation of the C-arm gantry allowed the primary beam to strike a larger area of the therapy room. This necessitated adding shielding to the walls and ceiling of the treatment room. It was confirmed that the leakage radiation was reduced to a negligible level by adding an iron plate 20 cm thick to several places on the side walls, by adding an iron plate 9 cm thick to several places on the ceiling, and by increasing the thickness of the concrete ceiling from 70 to 140 cm. The possible usefulness of Dyconic Therapy was confirmed. (author)

  2. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    Science.gov (United States)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG

  3. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  4. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    International Nuclear Information System (INIS)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G.

    2002-01-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7±17.1 and 40.4±16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7±4.8 ccm for 3D-HOF and 10.7±12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma

  5. Modelling normal tissue isoeffect distribution in conformal radiotherapy of glioblastoma provides an alternative dose escalation pattern through hypofractionation without reducing the total dose

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, L.; Skriba, Z.; Major, T.; Polgar, C.; Fodor, J.; Somogyi, A.; Nemeth, G. [National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)

    2002-04-01

    The purpose of this study was to prove that by using conformal external beam radiotherapy (RT) normal brain structures can be protected even when applying an alternative approach of biological dose escalation: hypofractionation (HOF) without total dose reduction (TDR). Traditional 2-dimensional (2D) and conformal 3-dimensional (3D) treatment plans were prepared for 10 gliomas representing the subanatomical sites of the supratentorial brain. Isoeffect distributions were generated by the biologically effective dose (BED) formula to analyse the effect of conventionally fractionated (CF) and HOF schedules on both the spatial biological dose distribution and biological dose-volume histograms. A comparison was made between 2D-CF (2.0 Gy/day) and 3D-HOF (2.5 Gy/day) regimens, applying the same 60 Gy total doses. Integral biologically effective dose (IBED) and volumes received biologically equivalent to a dose of 54 Gy or more (V-BED54) were calculated for the lower and upper brain stem as organs of risk. The IBED values were lower with the 3D-HOF than with the 2D-CF schedule in each tumour location, means 22.7{+-}17.1 and 40.4{+-}16.9 in Gy, respectively (p<0.0001). The V-BED54 values were also smaller or equal in 90% of the cases favouring the 3D-HOF scheme. The means were 2.7{+-}4.8 ccm for 3D-HOF and 10.7{+-}12.7 ccm for 2D-CF (p=0.0006). Our results suggest that with conformal RT, fraction size can gradually be increased. HOF radiotherapy regimens without TDR shorten the treatment time and seem to be an alternative way of dose escalation in the treatment of glioblastoma.

  6. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  7. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    Science.gov (United States)

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than

  8. Three-dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of bang polymer gel dosimeters

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S.; Maryanski, Marek J.; Eastman, Peter; Holcomb, Stephen D.; Yashan, Zhang; Avison, Robin G.; Sanders, Michael; Gore, John C.

    1997-01-01

    Purpose/Objective: The measurement of complex dose distributions (those created by irradiation through multiple beams, multiple sources, or multiple source dwell positions) requires a dosimeter that can integrate the dose during a complete treatment. Integrating dosimeter devices generally are capable of measuring only dose at a point (ion chamber, diode, TLD) or in a plane (film). With increasing use of conformal dose distributions requiring shaped, non coplanar beams, there will be an increased requirement for a dosimeter that can record and display a 3D dose distribution. The use of a 3D dosimeter will be required to confirm the accuracy of treatment plans produced by the current generation of 3D treatment-planning computers. Methods and Materials: The use of a Fricke-infused gel and magnetic resonance imaging (MRI) to demonstrate the localization of stereotactic beams has been demonstrated (11). The recently developed BANG polymer gel dosimetry system (MGS Research, Inc., Guilford, CT), based on radiation-induced chain polymerization of acrylic monomers dispersed in a tissue-equivalent gel, surpasses the Fricke-gel method by providing accurate, quantitative dose distribution data that do not deteriorate with time (6, 9). The improved BANG2 formulation contains 3% N,N'-methylene-bis acrylamide, 3% acrylic acid, 1% sodium hydroxide, 5% gelatin, and 88% water, where all percentages are by weight. The gel was poured into volumetric flasks, of dimensions comparable to a human head. The gels were irradiated with complex beam arrangements, similar to those used for conformal radiation therapy. Images of the gels were acquired using a Siemens 1.5T imager and a Hahn spin-echo pulse sequence (90 deg. -τ-180 deg. -τ-acquire, for different values of τ). The images were transferred via network to a Macintosh computer for which a data analysis and display program was written. The program calculates R2 maps on the basis of multiple TE images, using a monoexponential

  9. Evaluation of homogeneity and dose conformity in IMRT planning in prostate radiotherapy

    International Nuclear Information System (INIS)

    Lopes, Juliane S.; Leidens, Matheus; Estacio, Daniela R.; Razera, Ricardo A.Z.; Streck, Elaine E.; Silva, Ana M.M. da

    2015-01-01

    The goal of this study was to evaluate the dose distribution homogeneity and conformity of radiation therapy plans of prostate cancer using IMRT. Data from 34 treatment plans of Hospital Sao Lucas of PUCRS, where those plans were executed, were retrospectively analyzed. All of them were done with 6MV X-rays from a linear accelerator CLINAC IX, and the prescription doses varied between 60 and 74 Gy. Analyses showing the homogeneity and conformity indices for the dose distribution of those plans were made. During these analyses, some comparisons with the traditional radiation therapy planning technic, the 3D-CRT, were discussed. The results showed that there is no correlation between the prescribed dose and the homogeneity and conformity indices, indicating that IMRT works very well even for higher doses. Furthermore, a comparison between the results obtained and the recommendations of ICRU 83 was carried out. It has also been observed that the indices were really close to the ideal values. 82.4% of the cases showed a difference below 5% of the ideal value for the index of conformity, and 88.2% showed a difference below 10% for the homogeneity index. Concluding, it is possible to confirm the quality of the analyzed radiation therapy plans of prostate cancer using IMRT. (author)

  10. The intercomparison of the dose distributions between conformation techniques with pions and photons

    International Nuclear Information System (INIS)

    Karasawa, K.; Nakagawa, K.; Akanuma, A.

    1990-01-01

    To compare conformation radiation treatment with pions vs photons, dose volume histograms (DVH) to the critical organs, including the spinal cord, kidney, and intestine, were examined in a patient with retroperitoneal soft tissue sarcoma. For photon conformation treatment, the following techniques were used: 360 degree rotation conformation technique (photon conformation), 4 fixed field technique (photon 4-field), and 2-axis conformation technique (photon 2-axial conformation). According to the DVH reduction method, complication probability was estimated. The concave portion of the target was conformed by pion conformation treatment, but not by photon conformation treatment. Pion conformation for the intestine showed the best DVH, whereas photon 4-field technique showed the worst DVH. For the kidney, pion conformation showed better DVH as compared with any other photon conformation treatment technique. In the spinal cord, photon 2-axial conformation was far superior, followed by pion conformation and then photon conformation and 4-field technique. A 2-axial technique showed a bigger inhomogeneity inside the target volume which is critical in curative treatment. TD 50 was 72 Gy for pion conformation, 53 Gy for photon conformation, 51 Gy for photon 4-field, and 68 Gy for photon 2-axial conformation. Complication probabilities for these conformation techniques at 60 Gy were 3%, 85%, 97%, and 9%. In view of tumor control probabilities, pion seems to have the biggest therapeutic ratio among these techniques. (N.K.)

  11. Dose conformity of gamma knife radiosurgery and risk factors for complications

    International Nuclear Information System (INIS)

    Nakamura, Jean L.; Verhey, Lynn J.; Smith, Vernon; Petti, Paula L.; Lamborn, Kathleen R.; Larson, David A.; Wara, William M.; McDermott, Michael W.; Sneed, Penny K.

    2001-01-01

    Purpose: To quantitatively evaluate dose conformity achieved using Gamma Knife radiosurgery, compare results with those reported in the literature, and evaluate risk factors for complications. Methods and Materials: All lesions treated at our institution with Gamma Knife radiosurgery from May 1993 (when volume criteria were routinely recorded) through December 1998 were reviewed. Lesions were excluded from analysis for reasons listed below. Conformity index (the ratio of prescription volume to target volume) was calculated for all evaluable lesions and for lesions comparable to those reported in the literature on conformity of linac radiosurgery. Univariate Cox regression models were used to test for associations between treatment parameters and toxicity. Results: Of 1612 targets treated in 874 patients, 274 were excluded, most commonly for unavailability of individual prescription volume data because two or more lesions were included within the same dose matrix (176 lesions), intentional partial coverage for staged treatment of large arteriovenous malformations (AVMs) (33 lesions), and missing target volume data (26 lesions). The median conformity indices were 1.67 for all 1338 evaluable lesions and 1.40-1.43 for lesions comparable to two linac radiosurgery series that reported conformity indices of 1.8 and 2.7, respectively. Among all 651 patients evaluable for complications, there were one Grade 5, eight Grade 4, and 27 Grade 3 complications. Increased risk of toxicity was associated with larger target volume, maximum lesion diameter, prescription volume, or volume of nontarget tissue within the prescription volume. Conclusions: Gamma Knife radiosurgery achieves much more conformal dose distributions than those reported for conventional linac radiosurgery and somewhat more conformal dose distributions than sophisticated linac radiosurgery techniques. Larger target, nontarget, or prescription volumes are associated with increased risk of toxicity

  12. Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity

    International Nuclear Information System (INIS)

    Haedinger, U.; Thiele, W.; Wulf, J.

    2002-01-01

    During the past few years the concept of cranial sterotactic radiotherapy has been successfully extended to extracranial tumoral targets. In our department, hypofractionated treatment of tumours in lung, liver, abdomen, and pelvis is performed in the Stereotactic Body Frame (ELEKTA Instrument AB) since 1997. We present the evaluation of 63 consecutively treated targets (22 lung, 21 liver, 20 abdomen/pelvis) in 58 patients with respect to dose coverage of the planning target volume (PTV) as well as conformity of the dose distribution. The mean PTV coverage was found to be 96.3%±2.3% (lung), 95.0%±4.5% (liver), and 92.1%±5.2% (abdomen/pelvis). For the so-called conformation number we obtained values of 0.73±0.09 (lung), 0.77±0.10 (liver), and 0.70±0.08 (abdomen/pelvis). The results show that highly conformal treatment techniques can be applied also in extracranial stereotactic radiotherapy. This is primarily due to the relatively simple geometrical shape of most of the targets. Especially lung and liver targets turned out to be approximately spherically/cylindrically shaped, so that the dose distribution can be easily tailored by rotational fields. (orig.) [de

  13. Impact of dose-distribution uncertainties on rectal ntcp modeling I: Uncertainty estimates

    International Nuclear Information System (INIS)

    Fenwick, John D.; Nahum, Alan E.

    2001-01-01

    A trial of nonescalated conformal versus conventional radiotherapy treatment of prostate cancer has been carried out at the Royal Marsden NHS Trust (RMH) and Institute of Cancer Research (ICR), demonstrating a significant reduction in the rate of rectal bleeding reported for patients treated using the conformal technique. The relationship between planned rectal dose-distributions and incidences of bleeding has been analyzed, showing that the rate of bleeding falls significantly as the extent of the rectal wall receiving a planned dose-level of more than 57 Gy is reduced. Dose-distributions delivered to the rectal wall over the course of radiotherapy treatment inevitably differ from planned distributions, due to sources of uncertainty such as patient setup error, rectal wall movement and variation in the absolute rectal wall surface area. In this paper estimates of the differences between planned and treated rectal dose-distribution parameters are obtained for the RMH/ICR nonescalated conformal technique, working from a distribution of setup errors observed during the RMH/ICR trial, movement data supplied by Lebesque and colleagues derived from repeat CT scans, and estimates of rectal circumference variations extracted from the literature. Setup errors and wall movement are found to cause only limited systematic differences between mean treated and planned rectal dose-distribution parameter values, but introduce considerable uncertainties into the treated values of some dose-distribution parameters: setup errors lead to 22% and 9% relative uncertainties in the highly dosed fraction of the rectal wall and the wall average dose, respectively, with wall movement leading to 21% and 9% relative uncertainties. Estimates obtained from the literature of the uncertainty in the absolute surface area of the distensible rectal wall are of the order of 13%-18%. In a subsequent paper the impact of these uncertainties on analyses of the relationship between incidences of bleeding

  14. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Jiang, S; Yang, Z [Tianjin University, Tianjin (China); Bai, H; Zhang, X [Seeds biological Pharmacy Ltd, Tianjin (China)

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs group real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing

  15. Isotoxic dose escalation in the treatment of lung cancer by means of heterogeneous dose distributions in the presence of respiratory motion

    DEFF Research Database (Denmark)

    Baker, Mariwan; Nielsen, Morten; Hansen, Olfred

    2011-01-01

    To test, in the presence of intrafractional respiration movement, a margin recipe valid for a homogeneous and conformal dose distribution and to test whether the use of smaller margins combined with heterogeneous dose distributions allows an isotoxic dose escalation when respiratory motion...

  16. Conformal intensity-modulated radiotherapy (IMRT) delivered by robotic linac-conformality versus efficiency of dose delivery

    International Nuclear Information System (INIS)

    Webb, Steve

    2000-01-01

    Intensity-modulated radiotherapy (IMRT) may be delivered with a high-energy-photon linac mounted on a robotic gantry and executing a complex trajectory. In a previous paper an inverse-planning technique was developed for such an application. Here the work is extended to demonstrate the dependence of conformality on the size of the elemental pencil beam, on the complexity of the trajectory and on the sampling of azimuth and elevation of the collimated source. The improved conformality of complex trajectories is demonstrated and benchmarked relative to simpler trajectories, more representative of existing non-robotic IMRT techniques. Specifically, by choosing a very fine pencil beam, exquisitely conformal dose distributions have been obtained. Important sampling considerations have been determined. Expressions have been derived for the dosimetry and monitor-unit efficiency of robotic IMRT. Equivalent trajectories were computed for executing the complex robotic trajectories instead by using a conventional linac. The work benchmarks an ideal in IMRT against which more practical and more common techniques may be measured. (author)

  17. Converting dose distributions into tumour control probability

    International Nuclear Information System (INIS)

    Nahum, A.E.

    1996-01-01

    The endpoints in radiotherapy that are truly of relevance are not dose distributions but the probability of local control, sometimes known as the Tumour Control Probability (TCP) and the Probability of Normal Tissue Complications (NTCP). A model for the estimation of TCP based on simple radiobiological considerations is described. It is shown that incorporation of inter-patient heterogeneity into the radiosensitivity parameter a through s a can result in a clinically realistic slope for the dose-response curve. The model is applied to inhomogeneous target dose distributions in order to demonstrate the relationship between dose uniformity and s a . The consequences of varying clonogenic density are also explored. Finally the model is applied to the target-volume DVHs for patients in a clinical trial of conformal pelvic radiotherapy; the effect of dose inhomogeneities on distributions of TCP are shown as well as the potential benefits of customizing the target dose according to normal-tissue DVHs. (author). 37 refs, 9 figs

  18. Converting dose distributions into tumour control probability

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, A E [The Royal Marsden Hospital, London (United Kingdom). Joint Dept. of Physics

    1996-08-01

    The endpoints in radiotherapy that are truly of relevance are not dose distributions but the probability of local control, sometimes known as the Tumour Control Probability (TCP) and the Probability of Normal Tissue Complications (NTCP). A model for the estimation of TCP based on simple radiobiological considerations is described. It is shown that incorporation of inter-patient heterogeneity into the radiosensitivity parameter a through s{sub a} can result in a clinically realistic slope for the dose-response curve. The model is applied to inhomogeneous target dose distributions in order to demonstrate the relationship between dose uniformity and s{sub a}. The consequences of varying clonogenic density are also explored. Finally the model is applied to the target-volume DVHs for patients in a clinical trial of conformal pelvic radiotherapy; the effect of dose inhomogeneities on distributions of TCP are shown as well as the potential benefits of customizing the target dose according to normal-tissue DVHs. (author). 37 refs, 9 figs.

  19. Evaluation of Sentinel Lymph Node Dose Distribution in 3D Conformal Radiotherapy Techniques in 67 pN0 Breast Cancer Patients.

    Science.gov (United States)

    Witucki, Gerlo; Degregorio, Nikolaus; Rempen, Andreas; Schwentner, Lukas; Bottke, Dirk; Janni, Wolfgang; Ebner, Florian

    2015-01-01

    Introduction. The anatomic position of the sentinel lymph node is variable. The purpose of the following study was to assess the dose distribution delivered to the surgically marked sentinel lymph node site by 3D conformal radio therapy technique. Material and Method. We retrospectively analysed 70 radiotherapy (RT) treatment plans of consecutive primary breast cancer patients with a successful, disease-free, sentinel lymph node resection. Results. In our case series the SN clip volume received a mean dose of 40.7 Gy (min 28.8 Gy/max 47.6 Gy). Conclusion. By using surgical clip markers in combination with 3D CT images our data supports the pathway of tumouricidal doses in the SN bed. The target volume should be defined by surgical clip markers and 3D CT images to give accurate dose estimations.

  20. Evaluation of homogeneity and dose conformity in IMRT planning in prostate radiotherapy; Avaliacao da homogeneidade e conformidade de dose em planejamentos de IMRT de prostata em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Juliane S.; Leidens, Matheus; Estacio, Daniela R., E-mail: juliane.lopes@pucrs.br [Hospital Sao Lucas (PUC-RS), Porto Alegre, RS (Brazil). Servico de Radioterapia; Razera, Ricardo A.Z.; Streck, Elaine E.; Silva, Ana M.M. da [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil). Faculdade de Fisica

    2015-12-15

    The goal of this study was to evaluate the dose distribution homogeneity and conformity of radiation therapy plans of prostate cancer using IMRT. Data from 34 treatment plans of Hospital Sao Lucas of PUCRS, where those plans were executed, were retrospectively analyzed. All of them were done with 6MV X-rays from a linear accelerator CLINAC IX, and the prescription doses varied between 60 and 74 Gy. Analyses showing the homogeneity and conformity indices for the dose distribution of those plans were made. During these analyses, some comparisons with the traditional radiation therapy planning technic, the 3D-CRT, were discussed. The results showed that there is no correlation between the prescribed dose and the homogeneity and conformity indices, indicating that IMRT works very well even for higher doses. Furthermore, a comparison between the results obtained and the recommendations of ICRU 83 was carried out. It has also been observed that the indices were really close to the ideal values. 82.4% of the cases showed a difference below 5% of the ideal value for the index of conformity, and 88.2% showed a difference below 10% for the homogeneity index. Concluding, it is possible to confirm the quality of the analyzed radiation therapy plans of prostate cancer using IMRT. (author)

  1. Dose response study of PVA-Fx gel for three dimensional dose distribution

    International Nuclear Information System (INIS)

    Brindha, S.; Ayyangar, Komanduri M.; Shen, Bin; Saw, Cheng B.

    2001-01-01

    Modern radiotherapy techniques involve complex field arrangements using conformal and intensity modulated radiation that requires three dimensional treatment planning. The verification of these plans poses even more challenge. In 1984, Gore et al., proposed that ferrous gel dosimeters combined with magnetic resonance imaging (MRI) could be used to measure three dimensional radiation dose distributions. Since then, there has been much interest in the development of gel dosimetry to aid the determination of three dimensional dose distributions during field arrangements. In this work, preparation and study of the MR characteristics of a PVA-Fx gel reported in the literature is presented

  2. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  3. Multicriteria optimization of the spatial dose distribution

    International Nuclear Information System (INIS)

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-01-01

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution

  4. On-line conformal HDR dose escalation trial in prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Stromberg, Jannifer; Edmundson, Gregory; Gustafson, Gary; Vicini, Frank; Brabbins, Donald

    1996-01-01

    Purpose: To improve treatment results on prostatic adenocarcinoma, we began the first prospective Phase I/II dose-escalating clinical trial of conformal brachytherapy (CB) and concurrent external beam irradiation. Methods and Materials: Fifty-four patients with T2b-T3c prostatic adenocarcinoma received 172 transperineal conformal high-dose rate (HDR) boost implants. All patients received concomitant external beam pelvic irradiation. Dose escalation of the three HDR fractions were: 5.5 Gy (18 patients), 6 Gy (15 patients), and 6.5 Gy (21 patients). The urethra, anterior rectal wall, and prostate boundaries were identified individually and outlined at 5 mm intervals from the base to the apex of the gland. The CB using real-time ultrasound guidance with interactive online isodose distributions was performed on an outpatient basis. As needles were placed into the prostate, corrections for prostate displacement were recorded and the isodose distributions were recalculated to represent the new relationship between the needles, prostate, and normal structures. Results: Craniocaudal motion of the gland ranged from 0.5-2.0 cm (mean=1.0 cm), whereas lateral displacement was 0.1-0.4 cm. With the interactive online planning system, organ motion was immediately detected, accounted for, and corrected prior to each HDR treatment. The rectal dose has ranged from 45 to 87%, and the urethral dose from 97 to 112% of the prostate dose. Negative prostatic biopsies at 18 months were seen in (30(32)) patients. Biochemical (PSA <1.5 ng/ml) control at 36 months is is 89%. It is significant that operator dependence has been completely removed because the interactive online planning system uniformly guides the physicians. Conclusions: With ultrasound guidance and the interactive online dosimetry system, organ motion is insignificant because it can be corrected during the procedure. Common pitfalls of brachytherapy, including operator dependence and difficulty with reproducibility, have been

  5. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  6. Evaluation of Geometrically Optimized Single- and Double-plane Interstitial High Dose Rate Implants with Respect to Conformality and Homogeneity

    International Nuclear Information System (INIS)

    Major, Tibor; Polgar, Csaba; Fodor, Janos; Takacsi-nagy, Zoltan; Mangel, Laszlo; Nemeth, Gyoergy

    2003-01-01

    The use of a stepping source in high dose rate brachytherapy supported with dwell-time optimization makes it possible to deviate from the classical dosimetry systems. Dose distributions of single- and double-plane implants were analysed for conformality and homogeneity at idealized target volumes. The Paris system was used for catheter positioning and target volume determination. Geometric optimization and individual dose prescription were applied. Volumetric indices and dose parameters were calculated at optimal active length, which was found to be equal to target volume length. The mean conformality, homogeneity, external volume and overdose volume indices were 0.78, 0.67, 0.22 and 0.13, respectively. The average minimum target and reference doses were 69% and 86%, respectively. Comparisons between the volumetric indices of geometrical optimized and non-optimized implants were also performed, and a significant difference was found regarding any index. The geometrical optimization resulted in superior conformality and slightly inferior homogeneity. At geometrically optimized implants, the active length can be reduced compared to non-optimized implants. Volumetric parameters and dose-volume histogram-based individual dose prescription are recommended for quantitative assessment of interstitial implants

  7. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    International Nuclear Information System (INIS)

    Hong, Linda X.; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-01-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R 50% ); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D 2cm ) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ 2 test was used to examine the difference in parameters between groups. The PTV V 100% PD ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V 90% PD ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D 2cm , 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives

  8. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  9. Conformation radiotherapy with eccentric multi-leaves, (1)

    International Nuclear Information System (INIS)

    Obata, Yasunori; Sakuma, Sadayuki.

    1986-01-01

    In order to extend the application of the conformation radiotherapy, the eccentric multi-leaves are equipped with the linear accelerator. The information of the position of the collimators and the dose distribution of the eccentric conformation radiotherapy are calculated by the improved algorism of the treatment planning system. In simple cases, the dose distributions for the distant region from the rotational center are measured and compared with the calculated values. Both distributions are well coincided with the error of about 5 % in the high dose region and 10 % in the low dose region. In eccentric conformation radiotherapy, it is difficult to deliver the planned dose to the lesion. The dose increases with the distance of the target area from the rotational center. And the measured value and the calculated value are well coincided with 1 % error. So after getting the dose ratio of the rotational center to the target area, the calculated dose can be delivered to the rotational center. The advantages of the eccentric conformation radiotherapy are a good coincidence of target area and treated area, a partial shielding and a hollow out technique without absorber. The limitation of the movement of the collimator from center is 5 cm at 1 m SCD. (author)

  10. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    International Nuclear Information System (INIS)

    Levegrün, Sabine; Pöttgen, Christoph; Wittig, Andrea; Lübcke, Wolfgang; Abu Jawad, Jehad; Stuschke, Martin

    2013-01-01

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N mets ) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV mets ) and of the individual metastasis planning target volume (PTV ind met ) were 8.7 ± 8.9 cm 3 (range, 1.3-35.5 cm 3 ) and 2.5 ± 4.5 cm 3 (range, 0.19-24.7 cm 3 ), respectively. Dose distributions in PTV mets and PTV ind met were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N mets was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV mets amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV ind met were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV mets (CN = 0.737 for PTV mets ≤4.32 cm 3 vs CN = 0.848 for PTV mets >4.32 cm 3 , P=.006), in contrast to N mets . The achieved dose conformity to PTV mets , assessed by both CN and PITV, was in all investigated volume strata

  11. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

    International Nuclear Information System (INIS)

    Hermanto, Ulrich; Frija, Erik K.; Lii, MingFwu J.; Chang, Eric L.; Mahajan, Anita; Woo, Shiao Y.

    2007-01-01

    Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p mean by 19.8% and D max by 10.7%), optic chiasm (D mean by 25.3% and D max by 22.6%), right optic nerve (D mean by 37.3% and D max by 28.5%), and left optic nerve (D mean by 40.6% and D max by 36.7%), p ≤ 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation

  12. Analytic characterization of linear accelerator radiosurgery dose distributions for fast optimization

    International Nuclear Information System (INIS)

    Meeks, S.L.; Buatti, J.M.; Eyster, B.; Kendrick, L.A.

    1999-01-01

    Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations. (author)

  13. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  14. Conformity index: A review

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Mazeron, Jean-Jacques; Bey, Pierre

    2006-01-01

    We present a critical analysis of the conformity indices described in the literature and an evaluation of their field of application. Three-dimensional conformal radiotherapy, with or without intensity modulation, is based on medical imaging techniques, three-dimensional dosimetry software, compression accessories, and verification procedures. It consists of delineating target volumes and critical healthy tissues to select the best combination of beams. This approach allows better adaptation of the isodose to the tumor volume, while limiting irradiation of healthy tissues. Tools must be developed to evaluate the quality of proposed treatment plans. Dosimetry software provides the dose distribution in each CT section and dose-volume histograms without really indicating the degree of conformity. The conformity index is a complementary tool that attributes a score to a treatment plan or that can compare several treatment plans for the same patient. The future of conformal index in everyday practice therefore remains unclear

  15. Analysis of biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer using dose-distribution variables and tumor control probability models

    International Nuclear Information System (INIS)

    Levegruen, Sabine; Jackson, Andrew; Zelefsky, Michael J.; Venkatraman, Ennapadam S.; Skwarchuk, Mark W.; Schlegel, Wolfgang; Fuks, Zvi; Leibel, Steven A.; Ling, C. Clifton

    2000-01-01

    Purpose: To investigate tumor control following three-dimensional conformal radiation therapy (3D-CRT) of prostate cancer and to identify dose-distribution variables that correlate with local control assessed through posttreatment prostate biopsies. Methods and Material: Data from 132 patients, treated at Memorial Sloan-Kettering Cancer Center (MSKCC), who had a prostate biopsy 2.5 years or more after 3D-CRT for T1c-T3 prostate cancer with prescription doses of 64.8-81 Gy were analyzed. Variables derived from the dose distribution in the PTV included: minimum dose (Dmin), maximum dose (Dmax), mean dose (Dmean), dose to n% of the PTV (Dn), where n = 1%, ..., 99%. The concept of the equivalent uniform dose (EUD) was evaluated for different values of the surviving fraction at 2 Gy (SF 2 ). Four tumor control probability (TCP) models (one phenomenologic model using a logistic function and three Poisson cell kill models) were investigated using two sets of input parameters, one for low and one for high T-stage tumors. Application of both sets to all patients was also investigated. In addition, several tumor-related prognostic variables were examined (including T-stage, Gleason score). Univariate and multivariate logistic regression analyses were performed. The ability of the logistic regression models (univariate and multivariate) to predict the biopsy result correctly was tested by performing cross-validation analyses and evaluating the results in terms of receiver operating characteristic (ROC) curves. Results: In univariate analysis, prescription dose (Dprescr), Dmax, Dmean, dose to n% of the PTV with n of 70% or less correlate with outcome (p 2 : EUD correlates significantly with outcome for SF 2 of 0.4 or more, but not for lower SF 2 values. Using either of the two input parameters sets, all TCP models correlate with outcome (p 2 , is limited because the low dose region may not coincide with the tumor location. Instead, for MSKCC prostate cancer patients with their

  16. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick; Kim, Mimi; Mah, Dennis; Chen, Chin-Cheng; Yaparpalvi, Ravindra; Mynampati, Dinesh; Kuo, Hsiang-Chi; Guha, Chandan; Kalnicki, Shalom [Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Neurosurgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Epidemiology and Population Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems, Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group

  17. Dose conformation to the spine during palliative treatments using dynamic wedges

    Energy Technology Data Exchange (ETDEWEB)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States); Herndon, R. Craig; Kaczor, Joseph G. [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States)

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  18. Prospective study on the dose distribution to the acoustic structures during postoperative 3D conformal radiotherapy for parotid tumors. Dosimetric and audiometric aspects

    International Nuclear Information System (INIS)

    Jereczek-Fossa, Barbara A.

    2011-01-01

    To analyze dose distribution in the hearing organ and to evaluate the dose effect on the hearing thresholds in patients treated with post-parotidectomy 3-dimensional conformal radiotherapy (3D-CRT). A total of 17 patients received post-parotidectomy 3D-CRT (median dose: 63 Gy). The audiometric evaluation comprised pure tone audiometry and tympanometry performed before radiotherapy (RT) and 3, 6, and 24 months after RT. The ear structures were delineated on planning computer tomography scans. Mean and maximum doses were calculated and dose-volume histograms were plotted. Before RT, the median baseline audiometric thresholds were normal. At 3 months post-RT, 3 patients were diagnosed as having middle ear underpressure and/or effusion that resolved completely by 6 months. During 2-year follow-up, none of the ears showed perceptive hearing loss at speech frequencies. The mean doses at ipsilateral external auditory canal, mastoids cells, tympanic case, Eustachian tube, semicircular canals, and cochlea were 44.8 Gy, 39.0 Gy, 30.9 Gy, 33.0 Gy, 19.6 Gy, and 19.2 Gy, respectively. The doses to the contralateral ear were negligible, except for the Eustachian tube (up to 28.2 Gy). Post-parotidectomy 3D-CRT is associated with relatively low doses to the ear and the surrounding structures. Post-RT audiometry did not show any permanent (neither conductive nor perceptive) hearing impairment. Only in 3 patients were there signs of transient unilateral dysfunction of the Eustachian tube observed during the first few months after RT. Longer follow-up and larger patient series are warranted to confirm these preliminary findings. (orig.)

  19. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  20. The role of Cobalt-60 source in Intensity Modulated Radiation Therapy: From modeling finite sources to treatment planning and conformal dose delivery

    Science.gov (United States)

    Dhanesar, Sandeep Kaur

    Cobalt-60 (Co-60) units played an integral role in radiation therapy from the mid-1950s to the 1970s. Although they continue to be used to treat cancer in some parts of the world, their role has been significantly reduced due to the invention of medical linear accelerators. A number of groups have indicated a strong potential for Co-60 units in modern radiation therapy. The Medical Physics group at the Cancer Center of the Southeastern Ontario and Queen's University has shown the feasibility of Intensity Modulated Radiation Therapy (IMRT) via simple conformal treatment planning and dose delivery using a Co-60 unit. In this thesis, initial Co-60 tomotherapy planning investigations on simple uniform phantoms are extended to actual clinical cases based on patient CT data. The planning is based on radiation dose data from a clinical Co-60 unit fitted with a multileaf collimator (MLC) and modeled in the EGSnrc Monte Carlo system. An in house treatment planning program is used to calculate IMRT dose distributions. Conformal delivery in a single slice on a uniform phantom based on sequentially delivered pencil beams is verified by Gafchromic film. Volumetric dose distributions for Co-60 serial tomotherapy are then generated for typical clinical sites that had been treated at our clinic by conventional 6MV IMRT using Varian Eclipse treatment plans. The Co-60 treatment plans are compared with the clinical IMRT plans using conventional matrices such as dose volume histograms (DVH). Dose delivery based on simultaneously opened MLC leaves is also explored and a novel MLC segmentation method is proposed. In order to increase efficiency of dose calculations, a novel convolution based fluence model for treatment planning is also proposed. The ion chamber measurements showed that the Monte Carlo modeling of the beam data under the MIMiC MLC is accurate. The film measurements from the uniform phantom irradiations confirm that IMRT plans from our in-house treatment planning system

  1. Conformal fields in prostate radiotherapy: A comparison between measurement, calculation and simulation

    Directory of Open Access Journals (Sweden)

    Seied R Mahdavi

    2012-01-01

    Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.

  2. SU-E-T-278: Dose Conformity Index for the Target in a Multitarget Environment

    Energy Technology Data Exchange (ETDEWEB)

    Harikrishnaperumal, Sudahar [Apollo Speciality Hospital, Chennai, Tamil Nadu (India)

    2015-06-15

    Purpose: The existing conformity index formulations are failing when multiple targets present outside the target of interest with same or different dose prescriptions. In the present study a novel methodology is introduced to solve this issue. Methods: The conformity index used by Nakamura et al (Int J Radiat Oncol Biol Phys 2001; 51(5):1313–1319) is taken as the base for this methodology. In this proposal, the prescription isodose volume (PIV) which normally includes the normal tissue and other target regions is restricted as PIV in annular regions of different thickness around the target of interest. The graphical line plotted between the thickness of annular region and the corresponding conformity index, will increase in the beginning and will reach a flat region, then it will increase again. The second increase in the conformity index depends basically on the distance between the targets, dose prescriptions, and size of the targets. The conformity index in the flat region should be the conformity index of the target of interest. This methodology was validated on dual target environment on a skull phantom in Multiplan planning system (Accuray Inc. Sunnyvale, USA) Results: When the surrounding target’s (sphere) size is changed from 1.5cm to 6cm diameter, the conformity index of the target of interest (3cm diameter) changed from 1.09 to 1.25. When the distance between the targets changed from 7.5cm to 2.5cm, the conformity index changed from 1.10 to 1.17. Similarly, when the prescribed dose changed from 25Gy to 50Gy the conformity index changed from 1.09 to 1.42. These values were above 2.0 when Nakamura et al formula was used. Conclusion: The proposed conformity index methodology eliminates the influence of surrounding targets to a greater extend. However, the limitations of this method should be studied further. Application of this method in clinical situations is the future scope.

  3. Monte Carlo conformal treatment planning as an independent assessment

    International Nuclear Information System (INIS)

    Rincon, M.; Leal, A.; Perucha, M.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.; Medrano, J.C.

    2001-01-01

    The wide range of possibilities available in Radiotherapy with conformal fields cannot be covered experimentally. For this reason, dosimetrical and planning procedures are based on approximate algorithms or systematic measurements. Dose distribution calculations based on Monte Carlo (MC) simulations can be used to check results. In this work, two examples of conformal field treatments are shown: A prostate carcinoma and an ocular lymphoma. The dose distributions obtained with a conventional Planning System and with MC have been compared. Some significant differences have been found. (orig.)

  4. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  5. On dose distribution comparison

    International Nuclear Information System (INIS)

    Jiang, Steve B; Sharp, Greg C; Neicu, Toni; Berbeco, Ross I; Flampouri, Stella; Bortfeld, Thomas

    2006-01-01

    In radiotherapy practice, one often needs to compare two dose distributions. Especially with the wide clinical implementation of intensity-modulated radiation therapy, software tools for quantitative dose (or fluence) distribution comparison are required for patient-specific quality assurance. Dose distribution comparison is not a trivial task since it has to be performed in both dose and spatial domains in order to be clinically relevant. Each of the existing comparison methods has its own strengths and weaknesses and there is room for improvement. In this work, we developed a general framework for comparing dose distributions. Using a new concept called maximum allowed dose difference (MADD), the comparison in both dose and spatial domains can be performed entirely in the dose domain. Formulae for calculating MADD values for various comparison methods, such as composite analysis and gamma index, have been derived. For convenience in clinical practice, a new measure called normalized dose difference (NDD) has also been proposed, which is the dose difference at a point scaled by the ratio of MADD to the predetermined dose acceptance tolerance. Unlike the simple dose difference test, NDD works in both low and high dose gradient regions because it considers both dose and spatial acceptance tolerances through MADD. The new method has been applied to a test case and a clinical example. It was found that the new method combines the merits of the existing methods (accurate, simple, clinically intuitive and insensitive to dose grid size) and can easily be implemented into any dose/intensity comparison tool

  6. Does Vertebroplasty Affect Radiation Dose Distribution?: Comparison of Spatial Dose Distributions in a Cement-Injected Vertebra as Calculated by Treatment Planning System and Actual Spatial Dose Distribution

    International Nuclear Information System (INIS)

    Komemushi, A.; Tanigawa, N.; Kariya, Sh.; Yagi, R.; Nakatani, M.; Suzuki, S.; Sano, A.; Ikeda, K.; Utsunomiya, K.; Harima, Y.; Sawada, S.

    2012-01-01

    Purpose. To assess differences in dose distribution of a vertebral body injected with bone cement as calculated by radiation treatment planning system (RTPS) and actual dose distribution. Methods. We prepared two water-equivalent phantoms with cement, and the other two phantoms without cement. The bulk density of the bone cement was imported into RTPS to reduce error from high CT values. A dose distribution map for the phantoms with and without cement was calculated using RTPS with clinical setting and with the bulk density importing. Actual dose distribution was measured by the film density. Dose distribution as calculated by RTPS was compared to the dose distribution measured by the film dosimetry. Results. For the phantom with cement, dose distribution was distorted for the areas corresponding to inside the cement and on the ventral side of the cement. However, dose distribution based on film dosimetry was undistorted behind the cement and dose increases were seen inside cement and around the cement. With the equivalent phantom with bone cement, differences were seen between dose distribution calculated by RTPS and that measured by the film dosimetry. Conclusion. The dose distribution of an area containing bone cement calculated using RTPS differs from actual dose distribution

  7. 3-D conformal radiation therapy - Part I: Treatment planning

    International Nuclear Information System (INIS)

    Burman, Chandra M.; Mageras, Gikas S.

    1997-01-01

    Objective: In this presentation we will look into the basic components of 3-dimensional conformal treatment planning, and will discuss planning for some selected sites. We will also review some current and future trends in 3-D treatment planning. External beam radiation therapy is one of the arms of cancer treatment. In the recent years 3-D conformal therapy had significant impact on the practice of external beam radiation therapy. Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minimizing the dose to the surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-D treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. In this course we will give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some current and future trends in 3-D treatment planning, such as field shaping with multileaf collimation, computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into treatment planning process

  8. Conformity index for brain cancer patients

    International Nuclear Information System (INIS)

    Petkovska, Sonja; Tolevska, Cveta; Kraleva, Slavica; Petreska, Elena

    2010-01-01

    The purpose of this study is to present the level of conformity achieved by using 3D conformal radiotherapy for brain cancer patients. Conformity index is a helpful quantitative tool for assessing (evaluating) the quality of a treatment plan. Treatment plans made for ninety patients with brain tumor are worked on this paper. The patients are in supine position and immobilized with thermoplastic masks for the head. Computed tomography data sets with 5 mm scan thickness are used to create a 3D image. All structures of interest are contoured. In order to obtain an optimal dose distribution, treatment fields are fit around target volume with set-up margins of 7mm in each direction. The conformity index values are between 1.21 and 2.04. Value of 1.8 is exceeded in eighteen cases; nine of them are bigger than 1.9 and only three of them are above 2. The target volume for each of these extreme CI values is ideal covered (between 95% and 105% of the prescribed dose). The most acceptable conformity index value in this paper belongs to the plan with the lowest minimal dose (84.7%). It can be concluded that conformity index is necessary but not sufficient factor for assessing radiation treatment plan conformity. To be able to estimate the acceptability of some treatment plan in daily practice, additional information as minimal, maximal and mean dose into target volume, as well as health tissues coverage must be taken into account.(Author)

  9. Comparison of dose distribution between 3DCRT and IMRT in middle thoracic and under thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Li Dingjie; Liu Hailong; Mao Ronghu; Liu Ru; Guo Xiaoqi; Lei Hongchang; Wang Jianhua

    2011-01-01

    Objective: To compare the dose distribution between three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) in treating esophageal carcinoma (middle thoracic section and under thoracic section) and to select reasonable treatment methods for esophagus cancer. Methods: Ten cases with cancer of the middle thoracic section and under thoracic section esophagus were chosen for a retrospective treatment-planning study. 3DCRT and IMRT plans were created for each patient: Some critical indicators were evolved in evaluating the treatment plans of IMRT (5B and 7B) and 3DCRT (3B), such as, PTV coverage and dose-volumes to irradiated normal structures. Evaluation indicators: prescription of 50 Gy. total lung volume (V5, V10, V20), mean lung dose (MLD), spinal cord (Dmax), heart (V40) and conformality index (CI). Each plan was evaluated with respect to dose distribution,dose-volume histograms (DVHs), and additional dosimetric endpoints described below. Results: There is no significance of CRT and IMRT technique in protection of total lung volume,mean lung dose, spinal cord (Dmax), target, CI and heart. Conclusion: As To radiotherapy of esophagus cancer of the middle thoracic section and under thoracic section, IMRT has no advantage compared with 3DCRT, the selection of plan should be adapted to the situations of every patient. (authors)

  10. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    International Nuclear Information System (INIS)

    Jiang, R; Zhan, L; Osei, E

    2015-01-01

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use

  11. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  12. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Majewski, Wojciech; Wesolowska, Iwona; Urbanczyk, Hubert; Hawrylewicz, Leszek; Schwierczok, Barbara; Miszczyk, Leszek

    2009-01-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanning during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to 70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm 3 for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm 3 for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with

  13. Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery

    International Nuclear Information System (INIS)

    Gladwish, Adam; Kron, Tomas; McNiven, Andrea; Bauman, Glenn; Van Dyk, Jake

    2004-01-01

    Helical tomotherapy (HT) is a novel radiotherapy technique that utilizes intensity modulated fan beams that deliver highly conformal dose distributions in a helical beam trajectory. The most significant limitation in dose delivery with a constant fan beam thickness (FBT) is the penumbra width of the dose distribution in the craniocaudal direction, which is equivalent to the FBT. We propose to employ a half-blocked fan beam at start and stop location to reduce the penumbra width by half. By opening the jaw slowly during the helical delivery until the desired FBT is achieved it is possible to create a sharper edge in the superior and inferior direction from the target. The technique was studied using a tomotherapy beam model implemented on a commercial treatment planning system (Theraplan Plus V3.0). It was demonstrated that the dose distribution delivered using a 25 mm fan beam can be improved significantly, to reduce the dose to normal structures located superiorly and inferiorly of the target. Dosimetry for this technique is straightforward down to a FBT of 15 mm and implementation should be simple as no changes in couch movement are required compared to a standard HT delivery. We conclude that the use of asymmetric collimated fan beams for the start and stop of the helical tomotherapeutic dose delivery has the potential of significantly improving the dose distribution in helical tomotherapy

  14. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC

    International Nuclear Information System (INIS)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D.

    2014-08-01

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  15. Hyperfractionated conformal radiotherapy in locally advanced prostate cancer: results of a dose escalation study

    International Nuclear Information System (INIS)

    Forman, Jeffrey D.; Duclos, Marie; Shamsa, Falah; Porter, Arthur T.; Orton, Colin

    1996-01-01

    Purpose: This study was initiated to assess the incidence of chronic complications and histologic and biochemical control following hyperfractionated conformal radiotherapy in patients with locally advanced prostate cancer. Methods and Materials: Between October 1991 and October 1994, 49 patients with locally advanced prostate cancer were entered on the first two dose levels of a prospective dose-escalation study using hyperfractionated three dimensional conformal radiotherapy. The first 25 patients received a minimum tumor dose of 78 Gy to the prostate and seminal vesicles in 6 weeks at 1.3 Gy, b.i.d. No increase in chronic toxicity compared with conventional radiotherapy was noted; therefore, an additional 24 patients were treated to a minimum tumor dose of 82.8 Gy to the prostate and seminal vesicles in 7 weeks at 1.15 Gy, b.i.d. Toxicity was scored according to the Radiation Therapy Oncology Group morbidity grading scale. Efficacy was assessed through scheduled postradiation prostate specific antigen values and ultrasound-guided biopsies. The median follow-up for the entire group was 20 months. Results: The hyperfractionated external radiation was well tolerated with minimal acute morbidity. At 30 months, the actuarial probability of Grade 2 gastrointestinal toxicity was 17%. At 30 months, the actuarial probability of Grade 2 genitourinary toxicity was 16%. There was no statistically significant difference between the two dose levels. No Grade 3 or 4 gastrointestinal or genitourinary toxicity was noted. At 12 months, 84% of patients had a prostate specific antigen ≤ 4; and 53%; ≤ 1 ng/ml. At 12 months, 71% of patients had post radiation biopsies that were either negative (55%) or showed a marked therapeutic effect (16%). Conclusion: The use of hyperfractionated conformal radiotherapy facilitated dose escalation with no increase in chronic toxicity compared to standard doses. The initial tumor response based on prostate specific antigen measurements and

  16. Pelvic nodal dose escalation with prostate hypofractionation using conformal avoidance defined (H-CAD) intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Tome, Wolfgang A.; Jaradat, Hazim; Raisbeck, Bridget M.; Ritter, Mark A.

    2006-01-01

    The management of prostate cancer patients with a significant risk of pelvic lymph node involvement is controversial. Both whole pelvis radiotherapy and dose escalation to the prostate have been linked to improved outcome in such patients, but it is unclear whether conventional whole pelvis doses of only 45-50 Gy are optimal for ultimate nodal control. The purpose of this study is to examine the dosimetric and clinical feasibility of combining prostate dose escalation via hypofractionation with conformal avoidance-based IMRT (H-CAD) dose escalation to the pelvic lymph nodes. One conformal avoidance and one conventional plan were generated for each of eight patients. Conformal avoidance-based IMRT plans were generated that specifically excluded bowel, rectum, and bladder. The prostate and lower seminal vesicles (PTV 70) were planned to receive 70 Gy in 2.5 Gy/fraction while the pelvic lymph nodes (PTV 56) were to concurrently receive 56 Gy in 2 Gy/fraction. The volume of small bowel receiving >45 Gy was restricted to 300 ml or less. These conformal avoidance plans were delivered using helical tomotherapy or LINAC-based IMRT with daily imaging localization. All patients received neoadjuvant and concurrent androgen deprivation with a planned total of two years. The conventional, sequential plans created for comparison purposes for all patients consisted of a conventional 4-field pelvic box prescribed to 50.4 Gy (1.8 Gy/fraction) followed by an IMRT boost to the prostate of 25.2 Gy (1.8 Gy/fraction) yielding a final prostate dose of 75.6 Gy. For all plans, the prescription dose was to cover the target structure. Equivalent uniform dose (EUD) analyses were performed on all targets and dose-volume histograms (DVH) were displayed in terms of both physical and normalized total dose (NTD), i.e. dose in 2 Gy fraction equivalents. H-CAD IMRT plans were created for and delivered to all eight patients. Analysis of the H-CAD plans demonstrates prescription dose coverage of >95

  17. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  18. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    International Nuclear Information System (INIS)

    Massager, Nicolas; Lonneville, Sarah; Delbrouck, Carine; Benmebarek, Nadir; Desmedt, Françoise; Devriendt, Daniel

    2011-01-01

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose–volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  19. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  20. Accuracy of pencil-beam redefinition algorithm dose calculations in patient-like cylindrical phantoms for bolus electron conformal therapy.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Chu, Connel; Fields, Robert S; Sprunger, Conrad P

    2013-07-01

    The purpose of this study was to document the improved accuracy of the pencil beam redefinition algorithm (PBRA) compared to the pencil beam algorithm (PBA) for bolus electron conformal therapy using cylindrical patient phantoms based on patient computed tomography (CT) scans of retromolar trigone and nose cancer. PBRA and PBA electron dose calculations were compared with measured dose in retromolar trigone and nose phantoms both with and without bolus. For the bolus treatment plans, a radiation oncologist outlined a planning target volume (PTV) on the central axis slice of the CT scan for each phantom. A bolus was designed using the planning.decimal(®) (p.d) software (.decimal, Inc., Sanford, FL) to conform the 90% dose line to the distal surface of the PTV. Dose measurements were taken with thermoluminescent dosimeters placed into predrilled holes. The Pinnacle(3) (Philips Healthcare, Andover, MD) treatment planning system was used to calculate PBA dose distributions. The PBRA dose distributions were calculated with an in-house C++ program. In order to accurately account for the phantom materials a table correlating CT number to relative electron stopping and scattering powers was compiled and used for both PBA and PBRA dose calculations. Accuracy was determined by comparing differences in measured and calculated dose, as well as distance to agreement for each measurement point. The measured doses had an average precision of 0.9%. For the retromolar trigone phantom, the PBRA dose calculations had an average ± 1σ dose difference (calculated - measured) of -0.65% ± 1.62% without the bolus and -0.20% ± 1.54% with the bolus. The PBA dose calculation had an average dose difference of 0.19% ± 3.27% without the bolus and -0.05% ± 3.14% with the bolus. For the nose phantom, the PBRA dose calculations had an average dose difference of 0.50% ± 3.06% without bolus and -0.18% ± 1.22% with the bolus. The PBA dose calculations had an average dose difference of 0.65%

  1. External beam radiotherapy of localized prostatic adenocarcinoma. Evaluation of conformal therapy, field number and target margins

    International Nuclear Information System (INIS)

    Lennernaes, B.; Rikner, G.; Letocha, H.; Nilsson, S.

    1995-01-01

    The purpose of the present study was to identify factors of importance in the planning of external beam radiotherapy of prostatic adenocarcinoma. Seven patients with urogenital cancers were planned for external radiotherapy of the prostate. Four different techniques were used, viz. a 4-field box technique and four-, five- or six-field conformal therapy set-ups combined with three different margins (1-3 cm). The evaluations were based on the doses delivered to the rectum and the urinary bladder. A normal tissue complication probability (NTCP) was calculated for each plan using Lyman's dose volume reduction method. The most important factors that resulted in a decrease of the dose delivered to the rectum and the bladder were the use of conformal therapy and smaller margins. Conformal therapy seemed more important for the dose distribution in the urinary bladder. Five- and six-field set-ups were not significantly better than those with four fields. NTCP calculations were in accordance with the evaluation of the dose volume histograms. To conclude, four-field conformal therapy utilizing reduced margins improves the dose distribution to the rectum and the urinary bladder in the radiotherapy of prostatic adenocarcinoma. (orig.)

  2. A study of the effects of internal organ motion on dose escalation in conformal prostate treatments

    International Nuclear Information System (INIS)

    Happersett, Laura; Mageras, Gig S.; Zelefsky, Michael J.; Burman, Chandra M.; Leibel, Steven A.; Chui Chen; Fuks, Zvi; Bull, Sarah; Ling, C. Clifton; Kutcher, Gerald J.

    2003-01-01

    Background and purpose: To assess the effect of internal organ motion on the dose distributions and biological indices for the target and non-target organs for three different conformal prostate treatment techniques. Materials and methods: We examined three types of treatment plans in 20 patients: (1) a six field plan, with a prescribed dose of 75.6 Gy; (2) the same six field plan to 72 Gy followed by a boost to 81 Gy; and (3) a five field plan with intensity modulated beams delivering 81 Gy. Treatment plans were designed using an initial CT data set (planning) and applied to three subsequent CT scans (treatment). The treatment CT contours were used to represent patient specific organ displacement; in addition, the dose distribution was convolved with a Gaussian distribution to model random setup error. Dose-volume histograms were calculated using an organ deformation model in which the movement between scans of individual points interior to the organs was tracked and the dose accumulated. The tumor control probability (TCP) for the prostate and proximal half of seminal vesicles (clinical target volume, CTV), normal tissue complication probability (NTCP) for the rectum and the percent volume of bladder wall receiving at least 75 Gy were calculated. Results: The patient averaged increase in the planned TCP between plan types 2 and 1 and types 3 and 1 was 9.8% (range 4.9-12.5%) for both, whereas the corresponding increases in treatment TCP were 9.0% (1.3-16%) and 8.1% (-1.3-13.8%). In all patients, plans 2 and 3 (81 Gy) exhibited equal or higher treatment TCP than plan 1 (75.6 Gy). The maximum treatment NTCP for rectum never exceeded the planning constraint and percent volume of bladder wall receiving at least 75 Gy was similar in the planning and treatment scans for all three plans. Conclusion: For plans that deliver a uniform prescribed dose to the planning target volume (PTV) (plan 1), current margins are adequate. In plans that further escalate the dose to part

  3. Enhanced conformational sampling using enveloping distribution sampling.

    Science.gov (United States)

    Lin, Zhixiong; van Gunsteren, Wilfred F

    2013-10-14

    To lessen the problem of insufficient conformational sampling in biomolecular simulations is still a major challenge in computational biochemistry. In this article, an application of the method of enveloping distribution sampling (EDS) is proposed that addresses this challenge and its sampling efficiency is demonstrated in simulations of a hexa-β-peptide whose conformational equilibrium encompasses two different helical folds, i.e., a right-handed 2.7(10∕12)-helix and a left-handed 3(14)-helix, separated by a high energy barrier. Standard MD simulations of this peptide using the GROMOS 53A6 force field did not reach convergence of the free enthalpy difference between the two helices even after 500 ns of simulation time. The use of soft-core non-bonded interactions in the centre of the peptide did enhance the number of transitions between the helices, but at the same time led to neglect of relevant helical configurations. In the simulations of a two-state EDS reference Hamiltonian that envelops both the physical peptide and the soft-core peptide, sampling of the conformational space of the physical peptide ensures that physically relevant conformations can be visited, and sampling of the conformational space of the soft-core peptide helps to enhance the transitions between the two helices. The EDS simulations sampled many more transitions between the two helices and showed much faster convergence of the relative free enthalpy of the two helices compared with the standard MD simulations with only a slightly larger computational effort to determine optimized EDS parameters. Combined with various methods to smoothen the potential energy surface, the proposed EDS application will be a powerful technique to enhance the sampling efficiency in biomolecular simulations.

  4. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  5. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    International Nuclear Information System (INIS)

    De Wagter, C.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions

  6. Assessment of dose homogeneity in conformal interstitial breast brachytherapy with special respect to ICRU recommendations

    Directory of Open Access Journals (Sweden)

    Tibor Major

    2011-09-01

    Full Text Available Purpose: To present the results of dose homogeneity analysis for breast cancer patients treated with image-basedconformal interstitial brachytherapy, and to investigate the usefulness of the ICRU recommendations. Material and methods: Treatment plans of forty-nine patients who underwent partial breast irradiation with interstitialbrachytherapy were analyzed. Quantitative parameters were used to characterize dose homogeneity. Dose nonuniformityratio (DNR, dose homogeneity index (DHI, uniformity index (UI and quality index (QI were calculated.Furthermore, parameters recommended by the ICRU 58 such as minimum target dose (MTD, mean central dose (MCD,high dose volume, low dose volume and the spread between local minimum doses were determined. Correlationsbetween the calculated homogeneity parameters and usefulness of the ICRU parameters in image-based brachytherapywere investigated. Results: Catheters with mean number of 15 (range: 6-25 were implanted in median 4 (range: 3-6 planes. The volu -me of the PTV ranged from 15.5 cm3 to 176 cm3. The mean DNR was 0.32, the DHI 0.66, the UI 1.49 and the QI 1.94. Relatedto the prescribed dose, the MTD was 69% and the MCD 135%. The mean high dose volume was 8.1 cm3 (10%, whilethe low dose volume was 63.8 cm3 (96%. The spread between minimum doses in central plane ranged from –14% to+20%. Good correlation was found between the DNR and the DHI (R2 = 0.7874, and the DNR correlated well with theUI (R2 = 0.7615 also. No correlation was found between the ICRU parameters and any other volumetric parameters. Conclusions: To characterize the dose uniformity in high-dose rate breast implants, DVH-related homogeneityparameters representing the full 3D dose distributions are mandatory to be used. In many respects the current re commendationsof the ICRU Report 58 are already outdated, and it is well-timed to set up new recommendations, whichare more feasible for image-guided conformal interstitial brachytherapy.

  7. Comparison of static conformal field with multiple noncoplanar arc techniques for stereotactic radiosurgery or stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Hamilton, Russell J.; Kuchnir, Franca T.; Sweeney, Patrick; Rubin, Steven J.; Dujovny, Manuel; Pelizzari, Charles A.; Chen, George T. Y.

    1995-01-01

    Purpose: Compare the use of static conformal fields with the use of multiple noncoplanar arcs for stereotactic radiosurgery or stereotactic radiotherapy treatment of intracranial lesions. Evaluate the efficacy of these treatment techniques to deliver dose distributions comparable to those considered acceptable in current radiotherapy practice. Methods and Materials: A previously treated radiosurgery case of a patient presenting with an irregularly shaped intracranial lesion was selected. Using a three-dimensional (3D) treatment-planning system, treatment plans using a single isocenter multiple noncoplanar arc technique and multiple noncoplanar conformal static fields were generated. Isodose distributions and dose volume histograms (DVHs) were computed for each treatment plan. We required that the 80% (of maximum dose) isodose surface enclose the target volume for all treatment plans. The prescription isodose was set equal to the minimum target isodose. The DVHs were analyzed to evaluate and compare the different treatment plans. Results: The dose distribution in the target volume becomes more uniform as the number of conformal fields increases. The volume of normal tissue receiving low doses (> 10% of prescription isodose) increases as the number of static fields increases. The single isocenter multiple arc plan treats the greatest volume of normal tissue to low doses, approximately 1.6 times more volume than that treated by four static fields. The volume of normal tissue receiving high (> 90% of prescription isodose) and intermediate (> 50% of prescription isodose) doses decreases by 29 and 22%, respectively, as the number of static fields is increased from four to eight. Increasing the number of static fields to 12 only further reduces the high and intermediate dose volumes by 10 and 6%, respectively. The volume receiving the prescription dose is more than 3.5 times larger than the target volume for all treatment plans. Conclusions: Use of a multiple noncoplanar

  8. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    International Nuclear Information System (INIS)

    Carver, R; Popple, R; Benhabib, S; Antolak, J; Sprunger, C; Hogstrom, K

    2014-01-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10 9 ), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT

  9. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Popple, R; Benhabib, S [UniversityAlabama Birmingham, Birmingham, AL (United Kingdom); Antolak, J [Mayo Clinic, Rochester, MN (United States); Sprunger, C [Louisiana State University, Baton Rouge, LA (United States); Hogstrom, K [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Louisiana State University, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.

  10. SU-G-201-12: Investigation of Beta-Emitter 90Sr-90Y Dose Distribution Using Gafchromic EBT3 Film for Application On Conformal Skin Brachytherapy Device

    International Nuclear Information System (INIS)

    Ferreira, C; Johnson, D; Ahmad, S; Rasmussen, K; Jung, J

    2016-01-01

    Purpose: To investigate 90 Sr- 90 Y as a high dose rate (HDR) source for application in a conformal skin brachytherapy (CSBT) device. The CSBT device has been previously developed to provide patient specific treatment for small inoperable lesions and irregular surfaces. Methods: A popular beta emitter, 90 Sr- 90 Y was tested for feasibility in a CSBT device. A 1 cm diameter plaque was used to deliver dose to a solid water phantom containing EBT3 Gafchromic films arranged at the surface and perpendicular to it. Additionally, a 1 cm diameter 6 MeV electron beam was used to irradiate EBT3 film at 100 cm SSD with a 0.5 cm bolus. Films were digitized with an Epson Expression 10000 XL scanner and calibrated with a 6 MeV electron specific dose curve. Normalized percent depth doses (PDD) and dose profiles for both techniques were analyzed using ImageJ. Results: Dose distributions achieved with the 90 Sr- 90 Y sources were compared with those of external electron beam radiation therapy (EBRT). Penumbra (20%- 80%) for EBRT and 90Sr-90Y were 4.3 mm and 1.6 mm, respectively. PDD values of 50% (normalized to 2 mm) were 10.1 mm and 2.8 mm for electron and 90 Sr- 90 Y, respectively. Flatness (80% of the central beam profile) was 14.1% at a 5 mm depth for EBRT and 4.0% at surface for the 90 Sr- 90 Y. Conclusion: As expected, the PDDs of 90 Sr- 90 Y in water are shallower than that of external electron beams for the same field size. 90 Sr- 90 Y can be used in CSBT to provide patient specific treatment where shallower depth doses than that provided by electron external beams may be required: e.g. eyelids, nose, lips, ears, etc. The customizability of EBRT could be replicated by using multiple adjacent 90 Sr- 90 Y plaque placements.

  11. SU-G-201-12: Investigation of Beta-Emitter 90Sr-90Y Dose Distribution Using Gafchromic EBT3 Film for Application On Conformal Skin Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C; Johnson, D; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Rasmussen, K [University of Texas HSC SA, San Antonio, TX (United States); Jung, J [East Carolina University Greenville, NC (United States)

    2016-06-15

    Purpose: To investigate {sup 90}Sr-{sup 90}Y as a high dose rate (HDR) source for application in a conformal skin brachytherapy (CSBT) device. The CSBT device has been previously developed to provide patient specific treatment for small inoperable lesions and irregular surfaces. Methods: A popular beta emitter, {sup 90}Sr-{sup 90}Y was tested for feasibility in a CSBT device. A 1 cm diameter plaque was used to deliver dose to a solid water phantom containing EBT3 Gafchromic films arranged at the surface and perpendicular to it. Additionally, a 1 cm diameter 6 MeV electron beam was used to irradiate EBT3 film at 100 cm SSD with a 0.5 cm bolus. Films were digitized with an Epson Expression 10000 XL scanner and calibrated with a 6 MeV electron specific dose curve. Normalized percent depth doses (PDD) and dose profiles for both techniques were analyzed using ImageJ. Results: Dose distributions achieved with the {sup 90}Sr-{sup 90}Y sources were compared with those of external electron beam radiation therapy (EBRT). Penumbra (20%- 80%) for EBRT and 90Sr-90Y were 4.3 mm and 1.6 mm, respectively. PDD values of 50% (normalized to 2 mm) were 10.1 mm and 2.8 mm for electron and {sup 90}Sr-{sup 90}Y, respectively. Flatness (80% of the central beam profile) was 14.1% at a 5 mm depth for EBRT and 4.0% at surface for the {sup 90}Sr-{sup 90}Y. Conclusion: As expected, the PDDs of {sup 90}Sr-{sup 90}Y in water are shallower than that of external electron beams for the same field size. {sup 90}Sr-{sup 90}Y can be used in CSBT to provide patient specific treatment where shallower depth doses than that provided by electron external beams may be required: e.g. eyelids, nose, lips, ears, etc. The customizability of EBRT could be replicated by using multiple adjacent {sup 90}Sr-{sup 90}Y plaque placements.

  12. Experimental dosimetry in conformal breast teletherapy compared with the planning system

    International Nuclear Information System (INIS)

    Nogueira, Luciana Batista; Silva, Hugo Leonardo Lemos; Passos Ribeiro de Campos, Tarcísio

    2015-01-01

    The objective of this study was to compare and analyse the absorbed dose profiles from the conformal radiotherapy planning and experimental dosimetry taken in a breast anthropomorphic and anthropometric phantom. Conformal radiotherapy planning was elaborated in the Treatment Planning System (TPS). EBT2 Gafchromic radiochromic films were applied as dosimeters, positioned internally and superficially in the breast phantom. The standard radiation protocol was applied in the breast phantom. The films were digitalised, and their responses were analysed in RGB. The optical densities were processed, reproducing the spatial dose distribution. - Highlights: • Distributions of absorbed doses were generated by the TPS and measured by radiochromic films. • The breast phantom simulated a human breast in position for treatment. • A large portion of the glandular tissue absorbed doses that were equivalent to the radiotherapy planning. • There were regions of hot spots and small areas of under dosage in deeper areas at the lung interface

  13. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Panettieri, Vanessa [William Buckland Radiotherapy Centre, Alfred Hospital, Commercial Road, Melbourne (Australia); Panakis, Niki; Bates, Nicholas [Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Lester, Jason F. [Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff (United Kingdom); Jain, Pooja [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Landau, David B. [Department of Radiotherapy, Guy' s and St. Thomas' NHS Foundation Trust, London (United Kingdom); Nahum, Alan E.; Mayles, W. Philip M. [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Fenwick, John D. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom)

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  14. [Doses to organs at risk in conformational and stereotactic body radiation therapy: Liver].

    Science.gov (United States)

    Debbi, K; Janoray, G; Scher, N; Deutsch, É; Mornex, F

    2017-10-01

    The liver is an essential organ that ensures many vital functions such as metabolism of bilirubin, glucose, lipids, synthesis of coagulation factors, destruction of many toxins, etc. The hepatic parenchyma can be irradiated during the management of digestive tumors, right basithoracic, esophagus, abdomen in toto or TBI. In addition, radiotherapy of the hepatic area, which is mainly stereotactic, now occupies a central place in the management of primary or secondary hepatic tumors. Irradiation of the whole liver, or part of it, may be complicated by radiation-induced hepatitis. It is therefore necessary to respect strict dosimetric constraints both in stereotactic and in conformational irradiation in order to limit the undesired irradiation of the hepatic parenchyma which may vary according to the treatment techniques, the basic hepatic function or the lesion size. The liver is an organ with a parallel architecture, so the average tolerable dose in the whole liver should be considered rather than the maximum tolerable dose at one point. The purpose of this article is to propose a development of dose recommendations during conformation or stereotactic radiotherapy of the liver. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  16. Calculation of exit dose for conformal and dynamically‐wedged fields, based on water‐equivalent path length measured with an amorphous silicon electronic portal imaging device

    Science.gov (United States)

    Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2011-01-01

    In this study, we use the quadratic calibration method (QCM), in which an EPID image is converted into a matrix of equivalent path lengths (EPLs) and, therefore, exit doses, so as to model doses in conformal and enhanced dynamic wedge (EDW) fields. The QCM involves acquiring series of EPID images at a reference field size for different thicknesses of homogeneous solid water blocks. From these, a set of coefficients is established that is used to compute the EPL of any other irradiated material. To determine the EPL, the irradiated area must be known in order to establish the appropriate scatter correction. A method was devised for the automatic calculation of areas from the EPID image that facilitated the calculation of EPL for any field and exit dose. For EDW fields, the fitting coefficients were modified by utilizing the linac manufacturer's golden segmented treatment tables (GSTT) methodology and MU fraction model. The nonlinear response of the EPL with lower monitor units (MUs) was investigated and slight modification of the algorithm performed to account for this. The method permits 2D dose distributions at the exit of phantom or patient to be generated by relating the EPL with an appropriate depth dose table. The results indicate that the inclusion of MU correction improved the EPL determination. The irradiated field areas can be accurately determined from EPID images to within ± 1% uncertainty. Cross‐plane profiles and 2D dose distributions of EPID predicted doses were compared with those calculated with the Eclipse treatment planning system (TPS) and those measured directly with MapCHECK 2 device. Comparison of the 2D EPID dose maps to those from TPS and MapCHECK shows that more than 90% of all points passed the gamma index acceptance criteria of 3% dose difference and 3 mm distance to agreement (DTA), for both conformal and EDW study cases. We conclude that the EPID QCM is an accurate and convenient method for in vivo dosimetry and may, therefore

  17. Inhomogeneous target-dose distributions: a dimension more for optimization?

    International Nuclear Information System (INIS)

    Gersem, Werner R.T. de; Derycke, Sylvie; Colle, Christophe O.; Wagter, Carlos de; Neve, Wilfried J. de

    1999-01-01

    Purpose: To evaluate if the use of inhomogeneous target-dose distributions, obtained by 3D conformal radiotherapy plans with or without beam intensity modulation, offers the possibility to decrease indices of toxicity to normal tissues and/or increase indices of tumor control stage III non-small cell lung cancer (NSCLC). Methods and Materials: Ten patients with stage III NSCLC were planned using a conventional 3D technique and a technique involving noncoplanar beam intensity modulation (BIM). Two planning target volumes (PTVs) were defined: PTV1 included macroscopic tumor volume and PTV2 included macroscopic and microscopic tumor volume. Virtual simulation defined the beam shapes and incidences as well as the wedge orientations (3D) and segment outlines (BIM). Weights of wedged beams, unwedged beams, and segments were determined by optimization using an objective function with a biological and a physical component. The biological component included tumor control probability (TCP) for PTV1 (TCP1), PTV2 (TCP2), and normal tissue complication probability (NTCP) for lung, spinal cord, and heart. The physical component included the maximum and minimum dose as well as the standard deviation of the dose at PTV1. The most inhomogeneous target-dose distributions were obtained by using only the biological component of the objective function (biological optimization). By enabling the physical component in addition to the biological component, PTV1 inhomogeneity was reduced (biophysical optimization). As indices for toxicity to normal tissues, NTCP-values as well as maximum doses or dose levels to relevant fractions of the organ's volume were used. As indices for tumor control, TCP-values as well as minimum doses to the PTVs were used. Results: When optimization was performed with the biophysical as compared to the biological objective function, the PTV1 inhomogeneity decreased from 13 (8-23)% to 4 (2-9)% for the 3D-(p = 0.00009) and from 44 (33-56)% to 20 (9-34)% for the BIM

  18. 3D Conformal radiotherapy for gastric cancer-results of a comparative planning study

    International Nuclear Information System (INIS)

    Leong, Trevor; Willis, David; Joon, Daryl Lim; Condron, Sara; Hui, Andrew; Ngan, Samuel Y.K.

    2005-01-01

    Background and purpose: Many radiation oncologists are reluctant to use anteroposterior-posteroanterior (AP-PA) field arrangements when treating gastric cancer with adjuvant postoperative radiotherapy due to concerns about normal tissue toxicity, particularly in relation to the kidneys and spinal cord. In this report, we describe a multiple-field conformal radiotherapy technique, and compare this technique to the more commonly used AP-PA technique that was used in the recently reported Intergroup study (INT0116). Materials and methods: Fifteen patients with stages II-IV adenocarcinoma of the stomach were treated with adjuvant postoperative chemoradiotherapy using a standardised 3D conformal radiotherapy technique that consisted of a 'split-field', mono-isocentric arrangement employing 6 radiation fields. For each patient, a second radiotherapy treatment plan was generated utilising AP-PA fields. The two techniques were then compared for target volume coverage and dose to normal tissues using dose volume histogram (DVH) analysis. Results: The conformal technique provides more adequate coverage of the target volume with 99% of the planning target volume (PTV) receiving 95% of the prescribed dose, compared to 93% using AP-PA fields. Comparative DVHs for the right kidney, left kidney and spinal cord demonstrate lower radiation doses using the conformal technique, and although the liver dose is higher, it is still well below liver tolerance. Conclusions: 3D conformal radiotherapy produces superior dose distributions and reduced radiation doses to the kidneys and spinal cord compared to AP-PA techniques, with the potential to reduce treatment toxicity

  19. Dose Distribution of Gamma Irradiators

    International Nuclear Information System (INIS)

    Park, Seung Woo; Shin, Sang Hun; Son, Ki Hong; Lee, Chang Yeol; Kim, Kum Bae; Jung, Hai Jo; Ji, Young Hoon

    2010-01-01

    Gamma irradiator using Cs-137 have been widely utilized to the irradiation of cell, blood, and animal, and the dose measurement and education. The Gamma cell 3000 Elan (Nordion International, Kanata, Ontario, Canada) irradiator was installed in 2003 with Cs-137 and dose rate of 3.2 Gy/min. And the BioBeam 8000 (Gamma-Service Medical GmbH, Leipzig, Germany) irradiator was installed in 2008 with Cs-137 and dose rate of 3.5 Gy/min. Our purpose was to evaluate the practical dosimetric problems associated with inhomogeneous dose distribution within the irradiated volume in open air state using glass dosimeter and Gafchromic EBT film dosimeter for routine Gamma irradiator dosimetry applications at the KIRAMS and the measurements were compared with each other. In addition, an user guideline for useful utilization of the device based on practical dosimetry will be prepared. The measurement results of uniformity of delivered dose within the device showed variation more than 14% between middle point and the lowest position at central axis. Therefore, to maintain dose variation within 10%, the criteria of useful dose distribution, for research radiation effects, the irradiated specimen located at central axis of the container should be placed within 30 mm from top and bottom surface, respectively. In addition, for measurements using the film, the variations of dose distribution were more then 50% for the case of less than 10 second irradiation, mostly within 20% for the case of more than 20 second irradiation, respectively. Therefore, the irradiation experiments using the BioBeam 8000 irradiator are recommended to be used for specimen required at least more than 20 second irradiation time.

  20. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer

    International Nuclear Information System (INIS)

    Joosten, A; Bochud, F; Moeckli, R

    2014-01-01

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  1. Comparison of proton and photon dose distributions

    International Nuclear Information System (INIS)

    Goitein, Michael

    1995-01-01

    Recently, there has been considerable work, as yet largely theoretical, in developing ways to improve the dose distributions which can be achieved with x-rays. Foremost among these developments are the use of non-coplanar beam directions, the use of intensity-modulated beams, and the implementation of computer-controlled delivery of complex plans using new beam modifiers such as multi-leaf collimators and beam scanners. One way of improving the dose distributions which have been achieved with conventional radiations is to use protons, with their quite different physical characteristics but very similar radiobiological properties as compared with supervoltage x-rays. Some substantial experience has been gained in the use of protons which has confirmed clinically that better results have been obtained as a result of their better dose distributions. Indeed, it is fair to say that the advantages which protons have demonstrated are, in large part, responsible for the renewed interest in improving the dose distributions from all radiation modalities. So much better are the dose distributions which the new techniques, mentioned above, offer that there is the impression that, with their use, photons can deliver dose distributions as good as can be obtained with protons. In this paper, the extent of the possible improvement will be discussed. It will be suggested that the integral dose is relatively little affected by the treatment technique - so that the lower normal tissue doses which the new approaches offer is almost always at the price of delivering dose to a larger volume. Protons can be matched pencil beam for pencil beam with photons - and then almost always deliver substantially less dose outside the target volume. Ultimately, the clinical importance of the differences will have to decided by clinical trial

  2. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  3. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms

    International Nuclear Information System (INIS)

    Boersma, Liesbeth J.; Brink, Mandy van den; Bruce, Allison M.; Shouman, Tarek; Gras, Luuk; Velde, Annet te; Lebesque, Joos V.

    1998-01-01

    Purpose: To investigate whether Dose-Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer. Methods and Materials: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (>6 months) GI and GU complications was classified using the RTOG/EORTC and the SOMA/LENT scoring system. In addition, GI complications were divided in nonsevere and severe (requiring one or more laser treatments or blood transfusions) rectal bleeding. The median follow-up time was 24 months. We investigated whether rectal and bladder wall volumes, irradiated to various dose levels, correlated with the observed actuarial incidences of GI and GU complications, using volume as a continuous variable. Subsequently, for each dose level in the DVH, the rectal wall volumes were dichotomized using different volumes as cutoff levels. The impact of the total radiation dose, and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: The actuarial incidence at 2 years for GI complications ≥Grade II was 14% (RTOG/EORTC) or 20% (SOMA/LENT); for GU complications ≥Grade III 8% (RTOG/EORTC) or 21% (SOMA/LENT). Neither for GI complications ≥Grade II (RTOG/EORTC or SOMA/LENT), nor for GU complications ≥Grade III (RTOG/EORTC or SOMA/LENT), was a significant correlation found between any of the DVH parameters and the actuarial incidence of complications. For severe rectal bleeding (actuarial incidence at 2 years 3%), four consecutive volume cutoff levels were found, which significantly discriminated between high and low risk. A trend was observed that a total radiation dose ≥ 74 Gy (or a maximum radiation dose in the rectal wall >75 Gy) resulted in a higher incidence of severe rectal bleeding (p

  4. Three dimensional conformal radiation therapy may improve the therapeutic ratio of radiation therapy after pneumonectomy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trouette, R; Causse, N; Elkhadri, M; Caudry, M; Maire, J P; Houlard, J P; Racaldini, L; Demeaux, H

    1995-12-01

    Three dimensional conformal radiation therapy would allow to decrease the normal tissue dose while maintaining the same target dose as standard treatment. To evaluate the feasibility of normal tissue dose reduction for ten patients with pneumonectomy for lung cancer, we determined the dose distribution to the normal tissue with 3-dimensional conformal radiation therapy (3-DCRT) and conventional treatment planning (CTP). Dose-volume histograms for target and normal tissue (lung, heart) were used for comparison of the different treatment planning. The mean percentages of lung and heart volumes which received 40 Gy with 3-DCRT were respectively 63% and 37% of the mean percentage of lung and volumes which received the same dose with CTP. These preliminary results suggest that conformal therapy may improve the therapeutic ratio by reducing risk to normal tissue.

  5. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  6. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Patel, Rakesh R.; Orton, Nigel; Tome, Wolfgang A.; Chappell, Rick; Ritter, Mark A.

    2003-01-01

    Background and purpose: To compare the rectal wall and bladder volume in the high dose region with or without the use of a balloon catheter with both three-dimensional (3D)-conformal and intensity modulated radiation therapy (CRT, IMRT) approaches in the treatment of prostate cancer. Material and methods: Five patients with a wide range of prostate volumes and treated with primary external beam radiation therapy for localized prostate cancer were selected for analysis. Pinnacle TM treatment plans were generated utilizing a 3D conformal six-field design and an IMRT seven coplanar-field plan with a novel, three-step optimization and with ultrasound localization. Separate plans were devised with a rectal balloon deflated or air inflated with and without inclusion of the seminal vesicles (SV) in the target volume. The prescription dose was 76 Gy in 38 fractions of 2 Gy each. Cumulative dose-volume histograms (DVHs) were analyzed for the planning target volume (PTV), rectal wall, and bladder with an inflated (60 cc air) or deflated balloon with and without SV included. The volumes of rectal wall and bladder above 60, 65, and 70 Gy with each treatment approach were evaluated. Results: Daily balloon placement was well-tolerated with good patient positional reproducibility. Inflation of the rectal balloon in all cases resulted in a significant decrease in the absolute volume of rectal wall receiving greater than 60, 65, or 70 Gy. The rectal sparing ratio (RSR), consisting of a structure's high dose volume with the catheter inflated, divided by the volume with the catheter deflated, was calculated for each patient with and without seminal vesicle inclusion for 3D-CRT and IMRT. For 3D-CRT, RSRs with SV included were 0.59, 0.59, and 0.56 and with SV excluded were 0.60, 0.58, and 0.54 at doses of greater than 60, 65, and 70 Gy, respectively. Similarly, for IMRT, the mean RSRs were 0.59, 0.59, and 0.63 including SV and 0.71, 0.66, and 0.67 excluding SV at these same dose levels

  7. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  8. The analysis of annual dose distributions for radiation workers

    International Nuclear Information System (INIS)

    Mill, A.J.

    1984-05-01

    The system of dose limitation recommended by the ICRP includes the requirement that no worker shall exceed the current dose limit of 50mSv/a. Continuous exposure at this limit corresponds to an annual death rate comparable with 'high risk' industries if all workers are continuously exposed at the dose limit. In practice, there is a distribution of doses with an arithmetic mean lower than the dose limit. In its 1977 report UNSCEAR defined a reference dose distribution for the purposes of comparison. However, this two parameter distribution does not show the departure from log-normality normally observed for actual distributions at doses which are a significant proportion of the annual limit. In this report an alternative model is suggested, based on a three parameter log-normal distribution. The third parameter is an ''effective dose limit'' and such a model fits very well the departure from log-normality observed in actual dose distributions. (author)

  9. SU-E-T-346: Effect of Jaw Position On Dose to Critical Structures in 3-D Conformal Radiotherapy Treatment of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, N; Han, E; Liang, X; Morrill, S; Zhang, X; Hardee, M; Penagaricano, J; Ratanatharathorn, V [Vaneerat, University of Arkansas for Medical Sciences, Little Rock, AR (United States)

    2015-06-15

    Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequently moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.

  10. Doses to organs at cerebral risks: optimization by robotized stereotaxic radiotherapy and automatic segmentation atlas versus three dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.; Thariat, J.; Benezery, K.; Herault, J.; Dalmasso, C.; Marcie, S.; Malandain, G.

    2007-01-01

    The stereotaxic radiotherapy robotized by 'Cyberknife fourth generation' allows a dosimetric optimization with a high conformity index on the tumor and radiation doses limited on organs at risk. A cerebral automatic anatomic segmentation atlas of organs at risk are used in routine in three dimensions. This study evaluated the superiority of the stereotaxic radiotherapy in comparison with the three dimensional conformal radiotherapy on the preservation of organs at risk in regard of the delivered dose to tumors justifying an accelerated hypo fractionation and a dose escalation. This automatic segmentation atlas should allow to establish correlations between anatomy and cerebral dosimetry; This atlas allows to underline the dosimetry optimization by stereotaxic radiotherapy robotized for organs at risk. (N.C.)

  11. Pelvic Ewing sarcomas. Three-dimensional conformal vs. intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mounessi, F.S.; Lehrich, P.; Haverkamp, U.; Eich, H.T. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Willich, N. [Muenster Univ. (Germany). Dept. of Radiation Oncology; Universitaetsklinikum Muenster (Germany). RiSK - Registry for the Evaluation of Late Side Effects after Radiotherapy in Childhood and Adolescence; Boelling, T. [Center for Radiation Oncology, Osnabrueck (Germany)

    2013-04-15

    The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing's sarcoma. A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated. Results The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V{sub 95} > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 {+-} 0.12 vs. 0.54 {+-} 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 {+-} 0.03 vs. 0.07 {+-} 0.0, p = 0.035). For the bowel, D{sub mean} and D{sub 1%}, as well as V{sub 2} to V{sub 60} were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in D{sub mean}. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V{sub 30} to V{sub 50}) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V{sub 2}) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V{sub 30}) it was significantly lower. Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing's sarcoma can be more easily achieved using IMRT. (orig.)

  12. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Choi, Youngmin; Kim, Jeung Kee; Lee, Hyung Sik; Hur, Won Joo; Chai, Gyu Young; Kang, Ki Mun

    2005-01-01

    Purpose: To investigate the feasibility of intensity-modulated radiotherapy (IMRT) as a method of boost radiotherapy after the initial irradiation by the conventional anterior/posterior opposed beams for centrally located non-small-cell lung cancer through the evaluation of dose distributions according to the various boost methods. Methods and Materials: Seven patients with T3 or T4 lung cancer and mediastinal node enlargement who previously received radiotherapy were studied. All patients underwent virtual simulation retrospectively with the previous treatment planning computed tomograms. Initial radiotherapy plans were designed to deliver 40 Gy to the primary tumor and involved nodal regions with the conventional anterior/posterior opposed beams. Two radiation dose levels, 24 and 30 Gy, were used for the boost radiotherapy plans, and four different boost methods (a three-dimensional conformal radiotherapy [3DCRT], five-, seven-, and nine-beam IMRT) were applied to each dose level. The goals of the boost plans were to deliver the prescribed radiation dose to 95% of the planning target volume (PTV) and minimize the volumes of the normal lungs and spinal cord irradiated above their tolerance doses. Dose distributions in the PTVs and lungs, according to the four types of boost plans, were compared in the boost and sum plans, respectively. Results: The percentage of lung volumes irradiated >20 Gy (V20) was reduced significantly in the IMRT boost plans compared with the 3DCRT boost plans at the 24- and 30-Gy dose levels (p 0.007 and 0.0315 respectively). Mean lung doses according to the boost methods were not different in the 24- and 30-Gy boost plans. The conformity indexes (CI) of the IMRT boost plans were lower than those of the 3DCRT plans in the 24- and 30-Gy plans (p = 0.001 in both). For the sum plans, there was no difference of the dose distributions in the PTVs and lungs according to the boost methods. Conclusions: In the boost plans the V20s and CIs were

  13. Comparison of normal tissue dose with three-dimensional conformal techniques for breast cancer irradiation including the internal mammary nodes

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Dolsma, Willemtje; van t Veld, Aart; Bijl, HP; Langendijk, JA

    2005-01-01

    PURPOSE: To compare the Para Mixed technique for irradiation of the internal mammary nodes (IMN) with three commonly used strategies, by analyzing the dose to the heart and other organs at risk. METHODS AND MATERIALS: Four different three-dimensional conformal dose plans were created for 30 breast

  14. Dosimetric comparison of three-dimensional conformal and intensity modulated radiotherapy in brain glioma

    International Nuclear Information System (INIS)

    Lu Jie; Zhang Guifang; Bai Tong; Yin Yong; Fan Tingyong; Wu Chaoxia

    2009-01-01

    Objective: To investigate the dosimetry advantages of intensity modulated radiotherapy (IMRT)of brain glioma compared with that of three-dimensional conformal radiotherapy (SD CRT). Methods: Ten patients with brain glioma were enrolled in this study. Three-dimensional conf0rmal and intensity modulated radiotherapy plans were performed for each patient. The dose distributions of target volume and normal tissues, conformal index (CI) and heterogeneous index (HI) were analyzed using the dose-volume histogram (DVH). The prescription dose was 60 Gy in 30 fractions. Results: IMRT plans decrease the maximum dose and volume of brainstem, mean dose of affected side parotid and maximum dose of spinal-cord. The CI for PTV of IMRT was superior to that of SD CRT, the HI for PTV has no statistical significance of the two model plans. Conclusions: IMRT plans can obviously decrease the dose and volume of brainstem. IMRT is a potential method in the treatment of brain glioma, and dose escalation was possible in patients with brain glioma. (authors)

  15. SU-E-T-542: Comparison of Stereotactic Radiosurgery (SRS) of Brain Lesions Using Gamma Knife, VMAT, IMRT, and Conformal Arcs

    International Nuclear Information System (INIS)

    Li, S; Charpentier, P; Chan, P; Neicu, T; Miyamoto, C

    2014-01-01

    Purpose: To compare dose distributions in stereotactic radiation surgery of brain lesions using gamma Knife, VMAT, conformal arcs, and IMRT in order to provide an optimal treatment. Methods: Dose distributions from single shot of 4C model of Gamma Knife at the helmet collimation sizes of 4, 8, 14, and 18 mm in diameter were compared with full arcs with the square shapes of 4×4 (or 5×5), 8×8 (or 10×10), and spherical shapes of 16 or 20 mm in diameter using EDR3 films in the same gamma knife QA phantom. Plans for ten SRS cases with single and multiple lesions were created in gamma knife plans and Pinnacle plans. The external beam plans had enlarged field size by 2-mm and used single conformal full circle arc for solitary lesion and none coplanar arcs/beams for multiple lesions. Coverage, conformity index, dose to critical organs, and integral dose to the brain and nearby critical structures were compared on all plans. Structures and dose matrices were registered in a Velocity deformable image registration system. Results: Single full circle arc from Elekta beam-modulate MLC (4-mm leaf thickness) and agility MLC (5-mm leaf thickness) have larger penumbra and less flatness than that of Gamma Knife single shot. None-coplanar arcs or beams were required to achieve similar dose distribution. In general, Gamma Knife plans provided significant less integral dose than that of linac-based plans. Benefits of IMRT and VMAT versus gamma Knife and conformal arcs were not significant. Conclusion: Our dose measurement and treatment planning evaluation clearly demonstrated dose distribution differences amount current popular SRS modalities for small solitary and multiple brain lesions. The trend of using MLC shape beams or arcs to replace conventional cones should be revisited in order to keep lower integral dose if the late correlates with some radiation-induced side effects. Pilot grant from Elekta LLC

  16. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  17. When treating prostate cancer with three-dimensional conformal radiation therapy the impact of bladder filling status on the volume and integral dose distribution of the target and critical organs should be kept in mind

    International Nuclear Information System (INIS)

    Liu Yueping; Liu Xinfan; Li Yexiong; Guang Ying

    2007-01-01

    Objective: In prostate cancer treated with three-dimensional conformal radiation therapy (3DCRT), we tried to prospectively assess the impact of the filling status of bladder on the volume and the integral dose distribution to the target and surrounding critical organs. Methods: Ten patients with stage T1-T2N0M0 prostate cancer were studied. All patients received 3DCRT to the prostate and inferior seminal vesicle. One hour before CT simulation, the bladder was first voided, and then 400 ml of oral contrast solution was given at every half hour before the CT scan. Urethral catheterization was used for voiding or distending the bladder. When distending the bladder, 250-300 ml of contrast was injected into the bladder with the patient fixed at the supine position. Two sets of transverse images were taken for the whole pelvis in empty and full bladder. After the target and critical organs (bladder, rectum, pelvic small bowel, and femoral heads) were contoured, a treatment plan of three-dimensional conformal radiotherapy was made using the CMS Focus-Xio treatment planning system. The volume and mean doses of CTV, PTV, rectum, bladder, femoral heads, and small bowel with the bladder empty and full were evaluated. The percentage of volume which received 50 Gy in the rectum and bladder, 30 Gy in the femoral heads, and the maximal dose to the pelvic small bowel were also assessed . The variability of volume and dose distribution in these targets or organs was compared between the empty and full bladder status. Results: Comparing to the bladder empty status, full bladder led to a mean increase of 499% in the bladder volume, (67±9) ml and (336±48) ml (P=0.000), respectively. No volume change was found in the CTV, PTV, rectum, femoral heads and pel- vic small bowel(P=0.153,0.501,0.929,0.771,0.081). The mean dose to the bladder in full status was only 35% of that in empty status, (1501±201 ) cGy and (4267±216) cGy(P =0.000), respectively. The mean dose to the pelvic small

  18. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    International Nuclear Information System (INIS)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.

    2009-01-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome

  19. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Humm, John; Larson, Steven; Amols, Howard; Fuks, Zvi; Leibel, Steven; Koutcher, Jason A.

    2000-01-01

    Purpose: The goals of this study were to survey and summarize the advances in imaging that have potential applications in radiation oncology, and to explore the concept of integrating physical and biological conformality in multidimensional conformal radiotherapy (MD-CRT). Methods and Materials: The advances in three-dimensional conformal radiotherapy (3D-CRT) have greatly improved the physical conformality of treatment planning and delivery. The development of intensity-modulated radiotherapy (IMRT) has provided the 'dose painting' or 'dose sculpting' ability to further customize the delivered dose distribution. The improved capabilities of nuclear magnetic resonance imaging and spectroscopy, and of positron emission tomography, are beginning to provide physiological and functional information about the tumor and its surroundings. In addition, molecular imaging promises to reveal tumor biology at the genotype and phenotype level. These developments converge to provide significant opportunities for enhancing the success of radiotherapy. Results: The ability of IMRT to deliver nonuniform dose patterns by design brings to fore the question of how to 'dose paint' and 'dose sculpt', leading to the suggestion that 'biological' images may be of assistance. In contrast to the conventional radiological images that primarily provide anatomical information, biological images reveal metabolic, functional, physiological, genotypic, and phenotypic data. Important for radiotherapy, the new and noninvasive imaging methods may yield three-dimensional radiobiological information. Studies are urgently needed to identify genotypes and phenotypes that affect radiosensitivity, and to devise methods to image them noninvasively. Incremental to the concept of gross, clinical, and planning target volumes (GTV, CTV, and PTV), we propose the concept of 'biological target volume' (BTV) and hypothesize that BTV can be derived from biological images and that their use may incrementally improve

  20. Conformal radiotherapy: principles and classification

    International Nuclear Information System (INIS)

    Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)

  1. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    Science.gov (United States)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  2. Optimization of stereotactically-guided conformal treatment planning of sellar and parasellar tumors, based on normal brain dose volume histograms

    International Nuclear Information System (INIS)

    Perks, Julian R.; Jalali, Rakesh; Cosgrove, Vivian P.; Adams, Elizabeth J.; Shepherd, Stephen F.; Warrington, Alan P.; Brada, Michael

    1999-01-01

    Purpose: To investigate the optimal treatment plan for stereo tactically-guided conformal radiotherapy (SCRT) of sellar and parasellar lesions, with respect to sparing normal brain tissue, in the context of routine treatment delivery, based on dose volume histogram analysis. Methods and Materials: Computed tomography (CT) data sets for 8 patients with sellar- and parasellar-based tumors (6 pituitary adenomas and 2 meningiomas) have been used in this study. Treatment plans were prepared for 3-coplanar and 3-, 4-, 6-, and 30-noncoplanar-field arrangements to obtain 95% isodose coverage of the planning target volume (PTV) for each plan. Conformal shaping was achieved by customized blocks generated with the beams eye view (BEV) facility. Dose volume histograms (DVH) were calculated for the normal brain (excluding the PTV), and comparisons made for normal tissue sparing for all treatment plans at ≥80%, ≥60%, and ≥40% of the prescribed dose. Results: The mean volume of normal brain receiving ≥80% and ≥60% of the prescribed dose decreased by 22.3% (range 14.8-35.1%, standard deviation σ = 7.5%) and 47.6% (range 25.8-69.1%, σ 13.2%), respectively, with a 4-field noncoplanar technique when compared with a conventional 3-field coplanar technique. Adding 2 further fields, from 4-noncoplanar to 6-noncoplanar fields reduced the mean normal brain volume receiving ≥80% of the prescribed dose by a further 4.1% (range -6.5-11.8%, σ = 6.4%), and the volume receiving ≥60% by 3.3% (range -5.5-12.2%, σ = 5.4%), neither of which were statistically significant. Each case must be considered individually however, as a wide range is seen in the volume spared when increasing the number of fields from 4 to 6. Comparing the 4- and 6-field noncoplanar techniques to a 30-field conformal field approach (simulating a dynamic arc plan) revealed near-equivalent normal tissue sparing. Conclusion: Four to six widely spaced, fixed-conformal fields provide the optimum class solution

  3. Comprehensive irradiation of head and neck cancer using conformal multisegmental fields: assessment of target coverage and noninvolved tissue sparing

    International Nuclear Information System (INIS)

    Eisbruch, Avraham; Marsh, Lon H.; Martel, Mary K.; Ship, Jonathan A.; Haken, Randall ten; Pu, Anthony T.; Fraass, Benedick A.; Lichter, Allen S.

    1998-01-01

    Purpose: Conformal treatment using static multisegmental intensity modulation was developed for patients requiring comprehensive irradiation for head and neck cancer. The major aim is sparing major salivary gland function while adequately treating the targets. To assess the adequacy of the conformal plans regarding target coverage and dose homogeneity, they were compared with standard irradiation plans. Methods and Materials: Fifteen patients with stage III/IV head and neck cancer requiring comprehensive, bilateral neck irradiation participated in this study. CT-based treatment plans included five to six nonopposed fields, each having two to four in-field segments. Fields and segments were devised using beam's eye views of the planning target volumes (PTVs), noninvolved organs, and isodose surfaces, to achieve homogeneous dose distribution that encompassed the targets and spared major salivary gland tissue. For comparison, standard three-field radiation plans were devised retrospectively for each patient, with the same CT-derived targets used for the clinical (conformal) plans. Saliva flow rates from each major salivary gland were measured before and periodically after treatment. Results: On average, the minimal dose to the primary PTVs in the conformal plans [95.2% of the prescribed dose, standard deviation (SD) 4%] was higher than in the standard plans (91%, SD 7%; p = 0.02), and target volumes receiving <95% or <90% of the prescribed dose were smaller in the conformal plans (p = 0.004 and 0.02, respectively). Similar advantages of the conformal plans compared to standard plans were found in ipsilateral jugular nodes PTV coverage. The reason for underdosing in the standard treatment plans was primarily failure of electron beams to fully encompass targets. No significant differences were found in contralateral jugular or posterior neck nodes coverage. The minimal dose to the retropharyngeal nodes was higher in the standard plans. However, all conformal plans

  4. Effect of residual patient motion on dose distribution during image-guided robotic radiosurgery for skull tracking based on log file analysis

    International Nuclear Information System (INIS)

    Inoue, Mitsuhiro; Shiomi, Hiroya; Sato, Kengo

    2014-01-01

    The present study aimed to assess the effect of residual patient motion on dose distribution during intracranial image-guided robotic radiosurgery by analyzing the system log files. The dosimetric effect was analyzed according to the difference between the original and estimated dose distributions, including targeting error, caused by residual patient motion between two successive image acquisitions. One hundred twenty-eight treatments were analyzed. Forty-two patients were treated using the isocentric plan, and 86 patients were treated using the conformal (non-isocentric) plan. The median distance from the imaging center to the target was 55 mm, and the median interval between the acquisitions of sequential images was 79 s. The median translational residual patient motion was 0.1 mm for each axis, and the rotational residual patient motion was 0.1 deg for Δpitch and Δroll and 0.2 deg for Δyaw. The dose error for D 95 was within 1% in more than 95% of cases. The maximum dose error for D 10 to D 90 was within 2%. None of the studied parameters, including the interval between the acquisitions of sequential images, was significantly related to the dosimetric effect. The effect of residual patient motion on dose distribution was minimal. (author)

  5. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    Directory of Open Access Journals (Sweden)

    Daniel L Saenz

    2014-01-01

    Full Text Available ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60 with 0.35 Tesla magnetic resonance imaging (MRI allows for magnetic resonance (MR-guided intensity-modulated radiation therapy (IMRT delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI, conformity index (CI, and volume receiving <20% of prescription dose (DRx were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95 had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  6. Conventional (2D) Versus Conformal (3D) Techniques in Radiotherapy for Malignant Pediatric Tumors: Dosimetric Perspectives

    International Nuclear Information System (INIS)

    Ahmad, N.; Attia, G.; Radwan, A.; El-Badawy, S.; El-Ghoneimy, E.

    2009-01-01

    Objectives: In pediatric radiotherapy, the enhanced radiosensitivity of the developing tissues combined with the high overall survival, raise the possibility of late complications. The present study aims at comparing two dimensional (2D) and three dimensional (3D) planning regarding dose homogeneity within target volume and dose to organs at risk (OARs) to demonstrate the efficacy of 3D in decreasing dose to normal tissue. Material and Methods: Thirty pediatric patients (18 years or less) with different pediatric tumors were planned using 2D and 3D plans. All were CT scanned after proper positioning and immobilization. Structures were contoured; including the planning target volume (PTV) and organs at risk (OARs). Conformal beams were designed and dose distribution analysis was edited to provide the best dose coverage to the PTV while sparing OARs using dose volume histograms (DVHs) of outlined structures. For the same PTVs conventional plans were created using the conventional simulator data (2-4 coplanar fields). Conventional and 3D plans coverage and distribution were compared using the term of V95% (volume of PTV receiving 95% of the prescribed dose), V107% (volume of PTV receiving 107% of the prescribed dose), and conformity index (CI) (volume receiving 90% of the prescribed dose/PTV). Doses received by OARs were compared in terms of mean dose. In children treated for brain lesions, OAR volume received 90% of the dose (V 90%) and OAR score were calculated. Results: The PTV coverage showed no statistical difference between 2D and 3D radiotherapy in terms of V95% or V107%. However, there was more conformity in 3D planning with CI 1.43 rather than conventional planning with CI 1.86 (p-value <0.001). Regarding OARs, 3D planning shows large gain in healthy tissue sparing. There was no statistical difference in mean dose received by each OAR. However, for brain cases, brain stem mean dose and brain V 90% showed better sparing in 3D planning (brain stem mean dose was

  7. Potential clinical efficacy of intensity-modulated conformal therapy

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Mendenhall, William M.; Zlotecki, Robert A.

    1998-01-01

    Purpose: The purpose of this study was to examine the potential benefit of using intensity-modulated conformal therapy for a variety of lesions currently treated with stereotactic radiosurgery or conventional radiotherapy. Methods and Materials: Intensity-modulated conformal treatment plans were generated for small intracranial lesions, as well as head and neck, lung, breast, and prostate cases, using the Peacock Plan[reg] treatment-planning system (Nomos Corporation). For small intracranial lesions, intensity-modulated conformal treatment plans were compared with stereotactic radiosurgery treatment plans generated for patient treatment at the University of Florida Shands Cancer Center. For other sites (head and neck, lung, breast, and prostate), plans generated using the Peacock Plan[reg] were compared with conventional treatment plans, as well as beam's-eye-view conformal treatment plans. Plan comparisons were accomplished through conventional qualitative review of two-dimensional (2D) dose distributions in conjunction with quantitative techniques, such as dose-volume histograms, dosimetric statistics, normal tissue complication probabilities, tumor control probabilities, and objective numerical scoring. Results: For small intracranial lesions, there is little difference between intensity-modulated conformal treatment planning and radiosurgery treatment planning in the conformation of high isodose lines with the target volume. However, stereotactic treatment planning provides a steeper dose gradient outside the target volume and, hence, a lower normal tissue toxicity index. For extracranial sites, objective numerical scores for beam's-eye-view and intensity-modulated conformal planning techniques are superior to scores for conventional treatment plans. The beam's-eye-view planning technique prevents geographic target misses and better excludes healthy tissues from the treatment portal. Compared with scores for the beam's-eye-view planning technique, scores for

  8. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    slower than the planning day. In contrast, DRRT method showed less than 1% reduction in target dose and no noticeable change in OAR dose under the same breathing period irregularities. When ±20% variation of target motion amplitude was present as breathing irregularity, the two delivery methods show compatible plan quality if the dose distribution of CDRT delivery is renormalized. Conclusions: Delivery of 4D-IMRT treatment plans, stemmed from 3D step-and-shoot IMRT and preprogrammed using SAM algorithm, is simulated for two dynamic MLC-based real-time tumor tracking strategies: with and without dose-rate regulation. Comparison of cumulative dose distribution indicates that the preprogrammed 4D plan is more accurately and efficiently conformed using the DRRT strategy, as it compensates the interplay between patient breathing irregularity and tracking delivery without compromising the segment-weight modulation.

  9. Phantoms for IMRT dose distribution measurement and treatment verification

    International Nuclear Information System (INIS)

    Low, Daniel A.; Gerber, Russell L.; Mutic, Sasa; Purdy, James A.

    1998-01-01

    Background: The verification of intensity-modulated radiation therapy (IMRT) patient treatment dose distributions is currently based on custom-built or modified dose measurement phantoms. The only commercially available IMRT treatment planning and delivery system (Peacock, NOMOS Corp.) is supplied with a film phantom that allows accurate spatial localization of the dose distribution using radiographic film. However, measurements using other dosimeters are necessary for the thorough verification of IMRT. Methods: We have developed a phantom to enable dose measurements using a cylindrical ionization chamber and the localization of prescription isodose curves using a matrix of thermoluminescent dosimetry (TLD) chips. The external phantom cross-section is identical to that of the commercial phantom, to allow direct comparisons of measurements. A supplementary phantom has been fabricated to verify the IMRT dose distributions for pelvis treatments. Results: To date, this phantom has been used for the verification of IMRT dose distributions for head and neck and prostate cancer treatments. Designs are also presented for a phantom insert to be used with polymerizing gels (e.g., BANG-2) to obtain volumetric dose distribution measurements. Conclusion: The phantoms have proven useful in the quantitative evaluation of IMRT treatments

  10. Dose/volume–response relations for rectal morbidity using planned and simulated motion-inclusive dose distributions

    International Nuclear Information System (INIS)

    Thor, Maria; Apte, Aditya; Deasy, Joseph O.; Karlsdóttir, Àsa; Moiseenko, Vitali; Liu, Mitchell; Muren, Ludvig Paul

    2013-01-01

    Background and purpose: Many dose-limiting normal tissues in radiotherapy (RT) display considerable internal motion between fractions over a course of treatment, potentially reducing the appropriateness of using planned dose distributions to predict morbidity. Accounting explicitly for rectal motion could improve the predictive power of modelling rectal morbidity. To test this, we simulated the effect of motion in two cohorts. Materials and methods: The included patients (232 and 159 cases) received RT for prostate cancer to 70 and 74 Gy. Motion-inclusive dose distributions were introduced as simulations of random or systematic motion to the planned dose distributions. Six rectal morbidity endpoints were analysed. A probit model using the QUANTEC recommended parameters was also applied to the cohorts. Results: The differences in associations using the planned over the motion-inclusive dose distributions were modest. Statistically significant associations were obtained with four of the endpoints, mainly at high doses (55–70 Gy), using both the planned and the motion-inclusive dose distributions, primarily when simulating random motion. The strongest associations were observed for GI toxicity and rectal bleeding (Rs = 0.12–0.21; Rs = 0.11–0.20). Applying the probit model, significant associations were found for tenesmus and rectal bleeding (Rs = 0.13, p = 0.02). Conclusion: Equally strong associations with rectal morbidity were observed at high doses (>55 Gy), for the planned and the simulated dose distributions including in particular random rectal motion. Future studies should explore patient-specific descriptions of rectal motion to achieve improved predictive power

  11. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions

    International Nuclear Information System (INIS)

    Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R

    2003-01-01

    The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust

  12. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  13. [Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].

    Science.gov (United States)

    Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M

    2017-10-01

    Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  14. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    International Nuclear Information System (INIS)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-01-01

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  15. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O. [Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil); Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, B1002 WIMR, Madison, Wisconsin 53705-2275 (United States); Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil)

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  16. TH-EF-BRB-04: 4π Dynamic Conformal Arc Therapy Dynamic Conformal Arc Therapy (DCAT) for SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Long, T; Tian, Z.; Yan, Y; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States); Modiri, A; Sawant, A [University of Maryland in Baltimore, Baltimore, MD (United States)

    2016-06-15

    Purpose: To develop an efficient and effective trajectory optimization methodology for 4π dynamic conformal arc treatment (4π DCAT) with synchronized gantry and couch motion; and to investigate potential clinical benefits for stereotactic body radiation therapy (SBRT) to breast, lung, liver and spine tumors. Methods: The entire optimization framework for 4π DCAT inverse planning consists of two parts: 1) integer programming algorithm and 2) particle swarm optimization (PSO) algorithm. The integer programming is designed to find an optimal solution for arc delivery trajectory with both couch and gantry rotation, while PSO minimize a non-convex objective function based on the selected trajectory and dose-volume constraints. In this study, control point interaction is explicitly taken into account. Beam trajectory was modeled as a series of control points connected together to form a deliverable path. With linear treatment planning objectives, a mixed-integer program (MIP) was formulated. Under mild assumptions, the MIP is tractable. Assigning monitor units to control points along the path can be integrated into the model and done by PSO. The developed 4π DCAT inverse planning strategy is evaluated on SBRT cases and compared to clinically treated plans. Results: The resultant dose distribution of this technique was evaluated between 3D conformal treatment plan generated by Pinnacle treatment planning system and 4π DCAT on a lung SBRT patient case. Both plans share the same scale of MU, 3038 and 2822 correspondingly to 3D conformal plan and 4π DCAT. The mean doses for most of OARs were greatly reduced at 32% (cord), 70% (esophagus), 2.8% (lung) and 42.4% (stomach). Conclusion: Initial results in this study show the proposed 4π DCAT treatment technique can achieve better OAR sparing and lower MUs, which indicates that the developed technique is promising for high dose SBRT to reduce the risk of secondary cancer.

  17. Consequences of Anatomic Changes and Respiratory Motion on Radiation Dose Distributions in Conformal Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Britton, Keith R.; Starkschall, George; Liu, Helen; Chang, Joe Y.; Bilton, Stephen; Ezhil, Muthuveni; John-Baptiste, Sandra C.; Kantor, Michael; Cox, James D.; Komaki, Ritsuko; Mohan, Radhe

    2009-01-01

    Purpose: To determine the effect of interfractional changes in anatomy on the target and normal tissue dose distributions during course of radiotherapy in non-small-cell lung cancer patients. Methods and Materials: Weekly respiration-correlated four-dimensional computed tomography scans were acquired for 10 patients. Original beam arrangements from conventional and inverse treatment plans were transferred into each of the weekly four-dimensional computed tomography data sets, and the dose distributions were recalculated. Dosimetric changes to the target volumes and relevant normal structures relative to the baseline treatment plans were analyzed by dose-volume histograms. Results: The overall difference in the mean ± standard deviation of the doses to 95% of the planning target volume and internal target volume between the initial and weekly treatment plans was -11.9% ± 12.1% and -2.5% ± 3.9%, respectively. The mean ± standard deviation change in the internal target volume receiving 95% of the prescribed dose was -2.3% ± 4.1%. The overall differences in the mean ± standard deviation between the initial and weekly treatment plans was 3.1% ± 6.8% for the total lung volume exceeding 20 Gy, 2.2% ± 4.8% for mean total lung dose, and 34.3% ± 43.0% for the spinal cord maximal dose. Conclusion: Serial four-dimensional computed tomography scans provided useful anatomic information and dosimetric changes during radiotherapy. Although the observed dosimetric variations were small, on average, the interfractional changes in tumor volume, mobility, and patient setup was sometimes associated with dramatic dosimetric consequences. Therefore, for locally advanced lung cancer patients, efforts to include image-guided treatment and to perform repeated imaging during the treatment course are recommended

  18. Investigation of the HU-density conversion method and comparison of dose distribution for dose calculation on MV cone beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Joo; Lee, Seu Ran; Suh, Tae Suk [Dept. of Biomedical Engineering, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2011-11-15

    Modern radiation therapy techniques, such as Image-guided radiation therapy (IGRT), Adaptive radiation therapy (ART) has become a routine clinical practice on linear accelerators for the increase the tumor dose conformity and improvement of normal tissue sparing at the same time. For these highly developed techniques, megavoltage cone beam computed tomography (MVCBCT) system produce volumetric images at just one rotation of the x-ray beam source and detector on the bottom of conventional linear accelerator for real-time application of patient condition into treatment planning. MV CBCT image scan be directly registered to a reference CT data set which is usually kilo-voltage fan-beam computed tomography (kVFBCT) on treatment planning system and the registered image scan be used to adjust patient set-up error. However, to use MV CBCT images in radiotherapy, reliable electron density (ED) distribution are required. Patients scattering, beam hardening and softening effect caused by different energy application between kVCT, MV CBCT can cause cupping artifacts in MV CBCT images and distortion of Houns field Unit (HU) to ED conversion. The goal of this study, for reliable application of MV CBCT images into dose calculation, MV CBCT images was modified to correct distortion of HU to ED using the relationship of HU and ED from kV FBCT and MV CBCT images. The HU-density conversion was performed on MV CBCT image set using Dose difference map was showing in Figure 1. Finally, percentage differences above 3% were reduced depending on applying density calibration method. As a result, total error co uld be reduced to under 3%. The present study demonstrates that dose calculation accuracy using MV CBCT image set can be improved my applying HU-density conversion method. The dose calculation and comparison of dose distribution from MV CBCT image set with/without HU-density conversion method was performed. An advantage of this study compared to other approaches is that HU

  19. Interim report of image-guided conformal high-dose-rate brachytherapy for patients with unfavorable prostate cancer: the William Beaumont Phase II dose-escalating trial

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Kestin, Larry L.; Stromberg, Jannifer S.; Gonzalez, Jose A.; Wallace, Michelle; Gustafson, Gary S.; Edmundson, Gregory K.; Spencer, William; Vicini, Frank A.

    2000-01-01

    Purpose: We analyzed our institution's experience treating patients with unfavorable prostate cancer in a prospective Phase II dose-escalating trial of external beam radiation therapy (EBRT) integrated with conformal high-dose-rate (HDR) brachytherapy boosts. This interim report discusses treatment outcome and prognostic factors using this treatment approach. Methods and Materials: From November 1991 through February 1998, 142 patients with unfavorable prostate cancer were prospectively treated in a dose-escalating trial with pelvic EBRT in combination with outpatient HDR brachytherapy at William Beaumont Hospital. Patients with any of the following characteristics were eligible: pretreatment prostate-specific antigen (PSA) ≥ 10.0 ng/ml, Gleason score ≥ 7, or clinical stage T2b or higher. All patients received pelvic EBRT to a median total dose of 46.0 Gy. Pelvic EBRT was integrated with ultrasound-guided transperineal conformal interstitial iridium-192 HDR implants. From 1991 to 1995, 58 patients underwent three conformal interstitial HDR implants during the first, second, and third weeks of pelvic EBRT. After October 1995, 84 patients received two interstitial implants during the first and third weeks of pelvic EBRT. The dose delivered via interstitial brachytherapy was escalated from 5.50 Gy to 6.50 Gy for each implant in those patients receiving three implants, and subsequently, from 8.25 Gy to 9.50 Gy per fraction in those patients receiving two implants. To improve implant quality and reduce operator dependency, an on-line, image-guided interactive dose optimization program was utilized during each HDR implant. No patient received hormonal therapy unless treatment failure was documented. The median follow-up was 2.1 years (range: 0.2-7.2 years). Biochemical failure was defined according to the American Society for Therapeutic Radiology and Oncology Consensus Panel definition. Results: The pretreatment PSA level was ≥ 10.0 ng/ml in 51% of patients. The

  20. Effect of Concurrent High-Dose Cisplatin Chemotherapy and Conformal Radiotherapy on Cervical Esophageal Cancer Survival

    International Nuclear Information System (INIS)

    Huang Shaohui; Lockwood, Gina; Brierley, James; Cummings, Bernard; Kim, John; Wong, Rebecca; Bayley, Andrew; Ringash, Jolie

    2008-01-01

    Purpose: To determine whether a change in treatment policy to conformal, elective nodal radiotherapy and concurrent high-dose cisplatin improved survival for cervical esophageal cancer patients. Methods and Materials: All cervical esophageal cancer patients treated between 1997 and 2005 were restaged (1983 American Joint Committee on Cancer criteria). Patients treated before 2001 (previous cohort [PC]) were compared with those treated from 2001 onward (recent cohort [RC]). The PC institutional chemoradiotherapy protocol was 54 Gy in 20 fractions within 4 weeks, with 5-fluorouracil (1,000 mg/m 2 ) on Days 1-4 and either mitomycin C (10 mg/m 2 ) or cisplatin (75 mg/m 2 ) on Day 1. The RC institutional chemoradiotherapy protocol was conformal radiotherapy, 70 Gy in 35 fractions within 7 weeks, to the primary tumor and elective nodes, with high-dose cisplatin (100 mg/m 2 ) on Days 1, 22, and 43. Results: The median follow-up was 3.1 years (PC, 8.1 and RC, 2.3). Of 71 patients (25 women and 46 men), 21 of 29 in the PC and 29 of 42 in the RC were treated curatively (curative subgroup, n = 50). Between the two groups, no differences in overall survival or locoregional relapse-free survival were seen. The overall survival rate at 2 and 5 years was 35% (range, 24-47%) and 21% (range, 12-32%) in the whole group and 46% (range 32-60%) and 28% (range, 15-42%) in the curative group, respectively. In the curative group, no statistically significant prognostic factors were found. Trends toward better locoregional relapse-free survival were seen in women (2-year rate, 73% vs. for men, 36%; p = 0.08) and in patients aged >64 years (2-year rate, 68% vs. age ≤64 years, 34%; p = 0.10). Conclusion: No survival improvement could be demonstrated after changing the treatment policy to high-dose cisplatin-based, conventionally fractionated conformal chemoradiotherapy. Female gender and older age might predict for better outcomes

  1. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    Science.gov (United States)

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  2. Reappraisal of the reference dose distribution in the UNSCEAR 1977 report

    International Nuclear Information System (INIS)

    Kumazawa, Shigeru

    2008-01-01

    This paper provides the update of the reference dose distribution proposed by G.A.M. Web and D. Beninson in Annex E to the UNSCEAR 1977 Report. To demonstrate compliance with regulatory obligations regarding doses to individuals, they defined it with the following properties: 1) The distribution of annual doses is log-normal; 2) The mean of the annual dose distribution is 5 m Gy (10% of the ICRP 1977 dose limit); 3) The proportion of workers exceeding 50 m Gy is 0.1%. The concept of the reference dose distribution is still important to understand the inherent variation of individual doses to workers controlled by source-related and individual-related efforts of best dose reduction. In the commercial nuclear power plant, the dose distribution becomes the more apart from the log-normal due to the stronger ALARA efforts and the revised dose limits. The monitored workers show about 1 m Sv of annual mean and far less than 0.1% of workers above 20 m Sv. The updated models of dose distribution consist of log-normal (no feedback on dose X) ln(X)∼N(μ,σ 2 ), hybrid log-normal (feedback on higher X by ρ) hyb(ρX)=ρX+ln(ρX)∼N(μ,σ 2 ), hybrid S B (feedback on higher dose quotient X/(D-X) not close to D by ρ) hyb[ρX/(D.X)]∼N(μ,σ 2 ) and Johnson's S B (limit to D) ln[X/(D-X)]∼N(μ,σ 2 ). These models afford interpreting the degree of dose control including dose constraint/limit to the reference distribution. Some of distributions are examined to characterize the variation of doses to members of the public with uncertainty. (author)

  3. Dose distributions in electron irradiated plastic tubing

    International Nuclear Information System (INIS)

    Miller, A.; Pederson, W.B.

    1981-01-01

    Plastic tubes have been crosslinked by irradiation at a 10 MeV linear electron accelerator and at a 400 keV DC electron accelerator at different irradiation geometries. The diameter of the different tubes was 20, 33 and 110 millimeters. Dose distributions have been measured with thin radiochromic dye films, indicating that in all cases irradiation from two sides is a necessary and sufficient condition for obtaining a satisfactory dose distribution. (author)

  4. Gastrointestinal toxicity and its relation to dose distributions in the anorectal region of prostate cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Heemsbergen, Wilma D.; Hoogeman, Mischa S.; Hart, Guus A.M.; Lebesque, Joos V.; Koper, Peter C.M.

    2005-01-01

    Purpose: To study the correlations between the dose distributions in the anorectal region and late GI symptoms in patients treated for localized prostate carcinoma. Methods and materials: Data from a randomized study were analyzed. In this trial, patients were treated with either rectangular or conformal fields with a dose of 66 Gy. Data concerning GI symptoms were collected from questionnaires of 197 patients. The distributions of the anorectal region were projected on maps, and the dose parameters were calculated. The incidences of complaints were studied as a function of the dose-area parameters and clinical parameters, using a proportional hazard regression model. Finally, we tested a series of dose parameters originating from different parts of the anorectal region. Results: Analyzing the total region, only a statistically significant dose-area effect relation for bleeding was found (p < 0.01). Defining subareas, we found effect relations for bleeding, soiling, fecal incontinence, and mucus loss. For bleeding and mucus loss, the strongest correlation was found for the dose received by the upper 70-80% of the anorectal region (p < 0.01). For soiling and fecal incontinence, we found the strongest association with the dose to the lower 40-50% (p < 0.05). Conclusion: We found evidence that complaints originate from specific regions of the irradiated lower GI tract. Bleeding and mucus loss are probably related to irradiation of the upper part of the rectum. Soiling and fecal incontinence are more likely related to the dose to the anal canal and the lower part of the rectum

  5. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  6. Analysis of dose volume histogram parameters to estimate late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Boersma, L.J.; Brink, M. van den; Bruce, A.; Gras, L.; Velde, A. te; Lebesque, J.V.

    1997-01-01

    Purpose: To investigate whether Dose Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer, and to examine the effect of using different morbidity scoring systems on the results of these analyses. Materials and Methods: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (> 6 months) GI and GU complications was scored based on questionnaires and classified using the RTOG/EORTC and the SOMA/LENT scoring system. Moreover, patients were classified as being a rectal bleeder or no rectal bleeder and a distinction was made between non-severe and severe (requiring one or more laser treatments) rectal bleeding. The median follow-up time was 22 months. It was investigated whether the relative and absolute rectal wall volumes, irradiated to various dose levels (≥ 60 Gy, ≥ 65 Gy, ≥ 70 Gy and ≥ 75 Gy) were correlated with the observed actuarial incidences of GI complications. First, the analysis was performed using volume as a continuous variable. Subsequently, for each dose level in the DVH the rectal wall volumes were dichotomized using different volumes as cut-off levels. Twenty cut-off levels were tested on their ability to discriminate between high and low risk for developing GI complications (Fig.). The relationship between bladder wall volumes irradiated to various dose levels and observed actuarial GU complications was investigated using the absolute bladder wall volumes, measured as a continuous variable. For both GI and GU complications, the role of the prescribed radiation dose and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: None of the DVH parameters of the rectal wall was significantly correlated with the actuarial incidences of

  7. Experimental measurements of spatial dose distributions in radiosurgery treatments

    International Nuclear Information System (INIS)

    Avila-Rodriguez, M. A.; Rodriguez-Villafuerte, M.; Diaz-Perches, R.; Perez-Pastenes, M. A.

    2001-01-01

    The measurement of stereotactic radiosurgery dose distributions requires an integrating, high-resolution dosimeter capable of providing a spatial map of absorbed dose. This paper describes the use of a commercial radiochromic dye film (GafChromic MD-55-2) to measure radiosurgery dose distributions with 6 MV X-rays in a head phantom. The response of the MD-55-2 was evaluated by digitizing and analyzing the films with conventional computer systems. Radiosurgery dose distributions were measured using the radiochromic film in a spherical acrylic phantom of 16 cm diameter undergoing a typical SRS treatment as a patient, and were compared with dose distributions provided by the treatment planning system. The comparison lead to mean radial differences of ±0.6 mm, ±0.9 mm, ±1.3 mm, ±1.9 mm, and ±2.8 mm, for the 80, 60, 50, 40, and 30% isodose curves, respectively. It is concluded that the radiochromic film is a convenient and useful tool for radiosurgery treatment planning validation

  8. The MLC tongue-and-groove effect on IMRT dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States). E-mail: jun@reyes.stanford.edu; Pawlicki, Todd; Chen Yan; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-04-01

    We have investigated the tongue-and-groove effect on the IMRT dose distributions for a Varian MLC. We have compared the dose distributions calculated using the intensity maps with and without the tongue-and-groove effect. Our results showed that, for one intensity-modulated treatment field, the maximum tongue-and-groove effect could be up to 10% of the maximum dose in the dose distributions. For an IMRT treatment with multiple gantry angles ({>=} 5), the difference between the dose distributions with and without the tongue-and-groove effect was hardly visible, less than 1.6% for the two typical clinical cases studied. After considering the patient setup errors, the dose distributions were smoothed with reduced and insignificant differences between plans with and without the tongue-and-groove effect. Therefore, for a multiple-field IMRT plan ({>=} 5), the tongue-and-groove effect on the IMRT dose distributions will be generally clinically insignificant due to the smearing effect of individual fields. The tongue-and-groove effect on an IMRT plan with small number of fields (<5) will vary depending on the number of fields in a plan (coplanar or non-coplanar), the MLC leaf sequences and the patient setup uncertainty, and may be significant (>5% of maximum dose) in some cases, especially when the patient setup uncertainty is small ({<=} 2 mm). (author)

  9. Dose distribution of IMRT and 3D-CRT on treating central non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Zhu Xiaoyang; Yu Guangwei

    2010-01-01

    3D-CRT and IMRT were used in the radiation therapy of Central Non-small-cell lung cancer (NSCLC), and the dose difference of the methods was estimated. Thirty-two patients suffering with II class NSCLC were selected. Based on CT images, each patient was given 1 3D-CRT (3 dimensional conformal radiotherapy) and 2 IMRT(intensity modulated radiation therapy) treatment plans (5 fields and 7 fields), respectively, and the dose distribution was evaluated too. The results showed that PTVD mean and the PTV max , PTVD max (%) and CI of IMRT were both higher than those of 3D-CRT, but the uniformity was not as good as 3D-CRT. All indexes of lung and spinal cord treated with IMRT were lower than that treated with 3D-CRT. Moreover, there was no significance of the difference between 5 fields and 7 fields. In a conclusion, IMRT could not only decrease the target dose of NSCLC, but it can protect normal tissue from radiation damage effectively. And when IMRT was used, 5 fields might be enough. (authors)

  10. New dose limits and distribution of annual doses for controlled groups

    International Nuclear Information System (INIS)

    Vukcevic, M.; Stankovic, S.; Kovacevic, M.

    1993-01-01

    The new calculations of neutron doses received by the population of Hiroshima and Nagasaki, as well as the epidemiological data on the incidence of fatal cancers in the survivors, had led to the conclusion that the risk estimates should be raised by the factor 2 or 3. In this work, the distribution of monthly doses for occupationals was analysed in order to determine the percent of workers who might be considered as overexposed, on the basis of the new dose limits. (author)

  11. The dose distribution surrounding 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Mackie, T.R.; Wisconsin Univ., Madison, WI; Lindstrom, M.J.; Higgins, P.D.

    1991-01-01

    Dose distributions in water were measured using LiF thermoluminescent dosemeters for 192 Ir seed sources with stainless steel and with platinum encapsulation to determine the effect of differing encapsulation. Dose distribution was measured for a 137 Cs seed source. In addition, dose distributions surrounding these sources were calculated using the EGS4 Monte Carlo code and were compared to measured data. The two methods are in good agreement for all three sources. Tables are given describing dose distribution surrounding each source as a function of distance and angle. Specific dose constants were also determined from results of Monte Carlo simulation. This work confirms the use of the EGS4 Monte Carlo code in modelling 192 Ir and 137 Cs seed sources to obtain brachytherapy dose distributions. (author)

  12. Dose distribution of non-coplanar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Toshiharu; Wada, Yoichi; Takenaka, Eiichi

    1987-02-01

    Non-coplanar irradiations were applied to the treatment of brain tumor. The dose distribution around the target area due to non-coplanar irradiation was half less than the dose when coplanar irradiation used. Integral volume dose due to this irradiation was not always less than that due to conventional opposing or rotational irradiation. This irradiation has the better application to the following;as a boost therapy, glioblastoma multiforme;as a radical therapy, recurrent brain tumor, well differentiated brain tumor such as craniopharyngioma, hypophyseal tumor etc and AV-malformation.

  13. A new approach to the estimation of radiopharmaceutical radiation dose distributions

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Wood, N.R.

    1975-03-01

    For a photon energy of 150 keV, the Monte Carlo technique of photon history simulation was used to obtain estimates of the dose distribution in a human phantom for three activity distributions relevant to diagnostic nuclear medicine. In this preliminary work, the number of photon histories considered was insufficient to produce complete dose contours and the dose distributions are presented in the form of colour-coded diagrams. The distribution obtained illustrate an important deficiency in the MIRD Schema for dose estimation. Although the Schema uses the same mathematical technique for calculating photon doses, the results are obtained as average values for the whole body and for complete organs. It is shown that the actual dose distributions, particularly those for the whole body may, differ significantly from the average value calculated using the MIRD Schema and published absorbed fractions. (author)

  14. Comparison of dosimetry distribution between three-dimension conformal and intensity modulated plan integrated with breath motion in postoperative radiation of gastric cancer

    International Nuclear Information System (INIS)

    Sun Wenjie; Zhang Zhen; Hu Weigang; Gu Weilie; Zhu Ji; Li Guichao; Cai Gang; Ma Xuejun

    2010-01-01

    Objective: To compare the dose distribution of the target and normal tissues in gastric cancers between three-dimension conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) plan when respiratory motion factors integrated in the plan. Methods: From January 2005 to November 2006, 10 patients with post-operatively radiation of gastric cancer were enrolled in this study. Planning CT were acquired conventionally with free-breath mode and the static treatment plans of the 3DCRT and IMRT were designed respectively. Probability distribution functions (PDF) were generated and convoluted with the static dose distributions from 3DCRT and IMRT plans to obtain the integrated plans. The dose distributions of the target and normal tissues were compared between 3DCRT and IMRT integration treatment plans, such as V 45 of clinical target volume, V 40 of liver and V 15 , V 18 of left and right kidney. Results: In the respiratory integrated treatment planning, the target volume coverage and homogeneity with IMRT are superior to those with 3DCRT ((V 45 98% : 87% (t = -3.35, P =0.010), mean dose 46.81 Gy ±0.75 Gy : 45.99 Gy ± 1.12 Gy (t = -0.31, P=0.020)). The V 40 of the liver in IMRT are smaller than those in 3DCRT ( 12% : 16%; t=3.75, P=0.010). For the left kidney, the V 15 and V 18 in IMRT are smaller than those in 3DCRT ((34% : 50% (t = 2.17, P = 0.050) and 27% : 46% (t = 3.11, P = 0.020) ),but for the right kidney, V 15 and V 18 in 3DCRT are smaller than those in IMRT ((15% : 21% (t = - 2.42, P=0.040) and 11% : 15% (t= -2.71, P=0.030)). Conclusions: When respiratory motion factor integrated in the treatment plan, IMRT showed advantage both in target coverage and normal tissue sparing in the high dose region of liver and left kidney. (authors)

  15. Conformity Index and Homogeneity Index of the Postoperative Whole Breast Radiotherapy.

    Science.gov (United States)

    Petrova, Deva; Smickovska, Snezana; Lazarevska, Emilija

    2017-10-15

    The treatment of breast cancer involves a multidisciplinary approach in which radiotherapy plays a key role. The conformity index and the homogeneity index are two analysis tools of a treatment plan using conformal radiotherapy. The purpose of this article is an analysis of these two parameters in the assessment of the treatment plans in 58 patients undergoing postoperative radiotherapy of the whole breast. All 58 patients participating in the study had a conservatively treated early-stage breast cancer. The treatment was performed using a standard regimen of fractionation in 25 fractions up to a total dose of 50 Gy. Dose-volume histograms were generated for both plans with and without segmental fields. Pair samples t-test was used. The technique with segmental fields allowed us more homogeneity distribution when compared to standard two tangential field techniques. The HI values were 1.08 ± 0.01 and 1.09 ± 0.01 for segment and technique with two tangential fields (p conformity and the homogeneity index are important tools in the analysis of the treatment plans during radiation therapy in patients with early-stage breast cancer. Adding segment fields in the administration of radiotherapy in patients with conservatively treated breast cancer can lead to improved dosage homogeneity and conformity.

  16. Conformal technique dose escalation in prostate cancer: improved cancer control with higher doses in patients with pretreatment PSA {>=} 10 ngm/ml

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, G E; Lee, W R; Hanlon, A L; Kaplan, E; Epstein, B; Schultheiss, T

    1995-07-01

    Purpose: Single institutions and an NCI supported group of institutions have been investigating the value of dose escalation in patients with prostate cancer treated by conformal treatment techniques. Improvement in morbidity has been previously established, while this report identifies the pretreatment PSA level subgroups of patients who benefitted in cancer control from higher dose. Materials and Methods: We report actuarial bNED survival rates for 375 consecutive patients with known pretreatment PSA levels treated with conformal technique between 5/89 and 12/93. The whole pelvis was treated to 45 Gy in 25 fractions in all T2C,3, all Gleason 8, 9, 10 and all patients with pretreatment PSA {>=}20. The prostate {+-} seminal vesicles was boosted at 2.1 Gy/day to the center of the prostate to 65-79 Gy (65-69 N=50), 70-72.49 N=94, 72.5-74.9 N=82, 75-77.49 N=129 and {>=}77.5 N=20). The median followup is 21 mos with a range of 3 to 67 mos. The highest dose patients have the least followup, reducing the impact of the highest dose levels at this time. Patients are analyzed for the entire group divided at 71 Gy and at 73 Gy calculated at the center of the prostate. Each dose group is then subdivided by pretreatment PSA levels <10, 10-19.9, and {>=}20 ngm/ml and dose levels are compared within pretreatment PSA level group. bNED failure is defined as PSA {>=}1.5 ngm/ml and rising on two consecutive values. Results: Table 1 shows the bNED survival rates at 24 and 36 mos for all patients and the three pretreatment PSA level groups. For all patients pooled, there is an overall advantage to using doses {>=}71 Gy (64% vs 85% at 36 mo, p=.006) and {>=}73 Gy (71% vs 86% at 36 mo, p=.07). The subgroup of PSA <10 ngm/ml, however, shows no benefit in bNED survival when using doses over 71 Gy (90% vs 93% at 36 mo) or 73 Gy (91 vs 94% at 36 mo). The subgroup PSA 10 ngm/ml to 19.9 ngm/ml shows improved cancer control when using doses over 71 Gy (61% vs 88% at 36 mo, p=.03) and over 73

  17. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.; Dias, Humberto G.

    2013-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  18. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.

    2015-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  19. Distribution of exposure concentrations and doses for constituents of environmental tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    LaKind, J.S. [LaKind Associates (United States); Ginevan, M.E. [M.E. Ginevan and Associates (United States); Naiman, D.Q. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Mathematical Sciences; James, A.C. [A.C. James and Associates (United States); Jenkins, R.A. [Oak Ridge National Lab., TN (United States); Dourson, M.L.; Felter, S.P. [TERA (United States); Graves, C.G.; Tardiff, R.G. [Sapphire Group, Inc., Bethesda, MD (United States)

    1999-06-01

    The ultimate goal of the research reported in this series of three articles is to derive distributions of doses of selected environmental tobacco smoke (ETS)-related chemicals for nonsmoking workers. This analysis uses data from the 16-City Study collected with personal monitors over the course of one workday in workplaces where smoking occurred. In this article, the authors describe distributions of ETS chemical concentrations and the characteristics of those distributions for the workplace exposure. Next, they present population parameters relevant for estimating dose distributions and the methods used for estimating those dose distributions. Finally, they derive distributions of doses of selected ETS-related constituents obtained in the workplace for people in smoking work environments. Estimating dose distributions provided information beyond the usual point estimate of dose and showed that the preponderance of individuals exposed to ETS in the workplace were exposed at the low end of the dose distribution curve. The results of this analysis include estimations of hourly maxima and time-weighted average (TWA) doses of nicotine from workplace exposures to ETS and doses derived from modeled lung burdens of ultraviolet-absorbing particulate matter (UVPM) and solanesol resulting from workplace exposures to ETS (extrapolated from 1 day to 1 year).

  20. A computer-controlled conformal radiotherapy system. IV: Electronic chart

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; McShan, Daniel L.; Matrone, Gwynne M.; Weaver, Tamar A.; Lewis, James D.; Kessler, Marc L.

    1995-01-01

    Purpose: The design and implementation of a system for electronically tracking relevant plan, prescription, and treatment data for computer-controlled conformal radiation therapy is described. Methods and Materials: The electronic charting system is implemented on a computer cluster coupled by high-speed networks to computer-controlled therapy machines. A methodical approach to the specification and design of an integrated solution has been used in developing the system. The electronic chart system is designed to allow identification and access of patient-specific data including treatment-planning data, treatment prescription information, and charting of doses. An in-house developed database system is used to provide an integrated approach to the database requirements of the design. A hierarchy of databases is used for both centralization and distribution of the treatment data for specific treatment machines. Results: The basic electronic database system has been implemented and has been in use since July 1993. The system has been used to download and manage treatment data on all patients treated on our first fully computer-controlled treatment machine. To date, electronic dose charting functions have not been fully implemented clinically, requiring the continued use of paper charting for dose tracking. Conclusions: The routine clinical application of complex computer-controlled conformal treatment procedures requires the management of large quantities of information for describing and tracking treatments. An integrated and comprehensive approach to this problem has led to a full electronic chart for conformal radiation therapy treatments

  1. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Huang, Eugene H.; Pollack, Alan; Levy, Larry; Starkschall, George; Lei Dong; Rosen, Isaac; Kuban, Deborah A.

    2002-01-01

    Purpose: To identify dosimetric, anatomic, and clinical factors that correlate with late rectal toxicity after three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Methods and Materials: We retrospectively analyzed the dose-volume histograms and clinical records of 163 Stage T1b-T3c prostate cancer patients treated between 1992 and 1999 with 3D-CRT, to a total isocenter dose of 74-78 Gy at The University of Texas M. D. Anderson Cancer Center. The median follow-up was 62 months (range 24-102). All late rectal complications were scored using modified Radiation Therapy Oncology Group and Late Effects Normal Tissue Task Force criteria. The 6-year toxicity rate was assessed using Kaplan-Meier analysis and the log-rank test. A univariate proportional hazards regression model was used to test the correlation between Grade 2 or higher toxicity and the dosimetric, anatomic, and clinical factors. In a multivariate regression model, clinical factors were added to the dosimetric and anatomic variables to determine whether they significantly altered the risk of developing late toxicity. Results: At 6 years, the rate of developing Grade 2 or higher late rectal toxicity was 25%. A significant volume effect was observed at rectal doses of 60, 70, 75.6, and 78 Gy, and the risk of developing rectal complications increased exponentially as greater volumes were irradiated. Although the percentage of rectal volume treated correlated significantly with the incidence of rectal complications at all dose levels (p 3 of the rectum. Of the clinical variables tested, only a history of hemorrhoids correlated with rectal toxicity (p=0.003). Multivariate analysis showed that the addition of hemorrhoids increased the risk of toxicity for each dosimetric variable found to be significant on univariate analysis (p<0.05 for all comparisons). Conclusion: Dose-volume histogram analyses clearly indicated a volume effect on the probability of developing late rectal complications

  2. Three-dimensional conformal radiation therapy: the tomo-therapy approach

    International Nuclear Information System (INIS)

    Linthout, N.; Verellen, D.; Coninck, P. de; Bel, A.; Storme, G.

    2000-01-01

    Conformal radiation therapy allows the possibility of delivering high doses at the tumor volume whilst limiting the dose to the surrounding tissues and diminishing the secondary effects. With the example of the conformal radiation therapy used at the AZ VU8 (3DCRT and tomo-therapy), two treatment plans of a left ethmoid carcinoma will be evaluated and discussed in detail. The treatment of ethmoid cancer is technically difficult for both radiation therapy and surgery because of the anatomic constraints and patterns of local spread. A radiation therapy is scheduled to be delivered after surgical resection of the tumor. The treatment plan for the radiation therapy was calculated on a three-dimensional (3D) treatment planning system based on virtual simulation with a beam's eye view: George Sherouse's Gratis. An effort was made to make the plan as conformal and as homogeneous as possible to deliver a dose of 66 Gy in 33 fractions at the tumor bed with a maximum dose of 56 Gy to the right optic nerve and the chiasma. To establish the clinical utility and potential advantages of tomo-therapy over 3DCRT for ethmoid carcinoma, the treatment of this patient was also planned with Peacock Plant. For both treatment plans the isodose distributions and cumulative dose volume histograms (CDVH) were computed. Superimposing the CDVHs yielded similar curves for the target and an obvious improvement for organs at risk such as the chiasma, brainstem and the left eye when applying tomo-therapy. These results have also been reflected in the tumor control probabilities (equal for both plans) and the normal tissue complication probabilities (NTCP), yielding significant reductions in NTCP for tomo-therapy. The probability of uncomplicated tumor control was 52.7% for tomo-therapy against 38.3% for 3DCRT. (authors)

  3. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  4. Investigation of conformal and intensity-modulated radiation therapy techniques to determine the absorbed fetal dose in pregnant patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan; Bilge, Hatice

    2016-07-01

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealed that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.

  5. Three-dimensional (3D) real-time conformal brachytherapy - a novel solution for prostate cancer treatment Part I. Rationale and method

    International Nuclear Information System (INIS)

    Fijalkowski, M.; Bialas, B.; Maciejewski, B.; Bystrzycka, J.; Slosarek, K.

    2005-01-01

    Recently, the system for conformal real-time high-dose-rate brachytherapy has been developed and dedicated in general for the treatment of prostate cancer. The aim of this paper is to present the 3D-conformal real-time brachytherapy technique introduced to clinical practice at the Institute of Oncology in Gliwice. Equipment and technique of 3D-conformal real time brachytherapy (3D-CBRT) is presented in detail and compared with conventional high-dose-rate brachytherapy. Step-by-step procedures of treatment planning are described, including own modifications. The 3D-CBRT offers the following advantages: (1) on-line continuous visualization of the prostate and acquisition of the series of NS images during the entire procedure of planning and treatment; (2) high precision of definition and contouring the target volume and the healthy organs at risk (urethra, rectum, bladder) based on 3D transrectal continuous ultrasound images; (3) interactive on-line dose optimization with real-time corrections of the dose-volume histograms (DVHs) till optimal dose distribution is achieved; (4) possibility to overcome internal prostate motion and set-up inaccuracies by stable positioning of the prostate with needles fixed to the template; (5) significant shortening of overall treatment time; (6) cost reduction - the treatment can be provided as an outpatient procedure. The 3D- real time CBRT can be advertised as an ideal conformal boost dose technique integrated or interdigitated with pelvic conformal external beam radiotherapy or as a monotherapy for prostate cancer. (author)

  6. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  7. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  8. Verification of IMRT dose distributions using a water beam imaging system

    International Nuclear Information System (INIS)

    Li, J.S.; Boyer, Arthur L.; Ma, C.-M.

    2001-01-01

    A water beam imaging system (WBIS) has been developed and used to verify dose distributions for intensity modulated radiotherapy using dynamic multileaf collimator. This system consisted of a water container, a scintillator screen, a charge-coupled device camera, and a portable personal computer. The scintillation image was captured by the camera. The pixel value in this image indicated the dose value in the scintillation screen. Images of radiation fields of known spatial distributions were used to calibrate the device. The verification was performed by comparing the image acquired from the measurement with a dose distribution from the IMRT plan. Because of light scattering in the scintillator screen, the image was blurred. A correction for this was developed by recognizing that the blur function could be fitted to a multiple Gaussian. The blur function was computed using the measured image of a 10 cmx10 cm x-ray beam and the result of the dose distribution calculated using the Monte Carlo method. Based on the blur function derived using this method, an iterative reconstruction algorithm was applied to recover the dose distribution for an IMRT plan from the measured WBIS image. The reconstructed dose distribution was compared with Monte Carlo simulation result. Reasonable agreement was obtained from the comparison. The proposed approach makes it possible to carry out a real-time comparison of the dose distribution in a transverse plane between the measurement and the reference when we do an IMRT dose verification

  9. Ultrasound-guided high dose rate conformal brachytherapy boost in prostate cancer: treatment description and preliminary results of a phase I/II clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Jannifer; Martinez, Alvaro; Gonzalez, Jose; Edmundson, Gregory; Ohanian, Neshan; Vicini, Frank; Hollander, Jay; Gustafson, Gary; Spencer, William; Di, Yan; Brabbins, Donald

    1995-08-30

    Purpose: To improve results for locally advanced prostate cancer, a prospective clinical trial of concurrent external beam irradiation and fractionated iridium-192 (Ir-192) high dose rate (HDR) conformal boost brachytherapy was initiated. Methods and Materials: Between November 1991 and February 1994, 99 implants were performed on 33 patients with prostatic adenocarcinoma at William Beaumont Hospital. Using AJCC staging criteria, 9 patients had T2b tumors, 17 patients had T2c tumors, and 7 patients had T3 disease. Patients were treated with (a) 45.6 Gy whole pelvis external irradiation and (b) three HDR fractions of 5.5 Gy each (18 patients) or 6 Gy each (15 patients) to the prostate. Transperineal needle implants using real-time ultrasound guidance with interactive on-line isodose distributions were performed on an outpatient basis during weeks 1, 2, and 3 of external irradiation. Acute toxicity was scored using the Radiation Therapy Oncology Group (RTOG) morbidity grading system. Results: This technique of concurrent external pelvic irradiation and conformal HDR brachytherapy was well tolerated. No significant intraoperative or perioperative complications occurred. Three patients (9%) experienced Grade 3 acute toxicity (two dysuria and one diarrhea). All toxicities were otherwise Grades 1 or 2 and were primarily as expected from pelvic external irradiation. Persistent implant-related toxicities included Grades 1-2 perineal pain (12%) and hematospermia (15%). Median follow-up time was 13 months. Serum prostatic-specific antigen (PSA) levels normalized in 91% of patients (29 out of 32) within 1-14 months (median 2.8 months) after irradiation. PSA levels were progressively decreasing in the other three patients at last measurement. Prospectively planned prostatic rebiopsies done at 18 months in the first 10 patients were negative in 9 out of 10 (90%). Conclusions: Acute toxicity has been acceptable with this unique approach using conformal high dose rate Ir-192

  10. Semiflexible polymer conformation, distribution and migration in microcapillary flows

    Energy Technology Data Exchange (ETDEWEB)

    Chelakkot, Raghunath; Gompper, Gerhard [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany); Winkler, Roland G [Institute for Advanced Simulation, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2011-05-11

    The flow behavior of a semiflexible polymer in microchannels is studied using multiparticle collision dynamics, a particle-based hydrodynamic simulation technique. Conformations, distributions, and radial cross-streamline migration are investigated for various bending rigidities, with persistence lengths L{sub p} in the range 0.5 {<=} L{sub p}/L{sub r} {<=} 30. The flow behavior is governed by the competition between a hydrodynamic lift force and steric repulsion from the wall, which lead to migration away from the wall, and a locally varying flow induced orientation, which drives the polymer away from the channel center and towards the wall. The different dependences of these effects on the polymer bending rigidity and the flow velocity results in a complex dynamical behavior. However, a generic effect is the appearance of a maximum in the monomer and the center-of-mass distributions, which occurs at the channel center for small flow velocities, but moves off-center at higher velocities.

  11. Semiflexible polymer conformation, distribution and migration in microcapillary flows

    International Nuclear Information System (INIS)

    Chelakkot, Raghunath; Gompper, Gerhard; Winkler, Roland G

    2011-01-01

    The flow behavior of a semiflexible polymer in microchannels is studied using multiparticle collision dynamics, a particle-based hydrodynamic simulation technique. Conformations, distributions, and radial cross-streamline migration are investigated for various bending rigidities, with persistence lengths L p in the range 0.5 ≤ L p /L r ≤ 30. The flow behavior is governed by the competition between a hydrodynamic lift force and steric repulsion from the wall, which lead to migration away from the wall, and a locally varying flow induced orientation, which drives the polymer away from the channel center and towards the wall. The different dependences of these effects on the polymer bending rigidity and the flow velocity results in a complex dynamical behavior. However, a generic effect is the appearance of a maximum in the monomer and the center-of-mass distributions, which occurs at the channel center for small flow velocities, but moves off-center at higher velocities.

  12. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    International Nuclear Information System (INIS)

    Saenz, Daniel L.; Paliwal, Bhudatt R.; Bayouth, John E.

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 ( 60 Co) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving 60 Co ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system. (author)

  13. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans.

    Science.gov (United States)

    Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E

    2014-04-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  14. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Algan, O; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [University of Central Oklahoma, Edmond, OK (United States)

    2016-06-15

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for the stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management

  15. Dose distribution calculation for in-vivo X-ray fluorescence scanning

    International Nuclear Information System (INIS)

    Figueroa, R. G.; Lozano, E.; Valente, M.

    2013-01-01

    In-vivo X-ray fluorescence constitutes a useful and accurate technique, worldwide established for constituent elementary distribution assessment. Actually, concentration distributions of arbitrary user-selected elements can be achieved along sample surface with the aim of identifying and simultaneously quantifying every constituent element. The method is based on the use of a collimated X-ray beam reaching the sample. However, one common drawback for considering the application of this technique for routine clinical examinations was the lack of information about associated dose delivery. This work presents a complete study of the dose distribution resulting from an in-vivo X-ray fluorescence scanning for quantifying biohazard materials on human hands. Absorbed dose has been estimated by means of dosimetric models specifically developed to this aim. In addition, complete dose distributions have been obtained by means of full radiation transport calculations in based on stochastic Monte Carlo techniques. A dedicated subroutine has been developed using the Penelope 2008 main code also integrated with dedicated programs -Mat Lab supported- for 3 dimensional dose distribution visualization. The obtained results show very good agreement between approximate analytical models and full descriptions by means of Monte Carlo simulations. (Author)

  16. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  17. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    International Nuclear Information System (INIS)

    Thomsen, Kristina J.; Murray, Andrew; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution. This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally, it is an implicit assumption in such analysis that any over-dispersion is not significantly dose dependent. In this study we have undertaken laboratory investigations of the dose dependency of over-dispersion using a well-bleached modern sample with an average measured dose of 36 ± 3 mGy. This sample was prepared as heated (750 °C for 1 h), bleached and untreated portions which were then given uniform gamma doses ranging from 100 mGy to 208 Gy. We show that for these samples the relative laboratory over-dispersion is not constant as a function of dose and that the over-dispersion is smaller in heated samples. We also show that the dim grains in the distributions have a greater over-dispersion than the bright grains, implying that insensitive samples will have greater values of over-dispersion than sensitive samples.

  18. Clinical Applications of 3-D Conformal Radiotherapy

    Science.gov (United States)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  19. Dose prescription complexity versus tumor control probability in biologically conformal radiotherapy

    International Nuclear Information System (INIS)

    South, C. P.; Evans, P. M.; Partridge, M.

    2009-01-01

    The technical feasibility and potential benefits of voxel-based nonuniform dose prescriptions for biologically heterogeneous tumors have been widely demonstrated. In some cases, an ''ideal'' dose prescription has been generated by individualizing the dose to every voxel within the target, but often this voxel-based prescription has been discretized into a small number of compartments. The number of dose levels utilized and the methods used for prescribing doses and assigning tumor voxels to different dose compartments have varied significantly. The authors present an investigation into the relationship between the complexity of the dose prescription and the tumor control probability (TCP) for a number of these methods. The linear quadratic model of cell killing was used in conjunction with a number of modeled tumors heterogeneous in clonogen density, oxygenation, or proliferation. Models based on simple mathematical functions, published biological data, and biological image data were investigated. Target voxels were assigned to dose compartments using (i) simple rules based on the initial biological distribution, (ii) iterative methods designed to maximize the achievable TCP, or (iii) methods based on an ideal dose prescription. The relative performance of the simple rules was found to depend on the form of heterogeneity of the tumor, while the iterative and ideal dose methods performed comparably for all models investigated. In all cases the maximum achievable TCP was approached within the first few (typically two to five) compartments. Results suggest that irrespective of the pattern of heterogeneity, the optimal dose prescription can be well approximated using only a few dose levels but only if both the compartment boundaries and prescribed dose levels are well chosen.

  20. Conformational Effects of UV Light on DNA Origami.

    Science.gov (United States)

    Chen, Haorong; Li, Ruixin; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2017-02-01

    The responses of DNA origami conformation to UV radiation of different wavelengths and doses are investigated. Short- and medium-wavelength UV light can cause photo-lesions in DNA origami. At moderate doses, the lesions do not cause any visible defects in the origami, nor do they significantly affect the hybridization capability. Instead, they help relieve the internal stress in the origami structure and restore it to the designed conformation. At high doses, staple dissociation increases which causes structural disintegration. Long-wavelength UV does not show any effect on origami conformation by itself. We show that this UV range can be used in conjunction with photoactive molecules for photo-reconfiguration, while avoiding any damage to the DNA structures.

  1. An ill-conditioning conformal radiotherapy analysis based on singular values decomposition

    International Nuclear Information System (INIS)

    Lefkopoulos, D.; Grandjean, P.; Bendada, S.; Dominique, C.; Platoni, K.; Schlienger, M.

    1995-01-01

    Clinical experience in stereotactic radiotherapy of irregular complex lesions had shown that optimization algorithms were necessary to improve the dose distribution. We have developed a general optimization procedure which can be applied to different conformal irradiation techniques. In this presentation this procedure is tested on the stereotactic radiotherapy modality of complex cerebral lesions treated with multi-isocentric technique based on the 'associated targets methodology'. In this inverse procedure we use the singular value decomposition (SVD) analysis which proposes several optimal solutions for the narrow beams weights of each isocentre. The SVD analysis quantifies the ill-conditioning of the dosimetric calculation of the stereotactic irradiation, using the condition number which is the ratio of the bigger to smaller singular values. Our dose distribution optimization approach consists on the study of the irradiation parameters influence on the stereotactic radiotherapy inverse problem. The adjustment of the different irradiation parameters into the 'SVD optimizer' procedure is realized taking into account the ratio of the quality reconstruction to the time calculation. It will permit a more efficient use of the 'SVD optimizer' in clinical applications for real 3D lesions. The evaluation criteria for the choice of satisfactory solutions are based on the dose-volume histograms and clinical considerations. We will present the efficiency of ''SVD optimizer'' to analyze and predict the ill-conditioning in stereotactic radiotherapy and to recognize the topography of the different beams in order to create optimal reconstructed weighting vector. The planification of stereotactic treatments using the ''SVD optimizer'' is examined for mono-isocentrically and complex dual-isocentrically treated lesions. The application of the SVD optimization technique provides conformal dose distribution for complex intracranial lesions. It is a general optimization procedure

  2. Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.

    Science.gov (United States)

    Makowska, Joanna; Bagińska, Katarzyna; Kasprzykowski, F; Vila, Jorge A; Jagielska, Anna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2005-01-01

    We assessed the correlation between charge distribution and conformation of flexible peptides by comparing the theoretically calculated potentiometric-titration curves of two model peptides, Ac-Lys5-NHMe (a model of poly-L-lysine) and Ac-Lys-Ala11-Lys-Gly2-Tyr-NH2 (P1) in water and methanol, with the experimental curves. The calculation procedure consisted of three steps: (i) global conformational search of the peptide under study using the electrostatically driven Monte Carlo (EDMC) method with the empirical conformational energy program for peptides (ECEPP)/3 force field plus the surface-hydration (SRFOPT) or the generalized Born surface area (GBSA) solvation model as well as a molecular dynamics method with the assisted model building and energy refinement (AMBER)99/GBSA force field; (ii) reevaluation of the energy in the pH range considered by using the modified Poisson-Boltzmann approach and taking into account all possible protonation microstates of each conformation, and (iii) calculation of the average degree of protonation of the peptide at a given pH value by Boltzmann averaging over conformations. For Ac-Lys5-NHMe, the computed titration curve agrees qualitatively with the experimental curve of poly-L-lysine in 95% methanol. The experimental titration curves of peptide P1 in water and methanol indicate a remarkable downshift of the first pK(a) value compared to the values for reference compounds (n-butylamine and phenol, respectively), suggesting the presence of a hydrogen bond between the tyrosine hydroxyl oxygen and the H(epsilon) proton of a protonated lysine side chain. The theoretical titration curves agree well with the experimental curves, if conformations with such hydrogen bonds constitute a significant part of the ensemble; otherwise, the theory predicts too small a downward pH shift. Copyright 2005 Wiley Periodicals, Inc

  3. Optimal 3-D conformal treatment planning of posterior lateral supratentorial tumors

    International Nuclear Information System (INIS)

    Gius, David; Klein, Eric; Oehmke, Fred

    1995-01-01

    Purpose/Objective: The ability to treat the brain to greater doses is limited by normal brain tissue tolerance. With the use of 3-dimensional treatment planning dose escalation will result in increased target dose while sparing normal tissue. Treatment of the supratentorial region of the brain presents several unique difficulties due to the changing contour of the calvarium, which are especially noticeable with treatment to the posterior lateral quadrant. The use of a single wedge beam is sub-optimal and a more appropriate solution would employ a two tier wedge arrangement to better conform the isodoses around the target volume. In the past it has only been possible to use a single wedge during treatment with a single port, however, the dynamic wedge presents the opportunity to employ a two tier wedge system by simultaneously using conventional and dynamic wedging. Methods and Materials: An anthropomorphic phantom with a lesion located in the posterior lateral aspect of the brain where the external surface slopes at a maximum was configured. CT generated contours outlined the external surface, normal anatomy, gross tumor, and target volumes. We used the beam's-eye-view projection from the 3D planning system to derive the conformal beams. A standard opposed lateral and posterior oblique wedge pair beam arrangements, were compared to a three field technique (PA, lateral, and vertex) which used both a single wedge arrangement and a two-tier wedge plan. Treatment plans were evaluated by calculating isodose distribution, DVH, TCP, and NTCP. Each beam arrangement was used to treat our phantom with film placed in between the phantom layers at the tumor levels to confirm the accuracy of the 3-D system calculations. Results: The three field, two-tier wedge technique isodose distribution was significantly superior when compared to the standard 2-D plans, and a moderate improvement over the three field, single wedge technique in terms of conforming dose to the tumor and

  4. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    OpenAIRE

    Daniel L Saenz; Bhudatt R Paliwal; John E Bayouth

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This ...

  5. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, William U; Verhey, Lynn J; Munzenrider, John E; Suit, Herman D; Urie, Marcia M; McManus, Patricia L; Young, Robert H; Shipley, Jenot W; Zietman, Anthony L; Biggs, Peter J; Heney, Niall M; Goitein, Michael

    1995-04-30

    Purpose: Following a thorough Phase I/II study, we evaluated by a Phase III trial high versus conventional dose external beam irradiation as mono-therapy for patients with Stage T3-T4 prostate cancer. Patient outcome following standard dose radiotherapy or following a 12.5% increase in total dose to 75.6 Cobalt Gray Equivalent (CGE) using a conformal perineal proton boost was compared for local tumor control, disease-free survival, and overall survival. Methods and Materials: Stage T3-T4, Nx, N0-2, M0 patients received 50.4 Gy by four-field photons and were randomized to receive either an additional 25.2 CGE by conformal protons (arm 1--the high dose arm, 103 patients, total dose 75.6 CGE) or an additional 16.8 Gy by photons (arm 2--the conventional dose arm, 99 patients, total dose 67.2 Gy). Actuarial overall survival (OS), disease-specific survival (DSS), total recurrence-free survival (TRFS), (clinically free, prostate specific antigen (PSA) less than 4ng/ml and a negative prostate rebiopsy, done in 38 patients without evidence of disease) and local control (digital rectal exam and rebiopsy negative) were evaluated. Results: The protocol completion rate was 90% for arm 1 and 97% for arm 2. With a median follow-up of 61 months (range 3 to 139 months) 135 patients are alive and 67 have died, 20 from causes other than prostate cancer. We found no significant differences in OS, DSS, TRFS or local control between the two arms. Among those completing randomized treatment (93 in arm 1 and 96 in arm 2), the local control at 5 and 8 years for arm 1 is 92% and 77%, respectively and is 80% and 60%, respectively for arm 2 (p = .089) and there are no significant differences in OS, DSS, and TRFS. The local control for the 57 patients with poorly differentiated (Gleason 4 or 5 of 5) tumors at 5 and 8 years for arm 1 is 94% and 84% and is 64% and 19% on arm 2 (p 0.0014). In patients whose digital rectal exam had normalized following treatment and underwent prostate rebiopsy

  6. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone

    International Nuclear Information System (INIS)

    Shipley, William U.; Verhey, Lynn J.; Munzenrider, John E.; Suit, Herman D.; Urie, Marcia M.; McManus, Patricia L.; Young, Robert H.; Shipley, Jenot W.; Zietman, Anthony L.; Biggs, Peter J.; Heney, Niall M.; Goitein, Michael

    1995-01-01

    Purpose: Following a thorough Phase I/II study, we evaluated by a Phase III trial high versus conventional dose external beam irradiation as mono-therapy for patients with Stage T3-T4 prostate cancer. Patient outcome following standard dose radiotherapy or following a 12.5% increase in total dose to 75.6 Cobalt Gray Equivalent (CGE) using a conformal perineal proton boost was compared for local tumor control, disease-free survival, and overall survival. Methods and Materials: Stage T3-T4, Nx, N0-2, M0 patients received 50.4 Gy by four-field photons and were randomized to receive either an additional 25.2 CGE by conformal protons (arm 1--the high dose arm, 103 patients, total dose 75.6 CGE) or an additional 16.8 Gy by photons (arm 2--the conventional dose arm, 99 patients, total dose 67.2 Gy). Actuarial overall survival (OS), disease-specific survival (DSS), total recurrence-free survival (TRFS), (clinically free, prostate specific antigen (PSA) less than 4ng/ml and a negative prostate rebiopsy, done in 38 patients without evidence of disease) and local control (digital rectal exam and rebiopsy negative) were evaluated. Results: The protocol completion rate was 90% for arm 1 and 97% for arm 2. With a median follow-up of 61 months (range 3 to 139 months) 135 patients are alive and 67 have died, 20 from causes other than prostate cancer. We found no significant differences in OS, DSS, TRFS or local control between the two arms. Among those completing randomized treatment (93 in arm 1 and 96 in arm 2), the local control at 5 and 8 years for arm 1 is 92% and 77%, respectively and is 80% and 60%, respectively for arm 2 (p = .089) and there are no significant differences in OS, DSS, and TRFS. The local control for the 57 patients with poorly differentiated (Gleason 4 or 5 of 5) tumors at 5 and 8 years for arm 1 is 94% and 84% and is 64% and 19% on arm 2 (p 0.0014). In patients whose digital rectal exam had normalized following treatment and underwent prostate rebiopsy

  7. Device for simulation of integral dose distribution in multifield radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, E K; Voronin, V V; Kolosova, V F; Moskalev, A I; Marova, Yu M; Stavitskii, R V; Yarovoi, V S

    1974-11-15

    Described is a device for simulation of the sum dose distribution at multifield radiation therapy; the device comprises a mechanical unit on which the emission sources and detectors are mounted, an electromechanical scanning equipment, amplifiers, an adder, a position sensor and a recording instrument. The device suggested raises an accuracy of a sick man radiation program elaboration at a remote multifield radiation therapy, permits to estimate the irradiated medium heterogeneity and beam shaper influence on the sum dose distribution and also ensured the information on the sum dose distribution of the relative or absolute units. Additional filters simulating heterogeneity and beam shaping conditions of ionizing radiation may be mounted between the quantum emission sources and detectors, and an amplifier with a variable amplification factor may be placed between the adders and printers. Thus it is possible to obtain a sum dose distribution at static methods of the remote radiation therapy at a high degree of accuracy (up to +-10%).

  8. Improvement of Dose Homogeneity in a 3-Dimensional Conformal Radiotherapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Lee, Chang Geol; Chung, Kyeong Keun; Kim, Joo Young; Seong, Jin Sil

    2007-01-01

    When an electron field is abutted at the surface with a photon field for head-and-neck cancer (HNC) treatment, the traditional method using bilateral field gives rise to an extreme inhomogeneity of dose distribution with both very hot and very cold regions. When we consider clinically only tumor doses of primary concern regardless of dose to normal tissues, the hot spots can be accepted, depending on their magnitude, extent, and location. However, an extreme inhomogeneity inside the radiation field is generally undesirable. An overdose to normal tissues around a target region or an underdosage in the tumor may be problematic. This study intends to develop a novel approach to improve the dose distribution inside the photon-electron abutting fields for HNC treatment

  9. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew S.; Jain, Mayank

    2012-01-01

    The use of single grain quartz OSL dating has become widespread over the past decade, particularly with application to samples likely to have been incompletely bleached before burial. By reducing the aliquot size to a single grain the probability of identifying the grain population most likely...... to have been well-bleached at deposition is maximised and thus the accuracy with which the equivalent dose can be determined is – at least in principle – improved. However, analysis of single grain dose distributions requires knowledge of the dispersion of the well-bleached part of the dose distribution....... This can be estimated by measurement of a suitable analogue, e.g. a well-bleached aeolian sample, but this requires such an analogue to be available, and in addition the assumptions that the sample is in fact a) well-bleached, and b) has a similar dose rate heterogeneity to the fossil deposit. Finally...

  10. A three-dimensional dose-distribution estimation system using computerized image reconstruction

    International Nuclear Information System (INIS)

    Nishijima, Akihiko; Kidoya, Eiji; Komuro, Hiroyuki; Tanaka, Masato; Asada, Naoki.

    1990-01-01

    In radiotherapy planning, three dimensional (3-D) estimation of dose distribution has been very troublesome and time-consuming. To solve this problem, a simple and fast 3-D dose distribution image using a computer and Charged Couple Device (CCD) camera was developed. A series of X-ray films inserted in the phantom using a linear accelerator unit was exposed. The degree of film density was degitized with a CCD camera and a minicomputer (VAX 11-750). After that these results were compared with the present depth dose obtained by a JARP type dosimeter, with a dose error being less than 2%. The 3-D dose distribution image could accurately depict the density changes created by aluminum and air put into the phantom. The contrast resolution of the CCD camera seemed to be superior to the convention densitometer in the low-to-intermediate contrast range. In conclusion, our method seem to be very fast and simple for obtaining 3-D dose distribution images and is very effective when compared with the conventional method. (author)

  11. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  12. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  13. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  14. Chronic rectal bleeding after high dose conformal treatment of prostate cancer warrants modification of existing morbidity scales

    International Nuclear Information System (INIS)

    Hanlon, A.L.; Schulthiess, T.E.; Hunt, M.A.; Movsas, B.; Peter, R.; Hanks, G.E.

    1996-01-01

    Purpose: Serious late morbidity (Grade (3(4))) from the conformal treatment of prostate cancer has been reported in <1% to 6% of patients. This study demonstrates that the reported frequency of Grade (3(4)) complications varies by the morbidity scale selected and that no existing morbidity scale adequately represents chronic rectal bleeding, which is our most frequent persisting late sequela of high dose conformal treatment. Materials and Methods: Between (5(89)) and (12(93)), 352 patients with T1-3 NXM0 prostate cancers were treated with our 4-field conformal technique without special rectal blocking. This technique includes a 1 cm margin from the CTV to the PTV in all directions. The median follow-up for these patients was 38 mos (4 to 78), and the median ICRU reporting point dose was 74 Gy (63 to 81). Patients are followed at six month intervals, and no patient is lost to follow-up. Three morbidity scales are assessed, the RTOG, the late effects group (LENT), and our modification of the LENT (FC-LENT). This modification registers chronic rectal bleeding requiring more than two coagulations as a grade 3 event. Estimates for Grade (3(4)) late GI complication rates were determined using Kaplan-Meier methodology. Differences in morbidity rates were evaluated using the log-rank test and differences in time to latency of complications were evaluated using the nonparametric Wilcoxon test. The duration of severe symptoms with chronic rectal bleeding is measured from the first to the last transrectal coagulation. Results: Sixteen patients developed Grade (3(4)) complications by one of the three morbidity scales. Two patients required surgery (colostomy, sigmoid resection), 5 required a transfusion, and 9 required more than two coagulations. The median latency to the third coagulation (plus or minus transfusions) was 24 mos (17 to 40). The median duration of bleeding between the first and last coagulation was 6 mos (3 to 25), illustrating the chronicity of this problem

  15. Conformational distributions and proximity relationships in the rigor complex of actin and myosin subfragment-1.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Lukács, A; Bódis, E; Somogyi, B

    2000-01-28

    Cyclic conformational changes in the myosin head are considered essential for muscle contraction. We hereby show that the extension of the fluorescence resonance energy transfer method described originally by Taylor et al. (Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) J. Cell Biol. 89, 362-367) allows determination of the position of a labeled point outside the actin filament in supramolecular complexes and also characterization of the conformational heterogeneity of an actin-binding protein while considering donor-acceptor distance distributions. Using this method we analyzed proximity relationships between two labeled points of S1 and the actin filament in the acto-S1 rigor complex. The donor (N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate) was attached to either the catalytic domain (Cys-707) or the essential light chain (Cys-177) of S1, whereas the acceptor (5-(iodoacetamido)fluorescein) was attached to the actin filament (Cys-374). In contrast to the narrow positional distribution (assumed as being Gaussian) of Cys-707 (5 +/- 3 A), the positional distribution of Cys-177 was found to be broad (102 +/- 4 A). Such a broad positional distribution of the label on the essential light chain of S1 may be important in accommodating the helically arranged acto-myosin binding relative to the filament axis.

  16. Measurement system for depth dose distribution in cancer therapy

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Fujiwara, Hirotsugu; Tsutaka, Yoshikazu; Ikeda, Ikuo

    1999-01-01

    An accurate estimation of an absorbed dose distribution in human tissue is indispensable to efficiently perform radiotherapy in humans. Previously, various methods for such estimation have been developed, however, there is some problem in those methods, it takes too long times (3-4 hours) to determine the absorbed dose distribution through scanning by ionization chamber in water phantom. So, a determination system of depth dose was developed with an aim to determine the absorbed dose of X-ray or electron beam in materials similar to human body. This system was composed of a detector including scintillation fibers which allows emission due to radio-interaction, CCD camera for determination of light distribution of the emission and personal computer for data processing. Though the accuracy of this system was ±2% similar to that of the conventional measuring method, measuring time was reduced to almost 5 min, markedly shorter than that of the conventional water phantom (3-4 hours). The efficacy of works including the adjustment of irradiation system, planning, etc. would be improved by application of this system. (M.N.)

  17. The dose distribution surrounding sup 192 Ir and sup 137 Cs seed sources

    Energy Technology Data Exchange (ETDEWEB)

    Thomason, C [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics; Mackie, T R [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics Wisconsin Univ., Madison, WI (USA). Dept. of Human Oncology; Lindstrom, M J [Wisconsin Univ., Madison, WI (USA). Biostatistics Center; Higgins, P D [Cleveland Clinic Foundation, OH (USA). Dept. of Radiation Oncology

    1991-04-01

    Dose distributions in water were measured using LiF thermoluminescent dosemeters for {sup 192}Ir seed sources with stainless steel and with platinum encapsulation to determine the effect of differing encapsulation. Dose distribution was measured for a {sup 137}Cs seed source. In addition, dose distributions surrounding these sources were calculated using the EGS4 Monte Carlo code and were compared to measured data. The two methods are in good agreement for all three sources. Tables are given describing dose distribution surrounding each source as a function of distance and angle. Specific dose constants were also determined from results of Monte Carlo simulation. This work confirms the use of the EGS4 Monte Carlo code in modelling {sup 192}Ir and {sup 137}Cs seed sources to obtain brachytherapy dose distributions. (author).

  18. External dose distributions of exposure to natural uranium slab for calibration of beta absorbed dose

    International Nuclear Information System (INIS)

    Chen Lishu

    1987-01-01

    The depth dose distributions and uniformity of beta radiation fields from a natural uranium slab in equilibration were measured using a tissue equivalent extrapolation chamber and film dosimeter. The advantages for calibration of enviromental dose instument or survey meter and personal dosimeter, for routine monitoring in terms of directional dose equivalent and superficial individual dose equivalent were summarized. Finally, the values measured agree well with that of theoretical calculation

  19. External dose distributions of exposure to natural uranium slab for calibration of beta absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Lishu, Chen

    1987-05-01

    The depth dose distributions and uniformity of beta radiation fields from a natural uranium slab in equilibration were measured using a tissue equivalent extrapolation chamber and film dosimeter. The advantages for calibration of enviromental dose instument or survey meter and personal dosimeter, for routine monitoring in terms of directional dose equivalent and superficial individual dose equivalent were summarized. Finally, the values measured agree well with that of theoretical calculation.

  20. Simultaneous optimization of beam orientations and beam weights in conformal radiotherapy

    International Nuclear Information System (INIS)

    Rowbottom, Carl Graham; Khoo, Vincent S.; Webb, Steve

    2001-01-01

    A methodology for the concurrent optimization of beam orientations and beam weights in conformal radiotherapy treatment planning has been developed and tested on a cohort of five patients. The algorithm is based on a beam-weight optimization scheme with a downhill simplex optimization engine. The use of random voxels in the dose calculation provides much of the required speed up in the optimization process, and allows the simultaneous optimization of beam orientations and beam weights in a reasonable time. In the implementation of the beam-weight optimization algorithm just 10% of the original patient voxels are used for the dose calculation and cost function evaluation. A fast simulated annealing algorithm controls the optimization of the beam arrangement. The optimization algorithm was able to produce clinically acceptable plans for the five patients in the cohort study. The algorithm equalized the dose to the optic nerves compared to the standard plans and reduced the mean dose to the brain stem by an average of 4.4% (±1.9, 1 SD), p value=0.007. The dose distribution to the PTV was not compromised by developing beam arrangements via the optimization algorithm. In conclusion, the simultaneous optimization of beam orientations and beam weights has been developed to be routinely used in a realistic time. The results of optimization in a small cohort study show that the optimization can reliably produce clinically acceptable dose distributions and may be able to improve dose distributions compared to those from a human planner

  1. Evaluation of a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Imae, Toshikazu; Takenaka, Shigeharu; Saotome, Naoya

    2016-01-01

    The purpose of this study was to evaluate a post-analysis method for cumulative dose distribution in stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT). VMAT is capable of acquiring respiratory signals derived from projection images and machine parameters based on machine logs during VMAT delivery. Dose distributions were reconstructed from the respiratory signals and machine parameters in the condition where respiratory signals were without division, divided into 4 and 10 phases. The dose distribution of each respiratory phase was calculated on the planned four-dimensional CT (4DCT). Summation of the dose distributions was carried out using deformable image registration (DIR), and cumulative dose distributions were compared with those of the corresponding plans. Without division, dose differences between cumulative distribution and plan were not significant. In the condition Where respiratory signals were divided, dose differences were observed over dose in cranial region and under dose in caudal region of planning target volume (PTV). Differences between 4 and 10 phases were not significant. The present method Was feasible for evaluating cumulative dose distribution in VMAT-SBRT using 4DCT and DIR. (author)

  2. Study of dose distribution in high energy photon beam used in radiotherapy

    International Nuclear Information System (INIS)

    Rafaravavy, R.; Raoelina Andriambololona; Bridier, A.

    2007-01-01

    The dose distribution in a medium traversed by a photon beam depends on beam energy, field size and medium nature. Percent depth dose (PDD), Dose Profile (DP) and Opening Collimator Factor (OCF) curves will be established to study this distribution. So, the PDD curves are composed by tree parts: the build-up region, the maximal dose and the quasi-equilibrium region. The maximum dose depth and the dose in depth increase with increasing photon beam energy but the dose surface decreases. The PDD increases with increasing field size.

  3. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    Science.gov (United States)

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  4. Influence of dose distribution homogeneity on the tumor control probability in heavy-ion radiotherapy

    International Nuclear Information System (INIS)

    Wen Xiaoqiong; Li Qiang; Zhou Guangming; Li Wenjian; Wei Zengquan

    2001-01-01

    In order to estimate the influence of the un-uniform dose distribution on the clinical treatment result, the Influence of dose distribution homogeneity on the tumor control probability was investigated. Basing on the formula deduced previously for survival fraction of cells irradiated by the un-uniform heavy-ion irradiation field and the theory of tumor control probability, the tumor control probability was calculated for a tumor mode exposed to different dose distribution homogeneity. The results show that the tumor control probability responding to the same total dose will decrease if the dose distribution homogeneity gets worse. In clinical treatment, the dose distribution homogeneity should be better than 95%

  5. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  6. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  7. Estimation of the dose distribution within, and total dose to, the body of an acutely overexposed person

    International Nuclear Information System (INIS)

    Beer, G.P. de; Feather, J.I.; Oude, A. de; Language, A.E.

    1981-01-01

    In a case of accidental overexposure of a person, it is important to obtain a reliable value of the whole body dose as well as of the dose distribution within the body. Any follow-up treatment based only on the clinical effects as and when they appear, may result in insufficient or even erroneous therapy. In this respect knowledge of total dose and its distribution within the body may be a valuable aid in deciding on the follow-up treatment, taking into account the latent nature of the clinical effects. The calculated whole body dose and its distribution within the body of a person overexposed to a 192 Ir radiography source, are compared to experimentally determined values. In both cases the calculated values prove to be of sufficient accuracy to serve as an aid in decisions on the follow-up treatment. (author)

  8. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    International Nuclear Information System (INIS)

    Han, Su Chul; Hong, Dong Hee

    2016-01-01

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures

  9. Measurement of spatial dose distribution for evaluation operator dose during nero-interventional procedures

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Chul [Division of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Dong Hee [Dept. of Radiology Science, Far East University, Eumseong (Korea, Republic of)

    2016-09-15

    The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in 18.1±10.5%, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.

  10. Dosimetric Comparison of Three Dimensional Conformal Radiation Radiotherapy and Helical Tomotherapy Partial Breast Cancer

    International Nuclear Information System (INIS)

    Kim, Dae Woong; Kim, Jong Won; Choi, Yun Kyeong; Kim, Jung Soo; Hwang, Jae Woong; Jeong, Kyeong Sik; Choi, Gye Suk

    2008-01-01

    The goal of radiation treatment is to deliver a prescribed radiation dose to the target volume accurately while minimizing dose to normal tissues. In this paper, we comparing the dose distribution between three dimensional conformal radiation radiotherapy (3D-CRT) and helical tomotherapy (TOMO) plan for partial breast cancer. Twenty patients were included in the study, and plans for two techniques were developed for each patient (left breast:10 patients, right breast:10 patients). For each patient 3D-CRT planning was using pinnacle planning system, inverse plan was made using Tomotherapy Hi-Art system and using the same targets and optimization goals. We comparing the Homogeneity index (HI), Conformity index (CI) and sparing of the organs at risk for dose-volume histogram. Whereas the HI, CI of TOMO was significantly better than the other, 3D-CRT was observed to have significantly poorer HI, CI. The percentage ipsilateral non-PTV breast volume that was delivered 50% of the prescribed dose was 3D-CRT (mean: 40.4%), TOMO (mean: 18.3%). The average ipsilateral lung volume percentage receiving 20% of the PD was 3D-CRT (mean: 4.8%), TOMO (mean: 14.2), concerning the average heart volume receiving 20% and 10% of the PD during treatment of left breast cancer 3D-CRT (mean: 1.6%, 3.0%), TOMO (mean: 9.7%, 26.3%) In summary, 3D-CRT and TOMO techniques were found to have acceptable PTV coverage in our study. However, in TOMO, high conformity to the PTV and effective breast tissue sparing was achieved at the expense of considerable dose exposure to the lung and heart.

  11. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  12. The use of linear programming in optimization of HDR implant dose distributions

    International Nuclear Information System (INIS)

    Jozsef, Gabor; Streeter, Oscar E.; Astrahan, Melvin A.

    2003-01-01

    The introduction of high dose rate brachytherapy enabled optimization of dose distributions to be used on a routine basis. The objective of optimization is to homogenize the dose distribution within the implant while simultaneously satisfying dose constraints on certain points. This is accomplished by varying the time the source dwells at different locations. As the dose at any point is a linear function of the dwell times, a linear programming approach seems to be a natural choice. The dose constraints are inherently linear inequalities. Homogeneity requirements are linearized by minimizing the maximum deviation of the doses at points inside the implant from a prescribed dose. The revised simplex method was applied for the solution of this linear programming problem. In the homogenization process the possible source locations were chosen as optimization points. To avoid the problem of the singular value of the dose at a source location from the source itself we define the 'self-contribution' as the dose at a small distance from the source. The effect of varying this distance is discussed. Test cases were optimized for planar, biplanar and cylindrical implants. A semi-irregular, fan-like implant with diverging needles was also investigated. Mean central dose calculation based on 3D Delaunay-triangulation of the source locations was used to evaluate the dose distributions. The optimization method resulted in homogeneous distributions (for brachytherapy). Additional dose constraints--when applied--were satisfied. The method is flexible enough to include other linear constraints such as the inclusion of the centroids of the Delaunay-triangulation for homogenization, or limiting the maximum allowable dwell time

  13. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2013-05-15

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  14. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    International Nuclear Information System (INIS)

    Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor

  15. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    Science.gov (United States)

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability

  16. Impact of implanted metal plates on radiation dose distribution in vivo

    International Nuclear Information System (INIS)

    Liu Ming; Li Xingde; Niu Qingguo; Zhai Fushan

    2010-01-01

    Objective: To investigate the impact of metal plate on radiation dose distribution in surrounding tissues in cadaver specimens. Methods: Stainless steel plate, titanium plate, and muscle strip were implanted into the left thigh of a corpse, respectively. All the specimens were irradiated with 6 MV X-ray , SSD = 100 cm. The absorbed dose of surface was measured by thermoluminescent elements. Results: Surface dose distributions differed significantly among the three different materials (F = 57.35, P < 0.01), with the amounts of 1.18 Gy ± 0.04 Gy (stainless steel plate), 1.12 Gy ± 0.04 Gy (titanium plate) and 0.97 Gy ± 0.03 Gy (muscle strip), respectively. The surface absorbed doses on incident plane of stainless steel plate and titanium plate were significantly increased by 21.65% and 15.46% respectively as compared with that of muscle strip. The absorbed doses on the exit surface of stainless steel plate, titanium plate and muscle strip were 0.87 Gy ± 0.03 Gy, 0.90 Gy ± 0.02 Gy and 0.95 Gy ± 0.04 Gy, respectively (F =13.37, P <0.01). The doses on the exit surface of stainless steel plate and titanium plate were significantly lowered by 8.42% and 5.26% when compared with that of muscle strip. Using treatment planning system,the differences between dose distribution with and without metal plate were compared. Within 1 cm away from the incident plate, there was an obvious increase in the absorbed dose, while the influence was less than 5% 1 cm outside the surface. The effect of dose distribution on exit surface was less than 2%. Conclusions: The influence of metal plate on the radiotherapy dose distribution is significant. The deviations ranges from 5% to 29%. Under the same condition, the impact of stainless steel plate is much more than that of titanium alloy plate. (authors)

  17. Determination of the dose and dose distribution in radiation-linked polyolefins

    International Nuclear Information System (INIS)

    Andress, B.; Fischer, P.; Repp, H.H.; Roehl, P.

    1984-01-01

    The method serves the determination of the radiation dose and dose distribution in polyolefins cross-linked by electron beams; the cross-linking takes place in the presence of an additive which is inserted in the polyolefin by radiation. After the cross-linking the fraction of the additive which is not inserted will be extracted from the polyolefin and afterwards the total extinction of the polyolefin will be determined by photometry. This process allows in particular the determination of the quality of the irradiation conditions for the electron-beam cross-linking of medium-voltage cables insulated by polyolefins. (orig.) [de

  18. Results of different modes conformal radiotherapy in treatment of cervical cancer

    International Nuclear Information System (INIS)

    Baranovs'ka, L.M.; Yivankova, V.S.; Khrulenko, T.V.; Skomorokhova, T.V.; Gorelyina, G.L.

    2017-01-01

    Development of techniques for cytotoxic treatment applying different modes of conformal radiotherapy, brachytherapy and high-energy (high dose rate - HDR) is one of the promising areas of optimization and efficiency of conservative treatment of patients with regional forms of cervical cancer. At Radiation Oncology Department, National Cancer Institute, 89 patients with stage 2b-3b cervical cancer, aged 29 to 70, underwent examination and combined radiotherapy course. The patients were divided into 2 main groups (56 patients) depending on the mode of developed conformal radiation therapy, and a control group made up by 33 patients (classic, default conformal radiotherapy). Results. Along with external beam radiotherapy, the patients of Group 2 were provided with conformal radiotherapy carried out by means of the linear accelerator of electrons in the mode of enhanced multi fractionation of irradiation dose applied to the small pelvis area (tumor and lymph efflux channels) with the single tumor dose 1.3 Gy twice per day once 4-6 hours up to the total radiation dose of 45 Gy applied to the small pelvis lymph nodes. The patients of Group 1 and the ones of the control group underwent conformal radiotherapy in the mode of standard fractionation applied to the small pelvis area with the single tumor dose of 1.8 Gy up to the total radiation dose of 45 Gy. Conformal radiotherapy was carried out for the patients of Group 1 associated with chemoradiomodifiers (tegafur, cisplatin). At the stage 2 of combined radiotherapy course, all patients underwent HDR brachytherapy via Co60 source in the mode of the single tumor dose of 5 Gy at point A up to the total radiation dose of 35-40 Gy. Therefore, employing accelerated mode of multifractiation in conformal radiotherapy of patients with regional cervical cancer makes it possible to enhance canrcinocidal irradiation doses applied to a tumor, and an interval between radiotherapy fractions provides conditions for initiation of

  19. Investigation on 3D dose distribution in digital breast tomosynthesis

    Science.gov (United States)

    Masi, M.

    2017-03-01

    Monte Carlo calculations for dosimetry in digital breast tomosynthesis (DBT) require experimental validations. We measured the 3D dose distribution in a breast phantom in a DBT scan, using XR-QA2 radiochromic films. We positioned film pieces at the entrance surface, at the bottom surface and at four depths between adjacent slabs in the 5-slabs, 5-cm-thick phantom simulating a compressed breast with 50% glandular fraction. We irradiated the phantom at 40kV (half value layer 1.1mm Al) for three angular tilting of the beam central axis ( {±}25° and 0° normal incidence). We determined the transverse and longitudinal distributions of the average dose in the phantom (in terms of air kerma normalized to the entrance air kerma), showing the angular dependence of the depth-resolved 3D dose distributions. In transverse planes the maximum dose variations were between 5.0% and 14.8% for normal incidence, and by 8.6% from the central to the tilted view. In the direction of the beam axis, the dose decreases up to about 71% from the entrance to the exit value. The extimated backscatter fraction was between 3% and 8%.

  20. Estimation of dose distribution in occupationally exposed individuals to FDG-18F

    International Nuclear Information System (INIS)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson

    2014-01-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG- 18 F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  1. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  2. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  3. Use of a concise prescription for specifying absolute dose distribution in external beam radiation therapy

    International Nuclear Information System (INIS)

    Viggers, D.A.; Shalev, S.

    1989-01-01

    Radiation therapy dose distributions are usually calculated relative to some normalization point to which a prescribed dose in grays is to be delivered. Often the radiation therapist requests that the prescribed dose be delivered to some other point(s), such as the 90% isodose. Therefore the prescribed dose is not well defined. Furthermore, this procedure leaves the shape of the dose distribution unspecified. The authors have used a dose prescription specifying the volumes of target and nontarget tissue that must lie within dose limits stated in grays. These dose-volume limits determine the magnitude and shape of the dose distribution. The prescription is well defined while allowing the absolute dose at a chosen point to be adjusted so that the dose distribution satisfies the prescription

  4. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  5. Beam shaping for conformal fractionated stereotactic radiotherapy: a modeling study

    International Nuclear Information System (INIS)

    Hacker, Fred L.; Kooy, Hanne M.; Bellerive, Marc R.; Killoran, Joseph H.; Leber, Zachary H.; Shrieve, Dennis C.; Tarbell, Nancy J.; Loeffler, Jay S.

    1997-01-01

    Purpose: The patient population treated with fractionated stereotactic radiotherapy (SRT) is significantly different than that treated with stereotactic radiosurgery (SRS). Generally, lesions treated with SRT are larger, less spherical, and located within critical regions of the central nervous system; hence, they offer new challenges to the treatment planner. Here a simple, cost effective, beam shaping system has been evaluated relative to both circular collimators and an ideal dynamically conforming system for effectiveness in providing conformal therapy for these lesions. Methods and Materials: We have modeled a simple system for conformal arc therapy using four independent jaws. The jaw positions and collimator angle are changed between arcs but held fixed for the duration of each arc. Eleven previously treated SRT cases have been replanned using this system. The rectangular jaw plans were then compared to the original treatment plans which used circular collimators. The plans were evaluated with respect to tissue sparing at 100%, 80%, 50%, and 20% of the prescription dose. A plan was also done for each tumor in which the beam aperture was continuously conformed to the beams eye view projection of the tumor. This was used as an ideal standard for conformal therapy in the absence of fluence modulation. Results: For tumors with a maximum extent of over 3.5 cm the rectangular jaw plans reduced the mean volume of healthy tissue involved at the prescription dose by 57% relative to the circular collimator plans. The ideal conformal plans offered no significant further improvement at the prescription dose. The relative advantage of the rectangular jaw plans decreased at lower isodoses so that at 20% of the prescription dose tissue involvement for the rectangular jaw plans was equivalent to that for the circular collimator plans. At these isodoses the ideal conformal plans gave substantially better tissue sparing. Conclusion: A simple and economical field shaping

  6. Mid-ventilation position planning: Optimal model for dose distribution in lung tumour

    International Nuclear Information System (INIS)

    Benchalal, M.; Leseur, J.; Chajon, E.; Cazoulat, G.; Haigron, P.; Simon, A.; Bellec, J.; Lena, H.; Crevoisier, R. de

    2012-01-01

    Purpose. - The dose distribution for lung tumour is estimated using a 3D-CT scan, and since a person breathes while the images are captured, the dose distribution doesn't reflect the reality. A 4D-CT scan integrates the motion of the tumour during breathing and, therefore, provides us with important information regarding tumour's motion in all directions, the motion volume (ITV) and the time-weighted average position (MVP). Patient and methods. - Based on these two concepts, we have estimated, for a lung carcinoma case a 3D dose distribution from a 3D-CT scan, and a 4D dose distribution from a 4-D CT scan. To this, we have applied a non-rigid registration to estimate the cumulative dose. Results. - Our study shows that the 4D dose estimation of the GTV is almost the same when made using MVP and ITV concepts, but sparring of the healthy lung is better done using the MPV model (MVP), as compared to the ITV model. This improvement of the therapeutic index allows, from a projection on the theoretical maximal dose to PTV (strictly restricted to doses for the lungs and the spinal cord), for an increase of about 11% on the total dose (maximal dose of 86 Gy for the ITV and 96 Gy for the MVP). Conclusion. - Further studies with more patients are needed to confirm our data. (authors)

  7. High-dose (70-78 GY) conformal radiotherapy for prostate cancer; the relation between observed late bladder and rectum complications and parameters derived from the dose volume histograms

    International Nuclear Information System (INIS)

    Lebesque, J.V.; Bruce, A.; Boersma, L.J.; Velde, A. te

    1996-01-01

    Purpose: To determine the incidence of late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer, and to investigate the relation between these observed incidences and parameters derived from the Dose Volume Histograms (DVHs) of rectum and bladder wall. Patients and Methods: Hundred and thirty patients with T 2-4 G 1-3 N 0 M 0 prostate cancer were treated with conformal radiotherapy with the simultaneous boost technique in a dose-escalating protocol; 78 patients received a total dose of 70 Gy, 11 patients 74 - 76 Gy and 41 patients 78 Gy, each with a dose of 2 Gy per fraction. DVHs of the rectal wall were used to calculate NTCPs according to the model of Kutcher et al. with the estimated parameter values (n = 0.12, m = 0.15, TD 50 = 80 Gy) according to Burman et al. The median follow-up was 17 months (range 6 - 72 months). The crude and actuarial incidence of late (> 6 months) GI and GU complications were determined using the RTOG/EORTC morbidity scoring system (Grade I to IV). Results: Neither for late GI nor for GU complaints, a grade IV complication was observed. GU complaints occurred in 90 patients (69%): 54 patients (42%) only experienced grade I toxicity, 26 patients (20%) had grade II toxicity, and 10 patients (8%) had grade III complications, of which 8 patients (6%) developed a urethral (7 pts) or ureteric stenosis (1 pt). The actuarial incidence of grade III GU complications was 10% at 2 years. Since bladder wall DVHs are unreliable and most grade III complications were not related to the bladder, the grade II and/or III complications were analyzed in terms of the total prescribed dose only, but no correlation could be demonstrated. GI complications occurred in 71 patients (55%): 59 patients (45%) developed a grade I complication, 11 a grade II complication and only 1 patient required laser treatment twice and blood transfusion because of rectal bleeding (grade III). The actuarial incidence of GI

  8. Phantom experiment of depth-dose distributions for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kato, K.; Sakuma, Y.; Tsuruno, A.; Matsubayashi, M.

    1993-01-01

    Depth-dose distributions in a tumor simulated phantom were measured for thermal neutron flux, capture gamma-ray and internal conversion electron dose rates for gadolinium neutron capture therapy. The results show that (i) a significant dose enhancement can be achieved in the tumor by capture gamma-rays and internal conversion electrons but the dose is mainly due to capture gamma-rays from the Gd(n, γ) reactions, therefore, is not selective at the cellular level, (ii) the dose distribution was a function of strongly interrelated parameters such as gadolinium concentrations, tumor site and neutron beam size (collimator aperture size), and (iii) the Gd-NCT by thermal neutrons appears to be a potential for treatment of superficial tumor. (author)

  9. CT-image based conformal high-dose rate brachytherapy boost in the conservative treatment of stage I - II breast cancer - introducing the procedure

    International Nuclear Information System (INIS)

    Kubaszewska, M.; Skowronek, J.; Chichel, A.; Kanikowski, M.; Dymnicka, M.

    2008-01-01

    Aim: Breast-conserving surgery (BCS) followed by radiotherapy (RT) has become the standard treatment for the majority of patients with early breast cancer. With regard to boost technique some disagreements are found between groups that are emphasizing the value of electron boost treatment and groups pointing out the value of interstitial brachytherapy (BT) boost treatment. We present the preliminary results in treating selected patients with early-stage breast cancer using high-dose-rate brachytherapy (HD R-BT) as a boost after breast conservation therapy (BCT). Materials/Methods: Between January 2006 and August 2007, a total of 58 female patients with first and second stage breast cancer underwent BCT. This therapeutic procedure involves BCS, whole breast radiation therapy (WBRT) and additional irradiation to the tumour bed (boost) using interstitial HDR-BT via flexible implant tubes. A 10 Gy boost dose was received by all patients. The treatment planning was based on CT-guided 3D (three-dimensional) reconstruction of the surgical clips, implant tubes and critical structures localization (skin and ribs). The accuracy of tumour bed localization, the conformity of planning target volume and treated volume were analyzed. Results: The evaluations of implant parameters involved the use of: dose volume histogram (DVH), the volume encompassed by the 100% reference isodose surface (V100%), the high dose volumecalculation (V150%, V200%, V300%), the dose non-uniformity ratio (DNR), and the conformity index (COIN). Our results were as follows: the mean PTV volume, the mean high dose volume (V150%; V200%; V300%), the DNR and COIN mean value were estimated at 57.38, 42.98, 21.38, 7.90, 0.52 and 0.83 respectively. Conclusions: CT-guided 3D HDR-BT is most appropriate for planning the boost procedure after BT especially in large breast volume, in cases with a deep seated tumour bed, as well as in patients with high risk for local recurrences. This technique reduces the

  10. Estimation of dislocations density and distribution of dislocations during ECAP-Conform process

    Science.gov (United States)

    Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza

    2018-01-01

    Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.

  11. Head and neck cancers: clinical benefits of three-dimensional conformal radiotherapy and of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Giraud, P.; Jaulerry, C.; Brunin, F.; Zefkili, S.; Helfre, S.; Chauvet, I.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of normal tissues. These techniques would then allow further tumor dose escalation. Head-and-neck tumors are some of the most attractive localizations to test conformal radiotherapy. They combine ballistic difficulties due to particularly complex shapes (nasopharynx, ethmoid) and problems due to the number and low tolerance of neighbouring organs like parotids, eyes, brainstem and spinal cord. The therapeutic irradiation of head-and-neck tumors thus remains a challenge for the radiation oncologist. Conformal radiotherapy does have a significant potential for improving local control and reducing toxicity when compared to standard radiotherapy. However, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from 3DCRT and IMRT. The published clinical reports on the use of conformal radiotherapy are essentially dealing with dosimetric comparisons on relatively small numbers of patients. Recently, a few publications have emphasized the clinical experience several precursor teams with a suitable follow-up. This paper describes the current state-of-the-art of 3DCRT and IMRT in order to evaluate the impact of these techniques on head-and-neck cancers irradiation. (authors)

  12. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  13. Radiation oncology: what can we achieve by optimized dose delivery?

    International Nuclear Information System (INIS)

    Lawrence, T.

    2003-01-01

    Spectacular technical advances have marked the last twenty years in radiation oncology. This revolution began with CT-based planning which was followed by 3D conformal therapy. The latter approach produced two important capabilities. The most obvious was that tumors could be viewed in their true location with respect to normal tissues and treated with beams that were not in the axial plane. A second equally important advance was the development of 3D planning tools such as dose volume histograms. These tools permitted quantitative comparison of treatment plans and have supported the development of models relating normal tissue irradiation to the risk of complication. The '3D hypothesis' - that 3D treatment planning would permit higher doses of radiation to be safely delivered-has been proven. Dose escalation studies have been successfully conducted in the lung (= 100 Gy), liver (= 90 Gy), brain (= 90 Gy), and prostate (= 78 Gy). Prospective phase II and phase III trials suggest improved outcome using these higher doses for tumors in the liver and prostate compared to doses considered acceptable in the 2D era. The next technical revolution is underway, with advances in '4D' radiotherapy (accounting fully for organ motion) and in intensity-modulated radiation therapy (IMRT) to further improve the conformality and accuracy of treatment. Proton therapy will improve dose distributions still further. These improved dose distributions can be combined with more accurate tumor delineation provided by functional imaging to offer the potential for additional dose escalation without toxicity and for improved tumor control. These developments permit us to ask if we are approaching the limits of dose optimization and how (if?) research in radiation delivery should proceed

  14. Improvement of dose distribution of esophageal irradiation using the field-within-a-field technique

    International Nuclear Information System (INIS)

    Iwai, Tsugunori; Okabe, Keigo; Yamato, Hidetada; Murakami, Jyunji; Nakazawa, Yasuo; Kato, Mitsuyoshi

    2002-01-01

    The wide radiation field for mediastinal dose distribution should be inhomogeneous with the usual simple opposed beam irradiation. The purpose of this study was to improve the dose distribution of the mediastinum using a conventional planning system with a dose-volume histogram (DVH) and the field-in-field technique. Three-dimensional (3D) dose distribution is obtained in bilateral opposed-field irradiation. An overdose area obtained from the 3D dose distribution is defined and reprojected into the irradiation field. A new reduced field is created by removing the reprojected overdose area. A 3D dose distribution is again obtained and compared with the results from first one. Procedures were repeated until each of the target volumes was within ±5% of the prescribed dose and the irradiation volume within 107% or less of the prescribed dose. From the DVH analysis, our field-within-a-field technique resulted in a more uniform dose distribution within the conventional planning. The field-within-a-field technique involves many parameters, and an inverse planning algorithm is suitable for computation. However, with our method, the forward planning system is adequate for planning, at least in a relatively straightforward planning system such as bilateral opposed fields therapy. (author)

  15. Tracking the dose distribution in radiation therapy by accounting for variable anatomy

    International Nuclear Information System (INIS)

    Schaly, B; Kempe, J A; Bauman, G S; Battista, J J; Van Dyk, J

    2004-01-01

    The goal of this research is to calculate the daily and cumulative dose distribution received by the radiotherapy patient while accounting for variable anatomy, by tracking the dose distribution delivered to tissue elements (voxels) that move within the patient. Non-linear image registration techniques (i.e., thin-plate splines) are used along with a conventional treatment planning system to combine the dose distributions computed for each 3D computed tomography (CT) study taken during treatment. For a clinical prostate case, we demonstrate that there are significant localized dose differences due to systematic voxel motion in a single fraction as well as in 15 cumulative fractions. The largest positive dose differences in rectum, bladder and seminal vesicles were 29%, 2% and 24%, respectively, after the first fraction of radiation treatment compared to the planned dose. After 15 cumulative fractions, the largest positive dose differences in rectum, bladder and seminal vesicles were 23%, 32% and 18%, respectively, compared to the planned dose. A sensitivity analysis of control point placement is also presented. This method provides an important understanding of actual delivered doses and has the potential to provide quantitative information to use as a guide for adaptive radiation treatments

  16. Dose distribution to spinal structures from intrathecally administered yttrium-90

    Science.gov (United States)

    Mardirossian, George; Hall, Michael; Montebello, Joseph; Stevens, Patrick

    2006-01-01

    Previous treatment of cerebrospinal fluid (CSF) malignancies by intrathecal administration of 131I-radiolabelled monoclonal antibodies has led to the assumption that more healthy tissue will be spared when a pure beta-emitter such as 90Y replaces 131I. The purpose of this study is to compare and quantitatively evaluate the dose distribution from 90Y to the CSF space and its surrounding spinal structures to 131I. A 3D digital phantom of a section of the T-spine was constructed from the visible human project series of images which included the spinal cord, central canal, subarachnoid space, pia mater, arachnoid, dura mater, vertebral bone marrow and intervertebral disc. Monte Carlo N-particle (MCNP4C) was used to model the 90Y and 131I radiation distribution. Images of the CSF compartment were convolved with the radiation distribution to determine the dose within the subarachnoid space and surrounding tissues. 90Y appears to be a suitable radionuclide in the treatment of central nervous system (CNS) malignancies when attached to mAb's and the dose distribution would be confined largely within the vertebral foramen. This choice may offer favourable dose improvement to the subarachnoid and surface of spinal cord over 131I in such an application.

  17. A custom made phantom for dosimetric audit and quality assurance of three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Radaideh, K.M.; Matalqah, L.M.; Matalqah, L.M.; Tajuddin, A.A.; Luen, F.W.L.; Bauk, S.; Abdel Munem, E.M.E.

    2012-01-01

    The ultimate check of the actual dose delivered to a patient in radiotherapy can be achieved by using dosimetric measurements. The aims of this study were to develop and evaluate a custom handmade head and neck phantom for evaluation of Three-Dimensional Conformal Radiation Therapy (3D-CRT) dose planning and delivery. A phantom of head and neck region of a medium built male patient with nasopharyngeal cancer was constructed from Perspex material. Primary and secondary Planning Target Volume (PTV) and twelve Organs at Risk (OAR) were delineated using Treatment Planning System (TPS) guided by computed tomography printout transverse images. One hundred and seven (107) holes distributed among the organs were loaded with Rod-shaped Thermoluminescent dosimeters (LiF:Mg, Ti TLDs) after common and individual calibration. Head and neck phantom was imaged, planned and irradiated conformally (3D-CRT) by linear accelerator (LINAC Siemens Artiste). The planned predicted doses by TPS at PTV and OAR regions were obtained and compared with the TLD measured doses using the phantom. Repeated TLD measurements were reproducible with a percent standard deviation of < 3.5 %. Moreover, the average of dose discrepancies between TLDs reading and TPS predicted doses were found to be < 5.3 %. The phantom's preliminary results have proved to be a valuable tool for 3D-CRT treatment dose verification. (author)

  18. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  19. Non-coplanar volumetric-modulated arc therapy (VMAT) for craniopharyngiomas reduces radiation doses to the bilateral hippocampus: a planning study comparing dynamic conformal arc therapy, coplanar VMAT, and non-coplanar VMAT

    International Nuclear Information System (INIS)

    Uto, Megumi; Mizowaki, Takashi; Ogura, Kengo; Hiraoka, Masahiro

    2016-01-01

    Recent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas. As bilateral hippocampus are located on the same level as the planning target volume (PTV) in patients with craniopharyngioma, it seems possible to reduce doses to hippocampus using non-coplanar beams. While the use of non-coplanar beams in volumetric-modulated arc therapy (VMAT) of malignant intracranial tumors has recently been reported, no dosimetric comparison has yet been made between VMAT using non-coplanar arcs (ncVMAT) and VMAT employing only coplanar arcs (coVMAT) among patients with craniopharyngiomas. We performed a planning study comparing dose distributions to the PTV, hippocampus, and other organs at risk (OAR) of dynamic conformal arc therapy (DCAT), coVMAT, and ncVMAT. DCAT, coVMAT, and ncVMAT plans were created for 10 patients with craniopharyngiomas. The prescription dose was 52.2 Gy in 29 fractions, and 99 % of each PTV was covered by 90 % of the prescribed dose. The maximum dose was held below 107 % of the prescribed dose. CoVMAT and ncVMAT plans were formulated to satisfy the following criteria: the doses to the hippocampus were minimized, and the doses to the OAR were similar to or lower than those of DCAT. The mean equivalent doses in 2-Gy fractions to 40 % of the volumes of the bilateral hippocampus [EQD 2 (40% hippos )] were 15.4/10.8/6.5 Gy for DCAT/coVMAT/ncVMAT, respectively. The EQD 2 (40% hippos ) for ncVMAT were <7.3 Gy, which is the threshold predicting cognitive impairment, as defined by Gondi et al.. The mean doses to normal brain tissue and the conformity indices were similar for the three plans, and the homogeneity indices were significantly better for coVMAT and ncVMAT compared with DCAT. NcVMAT is more appropriate than DCAT and coVMAT for

  20. Virtual and solution conformations of oligosaccharides

    International Nuclear Information System (INIS)

    Cumming, D.A.; Carver, J.P.

    1987-01-01

    The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1 H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1 H NMR determined conformations are virtual in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the solution conformation is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T 1 )'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis the authors conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T 1 ) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions

  1. SU-E-T-514: Investigating the Dose Distributions of Equiangular Spaced Noncoplanar Beams

    International Nuclear Information System (INIS)

    Mitchell, T; Maxim, P; Hadsell, M; Loo, B

    2015-01-01

    Purpose It has been demonstrated that the use of noncoplanar beams in radiation therapy may Result in dose distributions that are comparable or better than standard coplanar beams [Pugachev, 2001]. A radiation therapy system designed with a noncoplanar beam geometry could allow for a full ring diagnostic quality imaging system to be placed around the patient. Additionally, if the noncoplanar beams were fixed in number and in their angle with respect to the patient’s axial plane, then both treatment and imaging could be achieved concurrently without the need for moving parts, which could greatly reduce treatment times. For such a system to be designed, it is necessary to determine the appropriate number of beams and the beam angles to achieve optimal dose distributions. For simplicity, the beam angles are assumed to be equiangular in the patient’s axial plane, and only the beam angle with respect to the axial plane are varied. This study aims to investigate the dose distributions produced by equiangular noncoplanar beams for multiple beam numbers and beam angles, and to compare these dose distributions with distributions achieved in coplanar volumetric arc therapy (VMAT). Methods Dose distributions produced by noncoplanar beams were calculated using the Varian Eclipse treatment planning system by varying the gantry, collimator, and couch angles to simulate the noncoplanar delivery method. Noncoplanar intensity-modulated (NC-IMRT) beams using 8, 12, and 16 beams with angles varying from 45 degrees to 54 with respect to the patient’s axial plane were studied. Results The NC-IMRT beams produced dose distributions comparable to VMAT plans for a number of treatment sites, and were capable of meeting similar dose-volume histogram constraints. Conclusion This study has demonstrated that a noncoplanar beam delivery method with fixed beam numbers and beam angles is capable of delivering dose distributions comparable to VMAT plans currently in use

  2. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  3. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  4. Three-dimensional conformal pancreas treatment: comparison of four- to six-field techniques

    International Nuclear Information System (INIS)

    Higgins, Patrick D.; Sohn, Jason W.; Fine, Robert M.; Schell, Michael C.

    1995-01-01

    Purpose: We compare practical conformal treatment approaches to pancreatic cancer using 6 and 18 MV photons and contrast those approaches against standard techniques. Methods and Materials: A four-field conformal technique for treating pancreas cancer has been developed using nonopposed 18 MV photons. This approach has been extended to 6 MV photon application by the addition of one to two fields. These techniques have been optimized to increase sparing of normal liver and bowel, compared with opposed-field methods, to improve patient tolerance of high doses. In this study we compare these techniques in a simulated tumor model in a cylindrical phantom. Dose-volume analysis is used to quantify differences between the conformal, nonopposed techniques with conformal, opposed field methods. This model is also used to evaluate the effect of 1-2 cm setup errors on dose-volume coverage. Results: Dose-volume analysis demonstrates that five-to-six field conformal treatments using 6 MV photons provides similar or better dose coverage and normal tissue sparing characteristics as an optimized 18 MV, four-field approach when 1-2 cm margins are included for setup uncertainty. All approaches using nonopposed beam geometry provide significant reduction in the volume of tissue encompassed by the 30-50% isodose surfaces, as compared with four-field box techniques. Conclusions: Three-dimensional (3D) conformal treatments can be designed that significantly improve dose-volume characteristics over conventional treatment designs without costing unacceptable amounts of machine time. Further, deep intraabdominal sites can be adequately accessed and treated on intermediate energy machines with a relatively moderate increase in machine time

  5. Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response

    International Nuclear Information System (INIS)

    Skwarchuk, Mark W.; Jackson, Andrew; Zelefsky, Michael J.; Venkatraman, Ennapadam S.; Cowen, Didier M.; Levegruen, Sabine; Burman, Chandra M.; Fuks, Zvi; Leibel, Steven A.; Ling, C. Clifton

    2000-01-01

    Purpose: The purpose of this paper is to use the outcome of a dose escalation protocol for three-dimensional conformal radiation therapy (3D-CRT) of prostate cancer to study the dose-response for late rectal toxicity and to identify anatomic, dosimetric, and clinical factors that correlate with late rectal bleeding in multivariate analysis. Methods and Materials: Seven hundred forty-three patients with T1c-T3 prostate cancer were treated with 3D-CRT with prescribed doses of 64.8 to 81.0 Gy. The 5-year actuarial rate of late rectal toxicity was assessed using Kaplan-Meier statistics. A retrospective dosimetric analysis was performed for patients treated to 70.2 Gy (52 patients) or 75.6 Gy (119 patients) who either exhibited late rectal bleeding (RTOG Grade 2/3) within 30 months after treatment (i.e., 70.2 Gy--13 patients, 75.6 Gy--36 patients) or were nonbleeding for at least 30 months (i.e., 70.2 Gy--39 patients, 75.6 Gy--83 patients). Univariate and multivariate logistic regression was performed to correlate late rectal bleeding with several anatomic, dosimetric, and clinical variables. Results: A dose response for ≥ Grade 2 late rectal toxicity was observed. By multivariate analysis, the following factors were significantly correlated with ≥ Grade 2 late rectal bleeding for patients prescribed 70.2 Gy: 1) enclosure of the outer rectal contour by the 50% isodose on the isocenter slice (i.e., Iso50) (p max (p max

  6. Study on dose distribution of therapeutic proton beams with prompt gamma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. W. [National Cancer Center, Seoul (Korea, Republic of); Min, C. H.; Kim, C. H.; Kim, D. K.; Yoon, M. Y. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-03-15

    The proton beam has an advantage of the sharp dose falloff in dose distribution called Bragg peak while conventional radiation therapy modalities such as photons exhibit considerable amount of exit dose. To take advantage of this property it is important to know the exact location of the distal dose falloff. An error can cause overdose to the normal tissue or underdose to the tumor volume. The only way of finding out the dose distribution in-situ in particle therapy is to measure the gammas produced by nuclear reactions with tissue materials. Two kinds of gammas can be used: one is prompt gamma and the other is coincident gamma from the positron-emission isotopes. We chose to detect prompt gammas, and developed a prompt gamma scanning system (PGS). The proton beams of the proton therapy facility at National Cancer Center were used. The gamma distribution was compared to the dose distribution measured by an ionization chamber at three different energies of 100, 150, 200 MeV's. The two distributions were well correlated within 1-2 mm. The effect of high-energy neutron appeared as blurred distribution near the distal dose falloff at the energy of 200 MeV. We then tested the PGS shielding design by adding additional layer of paraffin plates outside of the PGS, and found that fast neutrons significantly affect the background level. But the location of the dose fall-off was nearly coincident. The analysis of gamma energy spectrum showed that cut-off energy in gamma counting can be adjusted to enhance the signal to noise ratio. Further the ATOM phantom, which has similar tissue structure to human, was used to investigate the gamma distribution for the case of inhomogeneous matter. The location of dose falloff region was found to be well defined as for water phantom. Next an actual therapy beam, which was produced by the double scattering method, was used, for which the dose falloff by the gamma distribution was completely wiped out by background neutrons. It is not

  7. Independent dose calculation of the Tps Iplan in radiotherapy conformed with MLC; Calculo independiente de dosis del TPS Iplan en radioterapia conformada con MLC

    Energy Technology Data Exchange (ETDEWEB)

    Adrada, A.; Tello, Z.; Medina, L.; Garrigo, E.; Venencia, D., E-mail: jorge.alberto.adrada@gmail.com [Instituto Privado de Radioterapia, Obispo Oro 423, X5000BFI Cordoba (Argentina)

    2014-08-15

    The systems utilization of independent dose calculation in three dimensional-Conformal Radiation Therapy (3D-Crt) treatments allows a direct verification of the treatments times. The utilization of these systems allows diminishing the probability of errors occurrence generated by the treatment planning system (Tps), allowing a detailed analysis of the dose to delivering and review of the normalization point (Np) or prescription. The independent dose calculation is realized across the knowledge of dosimetric parameters of the treatment machine and particular characteristics of every individual field. The aim of this work is develops a calculation system of punctual doses for isocentric fields conformed with multi-leaf collimation systems (MLC), where the dose calculation is in conformity with the suggested ones by ICRU Report No. 42, 1987. Calculation software was realized in C ++ under a free platform of programming (Code::Blocks). The system uses files in format Rtp, exported from the Tps to systems of record and verification (Lantis). This file contains detailed information of the dose, Um, position of the MLC sheets and collimators for every field of treatment. The size of equivalent field is obtained from the positions of every sheet; the effective depth of calculation can be introduced from the dosimetric report of the Tps or automatically from the DFS of the field. The 3D coordinates of the isocenter and the Np for the treatment plan must be introduced manually. From this information the system looks the dosimetric parameters and calculates the Um. The calculations were realized in two accelerators a NOVALIS Tx (Varian) with 120 sheets of high definition (hd-MLC) and a PRIMUS Optifocus (Siemens) with 82 sheets. 705 patients were analyzed for a total of 1082, in plans made for both equipment s, the average uncertainty with regard to the calculation of the Tps is-0.43% ± 2.42% in a range between [-7.90 %, 7.50 %]. The major uncertainty was in Np near of the

  8. A calculation of dose distribution around 32P spherical sources and its clinical application

    International Nuclear Information System (INIS)

    Ohara, Ken; Tanaka, Yoshiaki; Nishizawa, Kunihide; Maekoshi, Hisashi

    1977-01-01

    In order to avoid the radiation hazard in radiation therapy of craniopharyngioma by using 32 P, it is helpful to prepare a detailed dose distribution in the vicinity of the source in the tissue. Valley's method is used for calculations. A problem of the method is pointed out and the method itself is refined numerically: it extends a region of xi where an approximate polynomial is available, and it determines an optimum degree of the polynomial as 9. Usefulness of the polynomial is examined by comparing with Berger's scaled absorbed dose distribution F(xi) and the Valley's result. The dose and dose rate distributions around uniformly distributed spherical sources are computed from the termwise integration of our polynomial of degree 9 over the range of xi from 0 to 1.7. The dose distributions calculated from the spherical surface to a point at 0.5 cm outside the source, are given, when the radii of sources are 0.5, 0.6, 0.7, 1.0, and 1.5 cm respectively. The therapeutic dose for a craniopharyngioma which has a spherically shaped cyst, and the absorbed dose to the normal tissue, (oculomotor nerve), are obtained from these dose rate distributions. (auth.)

  9. Distribution of dose within the body from a photon emitter present in an organ

    International Nuclear Information System (INIS)

    Snyder, W.S.; Ford, M.R.; Warner, G.G.

    1977-01-01

    A dosimetric system was developed which provides estimates of mean radiation dose to organs from photon sources distributed uniformly in one or more organs. Although the sources of photons are assumed to be distributed uniformly, it is not true that dose from these photons is uniformly distributed. In particular, when a source of photons is located in a particular organ, nearby tissues will be irradiated at doses which decrease markedly with distance from the source. The mean dose may give a poor approximation to the actual dose if the tissues over which dose is averaged are extensive, for example, the remainder of the body. A set of enveloping organs was devised for liver, lungs, etc., which give mean dose at distances from zero to one centimeter from the source organ, from one to two centimeters, etc. These can be used to yield estimates of the extent of inhomogeneity of the dose distribution from a source of photons located in the source organ

  10. Dose equivalent distributions in the AAEC total body nitrogen facility

    International Nuclear Information System (INIS)

    Allen, B.J.; Bailey, G.M.; McGregor, B.J.

    1985-01-01

    The incident neutron dose equivalent in the AAEC total body nitrogen facility is measured by a calibrated remmeter. Dose equivalent rates and distributions are calculated by Monte Carlo techniques which take account of the secondary neutron flux from the collimator. Experiment and calculation are found to be in satisfactory agreement. The effective dose equivalent per exposure is determined by weighting organ doses, and the potential detriment per exposure is calculated from ICRP risk factors

  11. Measurement of leakage dose distribution from Crookes tube using imaging plate

    International Nuclear Information System (INIS)

    Fujibuchi, Toshioh; Obara, Satoshi; Inoue, Hajime; Kato, Hideyuki; Kobayashi, Ikuo; Hosoda, Masahiro

    2011-01-01

    Crookes tube is used on an educational site in the junior high school and the high school, etc. for the purpose to learn the character of cathode rays. When using the tube, X rays are generated, however, there is few example of confirming in which direction to scatter in detail. Understanding how the distribution of the leakage dose is important because of efficient exposure decrease. The distribution of X rays generated from Crookes tube was measured by arranging imaging plates in six surroundings to enclose Crookes tube. The electron collided with a metal target and X rays had extended backward. The dose was greatly different depending on the direction. When experimenting with Crookes tube, it is necessary to consider not only the dose but also distribution. (author)

  12. Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions

    International Nuclear Information System (INIS)

    Hanks, Gerald E.; Hanlon, Alexandra L. M.S.; Schultheiss, Timothy E.; Pinover, Wayne H.; Movsas, Benjamin; Epstein, Barry E.; Hunt, Margie

    1998-01-01

    Purpose: To report the 5-year outcomes of dose escalation with 3D conformal treatment (3DCRT) of prostate cancer. Methods and Materials: Two hundred thirty-two consecutive patients were treated with 3DCRT alone between 6/89 and 10/92 with ICRU reporting point dose that increased from 63 to 79 Gy. The median follow-up was 60 months, and any patient free of clinical or biochemical evidence of disease was termed bNED. Biochemical failure was defined as prostate-specific antigen (PSA) rising on two consecutive recordings and exceeding 1.5 ng/ml. Morbidity was reported by the Radiation Therapy Oncology Group (RTOG) scale, the Late Effects Normal Tissue (LENT) scale, and a Fox Chase modification of the latter (FC-LENT). All patients were treated with a four-field technique with a 1 cm clinical target volume (CTV) to planning target volume (PTV) margin to the prostate or prostate boost; the CTV and gross tumor volume (GTV) were the same. Actuarial rates of outcome were calculated by Kaplan-Meier and cumulative incidence methods and compared using the log rank and Gray's test statistic, respectively. Cox regression models were used to establish prognostic factors predictive of the various measures of outcome. Five-year Kaplan-Meier bNED rates were utilized by dose group to estimate logit response models for bNED and late morbidity. Results: PSA 10 ng/ml based on 5-year bNED results. No dose response was observed for patients with pretreatment PSA 10 ng/ml strongly suggests that clinical trials employing radiation should investigate the use of 3DCRT and prostate doses of 76-80 Gy

  13. Stereotactic radiosurgery with the gamma knife. Possibilities of dose distribution optimizations

    International Nuclear Information System (INIS)

    Stuecklschweiger, G.

    1995-01-01

    On April 1992, the first stereotactic radiosurgical procedure using the gamma knife was performed at the University Medical School Graz, Department of Neurosurgery. Accurate dose optimization is the foundation of a convenient and responsible utilization of this modality. But there are limits, because the final collimation is only achieved by 1 of the 4 special helm collimators. The possibilities of dose optimization and its influence on the dose distributions were investigated and partly compared with results of film densitometry measurements. In detail, the technique, which uses the same isocenter, but different sized collimators was studied. The influence of these optimization techniques on the resulting dose distributions and the dose gradient at the edge of the treatment planning volume was analyzed. Also the visions for an effective dose optimization are discussed. With 2 shots of different diameters, located at the same target coordinates and different weighting of time any collimator size between the 4 mm and 18 mm can be achieved. Because of that, a combination of more than 2 collimators is not meaningful. With the combined shots the dose fall gradient was less than that of either of the single shots involved in the combination. With the available physical and technical possibilities only a limited, very time consuming optimization is practicable. The quality control of isodose distributions requires optimizations in hard-and software, that enable CT- or MRT-based 3-dimensional visualization and dose volume analysis. (orig./MG) [de

  14. Impact of MLC leaf width on the quality of the dose distribution in partial breast irradiation

    International Nuclear Information System (INIS)

    Height, Felicity J.; Kron, Tomas; Willis, David; Chua, Boon H.

    2012-01-01

    Partial-breast irradiation (PBI) aims to limit the target volume for radiotherapy in women with early breast cancer after partial mastectomy to the region at highest risk of local recurrence, the tumor bed. Multileaf collimators are used to achieve conformal radiation beam portals required for PBI. Narrower leaf widths are generally assumed to allow more conformal shaping of beam portals around irregularly shaped target volumes. The aim was to compare 5-mm and 10-mm leaf widths for patients previously treated using PBI and assess subsequent planning target volume (PTV) coverage and organ at risk (OAR) doses for 16 patients. Several plans (5-mm leaf width or 10-mm leaf width) were generated for each patient using the original treated plan as the basis for attempts at further optimization. Alternating between different leaf widths found no significant difference in terms of overall PTV coverage and OAR doses between treatment plans. Optimization of the original treated plan allowed a small decrease in ipsilateral breast dose, which was offset by a lower PTV minimum. No significant dosimetric difference was found to support an advantage of 5-mm over 10-mm leaf width in this setting.

  15. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  16. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  17. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.

    Science.gov (United States)

    Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard

    2010-12-30

    Structural preferences in the unfolded state of peptides determined by molecular dynamics still contradict experimental data. A remedy in this regard has been suggested by MD simulations with an optimized Amber force field ff03* ( Best, R. Hummer, G. J. Phys. Chem. B 2009 , 113 , 9004 - 9015 ). The simulations yielded a statistical coil distribution for alanine which is at variance with recent experimental results. To check the validity of this distribution, we investigated the peptide H-A(5)W-OH, which with the exception of the additional terminal tryptophan is analogous to the peptide used to optimize the force fields ff03*. Electronic circular dichroism, vibrational circular dichroism, and infrared spectroscopy as well as J-coupling constants obtained from NMR experiments were used to derive the peptide's conformational ensemble. Additionally, Förster resonance energy transfer between the terminal chromophores of the fluorescently labeled peptide analogue H-Dbo-A(5)W-OH was used to determine its average length, from which the end-to-end distance of the unlabeled peptide was estimated. Qualitatively, the experimental (3)J(H(N),C(α)), VCD, and ECD indicated a preference of alanine for polyproline II-like conformations. The experimental (3)J(H(N),C(α)) for A(5)W closely resembles the constants obtained for A(5). In order to quantitatively relate the conformational distribution of A(5) obtained with the optimized AMBER ff03* force field to experimental data, the former was used to derive a distribution function which expressed the conformational ensemble as a mixture of polyproline II, β-strand, helical, and turn conformations. This model was found to satisfactorily reproduce all experimental J-coupling constants. We employed the model to calculate the amide I' profiles of the IR and vibrational circular dichroism spectrum of A(5)W, as well as the distance between the two terminal peptide carbonyls. This led to an underestimated negative VCD couplet and an

  18. Estimation of dose distribution in occupationally exposed individuals to FDG-{sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson, E-mail: ilacerda.bolsista@cnen.gov.br, E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, Mercia Liane de; Andrade Lima, Fernando R. de, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG-{sup 18}F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  19. A deterministic iterative least-squares algorithm for beam weight optimization in conformal radiotherapy

    International Nuclear Information System (INIS)

    Chen Yan; Michalski, Darek; Houser, Christopher; Galvin, James M.

    2002-01-01

    Currently, inverse treatment planning in conformal radiotherapy is, in part, a trial-and-error process due to the interplay of many competing criteria for obtaining a clinically acceptable dose distribution. A new method is developed for beam weight optimization that incorporates clinically relevant nonlinear and linear constraints. The process is driven by a nonlinear, quasi-quadratic objective function and the solution space is defined by a set of linear constraints. At each step of iteration, the optimization problem is linearized by a self-consistent approximation that is local to the existing dose distribution. The dose distribution is then improved by solving a series of constrained least-squares problems using an established method until all prescribed constraints are satisfied. This differs from the current approaches in that it does not rely on the search for the global minimum of a specific objective function. Essentially, our proposed objective function can be construed as a functional that comprises a class of dose-based quadratic objective functions. Empirical adjustment for appropriate model parameters in the construction of objective function is minimized, since these parameters are in effect adaptively adjusted during optimization. The method is robust in solving difficult clinical cases using either aperture or pencil beam based planning techniques for intensity-modulated radiation therapy. (author)

  20. Evaluation of concave dose distributions created using an inverse planning system

    International Nuclear Information System (INIS)

    Hunt, Margie A.; Hsiung, C.-Y.; Spirou, Spirodon V.; Chui, C.-S.; Amols, Howard I.; Ling, Clifton C.

    2002-01-01

    Purpose: To evaluate and develop optimum inverse treatment planning strategies for the treatment of concave targets adjacent to normal tissue structures. Methods and Materials: Optimized dose distributions were designed using an idealized geometry consisting of a cylindrical phantom with a concave kidney-shaped target (PTV) and cylindrical normal tissues (NT) placed 5-13 mm from the target. Targets with radii of curvature from 1 to 2.75 cm were paired with normal tissues with radii between 0.5 and 2.25 cm. The target was constrained to a prescription dose of 100% and minimum and maximum doses of 95% and 105% with relative penalties of 25. Maximum dose constraint parameters for the NT varied from 10% to 70% with penalties from 10 to 1000. Plans were evaluated using the PTV uniformity index (PTV D max /PTV D 95 ) and maximum normal tissue doses (NT D max /PTV D 95 ). Results: In nearly all situations, the achievable PTV uniformity index and the maximum NT dose exceeded the corresponding constraints. This was particularly true for small PTV-NT separations (5-8 mm) or strict NT dose constraints (10%-30%), where the achievable doses differed from the requested by 30% or more. The same constraint parameters applied to different PTV-NT separations yielded different dose distributions. For most geometries, a range of constraints could be identified that would lead to acceptable plans. The optimization results were fairly independent of beam energy and radius of curvature, but improved as the number of beams increased, particularly for small PTV-NT separations or strict dose constraints. Conclusion: Optimized dose distributions are strongly affected by both the constraint parameters and target-normal tissue geometry. Standard site-specific constraint templates can serve as a starting point for optimization, but the final constraints must be determined iteratively for individual patients. A strategy whereby NT constraints and penalties are modified until the highest

  1. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  2. Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi; Mooij, Rob; Mark Perera, G.; Maryanski, Marek J.

    2004-01-01

    Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 registered polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D

  3. Process control and dosimetry applied to establish a relation between reference dose measurements and actual dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ehlerman, D A.E. [Institute of Process Engineering, Federal Research Centre for Nutrition, Karlsruhe (Germany)

    2001-03-01

    The availability of the first commercial dose level indicator prompted attempts to verify radiation absorbed dose to items under quarantine control (e.g. for insect disinfestation) by some indicator attached to these items. Samples of the new commercial dose level indicators were tested for their metrological properties using gamma and electron irradiation. The devices are suitable for the intended purpose and the subjective judgement whether the threshold dose was surpassed is possible in a reliable manner. The subjective judgements are completely backed by the instrumental results. Consequently, a prototype reader was developed; first tests were successful. The value of dose level indicators and the implications of its use for food or quarantine inspection depends on a link between dose measured (indicated) at the position of such indicator and the characteristic parameters of the frequency distribution of dose throughout the product load i.e. a box or a container or a whole batch of multiple units. Therefore, studies into variability and statistical properties of dose distributions obtained under a range of commercial situations were undertaken. Gamma processing at a commercial multipurpose contract irradiator, electron processing and bremsstrahlung applications at a largescale research facility were included; products were apples, potatoes, wheat, maize, pistachio. Studies revealed that still more detailed information on irradiation geometries are needed in order to render meaningful information from dose label indicators. (author)

  4. Process control and dosimetry applied to establish a relation between reference dose measurements and actual dose distribution

    International Nuclear Information System (INIS)

    Ehlerman, D.A.E.

    2001-01-01

    The availability of the first commercial dose level indicator prompted attempts to verify radiation absorbed dose to items under quarantine control (e.g. for insect disinfestation) by some indicator attached to these items. Samples of the new commercial dose level indicators were tested for their metrological properties using gamma and electron irradiation. The devices are suitable for the intended purpose and the subjective judgement whether the threshold dose was surpassed is possible in a reliable manner. The subjective judgements are completely backed by the instrumental results. Consequently, a prototype reader was developed; first tests were successful. The value of dose level indicators and the implications of its use for food or quarantine inspection depends on a link between dose measured (indicated) at the position of such indicator and the characteristic parameters of the frequency distribution of dose throughout the product load i.e. a box or a container or a whole batch of multiple units. Therefore, studies into variability and statistical properties of dose distributions obtained under a range of commercial situations were undertaken. Gamma processing at a commercial multipurpose contract irradiator, electron processing and bremsstrahlung applications at a largescale research facility were included; products were apples, potatoes, wheat, maize, pistachio. Studies revealed that still more detailed information on irradiation geometries are needed in order to render meaningful information from dose label indicators. (author)

  5. Could 3-D conformal radiotherapy improve the overall survival for non-small cell lung cancer?

    International Nuclear Information System (INIS)

    Giraud, P.; Helfre, S.; Lavole, A.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization devices and demanding quality assurance and treatment verification. The main goal of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of healthy tissues. These techniques would then allow a further dose escalation increasing local control and survival. Non-small cell lung cancer (NSCLC) is one of the most difficult malignant tumors to be treated. It combines geometrical difficulties due to respiratory motion, and number of low tolerance neighboring organs, and dosimetric difficulties because of the presence of huge inhomogeneities. This localization is an attractive and ambitious example for the evaluation of new techniques. However, the published clinical reports in the last years described very heterogeneous techniques and, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from those conformal radiotherapy techniques. After reviewing the rationale for 3DCRT for NSCLC, this paper will describe the main studies of 3DCRT, in order to evaluate its impact on lung cancer treatment Then the current state-of-the-art of IMRT and the last technical and therapeutic innovations in NSCL will be discussed. (authors)

  6. Simulated tempering distributed replica sampling: A practical guide to enhanced conformational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, Sarah; Pomes, Regis, E-mail: pomes@sickkids.ca

    2010-11-01

    Simulated tempering distributed replica sampling (STDR) is a generalized-ensemble method designed specifically for simulations of large molecular systems on shared and heterogeneous computing platforms [Rauscher, Neale and Pomes (2009) J. Chem. Theor. Comput. 5, 2640]. The STDR algorithm consists of an alternation of two steps: (1) a short molecular dynamics (MD) simulation; and (2) a stochastic temperature jump. Repeating these steps thousands of times results in a random walk in temperature, which allows the system to overcome energetic barriers, thereby enhancing conformational sampling. The aim of the present paper is to provide a practical guide to applying STDR to complex biomolecular systems. We discuss the details of our STDR implementation, which is a highly-parallel algorithm designed to maximize computational efficiency while simultaneously minimizing network communication and data storage requirements. Using a 35-residue disordered peptide in explicit water as a test system, we characterize the efficiency of the STDR algorithm with respect to both diffusion in temperature space and statistical convergence of structural properties. Importantly, we show that STDR provides a dramatic enhancement of conformational sampling compared to a canonical MD simulation.

  7. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    Science.gov (United States)

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  8. Statistical evaluation of the dose-distribution charts of the National Computerized Irradiation Planning Network

    International Nuclear Information System (INIS)

    Varjas, Geza; Jozsef, Gabor; Gyenes, Gyoergy; Petranyi, Julia; Bozoky, Laszlo; Pataki, Gezane

    1985-01-01

    The establishment of the National Computerized Irradiation Planning Network allowed to perform the statistical evaluation presented in this report. During the first 5 years 13389 dose-distribution charts were calculated for the treatment of 5320 patients, i.e. in average, 2,5 dose-distribution chart-variants per patient. This number practically did not change in the last 4 years. The irradiation plan of certain tumour localizations was performed on the basis of the calculation of, in average, 1.6-3.0 dose-distribution charts. Recently, radiation procedures assuring optimal dose-distribution, such as the use of moving fields, and two- or three-irradiation fields, are gaining grounds. (author)

  9. Comparative evaluation of two dose optimization methods for image-guided, highly-conformal, tandem and ovoids cervix brachytherapy planning

    Science.gov (United States)

    Ren, Jiyun; Menon, Geetha; Sloboda, Ron

    2013-04-01

    Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.

  10. A simulation study on the dose distribution for a single beam of the gamma knife

    International Nuclear Information System (INIS)

    Chen, Chin-cheng; Jiang, Shiang-Huei; Lee, Chung-chi; Shiau, Cheng-Ying

    2000-01-01

    The purpose of this study is to evaluate the impact of the tissue heterogeneity on the dose distribution for a single beam of the gamma knife. The EGS4 Monte Carlo code was used to simulate both depth and radial profiles of the radiation dose in homogeneous and heterogeneous phantoms, respectively. The results are compared with the dose distribution calculated using the mathematical model of Gamma Plan, the treatment planning system of the gamma knife. The skull and sinus heterogeneity were simulated by a Teflon shell and an air shell, respectively. It was found that the tissue heterogeneity caused significant perturbation on the absolute depth dose at the focus as well as on the depth-dose distribution near the phantom surface and/or at the interface but little effect on the radial dose distribution. The effect of the beam aperture on the depth-dose distribution was also investigated in this study. (author)

  11. Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System

    International Nuclear Information System (INIS)

    Kim, Yon Lae; Park, Byung Moon; Bae, Yong Ki; Kang, Min Young; Bang, Dong Wan; Lee, Gui Won

    2006-01-01

    Few researches have been performed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of 1.14 g/cm 3 , 0.32 g/cm 3 respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose distributions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distributions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles

  12. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2001-01-01

    Uncertainty in the precise quantity of radiation dose delivered to tumours in external beam radiotherapy is present due to many factors, and can result in either spatially uniform (Gaussian) or spatially non-uniform dose errors. These dose errors are incorporated into the calculation of tumour control probability (TCP) and produce a distribution of possible TCP values over a population. We also study the effect of inter-patient cell sensitivity heterogeneity on the population distribution of patient TCPs. This study aims to investigate the relative importance of these three uncertainties (spatially uniform dose uncertainty, spatially non-uniform dose uncertainty, and inter-patient cell sensitivity heterogeneity) on the delivered dose and TCP distribution following a typical course of fractionated external beam radiotherapy. The dose distributions used for patient treatments are modelled in one dimension. Geometric positioning uncertainties during and before treatment are considered as shifts of a pre-calculated dose distribution. Following the simulation of a population of patients, distributions of dose across the patient population are used to calculate mean treatment dose, standard deviation in mean treatment dose, mean TCP, standard deviation in TCP, and TCP mode. These parameters are calculated with each of the three uncertainties included separately. The calculations show that the dose errors in the tumour volume are dominated by the spatially uniform component of dose uncertainty. This could be related to machine specific parameters, such as linear accelerator calibration. TCP calculation is affected dramatically by inter-patient variation in the cell sensitivity and to a lesser extent by the spatially uniform dose errors. The positioning errors with the 1.5 cm margins used cause dose uncertainty outside the tumour volume and have a small effect on mean treatment dose (in the tumour volume) and tumour control. Copyright (2001) Australasian College of

  13. Depth-Dose and LET Distributions of Antiproton Beams in Various Target Materials

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Olsen, Sune; Petersen, Jørgen B.B.

    the annihilation process. Materials We have investigated the impact of substituting the target material on  the depth-dose distribution of pristine and  spread out antiproton beams using the FLUKA Monte Carlo transport program. Classical ICRP targets are compared to water phantoms. In addition, track average...... unrestricted LET is calculated for all configurations. Finally, we investigate which concentrations of gadolinium and boron are needed in a water target in order to observe a significant change in the antiproton depth-dose distribution.  Results Results indicate, that there is no significant change...... in the depth-dose distribution and average LET when substituting the materials. Adding boron and gadolinium up to concentrations of 1 per 1000 atoms to a water phantom, did not change the depth-dose profile nor the average LET. Conclusions  According to our FLUKA calculations, antiproton neutron capture...

  14. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    International Nuclear Information System (INIS)

    Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.; Henkelmann, Gregory; Chu, Connel; Carver, Robert A.

    2013-01-01

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively, whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94

  15. Association of anorectal dose-volume histograms and impaired fecal continence after 3D conformal radiotherapy for carcinoma of the prostate

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Schwab, Michael; Ness-Dourdoumas, Rhea; Sailer, Marco; Flentje, Michael; Koelbl, Oliver

    2003-01-01

    Purpose: The late toxicity of fecal incontinence after pelvic radiotherapy is now frequently recognized but the etiology poorly understood. We therefore investigated associations between dose-volume histogram (DVH) parameters of the rectum and the anal canal with fecal continence as measured by an established 10-item questionnaire. Methods and materials: Forty-four patients treated for carcinoma of the prostate with 58-72 Gy of 3D conformal radiotherapy between 1995 and 1999 who completed the questionnaire formed the study population. Total continence scores of treated patients obtained 1.5 years (median) after radiotherapy were compared to a control group of 30 patients before radiotherapy. Median, mean, minimum and maximum doses as well as the volume (% and ml) treated to 40, 50, 60 and 70 Gy were determined separately for anal canal and rectum. DVH parameters were correlated with total continence score (Spearman rank test) and patients grouped according to observed continence were compared regarding DVH values (Mann-Whitney U-test). Results: Median fecal continence scores were significantly worse in the irradiated than in the control group (31 vs. 35 of a maximum 36 points). In treated patients, 59%/27%/14% were classified as fully continent, slightly incontinent and severely incontinent. Continence was similar in the 58-to-62-Gy, 66-Gy and 68-to-72-Gy dose groups. No DVH parameter was significantly correlated with total continence score, but severely incontinent patients had a significantly higher minimum dose to the anal canal than fully continent/slightly incontinent, accompanied by portals extending significantly further inferiorly with respect to the ischial tuberosities. Conclusions: Excluding the inferior part of the anal canal from the treated volume in 3D conformal therapy for carcinoma of the prostate appears to be a promising strategy to prevent radiation-induced fecal incontinence

  16. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    Science.gov (United States)

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  17. Conformational Analysis of Contrast Media for X-Ray Diagnostic Radiology

    International Nuclear Information System (INIS)

    Solieman, A.H.M.

    2010-01-01

    The conformational analysis of iodinated non-ionic contrast agent, Iobitridol, was carried out using theoretical calculations to explore its conformational space, and to study different aspects connected with application of different search techniques. Monte Carlo (MC), random search (RS) and molecular dynamics (MD) based conformational search techniques were used to extract a reasonable-size sample that adequately represents and has an average behavior of the entire conformational ensemble.While MC is good for quick search for lowest energy conformer, RS is better in obtaining conformational sample that cover the whole conformational space and MD is the best for investigation of isomeric preferences inside the conformational ensemble at thermal equilibrium. Conformational analysis of the produced gas phase samples reveals that RS and MD methods could sufficiently present the 18 distinct isomeric classes that constitute the total conformational space of the Iobitridol. S samples of conformational space of Iobitridol are extensively studied, as it hypothetically cover the total conformational space. They are used to test the suitability of different methods (charge distribution methods, energy calculation methods) for Iobitridol molecular computations and internal structure forces (steric hindrance, resonance interaction), as well as dependences among the internal coordinates (dihedral angles correlations and coincidences). The atomic partial charge distribution is found to greatly affect the energy calculation for the molecular mechanics based conformational energy distributions. Further energy minimization of conformational sample by the quantum molecular orbital methods is crucial to obtain charge independent as well as energy balanced conformational sample.

  18. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  19. Erectile dysfunction after prostate three-dimensional conformal radiation therapy. Correlation with the dose to the penile bulb

    International Nuclear Information System (INIS)

    Magli, A.; Ceschia, T.; Titone, F.; Parisi, G.; Fongione, S.; Giangreco, M.; Crespi, M.; Negri, A.; De Giorgi, G.

    2012-01-01

    Purpose: Erectile dysfunction is associated with all the common treatment options for prostate cancer. The aim of this research was to evaluate the relationship between erectile function and radiation dose to the penile bulb (PB) and other proximal penile structures in men receiving conformal radiotherapy (CRT) without hormonal therapy (HT) for prostate cancer, whose sexual function was known before treatment. Patients and methods: The study included 19 patients treated with 3D-CRT for localized prostate cancer at our department, who were self-reported to be potent before treatment, had not received HT, and had complete follow-up data available. Our evaluation was based on the International Index of Erectile Function (IIEF-5). Dose-volume histograms (DVHs) were used to evaluate the dose to the PB. Statistical analysis was performed with an unconditional logistic regression model. Results: All patients reported change in potency after radiation. Eight patients (42%) remained potent but showed a decrease of 1 or 2 levels of potency, as defined by the IIEF-5 questionnaire (reduced potency group), while 11 patients (58%) reported a change of higher levels and revealed a severe erectile dysfunction after 2 years (impotence group). Multivariate analysis of morphological and dosimetric variables yielded significance for the mean dose (p = 0.05 with an odds ratio of 1.14 and 95% CI 1-1.30). Patients receiving a mean dose of less than 50 Gy to the PB appear to have a much greater likelihood of maintaining potency. Conclusion: Our data suggest a possible existence of a dose-volume correlation between the dose applied to the PB and radiation-induced impotence. (orig.)

  20. Erectile dysfunction after prostate three-dimensional conformal radiation therapy. Correlation with the dose to the penile bulb

    Energy Technology Data Exchange (ETDEWEB)

    Magli, A.; Ceschia, T.; Titone, F.; Parisi, G.; Fongione, S. [University Hospital Udine (Italy). Dept. of Radiation Oncology; Giangreco, M. [Udine Univ. (Italy). Hygiene and Epidemiology Inst.; Crespi, M.; Negri, A. [University Hospital Udine (Italy). Dept. of Medical Physics; De Giorgi, G. [University Hospital Udine (Italy). Dept. of Urology

    2012-11-15

    Purpose: Erectile dysfunction is associated with all the common treatment options for prostate cancer. The aim of this research was to evaluate the relationship between erectile function and radiation dose to the penile bulb (PB) and other proximal penile structures in men receiving conformal radiotherapy (CRT) without hormonal therapy (HT) for prostate cancer, whose sexual function was known before treatment. Patients and methods: The study included 19 patients treated with 3D-CRT for localized prostate cancer at our department, who were self-reported to be potent before treatment, had not received HT, and had complete follow-up data available. Our evaluation was based on the International Index of Erectile Function (IIEF-5). Dose-volume histograms (DVHs) were used to evaluate the dose to the PB. Statistical analysis was performed with an unconditional logistic regression model. Results: All patients reported change in potency after radiation. Eight patients (42%) remained potent but showed a decrease of 1 or 2 levels of potency, as defined by the IIEF-5 questionnaire (reduced potency group), while 11 patients (58%) reported a change of higher levels and revealed a severe erectile dysfunction after 2 years (impotence group). Multivariate analysis of morphological and dosimetric variables yielded significance for the mean dose (p = 0.05 with an odds ratio of 1.14 and 95% CI 1-1.30). Patients receiving a mean dose of less than 50 Gy to the PB appear to have a much greater likelihood of maintaining potency. Conclusion: Our data suggest a possible existence of a dose-volume correlation between the dose applied to the PB and radiation-induced impotence. (orig.)

  1. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  2. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    International Nuclear Information System (INIS)

    Vordermark, Dirk

    2006-01-01

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 μg/l in 3-DC boost patients and 8.1 μg/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles

  3. 3D conformal external beam radiation therapy for prostate carcinoma: an experiment of Instituto do Radium de Campinas with 285 patients

    International Nuclear Information System (INIS)

    Nakamura, Ricardo Akiyoshi; Monti, Carlos Roberto; Trevisan, Felipe Amstalden; Jacinto, Alexandre Arthur

    2009-01-01

    Objective: To report the outcomes of 3D conformal radiation therapy for prostate cancer in a single institution. Materials and methods: From July 1997 to January 2002, 285 consecutive patients with prostate cancer were submitted to 3D conformal radiation therapy receiving a median dose of 7920 cGy to the prostate, and were retrospectively evaluated. The patients distribution according to the level of risk was the following: low risk - 95 (33.7%); intermediate risk - 66 (23.4%); high risk -121 (42.9%) patients. Results: Median follow-up of 53.6 months (3.6.95.3 months) demonstrated 85.1% actuarial five-year overall survival, 97.0% specific cause survival, 94.2% five-year distant metastasis-free survival, and 75.8% five-year biochemical recurrence-free survival. Rates of five-year actuarial survival free from late rectal and urinary toxicity were 96.4% and 91.1% respectively. Pre-3D conformal radiation therapy transurethral resection of the prostate and doses > 70 Gy in 30% of the bladder volume implied a higher grade 2-3 late urinary toxicity in five years (p = 0.0002 and p = 0.0264, respectively). Conclusion: The first experiment with 3D conformal radiation therapy reported in Brazil allowed high radiation doses with acceptable levels of urinary and rectal toxicity. Pre-3D conformal radiation therapy transurethral resection of prostate may determine a higher risk for post-irradiation grade 2-3 late urinary toxicity. At the tomography planning, the reduction of the radiation dose to . 70 Gy in 30% of the bladder volume may reduce the risk for late urinary complications. (author)

  4. Estimate of the damage in organs induced by neutrons in three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.; Uribe, M. del R.

    2014-08-01

    By means of Monte Carlo methods was considered the damage in the organs, induced by neutrons, of patients with cancer that receive treatment in modality of three-dimensional conformal radiotherapy (3D-CRT) with lineal accelerator Varian Ix. The objective of this work was to estimate the damage probability in radiotherapy patients, starting from the effective dose by neutrons in the organs and tissues out of the treatment region. For that a three-dimensional mannequin of equivalent tissue of 30 x 100 x 30 cm 3 was modeled and spherical cells were distributed to estimate the Kerma in equivalent tissue and the absorbed dose by neutrons. With the absorbed dose the effective dose was calculated using the weighting factors for the organ type and radiation type. With the effective dose and the damage factors, considered in the ICRP 103, was considered the probability of damage induction in organs. (Author)

  5. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    Science.gov (United States)

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  6. Dose Escalation for Prostate Cancer Using the Three-Dimensional Conformal Dynamic Arc Technique: Analysis of 542 Consecutive Patients

    International Nuclear Information System (INIS)

    Jereczek-Fossa, Barbara A.; Vavassori, Andrea; Fodor, Cristiana; Santoro, Luigi; Zerini, Dario; Cattani, Federica; Garibaldi, Cristina; Cambria, Raffaella; Fodor, Andrei; Boboc, Genoveva Ionela; Vitolo, Viviana; Ivaldi, Giovanni Battista; Musi, Gennaro; De Cobelli, Ottavio; Orecchia, Roberto

    2008-01-01

    Purpose: To present the results of dose escalation using three-dimensional conformal dynamic arc radiotherapy (3D-ART) for prostate cancer. Methods and Materials: Five hundred and forty two T1-T3N0M0 prostate cancer patients were treated with 3D-ART. Dose escalation (from 76 Gy/38 fractions to 80 Gy/40 fractions) was introduced in September 2003; 32% of patients received 80 Gy. In 366 patients, androgen deprivation was added to 3D-ART. Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria and Houston definition (nadir + 2) were used for toxicity and biochemical failure evaluation, respectively. Median follow-up was 25 months. Results: Acute toxicity included rectal (G1-2 28.9%; G3 0.5%) and urinary events (G1-2 57.9%; G3-4 2.4%). Late toxicity included rectal (G1-2 15.8%; G3-4 3.1%) and urinary events (G1-2 26.9%; G3-4 1.6%). Two-year failure-free survival and overall survival rates were 94.1% and 97.9%, respectively. Poor prognostic group (GS, iPSA, T), transurethral prostate resection, and dose >76 Gy showed significant association to high risk of progression in multivariate analysis (p = 0.014, p = 0.045, and p 0.04, respectively). The negative effect of dose >76 Gy was not observed (p 0.10), when the analysis was limited to 353 patients treated after September 2003 (when dose escalation was introduced). Higher dose was not associated with higher late toxicity. Conclusions: Three-dimensional-ART is a feasible modality allowing for dose escalation (no increase in toxicity has been observed with higher doses). However, the dose increase from 76 to 80 Gy was not associated with better tumor outcome. Further investigation is warranted for better understanding of the dose effect for prostate cancer

  7. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson Tedgren, A [Linkoping University, Linkoping, Linkoping (Sweden); Persson, M; Nilsson, J [Karolinska hospital, Stockholm, Stockholm (Sweden)

    2014-06-15

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.

  8. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    International Nuclear Information System (INIS)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    2014-01-01

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT images in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined

  9. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, I.V.B., E-mail: isabelle.lacerda@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Vieira, J.W. [Instituto Federal de Pernambuco (IFPE), Recife (Brazil); Oliveira, M.L.; Lima, F.R.A. [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife (Brazil)

    2017-07-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  10. Dose distribution in organs: patient-specific phantoms versus reference phantoms

    International Nuclear Information System (INIS)

    Lacerda, I.V.B.; Vieira, J.W.; Oliveira, M.L.; Lima, F.R.A.

    2017-01-01

    Discrepancies between ICRP phantoms and real patients lead to disparities on patient-dose estimations. This paper aims to compare distribution of dose in organs of male/female specific-phantoms and ICRP reference phantoms. The absorbed dose estimation was performed using the EGSnrc Monte Carlo code and a parallel source algorithm. In this work were used a patient-specific phantom for a man (1.73m/70.3kg) and another for a woman (1.63m/60.3kg) and the male and female ICRP reference phantoms. The comparison of the absorbed dose from each phantom gender was performed using the relative error. The results were expressed in terms of conversion coefficients to brain, lungs, liver and kidneys. The greatest absolute relative error between the organs of the patient-specific phantom and the reference phantom was 22.92% in the liver and 62.84% in the kidneys, respectively for man and woman. There are errors that cannot be disregarded. This paper shows the need for a specific study for each patient or for the population of each country, since there are different body types, which affects the distribution of the organ doses. (author)

  11. Dose Distribution and Characterization for Radiation Fields of Multileaf Collimator System

    International Nuclear Information System (INIS)

    Chu, Sung Sil; Kim, Gwi Eon

    1996-01-01

    Purpose : Multileaf collimator(MLC) is very suitable tool for conformal radiotherapy and commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 10MV photons are required. For modeling the collimator with treatment planning software, detailed dosimetric characterization of the multileaf collimator including the penumbra width, leaf transmission between leaf leakage and localization of the leaf ends and sides is an essential requirement. Measurement of characteristic data of the MLC with 26 pair block leaves installed on CLINAC 2100C linear accelerator was performed. Low sensitive radiographic film(X-omatV) was used for the penumbra measurement and separate experiments using radiographic film and thermoluminescent dosimeters were performed to verify the dose distribution, Measured films were analyzed with a photo densitometer of WP700i scanner. For 6 and 10 MV x-ray energies, approximately 2.0% of photons incident on the multileaf collimator were transmitted and an additional 0.5% leakage occurs between the leaves. Localizing the physical end of the leaves showed less than 1mm deviation from the 50% decrement line and this difference is attributed to the curved shaped end on the leaves. One side of a single leaf corresponded to the 50% decrement line, but the opposite face was aligned with a lower value. this difference is due to the tongue and groove used to decrease between leaf leakage. Alignment of the leaves to form a straight edge resulted larger penumbra at far position from isocenter as compare with divergent alloy blocks. When the MLC edge is stepped by sloping field, the isodose lines follow the leaf pattern and produce scalloping isodose curves in tissue. The effective penumbra by 45 degree stepped MLC is about 10mm at 10cm depth for 6MV x-ray. The difference of effective penumbra in deep tissue between MLC and divergent alloy blocks is small (5mm). Using the characteristic data of MLC, the MLC has the

  12. A method to study the characteristics of 3D dose distributions created by superposition of many intensity-modulated beams delivered via a slit aperture with multiple absorbing vanes

    International Nuclear Information System (INIS)

    Webb, S.; Oldham, M.

    1996-01-01

    Highly conformal dose distributions can be created by the superposition of many radiation fields from different directions, each with its intensity spatially modulated by the method known as tomotherapy. At the planning stage, the intensity of radiation of each beam element (or bixel) is determined by working out the effect of superposing the radiation through all bixels with the elemental dose distribution specified as that from a single bixel with all its neighbours closed (the 'independent-vane' (IV) model). However, at treatment-delivery stage, neighbouring bixels may not be closed. Instead the slit beam is delivered with parts of the beam closed for different periods of time to create the intensity modulation. As a result, the 3D dose distribution actually delivered will differ from that determined at the planning stage if the elemental beams do not obey the superposition principle. The purpose of this paper is to present a method to investigate and quantify the relation between planned and delivered 3D dose distributions. Two modes of inverse planning have been performed: (i) with a fit to the measured elemental dose distribution and (ii) with a 'stretched fit' obeying the superposition principle as in the PEACOCK 3D planning system. The actual delivery has been modelled as a series of component deliveries (CDs). The algorithm for determining the component intensities and the appropriate collimation conditions is specified. The elemental beam from the NOMOS MIMiC collimator is too narrow to obey the superposition principle although it can be 'stretched' and fitted to a superposition function. Hence there are differences between the IV plans made using modes (i) and (ii) and the raw and the stretched elemental beam, and also differences with CD delivery. This study shows that the differences between IV and CD dose distributions are smaller for mode (ii) inverse planning than for mode (i), somewhat justifying the way planning is done within PEACOCK. Using a

  13. Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Park, Ji-Yeon; Kim, Siyong; Park, Hae-Jin; Lee, Jeong-Woo; Kim, Yeon-Sil; Suh, Tae-Suk

    2014-01-01

    To recommend the optimal plan parameter set of grid size and angular increment for dose calculations in treatment planning for lung stereotactic body radiation therapy (SBRT) using dynamic conformal arc therapy (DCAT) considering both accuracy and computational efficiency. Dose variations with varying grid sizes (2, 3, and 4 mm) and angular increments (2°, 4°, 6°, and 10°) were analyzed in a thorax phantom for 3 spherical target volumes and in 9 patient cases. A 2-mm grid size and 2° angular increment are assumed sufficient to serve as reference values. The dosimetric effect was evaluated using dose–volume histograms, monitor units (MUs), and dose to organs at risk (OARs) for a definite volume corresponding to the dose–volume constraint in lung SBRT. The times required for dose calculations using each parameter set were compared for clinical practicality. Larger grid sizes caused a dose increase to the structures and required higher MUs to achieve the target coverage. The discrete beam arrangements at each angular increment led to over- and under-estimated OARs doses due to the undulating dose distribution. When a 2° angular increment was used in both studies, a 4-mm grid size changed the dose variation by up to 3–4% (50 cGy) for the heart and the spinal cord, while a 3-mm grid size produced a dose difference of <1% (12 cGy) in all tested OARs. When a 3-mm grid size was employed, angular increments of 6° and 10° caused maximum dose variations of 3% (23 cGy) and 10% (61 cGy) in the spinal cord, respectively, while a 4° increment resulted in a dose difference of <1% (8 cGy) in all cases except for that of one patient. The 3-mm grid size and 4° angular increment enabled a 78% savings in computation time without making any critical sacrifices to dose accuracy. A parameter set with a 3-mm grid size and a 4° angular increment is found to be appropriate for predicting patient dose distributions with a dose difference below 1% while reducing the

  14. Initial investigations of dose distribution patterns for an industrial electron accelerator

    International Nuclear Information System (INIS)

    Ehlermann, D.A.E.

    1994-01-01

    A newly developed accelerator for electrons in the dose range of up 10 mev at 10 kw performance replaces a similar type of accelerator that has been in use during the past 25 years. It is characterized by some decisive technical changes. The ray, rather than moving from one point to the next, is now distributed over the merchandise for the duration of an impulse. In the direction of conveyance, irradiation is carried out on successive fields as was done formerly. As the duration of impulse is no longer than 12 μs, some problems arose in respect of operation and measuring techniques: the time distribution of microwave energy or rays emitted during the individual impulses has a bearing on the dose distribution pattern at a right angle to the direction of transport in both the superficial and deep layers of the merchandise. Some of the initial measuring results are represented here. The accelerator's operational parameters were then so adjusted that a largely homogeneous dose distribution was achieved throughout. (orig.) [de

  15. 94: Treatment plan optimization for conformal therapy

    International Nuclear Information System (INIS)

    Rosen, I.I.; Lane, R.G.

    1987-01-01

    Computer-controlled conformal radiation therapy techniques can deliver complex treatments utilizing large numbers of beams, gantry angles and beam shapes. Linear programming is well-suited for planning conformal treatments. Given a list of available treatment beams, linear programming calculates the relative weights of the beams such that the objective function is optimized and doses to constraint points are within the prescribed limits. 5 refs.; 3 figs

  16. Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Tahmasebi-Birgani

    2014-04-01

    Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.

  17. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  18. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  19. Effect of head size on 10B dose distribution

    International Nuclear Information System (INIS)

    Gupta, N.; Blue, T.E.; Gahbauer, R.

    1992-01-01

    Boron neutron capture therapy (BNCT) for treatment of brain tumors is based on the utilization of large epithermal-neutron fields. Epithermal neutrons thermalize at depths of ∼2.5 cm inside the head and provide a maximum thermal fluence at deep-seated tumor sites with minimum damage to normal tissue. Brain tissue is a highly scattering medium for epithermal and thermal neutrons; therefore, a broad treatment field enables epithermal neutrons to enter the head over a large area. These neutrons slow down as they undergo scattering collisions and contribute to the thermal-neutron fluence at the tumor location. With the use of large neutron fields, the size of the head affects the thermal-neutron distribution and thereby the 10 B absorbed dose distribution inside the head. In this paper, the authors describe measurements using a boron trifluoride (BF 3 )-filled proportional counter to determine the effect of head size on 10 B absorbed dose distributions for a broad field accelerator epithermal-neutron source

  20. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    International Nuclear Information System (INIS)

    Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target

  1. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki; Abe, Takanori; Kubota, Yoshiki; Sakai, Makoto; Noda, Shin-ei; Ohno, Tatsuya; Nakano, Takashi

    2016-12-01

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated. Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded

  2. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  3. Dose profile in computed tomography chest scan; Perfil de dose em varredura de torax em tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno B., E-mail: bbo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Pos-graduacao em Ciencias e Tecnologia das Radiacoes, Minerais e Materiais; Mourao, Arnaldo P. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil); Alonso, Thessa C.; Silva, Teogenes A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2010-07-01

    For the optimization of the patient dose in computed tomography (CT), the Brazilian legislation only established the diagnostic reference levels (DRL's) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a parameter of quality control of CT scanners. Conformity to the DRL's can be verified by measuring the dose distribution in CT scans and MSAD determination. An analysis of the quality of CT scans of the metropolitan region of Belo Horizonte is necessary by conducting pertinent tests to the study that are presented in the ANVISA (National Agency of Sanitary Vigilance) Guide. The purpose of this study is to investigate, in a chest scan, the variation of dose in CT. To measure the dose profile are used lithium fluoride thermoluminescent dosimeters (TLD-100 Rod) distributed in cylinders positioned in peripheral and central regions of a phantom of polymethylmethacrylate (PMMA). The data obtained allow us to observe the variation of the dose profile inside the phantom. The peripheral region shows higher dose values than the central region. The longitudinal variation can be observed and the maximum dose was recorded at the edges of the phantom (41,58{+-}5,10) mGy at the midpoint of the longitudinal axis. The results will contribute to disseminate the proper procedure and optimize the dosimetry and the tests of quality control in CT, as well as make a critical analysis of the DRL's. (author)

  4. Experimental Determination of the Neutron Radiation-Dose Distribution in the Human Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Stipcic, Neda [Institute Rudjer Bogkovic, Zagreb, Yugoslavia (Serbia)

    1967-01-15

    The quality of the radiation delivering the radiation dose to the human phantom is quite different from that of the incident neutron beam. This paper describes the experimental investigation of the variation of neutron dose related to the variation of neutron fluence with depth in the human phantom. The distribution of neutron radiation was determined in the human phantom - a cube of paraffin wax 25 cm x 25 cm x 50 cm with a density of 0.92 cm{sup -3}. Po-Be and Ra-Be point sources were used as neutron sources. Neutron fluences were measured using different types of detector: scintillation detector, BF{sub 3} counter, and nuclear-track emulsions. Since the fluence measurements with these three types of detectors were carried out under the same experimental conditions, it was possible to separate and analyse each part of the radiation dose in the paraffin. From the investigations, the distribution of the total radiation dose was obtained as a function of the paraffin depth. The maximum value of this dose distribution is constant with respect to the distance between the source and the paraffin phantom. From the results obtained, some conclusions may be drawn concerning the amount of absorbed radiation dose in the human phantom. (author)

  5. Three-dimensional dose distribution in contrast-enhanced digital mammography using Gafchromic XR-QA2 films: Feasibility study

    International Nuclear Information System (INIS)

    Hwang, Yi-Shuan; Lin, Yu-Ying; Cheung, Yun-Chung; Tsai, Hui-Yu

    2014-01-01

    This study was aimed to establish three-dimensional dose distributions for contrast-enhanced digital mammography (CEDM) using self-developed Gafchromic XR-QA2 films. Dose calibration and distribution evaluations were performed on a full-field digital mammography unit with dual energy (DE) contrast-enhanced option. Strategy for dose calibration of films in the DE mode was based on the data obtained from common target/filter/kVp combinations used clinically and the dose response model modified from Rampado's model. Dose derived from films were also verified by measured data from an ionization chamber. The average difference of dose was 8.9% in the dose range for clinical uses. Three-dimensional dose distributions were estimated using triangular acrylic phantom equipped with the mammography system. Five pieces of film sheets were separately placed between the acrylic slabs to evaluate the dose distribution at different depths. After normalizing the dose in each pixel to the maximum dose at the top-center position of the acrylic, normalized dose distribution for transverse, coronal and sagittal planes, could thus be obtained. The depth dose distribution evaluated in this study may further serve as a reference for evaluating the patient glandular dose at different depths based on the entrance exposure information. - Highlights: • CEDM techniques can enhance contrast uptake areas and suppress background tissue. • Dose for the dual-energy acquisition is about 20% higher than standard mode. • A new method is proposed to estimate the 3D dose distribution in dual-energy CEDM. • Depth of normalized dose ratio of 0.5 is less than but near 1 cm in the DE mode

  6. Measurement of californium-252 gamma photons depth dose distribution in tissue equivalent material. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Fadel, M A; El-Fiki, M A; Eissa, H M; Abdel-Hafez, A; Naguib, S H [National Institute of Standards, Cairo (Egypt)

    1996-03-01

    Phantom of tissue equivalent material with and without bone was used measuring depth dose distribution of gamma-rays from californium-252 source. The source was positioned at center of perspex walled phantom. Depth dose measurements were recorded for X, Y and Z planes at different distances from source. TLD 700 was used for measuring the dose distribution. Results indicate that implantation of bone in tissue equivalent medium cause changes in the gamma depth dose distribution which varies according to variation in bone geometry. 9 figs.

  7. Comparison of dose evaluation index by pencil beam convolution and anisotropic analytical algorithm in stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    We previously studied dose distributions of stereotactic radiotherapy (SRT) for lung cancer. Our aim is to compare in combination pencil beam convolution with the inhomogeneity correction algorithm of Batho power low [PBC (BPL)] to the anisotropic analytical algorithm (AAA) by using the dose evaluation indexes. There were significant differences in D95, planning target volume (PTV) mean dose, homogeneity index, and conformity index, V10, and V5. The dose distributions inside the PTV calculated by PBC (BPL) were more uniform than those of AAA. There were no significant differences in V20 and mean dose of total lung. There was no large difference for the whole lung. However, the surrounding high-dose region of PTV became smaller in AAA. The difference in dose evaluation indexes extended between PBC (BPL) and AAA that as many as low CT value of lung. When the dose calculation algorithm is changed, it is necessary to consider difference dose distributions compared with those of established practice. (author)

  8. Analysis of Biochemical Control and Prognostic Factors in Patients Treated With Either Low-Dose Three-Dimensional Conformal Radiation Therapy or High-Dose Intensity-Modulated Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Vora, Sujay A.; Wong, William W.; Schild, Steven E.; Ezzell, Gary A.; Halyard, Michele Y.

    2007-01-01

    Purpose: To identify prognostic factors and evaluate biochemical control rates for patients with localized prostate cancer treated with either high-dose intensity-modulated radiotherapy (IMRT) or conventional-dose three-dimensional conformal radiotherapy 3D-CRT. Methods: Four hundred sixteen patients with a minimum follow-up of 3 years (median, 5 years) were included. Two hundred seventy-one patients received 3D-CRT with a median dose of 68.4 Gy (range, 66-71 Gy). The next 145 patients received IMRT with a median dose of 75.6 Gy (range, 70.2-77.4 Gy). Biochemical control rates were calculated according to both American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definitions. Prognostic factors were identified using both univariate and multivariate analyses. Results: The 5-year biochemical control rate was 60.4% for 3D-CRT and 74.1% for IMRT (p < 0.0001, first ASTRO Consensus definition). Using the ASTRO Phoenix definition, the 5-year biochemical control rate was 74.4% and 84.6% with 3D-RT and IMRT, respectively (p = 0.0326). Univariate analyses determined that PSA level, T stage, Gleason score, perineural invasion, and radiation dose were predictive of biochemical control. On multivariate analysis, dose, Gleason score, and perineural invasion remained significant. Conclusion: On the basis of both ASTRO definitions, dose, Gleason score, and perineural invasion were predictive of biochemical control. Intensity-modulated radiotherapy allowed delivery of higher doses of radiation with very low toxicity, resulting in improved biochemical control

  9. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  10. Low earth orbit radiation dose distribution in a phantom head

    International Nuclear Information System (INIS)

    Konradi, A.; Badhwar, G.D.; Cash, B.L.; Hardy, K.A.

    1992-01-01

    In order to compare analytical methods with data obtained during exposure to space radiation, a phantom head instrumented with a large number of radiation detectors was flown on the Space Shuttle on three occasions: 8 August 1989 (STS-28), 28 February 1990 (STS-36), and 24 April 1990 (STS-31). The objective of this experiment was to obtain a measurement of the inhomogeneity in the dose distribution within a phantom head volume. The orbits of these missions were complementary-STS-28 and STS-36 had high inclination and low altitude, while STS-31 had a low inclination and high altitude. In the cases of STS-28 and STS-36, the main contribution to the radiation dose comes from galactic cosmic rays (GCR) with a minor to negligible part supplied by the inner belt through the South Atlantic Anomaly (SAA), and for STS-28 an even smaller one from a proton enhancement during a solar flare-associated proton event. For STS-31, the inner belt protons dominate and the GCR contribution is almost negligible. The internal dose distribution is consistent with the mass distribution of the orbiter and the self-shielding and physical location of the phantom head. (author)

  11. Selection and determination of beam weights based on genetic algorithms for conformal radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Xingen Wu; Zunliang Wang

    2000-01-01

    A genetic algorithm has been used to optimize the selection of beam weights for external beam three-dimensional conformal radiotherapy treatment planning. A fitness function is defined, which includes a difference function to achieve a least-square fit to doses at preselected points in a planning target volume, and a penalty item to constrain the maximum allowable doses delivered to critical organs. Adjustment between the dose uniformity within the target volume and the dose constraint to the critical structures can be achieved by varying the beam weight variables in the fitness function. A floating-point encoding schema and several operators, like uniform crossover, arithmetical crossover, geometrical crossover, Gaussian mutation and uniform mutation, have been used to evolve the population. Three different cases were used to verify the correctness of the algorithm and quality assessment based on dose-volume histograms and three-dimensional dose distributions were given. The results indicate that the genetic algorithm presented here has considerable potential. (author)

  12. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)

    2006-09-15

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  13. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    Science.gov (United States)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment

  14. Dose rate distribution for products irradiated in a semi-industrial irradiation plant. 1st stage

    International Nuclear Information System (INIS)

    Mangussi, J.

    2005-01-01

    The model of the bulk product absorbed dose rate distribution in a semi industrial irradiation plant is presented. In this plant the products are subject to a dynamic irradiation process: single-plaque, single-direction, four-passes. The additional two passes, also one on each side of the plaque, serve to minimize the lateral dose variation as well as the depth-dose non-uniformity. The first stage of this model takes only into account the direct absorbed dose rate; the model outputs are the depth-dose distribution and the lateral-dose distribution. The calculated absorbed dose in the bulk product and its uniformity-ratio after the dynamic irradiation process for different products is compared. The model results are in good agreement with the experimental measurements in a bulk of irradiated product; and the air absorbed dose rate in the irradiation chamber behind the product subject to the dynamic irradiation process. (author) [es

  15. Warfarin maintenance dose in older patients: higher average dose and wider dose frequency distribution in patients of African ancestry than those of European ancestry.

    Science.gov (United States)

    Garwood, Candice L; Clemente, Jennifer L; Ibe, George N; Kandula, Vijay A; Curtis, Kristy D; Whittaker, Peter

    2010-06-15

    Studies report that warfarin doses required to maintain therapeutic anticoagulation decrease with age; however, these studies almost exclusively enrolled patients of European ancestry. Consequently, universal application of dosing paradigms based on such evidence may be confounded because ethnicity also influences dose. Therefore, we determined if warfarin dose decreased with age in Americans of African ancestry, if older African and European ancestry patients required different doses, and if their daily dose frequency distributions differed. Our chart review examined 170 patients of African ancestry and 49 patients of European ancestry cared for in our anticoagulation clinic. We calculated the average weekly dose required for each stable, anticoagulated patient to maintain an international normalized ratio of 2.0 to 3.0, determined dose averages for groups 80 years of age and plotted dose as a function of age. The maintenance dose in patients of African ancestry decreased with age (PAfrican ancestry required higher average weekly doses than patients of European ancestry: 33% higher in the 70- to 79-year-old group (38.2+/-1.9 vs. 28.8+/-1.7 mg; P=0.006) and 52% in the >80-year-old group (33.2+/-1.7 vs. 21.8+/-3.8 mg; P=0.011). Therefore, 43% of older patients of African ancestry required daily doses >5mg and hence would have been under-dosed using current starting-dose guidelines. The dose frequency distribution was wider for older patients of African ancestry compared to those of European ancestry (PAfrican ancestry indicate that strategies for initiating warfarin therapy based on studies of patients of European ancestry could result in insufficient anticoagulation and thereby potentially increase their thromboembolism risk. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Inherent calibration of microdosemeters for dose distributions in lineal energy

    Energy Technology Data Exchange (ETDEWEB)

    Crossman, J.S.P.; Watt, D.E. [Saint Andrews Univ. (United Kingdom). Dept. of Physics and Astronomy

    1994-12-31

    A method, utilising the inherent electron event spectra, is described for the absolute calibration of microdosemeters in the presence of a photon field. The method, which avoids the problems and uncertainties present in conventional calibration techniques, involves simple extrapolation of the dose distribution in lineal energy associated with `exact stopper` electrons. Validation of the method is made using the published experimental distributions of Rossi, of Kliauga, and of Dvorak and by direct theoretical calculation of the components of the microdose distributions for gamma rays. Further experimental data from a cylindrical TEPC in a photon field generated by an external source of {sup 137}Cs are obtained for comparison. A `universal` calibration curve for the dose-weighted lineal energy as a function of the simulated mean diameter of the microdosemeter, is presented for use in practical applications. (author).

  17. Inherent calibration of microdosemeters for dose distributions in lineal energy

    International Nuclear Information System (INIS)

    Crossman, J.S.P.; Watt, D.E.

    1994-01-01

    A method, utilising the inherent electron event spectra, is described for the absolute calibration of microdosemeters in the presence of a photon field. The method, which avoids the problems and uncertainties present in conventional calibration techniques, involves simple extrapolation of the dose distribution in lineal energy associated with 'exact stopper' electrons. Validation of the method is made using the published experimental distributions of Rossi, of Kliauga, and of Dvorak and by direct theoretical calculation of the components of the microdose distributions for gamma rays. Further experimental data from a cylindrical TEPC in a photon field generated by an external source of 137 Cs are obtained for comparison. A 'universal' calibration curve for the dose-weighted lineal energy as a function of the simulated mean diameter of the microdosemeter, is presented for use in practical applications. (author)

  18. Age-dependent effective doses for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2014-01-01

    Age-dependent effective doses for external exposure to photons emitted by radionuclides uniformly distributed in air are reported. The calculations were performed for 160 radionuclides, which are important for safety assessment of nuclear facilities. The energies and intensities of photons emitted from radionuclides were taken from the decay data DECDC used for dose calculations. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ) for 6 age groups: newborn, 1, 5, 10 and 15 years-old and adult. The effective doses for the adult are also compared to values given in the literature.

  19. The calculation of electron depth-dose distributions in multilayer medium

    International Nuclear Information System (INIS)

    Wang Chuanshan; Xu Mengjie; Li Zhiliang; Feng Yongxiang; Li Panlin

    1989-01-01

    Energy deposition in multilayer medium and the depth dose distribution in the layers are studied. Based on semi-empirical calculation of electron energy absorption in matter with EDMULT program of Tabata and Ito, further work has been carried out to extend the computation to multilayer composite material. New program developed in this paper makes IBM-PC compatible with complicated electron dose calculations

  20. Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

    International Nuclear Information System (INIS)

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2012-01-01

    Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of

  1. Measurements of the electron dose distribution near inhomogeneities using a plastic scintillation detector

    International Nuclear Information System (INIS)

    Wells, C.M.M.; Mackie, T.R.; Podgorsak, M.B.; Holmes, M.A.; Papanikolaou, N.; Reckwerdt, P.J.; Cygler, J.; Rogers, D.W.O.; Bielajew, A.F.; Schmidt, D.G.

    1994-01-01

    Accurate measurement of the electron dose distribution near an inhomogeneity is difficult with traditional dosimeters which themselves perturb the electron field. The authors tested the performance of a new high resolution, water-equivalent plastic scintillation detector which has ideal properties for this application. A plastic scintillation detector with a 1 mm diameter, 3 mm long cylindrical sensitive volume was used to measure the dose distributions behind standard benchmark inhomogeneities in water phantoms. The plastic scintillator material is more water equivalent than polystyrene in terms of its mass collision stopping power and mass scattering power. Measurements were performed for beams of electrons having initial energies of 6 and 18 MeV at depths from 0.2-4.2 cm behind the inhomogeneities. The detector reveals hot and cold spots behind heterogeneities at resolutions equivalent to typical film digitizer spot sizes. Plots of the dose distributions behind air, aluminum, lead, and formulations for cortical and inner bone-equivalent materials are presented. The plastic scintillation detector is suited for measuring the electron dose distribution near an inhomogeneity. 14 refs., 9 figs

  2. The use of polymer gel dosimetry to measure dose distribution around metallic implants

    International Nuclear Information System (INIS)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-01-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. (author)

  3. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    Science.gov (United States)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  4. Radiological response and dosimetry in physical phantom of head and neck for 3D conformational radiotherapy

    International Nuclear Information System (INIS)

    Thompson, Larissa

    2013-01-01

    Phantoms are tools for simulation of organs and tissues of the human body in radiology and radiotherapy. This thesis describes the development, validation and, most importantly, the use of a physical head and neck phantom in radiology and radiotherapy, with the purpose of evaluating dose distribution using Gafchromic EBT2 film in 15 MV 3D conformal radiotherapy. The work was divided in two stages, (1) development of new equivalent tissues and improvement of the physical phantom, and (2) use of the physical phantom in experimental dosimetry studies. In phase (1) parameters such as mass density, chemical composition of tissues, anatomical and biometric measurements were considered, as well as aspects of imaging by computed tomography (CT) and radiological response representation in Hounsfield Units (HU), which were compared with human data. Radiological experiments of in-phantom simulated brain pathologies were also conducted. All those results matched human-sourced data, therefore the physical phantom is a suitable simulator that may be used to enhance radiological protocols and education in medical imaging. The main objective in phase (2) was to evaluate the spatial dose distribution in a brain tumor simulator inserted inside the head and neck phantom developed by the Ionizing Radiation Research Group (NRI), exposed to 15 MV 3D conformal radiotherapy, for internal dose assessment. Radiation planning was based on CT images of the physical phantom with a brain tumor simulator made with equivalent material. The treatment planning system (TPS), CAT3D software, used CT images and prescribed a dose of 200 cGy, distributed in three fields of radiation, in a T-shaped pattern. The TPS covered the planning treatment volume (PTV) with 97% of the prescribed dose. A solid water phantom and radiochromic Gafchromic EBT2 film were used for calibration procedures, generating a dose response curve as a function of optical density (OD). After calibration and irradiation, the film

  5. Measurement of depth-dose distributions by means of the LiF-fluoroplastic thermoluminescent detectors

    International Nuclear Information System (INIS)

    Shaks, A.I.; Uryaev, I.A.; Trifonov, V.A.; Reshetnikova, L.V.

    1977-01-01

    Depth-dose distributions have been studied by means of thin-layer thermoluminescent detectors LiF-fluoroplast (8 mg/cm 2 ). Dosimetric characteristics of the detectors are described. They are: tissue-equivalence, dependence of sensitivity on the dose, dose rate and angle of incidence of radiation, and time-dependent storage, of the total light absorbed. Comparison of the results obtained with the measurements taken with an extrapolation chamber has demonstrated the possibility of measuring the depth-dose distributions by means of LiF-fluoroplast detectors

  6. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jihun [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Sutherland, Kenneth [Department of Medical Physics, Hokkaido University Graduate School of Medicine, Hokkaido University (Japan); Hashimoto, Takayuki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine (Japan); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University Graduate School of Medicine and Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University (Japan)

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (D{sub sub}) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial D{sub sub} distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  7. The characteristics on dose distribution of a large field

    International Nuclear Information System (INIS)

    Lee, Sang Rok; Jeong, Deok Yang; Lee, Btiung Koo; Kwon, Young Ho

    2003-01-01

    In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100 cm, size of field under 40 x 40 cm 2 ) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. In this study, using Multidata Water Phantom from standard SSD 100 cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180 cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350 cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. In comparison with the standard dose data, parameter which measures between SSD 180 cm and 350 cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  8. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    International Nuclear Information System (INIS)

    Chakraborty, Santam; Ghoshal, Sushmita; Patil, Vijay Maruti; Oinam, Arun Singh; Sharma, Suresh C.

    2011-01-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptive analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm 3 ), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.

  9. Influence of boundary effects on electron beam dose distribution formation in multilayer targets

    International Nuclear Information System (INIS)

    Kaluska, I.; Zimek, Z.; Lazurik, V.T.; Lazurik, V.M.; Popov, G.F.; Rogov, Y.V.

    2010-01-01

    Computational dosimetry play a significant role in an industrial radiation processing at dose measurements in the product irradiated with electron beams (EB), X-ray and gamma ray from radionuclide sources. Accurate and validated programs for absorbed dose calculations are required for computational dosimetry. The program ModeStEB (modelling of EB processing in a three-dimensional (3D) multilayer flat targets) was designed specially for simulation and optimization of industrial radiation processing, calculation of the 3D absorbed dose distribution within multilayer packages. The package is irradiated with scanned EB on an industrial radiation facility that is based on the pulsed or continuous type of electron accelerators in the electron energy range from 0.1 to 25 MeV. Simulation of EB dose distributions in the multilayer targets was accomplished using the Monte Carlo (MC) method. Experimental verification of MC simulation prediction for EB dose distribution formation in a stack of plates interleaved with polyvinylchloride (PVC) dosimetric films (DF), within a packing box, and irradiated with a scanned 10 MeV EB on a moving conveyer is discussed. (authors)

  10. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    International Nuclear Information System (INIS)

    Kok, H. Petra; Crezee, Johannes; Franken, Nicolaas A.P.; Stalpers, Lukas J.A.; Barendsen, Gerrit W.; Bel, Arjan

    2014-01-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy −1 ) and β (Gy −2 ) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normal tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment

  11. Decomposition analysis of differential dose volume histograms

    International Nuclear Information System (INIS)

    Heuvel, Frank van den

    2006-01-01

    Dose volume histograms are a common tool to assess the value of a treatment plan for various forms of radiation therapy treatment. The purpose of this work is to introduce, validate, and apply a set of tools to analyze differential dose volume histograms by decomposing them into physically and clinically meaningful normal distributions. A weighted sum of the decomposed normal distributions (e.g., weighted dose) is proposed as a new measure of target dose, rather than the more unstable point dose. The method and its theory are presented and validated using simulated distributions. Additional validation is performed by analyzing simple four field box techniques encompassing a predefined target, using different treatment energies inside a water phantom. Furthermore, two clinical situations are analyzed using this methodology to illustrate practical usefulness. A comparison of a treatment plan for a breast patient using a tangential field setup with wedges is compared to a comparable geometry using dose compensators. Finally, a normal tissue complication probability (NTCP) calculation is refined using this decomposition. The NTCP calculation is performed on a liver as organ at risk in a treatment of a mesothelioma patient with involvement of the right lung. The comparison of the wedged breast treatment versus the compensator technique yields comparable classical dose parameters (e.g., conformity index ≅1 and equal dose at the ICRU dose point). The methodology proposed here shows a 4% difference in weighted dose outlining the difference in treatment using a single parameter instead of at least two in a classical analysis (e.g., mean dose, and maximal dose, or total dose variance). NTCP-calculations for the mesothelioma case are generated automatically and show a 3% decrease with respect to the classical calculation. The decrease is slightly dependant on the fractionation and on the α/β-value utilized. In conclusion, this method is able to distinguish clinically

  12. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    Science.gov (United States)

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  13. Analysis of dose distribution in interventionist radiology professionals

    International Nuclear Information System (INIS)

    Mauricio, Claudia L.P.; Silva, Leonardo Peres; Canevaro, Lucia V.; Luz, Eara de Souza

    2005-01-01

    In this work, an evaluation was made of the distribution of dose received by professionals involved in some procedures of Interventional Radiology at hospitals and clinics in Rio de Janeiro, RJ, Brazil. For these measurements thermoluminescent dosemeters (TLD) of LiF: Mg, Ti (TLD100) were used, positioned at different points of the body of professionals: the hands, knees, neck, forehead and chest, inside and outside the lead apron. The measurements were made by procedure and/or a day of work, and the TLD were calibrated in equivalent operating magnitude of personal dose (Hp (d)) at different depths: 0.07 mm, 3 mm and 10 mm. In some procedures, physicians (holders of service and residents) received significant doses. The results show the importance of the appropriate training of these professionals and the use of personal protective equipment (PPE), such as thyroid shield, which is not always used. Based on these evaluations, some suggestions were made in order to optimize the dose values in these procedures and a discussion on the need for additional monitoring points

  14. Analytical approximation of the nanoscale dose distribution in an irradiated medium with an embedded nanoparticle

    International Nuclear Information System (INIS)

    Chernov, V; Barboza-Flores, M; Chernov, G

    2012-01-01

    In this work we propose an analytical approach describing the dose distribution around a NP embedded in a medium. The approach describes the following sequence of events: The homogenous and isotropic creation of secondary electrons under incident photon fluence; travel of the created electrons toward the NP surface and their escaping from the NP with different energies and angles; deposition of energy in surrounding medium. The radial dose distribution around the NP was found as the average energy deposited by the escaped electrons in a spherical shell at a distance r from the NP center normalized to its mass. The continuous slowing down approximation and the assumption that created electrons travel in a straight-line path were used. As result, a set of analytical expressions describing the dose distribution was derived. The expressions were applied to the calculation of the dose distribution around spherical gold NPs of different size embedded in water. It was shown that the dose distribution is close to the 1/r 2 dependence and practically independent of the NP radius.

  15. Image quality and dose distributions of three linac-based imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Dzierma, Yvonne; Ames, Evemarie; Nuesken, Frank; Palm, Jan; Licht, Norbert; Ruebe, Christian [Universitaetsklinikum des Saarlandes, Klinik fuer Strahlentherapie und Radioonkologie, Homburg/Saar (Germany)

    2015-04-01

    Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics. (orig.) [German] Linac-basierte Bildgebung zur Patientenlagerung ist mit einer Vielzahl von Techniken unterschiedlicher Photonenenergien moeglich. Ziel dieser Arbeit ist der Vergleich dreier Bildgebungssysteme mit 6 MV (Megavolt), FFF 1 MV, und 121 kV (Kilovolt). Fuer alle im Jahr 2013 an unserer Klinik behandelten Prostata- und HNO-Patienten wurden retrospektiv die Dosisverteilungen aller Verifikationsaufnahmen (ueber 1000 insgesamt) auf der Planungs-Computertomographie (CT) berechnet. Wir analysierten die Dosisverteilung und die Dosis an den Risikoorganen. Bei HNO-Patienten erreichte die Dosis von 6 MV ''Cone-beam''-CT (CBCT)Maximalwerte um 8 cGy. Mit 1 MV wird die Dosis auf 63

  16. A treatment planning study comparing whole breast radiation therapy against conformal, IMRT and tomotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Oliver, Mike; Chen, Jeff; Wong, Eugene; Van Dyk, Jake; Perera, Francisco

    2007-01-01

    Purpose and background: Conventional early breast cancer treatment consists of a lumpectomy followed by whole breast radiation therapy. Accelerated partial breast irradiation (APBI) is an investigational approach to post-lumpectomy radiation for early breast cancer. The purpose of this study is to compare four external beam APBI techniques, including tomotherapy, with conventional whole breast irradiation for their radiation conformity index, dose homogeneity index, and dose to organs at risk. Methods and materials: Small-field tangents, three-dimensional conformal radiation therapy, intensity-modulated radiation therapy and helical tomotherapy were compared for each of 15 patients (7 right, 8 left). One radiation conformity and two dose homogeneity indices were used to evaluate the dose to the target. The mean dose to organs at risk was also evaluated. Results: All proposed APBI techniques improved the conformity index significantly over whole breast tangents while maintaining dose homogeneity and without a significant increase in dose to organs at risk. Conclusion: The four-field IMRT plan produced the best dosimetric results; however this technique would require appropriate respiratory motion management. An alternative would be to use a four-field conformal technique that is less sensitive to the effects of respiratory motion

  17. A method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy

    International Nuclear Information System (INIS)

    Lu Yong; Song, Paul Y.; Li Shidong; Spelbring, Danny R.; Vijayakumar, Srinivasan; Haraf, Daniel J.; Chen, George T.Y.

    1995-01-01

    Purpose: To develop a method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy. Methods and Materials: Dose-surface histograms of the rectum, which state the rectal surface area irradiated to any given dose, were calculated for a group of 27 patients treated with a four-field box technique to a total (tumor minimum) dose ranging from 68 to 70 Gy. Occurrences of rectal toxicities as defined by the Radiation Therapy Oncology Group (RTOG) were recorded and examined in terms of dose and rectal surface area irradiated. For a specified end point of rectal complication, the complication probability was analyzed as a function of dose irradiated to a fixed rectal area, and as a function of area receiving a fixed dose. Lyman's model of normal tissue complication probability (NTCP) was used to fit the data. Results: The observed occurrences of rectal complications appear to depend on the rectal surface area irradiated to a given dose level. The patient distribution of each toxicity grade exhibits a maximum as a function of percentage surface area irradiated, and the maximum moves to higher values of percentage surface area as the toxicity grade increases. The dependence of the NTCP for the specified end point on dose and percentage surface area irradiated was fitted to Lyman's NTCP model with a set of parameters. The curvature of the NTCP as a function of the surface area suggests that the rectum is a parallel structured organ. Conclusions: The described method of analyzing rectal surface area irradiated yields interesting insight into understanding rectal complications in prostate conformal radiotherapy. Application of the method to a larger patient data set has the potential to facilitate the construction of a full dose-surface-complication relationship, which would be most useful in guiding clinical practice

  18. Measurement of two-dimensional thermal neutron flux in a water phantom and evaluation of dose distribution characteristics

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Horiguchi, Yoji

    2001-03-01

    To evaluate nitrogen dose, boron dose and gamma-ray dose occurred by neutron capture reaction of the hydrogen at the medical irradiation, two-dimensional distribution of the thermal neutron flux is very important because these doses are proportional to the thermal neutron distribution. This report describes the measurement of the two-dimensional thermal neutron distribution in a head water phantom by neutron beams of the JRR-4 and evaluation of the dose distribution characteristic. Thermal neutron flux in the phantom was measured by gold wire placed in the spokewise of every 30 degrees in order to avoid the interaction. Distribution of the thermal neutron flux was also calculated using two-dimensional Lagrange's interpolation program (radius, angle direction) developed this time. As a result of the analysis, it was confirmed to become distorted distribution which has annular peak at outside of the void, though improved dose profile of the deep direction was confirmed in the case which the radiation field in the phantom contains void. (author)

  19. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  20. Interface effects on dose distributions in irradiated media

    International Nuclear Information System (INIS)

    Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1980-01-01

    It has long been recognized that nonuniformities in dose distributions may occur in the immediate vicinity of a boundary between two different media. Considerable work has been done to determine interface effects in media irradiated by photons or in media containing β- or α-particle emitters. More recently interface effects have become of interest in additional problems, including pion radiotherapy and radiation effects in electronic microcircuits in space vehicles. These problems arise when pion capture stars or proton-nucleus interactions produce a spectrum of charged nuclear fragments near an interface. The purpose of this paper is to examine interface effects in detail as to their specific origin. We have made Monte Carlo calculations of dose distributions near an interface in a systematic way for a number of idealized cases in order to indicate the separate influences of several factors including different stopping powers of the two media, nonconstancy (e.g., Bragg peak) in the energy loss curve for the particles, different particle spectra in the two media, and curvature of the boundary between the two media

  1. Conformal radiotherapy using multileaf collimation: quality assurance and in vivo dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Aletti, P [Centre A. Vautrin, Nancy (France)

    1995-12-01

    The application of quality assurance principles in three dimensional conformal therapy is discussed.Critical requirements in three dimensional radiotherapy are the patient immobilization, the location, and the delivered dose. General recommendations with respect to the equipment for conformal radiotherapy and personnel are made.

  2. Conformal radiotherapy using multileaf collimation: quality assurance and in vivo dosimetry

    International Nuclear Information System (INIS)

    Aletti, P.

    1995-01-01

    The application of quality assurance principles in three dimensional conformal therapy is discussed.Critical requirements in three dimensional radiotherapy are the patient immobilization, the location, and the delivered dose. General recommendations with respect to the equipment for conformal radiotherapy and personnel are made

  3. Dosimetric and clinical results of three-dimensional conformal radiotherapy for locally recurrent nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zheng Xiaokang; Ma Jun; Chen Longhua; Xia Yunfei; Shi Yusheng

    2005-01-01

    Purpose: To assess the dosimetric and clinical results of three-dimensional conformal radiotherapy (3D CRT) for locally recurrent nasopharyngeal carcinoma (NPC). Methods: A total of 86 patients with locally recurrent NPC were retreated with 3D CRT. The median prescribed dose was 68 Gy with 2 Gy per fractionation. Dosimetric quality was evaluated with dose distribution in planning target volume (PTV) and specified organs at risk (OAR), dose conformity index (CI) and dose homogeneity index (HI). The actuarial rate of local failure-free (LFF), overall survival (OS) and major late toxicities (MLT) were estimated with Kaplan-Meier method. Multivariate analysis for prognosis was performed using the Cox regression proportional hazards model. Results: The mean dose to PTV averaged 66.8 Gy, and the dose to specified OAR was acceptable. The average value of CI and HI was 0.59 and 9.1%. The 5-year actuarial rate of LFF and OS was 71 and 40%, respectively. The 5-year actuarial incidence of MLT≥Grade 3 and ≥Grade 4 were 100 and 49%, respectively. The major prognostic factors were T stage and the size of gross tumor volume (GTV). Advanced T stage and large GTV volume were associated with poor LFF and OS and high risk of MLT. Conclusion: The dosimetric quality of 3D CRT for locally recurrent NPC is generally excellent. A relatively high local control was achieved with this technique. However, the incidence of late toxicities were not found to decrease as originally expected. Early diagnosis of the recurrence and reasonable definition of the target volume are crucial to achieve a better outcome

  4. Effect of silicone gel breast prosthesis on electron and photon dose distributions

    International Nuclear Information System (INIS)

    Krishnan, L.; St George, F.J.; Mansfield, C.M.; Krishnan, E.C.

    1983-01-01

    The effect of a silicone gel breast prosthesis on the absorbed dose distribution of 9-20 MeV electron beams and 1.25-15 MV photon beams was studied. Compared to water measurements, at depths smaller than the practical range of the electron beams, the central axis depth dose values below the prosthesis were lower for all energies by as much as 3.5%. However, at depths near the practical range, the central axis depth dose values for the prosthesis were greater than that of water by as much as 33%. Since this occurs near the end of the electron range, the resultant difference may not be clinically significant. Results of the effect of breast prosthesis on photon depth dose distributions reveal that no clinically significant perturbation is produced by the breast prosthesis using Co-60, 6- and 15-MV radiations

  5. Effect of silicone gel breast prosthesis on electron and photon dose distributions

    International Nuclear Information System (INIS)

    Krishnan, L.; St George, F.J.; Mansfield, C.M.; Krishnan, E.C.

    1983-01-01

    The effect of a silicone gel breast prosthesis on the absorbed dose distribution of 9--20 MeV electron beams and 1.25--15 MV photon beams was studied. Compared to water measurements, at depths smaller than the practical range of the electron beams, the central axis depth dose values below the prothesis were lower for all energies by as much as 3.5%. However, at depths near the practical range, the central axis depth dose values for the prosthesis were greater than that of water by as much as 33%. Since this occurs near the end of the electron range, the resultant difference may not be clinically significant. Results of the effect of breast prosthesis on photon depth dose distributions reveal that no clinically significant perturbation is produced by the breast prosthesis using Co-60, 6- and 15-MV radiations

  6. Auto-optimisation for three-dimensional conformal radiotherapy of nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, V.W.C. E-mail: orvinwu@polyu.edu.hk; Kwong, D.W.L.; Sham, J.S.T.; Mui, A.W.L

    2003-08-01

    Purpose: The purpose of this study was to evaluate the application of auto-optimisation in the treatment planning of three-dimensional conformal radiotherapy (3DCRT) of nasopharyngeal carcinoma (NPC). Methods: Twenty-nine NPC patients were planned by both forward planning and auto-optimisation methods. The forward plans, which consisted of three coplanar facial fields, were produced according to the routine planning criteria. The auto-optimised plans, which consisted of 5-15 (median 9) fields, were generated by the planning system after prescribing the dose requirements and the importance weightings of the planning target volume and organs at risk. Plans produced by the two planning methods were compared by the dose volume histogram, tumour control probability (TCP), conformity index and normal tissue complication probability (NTCP). Results: The auto-optimised plans reduced the average planner's time by over 35 min. It demonstrated better TCP and conformity index than the forward plans (P=0.03 and 0.04, respectively). Besides, the parotid gland and temporo-mandibular (TM) joint were better spared with the mean dose reduction of 31.8 and 17.7%, respectively. The slight trade off was the mild dose increase in spinal cord and brain stem with their maximum doses remaining within the tolerance limits. Conclusions: The findings demonstrated the potentials of auto-optimisation for improving target dose and parotid sparing in the 3DCRT of NPC with saving of the planner's time.

  7. Auto-optimisation for three-dimensional conformal radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, V.W.C.; Kwong, D.W.L.; Sham, J.S.T.; Mui, A.W.L.

    2003-01-01

    Purpose: The purpose of this study was to evaluate the application of auto-optimisation in the treatment planning of three-dimensional conformal radiotherapy (3DCRT) of nasopharyngeal carcinoma (NPC). Methods: Twenty-nine NPC patients were planned by both forward planning and auto-optimisation methods. The forward plans, which consisted of three coplanar facial fields, were produced according to the routine planning criteria. The auto-optimised plans, which consisted of 5-15 (median 9) fields, were generated by the planning system after prescribing the dose requirements and the importance weightings of the planning target volume and organs at risk. Plans produced by the two planning methods were compared by the dose volume histogram, tumour control probability (TCP), conformity index and normal tissue complication probability (NTCP). Results: The auto-optimised plans reduced the average planner's time by over 35 min. It demonstrated better TCP and conformity index than the forward plans (P=0.03 and 0.04, respectively). Besides, the parotid gland and temporo-mandibular (TM) joint were better spared with the mean dose reduction of 31.8 and 17.7%, respectively. The slight trade off was the mild dose increase in spinal cord and brain stem with their maximum doses remaining within the tolerance limits. Conclusions: The findings demonstrated the potentials of auto-optimisation for improving target dose and parotid sparing in the 3DCRT of NPC with saving of the planner's time

  8. Estimation of four-dimensional dose distribution using electronic portal imaging device in radiation therapy

    International Nuclear Information System (INIS)

    Mizoguchi, Asumi; Arimura, Hidetaka; Shioyama, Yoshiyuki

    2013-01-01

    We are developing a method to evaluate four-dimensional radiation dose distribution in a patient body based upon the animated image of EPID (electronic portal imaging device) which is an image of beam-direction at the irradiation. In the first place, we have obtained the image of the dose which is emitted from patient body at therapy planning using therapy planning CT image and dose evaluation algorism. In the second place, we have estimated the emission dose image at the irradiation using EPID animated image which is obtained at the irradiation. In the third place, we have got an affine transformation matrix including respiratory movement in the body by performing linear registration on the emission dose image at therapy planning to get the one at the irradiation. In the fourth place, we have applied the affine transformation matrix on the therapy planning CT image and estimated the CT image 'at irradiation'. Finally we have evaluated four-dimensional dose distribution by calculating dose distribution in the CT image 'at irradiation' which has been estimated for each frame of the EPID animated-image. This scheme may be useful for evaluating therapy results and risk management. (author)

  9. Studies on the dose distribution and treatment technique of high energy electron beams

    International Nuclear Information System (INIS)

    Lee, D.H.; Chu, S.S.

    1978-01-01

    Some important properties of high energy electron beams from the linear accelerator, LMR-13, installed in the Yonsei Cancer Center were studied. The results of experimental studies on the problems associated with the 8, 10, and 12 MeV electron beam therapy were as followings; The ionization type dosemeters calibrated by 90 Sr standard source were suitable to the measurements of the outputs and the obsorbed doses in accuracy point of view, and dose measurements using ionization chambers were difficult when measuring doses in small field size and the regions of rapid fall off. The electron energies were measured precisely with an energy spectrometer, and the practical electron energy was calculated within 5% error in the maximum range of the high energy electron beam in water. The correcting factors of perturbated dose distributions owing to radiation field, energy, and materials of the treatment cone were checked and described systematically and thus the variation of dose distributions due to the non-homogeneities of tissues and slopping skin surfaces were completely compensated. The electron beams were adequately diffused using the scatterers, and minimized the bremsstrahlung, irradiation field size, and materials of scatterers. Thus, the therapeutic capacity with the limited electron energy could be extended by improving the dose distributions. (author)

  10. Predicting treatment related imaging changes (TRICs) after radiosurgery for brain metastases using treatment dose and conformality metrics.

    Science.gov (United States)

    Taylor, B Frazier; Knisely, Jonathan P; Qian, Jack M; Yu, James B; Chiang, Veronica L

    2016-01-01

    Treatment-related imaging changes (TRICs) after stereotactic radiosurgery (SRS) involves the benign transient enlargement of radiographic lesions after treatment. Identifying the radiation dose volumes and conformality metrics associated with TRICs for different post-treatment periods would be helpful and improve clinical decision making. 367 metastases in 113 patients were treated using Gamma Knife SRS between 1/1/2007-12/31/2009. Each metastasis was measured at each imaging follow-up to detect TRICs (defined as ≥ 20% increase in volume). Fluctuations in small volume lesions (less than 108 mm 3 ) were ignored given widely variable conformity indices (CI) for small volumes. The Karolinska Adverse Radiation Effect (KARE) factor, Paddick's CI, Shaw's CI, tumor volume (TV), 10 Gy (V10) and 12 Gy (V12) volumes, and prescription isodose volume (PIV) were calculated. From 0-6 months, all measures correlated with the incidence of TRICs (p<.001), except KARE, which was inversely correlated. During the 6-12 month period all measures except KARE were still correlated. Beyond 12 months, no correlation was found between any of the measures and the development of TRICs. All metrics except KARE were associated with TRICs from 0-12 months only. Additional patient and treatment factors may become dominant at greater times after SRS.

  11. Implementation of three dimensional conformal radiation therapy: prospects, opportunities, and challenges

    International Nuclear Information System (INIS)

    Vijayakumar, Srinivasan; Chen, George T.Y.

    1995-01-01

    target volume(s), and planning target volume(s). Such definitions should make implementation of 3DCRT more complex, yet will make high-dose delivery a possibility. There are many sites in which single and multiinstitutional studies are ongoing that include prostate, lung, head and neck, and brain. In other areas, cooperative group trials are required because of the inability of single institutions to accrue enough patients to answer clinically relevant questions with statistical validity. Although implementation of 3DCRT will require multiple steps, these multiple steps can be brought into clinical practice gradually and one does not have to wait until all steps required for implementation of 3DCRT are available. In this respect, '3DCRT' should be used in a very broad sense, from beam's eye view blocking, use of multibeam dose distribution, use of dose-volume histograms in choosing alternative plans, noncoplanar beam arrangements, intensity modulation, inverse planning, to totally automated implementation of 3DCRT. To transfer the 3DCRT capabilities to the community from the University Centers, there is a necessity to develop quality assurance programs. RTOG and the Three-Dimensional Oncology Group are spearheading these efforts. Three-dimensional conformal radiation therapy has potential not only to improve local control and decrease toxicity, but also to improve the cost benefit ratio in the use of radiotherapy as well as in improving quality of life in patients with cancer. Conclusions: Achieving many potential benefits of 3DCRT (improvement in local control, decreasing toxicity, organs-function preservation, improvement in cost effectiveness) will require further physics-related and clinical research in carefully conceived and successfully completed future clinical trials

  12. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  13. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  14. Dose Distribution Calculation Using MCNPX Code in the Gamma-ray Irradiation Cell

    International Nuclear Information System (INIS)

    Kim, Yong Ho

    1991-02-01

    60 Co-gamma irradiators have long been used for foods sterilization, plant mutation and development of radio-protective agents, radio-sensitizers and other purposes. The Applied Radiological Science Research Institute of Cheju National University has a multipurpose gamma irradiation facility loaded with a MDS Nordin standard 60 Co source (C188), of which the initial activity was 400 TBq (10,800 Ci) on February 19, 2004. This panoramic gamma irradiator is designed to irradiate in all directions various samples such as plants, cultured cells and mice to administer given radiation doses. In order to give accurate doses to irradiation samples, appropriate methods of evaluating, both by calculation and measurement, the radiation doses delivered to the samples should be set up. Computational models have been developed to evaluate the radiation dose distributions inside the irradiation chamber and the radiation doses delivered to typical biolological samples which are frequently irradiated in the facility. The computational models are based on using the MCNPX code. The horizontal and vertical dose distributions has been calculated inside the irradiation chamber and compared the calculated results with measured data obtained with radiation dosimeters to verify the computational models. The radiation dosimeters employed are a Famer's type ion chamber and MOSFET dosimeters. Radiation doses were calculated by computational models, which were delivered to cultured cell samples contained in test tubes and to a mouse fixed in a irradiation cage, and compared the calculated results with the measured data. The computation models are also tested to see if they can accurately simulate the case where a thick lead shield is placed between the source and detector. Three tally options of the MCNPX code, F4, F5 and F6, are alternately used to see which option produces optimum results. The computation models are also used to calculate gamma ray energy spectra of a BGO scintillator at

  15. Radial dose distribution of 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Higgins, P.

    1989-01-01

    The radial dose distributions in water around /sup 192/ Ir seed sources with both platinum and stainless steel encapsulation have been measured using LiF thermoluminescent dosimeters (TLD) for distances of 1 to 12 cm along the perpendicular bisector of the source to determine the effect of source encapsulation. Similar measurements also have been made around a /sup 137/ Cs seed source of comparable dimensions. The data were fit to a third order polynomial to obtain an empirical equation for the radial dose factor which then can be used in dosimetry. The coefficients of this equation for each of the three sources are given. The radial dose factor of the stainless steel encapsulated /sup 192/ Ir and that of the platinum encapsulated /sup 192/ Ir agree to within 2%. The radial dose distributions measured here for /sup 192/ Ir with either type of encapsulation and for /sup 137/ Cs are indistinguishable from those of other authors when considering uncertainties involved. For clinical dosimetry based on isotropic point or line source models, any of these equations may be used without significantly affecting accuracy

  16. Breast internal dose measurements in a physical thoracic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.D.; Oliveira, M.A.; Castro, A.L.S.; Dias, H.G.; Nogueira, L.B.; Campos, T.P.R., E-mail: sadonatosilva@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Hospital das Clinicas de Uberlandia, MG (Brazil). Departamento de Oncologia; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Anatomia e Departamento de Imagem

    2017-10-01

    Radiotherapy is a cancer treatment intended to deposit the entire prescribed dose homogeneously into a target volume in order to eliminate the tumor and to spare the surrounding healthy tissues. This paper aimed to provide a dosimetric comparison between the treatment planning system (TPS) ECLIPSE from Varian Medical Systems and the internal dosimetric measurements in a breast phantom. The methodology consisted in performing a 3D conformal radiotherapy planning with two tangential opposite parallel fields applied to the synthetic breast in a thoracic phantom. The irradiation was reproduced in the Varian Linear accelerator, model SL - 20 Precise, 6 MV energy. EBT2 Radiochromic films, placed into the glandular equivalent tissue of the breast, were used to measure the spatial dose distribution. The absorbed dose was compared to those values predicted by the treatment planning system; besides, the dosimetric uncertainties were analyzed. The modal absorbed dose was in agreement with the prescribed value of 180 cGy, although few high dose points between 180 and 220 cGy were detected. The findings suggested a non-uniform dose distribution in the glandular tissue of the synthetic breast, similar to those found in the TPS, associated with the irregular anatomic breast shape and presence of inhomogeneities next to the thoracic wall generated by the low lung density. (author)

  17. Biologically effective dose distribution based on the linear quadratic model and its clinical relevance

    International Nuclear Information System (INIS)

    Lee, Steve P.; Leu, Min Y.; Smathers, James B.; McBride, William H.; Parker, Robert G.; Withers, H. Rodney

    1995-01-01

    Purpose: Radiotherapy plans based on physical dose distributions do not necessarily entirely reflect the biological effects under various fractionation schemes. Over the past decade, the linear-quadratic (LQ) model has emerged as a convenient tool to quantify biological effects for radiotherapy. In this work, we set out to construct a mechanism to display biologically oriented dose distribution based on the LQ model. Methods and Materials: A computer program that converts a physical dose distribution calculated by a commercially available treatment planning system to a biologically effective dose (BED) distribution has been developed and verified against theoretical calculations. This software accepts a user's input of biological parameters for each structure of interest (linear and quadratic dose-response and repopulation kinetic parameters), as well as treatment scheme factors (number of fractions, fractional dose, and treatment time). It then presents a two-dimensional BED display in conjunction with anatomical structures. Furthermore, to facilitate clinicians' intuitive comparison with conventional fractionation regimen, a conversion of BED to normalized isoeffective dose (NID) is also allowed. Results: Two sample cases serve to illustrate the application of our tool in clinical practice. (a) For an orthogonal wedged pair of x-ray beams treating a maxillary sinus tumor, the biological effect at the ipsilateral mandible can be quantified, thus illustrates the so-called 'double-trouble' effects very well. (b) For a typical four-field, evenly weighted prostate treatment using 10 MV x-rays, physical dosimetry predicts a comparable dose at the femoral necks between an alternate two-fields/day and four-fields/day schups. However, our BED display reveals an approximate 21% higher BED for the two-fields/day scheme. This excessive dose to the femoral necks can be eliminated if the treatment is delivered with a 3:2 (anterio-posterior/posterio-anterior (AP

  18. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    Energy Technology Data Exchange (ETDEWEB)

    Czelusniak, C; Del Lama, L S; Moreira, M V; De Almeida, A, E-mail: dalmeida@ffclrp.usp.b

    2010-11-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  19. Evaluation of the breast absorbed dose distribution using the Fricke Xylenol Gel

    International Nuclear Information System (INIS)

    Czelusniak, C; Del Lama, L S; Moreira, M V; De Almeida, A

    2010-01-01

    During a breast cancer radiotherapy treatment, several issues have to be taken into account, among them, hot spots, gradient of doses delivered over the breast, as well as in the lungs and the heart. The present work aims to apply the Fricke Xylenol Gel (FXG) dosimeter in the study of these issues, using a CCD camera to analyse the dose deposited distribution. Thus, the CCD was used to capture the images of different cuvettes that were filled with FXG and irradiated considering analogous setups employed in breast cancer radiotherapy treatments. Thereafter, these pictures where processed in a MatLab routine and the spatial dose distributions could be evaluated. These distributions were compared with the ones that were obtained from dedicated treatment planning's softwares. According to the results obtained, the FXG, allied with the CCD system, has shown to be a complementary tool in dosimetry, helping to prevent possible complications during breast cancer treatments.

  20. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    Science.gov (United States)

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the

  1. Optimization of dose distribution for the system of linear accelerator-based stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Suh Taesuk.

    1990-01-01

    This work addresses a method for obtaining an optimal dose distribution of stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer-aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer-aided design and visual optimization

  2. Chronic rectal bleeding after high-dose conformal treatment of prostate cancer warrants modification of existing morbidity scales

    International Nuclear Information System (INIS)

    Hanlon, Alexandra L.; Schultheiss, Timothy E.; Hunt, Margie A.; Movsas, Benjamin; Peter, Ruth S.; Hanks, Gerald E.

    1997-01-01

    Purpose: Serious late morbidity (Grade (3(4))) from the conformal treatment of prostate cancer has been reported in <1% to 6% of patients based on existing late gastrointestinal (GI) morbidity scales. None of the existing morbidity scales include our most frequently observed late GI complication, which is chronic rectal bleeding requiring multiple fulgerations. This communication documents the frequency of rectal bleeding requiring multiple fulgerations and illustrates the variation in reported late serious GI complication rates by the selection of morbidity scale. Methods and Materials: Between May 1989 and December 1993, 352 patients with T1-T3 nonmetastatic prostate cancers were treated with our four-field conformal technique without special rectal blocking. This technique includes a 1-cm margin from the clinical target volume (CTV) to the planning target volume (PTV) in all directions. The median follow-up for these patients was 36 months (range 2-76), and the median center of prostate dose was 74 Gy (range 63-81). Three morbidity scales are assessed: the Radiation Therapy Oncology Group (RTOG), the Late Effects Normal Tissue Task Force (LENT), and our modification of the LENT (FC-LENT). This modification registers chronic rectal bleeding requiring at least one blood transfusion and/or more than two coagulations as a Grade 3 event. Estimates for Grade (3(4)) late GI complication rates were determined using Kaplan-Meier methodology. The duration of severe symptoms with chronic rectal bleeding is measured from the first to the last transrectal coagulation. Latency is measured from the end of radiotherapy to surgery, first blood transfusion, or third coagulation procedure. Results: Sixteen patients developed Grade (3(4)) complications by one of the three morbidity scales. Two patients required surgery (colostomy or sigmoid resection), three required multiple blood transfusions, two required one or two blood transfusions, and nine required at least three

  3. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  4. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution.

    Science.gov (United States)

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-03-01

    Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced Polyetheretherketone (CFR-PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR-PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR-PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR-PEEK screws, and CFR-PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR-PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR-PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over- and underdose of adjacent tissues. The use of such implants has potential clinical advantages

  5. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE® radiochromic plastic

    International Nuclear Information System (INIS)

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-01-01

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE ® with optical-CT readout. Methods: Ge-doped SiO 2 fibers with 6 μm active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 μm active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE ® , 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE ® , and the latter two suffered from unacceptable noise and artifact. For the experimental conditions used in this study, the useful range from an isolated

  6. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE® radiochromic plastic.

    Science.gov (United States)

    Palmer, A L; Di Pietro, P; Alobaidli, S; Issa, F; Doran, S; Bradley, D; Nisbet, A

    2013-06-01

    Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE(®) with optical-CT readout. Ge-doped SiO2 fibers with 6 μm active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 μm active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE(®), 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE(®), and the latter two suffered from unacceptable noise and artifact. For the experimental conditions used in this study, the useful range from an isolated HDR source was 5-40 mm for

  7. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    International Nuclear Information System (INIS)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y

    2015-01-01

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit

  8. SU-D-BRB-07: Lipiodol Impact On Dose Distribution in Liver SBRT After TACE

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, D; Ozawa, S; Hioki, K; Suzuki, T; Lin, Y; Okumura, T; Ochi, Y; Nakashima, T; Ohno, Y; Kimura, T; Murakami, Y; Nagata, Y [Hiroshima University, Hiroshima, Hiroshima (Japan)

    2015-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) combining transarterial chemoembolization (TACE) with Lipiodol is expected to improve local control. This study aims to evaluate the impact of Lipiodol on dose distribution by comparing the dosimetric performance of the Acuros XB (AXB) algorithm, anisotropic analytical algorithm (AAA), and Monte Carlo (MC) method using a virtual heterogeneous phantom and a treatment plan for liver SBRT after TACE. Methods: The dose distributions calculated using AAA and AXB algorithm, both in Eclipse (ver. 11; Varian Medical Systems, Palo Alto, CA), and EGSnrc-MC were compared. First, the inhomogeneity correction accuracy of the AXB algorithm and AAA was evaluated by comparing the percent depth dose (PDD) obtained from the algorithms with that from the MC calculations using a virtual inhomogeneity phantom, which included water and Lipiodol. Second, the dose distribution of a liver SBRT patient treatment plan was compared between the calculation algorithms. Results In the virtual phantom, compared with the MC calculations, AAA underestimated the doses just before and in the Lipiodol region by 5.1% and 9.5%, respectively, and overestimated the doses behind the region by 6.0%. Furthermore, compared with the MC calculations, the AXB algorithm underestimated the doses just before and in the Lipiodol region by 4.5% and 10.5%, respectively, and overestimated the doses behind the region by 4.2%. In the SBRT plan, the AAA and AXB algorithm underestimated the maximum doses in the Lipiodol region by 9.0% in comparison with the MC calculations. In clinical cases, the dose enhancement in the Lipiodol region can approximately 10% increases in tumor dose without increase of dose to normal tissue. Conclusion: The MC method demonstrated a larger increase in the dose in the Lipiodol region than the AAA and AXB algorithm. Notably, dose enhancement were observed in the tumor area; this may lead to a clinical benefit.

  9. Dose distribution around ion track in tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng

    2007-01-01

    Objective: To study the energy deposition micro-specialty of ions in body-tissue or tissue equivalent material (TEM). Methods: The water vapor was determined as the tissue equivalent material, based on the analysis to the body-tissue, and Monte Carlo method was used to simulate the behavior of proton in the tissue equivalent material. Some features of the energy deposition micro-specialty of ion in tissue equivalent material were obtained through the analysis to the data from calculation. Results: The ion will give the energy by the way of excitation and ionization in material, then the secondary electrons will be generated in the progress of ionization, these electron will finished ions energy deposition progress. When ions deposited their energy, large amount energy will be in the core of tracks, and secondary electrons will devote its' energy around ion track, the ion dose distribution is then formed in TEM. Conclusions: To know biological effects of radiation , the research to dose distribution of ions is of importance(significance). (authors)

  10. The dose distributions of γ ray in the silicon in and near the interfaces of silicon and various materials

    International Nuclear Information System (INIS)

    Ba Weizhen; Wu Qingzhi; He Chengfa; Chen Chaoyang

    1996-01-01

    The depth dose distributions of γ ray in the silicon in and near the interfaces of silicon and various materials, such as gold, have been studied. The dose distributions have been compared with equilibrium doses in the homogeneous silicon material, and considerable dose gradient distributions were obtained. In the case of silicon adjacent to high atomic numbered material, dose enhancement effects have been observed in and near the interfaces. The dose gradient distributions were explained by photoelectron effect, Auger effect and secondary electron transport mechanism of the low energy scattering photons

  11. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  12. Dose distribution in head and neck during dental x-ray procedures

    International Nuclear Information System (INIS)

    Mason, E.W.; Goepp, R.A.

    1978-01-01

    Previous studies, notably by Franklin (Angle Ortho., 43:53-64, 1973), have shown significant exposures during cephalometric dental procedures and ways in which these exposures can be reduced. Skin dose over thyroid tissue has been measured by Alcox (J. Am. Dent. Assoc., 88:568-579, 1974), and others. This study is an expansion of thyroid dose measurements by Block, Goepp, and Mason (Angle Ortho., 47:17-24, 1977). The internal dose distribution in the head and neck area due to cephalometric and panoramic dental x-ray procedures is shown along with the dependence of orbit and thyroid dose on patient positioning. Higher doses can be delivered to deep tissue by panoramic machines since tissue at the axis of rotation is exposed during the entire procedure. (author)

  13. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  14. Microscopic dose distribution around PuO2 particles in lungs of hamsters, rats and dogs

    International Nuclear Information System (INIS)

    Diel, J.H.; Mewhinney, J.A.; Guilmette, R.A.

    1982-01-01

    Syrian hamsters, Fischer-344 rats and Beagle dogs inhaled monodisperse aerosols of PuO 2 and were sacrificed 1 to 16 days after exposure. The microscopic distribution of dose and tissue-at-risk around individual particles in lung was studied using autoradiographs of the lungs. The dose pattern in dogs and rats was more diffuse than in hamsters, resulting in a calculation of about twice the tumor incidence in rats and dogs as in hamsters on the basis of dose pattern using the same dose-effect model for all three species. The tumorigenic effect of inhaled insoluble PuO 2 particles depends on the species inhaling the material; Syrian hamsters are much less susceptible than are rats or dogs. It has been suggested that a difference in dose distribution resulting from differences in particle distributions in the two species may contribute to the differences in susceptibility in Syrian hamsters and rats. The role of dose distribution in lung cancer production is explored in this study by measuring microscopic dose patterns in regions surrounding single PuO 2 particles in lung. The alveolar structures of the dog and rat are different than those of the hamster. Based on these measurements, particles of PuO 2 in lung are more likely to cause lung cancer in dogs and rats than in hamsters

  15. An examination of the distribution of patient doses from diagnostic x-ray procedures

    International Nuclear Information System (INIS)

    Morris, N.D.

    1983-02-01

    An examination was made of the distribution of patient doses from diagnostic radiology. The data were derived from an Australia wide survey carried out during the 1970's. There was a large range of doses to which patients were exposed. If establishments can reduce doses to below the most common value, the total dose to the population will be reduced to less than 60% of the present value

  16. Dose Distribution of Rectum and Bladder in Intracavitary Irradiation

    International Nuclear Information System (INIS)

    Chu, S. S.; Oh, W. Y.; Suh, C. O.; Kim, G. E.

    1984-01-01

    The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiogram and medical records of 206 patients, who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analyzed. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral cervix to the central axis of ovoid were measured for low dose rate irradiation system and high dose rate remote control after loading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as 4-7cm width and high dose rate system showed as 5-6cm. 2. In Horizontal angulation of tandem to body axis, the low dose rate system revealed mid position 64.6%, left deviation 19.2% and right deviation 16.2%. 3. In longitudinal angulation of tandem to body axis, the mid position was 11.8% and anterior angulation 88.2% in low dose rate system but in high dose rate system, anterior angulation was 98.5%. 4. Down ward displacement of ovoid below external os was only 3% in low dose rate system and 66.6% in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses and TDF were 80, 70 Gy and 131, 123 including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 98, 47 Gy and 230, 73 in high dose rate system but in low dose rate system 125, 52 Gy and 262, 75 respectively. 8. Doses

  17. Distribution and characteristics of gamma and cosmic ray dose rate in living environment

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Moriuchi, Shigeru

    1991-01-01

    A series of environmental radiation surveys was carried out from the viewpoint of characterizing the natural radiation dose rate distribution in the living environment, including natural and artificial ones. Through the analysis of the data obtained at numbers of places, several aspects of the radiation field in living environments were clarified. That is the gamma ray dose rate varies due to the following three dominant causes: 1) the radionuclide concentration of surrounding materials acting as gamma ray sources, 2) the spatial distribution of surrounding materials, and 3) the geometrical and shielding conditions between the natural gamma ray sources and the measured point; whereas, the cosmic ray dose rate varies due to the thickness of upper shielding materials. It was also suggested that the gamma ray dose rate generally shows an upward tendency, and the cosmic ray dose rate a downward one in artificial environment. This kind of knowledge is expected to serve as fundamental information for accurate and realistic evaluation of the collective dose in the living environment. (author)

  18. Comparison between evaluating methods about the protocols of different dose distributions in radiotherapy

    International Nuclear Information System (INIS)

    Ju Yongjian; Chen Meihua; Sun Fuyin; Zhang Liang'an; Lei Chengzhi

    2004-01-01

    Objective: To study the relationship between tumor control probability (TCP) or equivalent uniform dose (EUD) and the heterogeneity degree of the dose changes with variable biological parameter values of the tumor. Methods: According to the definitions of TCP and EUD, calculating equations were derived. The dose distributions in the tumor were assumed to be Gaussian ones. The volume of the tumor was divided into several voxels, and the absorbed doses of these voxels were simulated by Monte Carlo methods. Then with the different values of radiosensitivity (α) and potential doubling time of the clonogens (T p ), the relationships between TCP or EUD and the standard deviation of dose (S d ) were evaluated. Results: The TCP-S d curves were influenced by the variable α and T p values, but the EUD-S d curves showed little variation. Conclusion: When the radiotherapy protocols with different dose distributions are compared, if the biological parameter values of the tumor have been known exactly, it's better to use the TCP, otherwise the EUD will be preferred

  19. Re-distribution of brachytherapy dose using a differential dose prescription adapted to risk of local failure in low-risk prostate cancer patients

    DEFF Research Database (Denmark)

    Rylander, Susanne; Polders, Daniel; Steggerda, Marcel J

    2015-01-01

    BACKGROUND AND PURPOSE: We investigated the application of a differential target- and dose prescription concept for low-dose-rate prostate brachytherapy (LDR-BT), involving a re-distribution of dose according to risk of local failure and treatment-related morbidity. MATERIAL AND METHODS: Our study......- and dose prescription concept of prescribing a lower dose to the whole gland and an escalated dose to the GTV using LDR-BT seed planning was technically feasible and resulted in a significant dose-reduction to urethra and bladder neck....

  20. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-01-01

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm 3 ), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm 3 ), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm 3 ), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  1. Conformational analysis of six- and twelve-membered ring compounds by molecular dynamics

    DEFF Research Database (Denmark)

    Christensen, I T; Jørgensen, Flemming Steen

    1997-01-01

    . A series of methyl-substituted 1,3-dioxanes were investigated at 1000 K, and the number of chair-chair interconversions could be quantitatively correlated to the experimentally determined ring inversion barrier. Similarly, the distribution of sampled minimum-energy conformations correlated with the energy......-derived Boltzmann distribution. The macrocyclic ring system cyclododecane was subjected to an MD simulation at 1000 K and 71 different conformations could be sampled. These conformations were compared with the results of previously reported conformational analyses using stochastic search methods, and the MD method...

  2. Multi-Institution Prospective Trial of Reduced-Dose Craniospinal Irradiation (23.4 Gy) Followed by Conformal Posterior Fossa (36 Gy) and Primary Site Irradiation (55.8 Gy) and Dose-Intensive Chemotherapy for Average-Risk Medulloblastoma

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Kun, Larry E.; Krasin, Matthew J.; Wallace, Dana; Chintagumpala, Murali M.; Woo, Shiao Y.; Ashley, David M.; Sexton, Maree; Kellie, Stewart J.; Ahern, Verity M.B.B.S.; Gajjar, Amar

    2008-01-01

    Purpose: Limiting the neurocognitive sequelae of radiotherapy (RT) has been an objective in the treatment of medulloblastoma. Conformal RT to less than the entire posterior fossa (PF) after craniospinal irradiation might reduce neurocognitive sequelae and requires evaluation. Methods and Materials: Between October 1996 and August 2003, 86 patients, 3-21 years of age, with newly diagnosed, average-risk medulloblastoma were treated in a prospective, institutional review board-approved, multi-institution trial of risk-adapted RT and dose-intensive chemotherapy. RT began within 28 days of definitive surgery and consisted of craniospinal irradiation (23.4 Gy), conformal PF RT (36.0 Gy), and primary site RT (55.8 Gy). The planning target volume for the primary site included the postoperative tumor bed surrounded by an anatomically confined margin of 2 cm that was then expanded with a geometric margin of 0.3-0.5 cm. Chemotherapy was initiated 6 weeks after RT and included four cycles of high-dose cyclophosphamide, cisplatin, and vincristine. Results: At a median follow-up of 61.2 months (range, 5.2-115.0 months), the estimated 5-year event-free survival and cumulative incidence of PF failure rate was 83.0% ± 5.3% and 4.9% ± 2.4% (± standard error), respectively. The targeting guidelines used in this study resulted in a mean reduction of 13% in the volume of the PF receiving doses >55 Gy compared with conventionally planned RT. The reductions in the dose to the temporal lobes, cochleae, and hypothalamus were statistically significant. Conclusion: This prospective trial has demonstrated that irradiation of less than the entire PF after 23.4 Gy craniospinal irradiation for average-risk medulloblastoma results in disease control comparable to that after treatment of the entire PF

  3. Analysis of Dose and Dose Distribution for Patients Undergoing Selected X-Ray Diagnostic Procedures in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Schandorf, C.; Tetteh, G.K

    1998-07-01

    The levels of dose and dose distributions for adult patients undergoing five selected common types of X ray examination in Ghana were determined using thermoluminescence dosemeters (TLD) attached to the skin where the beam enters the patient. To assess the performance of each X ray room surveyed, the mean of the entrance surface dose for patients whose statistics were close to a standard patient (70 kg weight and 20 cm AP trunk thickness) were compared to the Commission of the European Communities guideline values for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP examinations. The third quartiles dose values were 1.3 mGy, 14.5 mGy, 12.0 mGy and 7.9 mGy for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP respectively. Analysis of the data show that 86%, 58%, 37.5% and 50% of radiographic rooms delivered a mean dose greater than the CEC guideline values for chest PA, lumbar spine AP, pelvis/abdomen and skull AP respectively. This suggests that radiographic departments should undertake a review of their radiographic practice in order to bring their doses to optimum levels. (author)

  4. Analysis of Dose and Dose Distribution for Patients Undergoing Selected X-Ray Diagnostic Procedures in Ghana

    International Nuclear Information System (INIS)

    Schandorf, C.; Tetteh, G.K.

    1998-01-01

    The levels of dose and dose distributions for adult patients undergoing five selected common types of X ray examination in Ghana were determined using thermoluminescence dosemeters (TLD) attached to the skin where the beam enters the patient. To assess the performance of each X ray room surveyed, the mean of the entrance surface dose for patients whose statistics were close to a standard patient (70 kg weight and 20 cm AP trunk thickness) were compared to the Commission of the European Communities guideline values for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP examinations. The third quartiles dose values were 1.3 mGy, 14.5 mGy, 12.0 mGy and 7.9 mGy for chest PA, lumbar spine AP, pelvis/abdomen AP and skull AP respectively. Analysis of the data show that 86%, 58%, 37.5% and 50% of radiographic rooms delivered a mean dose greater than the CEC guideline values for chest PA, lumbar spine AP, pelvis/abdomen and skull AP respectively. This suggests that radiographic departments should undertake a review of their radiographic practice in order to bring their doses to optimum levels. (author)

  5. Relationships Between Rectal Wall Dose-Volume Constraints and Radiobiologic Indices of Toxicity for Patients With Prostate Cancer

    International Nuclear Information System (INIS)

    Marzi, Simona; Arcangeli, Giorgio; Saracino, Bianca; Petrongari, Maria G.; Bruzzaniti, Vicente; Iaccarino, Giuseppe; Landoni, Valeria; Soriani, Antonella; Benassi, Marcello

    2007-01-01

    Purpose: The purpose of this article was to investigate how exceeding specified rectal wall dose-volume constraints impacts on the risk of late rectal bleeding by using radiobiologic calculations. Methods and Materials: Dose-volume histograms (DVH) of the rectal wall of 250 patients with prostate cancer were analyzed. All patients were treated by three-dimensional conformal radiation therapy, receiving mean target doses of 80 Gy. To study the main features of the patient population, the average and the standard deviation of the distribution of DVHs were generated. The mean dose , generalized equivalent uniform dose formulation (gEUD), modified equivalent uniform dose formulation (mEUD) 0 , and normal tissue complication probability (NTCP) distributions were also produced. The DVHs set was then binned into eight classes on the basis of the exceeding or the fulfilling of three dose-volume constraints: V 40 = 60%, V 50 = 50%, and V 70 = 25%. Comparisons were made between them by , gEUD, mEUD 0 , and NTCP. Results: The radiobiologic calculations suggest that late rectal toxicity is mostly influenced by V 70 . The gEUD and mEUD 0 are risk factors of toxicity always concordant with NTCP, inside each DVH class. The mean dose, although a reliable index, may be misleading in critical situations. Conclusions: Both in three-dimensional conformal radiation therapy and particularly in intensity-modulated radiation therapy, it should be known what the relative importance of each specified dose-volume constraint is for each organ at risk. This requires a greater awareness of radiobiologic properties of tissues and radiobiologic indices may help to gradually become aware of this issue

  6. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  7. An IMRT dose distribution study using commercial verification software

    International Nuclear Information System (INIS)

    Grace, M.; Liu, G.; Fernando, W.; Rykers, K.

    2004-01-01

    Full text: The introduction of IMRT requires users to confirm that the isodose distributions and relative doses calculated by their planning system match the doses delivered by their linear accelerators. To this end the commercially available software, VeriSoft TM (PTW-Freiburg, Germany) was trialled to determine if the tools and functions it offered would be of benefit to this process. The CMS Xio (Computer Medical System) treatment planning system was used to generate IMRT plans that were delivered with an upgraded Elekta SL15 linac. Kodak EDR2 film sandwiched in RW3 solid water (PTW-Freiburg, Germany) was used to measure the IMRT fields delivered with 6 MV photons. The isodose and profiles measured with the film generally agreed to within ± 3% or ± 3 mm with the planned doses, in some regions (outside the IMRT field) the match fell to within ± 5%. The isodose distributions of the planning system and the film could be compared on screen and allows for electronic records of the comparison to be kept if so desired. The features and versatility of this software has been of benefit to our IMRT QA program. Furthermore, the VeriSoft TM software allows for quick and accurate, automated planar film analysis.Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  8. Dose escalation of chart in non-small cell lung cancer: is three-dimensional conformal radiation therapy really necessary?

    International Nuclear Information System (INIS)

    McGibney, Carol; Holmberg, Ola; McClean, Brendan; Williams, Charles; McCrea, Pamela; Sutton, Phil; Armstrong, John

    1999-01-01

    Purpose: To evaluate, pre clinically, the potential for dose escalation of continuous, hyperfractionated, accelerated radiation therapy (CHART) for non small-cell lung cancer (NSCLC), we examined the strategy of omission of elective nodal irradiation with and without the application of three-dimensional conformal radiation technology (3DCRT). Methods and Materials: 2D, conventional therapy plans were designed according to the specifications of CHART for 18 patients with NSCLC (Stages Ib, IIb, IIIa, and IIIb). Further plans were generated with the omission of elective nodal irradiation (ENI) from the treatment portals (2D minus ENI plans [2D-ENI plans]). Both sets were inserted in the patient's planning computed tomographies (CTs). These reconstructed plans were then compared to alternative, three-dimensional treatment plans which had been generated de novo, with the omission of ENI: 3D minus elective nodal irradiation (3D-ENI plans). Dose delivery to the planning target volumes (PTVs) and to the organs at risk were compared between the 3 sets of corresponding plans. The potential for dose escalation of each patient's 2D-ENI and 3D-ENI plan beyond 54 Gy, standard to CHART, was also determined. Results: PTV coverage was suboptimal in the 2D CHART and the 2D-ENI plans. Only in the 3D-ENI plans did 100% of the PTV get ≥95% of the dose prescribed (i.e., 51.5 Gy [51.3-52.2]). Using 3D-ENI plans significantly reduced the dose received by the spinal cord, the mean and median doses to the esophagus and the heart. It did not significantly reduce the lung dose when compared to 2D-ENI plans. Escalation of the dose (minimum ≥1 Gy) with optimal PTV coverage was possible in 55.5% of patients using 3D-ENI, but was possible only in 16.6% when using the 2D-ENI planning strategy. Conclusions: 3DCRT is fundamental to achieving optimal PTV coverage in NSCLC. A policy of omission of elective nodal irradiation alone (and using 2D technology) will not achieve optimal PTV coverage or

  9. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi; Gao, Xin; Huang, Jianhua Z.

    2012-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  10. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  11. Conformal avoidance helical tomotherapy for dogs with nasopharyngeal tumors

    International Nuclear Information System (INIS)

    Welsh, J.S.; Turek, M.; Mackie, T.R.; Miller, P.; Mehta, M.P.; Forrest, L.J.

    2003-01-01

    Helical tomotherapy provides a unique means of delivering intensity-modulated radiation therapy (IMRT) using a novel treatment unit, which merges features of a linear accelerator with a helical CT scanner. Thanks to the CT imaging capacity, targeted regions can be visualized prior to, during, or immediately after each treatment. Such image-guidance through megavoltage CT will allow the realization and refinement of the concept of adaptive radiotherapy - the reconstruction of the actually delivered daily dose (as opposed to planned dose) accompanied by prescription adjustments when appropriate. In addition to this unique feature, helical tomotherapy promises further improvements in the specific avoidance of critical normal structures, i.e. conformal avoidance, the counterpart of conformal therapy. The first definitive treatment protocol using helical tomotherapy is presently underway for dogs with nasopharyngeal tumors. In general, such tumors can be treated with conventional external beam radiation therapy but at the cost of severe ocular toxicity due to the anatomy of the canine head. These are readily measurable toxicities and are almost universal in incidence; therefore, the canine nasopharyngeal tumor presents an ideal model to assess the ability to conformally avoid critical structures. It is hoped that conformal avoidance helical tomotherapy will improve tumor control via dose-escalation while reducing ocular toxicity in these veterinary patients. A total of 10 fractions are scheduled for these patients; the first 3 dogs have all received at least 7 fractions delivered via helical tomotherapy. Although preliminary, the first 3 dogs treated have not shown any evidence of ocular toxicity in this ongoing study

  12. Conkiss: Conformal Kidneys Sparing 3D Noncoplanar Radiotherapy Treatment for Pancreatic Cancer As an Alternative to IMRT

    International Nuclear Information System (INIS)

    Sebestyen, Zsolt; Kovacs, Peter; Gulyban, Akos; Farkas, Robert; Bellyei, Szabolcs; Liposits, Gabor; Szigeti, Andras; Esik, Olga; Derczy, Katalin; Mangel, Laszlo

    2011-01-01

    When treating pancreatic cancer using standard (ST) 3D conformal radiotherapy (3D-CRT) beam arrangements, the kidneys often receive a higher dose than their probable tolerance limit. Our aim was to elaborate a new planning method that-similarly to IMRT-effectively spares the kidneys without compromising the target coverage. Conformal kidneys sparing (CONKISS) 5-field, noncoplanar plans were compared with ST plans for 23 consecutive patients retrospectively. Optimal beam arrangements were used consisting of a left- and right-wedged beam-pair and an anteroposterior beam inclined in the caudal direction. The wedge direction determination (WEDDE) algorithm was developed to adjust the adequate direction of wedges. The aimed organs at risk (OARs) mean dose limits were: kidney <12 Gy, liver <25 Gy, small bowels <30 Gy, and spinal cord maximum <45 Gy. Conformity and homogeneity indexes with z-test were used to evaluate and compare the different planning approaches. The mean dose to the kidneys decreased significantly (p < 0.05): left kidney 7.7 vs. 10.7 Gy, right kidney 9.1 vs. 11.7 Gy. Meanwhile the mean dose to the liver increased significantly (18.1 vs. 15.0 Gy). The changes in the conformity, homogeneity, and in the doses to other OARs were not significant. The CONKISS method balances the load among the OARs and significantly reduces the dose to the kidneys, without any significant change in the conformity and homogeneity. Using 3D-CRT the CONKISS method can be a smart alternative to IMRT to enhance the possibility of dose escalation.

  13. A novel correction factor based on extended volume to complement the conformity index.

    Science.gov (United States)

    Jin, F; Wang, Y; Wu, Y-Z

    2012-08-01

    We propose a modified conformity index (MCI), based on extended volume, that improves on existing indices by correcting for the insensitivity of previous conformity indices to reference dose shape to assess the quality of high-precision radiation therapy and present an evaluation of its application. In this paper, the MCI is similar to the conformity index suggested by Paddick (CI(Paddick)), but with a different correction factor. It is shown for three cases: with an extended target volume, with an extended reference dose volume and without an extended volume. Extended volume is generated by expanding the original volume by 0.1-1.1 cm isotropically. Focusing on the simulation model, measurements of MCI employ a sphere target and three types of reference doses: a sphere, an ellipsoid and a cube. We can constrain the potential advantage of the new index by comparing MCI with CI(Paddick). The measurements of MCI in head-neck cancers treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy provide a window on its clinical practice. The results of MCI for a simulation model and clinical practice are presented and the measurements are corrected for limited spatial resolution. The three types of MCI agree with each other, and comparisons between the MCI and CI(Paddick) are also provided. The results from our analysis show that the proposed MCI can provide more objective and accurate conformity measurement for high-precision radiation therapy. In combination with a dose-volume histogram, it will be a more useful conformity index.

  14. The treatment of colorectal liver metastases with conformal radiation therapy and regional chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, John M; Lawrence, Theodore S; Walker, Suzette; Kessler, Marc L; Andrews, James C; Ensminger, William D

    1995-05-15

    Purpose: Whole-liver radiation, with or without chemotherapy, has been of modest benefit in the treatment of unresectable hepatic metastases from colorectal cancer. A Phase I/II study combining escalating doses of conformally planned radiation therapy (RT) with intraarterial hepatic (IAH) fluorodeoxyuridine (FdUrd) was performed. Methods and Materials: Twenty-two patients with unresectable hepatic metastases from colorectal cancer, 14 of whom had progressed after previous chemotherapy (2 with prior IAH FdUrd), were treated with concurrent IAH FdUrd (0.2 mg/kg/day) and conformal hepatic radiation therapy (1.5-1.65 Gy/fraction twice a day). The total dose of radiation given to the tumor (48-72.6 Gy) depended on the fraction of normal liver excluded from the high-dose volume. All patients were assessed for response, toxicity, hepatobiliary relapse, and survival. Median potential follow-up was 42 months. Results: Eleven of 22 patients demonstrated an objective response, with the remainder showing stable disease. Actuarial freedom from hepatic progression was 25% at 1 year. The most common acute toxicity was mild to moderate nausea and transient liver function test abnormalities. There were three patients with gastrointestinal bleeding (none requiring surgical intervention) after the completion of treatment. Overall median survival was 20 months. The presence of extrahepatic disease was associated with decreased survival (p < 0.01). Conclusions: Combined conformal radiation therapy and IAH FdUrd can produce an objective response in 50% of patients with hepatic metastases from colorectal cancer. However, response was not durable, and hepatic progression was frequent. Improvements in hepatic tumor control for patients with metastatic colorectal cancer may require higher doses of conformal radiation and/or improved radiosensitization. In an effort to increase radiosensitization, we have recently initiated a clinical trial combining IAH bromodeoxyuridine, a thymidine analog

  15. Development of novel conformity indices for quantitative comparison of radiation treatment plans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Park, So Yeon; Wu, Hong Gyun; Ye, Sung Joon; Kim, Jin Ho; Kim, Jung In [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2013-11-15

    The conformity index (CI) is an indicator to assess the degree of congruence between a shape of reference isodose volume (VRI) and a shape of the target volume (TV). Two concepts are included in the CI, which are the target coverage and the degree of normal tissue sparing in the proximity of the target. Even though this could be verified by a manual review of dose distributions calculated on patient CT images slice by slice, detailed comparisons among several treatment plans would be inconvenient. The conformity could be also verified by reviewing dose-volume histograms (DVHs) of each structure calculated by treatment planning system (TPS). The prerequisite for this is the contouring of not only organs at risk (OARs) but also every structure in a patient body, which is not practical in the clinic. Therefore, a value possible to quantify the conformity was needed, and various studies on CI have been performed. Various CIs have been developed since 1993. Most of them are based on the calculation of the volumes except for the CI suggested by Wu et al. and Cheung et al. which were based on the distance. The aim of this study was to develop new CIs based on the calculations of angles and distances. The CI angle based on the analysis of the angle differences as well as the CIabs{sub d}istance and the CIdistance based on the analysis of the distances between the TV and the VRI were developed and evaluated in this study. The CI distance with Sornatomedins better performances than the CIangle and the CIabs{sub d}istance as well as the conventional CIs in various situations.

  16. Dose distribution, using homogeneous material before the reload of the JS-6500 irradiator

    International Nuclear Information System (INIS)

    Carrasco A, H.

    1991-10-01

    The objective of this report is to determine the dose distribution inside the aluminum containers used for the industrial irradiation, as well as to locate the positions of maximum and minimum doses, before the reloading of the JS-6500 Irradiator. (Author)

  17. Impact of patient positioning on radiotherapy dose distribution: An assessment in parotid tumor

    Directory of Open Access Journals (Sweden)

    Seema Sharma

    2016-03-01

    Full Text Available Purpose: We intended to study the impact of patient positioning on the dose distribution within target volume and organs at risk in patients with parotid malignancies treated with 3D conformal radiotherapy (3D-CRT with photon wedge pair (WP or intensity modulated radiotherapy (IMRT.Methods: Three patients with a non-Hodgkin’s lymphoma of the right parotid gland were consecutively immobilized using thermoplastic cast in 2 positions: supine with head in neutral position (HN and with head turned 90° to the left side (HT. Images for treatment planning purpose were acquired in both positions. For both positions, photon WP plans and 5 field IMRT plans were generated, after contouring clinical target volume (CTV, planning target volume (PTV= CTV + 5 mm margin and organs at risk (OAR. All plans were evaluated for target coverage and dose to OARs.Results: Both CTV and PTV were apparently larger in HN compared with HT (31.76±8.89 cc, 30.31±7.83 cc and 62.49±19.01 cc, 58.89±15.33 cc respectively. The CI value for PTV was slightly better for HT compared to HN position in both the WP and IMRT plans. The homogeneity was comparable in both the head positions in case of WP plan. The mean HI of PTV was increased in case of IMRT plan at HT versus HN position (1.108 vs. 1.097. A change in head position from HN to HT with wedge pair plan resulted in a reduction of brainstem Dmax and Dmean. Lesser dose was observed in HN position for contralateral parotid. A difference of 0.9 Gy in the average Dmax to spinal cord was seen. The values of Dmean to mandible, oral cavity, ipsilateral and contralateral cochlea were higher in the HT position. A change in head position from HN to HT with IMRT plan resulted in a dose reduction in average Dmax to brainstem. The spinal cord Dmax increased at the HT position by 1.2 Gy. The dose to contralateral parotid and cochlea was comparable in both the positions. However, the Dmean to oral cavity was reduced at HT position. Whereas

  18. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    Science.gov (United States)

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Simulative study on dose distribution of 103Pd stent in blood-vessel

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Xu Zhiyong; Sun Fuyin; Xu Shuhe; Ma Fengwu

    2003-01-01

    Objective: To evaluate the dose distribution of 103 Pd stent in the blood-vessel. Methods: Simulative study on dose distribution of endovascular 103 Pd stent was conducted with thermoluminescence dosimeter. The vessel wall was substituted by muscle equivalent material in this simulative study. Results: When radioactivity of the study 103 Pd stent was 9.8 MBq the absorbed dose from the stent surface by muscle equivalent material was 9.8 Gy at 17 d (the half-life period of 103 Pd). The radioactivity of 103 Pd stent surface rapidly attenuated over the radial distance. 80% of the radioactivity at the area that was radially 0.4 mm apart from the stent surface was absorbed by the simulative blood-vessel wall. Conclusion: Endovascular 103 Pd stent does not exert significant injury on the surrounding organs or tissues

  20. Effects of target size on the comparison of photon and charged particle dose distributions

    International Nuclear Information System (INIS)

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs

  1. Incidence of and factors related to late complications in conformal and conventional radiation treatment of cancer of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Schultheiss, Timothy E; Hanks, Gerald E; Hunt, Margie A; Lee, W Robert

    1995-06-15

    Purpose: The fundament hypothesis of conformal radiation therapy is that tumor control can be increased by using conformal treatment techniques that allow a higher tumor dose while maintaining an acceptable level of complications. To test this hypothesis, it is necessary first to estimate the incidence of morbidity for both standard and conformal fields. In this study, we examine factors that influence the incidence of late Grade 3 and 4 morbidity in patients treated with conformal and standard radiation treatment for prostate cancer. Methods and Materials: Six hundred sixteen consecutive patients treated with conformal or standard techniques between 1986 and 1994 to doses greater than 65 Gy and with more than 3 months follow-up were analyzed. No patients treated with prostatectomies were included in the analysis. The conformal technique includes special immobilization by a cast, careful identification of the target volume in three dimensions, localization of the inferior border of the prostate using a retrograde urethrogram, and individually shaped portals that conform to the Planning Target Volume (PTV). Multivariate analysis using a proportional hazards model compares differences in the incidence of Radiation Therapy Oncology Group/European Organization for Research and Center Treatment (RTOG/EORTC) Grade 3 and 4 late gastrointestinal (GI) and genitourinary (GU) morbidity by technique, T-stage, grade, age, hormonal treatment, irradiated volume, dose, and comorbid conditions. Grade 3 rectal bleeding was defined as requiring three or more cautery procedures. Results: The overall actuarial incidence of genitourinary (GU) toxicities at 5 years was 3.4%, with the crude incidence being six cases in 616 patients satisfying the selection criteria; for gastrointestinal (GI) toxicities, the overall actuarial incidence was 2.7%, with the crude incidence being 13 cases out of 616 patients. The average time to complication for our patients was 12.8 months for GI toxicity and

  2. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  3. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  4. The influence of inhomogeneities on the dose distribution of fast electrons in radiotherapy

    International Nuclear Information System (INIS)

    Windemuth, M.

    1985-01-01

    Simple models are used to make a principal comparison between measured fast-electron dose distributions behind tissue inhomogeneities and those calculated by means of an irradiation planning system. The different organs were represented by water (for muscle), by cork (for the lungs) and by graphite (for bone). Corresponding to their density, inhomogeneities result, in principle, in a dose shift to a greater or smaller body depth which is correctly considered by the irradiation planning system. However, electron scattering transversal to beam direction will occur behind inhomogeneity edges which, in general, are not covered by the irradiation planning system, but which result in dose distributions deviating strongly from those expected as due to the shift. This is the reason for the limited accuracy of irradiation planning systems in complicated inhomogeneity distribution. The thesis demonstrates those cases which justify irradiation planning and those cases where they are not a reliable basis for irradiation. (orig./HP) [de

  5. Dose distributions of pendulum fields in the field border plane

    International Nuclear Information System (INIS)

    Schrader, R.

    1986-01-01

    Calculations (program SIDOS-U2) and LiF measurements taken in a cylindric water phantom are used to investigate the isodose distributions of different pendulum irradiation methods (Co-60) in a plane which is parallel to the central ray plane and crosses the field borders at the depth of the axis. The dose values compared to the maximum values of the central ray plane are completely different for each pendulum method. In case of monoaxial pendulum methods around small angles, the maximum dose value found in the border plane is less than 50% of the dose in the central ray plane. The relative maximum of the border plane moves to tissues laying in a greater depth. In case of bi-axial methods, the maximum value of the border plane can be much more than 50% of the maximum dose measured in the central ray plane. (orig.) [de

  6. Development of semi-empirical equations for In-water dose distribution using Co-60 beams

    International Nuclear Information System (INIS)

    Abdalla, Siddig Abdalla Talha

    2001-08-01

    Knowledge of absorbed dose distribution is essential for the management of cancer using Co-60 teletherapy. Since direct measurement of dose in patient is impossible, indirect assessments are always carried. In this study direct assessments in phantoms were taken for dose distribution data. Mainly we concentrated on central axis dose and isodose curves data, which are essential for treatment planning. We started by development of a semi-empirical method which uses a more restricted number of measurements and uses graphical relation to develop the dose distribution. This method was based on the decrement lines method which was introduced by Orchard (1964) to develop isodose curve. In the beginning the already developed percent depth dose, Pdd, equation was modified and used to plot the Pdd lines for randomly selected field sizes. After that the dose profiles at depths 5, 10, 15 and 20 cm for randomly selected field sizes were plotted from the direct measurement. Then with the help of the PDD's equation, an equation for the slope of decrement lines is developed. From this slope equation a relation that gives the off axial distance was found. Making use of these relations, the iso lines 80%, 50% and 20% were plotted for the field sizes: 6*6 cm 2 , 10*10 cm 2 and 18*18 cm 2 . Finally these plotted lines were compared to their correspondents from the manufacturer and those used in the hospital (Rick). (Author)

  7. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jang-Hwan, E-mail: jhchoi21@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Constantin, Dragos [Microwave Physics R& E, Varian Medical Systems, Palo Alto, California 94304 (United States); Ganguly, Arundhuti; Girard, Erin; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Morin, Richard L. [Mayo Clinic Jacksonville, Jacksonville, Florida 32224 (United States); Dixon, Robert L. [Department of Radiology, Wake Forest University, Winston-Salem, North Carolina 27157 (United States)

    2015-08-15

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm{sup 3} ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1

  8. SU-F-BRA-06: Dose Distributions for the CivaSheet Pd-103 Directional Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States)

    2015-06-15

    Purpose: A flexible polymer membrane (CivaSheet) has been developed by CivaTech Oncology, Inc. (Research Triangle Park, NC) for permanent brachytherapy. Distributed throughout the array are small plastic disks containing Pd-103 and gold foil shielding on one side to provide a directional dose distribution and facilitate imaging. This study evaluated dosimetry for the CivaSheet. Methods: Manufacturer-provided dimensional and compositional information for the device were compared to physical samples for validation of design information, then entered into the MCNP6 radiation transport code for dosimetry simulations. Three device sizes (6×6, 6×12, or 6×18 disk-arrays) were simulated as the membrane can be custom-sized preceding surgical placement. Dose to water was estimated with 0.01 cm resolution from the surface to 10 cm on both sides of the device. Because this is a novel device with calibration methods under development, results were normalized using DVHs to provide 90% prescription coverage to a plane positioned 0.5 cm from the front surfaces. This same normalization was used for creating isodose distributions. Results: Planar dose distributions of flat CivaSheets were relatively homogeneous with acceptable dose uniformity variations. Differences in the results between the differently sized CivaSheets were not significant. At 0.5 mm, 87% of the target volume was within the therapeutic dose range. Dose hotspots on the CivaSheet forward surfaces were directly above the disks. However, dose hotspots on the rear-facing surfaces were positioned between the disks. Doses in contact with the front surface were similar to those observed for currently available brachytherapy sources. Maximum doses that occurred on the rear surface were approximately 55 times lower than the dose on the front surface. Conclusion: Monte Carlo calculations validated the directional capabilities and advantageous dosimetry of the new Pd-103 brachytherapy device. It appears feasible to re

  9. A γ dose distribution evaluation technique using the k-d tree for nearest neighbor searching

    International Nuclear Information System (INIS)

    Yuan Jiankui; Chen Weimin

    2010-01-01

    Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the γ calculation time for 2D and 3D dose distributions. Methods: The γ calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The γ value indicates the acceptability. In regions where γ≤1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the γ evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N 1/k ), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for γ evaluation is much more efficient.

  10. Principles of protection: a formal approach for evaluating dose distributions

    International Nuclear Information System (INIS)

    Wikman-Svahn, Per; Peterson, Martin; Hansson, Sven Ove

    2006-01-01

    One of the central issues in radiation protection consists in determining what weight should be given to individual doses in relation to collective or aggregated doses. A mathematical framework is introduced in which such assessments can be made precisely in terms of comparisons between alternative distributions of individual doses. In addition to evaluation principles that are well known from radiation protection, a series of principles that are derived from parallel discussions in moral philosophy and welfare economics is investigated. A battery of formal properties is then used to investigate the evaluative principles. The results indicate that one of the new principles, bilinear prioritarianism, may be preferable to current practices, since it satisfies efficiency-related properties better without sacrificing other desirable properties

  11. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  12. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  13. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  14. Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Hälg, Roger A.; Besserer, Jürgen; Schneider, Uwe

    2012-01-01

    Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1

  15. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  16. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    Science.gov (United States)

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  17. The effect of source-axis distance on integral dose: implications for IMRT

    International Nuclear Information System (INIS)

    Keall, P.

    2001-01-01

    The source-axis distance (SAD) is a treatment machine design parameter that affects integral dose, dose rate and patient clearance. The aim of this work was to investigate the effect of source-axis distance on integral dose for conformal arc therapy. This work is part of a larger project to determine the ideal characteristics of a dedicated IMRT machine. The sensitivity of SAD to beam energy, PTV size, body size and PTV position were determined for conformal arc therapy. For the calculations performed here it was assumed that dose equals terma. The integral dose ratio (IDR) was used to quantify the calculation results. It was found that the IDR increases as both SAD and photon energy increase, though the dependence of IDR on SAD decreases as energy increases. The PTV size was found to have a negligible effect on the relationship between the SAD and IDR, however the body size does affect the relationship between the SAD and IDR. The position of the PTV within the body also affects the IDR. From dosimetric considerations alone, the larger the SAD, the better the possible dose distribution. The IDR for a very large SAD is increased by approximately 5% when compared with the IDR for 100 cm SAD. Similarly, the IDR for 100 cm SAD is approximately 5% higher than the IDR at 50 cm SAD. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  18. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1996-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  19. Intensity-modulated three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Mohan, Radhe

    1997-01-01

    Optimized intensity-modulated treatments one of the important advances in photon radiotherapy. Intensity modulation provides a greatly increased control over dose distributions. Such control can be maximally exploited to achieve significantly higher levels of conformation to the desired clinical objectives using sophisticated optimization techniques. Safe, rapid and efficient delivery of intensity-modulated treatments has become feasible using a dynamic multi-leaf collimator under computer control. The need for all other field shaping devices such as blocks, wedges and compensators is eliminated. Planning and delivery of intensity-modulated treatments is amenable to automation and development of class solutions for each treatment site and stage which can be implemented not only at major academic centers but on a wide scale. A typical treatment involving as many as 10 fields can be delivered in times shorter than much simpler conventional treatments. The main objective of the course is to give an overview of the current state of the art of planning and delivery methods of intensity-modulated treatments. Specifically, the following topics will be covered using representative optimized plans and treatments: 1. A typical procedure for planning and delivering an intensity-modulated treatment. 2. Quantitative definition of criteria (i.e., the objective function) of optimization of intensity-modulated treatments. Clinical relevance of objectives and the dependence of the quality of optimized intensity-modulated plans upon whether the objectives are stated purely in terms of simple dose or dose-volume criteria or whether they incorporate biological indices. 3. Importance of the lateral transport of radiation in the design of intensity-modulated treatments. Impact on dose homogeneity and the optimum choice of margins. 4. Use of intensity-modulated treatments in escalation of tumor dose for the same or lower normal tissue dose. Fractionation of intensity-modulated treatments

  20. The probability distribution of side-chain conformations in [Leu] and [Met]enkephalin determines the potency and selectivity to mu and delta opiate receptors

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert; Jensen, Morten Østergaard; Bohr, Henrik

    2003-01-01

    The structure of enkephalin, a small neuropeptide with five amino acids, has been simulated on computers using molecular dynamics. Such simulations exhibit a few stable conformations, which also have been identified experimentally. The si